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Preface 

"Elasticity is one of the crowning achievements of Western culture!" ex­
claimed my usually reserved colleague Professor George Zahalak during a 
meeting to discuss the graduate program in Solid Mechanics. Although my 
thoughts on the theory of elasticity had not been expressed in such noble 
terms, it was the same admiration for the creative efforts of the premier 
physicists, mathematicians and mechanicians of the 19th and 20th centuries 
that led me to attempt to popularize the basis of solid mechanics in this 
introductory form. 

The book is intended to provide a thorough grounding in tensor-based 
theory of elasticity, which is rigorous in treatment but limited in scope. It is 
directed to advanced undergraduate and graduate students in civil, mechani­
calor aeronautical engineering who may ultimately pursue more applied 
studies. It is also hoped that a few may be inspired to delve deeper into the 
vast literature on the subject. A one-term course based on this material may 
replace traditional Advanced Strength of Materials in the curriculum, since 
many of the fundamental topics grouped under that title are treated here, 
while those computational techniques that have become obsolete due to the 
availability of superior, computer-based numerical methods are omitted. 

Little, if any, originality is claimed for this work other than the selection, 
organization and presentation of the material. The principal historical con­
tributors are noted in the text and several modern references are liberally 
cited. 

My personal interest in the theory of elasticity was kindled at North­
western University through a course offered by Professor George Herrmann, 
later of Stanford University. I am also indebted to my colleague Professor 
S. Sridharan who has class-tested the text, pointed out errors and omissions, 
and contributed some challenging exercises, as well as to Professor Moujalli 
Hourani for carefully reading the first edition manuscript. I am grateful to 
Ms. Kathryn Schallert for typing that manuscript. 

For the corrected first edition, the author incorporated the suggestions 
of many careful readers. He is especially appreciative for the corrections 
supplied by Mr. A.S. Mosallam and Professor George G. Adams, and for the 
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viii Preface 

clarifications of several points provided by Mr. John C. de C. Henderson. He 
benefitted from the comments of Dr. Mao Peng who worked most of the 
exercises. In that printing, a few problems were added to extend the scope 
of the treatment; Chapter 4 was revised in accordance with the format pro­
posed by Professor Sridharan; and Section 7.10 was replaced by a more 
meaningful illustration at the urging of Mr. Nathan Gould. 

The second edition reflects the scrutiny of G. Tong and Andrea Schokker. 
The suggestion for the rotating beam problem in Chapter 9 is credited to Mr. 
Shang-Hyon Shin. The careful proofreading of the new chapters by Xiaofeng 
Wang and Ying-Xia Cai is especially appreciated. 

Phillip L. Gould 
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CHAPTER 1 

Introduction and Mathematical 
Preliminaries 

1.1 Scope 

The theory of elasticity comprises a consistent set of equations which uniquely 
describe the state of stress, strain and displacement at each point within an 
elastic deformable body. Solutions of these equations fall into the realm of 
applied mathematics, while applications of such solutions are of engineering 
interest. When elasticity is selected as the basis for an engineering solution, a 
rigor is accepted that distinguishes this approach from the alternatives, which 
are mainly based on the strength of materials with its various specialized 
derivatives such as the theories of rods, beams, plates and shells. The distin­
guishing feature between the various alternative approaches and the theory 
of elasticity is the pointwise description embodied in elasticity, without resort 
to expedients such as Navier's hypothesis of plane sections remaining plane. 

The theory of elasticity contains equilibrium equations relating the stresses; 
kinematic equations relating the strains and displacements; constitutive equa­
tions relating the stresses and strains; boundary conditions relating to the 
physical domain; and uniqueness constraints relating to the applicability of 
the solution. Origination of the theory of elasticity is attributed to Louis­
Marie-Henri Navier, Simon-Denis Poisson and George Green in the first 
half of the 19th century [LlJ. 

In subsequent chapters, each component of the theory will be developed 
in full from the fundamental principles of physics and mathematics. Some 
limited applications will then be presented to illustrate the potency of the 
theory as well as its limitations. 

1.2 Vector Algebra 

A vector is a directed line segment in the physical sense. Referred to the unit 
basis vectors (ex, ey, ez ) in the Cartesian coordinate system (x, y, z), an arbi­
trary vector A may be written in component form as 
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x' 3 

\ 
\ 

x' 2 

~~~~-----+--~----7/----~-----X2 

x, 

x· , 

\ '" / 
) "'~ / 

I '" \ ' /. 
I '" \ / X, 

'" / ---- _ -- __ ----y \ / 

X 2 _---..Y ----------- xi 

Fig. 1.1. Cartesian coordinate systems (after Tauchert, Energy Principles in Structural 
Mechanics, McGraw-Hill, 1974). Reproduced by permission. 

(1.1) 

Alternately, the Cartesian system could be numerically designated as 
(X l ,X2,X3), whereupon 

(1.2) 

The latter form is common in elasticity. An example is vector r in Fig. 1.1, 
where the unit vectors elo e2 , and e3 are identified [1.2]. 

Beyond the physical representation, it is often sufficient to deal with the 
components alone as ordered triples, 

A = (A l ,A2,A3). (1.3) 

The length or magnitude of A is given by 

IAI = J Ai + A~ + A~. (1.4) 

Vector equality, addition, and subtraction are trivial. Vector multiplication 
has two forms. The inner, dot, or scalar product is 

C=A·B 

= A1Bl + A2B2 + A3 B3 

= IAIIBI cos (JAB' 

Additionally, there is the outer, cross, or vector product 

(1.5) 
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C=AxB 

= (A2B3 - A 3B2)e1 + (A3Bl - A 1B3)eZ + (A1B2 - A 2B1)e3, (1.6) 

which is conveniently evaluated as a determinant 

e1 e2 e3 
C = A x B = Al A2 A3 

Bl B2 B3 

C is perpendicular to the plane containing A and B. 

1.3 Scalar and Vector Fields 

1.3.1 Definitions 

A scalar quantity expressed as a function of the Cartesian coordinates such as 

(1.7) 

is known as a scalar field. An example is the temperature at a point. 
A vector quantity similarly expressed, such as A(Xl' X2 , x 3 ), is called a 

vector field. An example is the velocity of a particle. We are concerned with 
changes or derivatives of these fields. 

1.3.2 Gradient 

The gradient of a scalar field f is defined as 

gradf = Vf 
of of of 

= -e1 + -e2 + -e3 
OX 1 oX2 oX3 

- (:~1':~2':~3)' (1.8) 

gradf is a vector point function which is orthogonal to the surface f = 

constant, everywhere. Conversely, the components of grad f may be found by 
the appropriate dot product, for example, 

(1.9) 

1.3.3 Operators 

The del operator V may be treated as a vector 

a( ) a( ) a( ) 
V( )=-e1 +-e2 +-e3, 

aX1 oX2 aX3 
(1.1Oa) 

while the higher-order scalar operators are written as 



4 Chapter 1. Introduction and Mathematical Preliminaries 

(1.10b) 

and 

V4( ) = V2 [V2( )] 

84 84 84 84 84 
=-8 4( )+-8 4( )+-8 4( )+2-8 28 2( )+2-8 28 2() 

Xl X 2 X3 Xl X 2 Xl X3 

(1.10c) 

and are used frequently in the following chapters. The operators are particu­
larly useful because the operation performed is independent of any particular 
coordinate system, or invariant. However, the forms given in Eqs. (1.10) are 
for Cartesian coordinates; for curvilinear coordinates, such as cylindrical co­
ordinates, the operators must be appropriately transformed. This is devel­
oped in Sec. 7.4. 

1.3.4 Divergence 

The divergence of a vector field A is defned as 

divA = V·A 

8Al 8A2 8A3 
=-+-+-

8x l 8x2 8X3' 

which is a scalar conveniently written as dA. 

1.3.5 Curl 

(1.11) 

Since two forms of vector multiplication exist, it is natural to expect another 
derivative form of A. The curl of A is defined as 

curiA = V x A 

8() 8() 8() 

8x l 8X2 8X3 
(1.12) 

Ai A2 A3 

in determinant form. 

1.3.6 Integral Theorems 

Two integral theorems relating vector fields are particularly useful for trans­
forming between contour, area and volume integrals: Green's theorem and 
the Divergence theorem. 
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Considering two functions P(x, y) and Q(x, y) which are continuous and 
have continuous first partial derivatives (C 1 continuous) in a domain D, 
Green's theorem states that 

#c (Pdx + Qdy) = I (Q,x - P,y) dx dy 

where A is a closed region of D bounded by C. 

(1.13) 

Considering a continuously differentiable vector point function G in D, the 
divergence theorem states that 

Iv V·GdV = IO'GdA (1.14) 

where V is the volume bounded by the oriented surface A and 0 is the positive 
normal to A. 

1.4 Indicial Notation 

One of the conveniences of modern treatments of the theory of elasticity is 
the use of shorthand notation to facilitate the mathematical manipulation of 
lengthy equations. 

Referring to the ordered triple representation for A in Eq. (1.3), the three 
Cartesian components can be symbolized as Ai' where the subscript or index 
i is understood to take the sequential values 1, 2, 3. If we have nine quantities, 
we may employ a double subscripted notation Dij, where i and j range from 
1 to 3 in turn. Later, we will associate these nine components with a higher 
form of a vector, called a tensor. Further, we may have 27 quantities, Cijk ' etc. 

While i and j range as stated, an exception is made when two subscripts 
are identical, such as Djj• The Einstein summation convention states that a 
subscript appearing twice is summed from 1 to 3. No subscript can appear 
more than twice. As an example, we have the inner product, Eq. (1.5), rewrit­
ten as 

Also, 

3 

AiBi= L AiBi 
i=l 

(a) (1.15) 

(b) (1.15) 

It is apparent from the preceding examples that there are two distinct types 
of indices. The first type appears only once in each term of the equation and 
ranges from 1 to 3. It is called a free index. The second type appears twice 
in a single term and is summed from 1 to 3. Since it is immaterial which letter 
is used in this context, a repeated subscript is called a dummy index. That is, 
Dii = Djj = Dkk • 
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From the preceding discussion, it may be deduced that the number of 
individual terms represented by a single product is 3\ where k is the number 
of free indices. 

There are some situations in which double subscripts occur where the 
summation convention is not intended. This is indicated by enclosing the 
subscripts in parentheses [1.3]. For example, the individual components Dll , 

D22 and D33 could be represented by D(ii). 
The product of the three components of a vector is expressed by the Pi 

convention: 
3 n Ai = A 1 A 2 A 3 · 

i=l 
(1.16) 

Partial differentiation may also be abbreviated using the comma convention 

oA-
ax' = Ai,j' (1.17a) 

J 

Since both i and j are free indices, Eq. (1.17a)represents 32 = 9 quantities. 
With repeated indices, 

as defined in Eq. (1.11). 
Further, 

oA-
-'=A·· oXi ',' 

aD .. 
_'J=D· .. oXj 'J') 

= Dil ,l + Di2 ,2 + Di3 ,3, 

(1.17b) 

(1.17c) 

which takes on 31 = 3 values for each i = 1,2,3. This example combines the 
summation and comma conventions. 

1.5 Coordinate Rotation 

In Fig. 1.1 (see [1.2]), we show a position vector to point P, r, resolved into 
components with respect to two Cartesian systems, Xi and x;, having a com­
mon origin. The unit vectors in the x; system are shown as e; on the figure. 

First, we consider the point P with coordinates P(X1' X 2 , x 3 ) = P(Xi) in the 
unprimed system and P(x~, x;, x~) = P(x;) in the primed system. The linear 
transformation between the coordinates of P is given by 

X~ = ()(ll Xl + ()(12 X 2 + ()(13 X 3 

x; = ()(21X1 + ()(22 X 2 + ()(23X3 

X~ = ()(31X1 + ()(32X2 + ()(33X3 

(a) (1.18) 
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or 

(b) (1.18) 

using the summation convention. Each of the nine quantities IXij is the cosine 
of the angle between the ith primed and the jth unprimed axis, that is, 

( I ) OXj I (') 
IXij = cos Xi,Xj = ~ = ei·ej = cos ei,ej 

uX i 

(1.19) 

The IXij'S are known as direction cosines and are conveniently arranged in 
tabular form for computation: 

Xl X2 X3 

X~ IXll IXl2 IX13 (1.20) x; IX21 IX22 IX23 

X3 IX31 IX 32 IX33· 

It is emphasized that, in general, IXij =1= IXji. From a computational standpoint, 
Eq. (1.19) indicates that expressing the unit vectors in the xi coordinate sys­
tem, ei, in terms of those in the Xi system, ei' is tantamount to evaluating the 
corresponding IXij terms. A numerical example is given in Sections 2.2.6 and 
2.4.3. 

We next consider the position vector r and recognize that the components 
are related by Eq. (1.18). Conversely, any quantity which obeys this transfor­
mation law is a vector. This somewhat indirect definition of a vector proves 
to be convenient for defining higher-order quantities, Cartesian tensors. 

From a computational standpoint, it is often convenient to carry out the 
transformations indicated in Eq. (1.18) in matrix form as 

in which 

{X'} = [RJ {x}, 

{X'} = {X~X;X3} 

{x} = {X1X2X3} 

[RJ = [::: ::: :::], 
IX31 IX32 IX33 

[RJ is called a rotation matrix. 

1.6 Cartesian Tensors 

(1.21) 

(a) 

(b) (1.22) 

(c) 

A tensor of order n is a set of 3" quantities which transform from one coordi­
nate system, Xi' to another, xi, by a specified law, as follows: 
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n 

o 
1 
2 
3 
4 

order 

zero (scalar) 
one (vector) 
two (dyadic) 
three 
four 

transformation law 

A;=Ai 

A; = cxijAj 

A;j = CXikCXjlAkl 

A;jk = CXilCXjmCXknA'mn 

A;jkl = CXimCXjnCXkpCX,qAmnpq 

Order zero and order one tensors are familiar physical quantities, whereas 
the higher-order tensors are useful to describe physical quantities with a 
corresponding number of associated directions. 

Second-order tensors (dyadics) are particularly prevalent in elasticity and 
the transformation may be carried out in a matrix format, analogous to Eq. 
(1.21), as 

[A'] = [R] [A] [RY, (1.23) 

in which 

[ A~l A'12 AI13] 

[A'] = A~l A~2 A~3 

A~l A~2 A~3 

(1.24) 

and [A] is similar. The superscript T indicates the transpose operation. 
It may be helpful to visualize a tensor of order n as having n unit vectors 

or directions associated with each component. Thus, a scalar has no direc­
tional association (isotropic) and a vector is directed in one direction. A 
second-order tensor has two associated directions, perhaps one direction in 
which it acts and another defining the surface on which it is acting. 

1.7 Algebra of Cartesian Tensors 

Tensor arithmetic and algebra are similiar to matrix operations in regard to 
addition, subtraction, equality and scalar multiplication. Multiplication of 
two tensors of order nand m produces a new tensor of order n + m. For 
example, 

(1.25) 

For two repeated indices the summation convention holds, as shown in Eq. 
(USb). 

1.8 Operational Tensors 

Additional tensor operations are facilitated by the use of the Kronecker delta 
Dij defined such that 
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(jij = 1 if i = j 

(jij = 0 if i =1= j 

and the permutation symbol 8 ijk defined such that 

8 ijk = W - j)(j - k)(k - i) 

Thus 

8 ijk = 0 if any two of i, j, k are equal 

(1.26) 

( 1.27) 

8 ijk = 1 for an even permutation (forward on the number line 1, 2, 3, 
1,2,3, ... ) 

8 ijk = - 1 for an odd permutation (backward on the number line) 

Hence, 8 112 = 0, 8 231 = + 1, 8 321 = -1. 
The Kronecker delta (jij is used to change the subscripts in a tensor by 

multiplication, as illustrated in the following: 

(jijAi = (jljA1 + (j2j A 2 + (j3jA3 = Aj 

(jijDjk = (jo Dlk + (ji2 D Zk + (jj3D3k = Dik (1.28) 

(jijCijk = (j11 C11k + (jZ2 C22k + (j33 C33k = C iik = A k • 

The last illustration, in which two subscripts in Cijk were made identical by 
(jij' results in Cijk being changed from a third- to a first-order tensor. This is 
known as contraction, and generally reduces the order of the original tensor 
by two. 

The Kronecker delta (jij is also useful in vector algebra and for coordinate 
transformations. Starting with the dot product of two unit vectors 

(1.29) 

and seeking the component of a vector A = Aiei in the j direction, Aj , we do 
the following: 

e j ' A = (ej'e;)Ai 

= (jjiAi 

= Aj • 

Next, we consider Eq. (1.29) for transformed coordinates: 

= lXiklXj/ek • e/ 

= lXiklXj/(jk/ 

(1.30) 

(1.31) 
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Equation (1.31) is useful for demonstrating some important properties of 
direction cosines. 

First, taking i = j and summing only on k, we get 

1 = lX(i)klX(i)k 

= 1X;1 + 1X;2 + 1X;3 

Expanding Eq. (1.32), we have 

i = 1: lXi 1 + lXi 2 + lXi 3 = 1 

i = 2: 1X~1 + 1X~2 + 1X~3 = 1 

i = 3: 1X~1 + 1X~2 + 1X~3 = 1, 

which is the normality property of direction cosines. 
Then, taking i =I- j, we get 

Expanding Eq. (1.34), we have 

i = 1, j = 2: 1X111X21 + 1X121X22 + 1X131X23 = 0 

i = 1, j = 3: 1X111X31 + IX 12 IX 32 + 1X131X33 = 0 

i = 2, j = 1: 1X211X11 + 1X221X12 + 1X231X13 = 0 

i = 2, j = 3: 1X211X31 + 1X221X32 + 1X231X33 = 0 

i = 3, j = 1: 1X311X11 + 1X321X12 + 1X331X13 = 0 

i = 3, j = 2: 1X311X21 + 1X321X22 + 1X331X23 = 0, 

which is the orthogonality property of direction cosines. 

(1.32) 

(1.34) 

The permutation symbol Bijk is useful for vector cross-product operations. 
If we take 

BijkAjBkei = (B123 A 2B3 + B132A3B2)el + (B213 A IB3 + B231 A 3Bl)e2 

+ (B312AIB2 + B321A2Bl)e3 

BijkAjBkei = (A2 B3 - A 3B2)e1 + (A3 Bl - AI B3)e2 

+ (AIB2 - A 2B1)e3 (1.36) 

we obtain an expression which is identical to Eq. (1.6). Thus, BijkAjBk gives 
the components of A x B. 

1.9 Computational Examples 

To illustrate computations and manipulations using Cartesian tensors, we 
present the following illustrations: 
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(1) Show that (jiAk = (jik: 

Expanding (jij(jjk> we get 

(jij(jjk = (jil (jlk + (ji2 (j2k + (ji3 (j3k = 1 X (jik for a selected 
i = 1,2 or 3 

(2) Show that 6ijkAjAk = 0: 
Expanding 6ijkAjAk' we find 

6 ijk AjA k = 6 123 A2 A 3 + 6 132 A 3 A 2 + 6231 A 3 A l + 6213 A I A 3 

+ 6312AIA2 + 6321A2Al 

+1-1+1-1+1-1 

=0. 

(3) Prove that the product of two first-order tensors is a second-order ten­
sor: Let Ai and B j be two first-order tensors and Cij be their product, 
then 

Ai = (XikAk 

B j = (Xj/B/ 

AiBj = (Xik(Xj/AkB/ = (Xik(Xj/Ck / = Cij 

so that Cij transforms as a second-order tensor. 

Exercises 

1.1 Show that (after [1.2J): 
(a) bi/Jij = 3 
(b) GijkGkji = - 6 

1.2 Prove that if bij = bij , then bij is a second-order tensor (after [1.2J). 

1.3 Prove that the product of a first- and a second-order tensor is a third-order 
tensor. 

1.4 Two first-order tensors are related by 

Ai = CijBj • 

Prove that Cij is a second-order tensor. 

1.5 Show that if Bi is a first-order tensor, Bi•i is a second-order tensor [1.2J. 

1.6 If a square matrix [CJ has the property 

[C]-l = [cy 
it is said to be orthogonal. This property is used in the derivation of Eq. (1.23). 
Show that the matrix of direction cosines [AJ is orthogonal. 

1.7 Write the operator V2( ) defined in Eq. 1.10(b) in indicial notation. 
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CHAPTER 2 

Traction, Stress and Equilibrium 

2.1 Introduction 

An approach to the solution of problems in solid mechanics is to establish 
relationships first between applied loads and internal stresses and, subse­
quently, to consider deformations. Another approach is to examine deforma­
tions initially, and then proceed to the stresses and applied loads. Regardless 
of the eventual solution path selected, it is necessary to derive the component 
relationships individually. In this chapter, the first set of equations, which 
describe equilibrium between external and internal forces and stresses, are 
derived. 

2.2 State of Stress 

2.2.1 Traction and Couple-Stress Vectors 

A deformable body subject to external loading is shown in Fig. 2.1. There 
may be loads applied over the exterior, properly called surface forces, and 
loads distributed within the interior, known as body forces. An example of 
the latter is the effect of gravity which produces the self-weight of the body. 

Focusing on an element with an area AAn on or within the body and 
oriented as specified by the unit normal D, we accumulate the resultant force 
AFn and moment AMn. Both are vector quantities and are not, in general, 
parallel to D. Next, we seek the intensity of the resultants on the area AAn in 
the form [2.1] 

(a) 

(2.1) 

(b) 

where Tn is known as the stress vector or traction, and en is called the couple­
stress vector. 

13 
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Fig. 2.1. Deformable body under external loading (after Tauchert, Energy Principles 
in Structural Mechanics, McGraw-Hill, 1974). Reproduced with permission. 

The elementary theory of elasticity proceeds on the assumption that en = 
o [2.2J, while the traction Tn represents the stress intensity at the point for the 
particular orientation of area element specified by D. A complete description 
at the point requires that the state of stress be known for all directions, so 
that Tn itself is necessary, but not sufficient, for this purpose. 

2.2.2 Components of Stress 

We now study an infinitesimal rectangular parallelepiped at the point in 
question and erect a set of Cartesian coordinates Xi parallel to the sides, as 
shown in Fig. 2.2[2.1]. Corresponding to each coordinate axis is a unit vec­
tor ei . Shown in the figure are the tractions Ti acting on each face i, with the 
subscript chosen corresponding to the face normal ei . It is again emphasized 
that, in general, Ti is not parallel to ei , which is perpendicular to the face of 
the parallelepiped. 

Each traction may be written in terms of its Cartesian components in the 
form 

(2.2) 

T, 

Fig. 2.2. Components of stress (after Tauchert, Energy Principles in Structural 
Mechanics, McGraw-Hill, 1974). Reproduced with permission. 



which is expanded explicitly into the three equations 

T1 = <T11 e1 + <T12e2 + <T13 e3 

T2 = <T21 e1 + <T22 e2 + <T23 e3 

T3 = <T31 e1 + <T32e2 + <T33e3· 
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(a) 

(b) (2.3) 

(c) 

The coeffcients <T11 , <T12 , ••• , <T33 are known as components of stress or, sim­
ply, as stresses, while the entire array forms the stress tensor when the appro­
priate transformation rule is verified. The subscript and sign conventions for 
components of stress <Tij are as follows: 

(1) The first subscript i refers to the normal ei which denotes the face on 
which Ti acts. 

(2) The second subscript j corresponds to the direction ej in which the stress 
acts. 

(3) The so-called normal or extensional components <T(ii) are positive if they 
produce tension, and negative if they produce compression. The shearing 
components <Tij(i # j) are positive if directed in the positive Xj direction 
while acting on the face with the unit normal + ei' or if directed in the 
negative Xj direction while acting on the face with unit normal -ei. 

While it is sometimes vital to distinguish between tension and compres­
sion, the difference between the positive and negative shear directions is quite 
arbitrary for most materials. See Sections 11.4.3 and 11.4.4. 

2.2.3 Stress at a Point 

We are now in a position to pursue the main thrust of this section, and thus 
establish sufficient conditions to completely describe the state of stress at a 
point. We will show that this may be accomplished by specifying the trac­
tions Ti on each of the three planes ei which, by Eq. (2.3), is equivalent to 
specifying the nine components of stress <Tij. Then, if the traction Tn acting on 
any arbitrary element of surface, defined by an appropriate n, may be evalu­
ated, then the proposition is proved and the stress tensor <Tij' referred to any 
convenient Cartesian system, completely specifies the state of stress at the 
point. 

The differential tetrahedron in Fig. 2.3[2.2] shows the traction Tn acting 
on the plane identified by n, along with tractions on the faces indicated by ei 
and the body force per unit volume £[2.1]. The force on the sloping face is 
TndAn, while the force on each of the other faces is - TidAi' i = 1, 2, 3, since 
they have unit normals in the negative ei directions. 

The areas of the planes are related by [2.3] 

(2.4) 

so that 
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x, 

Fig. 2.3. Tractions (after Tauchert, Energy Principles in Structural Mechanics, 
McGraw-Hill, 1974). Reproduced with permission. 

where 

dA- dAi 
dAn=-' =­

o'ei ni 

ni = o· ei = cos(o, ei) 

is the component of ° in the ei direction and also a direction cosine. 
Force equilibrium for the tetrahedron gives 

(2.5) 

(2.6) 

TndAn - TldAl - T2 dA 2 - T3dA3 + f{thdAn) = 0, (2.7) 

where h is the height of the tetrahedron. Using Eq. (2.5), Eq. (2.7) becomes 

( Tn - Tini + f~) dAn = O. (2.8) 

Next, resolving Tn into Cartesian components 'liei and taking the limit as 
h --+ 0, equilibrium is satisfied if 

(2.9) 

The next step is to write Ti in terms of the stress components using Eq. (2.2). 
However, it is convenient first to change the dummy index on the r.h.s. of 
Eq. (2.9) from i to j, thus 

(2.10) 

which permits coefficients of ei in Eqs. (2.9) and (2.10) to be equated, yielding 

(2.11) 
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Conversely, if the components 1i are known, the magnitude of Tn may be 
evaluated as 

(2.12) 

Since 1',. represents a component of traction acting on any arbitrary plane 
as defined by n, knowledge of the stress components referred to the Cartesian 
coordinates is indeed sufficient to specify completely the state of stress at the 
point. In Eq. (2.11), 1i and nj are both components of vectors (order 1 tensors) 
so that the (Jji are components of an order 2 tensor cr. Therefore, if the stress 
components are known in one coordinate system, say the Xi system, they may 
be evaluated for another coordinate system, say the x; system, by the trans­
formation law for second-order tensors 

(2.13) 

where each direction cosine 

(Xij = cos(x;, x) (2.14) 

as introduced in Sec. 1.5, represents the cosine ofthe angle between the x; and 
Xj axes. 

Since transformation rules play an important role in the theory of elastic­
ity, it is worth restating that (Xij =1= (Xji' that is, the direction cosines are not 
symmetric. 

2.2.4 Stress on a Normal Plane 

It is sometimes useful to resolve Tn into components that are normal and 
tangential to the differential surface element dAn, as shown in Fig. 2.4. The 
normal component is calculated by 

(Jnn = INI = Tn'n 

= 1iei 'n 

(2.15) 

or, from Eq. (2.11), 

(2.16) 

The tangential component is 

kT" 
Fig. 2.4. Differential surface element. dA S 
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= I;ei's 

(2.17) 

where 

Si = ei·s. (2.18) 

It is often expedient to calculate (lns using the Pythagorian theorem as 

(2.19) 

Carrying the resolution one step further, the Cartesian components of N 
and S may be evaluated using (k) to designate the axes: 

= (ljinjnink where k = 1, 2, 3 

from Eq. (2.16). For (In,, simple subtraction gives 

(lns(k) = T,. - (lnn(k) k = 1,2,3, 

(2.20) 

(2.21a) 

where T,. are the Cartesian components of T, as given by Eq. (2.11). The 
expression may be written explicity as 

= (bki - nink)(lijnj (2.21b) 

An application of this resolution is presented in Section 11.2.3. 

2.2.5 Dyadic Representation of Stress 

Conceptually, it may be helpful to view the stress tensor as a vector-like 
quantity having a magnitude and associated direction(s), specified by unit 
vectors. The dyadic, attributed to the mathematician J. Willard Gibbs [2.4], 
is such a representation. We write the stress tensor or stress dyadic as 

(2.22) 

where the juxtaposed double vectors are termed dyads. The corresponding 
tractions are evaluated by an operation analogous to the scalar or dot prod­
uct operation in vector arithmetic: 
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Ti = (J' ei = (jijej • (2.23) 

The dot ( . ) operation of ei on (J selects the components with the second vector 
of the dyad equal to e i since ei ' ej = bij. Equation (2.23) is identical to Eq. 
(2.2). 

Similarly, the normal and tangential components of the traction Tn on a 
plane defined by normal n are 

(jnn = (J' n' n 

and 

(jns = (J' n' S 

as previously found in Eqs. (2.16) and (2.17), respectively. 

2.2.6 Computational Example 

The problem statement follows. 

(2.24) 

(2.25) 

(1) The components of stress at a point in Cartesian coordinates are given 
by (jxx = 500; (jxy = (jyx = 500; (jyy = 1000; (jyz = (jzy = -750, (jzx = 800; 
(jzz = -300. 

(2) A plane is defined by the unit vector 

1 1 1 
n = 2ex + 2ey + )2ez • 

(3) It is desired to compute the traction and the normal and tangential com­
ponents on the plane. 

(4) Note: At this point in the development, the given state of stress cannot 
be verified as correct or admissible. The values are chosen in order to 
illustrate a computational format for the equations developed thus far. 

(5) Let x, y, Z = Xl' X 2 , X 3 • 

The solution in component form is as follows. 

(1) Evaluate ni by using Eq. (2.6), 

nl = 1/2; n2 = 1/2; n3 = 1/)2. 

(2) Evaluate 1'; by using Eq. (2.11), 
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= (500)(1/2) + (500)(1/2) + (800)(1/)2) 

= 1066; 

T2 = a12 n1 + a22 n2 + a32 n3 

= (500)(1/2) + (1000)(1/2) + (-750)(1/)2) 

= 220; 

= (800)(1/2) + (-750)(1/2) + (- 300)(1/)2) 

= -187. 

(3) Evaluate ITnl by using Eq. (2.12), 

ITnl = (7;7;)1/2 

= [(1066)2 + (220)2 + (-187)2r/2 

= 1104. 

(4) Evaluate ann and a ns by using Eq. (2.15), 

= (1066)(1/2) + (220)(1/2) + (-187)(1/)2) = 511, 

or using Eq. (2.16), 

where 

j 

2 
2 
2 

3 

3 

3 

1 
2 
3 
1 
2 
3 

2 
3 

(+ ) 

(500)(1/2)(1/2) 
(500)(1/2)(1/2) 
(800)(1/2)(1/)2) 
(500)(1/2)(1/2) 

(1000)(1/2)(1/2) 

(800)(1/2)(1/)2) 

1191 

(- ) 

(750)(1/2)(1/)2) 

(750)(1/)2)(1/2) 
(300)(1/)2)(1/)2) 

680 

ann = 1191 - 680 = 511. 
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Using Eq. (2.19), 

(lns = [(1104)2 - (511)2]1/2 = 979. 

Finally the Cartesian components are computed from Eq. (2.20) as 

(lnn(l) = (lnnn 1 = 511(1/2) = 256 

(lnn(2) = (lnnn 2 = 511 (1/2) = 256 

(lnn(3) = (lnnn 3 = 511 (1/j2) = 361 
and Eq. (2.21a) as 

To check, 

(lns(l) = T1 - (lnn(1) = 1066 - 256 = 810 

(lns(2) = T2 - (lnn(2) = 220 - 256 = - 36 

(lns(3) = T3 - (lnn(3) = -187 - 361 = - 548. 

(lns = [(810)2 + (-36)2 + (-54Wr/2 = 979. 

The solution in dyadic form is as follows. 

(1) The stress dyadic (J from Eq. (2.22); 

= 500e1 e1 + 500e1 e2 + 800e1 e3 + 500e2e1 + 1000e2e2 

- 750e2e3 + 800e3e1 - 750e3e2 - 300e3e3· 

(2) Evaluate Tn from Eq. (2.23); 

= [500(1/2) + 500(1/2) + 800(1/j2)]e1 

+ [500(1/2) + 1000(1/2) - 750(1/j2)]e2 

+ [800(1/2) - 750(1/2) - 300(1/j2)]e3 

= 1066e1 + 220e2 - 187e3; 

ITnl = [(1066)2 + (220f + (-187)2r/2 = 1104. 

(3) Evaluate (lnn and (lns from Eq. (2.24); 

= (1066)(1/2) + 220(1/2) - 187(1/j2) = 511. 

From Eq. (2.19), 

= [(1104)2 - (511)2] = 979. 
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2.3 Equilibrium 

2.3.1 Physical and Mathematical Principles 

The state of stress at a point in any direction has been shown to be 
completely determined by the components of the Cartesian stress tensor (Ju. 
Naturally, the stresses vary within the body. The equations governing the 
distribution of stresses are known as the equations of equilibrium and are 
derived from the application of the fundamental physical principles of linear 
and angular momentum to the region shown in Fig. 2.5, with surface area A 
and volume V. 

The principle of linear momentum is 

Iv fdv + L TdA = IvPiidV (2.26) 

in which p is the mass density; u the displacement vector; and the symbol C) 
signifies differentiation twice with respect to time. 

The principle of angular momentum is 

Iv (r x f)dV + L (r x T)dA = Iv (r x pii)dV; (2.27) 

in which r is the position vector as shown in Fig. 2.5. 
Also useful in the derivation is the divergence theorem stated as Eq. (1.14) 

Iv V·GdV = L o·GdA; (2.28) 

The preceding equations may be written in component form. The body 
forces are 

(a) (2.29) 

T 

p 

A,V 

x, 

Fig. 2.5. Body in equilibrium in Cartesian space. 
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and the tractions are 

(b) (2.29) 

from Eq. (2.11 ). Considering the position vector r to point P(xJ 

r = xjej ; 

r x f = C;jkXj!ke;; 

r x T = cijkXj Ike; 

(c) 

(d) 

(e) 

(2.29) 

For static problems, the r.h.s. of Eqs. (2.26) and (2.27) are zero. Substituting 
Eqs. (2.29) into Eqs. (2.26), (2.27) and (2.28), we have the static equations of 
linear and angular momentum and the divergence theorem in component 
form as, respectively, 

Iv /;dV + L aj;njdA = 0; (2.30) 

Iv CijkXj!k dV + L C;jkXPlknl dA = 0; (2.31) 

Iv G;,;dV = L n;G;dA. (2.32) 

2.3.2 Linear Momentum 

We assume that the stresses aij are C1 continuous and apply Eq. (2.32) to 
Eq. (2.30), giving 

r (/; + aj;)dV = O. 
Jv 

(2.33) 

With every element of V in equilibrium, the region of integration is arbi­
trary and Eq. (2.33) is satisfied if the integrand vanishes. Therefore, 

aj;,j + /; = 0 (2.34) 

represents three equations of equilibrium in terms of the nine unknown com­
ponents of stress aij' 

2.3.3 Angular Momentum 

Taking C;jkXPlk for G; and nl for n;, Eq. (2.32) is applied to Eq. (2.31) and 
gives 

(2.35) 
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The second term of the integrand is expanded by product differentiation 
as 

(2.36) 

Further, it is recognized that Xj' the component of r in the Xj direction, 
changes only in that direction; that is, 

Thus Eq. (2.35) becomes 

Iv eijk(Xjlk + c'5jl (Jlk + Xj(Jlk,l) dV = O. 

The first and third terms of the integrand combine into 

eijkXilk + (J'k,,) = 0 

from Eq. (2.34), and the remaining term becomes 

so that the equation reduces to 

Iv eijk(Jjk dV = 0, 

which is satisfied if 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

Equation (2.42) may be evaluated for i = 1, 2, 3. For i = 1, (J23 - (J32 = 0; 
for i = 2, (J3l - (J13 = 0; for i = 3, (J12 - (J2l = 0 or, in general, 

(2.43) 

which is a statement of the symmetry of the stress tensor and which further­
more implies that (Jij has but six independent components, instead of nine 
components. Equation (2.43) is very important in the entire field of solid 
mechanics. 

We may now rewrite Eq. (2.11) as 

(2.44) 

and Eq. (2.34) as 

(Jij,j + /; = 0, (2.45) 

which is now a set of three equations in six unknowns. Since they are used 
repeatedly, it is useful to write the latter equations in explicit form: 

(Jll,l + (J12,2 + (J13,3 + 11 = 0 

(J2l,l + (J22,2 + (J23,3 + 12 = 0 

(J3l,l + (J32,2 + (J33, 3 + 13 = 0, 

which represents a system which is still statically indeterminate. 

(a) 

(b) (2.46) 

(c) 
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2.3.4 Computational Example 

Although it is not possible to solve the equilibrium equations alone since 
there are more unknowns than equations, it is possible to test a given set of 
stresses against the equilibrium equations, Eqs. (2.46). 

We take the components of stress for an elastic body to be given by 

0"11 = x2 + y + 3z2; 0"22 = 2x + y2 + 2z; 0"33 = -2x + y + Z2 

0"12 = 0"21 = -xy + Z3; 0"13 = 0"31 = y2 - XZ; 0"23 = 0"32 = x2 - yz 

/1=/2=/3=0 

and show that this state of stress satisfies equilibrium when the values are 
substituted into Eqs. (2.46a, b, c), respectively: 

2x-x-x=0 

-y + 2y - y = 0 

-z - z + 2z = O. 

2.4 Principal Stress 

2.4.1 Definition and Derivation 

We consider Fig. 2.6(a), a normal section through the body. The traction Tn 
acts on the plane defined by n that appears edgewise in the figure. Tn is not 

(a) 

(b) 

Fig. 2.6. (a) Normal section; (b) principal plane. 
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necessarily shown true in this view but the normal component ann is in the 
plane of the figure. 

Using the dyadic form, 

ann = Tn . n = er' n . n. (2.47) 

We seek the orientation of a plane (given by the direction of n) such that ann 
is an extremum (maximum or minimum). Such a plane (or planes) are called 
principal. 

From differential calculus, the extremum is achieved when dann/dn = 0. 
From Eq. (2.47), treating the sought-after direction n as a variable, 

dann = n' d( er' n) + (er' n) . dn . 
dn dn dn 

Since er is not a function of n, Eq. (2.48) becomes 

dann = 2(er' n)' dn 
dn dn 

dn 
=2T'-

n dn 

=0. 

(2.48) 

(2.49) 

If Tn' (dn/dn) = 0, Tn is normal to dn/dn. Furthermore, dn/dn is itself normal 
to n. Therefore, Tn must be parallel to n for Eq. (2.49) to hold. The condition 
corresponding to the extremum is shown in Fig. 2.6(b). Obviously, the tan­
gential component ans = 0, and the normal component for this case is desig­
nated as 

ann = ITnl = A. 

We may express the preceding by 

Tn = An 

or, in component form, by dotting each side with ei , as 

T; = Ani' 

Also, from Eq. (2.11), we have 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

Equating Eqs. (2.52) and (2.53) and employing the index changing property 
of the Kronecker-delta, 

(2.54) 

or 

(2.55) 

Equation (2.55) is a set of three homogeneous algebraic equations in four 
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unknowns, nj with j = 1, 2, 3, and A.. The components nj determine the 
orientation of the principal plane and A. is called the principal stress. This is 
known as a linear eigenvalue problem and, using Cramer's rule, it may be 
shown that a nontrivial solution may be found if the determinant of the 
coefficients of nj vanish, that is, 

(a) (2.56) 

or, in expanded form, 

Ull - A. U 12 U 1 3 

U21 U22 - A. U23 =0. (b) (2.56) 
U31 U32 U33 - A. 

Equation (2.56b) provides a cubic equation for A., indicating that three princi­
pal stresses, A.1 = U(l), A.2 = U(2), A.3 = u(3), exist. Corresponding to each prin­
cipal stress is a distinct orientation, evaluated by substituting, in turn, a 
known value of U(k), that is, U(l), U(2), u(3), into Eq. (2.55) and solving for the 
corresponding components of n}k), that is, n?), nY) and nJ3). Since Eq. (2.55) 
originally represented three equations in four unknowns, it is a linearly de­
pendent set that must be supplemented by an additional relationship 

(2.57) 

expressing the "length" of the unit normal with k = 1, 2, 3 in turn. 
Since the principal stresses at a point represent the greatest magnitudes of 

tension and compression that can exist under a particular loading case, they 
are of great importance in engineering design. 

2.4.2 Computational Format, Stress Invariants and Principal 
Coordinates 

It is often expedient to substitute the numerical values of the stresses, which 
have been calculated with respect to a selected Cartesian coordinate system, 
into Eq. (2.56) and to expand, simplify and solve the determinant as an alge­
braic equation. 

It may be shown [2.2] that a general expansion of Eq. (2.56) is 

A.3 - Q1A.2 + Q2A. - Q3 = 0, (2.58) 

in which 

Q1 = Ull + U22 + U33 

= Uii is the sum of the main diagonal of [uij], (a) 

Q2=IUll U211+IUll U311+IU22 U321 
U 12 U22 U13 U33 U23 U3 3 

= tllmikllmj/UijUk/ is the sum of the minors of the main 
diagonal of [uij], (b) (2.59) 
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0"11 0" 12 0" 13 

Q3 = 0"21 0"22 0"23 

0"31 0"32 0"33 

= t,CmikCnilO"ijO"k10"mn is the determinant of [O"ij]. (c) 

It is instructive to examine the coefficients of Eq. (2.59) in terms of scalar 
quantities that can be constructed out of the tensor O"ij' that is, 

(2.60) 

Such scalar quantities (no free indices) constructed from a tensor are obvi­
ously independent of any particular coordinate system and are therefore 
known as invariants. For a principal coordinate system that coincides with 
the directions of the principal stresses and is, subsequently, shown to be 
orthogonal, all the O"ij' with i =1= j, terms vanish so that P1, P 2 and P 3 may be 
written in terms of the principal stresses as 

P 1 = 0"(1) + 0"(2) + 0"(3); 

P 2 = 0"(1)2 + 0"(2)2 + 0"(3)2; 

P 3 = 0"(1)3 + 0"(2)3 + 0"(3)3. 

Finally, it may be shown that [2.2J 

Q1 = P 1 ; 

Q2 = t(Pf - P 2 ); 

Q3 = (P[ - 3P1 P 2 + 2P3 ); 

(2.61) 

(2.62) 

so that Q1' Q2 and Q3 are likewise invariant. Invariants are quite important 
in many applications of the theory of elasticity. For example, see Herrmann 
et al. [2.5]. In the literature, they are commonly denoted as 

11 = P1 = O"ii 

12 = tP2 = to"ijO"ij (2.63) 

13 = tP3 = to"ijO"jkO"ki 

We next take up the problem of evaluating the components of the normals 
to the principal planes nt). This is carried out by back-substitutions of each 
computed O"(k) into two permutations of Eqs. (2.55), along with the use of 
Eq. (2.57). Care should be taken to insure that the two equations extracted 
from Eqs. (2.55) are linearly independent. As an illustration, we take i = 1, 2 
in Eq. (2.55) giving 
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i = 1: [0"11 - O"(k)]n\k) + 0"21n~k) = -0"31n~); 

i = 2: 0"12n\k) + [0"22 - O"(k)]n~) = -0"32n~) 

n\k)2 + n~)2 + n~)2 = 1. 

(a) 

(b) (2.64) 

(c) 

Considering (a) and (b), we solve for n\k) and n~) in terms of n~k) using 
Cramer's rule 

where 

1
0" - O"(k) 

D - 11 
2-

0" 12 

1

0" - O"(k) 
D = 11 

0" 12 

Then, substituting into Eq. (2.64c) gives 

(a) 

(2.65) 

(b) 

(a) 

(b) (2.66) 

(c) 

(2.67) 

With O"(k) real, n~) will be real, and n\k) and n~) are found from Eq. (2.65). 
Finally, 

(2.68) 

The procedure is carried out for each O"(k), k = 1,2,3, in turn. 
It now remains to show that the calculated n(k) corresponding to the princi­

pal directions are orthogonal. We consider k = 1 and k = 2 and form 

We multiply Eq. (2.69a) by n!2) and Eq. (2.69b) by n!l) giving 

(a) 
(2.69) 

(b) 

(a) (2.70) 
(b) 

Since i and j are repeated indices, the l.h.s. of Eqs. (2.70) are equal; hence, 
equating the r.h.s., 
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x* 1 

x* 3 

.,,).------ X2 

Fig. 2.7. Principal coordinates and stresses (after Tauchert, Energy Principles in Struc­
tural Mechanics, McGraw-HilI, 1974). Reproduced with permission. 

(2.71) 

and, if a(1) and a(2) are different, nj1) and nF) must be orthogonal. 
Once the principal stresses are evaluated and the principal planes are lo­

cated, it is generally convenient to refer further computations to the principal 
coordinates that have now been shown to be orthogonal. Referring to Fig. 2.7 
and designating the principal coordinates by xt, it is obvious that the state 
of stress is relatively simple with only direct stresses and no shearing stresses 
acting. The components of the traction Tn on any other plane are found from 
Eq. (2.11) as 

Tl* = a(l)nt (a) 

T2* = a(2)n! (b) (2.72) 

T3* = a(3)n!, (c) 

where 

nt = o·er (d) 

Other illustrations using principal coordinate solutions are given in Sec­
tion 2.5. 

2.4.3 Computational Example 

As a continuation of the analysis in Section 2.2.6, we now seek the princi­
pal stresses and directions for the state of stress previously enumerated. Eq. 
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(2.56b) becomes 

500 - A 
500 

500 
1000 - A 

800 
-750 = O. 

800 -750 -300 - A 
(2.73) 

It is convenient to work with the stress x 10-3 . Expanding the determi­
nant directly gives 

X3 - 1.2X2 - 1.4025X + 1.59625 = 0, (2.74) 

where X = A X 10-3• 

We may also compute the coefficients by using the invariants as described 
in Eqs. (2.60) and (2.62) and compare the values to those in Eq. (2.74). 

Pl = (iii = 0.500 + 1.000 - 0.300 = 1.2 

-Ql = -Pl = 1.2 -J 

= (0.500)2 + 2(0.500)2 + 2(0.800)2 + (1.oof + 2( -0.750)2 + (0.300)2 

= 4.245 

Q2 = H(1.2)2 - 4.245] = -1.4025 -J 
or, using the sum of the minors of the main diagonal of (iij, 

Q2 = [(1.00)( -0.300) - (-0.750)( -0.750)] 

+ [(0.500)( -0.300) - (0.800)(0.800)] 

+ [(0.500)(1.000) - (0.500)(0.500)] 

= - 1.4025 -J 
Q3 = det[(iij] 

= (0.500)(1.00)( -0.300) + 2(0.800)(0.500)( -0.750) 

- (0.800)(0.800)(1.000) - (-0.750)( -0.750)(0.500) 

- (0.500)(0.500)( -0.300) 

= - 1.59625 

- Q3 = + 1.59625 -J. 
Solving a cubic equation may be tedious, but straightforward procedures 

are found in standard mathematics texts. The solution to Eq. (2.74) may be 
verified as 

Xl = -1.168; X2 = 1.380; X3 = 0.988 

so that the principal stresses are 
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a(1) = -1168 

a(Z) = 1380 

a(3) = 988 

From Eqs. (2.64)-(2.67), the corresponding unit vectors are 

0(1) = -0.4903e l + 0.3838ez + 0.7825e3 

o(Z) = -0.2514e l - 0.9207ez + 0.2988e3 

0(3) = 0.8298e l - 0.074gez + 0.5530e3 

. I (j)-or, In genera, 0 - njiei . 

(2.75) 

(a) 

(b) 
(2.76) 

(c) 

(d) 

The unit normals oW now become the basis vectors e! for the principal 
coordinate system x!; and the components nji are the direction cosines for 
the transformation between the x! and Xi axes. 

2.5 Stresses in Principal Coordinates 

2.5.1 Stresses on an Oblique Plane 

It was noted in Section 2.4.2 that the principal coordinates, once established, 
provide a convenient basis for further analysis. We first consider a plane 
oblique to the x1 axis as shown in Fig. 2.7, with direction cosines nr From 
Eq. (2.16), with a(ii) = a(i) and aij(i ¥- j) = 0, we may write the normal compo­
nent of the traction as 

= a(1)(n!)Z + a(Z)(n!)Z + a(3)(n!)Z. (2.77) 

The shearing component is found from Eq. (2.19) by taking 

= (a(l»)Z(n!)Z + (a(Z»)Z(n!)Z + (a(3»)Z(n~f (2.78) 

along with ann from Eq. (2.77). 
Expanding, we have 

a = {a(i)n~a(i)n~ - [a(i)n~n~]Z}l/Z ns I I , , 

= {(a(1))Z(n!)Z + (a(Z»)Z(n!)Z + (a(3»)Z(n!)Z _ (a(1»)Z(n!)4 

- (a(Z»)Z(n!)4 _ (a(3»)Z(n!)4 

- 2a(l)a(Z)(n!)Z(n!)Z - 2a(l)a(3)(n!)Z(n!)Z 

_ 2a(Z)a(3)(n!)Z(n!)Z} liZ, (2.79) 

which may be simplified if Eq. (1.32), the normality of the direction cosines 
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(nrnn2 = 1, (2.80) 

is introduced into Eq. (2.79). Replacing (n!)4 with (n!)2[1 - (n!)2 - (nn2], 
etc., this allows the relatively compact form [2.7] 

(Jns = {[(J(l) - (J(2)]2(n!)2(n!)2 + [(J(2) - (J(3)]2(n!)2(n~f 

(2.81) 

to be derived. Equation (2.81) reveals that if all of the principal stresses are 
equal, the shearing stress is zero on any plane. 

2.5.2 Stresses on Octahedral Planes 

Of particular interest in the theory of material failure is the state of stress on 
the octahedral planes, which are defined as planes having equal direction 
cosines with each of the principal planes. There are obviously eight such 
planes, one in each octant of the coordinate system. The octahedral plane in 
the + xi, + x!, + x~ octant may be represented by the triangular surface in 
Fig. 2.7 where the normal to the surface 

0* = 1/)3(0(l) + 0(2) + 0(3») (2.82) 

and the respective direction cosines are 

ni = n! = n~ = 1/)3. (2.83) 

Substituting Eq. (2.83) into Eqs. (2.77) and (2.81) gives the octahedral nor­
mal stress 

(2.84a) 

which is simply the average of the principal stresses, and the octahedral 
shearing stress 

(J~;t = H[(J(1) - (J(2)]2 + [(J(2) _ (J(3)]2 + [(J(3) _ (J(1)]2} 1/2. (2.84b) 

2.5.3 Absolute Maximum Shearing Stress 

The absolute maximum shearing stress at a point may also be of interest in 
regard to the capacity of the material. 

We first observe that both terms of Eq. (2.79) are positive. Therefore, for 
(Jns to be a maximum, the second term should be a minimum. This is true if 
the orientation of (Jns is such that 

~[(J(i)n:l'n:l']2 = 0 
onr •• 

or (2.85) 
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x* 
2 

Fig. 2.8. Planes with maximum shearing stresses (after Ugural and Fenster, Advanced 
Strength and Applied Elasticity, Elsevier, 1975). Reproduced with permission. 

where the last subscript is changed to k to avoid a triple repeated index. 
Equation (2.85) is satisfied only if nt = 0, indicating that the planes for which 
ans is maximum will be parallel to one of the principal axes. 

Now, examining Eq. (2.81), two of the three terms will vanish due to nt = 
0. The nonzero term which makes ans the largest is the one which contains the 
bracketed term with the largest principal stress difference. Since this is the 
only term not containing nt, the maximum shearing stress acts on plane(s) 
parallel to nt For example, if a(l) and a(3) are the maximum and minimum 
principal stresses, then n! = 0. In general, with i and j indicating the direc­
tions of the maximum and minimum principal stresses, 

(a::;ax)2 = [ali) - a(j)]2(nn2(nj)2. (2.86) 

Since (nj)2 = 1 - (nn2, the maximum value of the r.h.s. of Eq. (2.86) occurs 
when (nn2 = ! = (nj)2 and the absolute maximum shearing stress is 

(2.87) 

acting on the planes bisecting the planes of maximum and minimum 
principal stress. For example, if i = 1 and j = 3, 

(2.88) 

and the corresponding planes are shown in Fig. 2.8. 

2.5.4 Computational Example 

Using the principal stresses found in Section 2.4.3, we may evaluate the 
stresses on the octahedral planes from Eq. (2.84) as 
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O"~~t = t( -1168 + 1380 + 988) = 400 

O"~~t = H[ -1168 - 1380]2 + [1380 - 988]2 + [988 - (_1168)]2}1/2 

= 1120. 

The maximum shearing stress is found from Eq. (2.87), with i = 2 and 
j = 1, 

a::;ax = H1380 - (-1168)] = 1274, 

and acts on planes bisecting the x! and x! axis and parallel to x~. 

2.6 Properties and Special States of Stress 

2.6.1 Projection Theorem 

We focus on any point, say P, ofthe continuum shown in Fig. 2.5. It has been 
established that any number of tractions may be calculated at P, each asso­
ciated with a single plane passing through P and identified by the corre­
sponding unit normal. The projection theorem is a relationship between any 
two tractions at P, say T(a) and T(b), and their associated normals, say n(a) and 
n(b), and is stated to be 

(2.89) 

or, in component form, as 

(2.90) 

meaning that the projection of the traction acting on the first plane onto the 
second plane is equal to the projection of the traction acting on the second 
plane onto the first plane. 

The proof is easily demonstrated by substituting Eq. (2.11) into both sides 
of Eq. (2.90) to obtain 

(2.91) 

since the i and j became dummy indices. As O"ij = O"j;, the expressions are 
identical. The projection theorem may be used to define several of special 
states of stress. 

2.6.2 Plane Stress 

Suppose that on one plane passing through P, there are no stresses, that is, 
T = O. The projection theorem states that the traction on any other plane 
passing through P must be perpendicular to the normal to the stress-free 
plane; hence, it is parallel to that plane. Conversely, if it is established that the 
traction on any plane is parallel to another plane, then the latter plane will 
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also be stress-free. This is known as a state of plane stress and is of practical 
use since it allows the elasticity problem to be reduced from three to two 
dimensions, which greatly facilitates the mathematical solution. It is obvious 
that if one of the principal stresses is zero, the state of stress is plane. 

2.6.3 Linear Stress 

If there are two nonparallel planes on which T = 0, the traction on any other 
plane must be parallel to both of these planes and also to their line of inter­
section. This is a state of linear stress and is essentially a one-dimensional 
problem. For this state, two principal stresses vanish. 

2.6.4 Pure Shear 

If, for any coordinate system 

then the state of stress is called pure shear since only shear stresses (Jij' with 
i -# j, exist. Also, for pure shear, (Jii = ° for any coordinate system. 

2.6.5 Hydrostatic Stress 

If the principal stresses (J(i) are all equal, then the stress state is hydrostatic 
and the shearing stresses are zero; examine Eq. (2.81). 

Exercises 

2.1 Find the components of the traction on a plane defined by n1 = 1/.,fi, n2 = 
1/.,fi, n3 = 0 for the following states of stress: 

(a) 1111 = 11, 1112 = 0, 1113 = 0, 

1122 = 11, 112 3 = 0, 1133 = 11, 

(b) 1111 = 11, 1112 = 11, 1113 = 0, 

1122 = 11, 112 3 = 0, 1133 = O. 

2.2 The state of stress at a point P in a structure is given by 

1111 = 20,000, 1122 = -15,000, 1133 = 3000 

1112 = 2000, 1123 = 2000, 1131 = 1000. 

(a) Compute the scalar components T1 , T2 , and T3 of the traction T on the plane 
passing through P whose outward normal vector n makes equal angles with 
the coordinate axes Xl' X2, and X3 (from [2.1]). 

(b) Compute the normal and tangential components of stress on this plane. 
(c) Write the stress dyadic for the state of stress and repeat parts (a) and (b). 

2.3 The state of stress at a point is given by the components of stress tensor l1ij' A 
plane is defined by the direction cosines of the normal (1/2,1/2, 1/.,fi). State the 
general conditions for which the traction on the plane has the same direction as 
the X 2 axis and a magnitude of 1.0. 
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2.4 Determine the body forces for which the following stress field describes a state of 
equilibrium (from [2.6]): 

(ixx = -2x2 - 3y2 - 5z, 

(iyy = _2y2 + 7, 

(izz = 4x + y + 3z - 5 

(ixy = Z + 4xy - 6, 

(ixz = - 3x + 2y + 1, 

(iyz = O. 

2.5 Determine whether the following stress field is admissible in an elastic body when 
body forces are negligible. 

Z2 + 2x 

xz + 3y 
5y + Z] 

8x3 • 

2xyz 

2.6 At a given point in a body 

(ill = (i22 = (i33 = - p, 

(i12 = (i23 = (i31 = O. 

Show that the normal stresses there are equal to - p and that the shearing stresses 
vanish for any other Cartesian coordinate system (from [2.1]). 

2.7 Expand the stress transformation law from the tensor form Eq. (2.13) for a two­
dimensional state of stress by assuming that the stress components in the X3 

direction are zero and by considering a rotation about the X3 axis. Compare the 
resulting expressions with the Mohr's circle representation [2.1]. 

2.8 The stress tensor at a point P(x, y, z) in a solid is 

(J = [~ ~ ~]. 
120 

(a) Show that the principal stresses are 4, 1, - 2. 
(b) Find the orientation of the principal planes. 
(c) Compute the octahedral stresses at P. 
(d) Determine the magnitude and orientation of the absolute maximum shearing 

stress at P. 

2.9 The stress tensor at a point P(x, y, z) in a solid is 

(J = [1~~ 1:~ ~~]; 
30 20 100 

(a) Determine the stresses with respect to a set of axes x', y', z' for which the 
matrix of direction cosines is 

_J3 
0 

2 2 

[lXij] = J3 0 
2 2 

0 0 

(b) Compute the principal stresses using both the x, y, z and x', y', z' axes as the 
basis (from [2.6]). 
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(c) Find the orientation of the principal planes with respect to the x, y, z axes. 
(d) Compute the stress invariants for both coordinate systems, and verify that 

they are equal. 

2.10 For an octahedral plane with a normal defined by Eq. (2.82), show that the 
traction on the plane is 

where (J~:t is defined by Eq. (2.84a) and where the magnitude of the shearing 
component Tn~ is (J~sct, Eq. (2.84b). 
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CHAPTER 3 

Deformations 

3.1 Introduction 

Displacements with respect to a reference coordinate system may be physi­
cally observed, calculated, or measured (at least on the surface) for a de­
formed elastic body. Each displacement may be considered to have two com­
ponents, one of which is due to relative movements or distortions within the 
body and the other which is uniform throughout the body, so-called rigid 
body motion. The relationships between the displacements and the cor­
responding internal distortions are known as the kinematic or the strain­
displacement equations of the theory of elasticity and may take several forms 
depending on the expected magnitude of the distortions and displacements. 

3.2 Strain 

We consider the undeformed and the deformed positions of an elastic body 
shown in Fig. 3.1. It is convenient to designate two sets of Cartesian coordi­
nates Xi and Xi with i = 1, 2, 3, called initial coordinates and final coordi­
nates, respectively, that denote the undeformed and deformed positions of 
the body [3.1]. Then, we select a reference point P(x;) on the undeformed 
body and p(X;) on the deformed body, where Xi and Xi indicate specific 
values of the coordinates Xi and Xi' Also, we locate neighboring points 
Q(Xi + dx;) and q(Xi + dX;) that are separated from P and p by differential 
distances ds and dS, respectively. The latter are given in component form by 

(a) 
(3.1) 

(b) 

In Fig. 3.1, u represents the displacement of P to p, and u + du the displace­
ment of Q to q. From the force diagram in Fig. 3.1, we note 

ds + (u + du) = u + dS, (3.2) 

39 



40 Chapter 3. Deformations 

Undeformed 

XI' XI 

u + du -:;;-7 q 
d~~Q--------~U~~------~ 

P 

Fig. 3.1. Displacement vector in Cartesian space. 

or 

du = dS - ds. (3.3) 

We may consider this relationship in component form using Eq. (3.1) as 

(3.4) 

We may now select either the initial or the final coordinates as the basis for 
further computations. First, we choose the initial coordinates Xi so that 

- oXi _ oXi _ oXi _ 
dX = -dxl + -dxz + -dx3 

'OXl oXz oX3 

= Xi,jdxj 

U = U l eX! + uZeX2 + u3eX3 = Uiex" 

U i = Xi - Xi' 

(a) 

(3.5) 
(b) 

(c) 

(d) 

in component form. Substituting Eqs. (3.5b and d) into Eq. (3.4), introducing 
another dummy subscript k and applying Eq. (2.37), 

(dS)Z - (ds)Z = X ·dx·X kdxk - dx·dx. l,j J I. , , 

= (Xi,jX i,k - bijbik ) dXj dXk 

= [(Xi + U;))Xi + U;),k - bjk ] dxjdxk 

= [(bij + ui)(bik + Ui,k) - bjk ] dxjdxk 

= [bjk + Uj,k + Uk,j + Ui,jUi,k - bjk ] dXj dXk 

= (Uj,k + uk,j + Ui,jui,ddxjdxk. (3.6) 
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It is convenient to interchange the dummy indices i and k, so that 

(dS)2 - (dS)2 = (u . . + u· . + Uk 'Uk .) dx· dx· 
~.J J,t ,l,] I J 

(3.7) 

in which 

e~ = -21(U' . + U· . + Uk 'Uk .) lJ t,) J,t ,J ,J (3.8) 

are components of the Lagrangian, or Material, strain tensor t L . 

We may repeat the procedure with the final coordinates Xi as the basis, 
so that 

Xi = Xi(X1 ,X2 ,X3 ) 

ox· - ox· - ox·-
dx.=~' dX1 +~' dX2 +~' dX3 

'oX1 oX2 oX3 

= x· .dX. 
',j j 

and 

Substituting Eq. (3.9b) and Eq. 3.5(d) into Eq. (3.4) gives 

(dS)2 - (dS)2 = ix.ix. - x· .dX.x. kdXk 
I I 1,J J I, 

= (D .. D·k - x· ·x· k)dX.dXk l) I I,] t. ) 

= [Djk - (Xi - U;)jXi - UJ,kJ dXjdXk 

= [Djk - (Dij - Ui)(Dik - ui,dJ dXjdXk 

= [D'k - D'k + Uk . + u· k - u· ·u· kJ dX.dXk j j ,j ), ',J " J 

= (u· k + Uk . - u· ·u· k)dX.dXk J. ,J I,) t. } 

or, interchanging i and k, 

(dS)2 - (dS)2 = (u· . + u· . - Uk 'Uk .) dX. dX. ',J },' ,',J , J 

E - -
= 2eij dXi dXj, 

in which 

e!! = -21(U' . + u· . - Uk 'Uk .) IJ ',J},' ,',J 

are components of the Eulerian, or Spatial, strain tensor t E• 

(3.9a) 

(3.9b) 

(3.9c) 

(3.10) 

(3.11) 

(3.12) 

If the displacement gradients Uk,i are small in comparison to unity, then 
products of such terms are negligible in Eqs. (3.8) and (3.12), and they may 
be dropped. For such cases, we also consider the initial and final coordinate 
systems to be coincident, so that 

o( ) 
ox.' , 

(3.13) 
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then 

(3.14) 

The components 8ij refer to the small or infinitestimal strain tensor t. Note 
that no restriction is placed on the magnitude of the Ui terms but only the 
gradients. It is thus at least theoretically possible at this point to describe 
relatively large displacements by infinitestimal strains. 

The equations represented by Eq. (3.14) are a cornerstone of the develop­
ment of the linear theory of elasticity and are called the strain-displacement, 
or kinematic, equations written in explicit form as 

8 11 = U1.1 = OU 1/OX 1 

8zz = uz.z = OUz/OXz 

8 33 = U3,3 = OU3/OX3 

8 1Z = 8Z1 = !(U1,2 + UZ,l) = !(oudoxz + OUZ/ox 1) 

813 = 831 = !(U 1,3 + U3,1) = !(oudoX3 + OU3/0X 1) 

8 Z3 = 832 = !(UZ,3 + u3,z) = !(OUZ/OX3 + oU3/OX Z)· 

(a) 

(b) 

(c) 
(3.15) 

(d) 

(e) 

(f) 

Noting that the Ui terms constitute a vector or first-order tensor, the Ui,j 

terms represent a tensor of order 2, and, therefore, t is a second-order tensor 
that transforms just as the stress tensor 0': 

(3.16) 

3.3 Physical Interpretation of Strain Tensor 

The physical definition of strain is familiar from elementary strength of mate­
rials. Here, it has been introduced from a mathematical standpoint and it 
remains to reconcile the notions. 

First, we consider the components 8(ii)' which are called extensional strains 
[3.1]. For example, consider a fiber parallel to the Xz coordinate axis of 
initial length ds and final length dS, for which dX 1 = 0, dX3 = 0, dxz = ds. 
Equation (3.7) becomes 

(dS)Z - (dsf = 2822 dsz 

for the case of infinitesimal strain. 
Considering the l.h.s. of Eq. (3.17), 

(dS)Z - (ds)Z = (dS - ds)(dS + ds) 

and 

dS - ds (dS)Z - (ds)Z 

ds ds(dS + ds) . 

Substituting Eq. (3.17) into the r.h.s. of Eq. (3.19), we have 

(3.17) 

(3.18) 

(3.19) 
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dS - ds 

ds 

~ 

2e22 ds 2 

ds(dS + ds) 

2e22 ds 2 

2ds2 

(3.20) 

since the difference between ds dS and ds2 is of higher order for distortions 
du/u, which are small compared to unity. Therefore, 

dS - ds 
e22 = ds (3.21) 

which is the relative elongation of a fiber parallel to the X 2 coordinate axis. 
Similar interpretations are true for 8 11 and 8 33 , 

The components 8 ij are called shearing strains and may be interpreted by 
considering intersecting fibers initially parallel to two of the coordinate axes 
[3.1]. For example, we select fibers parallel to the Xl and X3 axes, as shown 
in Fig. 3.2, with initial lengths ds(l) and dS(3). These fibers have final lengths 
of dS(1) and dS(3) and have rotated through angles f3(l) and 13(3), respectively. 
The total change in the initially right angle is 

f3(l) + f3(3} = 13. (3.22) 

We consider vectors coincident with the fibers given in component form by 

(a) 

and (3.23) 

dS(3) = dS!3)eXi ' (b) 

in which the components may be written in terms of the initial coordinates as 

OS(l) 
dS!l) = _i_ dx!l) = SP) dx!l)· , oXj J '.J J' 

(a) 

(3.24) 

(b) 

Fig. 3.2. Shearing strains. 
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The scalar product of the vectors is 

dS(1)· dS(3) - dS(l) dS(3) cos (~ - 13) - 2' (3.25) 

Considering first the l.h.s. of Eq. (3.25), in view of Eqs. (3.23), (3.24), (3.3) and 
also Eq. (2.37), 

dS(l). dS(3) = S!1) dX\l) S!3) dX(3) 
.,J J .,k k 

= (S\l) + u.) .(sP) + u.) dx\1) dX(3) • .,J' .,k J k 

= ((j .. + u· ·)((j·k + u· k) dX\l) dXk(3) U l,j I I, J 

= ((j'k + Uk . + u· k + u· ·u· k) dx\1) dXk(3). (3.26) J ,J j. t,) I. J 

The product term is zero for infinitesimal theory and, considering the initial 
orientation of the fibers, we obtain 

dX~l) = dS(l); dx~l) = dxj1) = 0; 
(3.27) 

Therefore, Eq. (3.26) has a nonzero value only for j = 1 and k = 3, for which 
(jjk = O. Thus, 

dS(l)'dS(3) ~ (U 3,l + U1,3)ds(1)ds(3). (3.28) 

Now equating the r.h.s. of Eqs. (3.25) and (3.28), 

dS(l)dS(3)COS(~ - 13) = (u + u )ds(l)ds(3) (3.29) 2 3,1 1,3 

Neglecting the differences between the squares of the initial and final lengths 

of the fibers and assuming small angles of rotation 13 such that cos (~ - 13 ) = 

sin 13 ~ 13· 

(3.30) 

That is, the strain component 8 13 is equal to one-half of the increase in the 
angle between two fibers initially parallel to the Xl and X3 axes. Similar 
interpretations are obvious for 8 12 and 8 23 , 

It should be noted that the shearing strains are frequently taken as the 
total angle increase 13 rather than one-half this value [3.2]. Such a definition 
is termed an "engineering" strain but is awkward because it violates the 
tensor character of 8ij' Nevertheless, we should be aware of this form, since 
engineering strains are helpful for physical interpretation and useful in deriv­
ing material laws as demonstrated in Sec. 4.3. 

Since the strain tensor is formed from the displacement gradients, it is 
interesting to separate Ui,j into two parts 

(3.31) 
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where 
W·· = -21(U' . - U· .) l} I,) J,1 , (3.32) 

from Eq. (3.14). For i = j, wij = 0, while for i i= j, wij = -Wji, thus the wij 

are elements of a skew-symmetric tensor roo For the previous example, 

W13 = t(U 1•3 - U3 • 1 )· 

From Eqs. (3.22) and (3.30), we find 

p = P(l) + p(3) = (u1,3 + U3.1) = 2613' 

By comparison, 

(3.33) 

(3.34) 

(3.35) 

which may be interpreted as the average rotation of all fibers around the X2 

axis. For a rigid body rotation, 613 = 0, P(l) = - P(3) and W13 = P(l). For this 
reason, ro is called the rotation tensor [3.3]. 

The physical notions of strain discussed in this section are closely inter­
twined with the mathematical definitions in the preceding section. This con­
nection extends into the nonlinear Lagrangian and Eulerian strain tensors as 
well, but is understandably more complex than the linear case. A recent 
unified definition of finite strains by Ma and Desai [3.4] contains both of the 
classical nonlinear tensors as special cases and isolates a special case which is 
essentially a mean of the two. The resulting strain tensor possesses some 
linear charactertics that assist in physical interpretation and exhibits good 
computational performances for some classical one- and two-dimensional 
problems. 

3.4 Principal Strains 

Since we have shown that the strains have the same second-order tensor 
character as the stresses, we expect to be able to identify a system of principal 
strains that are the eigenvalues determined from the characteristic equation 

(3.36) 

which is analogous to Eq. (2.56a). The three roots Ai> A2 , A3 are the principal 
strains 6(k), with k = 1, 2, 3. 

The corresponding eigenvectors designate the directions associated with 
each of the principal strains and are computed from 

(6ji - Abj;}nj = ° (3.37) 

along with Eq. (2.57). The direction of principal strain are denoted by nt), 
with k = 1, 2 and 3. These directions are mutually perpendicular and, for 
isotropic elastic materials (to be discussed in Chapter 4), coincide with the 
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directions of the principal stresses. Obviously, the largest extension experi­
enced by any fiber at a point is equal to the largest principal strain. 

Strains on oblique planes, octahedral strains and the absolute maximum 
shearing strain are obtained relative to the principal coordinates in a manner 
analogous to obtaining corresponding stress quantities, described in Section 
2.5. Also for completeness, we define the strain invariants R 1 , R2 and R3 
analogous to Ql, Q2 and Q3 in Eqs. (2.58) and (2.59), with the (Jij replaced by 
6ij in each case. Of particular physical significance is 

(3.38) 

which is called the cubical strain, and is related to the volume change as 
shown in Sec. 3.5. 

3.5 Volume and Shape Changes 

It is sometimes convenient to separate the components of strain into those 
that cause changes in the volume and those that cause changes in the shape 
of a differential element. 

Consider a volume element oriented with the principal directions, similar 
to that shown in Fig. 2.2, but with the shearing stresses equal to zero. The 
original length of each side is taken as dX(k) and the final length as dX(k), 
where 

dX(k) = dx(k)(l + 6(k)). 

The original volume is found as 

3 
dv = n dX(k) 

k~l 

and the final volume by 

3 
dV = n dX(k) 

k~l 

3 
= n (1 + 6(k)) dX(k). 

k~l 

Now, the dilatation is defined as the relative change in volume 

f.. = dV - dv 
dv 

dv {Lu (1 + 6(k))] - I} 
dv 

= [(1 + 6(1))(1 + 6(2))(1 + 6(3))] - 1 

(3.39) 

(3.40a) 

(3.40b) 
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= e(1) + e(2) + e(3) + higher-order terms 

3 
~ n e(k). 

k=1 

which is simply the sum of the diagonal terms of the tensor. 

(3.41) 

The dilatation 11 is also equal to the sum of the principal strains eu, which 
is the first strain invariant R1 and the divergence of the displacement vector 
V . u = u;,;' defined by Eq. (3.5c). 

Changes in shape of the volume element are denoted by the shearing 
strains eu, with i :F j, sometimes called the detrusions [3.2]. 

The preceding separation of the strains into dilatational and detrusional 
components may be formalized by the resolution of the strain tensor into 
two terms [3.3], 

in which 

and where 

~ ] = mean normal strain 

eM 

e13 
] e23 = strain deviator, 

e33 - eM 

eM = t(e11 + e22 + e33) 

= t(e(1) + e(2) + e(3») 

= tR1 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

The mean normal strain EM corresponds to a state of equal elongation in 
all directions for an element at a given point. The element would remain 
similar to the original shape but change in volume with a dilatation of eu. For 
this reason, EM may be termed the volumetric component of strain. 

The strain deviator, or deviatoric component, ED has a dilatation, calcu­
lated from Eq. (3.41), of 

3 

11 = L e~) 
;=1 

= (ell - eM) + (e2 2 - eM) + (e33 - eM) 

= ell + e22 + e33 - 3[t(e11 + e22 + e33)] 

=0. (3.46) 
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This characterizes a change in shape of an element with no change in volume. 
The invariants of the strain deviator tensor play an important role in the 

theory of plasticity since shape changes are of importance. 
Corresponding to the deformations associated with the mean normal 

strain and strain deviator, we define the principal stresses associated with 
changes in the volume and the shape as 

in which 

and where 

~ ] = mean normal stress 

(JM 

(J13 ] 
(J23 = stress deviator, 

(J33 - (JM 

(JM = t((J11 + (J22 + (J33) 

= t(d 1) + d 2 ) + d 3» 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

In indicial form, the volumetric and deviatoric components of stress are, 
respectively, 

(3.51) 

and 

(JDU = (Jij - (JMij 

= (Jij - t(Jkkbij' (3.52) 

For principal axes 

o ] o . 
(Jii) 

(3.53) 

Note that the sum of the diagonals of (JD is 

(JD" = (J(1) + (J(2) + (J(3) - 3 .1[(J(1) + (J(2) + (J(3)J = O. (3.54) 

The stress deviator tensor referred to the principal axes, Eq. (3.53), is the 
basis of the reknown von Mises yield condition, discussed in Sec. 11.3.3. 
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3.6 Compatibility 

If we examine Eq. (3.14), 6ij = t(Ui.j + Uj.i), we see that the components of 
strain may be computed once the displacements are known, provided that 
they are once differentiable. However, the inverse problem of calculating the 
displacements from the strains is not so direct since there are six independent 
equations and only three unknowns. Conditions of compatibility, imposed on 
the components of strain 6(jj)' may be shown to be necessary and sufficient 
[3.5] to insure a continuous single-valued displacement field u. 

The usual procedure is to eliminate the displacements between the equations 
repeatedly to produce equations with only strains as unknowns. First, we 
take two normal components 6(11) and 6(mm) and the shearing component 61m 

with the summation convention suspended. Taking second partials, we have 

6(II.mm) = u(I.lmm) 

6(mm.lI) = U(m. mil) 

6(1m.lm) = t(U(I.mlm) + U(m.llm») 

= t(U(I.lmm) + U(m.mll»)' 

(a) 

(b) 

(c) 

(3.55) 

with interchangeability of the order of differentiation assumed. Next, we 
equate Eq. (3.55a) plus Eq. (3.55b) to twice Eq. (3.55c) to get 

(3.56) 

Then, we take one normal component 6(11) and three shearing components 61m, 

61n , 6mn and write the second partials 

6(II.mn) = u(I.lmn) 

6(lm.ln) = t(U(I.mln) + U(m.lln») 

6(ln.lm) = t(U(I.nlm) + U(n.llm») 

6(mn.lI) = t(U(m.nll) + U(n.mll»)· 

(a) 

(b) 
(3.57) 

(c) 

(d) 

We find that Eq. (3.57a) can be equated to Eq. (3.57b) plus Eq. (3.57c) minus 
Eq. (3.57d) to give 

6(lm.ln) + 6(ln.lm) - 6(mn.1I) = 6(II.mn)· (3.58) 

Equations (3.56) and (3.58) are six equations relating the components of 
strain that insure that these components will integrate into a unique displace­
ment field. They are of importance and may be written explicitly as 

6 11 •22 + 6 22 • 11 = 2612• 12 

622•33 + 6 33•22 = 2623.23 

633• 11 + 6 11 •33 = 2631.31 

(a) 

(b) 

(c) 



50 Chapter 3. Deformations 

G12,13 + G13,12 - G23,ll = G11,23 (d) 

(e) 

(f) (3.59) 

These are known as the St. Venant compatibility equations which may also 
be extracted from the tensor equation 

(3.60) 

which represents 34 = 81 equations, only six of which are distinct; for exam­
ple, for i = 1, j = 1, k = 2, I = 2, we get 

G11,22 + G22,11 = G12,12 + G12,12 = 2G12,12' (3.61) 

which is also Eq. (3.59a). It has been shown that these equations are not 
strictly "independent. A further differential combination of the six equations 
produces three identities connecting the equations, which are known as the 
Bianchi formulas. One may not, however, choose any three of the six, so that 
the usual approach is to include all six in the formulation [3.7]. 

Even though we have the compatibility equations, the formulation is still 
incomplete in that there is no connection between the equilibrium equations 
Eqs. (2.34), three equations in six unknowns (Jij' and the kinematic equations 
Eqs. (3.14), Six equations in nine unknowns Gij and Ui . We will seek the 
connection between the equilibrium and the kinematic equations in the laws 
of physics governing material behavior, considered in the next chapter. 

3.7 Computational Example 

A displacement field is given by 

u = [(3x2y + 6) x 1O- 2]ex + [(y2 + 6xz) x 1O-2 ]ey 

+ [(6z2 + 2yz + 10) x 1O-2 ]ez ' (3.62) 

We seek to compute the components of the strain and rotation tensors Gij and 
wij' and to verify the compatibility equations. 

(1) The partial derivatives x 10-2 with x = 1, y = 2, z = 3 are 

Ul,l = 6xy; 

U 1 ,11 = 6y; 

U2 ,1 = 6z; 

U = 3x2. 1,2 , 

U1,12 = 6x; 

U 2 ,2 = 2y; 

U 1,3 = 0; 

U 1,112 = 6. 

U 2 ,3 = 6x; 

U2,13 = 6; U2,22 = 2. 

U3,1 = 0; U3,2 = 2z; U3,3 = 12z + 2y; 

U3,23 = 2; U3,33 = 12. 
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(2) The strain tensor is 

• ~ [lr3X~:: 6z) 2y !(6x + 2z) x 10-2 • 

!(3x2 + 6y) 0 ] 

(3) The rotation tensor is 

ro ~ [ -t(3X~ -6z) 

!(6x + 2z) 12z + 2y 

!(3x2 - 6z) 

o 
-!(6x - 2z) 

For any given points (x, y, z), the strains and average rotations may be 
computed as the elements of I::ij and wij ' respectively, and the principal 
strains and directions determined. 

(4) Compatibility: Since only nonzero second partial derivatives enter into 
Eqs. (3.59), we consider I:: 12,11 = 3 and 1:: 21 ,11 = 3. Neither of these ap­
pears in Eqs. (3.59), thus the latter equations are identically satisfied. 
Beyond this trivial example we may observe that all strain fields which 
are linear will identically satisfy the compatibility relations. This is of 
some importance in generating numerical or approximate solutions to 
the equations of the theory of elasticity since linear approximations are 
otherwise convenient. 

Exercises 

3.1 The components of a displacement field are (from [3.6]) 

Ux = (x2 + 20) X 10-4, 

Uu = 2yz X 10- 3, 

Uz = (Z2 - xy) X 10- 3• 

(a) Consider two points in the undeformed system (2, 5, 7) and (3, 8, 9). Find the 
change in distance between these points. 

(b) Compute the components of the strain tensor. 
(c) Compute the components of the rotation tensor. 
(d) Compute the strain at (2, -1, 3). 
(e) Does the displacement field satisfy compatibility? 

3.2 The strain field at a point P(x, y, z) in an elastic body is given by 

t = [2~ -1~ ~] x 10-6. 

2 5-8 

Determine the following values. 
(a) the strain invariants 
(b) the principal strains 
(c) the octahedral shearing strain 
(d) the absolute maximum shearing strain 
(e) the mean normal strain and the strain deviator. 
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3.3 With reference to problem 3.2, consider a second coordinate system x; in which 
x; is parallel to X 2 and x; and x; are defined by a 60° counterclockwise rotation 
about x 2 . Find the components of strain with reference to the x; system using the 
strain field from problem 3.2. 

3.4 The com ponen ts of a strain tensor referred to the x I , X 2, X 3 axes in the figure are 

E = [~.02 ~.01 ~ ]. 

o 0 0.03 

In the figure, DA = DB = DC and D is the midpoint of AC. The direction cosines 
of AC are (1/}2,0,-1/}2) and those of BD are (-1/J6, }2/vf3, -1/J6). Find: 
(a) the elongation ofline AC 
(b) change of initial right angle BDA. 

B 

~-r------~~A--_Xl 

Problem 3.4 

3.5 The components ofa strain tensor referred to the XI' X2, X3 axes in the figure are 
given by 

[ 
0.02 

E = -~.003 
-0.003 0 ] 

0.01 0.02, 

0.02 0.01 

and they are constant in the region under consideration. The direction cosines of 
AC and DB are as given in Exercise 3.4. Find: 
(a) the relative elongations of the lines AC and DB 
(b) the change of the initially right angle ADB 
(c) the first, second and third invariants of strain. 



Exercises 53 

c A 

Xl 

Problem 3.5 

3.6 Compute the infinitesimal strains and sketch the deformed configuration of an 
initially rectangular volume element subject to the following displacement fields 
(from [3.1]), where A, B, D jj = constants, 
(a) Simple extension: U I = Al XI; U2 = U3 = o. 
(b) Simple shear: U I = BX2; U2 = Y3 = O. 
(c) Homogeneous deformation: U j = Djjxj . [See 3.8] 

3.7 Consider a (linear) strain field associated with a simply connected region R such 
that 

1:11 = AxL 1:22 = AXI, 1:12 = BX I X2 , 1:33 = 1:32 = 1:31 = O. 

Find the relationship between A and B such that it is possible to obtain a single­
valued continuous displacement field which corresponds to the given strain field. 

3.8 Show that the expression for the tangential component of stress UnS' given by 
Eq. 2.19, can be written as [3.9] 

Uns = [UjkUjmnknm((jkm - nk n m)]1/2 

3.9 Consider the St. Venant compatibility equations (3.59): 

(a) RI = 1: 11 •22 + 1:22.11 - 21:12.12 = 0 

R2 = 1:22 • 33 + 1:33 •22 - 21:23 ,23 = 0 

R3 = 1:33,11 + 1:11 ,33 - 21:31 ,31 = 0 

VI = -1:11 ,23 + (-1:23 ,1 + 1: 31 ,2 + 1: 12,3),1 = 0 

V2 = -1:22 ,31 + (1:23 ,1 - 1:3 1,2 + 1: 12 ,3),2 = 0 

V3 = -1:33,12 + (1:23,1 + 1:31,2 - 1:12,3),3 = 0 

(b) Show that these equations satisfy the Bianchi formulas [3.7]: 

Rl,l + V3 ,2 + V2 ,3 = 0 

V 3,I + R 2 ,2 + V1,3 = 0 

V2 ,I + V I ,2 + R 3 ,3 = 0 
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CHAPTER 4 

Material Behavior 

4.1 Introduction 

The need to connect the equilibrium equations derived in Chapter 2 with the 
kinematic relations developed in Chapter 3 was pointed out earlier. This 
coupling is accomplished by considering the mechanical properties of the 
materials for which the theory of elasticity is to be applied and is expressed 
by constitutive or material laws. 

4.2 Uniaxial Behavior 

The most elementary description of material behavior is the well-known 
Hooke's law, stated by Robert Hooke in the late 17th century [4.1], which 
refers to a one-dimensional extensional test: 

(4.1) 

where E is called the modulus of elasticity, or Young's modulus after Thomas 
Young who introduced the term in the early 19th century [4.1]. This test also 
reveals some additional bases of material characterization as shown in Fig. 
4.1, which is an automatically recorded plot of two cycles of loading and 
unloading for mild steel. Branch (1) is the initial elastic response, from which 
E may be calculated as the slope. In the vicinity of (2), there is a decrease 
in the slope, commencing at the proportional limit and progressing until the 
yield point is reached at (3). Yielding progresses along branch (4) until un­
loading commences at (5) and continues along (6). The unloading ceases, and 
reloading begins at (7) to initiate another cycle that extends through (13) 
when the test is terminated. Region (14) is known as a hysteresis loop and is a 
measure of the energy dissipated through one excursion beyond the yield 
point. 

A material that is loaded only to a level below the yield strain and that 
unloads along the same path is called elastic. If the path is linear as well, the 
material is said to be linearly elastic. It is also possible to have nonlinear 
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Strain €11 

Fig. 4.1. Stress-strain curve. 

elastic materials for which the coincident paths are curved. Both of these 
possibilities are addressed by the theory of elasticity, although only the for­
mer case is considered here in any detail. Past the yield point, we have the 
inelastic regime that requires additional considerations. 

Beyond the uniaxial test, the characterization of material behavior is far 
more involved, from both a theoretical and an experimental standpoint, and 
is discussed in the following sections. 

4.3 Generalized Hooke's Law 

As a prerequisite to the postulation of a linear relationship between each 
component of stress and strain, it is necessary to establish the existence of a 
strain energy density W that is a homogeneous quadratic function of the 
strain components W(e i) [4.2]. This concept is attributed to George Green 
[4.1]. For a body that is slightly strained by gradual application of the load­
ing while the temperature remains constant, this will produce stress compo­
nents derivable as 

(4.2a) 

It is convenient initially to write W in terms of the "engineering" strains eij as 
defined in Section 3.3. Thus, 

(4.2b) 

where eij = (2 - (jij)eij' 

The function should have coefficients such that W ~ 0 in order to insure 
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the stability of the body [4.2], with W(O) = 0 corresponding to a natural or 
zero energy state (unloaded). Energy principles are developed in Chapter 10. 

Now, the generalized Hooke's law is written in the form of a fourth-order 
tensor 

(4.3) 

in which the 81 coefficients E ijk1 are called the elastic constants. Since W is 
continuous, the order of differentiation in Eq. (4.2) is immaterial and Eijk1 is 
symmetric. Thus the number of independent equations reduces from nine to 
six, the elastic constants from 81 to 36, and then further to [(36.6)/2] + 6 = 

21 when only half of the off-diagonal constants are counted. We represent 
this relationship in matrix form in terms of the engineering strains as 

{eJ} = [E]{t}, (4.4) 

where 

0"11 E1111 E1122 E 1133 El112 E 1123 E 1131 £11 

0"22 E2222 E 2233 E2212 E 2223 E 2231 £22 

0"33 E3333 E3312 E 3323 E3331 £33 
(4.5) 

0"12 E1212 E 1223 E 1231 £12 

0"23 E 2323 E 2331 £23 

0"31 E 3131 £31 

Replacing the awkward quadruple subscripts, we have 

0"11 C11 C 12 C13 C 14 C1S C 16 £11 

0"22 C22 C 23 C 24 C2S C 26 £22 

0"33 C 33 C 34 C3S C 36 £33 

0"12 C 44 C4S C 46 £12 
(4.6) 

0"23 CSS CS6 £23 

0"31 C 66 £31 

or 

{eJ} = [C] {t}. (4.7) 

The corresponding strain energy function is [4.2] 

2W = cll £i1 + 2C12 £11£22 + 2C13 £1l£33 + 2C14£1l£12 + 2C15 £1l£23 

+ 2C16£1l£31 + C22£~2 + 2C23 £22£33 + 2C24 £22£12 + 2C2S £22£23 

+ 2C26 £22£31 + C33£~3 + 2C34 £33£12 + 2C3S £33£23 + 2C36 £33£31 

+ C44£i2 + 2C4S £12£23 + 2C46 £12£31 

+ CSS£~3 + 2CS6£23£31 

(4.8) 

from which Eqs. (4.2) produces Eq. (4.6). 



58 Chapter 4. Material Behavior 
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Fig. 4.2. (a) Reference material coordinates; (b) single-plane symmetry. 

The preceding characterization is the most general with which we need to 
be concerned; such a material is termed anisotropic [4.3]. Fortunately, most 
engineering materials possess properties of symmetry about one or more of 
the planes or axes, which allow the number of independent constants to be 
reduced. Devising valid experiments to isolate each material constant can be 
tedious and difficult. 

The first reduction is for one plane of symmetry, for example, plane X 2 X 3 

in Fig. 4.2(a). This implies that the Xl axis can be reversed as shown in Fig. 
4.2(b), which corresponds to a coordinate transformation with direction co­
sines as shown below [4.4]: 

Xl X2 X3 

X' I -1 
(4.9) 

X; 1 

x' 3 1 

Using Eq. (2.13), u(j = !Xik!Xj/Uk/, with the direction cosines given in Eq. (4.9), 
we find 

Similarly, using Eq. (3.16), e;j = !Xik!Xj/ek/, we find 
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The preceding relations are reflected in the material law 

0'~1 0'11 

0'~2 0'22 

0'~3 0'33 
C 

O'~ 2 -0'12 

0'~3 0'23 

0'~1 -0'31 

c 

Rewriting Eq. (4.10) in the form of Eq. (4.6) gives 

0'11 Cll C12 C13 -C14 C15 -C16 

0'22 C22 C23 -C24 C25 -C26 

0'33 C33 -C34 C35 -C36 

0' 12 C44 -C45 C46 

0'23 C55 -C56 

0'31 C66 

811 

822 

833 

-812 

823 

-831 

811 

8 22 

8 33 

812 

823 

8 31 

. (4.10) 

(4.11) 

but, since the constants do not change with the transformation, C14 , C16 , 

C24 , C26 , C34 , C36 , C45 , C56 = 0 leaving 21 - 8, or 13, constants. Such a 
material is called monoclinic [4.4]. 

Next, double symmetry is achieved by the transformation 

Xl X2 X3 

x~ -1 

x; -1 

x' 3 1 

x' 3 

Fig. 4.3. Double-plane symmetry. x; ______ ...1 

(4.12) 

x' 1 
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as shown in Fig. 4.3. Following a similar argument as before, the number of 
elastic constants is reduced from 13 to 9 producing an orthorhombic or 
orthotropic material [4.4]. No further reduction is achieved by taking X3 = 

- X 3 , since all of the axes could have been reversed initially in Fig. 4.2(a). 
The stress-strain law for an orthotropic material is written explicitly as 

0"11 C11 C12 C13 0 0 0 611 

0"22 C22 C23 0 0 0 622 

0"33 C33 0 0 0 633 (a) (4.13) 
0"12 C44 0 0 612 

0"23 C55 0 623 

0"31 C66 631 

or, in terms of the elastic moduli, as 

0"11 E1111 El122 E l133 0 0 0 611 

0"22 E2222 E 2233 0 0 0 622 

0"33 E3333 0 0 0 633 

0"12 E1212 0 0 612 

0"23 E 2323 0 623 

0"31 E3131 631 

(b) (4.13) 

Additional simplifications are possible if directional independence of the 
material properties is present. The appropriate relationships are formally 
derived by interchanging axes. For example, we may interchange X2 and X3 

by the transformation 

Xl X2 X3 

x~ 1 0 0 
(4.14) 

x; 0 0 1 

x' 3 0 1 0 

Xl X2 X3 

X' 1 0 1 0 
(4.15) 

x; 1 0 0 

x' 3 0 0 1 

The result is a cubic material with three independent constants. 
A final simplification is to enforce rotational independence, in addition to 

the directional independence, by the transformation 



4.3 Generalized Hooke's Law 61 

x' 3 

Fig. 4.4. Isotropic condition. Xl 

Xl X2 X3 

X' 1 1 0 0 (4.16) 
X; 0 COS () sin () 

x' 3 0 - sin () cos () 

as shown in Fig. 4.4. This reduces the number of constants from three to 
two, producing the familiar isotropic material. These modulii are known as 
the Lame constants, since they were correctly established first by Gabriel 
Lame in the middle of the 19th century [4.1], and produce the stress-strain 
relationship written in terms of the tensor components eij as 

0'11 2ft + 2 2 2 0 0 0 ell 

0'22 2 2ft + 2 2 0 0 0 e22 

0'33 2 2 2ft + 2 0 0 0 e33 

0' 12 2ft 0 0 e12 
(4.17) 

0'23 2ft 0 e23 

0'31 2ft e31 

or, in indicial form, 

O'ij = 2fteij + 2bijekk' (4.18) 

It is useful to invert Eq. (4.18), expressing the strains in terms of the 
stresses. This is best accomplished by first setting i = j and expressing ekk in 
terms of O'kk> and then solving the resulting Eq. (4.18) for eij' This gives 

1 2 
eij = 2ft O'ij - 2ft (2ft + 32) bijO'kk' (4.19) 

Although the Lame constants are perfectly suitable from a mathematical 
standpoint, it is common to use engineering material constants that are re­
lated to measurements from elementary mechanical tests. 
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For a uniaxial stress with all constant and all other aij = 0, 

all = (2/1 + ,1)£11 + ,1£22 + ,1£33' 

o = ,1£11 + (2/1 + ,1)£22 + ,1£33' 

0= ,1£11 + ,1£22 + (2/1 + ,1)£33' 

(a) 

(b) (4.20) 

(c) 

Solving (4.20b) and (4.20c) for £22 + £33 and then substituting into Eq. (4.20a) 
gIves 

/1(2/1 + 3,1) 
all = /1 + A £11 = E£l1' (4.21) 

Young's modulus, E, was defined in Section 4.2. 
From the same uniaxial stress state, the fractional contraction may be com­

puted as 

£22 £33 A 
--= --= =v 

£11 £11 2(/1 + A) , 
(4.22) 

where v is Poisson's ratio. 
A third engineering constant is obtained from the state of pure shear in two 

dimensions, given by a12 = a21 = constant, all other aij = O. From Eq. (4.18), 

a12 = 2/1£12 = 2G£12' 

where G is the shear modulus. 

(4.23) 

Although the engineering constants E, v and G are convenient, we realize 
that only two of these constants are independent since G = /1 and both E and 
v are defined in terms of A and /1. The relationships between the Lame and 
engineering constants are collected as 

E 
/1 = 2(1 + v)' 

(a) 

,1= vE 
(1 + v)(1 - 2v)' 

(b) 

E= 
/1(2/1 + 3,1) 

(c) (4.24) 
/1+,1 

, 

A 
(d) V= 

2(/1 + A)' 

G = /1. (e) 

Note from Eq. (4.24b) that for A to remain finite, Poisson's ratio must lie 
between 

-1<v<0.5. (4.25) 

From Eq. (4.22) it is difficult to visualize a negative value since it implies 
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that an elongational strain in the 1 direction would result in an expansion in 
the 2 direction as well; but, see Ch. 12. Poisson's ratio is also related to the 
volume change or dilatation, introduced in Sec. 3.5. We write Eq. (3.41) for 
an extension of an isotropic material applied along the I-principal axis as 

(4.26) 

whereupon Eq. (4.22) gives 

£(2) = £(3) = _ VB. (4.27) 

Then 

d = B(1 - 2v). (4.28) 

If V = 0.5, the upper positive limit, d = 0 and the material is said to be 
incompressible. Rubber-like materials exhibit this type of behavior. 

The explicit form of the generalized Hooke's law in terms of the engi­
neering constants is best written in the inverse form 

or 

V V 

E E E 

V V 

E E E 

V V 

E E E 

o o o 

o o o 

o o o 

o 

o 

o 

1 
2G 

o 

o 

o 

o 

o 

o 

2G 

o 

o 

o 

o 

o 

o 

1 

2G 

(4.29a) 

(4.29b) 

The elements of [Cr1 have been explicitly defined, with reference to Eqs. 
(4.21)-(4.23). In general, these coefficients are called compliances. In indicial 
notation with G, replaced by E using Eqs. (4.24e and a), Eq. (4.29b) becomes 

1 
£ij = E [(1 + v)O'ij - VbijO'kk]. (4.30) 

Recalling the discussion at the end of Section 3.6 and comparing the 
number of equations available (nine) and the number of unknowns intro­
duced (fifteen), we see that the material law provides six additional equations, 
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yet involves no additional unknowns; thus, the set of equations for the linear 
theory of elasticity is consistent. In the next chapter, we will explore methods 
of reducing the equations as well as additional constraints on the theory. 

4.4 Thermal Strains 

Temperature changes may be a source of important stresses in elastic sys­
tems. It is reasonable to assume that a linear relationship exists between the 
temperature difference from the datum value and the corresponding linear 
strain: 

(4.31) 

in which E:(ii)(T) is the linear strain due to the temperature difference T - To, 
To is the datum temperature, and 0: the coefficient of thermal expansion, 
assumed here to be a constant. 

With this concept, it is easy to generalize Eq. (4.30) to become 
1 

E:ij = Ii [(1 + v)O"ij - VbijO"kkJ + o:bij[T - To]. (4.32) 

We can also generalize Eq. (4.18) to become 

O"ij = 2/lE:ij + AbijE:kk - o:bij(3A + 2/l) [T - To]. (4.33) 

When these expressions are used in subsequent applications, the thermal 
terms are carried through as constants and ultimately become grouped with 
the applied tractions and/or body forces. In this form, they have come to 
be known as thermal loads that can be treated along with mechanical loads 
as known quantities. 

Obvious complications are produced when temperatures outside the nor­
mal environmental range are considered since both the material properties 
such as E and G and the thermal coefficient 0: may become, possibly non­
linear, functions of the temperature. 

4.5 Physical Data 

Since the implementation of the various material models is based on phy­
sical data, it is necessary either to obtain relevant data or to construct ap­
propriate experiments. The literature is rich with data for a wide variety 
of materials, but, because they are oriented to specific applications, these 
data are somewhat scattered. Some procedures are discussed with respect to 
strength criteria in Ch. 11. For orthotropic materials, a detailed interpreta­
tion of the constants in Eq. 4.13 is provided by Vinson and Sierakowski [4.5]. 
A comprehensive guide to the techniques of constitutive modeling that treats 
metals, concrete and soils from an elasticity basis may facilitate the collection 
and interpretation of physical data [4.6]. 
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Exercises 

4.1 Derive the generalized Hooke's law for an orthotropic elastic solid, starting with 
the equations for an anisotropic material [4.3]. 

4.2 For an isotropic material, obtain the relationship 

1 l 
[;ij = 2/1 (Jij - 2/1(2/1 + 3l) c'5ij(Jkk> 

from the expression 

(Jij = 2/1[;ij + l/\[;kk' 

4.3 Show that the principal axes of stress correspond with the principal axes of 
strain for an isotropic, linearly elastic material. 

4.4 Extend the stress-strain laws to include thermal effects assuming that the coeffi­
cient of thermal expansion is equal to IX. How does this complicate the formula­
tion of the elasticity problem? 

4.5 For steel, E = 30 X 106 and G = 12 X 106 (force/length2 ). The components of 
strain at a point within this material are given by 

[
0.004 0.001 0 ] 

E = 0.001 0.006 0.004 . 

o 0.004 0.001 

Compute the corresponding components of the stress tensor. 

4.6 Verify the relations (a) and (b) of Eq. (4.24) by using (c) and (d). 

4.7 Determine the constitutive relations governing the material behavior of a point 
having the properties described below. Would the material be classified as aniso­
tropic, orthotropic or isotropic? 
(a) A point in the material has a state of stress given by the following: 

(J11 = 10.8; (J22 = 3.4; (J33 = 3.0 

(J\2 = (J13 = (J23 = O. 

(b) The material develops the corresponding strain components 

[;11 = 10 x 10-4 ; [;22 = 2 x 10-4 ; [;33 = 2 x 10-4 ; 

[;12 = [;23 = [;31 = O. 

(c) When a state of stress of 

(JII = 10; (J22 = 2; (J33 = 2; 

(J\2 = (J23 = (J31 = 0 

is applied, the strain components are 

[;11 = 10 x 10-4 ; [;22 = [;33 = [;\2 = [;23 = [;31 = O. 

(d) When subjected to a shearing stress (J\2, (J13 or (J23 of 10, the material devel­
ops no strains except the corresponding shearing strain, with tensor compo­
nent [;12, [;13 or [;23, of 20 x 10-4 . 

4.8 Show that the stress-strain relationships for an isotropic material, Eq. (4.18) can 
be written in the general form of Eq. (4.3) where 
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(a) Eijk1 = G((jik(jjl + (ji/(jjk) + (K - ~ G) (jiAI 

where K = E is known as the Bulk Modulus [4.7]. 
3(1 - 2v) 

(b) E ijk1 = A(jiAm + j1(ji/(jjm + j1(jim(jjl [4.8]. 

4.9 Consider an isotropic elastic medium subject to a hydrostatic state of stress 
0'(1) = 0'(2) = 0'(3) = _ p. 

Show that for this state of stress 

p = -KRI 

where K is the Bulk Modulus and RI is the cubical strain (Sec. 3.4). Consider the 
implications of v> 1/2 and v < -1. [4.9] 

4.10 For an elastic medium subject to a state of stress aij' assume that the deforma­
tion is incompressible for aii =F- O. 
(a) Verify that v = 0.5. 
(b) Assume also that G33 = 0 and determine v. [4.9] 
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CHAPTER 5 

Formulation, Uniqueness and 
Solution Strategies 

5.1 Introduction 

In the previous chapters, we have derived the essential equations of the linear 
theory of elasticity. Repeated here in terse form, the equilibrium conditions 
[Eqs. (2.34)J are 

(Jij.i + jj = 0; 

the kinematic relations [Eqs. (3.14)J are 

I;" = -21(U . . + u .. ) l} l,) j.l , 

with the compatibility constraints [Eqs. (3.60)] 

and the constitutive law [Eqs. (4.18) and (4.19)] is given by 

or 

1 
cij = E [(1 + v)(Jij - VbiPkk]. 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

In this chapter, we combine and reduce these equations, we establish the 
necessary and sufficient conditions governing the uniqueness of a solution, 
and we introduce some approaches to the solution of an elasticity problem. 

5.2 Displacement Formulation 

With a view toward retaining only the displacements Ui , we substitute Eq. 
(5.2) into Eq. (5.4) to eliminate the strains, yielding 

(5.6) 

a relationship between stresses and displacements. Next, the stresses in Eq. 
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(5.1) are replaced by Eq. (5.6) to give 

which reduces to 

AUk•kj + f.1(U i ,ji + Uj,i;) + jj = 0 

or, using i for the dummy index in all terms, 

f.1Uj,ii + (A + f.1)U i,ij + jj = O. (5.7) 

Equations (5.7) are three equilibrium equations in terms of the displacements 
and constitute a classical displacement formulation. These are known as the 
Lame equations [5.1] and, in the case where the displacement field uj is con­
tinuous and differentiable, the corresponding strain field eij always satisfies 
Eq. (5.3). 

The solution of Eqs. (5.7) produces functions and constants of integra­
tion that are evaluated from boundary conditions, expressed in terms of 
displacements. We may also encounter boundary conditions involving trac­
tions. Fortunately, such conditions can often be incorporated into the loading 
terms, especially in numerical solutions. 

5.3 Force Formulation 

An alternate to the classical displacement formulation is to synthesize the 
equations in terms of the stresses (Jij' If the stresses are known, the strains 
follow directly from Eq. (5.5), but the displacements remain to be evaluated 
from Eq. (5.2). In this case, these are six equations to find only three displace­
ments. However, the strains must also satisfy the compatibility constraints 
Eqs. (5.3) in order to insure that the integration of Eqs. (5.2) provides a 
single-valued displacement field. With this in mind, it is helpful to rewrite 
Eqs. (5.3) in terms of the stresses from the outset. 

We start by substituting Eq. (5.5) into Eq. (5.3) to produce 

V 
(Jij,kl + (Jkl,ij - (Jik,jl - (Jjl,ik = 1 + V (c'5ij(Jtt,kl + c'5kl (Jtt,ij - c'5ik (Jtt,jl - c'5jl (Jtt,ik) 

(5.8) 

which are again 81 equations. We recall from the discussion in Section 3.6 
that only six of Eqs. (5.3), corresponding to the conditions k = I, are indepen­
dent, so that Eq. (5.8) reduces to 

V 
(Jij,kk + (Jkk,ij - (Jik,jk - (Jjk,ik = 1 + V (c'5iPtt,kk + c'5kk (Jtt,ij - c'5ik (Jtt,jk - c'5jk (Jtt,id, 

(5.9) 

which are nine equations with free indices i and j. 
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To simplify the equations somewhat, we recall Eq. (2.59a) where 

we use 

and we note that 

Ql = att = first stress invariant, 

( ),kk = V2( ), from Eq. (1.10b) 

bikatt,jk = att,ij = Ql,ij 

bjkatt,ik = att,ij = Ql,ij' 

so that Eq. (5.9) becomes 

(a) (5.10) 

(b) (5.10) 

(c) 

(d) (5.10) 

(e) 

2 V 2 
Va·· + Ql .. - a'k 'k - a'k 'k = --(b·.V Ql + 3Ql .. - 2Ql .. ). (5.11) 

'J ,'J , ,J J " 1 + V 'J ,'J ,'J 

Furthermore, we recall from Eqs. (5.1) that 

aik,jk = - h,j (a) 

and (5.12) 

ajk,ik = - fj,i' (b) 

Combining terms and considering the preceding relations, we have 

2 1 v 2 h h Va·· + --Ql" - --b··V Ql + .. + .. = O. 
'J 1 + V ,'J 1 + V 'J ',J J,' 

(5.13) 

Equations (5.13) are nine in number; however, only six are independent 
since the stress tensor is symmetric. It is possible to reduce the equations 
further by utilizing the additional Eqs. (5.8), when k of. I. Letting k = i and 
1 = j, we have 

which is 

so that 

( 2v ) 2 a···· = 1 - -- V Ql 
'J,'J 1 + v 

or 

(5.14) 
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from Eq. (S.1). Thus, equilibrium is introduced into Eqs. (S.13) through the 
substitution of Eq. (S.14) for V2Q1 

1 -v 
V2(T .. + --Q1 .. = --b../"k k - (r.. + t .. ). 

'J 1 + V ,'J 1 _ V '1J I. J i,J J J,' 
(S.1S) 

If the body forces are constant, Eq. (S.lS) reduces to 

2 1 V (T .. + --Q1" = O. 
'J 1 + V ,'1 

( S.16) 

Furthermore, comparing Eq. (S.16) with Eq. (S.13), also with body forces 
constant, we deduce that 

( S.17) 

that is, V 2 (Tii = 0 so that Q1 is a harmonic function. 
Equations (S.1S) or (S.16) are a set of compatibility equations in terms of 

stresses (as opposed to the St. Venant equations that are in terms of strain) 
for a body in equilibrium and are known as the Beltrami-Michell equations 
[S.1] after the originator Eugenio Beltrami, and John-Henry Michell who 
treated the case of nonconstant body forces. Together with Eqs. (S.1), they 
constitute a set of six equations in six unknown components of stress, and 
they represent a classical force formulation. If a stress field is formed that 
satisfies these equations and the corresponding strains computed from Eq. 
(S.S) are integrated in Eq. (S.2), the displacement field is insured to be single­
valued. However, this process may be quite tedious, as is demonstrated in 
Section 6.2. 

Consideration of boundary conditions involving tractions is straightfor­
ward; however, constraints on the displacements are generally deferred until 
the subsequent integration of the kinematic relations. It is sometimes rather 
difficult to express such constraints directly as equivalent statements on the 
stresses. 

5.4 Other Formulations 

Beyond the classical displacement and force formulations, there remains the 
possibility of using reduced equations that contain a mixture of stress and 
displacement and, possibly, strain terms. Such an approach is called a mixed 
formulation [S.l]. Additionally, there is the possibility of employing different 
formulations in various regions of the domain; for example, a stress formula­
tion on the boundary and a displacement formulation in the interior. This is 
termed a hybrid approach and, obviously, covers many possibilities. 

Mixed and hybrid formulations are of considerable interest for numerical 
solutions in the theory of elasticity and may offer expedient alternatives to 
the more classical approaches. 
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5.5 Uniqueness 

We seek to prove that a solution to the equations synthesized from Eqs. (S.l) 
to (S.S) is unique for a given region with reasonable boundary conditions. 

A counterargument is followed whereby it is assumed that two distinct 
solutions, say uP) and u\Z), exist [S.1]. We designate the differences between 
the solutions by asterisk (*) superscripts, that is, 

( S.18) 

and endeavor to show that ur = O. 
The corresponding differences for the strains and stresses are 

6:"· = 6!!) - 6!~) 
lJ lJ I} 

= -Zl(U:". + u'l'.) 
l,j J.t (S.19) 

and 
a:"· = a!~) - a!~) 

'J I} 'J . (S.20) 

Since the body forces are identical, fj* = 0, and since both systems are in 
equilibrium 

atL = O. (S.21) 

To continue, we consider the energy difference 

2U* = Iv 60a0 dV, (S.22) 

where U is the strain energy. This expression is non-negative, as discussed in 
Section 4.3. We replace 60 by Eq. (S.19) to give 

r 6:".a:".dV= r !(u:".+u'l'.)a:t:dV J v 'J 'J J v 2 '.J J.' '1 

(S.23) 

since the i and j become repeated indices. Continuing with the r.h.s. of Eq. 
(S.23) and using the product differentiation rule (Urai~).j = a0u~j + Urai~.j' 

Iv 60ai~ dV = Iv (Urai~).j dV - Iv Urai~.j dV 

= L Urai~nj dA - 0, (S.24) 

where the first term on the r.h.s. is converted to a surface integral using the 
divergence theorem in component form, Eq. (2.32), and the second term van­
ishes by Eq. (S.21). 

Noting that in the remaining term ai~nj = T;*, we may finally write 
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r B0(10 dV = f U{ T;* dA 
Jv A 

= L (U\l) - u\2»)(T;(1) - T;(2» dA. (5.25) 

Now, if the r.h.s. of Eq. (5.25) vanishes, the energy difference between the two 
solutions also vanishes and they are identical. Therefore, our proof of uni­
queness covers the following conditions for which this occurs: 

(1) The displacement field Ui is prescribed on the entire surface, making 
U{ = O. 

(2) The tractions T; are prescribed over the entire surface while overall equi­
librium is satisfied, making T;* = O. 

(3) Displacements Ui are prescribed on part of the surface and tractions T; on 
the remainder, so that either U{ or T;* = O. 

It is also of interest to note that the proof of uniqueness, while insuring the 
same set of stresses and strains in both solutions, does not automatically 
insure that the displacements are identical. In particular, for condition (2), 
where the tractions are prescribed over the entire surface, rigid body displace­
ments could be added without affecting this condition [5.1]. 

The preceding constraints are limited to regular, singly-connected regions 
where the basic form of the divergence theorem, used in Eq. (5.24), is applica­
ble. Extensions to more complex domains are also possible [5.2]. 

5.6 Membrane Equation 

Several problems in the theory of elasticity lend themselves to solution by 
analogy. One of the most popular is based on the deflection of a uniformly 
stretched membrane. In Fig. 5.1 we show such a membrane stretched over a 
cross section and inflated with a pressure q per unit area with a uniform 
tension T per unit length of the boundary. We consider a rectangular element 
abcd and write the equilibrium equation in the z direction, noting that the 
slopes of the membrane change by 

au 
~dx and ax 

OUZ,y dy 
oy 

over the element in the respective directions. Thus, we have 

qdxdy- Tdyuz,x+ Tdy[uz,x+uz,xx dx] - Tdxuz,y+ Tdx[uz,y+uZ,yy dy] =0 

or 

(5.26) 

Also, at the boundary, the deflection U z = O. 
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z 

Fig. 5.1. Pressurized membrane. From Timoshenko and Goodier, Theory of Elastic­
ity, © 1951. Reproduced with permission of McGraw-Hili. 

Equation (5.26) is known as Poisson's equation and occurs repeatedly in 
the Theory of Elasticity, thereby providing a basis for the so-called mem­
brane analogies, which are used in Ch. 6. 

5.7 Solution Strategies 

The obvious course is to attempt to carry out a direct integration of the 
partial differential equations, and then to apply the appropriate boundary 
conditions. However, the direct method is relatively difficult except for some 
fairly elementary problems. 

A second approach is to select stress or strain fields that satisfy the govern­
ing differential equations, and then to consider the boundary conditions that 
are satisfied. Finally, the boundary-value problem that the solution repre­
sents is formulated. This is appropriately called the inverse method and, at 
first glance, seems to suggest that one may simply create a problem to fit the 
available solution, hardly a realistic approach. 

The inverse method is meaningful when we look to the origin of stress or 
strain fields that may satisfy the governing equations. These may be bor­
rowed, in many cases, from a less-rigorous, but hopefully approximately cor­
rect, solution to a meaningful problem found from the strength of materials. 
It is soon realized, however, that such solutions are in some way deficient, so 
that a third approach is to begin with part of the solution from this source 
and to develop the remainder by direct integration. This is known as the 
semi-inverse method and is the one of many contributions of Barre'de A. 1. C. 
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St. Venant to the theory of elasticity. The principal historians of the subject, 
Issac Todhunter and Carl Pearson, devote a major share oftheir first volume 
to his memory as the foremost of the modern elasticians [5.3]. 

In addition to analytical solutions of the governing differential equations, 
energy-based solutions play an important role in all of solid mechanics. En­
ergy theorems also are the foundation for the powerful finite element method, 
which has become central to numerical techniques currently in use. 

Another notion, attributed to St. Venant, that aids immeasurably in 
obtaining practical solutions to elasticity problems, is the concept of stati­
cally equivalent loads. St. Venant's principle [5.2] states that stresses and 
strains reasonably distant from the point of application of an external force 
are not significantly altered if the applied force is replaced by a statically 
equivalent load. An important consequence of this statement, from an engi­
neering stand-point, is that satisfactory solutions may be obtained for the 
interior regions of a body without undue concern about the exact local distri­
bution of the applied surface loading or the restraining boundary tractions. 
While there are some notable exceptions, such as cylindrical shells under 
concentrated axial edge load, which tend to propagate far into the interior 
without much diffusion, St. Venant's principle is broadly applicable and is 
most useful in applied elasticity. 

Exercises 

5.1 The stress components at point P(x, y, z) are (after [5.4]) 

axx = y + 3z2 

ayy = x + 2z 

azz = 2x + y 

No body forces are present. 

(Jxy = Z3, 

axz = y2, 

ayz = x 2 . 

(a) Does this stress field satisfy equilibrium? 
(b) Does this stress field satisfy compatibility? 

5.2 Write the Beltrami-Michell equations for the case where azz = 0 (plane stress) 
and show that (after [5.5]) 

aii = kz + f(x, y), 

where k is a constant. 

5.3 For the following stress field 

axx = 80x3 + y, 

a yy = 100x3 + 1600, 

a xy = 1000 + 100y2, 

axz = 0, 

azz = 90y2 + 100z3, ayz = xz3 + 100x2y. 

(a) What is the body force distribution required for equilibrium? 
(b) What is the stress and body force at (1, 1, 5)? 
(c) With E = 30 X 106 (force/length2 ) and v = 0.3, what is the strain at (2,2, 5)? 
(d) Does this stress distribution satisfy the equations of compatibility? 
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CHAPTER 6 

Extension, Bending and Torsion 

6.1 Introduction 

It is instructive to examine some familiar problems, readily solved by elemen­
tary theories based on a strength of materials approach, using the theory of 
elasticity. We anticipate that the elementary solutions are approximately 
correct, but deficient or incomplete in some way. In each case, the isotropic 
material law is assumed to be applicable. 

6.2 Prismatic Bar Under Axial Loading 

We consider the bar shown in Fig. 6.1(a), suspended from a fixed support and 
loaded by self-weight y (force/volume) [6.1]. 

First, we consider the equilibrium condition Eqs. (2.46) with 1 = x, 2 = Y 
and 3 = z; fx = fy = ° and fz = -y; and (Jij = (Jji 

(Jxx.x + (Jxy,y + (Jxz,z = 0, 

(Jxy,x + (Jyy,y + (Jyz,z = 0, (6.1) 

We also have an overall equilibrium relationship between the normal com­
ponent of the traction ~ at z = I, (JzAx, y, L), and the self-weight given by 

f
BI2 fDI2 

(JzAx, y, L) dy dx = yBDL. 
-B12 -D12 

(6.2) 

We invoke St. Venant's principle and seek a solution away from the sup­
port region without concern for the exact stress distribution there. The semi­
inverse approach discussed in Section 5.7 is followed, whereby the stresses 
are taken as 

(Jzz = yz, 
(6.3) 

which satisfies Eqs. (6.1) and (6.2) for equilibrium. All surfaces except z = L 

76 
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Fig. 6.1. (a) Prismatic bar in extension; (b) deformed cross section of prismatic bar. 

are stress-free, corresponding to condition (2) for uniqueness in Section 5.5; 
thus, the distribution given by Eq. (6.3) is satisfactory. 

Proceeding to the strain-stress relationships Eqs. (4.29b), we have 

1 v 
exx = E [O"xx - v(O"yy + O"zz)] = -EYz 

(6.4) 

Since the strains are linear, the compatibility equations Eqs. (3.59), are auto­
matically satisfied. 

We should now be able to achieve a single-valued displacement field by the 
integration of Eqs. (3.15) [6.1], which take the form 
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V 
Gxx = Ux,x = -E Yz 

V 
Gyy = Uy,y = -E Yz 

1 
Gzz = Uzz = -yz , E 

Gxy = hux,y + uy,J = 0 

Gyz = !(uy,z + UZ,y) = 0 

Gxz = !(ux,z + uz,x) = O. 

Starting with Eq. (6.5c), we integrate to get 

yz2 

Uz = 2E + f(x, y), 

(a) 

(b) 

(c) 

(6.5) 
(d) 

(e) 

(f) 

(6.6) 

where f(x, y) is an arbitrary function. Substitution of Eq. (6.6) into Eqs. (6.5e) 
and (6.5f) yields 

Uy,z = -f.y (a) 
(6.7) 

ux,z = -I. x , (b) 

which integrate into 

uy = - zf.y + g(x, y) (a) 
(6.8) 

Ux = - zf.x + h(x, y), (b) 

where g and h are two more arbitrary functions. 
These expressions for UX , uy and Uz may now be substituted into Eqs. (6.5a) 

and (6.5b), which become 

(a) 

(6.9) 

(b) 

It has already been established that f, g, h do not depend on z. Therefore, 
Eqs. (6.9) may be separated into the following relationships 

h = 0 ,x (a) 

g = 0 ,y (b) 
(6.10) 

v 
!,xx = EY (c) 

v 
!'YY=EY' (d) 
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Thus far, only Eq. (6.5d) has not been considered. We substitute Ux and uy 
from Eq. (6.8) into that equation, producing 

-2z/xy +h,y+g,x=0 (6.11) 

that separates into 

hoY + g,x = ° (a) 
(6.12) 

/Xy = 0 (b) 

due to the independence of h,y and g,x from z. Equations (6.lOa) and (6.lOb) 
together with Eq. (6.12a) produce expressions for g and h of the form 

g = Clr(x) + C2 

h = C3 t(y) + C4 

(a) 

(b) (6.13) 

(c) 

where rand t are again arbitrary functions. The foregoing are satisfied by 
choosing t(y) = y, r(x) = x and C3 = - Cl , whereupon 

g = Clx + C2 

h = -ClY + C4 · 

If we take 

V 2 2 
j = 2E y(x + Y ) + Csx + C6 Y + C7 , 

(a) 
(6.14) 

(b) 

(6.15) 

we see that all of the constraints, Eqs. (6.lOc, d) and Eq. (6.12b), are satisfied. 
Finally, we are able to write the expressions for the displacements by sub­

stituting j, g, h into Eqs. (6.6) and (6.8) 

(a) 

(b) (6.16) 

(c) 

The somewhat tedious calculations for the displacements contain six arbi­
trary constants, all of which are coefficients of rigid body terms. These con­
stants may be evaluated by imposing constraints on the displacement and 
on the average rotation at the center of the fixed end, that is, at (0,0, L), 
where Ux = uy = Uz = ° and W 12 = W13 = W 23 = 0. These are written from 
Eqs. (6.16) and (3.32) to be 

(a) (6.17) 
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Uy(O, 0, L) = C2 - C6 L = ° 
yL2 

uAO, 0, L) = 2E + C7 = ° 
WXy(O, 0, L) =!( -C1 - Cd = ° 
Wxz(O, 0, L) = !( - Cs - Cs) = ° 
wy.(O, 0, L) = !( - C6 - C6 ) = 0. 

(b) 

(c) 

(6.17) 
(d) 

(e) 

(f) 

From the last three equations C1 = Cs = C6 = 0, while the first three give 

C4 = ° 
C2 = ° 

_yL2 
C7=~. 

Thus, the final expressions for the displacements become 
v 

Ux = -"EYxz 

(a) 

(b) (6.18) 

(c) 

(a) 

(b) (6.19) 

(c) 

From these results, we make some observations not discernable from the 
strength-of-materials solution, which is a uniform axial extension along the Z 

axis corresponding to u.(o, 0, z) in Eq. (6.19c) 

(1) All points not on the center line have contractions in the x - y plane 
given by Eqs. (6.19a, b). This is sometimes called the "Poisson" effect, 
since it is evidently the motivation for the definition of Poisson's ratio as 
the fractional contraction (see Section 4.3). 

(2) The axial displacement is not uniform on the cross section but is a para­
bolic surface with a peak along the z axis as shown in Fig. 6.1(b). 

Finally, in recalling the objectives of examining this problem as outlined in 
Section 6.1, we find that the theory-of-elasticity solution has confirmed the 
adequacy of the strength-of-materials solution for defining the equilibrium 
state and has enhanced the description of the displacements. 

6.3 Cantilever Beam Under End Loading 

6.3.1 Elementary Beam Theory 

Beams have been studied formally since the time of Galileo Galilei, who 
discussed the cantilever in the middle 17th century. Elastic beam theory 
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Fig. 6.2. (a) Cantilever beam in bending; (b) location of plane on which horizontal 
shear acts. 

evolved from the contributions of Edme Mariotte, James Bernouilli, Leon­
hard Euler, Charles A. Coulomb, and, finally L. M. H. Navier in the early 
19th century. As an illustration, we consider the cantilever beam shown in 
Fig. 6.2(a) subjected to a concentrated end load P, neglecting the self-weight. 

From elementary beam theory, we may write the solution for the stresses 
in terms of the shear V and the bending moment M as 

(a) 

Mx P 
O"zz = -1- = y(z - L)x (b) 

VQ P 2 2 
O"xz = O"zx = 21B = 2/(D - x ) 

(6.20) 

(c) 

(d) 

where I is the moment of inertia of the cross section equal to (1/12) x 2B x 
(2D)3 = (4/3)BD 3; and Q is the first moment of the area between x and D, as 
shown on Fig. 6.2(b). For a rectangular cross section 

(D + x) 
Q = (D - x) x 2B x x = (D - x) x 2B x 2 = (D 2 - x 2 )B. 

Implicit in these expressions is the assumption that the load P and the result­
ing stresses are uniform over the width of the beam, so that the solution is 
essentially two-dimensional. Later, we will test this solution against the the­
ory of elasticity. 
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First, we consider equilibrium Eqs. (2.46), with 1 = x, 2 = y and 3 = z, 

(Jxx,x + (Jxy,y + (Jxz,z = 0 + 0 + 0 = 0 (a) 

(Jyx,x + (Jyy,y + (Jyz,z = 0 + 0 + 0 = 0 (b) (6.21) 

Px Px 
(Jzx,x + (Jzy,y + (Jzz,z = -T + 0 + T = 0, (c) 

Thus, equilibrium is satisfied. 
Next, we examine the compatibility conditions using the Beltrami-Michell 

form Eqs. (5.16), since the solution being tested is in terms of stresses. From 
Eq. (5. lOa), 

Equations (5.16) for i, j = x, y, z become 

1 
V 2 (Jxx + -1-- Q1 xx = 0 + 0 = 0 +v ' 

1 
V 2 (JXY + 1 + V QI,xy = 0 + 0 = 0 

(a) 

(b) 

2 1 PIP -v P 
V (Jxz+-I-Q1xz= --I +-1--1 =-1--1 #0 (c) +v ' +v +v 

(d) 

1 
V 2 (JyZ + --QI yz = 0 + 0 = 0 

1 + v . 
(e) 

2 1 
V (Jzz + --QI zz = 0 + 0 = O. 

1 + v . 
(f) 

(6.22) 

(6.23) 

One of the compatibility equations, Eq. 6.23(c), will be violated unless v = 0, 
but this is implicitly assumed in elementary beam theory. 

It is instructive also to consider the compatibility equations in terms of 
strain Eqs. (3.59) and to identify, specifically, the violation. The relevant 
equation is Eq. (3.5ge), which takes the form 

(6.24) 

We calculate the strains from Eqs. (4.19) and (4.24) as 

Cyz = cyx = 0 

(Jzx 1 P 2 2 
Czx = 2f,l = 2G 21 (D - x ) 

(a) 
(6.25) 

(b) 

Ezx•yy = 0 (c) 
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y 

x 

Fig. 6.3. Deformed cross section of cantilever beam (after Ugural and Fenster, Ad­
vanced Strength and Applied Elasticity, Elsevier, 1975). Reprinted with permission. 

-A. -vP 
Byy = 2p.(2p. + 3A.) uzz = E y(z - L)x 

-vP 
Byy,zx =~. 

(d) 

(6.25) 

(e) 

Thus, Eq. (6.24) becomes 

(6.26) 

This compatibility equation can be satisfied only through a modification of 
the assumed stress distribution, considered in the next section. Also, we see 
that we have a strain Byy , normal to the plane of bending and proportional to 
Poisson's ratio, that does not enter into the elementary theory but which may 
be calculated from Hooke's law in terms of Uzz Eq. (6.25d). This is shown on 
the deformed cross section in Fig. 6.3. For x < 0 and z < L, Byy is negative; 
while for x > 0, it is positive. This distortion from the initially rectangular 
shape of the cross section is another example of a "Poisson" effect. Of course, 
so long as Uzz and, hence, Bzz remain independent of y and linear in x for a 
given value of z, the elementary postulate that "plane sections remain plane" 
is substantiated. 

Finally, we should see if the elementary solution satisfies the boundary 
conditions. For the lateral boundaries, we have the components of the trac­
tions given in terms of the stresses by Eq. (2.11), 'Ii = ujinj . 

For the top and bottom of the beam, we consider the normal traction at 
x = ±D, for which n = ±ex , and 

(6.27) 

Then 
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(6.28) 

It may be verified that the components 1'y and ~ vanish as well. However, it 
is of interest to note that should the beam be loaded along the top or bottom 
surface, the solution would not automatically satisfy the boundary condition 
on the normal traction. This is an indication that the theory-of-elasticity 
solution must account for the variation of a distributed loading through the 
depth of the beam, in contrast to the elementary solution which is referred 
to a "neutral" axis, x = O. We have avoided this problem for the present by 
only considering a concentrated loading. 

We may also evaluate the normal traction on the lateral boundaries y = 

± B, for which n = ± ey , and 

1'y = (JjiX, ± B, z)nj = 0 x 0 + 0 x 1 + 0 x 0 = o. 
The components 'rx and ~ also vanish. 

(6.29) 

(6.30) 

At the fixed end z = 0, our present solution is insufficient to check the 
displacement boundary conditions since it violates compatibility, while at 
z = L, we have 

P = fD fB (Jxz dy dx 
-D -B 

f D fB P(D2 - x2) 
= dydx 

-D -B 2/ 
(6.31) 

4 P 3 
=--BD 3 / . 

With / = 1 BD 3, the equation is satisfied. This implies that a concentrated 
load must be distributed over the depth in accordance with (Jxz; that is, 
parabolically, in order to satisfy the boundary condition exactly. Of course, 
other distributions are admissible through St. Venant's principle. 

We have shown that the elementary beam solution, while satisfying equi­
librium in general, fails to account for the lateral contraction or "Poisson" 
effect and does not recognize the distribution of the applied loading through 
the depth of the beam. 

6.3.2 Elasticity Theory 

Again drawing on the work of St. Venant, the semi-inverse approach is fol­
lowed, whereby it is assumed that the normal stresses are identical to those of 
the elementary theory as given by Eqs. (6.20a, b). Likewise, (Jxy is taken as 
zero as in Eq. (6.20d), but no stipulation is made on the remaining shearing 
stresses (Jzx and (Jzy that act in the plane of the cross section x - y. 

The equilibrium equations, Eqs. (2.46), become 
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axz,z = 0 (a) 
(6.32) 

ayz,z = 0 (b) 

Px 
(c) (6.32) azx,x + azy,y = -T' 

Equations (6.32a, b) indicate that the shearing stresses do not depend on z, 
and, therefore, are the same for all cross sections. 

We recall the compatibility conditions Eqs. (5.16), which were expanded 
as Eqs. (6.23). For this case, two are relevant, Eqs. (6.23c) and (6.23e), which 
are [6.1] 

2 1 P 
V axz = - 1 + v Y 

V 2 a yZ = O. 

(a) 

(6.33) 
(b) 

Also, we must verify that any modified solution continues to satisfy the 
boundary conditions. Particularly, we consider the components of traction T" 
on each face of the beam, found on the top and bottom using Eqs. (6.27) and 
(6.28) as 

ax.(±D, y, z) = 0, 

and on the sides using Eqs. (6.29) and (6.30) as 

ay.(x, ± B, z) = O. 

(6.34) 

(6.35) 

To continue, we introduce a technique that is very effective in obtaining 
analytical solutions to a variety of problems in the theory of elasticity [6.1]. 
We define a stress function ¢Y such that 

Px2 

axz = ¢Y,z - 2I + f(y) 

which satisfies Eqs. (6.32). Then, Eqs. (6.33) become, respectively, 

P 1 P 
(¢Y,YXX + ¢Y,yyy) - Y + Iyy = -1 + v y' 

or 

and 

- ¢Y,xxx - ¢Y,Xyy = 0, 

or 

(¢y,xx + ¢Y,yy),x = o. 

(a) 

(6.36) 
(b) 

(a) (6.37) 

(b) (6.37) 
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Equation (6.37a) integrates to 

v P 
do + do - - -y - f + C 'f'.xx 'f'.yy - 1 + v I .Y , (6.38) 

where C is an arbitrary constant. Equation (6.38) also satisfies Eq. (6.37b). 
To evaluate C, we consider the average rotation about the z axis, wxy' as 

given by Eq. (3.32) with i = x, j = y 

W xy = !(ux.y - uy,x)' (6.39) 

The rate of change of wxy along z is given by 

(6.40) 

by Eqs. (3.15e and f). Converting to stresses through Eq. (4.29b), we have 

1 
wxy,z = 2G (O"XZ,y - O"yZ,x) 

1 
= 2G (rP,yy + fy + rP,xx) (6.41 ) 

using Eqs. (6.36). Finally, substituing Eq. (6.41) into the l.h.s. of Eq. (6.38), we 
find 

1 Py 
2Gwxyz = -1-- + c. , + v I 

(6.42) 

We are considering a rectangular cross section, see Fig. 6.2(a), in which the 
bending is symmetrical about the x axis. At y = 0, the average rotation 
should be zero as well as the rate of change along z, and C = O. 

Equation (6.38) now becomes 

v P 
rP,xx + rP,yy = 1 + v I y - [y, (6.43) 

which is the governing equation for the stress function subject to satisfaction 
of the boundary conditions Eqs. (6.34) and (6.35). If we introduce f(y) = 

PD2/21 into Eqs. (6.36), we may rewrite the boundary conditions directly in 
terms of the stress function as 

O"xZ<±D, y, z) = rPj±D, y, z) = 0, 

O"yz(x, ± B, z) = - rP,Ax, ± B, z) = O. 

(a) 
(6.44) 

(b) 

These are easily satisfied by taking rP in a form such that it vanishes on the 
boundary. In many cases, rP may be taken to be proportional to the equation 
of the perimeter of the cross section, which is for this case 

(6.45) 
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Fig. 6.4. (a) Cross section of membrane analogous to beam; (b) loading and (c) profile 
of deformed membrane; (d) deep beam; (e) wide beam. 

The choice of f(y) to produce Eqs. (6.44) then reduces Eq. (6.43) to 

v Py 
r/J.xx + r/J,yy = 1 + v T' (6.46) 

Before proceeding with the solution, it is instructive to digress a bit to 
draw an analogy between Eq. (6.46) and the equation of a uniform membrane 
stretched over the cross section of the beam in Fig. 6.4(a). The equation for a 
membrane was derived in Sec. 5.6. Except near the boundaries, the height of 
the membrane r/J(x, y) is proportional to the load intensity q, which is, in 
turn, analogous to the r.h.s. of Eq. (6.46), v/(l + v)(Py/I), as shown in Fig. 
6.4(b) [6.1]. In effect, the loading pattern shown in Fig. 6.4(b) would produce 
a deflected membrane as shown in Fig. 6.4 (c). At the edges and along the 
center line y = 0, the height of the membrane must be zero as indicated on 
the profile in Fig. 6.4 (c). Because of the constraint at y = 0, the profile is 
different than in Fig. 5.1. Now we restate the expressions for the stresses from 
Eq. (6.36), incorporating the chosenf(y) = PD 2/2I: 

Px2 PD 2 

(Jxz = r/J,y - 2I + 2I (a) 

(6.47) 

(b) 

(Jyz = - r/J,x' 
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From Eqs. (6.47), we see that the changes in the shearing stresses from the 
expressions given by the elementary theory, Eqs. (6.20c, d), are proportional 
to the first derivative or slope of the membrane at any point. Examining the 
profile along y in Fig. 6.4(c), we see that the correction to CTxx has a maximum 
positive value at the two sides, a maximum negative value in the center, and 
is zero at the quarter-points. Thus, the uniformity of the stress state across the 
width of the beam inherent in the elementary theory is dispelled. Membrane 
analogies are often very useful in the theory of elasticity for visualizing and 
interpreting complex states of stress and strain. 

The general solution to Eq. (6.46), as derived by Timoshenko and Goodier 
[6.1], is rather more complicated than our introductory objectives; however, 
it is possible to consider some approximate solutions, reasoned from the 
membrane analogy [6.1]. 

If the depth of the beam is large compared with the width, D » B, we may 
assume that at points sufficiently distant from the short side x = ± D, the 
surface is cylindrical. As shown in Fig. 6.4(d), this implies that r/J = r/J(y). Then 
Eq. (6.46) reduces to 

v Py 
r/J,yy = 1 + v J' 

which has a solution of the form 

(6.48) 

(6.49) 

With the membrane condition r/J(O) = 0, see Fig. 6.4(b), C2 = 0, and with 
r/J(±B) = 0, C1 = _B2, so that 

v P 
r/J(y) = 1 + V 6/y3 - B2y); (6.50) 

from which Eq. (6.47a) gives 

P [2 2 V (2 B2) ] 
CTxAx, y) = 21 (D - x ) + 1 + v y - 3" . (6.51) 

Of course, the assumption on r/J gives CTyz = 0. At x = 0, where the stress 
computed by the elementary theory is largest, 

the correction given by the second term of Eq. (6.51) is small. 
The other extreme is when the width of the beam is large compared to the 

depth, B» D. Then, at points sufficiently distant from the short side y = ±B, 
the function r/J, representing the deflection of the membrane, is assumed to be 
linear in y as indicated in Fig. 6.4(e). Thus, Eq. (6.46) reduces to 
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v Py 
,p,xx = 1 + v T' (6.52) 

which is solved as 

v Pyx 
,p =----+ C1 

,x 1 + v 1 

v Py 2 
,p(X,y) = 1 + v 21 X + C1X + C2· 

With ,p( ± D, y) = 0, we find 

and C1 = 0 so that 

-v Py 
C2 =---D2 

1+v21 ' 

v Py 2 2 
,p=--(X -D) 

1 + v 21 ' 

and, from Eqs. (6.47), 

= P(D2 - X2)[1 _ -v-J = _1_ P(D2 - X2) 
(Jxz 21 1 + v 1 + v 21 ,(a) 

-v P 
(Jyz = 1 + v yxy. (b) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 

In comparison to elementary theory, (Jxz is reduced by the factor 1/(1 + v), 
and (Jyz is now available. 

For very large values of BID, both (Jxz and (Jyz may greatly exceed the 
(3/2) [P 1(2B x 2D)] peak from elementary theory. At first, this does not seem 
possible from Eqs. (6.56); however, we recall that the underlying assumption 
excluded regions near the short sides y = ± B, where actual maximum stress 
occurs as depicted in Fig. 6.4 (e). Moreover, (Jyz near the corners, where Eq. 
(6.56b) would indicate the largest value occurs, may become numerically 
larger than (Jxz' 

A final approximate solution is to take ,p as a multiple of the boundary 
curve to satisfy the ,p = 0 condition. The form 

(6.57) 

is satisfactory, but the constants C1 and C2 depend on the DIB ratio and must 
be evaluated from a minimum energy criteria [6.1]. 

Although we have not derived an elasticity solution to cover all cases, 
we have shown the limitations of elementary beam theory and have demon­
stated how a typical elasticity problem may be approach. Based on the gen­
eral solution, the error in the maximum stress obtained by the elementary 
formula for a square beam is about 10% [6.1]. 
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6.4 Torsion 

6.4.1 Torsion of Circular Shaft 

The circular shaft of radius B shown in Fig. 6.5(a) is subjected to a twisting 
moment (torque) MAL) at the free-end and is restrained against both dis­
placement and rotation at z = o. 

This solution for this classical problem was presented by Charles A. Cou­
lomb in the late 18th century and falls within the field of strength of mate­
rials. Referring to Figs. 6.5(a) and (b), the Coulomb torsion solution is based 
on the following assumptions with respect to the shearing stress r(x, y). 

I 
--'---~Irz---''--Y 

I 
I 
I 
I Jrnt 
I"':;: 

I 

Mz (L) 

~:--'--t-- Y 

x 

(a) 

1 
L 

1 

dA = r dO dr 

(c) 

,.,..---,M---Y 

x 
(b) 

(d) 

Fig. 6.5. (a) Circular shaft in torsion; (b) Coulomb torsion assumptions; (c) polar area 
element; (d) shearing stresses. 
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(1) The shearing stress r acts in a direction perpendicular to the radius vector 
r. 

(2) The shearing stress r is proportional to r = Irl. 
(3) The shearing stress r is proportional to the angle of rotation per unit 

length, which is called the rate of twist rx. 

We see from the differential element on Fig. (6.5a) that the twisting mo­
ment produces a state of pure shear stress, so that the proportionality con­
stant in assumption (3) is the shear modulus G; therefore, assumptions (2) and 
(3) are expressed by 

r = Grxr. (6.58) 

We now consider equilibrium and focus on the polar area element shown 
in Fig. (6.5c): 

M z = fA r x r dA, 

or, using Eq. (6.58) and taking dA = r dr dO, 

in which 

M z = Grx fB f" r x r x r dO dr 
o -" 

= Grx x 2n f: r3 dr 

= GrxJc' 

(6.59) 

(a) (6.60) 

(b) (6.60) 

where Jc is called the polar moment of inertia. Then, we may eliminate Grx 
between Eqs. (6.58) and (6.60a) to get 

(6.61) 

Equation (6.61) permits the evaluation of the shearing stress for a known 
torque and cross section, irrespective of the material and is obviously analo­
gous to Eq. (6.20b) for beam bending. The linear distribution is shown in Fig. 
6.5(d). Also, for a given twisting moment, the rate of twist may be computed 
from Eq. (6.60a) as 

M z 
rx=~. 

GJc 
(6.62) 

The quantity GJc is called the torsional rigidity and is a useful parameter for 
comparing the relative torsional stiffnesses of various cross sections. 
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With respect to compatibility, since the stresses are linear, the strains will 
also be linear and the St. Venant equations are thus satisfied. Single-valued 
displacements may be evaluated from the kinematic relations, but this is not 
pursued since the angle of twist is of most interest. 

Finally, in assessing the admissibility of the strength-of-materials solution 
as an elasticity solution as well, we examine the boundary conditions. The 
fixed boundary is bypassed through St. Venant's principle while the loaded 
boundary is treated by Eq. (6.59). The cylindrical lateral boundary is of pri­
mary interest. Assumption (1) guarantees that r is tangent to the boundary 
circle and hence has no normal component, so that the boundary must be 
stress-free. 

The satisfaction of the stress-free lateral boundary condition by a shearing 
stress distribution that is, at the same time, perpendicular to the radius vector 
is fortuitous, insofar as the solution for the torsional stresses on a circular 
cross section is concerned. The same can be said for an annular or hollow 
cylindrical section. On the other hand, it is easily shown that for any other 
cross section, it is not possible to have the shearing stress both tangent to 
the boundary and perpendicular to the radius vector. Simply visualize the 
stress distribution shown in Fig. 6.5(d) applied on a rectangular cross section. 
Except at the major and minor axes intersections with the perimeter, x = 

0, y = 0, simultaneous satisfaction of these conditions cannot be attained. 
Moreover, the corner presents an additional complication. This condition 
perplexed early researchers in solid mechanics for some time and was ulti­
mately resolved by a more fundamental approach based on the theory of 
elasticity, as developed in the following section. 

6.4.2 Torsion of Solid Prismatic Shafts 

The generalization of the uniform torsion problem from the circular cross­
section solution is due to none other than St. Venant and is considered 
by Westergaard [6.2] to be the most important single contribution of St. 
Venant to the theory of elasticity. The solution for a noncircular cross sec­
tion, see Fig. 6.6(a), follows the now familiar semi-inverse approach, whereby 
all stresses except the in-plane shearing stresses (1zx and (1zy are taken as zero, 
that is, 

(6.63) 

Considering the equilibrium equations. Eqs. (2.46), in view of Eq. (6.63), 
with 1 = x, 2 = y, 3 = z and no body forces, 

(1xz.z = 0, (a) 

(1yz,z = 0, (b) (6.64) 

(1xz,x + (1yz,y = 0. (c) 
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Fig. 6.6. (a) Prismatic shaft in torsion; (b) rotated axes; (c) stresses on lateral surface; 
(d) angle of rotation. 

Equations (6.64a, b) indicate that the shearing stresses are functions of x and 
yonly. 

The equations are solved by defining a stress function ¢l(x, y) such that 

O'xz(x, y) = ¢l,y, 

O'yAx, y) = -¢l,x' 

The corresponding strains are computed from Eq. (4.29b) as 

1 
exAx, y) = 2G O'xz, 

(a) (6.65) 
(b) 

(a) 

(6.66) 

(b) 
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Then, we enter the compatibility Eqs. (3.59), all which are identically satisfied 
except Eq. (3.59d), 

Bxy•xz + Bxz,xy - Byz,xx = Bxx,yz' 

After eliminating the zero terms Bxy,xz and Bxx,yz, we have 

(Bxz,y - Byz,J,x = o. (6.67) 

If Bxz,y - Byz,x = constant, then Eq. (6.67) will be satisfied. We may express 
this requirement in terms of the stress function rjJ by considering Eqs. (6.65) 
and (6.66), 

rjJ,xx + rjJ,yy = H, (6.68) 

where H is the constant. Equation (6.68) is known as Poisson's equation and 
expresses the compatibility requirements for the torsion problem. 

Since the direction of the shearing stress was a prime factor in motivating 
the more general study of torsion, we consider this aspect in detail. We first 
note that Eqs. (6.65a, b) express the shearing stresses in the x direction (Jzx 

and in the y direction (Jzy in terms of the components of the gradient of rjJ 

VrjJ = [VrjJ]xex + [VrjJ]yey 

= rjJ,xex + rjJ,yey 

in the y and x directions, respectively. That is, 

(Jxz = [VrjJ]y, 

(Jyz = - [VrjJ]x' 

(6.69) 

(a) (6.70) 
(b) 

We next evaluate the shearing stresses for a rotated set of axes x'y', see Fig. 
6.6(b), using the transformation law, Eq. (2.13), 

Expanding these equations gives 

where the direction cosines are 

Therefore, 

x' 
y' 
z' 

x 

cos () 
- sin () 

o 

y 

sin () 
cos () 

o 

z 

o 
o 
1. 

(a) 
(6.71) 

(b) 

(a) 
(6.72) 

(b) 



(Jx'z = (Jxz COS e + (Jyz sin e, 
(Jy'z = - (Jxz sin e + (Jyz cos e. 

Now, substituting Eqs. (6.70) into Eqs. (6.73), we get 

(Jx,z = [V<fo]y cos e - [V<fo]x sin e, 
(Jy'z = -[V<fo]y sin e - [V<fo]x cos e. 
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(a) 
(6.73) 

(b) 

(a) (6.74) 
(b) 

Also, we evaluate the unit vectors in the x' and y' vectors from Fig. 6.6(b) as 

ex' = ex cos e + ey sin e, 
ey' = ey cos e - ex sin e. 

Now, we see that Eqs. (6.74a, b) can be written as 

(Jx,z = [V<fo]y cos e - [V<fo]x sin e 
= V <fo . ey cos e - V r/J . ex sin e 
= Vr/J'ey" 

= [Vr/J]y' 

(Jy'z = - [Vr/J]y sin e - [Vr/J]x cos e 

(a) (6.75) 
(b) 

(a) 

(6.76) 

= -Vr/J·eysine-Vr/J·excose (b) 

= -Vr/J'ex' 

From this exercise, we conclude that the shearing stress in any direction, say 
x' or y', at any point (x, y, z) is given by the component of V r/J at right angles 
to that direction, that is, y' or x'. This proves useful in the discussion that 
follows. 

We are now in a position to examine the boundary conditions. At any 
point on the perimeter, the shearing stress perpendicular to the boundary 
(Jzn must vanish, see Fig. 6.6(c). Only stresses tangent to the boundary are 
permitted. From Eq. (6.76b) with x' = s; y' = n; ex, = s; we find 

(Jzn = -Vr/J's = -[Vr/J]. = -<fo,s = o. (6.77) 

Thus, the stress function r/J must be constant on the boundary. In practice, it 
is usually sufficient to have r/J vanish there. This is readily accomplished by 
selecting r/J to be proportional to the equation of the perimeter of the cross 
section. This is similar to the bending stress function discussed in Section 6.3. 

We now proceed to the evaluation of the stress function in terms of the 
applied torque M z • First, we note that the resultant force on the face is zero. 
Referring to Fig. 6.6(a) and (b), 

(6.78) 
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Substituting Eq. (6.65) for the stresses and dx dy for dA, we have 

L (¢J,yeX - ¢J,Xey) dx dy = 0 (6.79) 

which separates into two scalar equations 

f dx f ¢J ,y d y = 0, 

-f dy f ¢J,x dx = O. 

(a) 

(6.80) 

(b) 

But J ¢J,y dy = ¢J2(X) - ¢Jl(X) and J ¢J,x dx = ¢J4(y) - ¢J3(y), where ¢Jl - ¢J4 are 
values of ¢J(x, y) on the boundary. However, ¢J has been constrained to be 
constant on the boundary, so that the integrals in Eqs. (6.80) are zero, and Eq. 
(6.78) is satisfied. 

Next, we sum moments on the cross section as shown in Fig. 6.6(a). 

L (-(JzxY + (JZYx) dx dy = Mz· (6.81) 

In terms of the stress function, the l.h.s. is 

L (-¢J,yy - ¢J,xx) dx dy = - f dx f y¢J,y dy - f dy f x¢J,x dx, (6.82) 

We integrate by parts the inner terms on the r.h.s. of Eq. (6.82) to get 

f y¢J,y dy = y¢J 1-f ¢J dy 

f x¢J,x dx = x¢J 1-f ¢J dx, 

(a) 

(b) 

(6.83) 

where S indicates evaluation of the expression at end points that lie on the 
boundary. Since ¢J is constant there, the first term of each evaluated integral 
is zero. Therefore, returning to Eq. (6.81) in view of Eqs. (6.82) and (6.83), 

M z = f dx f ¢J dy + f dy f ¢J dx 

= 2 L ¢J dA. (6.84) 

To complete the solution, we consider the displacements. First, we have 
the rotation about the z axis, given by Eq. (3.32) with i = x and j = y, 

(6.85) 

The rate of change along z is 
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Wxy,z = !(UX,yZ - uy,xz)' (6.86) 

Considering the terms on the r.h.s. of Eq. (6.86), we have, from Eqs. (3.15) and 
(4.29b), 

Next, we take a/ay [Eq. (6.87a)] and a/ax [Eq. (6.87b)J to get 

1 

(a) 

(6.87) 

u x •yz = - Uz,xy + G (Jxz,y' (a) 

1 
uy,xz = - Uz,xy + G (Jyz,x' 

(6.88) 

(b) 

Subtracting Eq. (6.88b) from Eq. (6.88a) and substituting into Eq. (6.86) gives 

1 
wxy,z = 2G ((Jxz,y - (JyZ,x) 

1 
= 2G (¢J,yy + ¢J,xx) 

H 

2G 
(6.89) 

from Eqs. (6.65) and (6.68). Then, the rate of twist a is defined in accordance 
with the sense of the stresses in Fig. 6.6(a) as 

(6.90) 

expressed in terms of H which is determined in the course of the solution. 
Finding that the angle of rotation per unit length is constant, we may 

compute the total angle of rotation at any cross section .sI, Fig. (6.6d), as 

Hz 
.sI = az = -2G' 

and the in-plane displacements, shown in Fig. 6.6(d), as 

-uAy, z) =.sIy = ayz, 

uy(x, z) = -.six = axz. 

(6.91) 

(a) (6.92) 
(b) 

The normal displacement U z involves out-of-plane deformations of the cross 
section, called warping, and takes the form [6.1J 

Uz = atjJ(x, y), (6.93) 
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where t/J is a so-called warping function. Rewriting Eqs. (6.87), in view of Eqs. 
(6.92) and (6.93), we have 

(a) 

(6.94) 
O"yz 

0(( - X + t/J ) = -. 
,Y G (b) 

For elementary cases, it is sufficient to integrate the equations individually to 
produce 

1 
t/J = 20(G (O"xzx + O"yzY), (6.95) 

anticipating that uAx, y, 0) = 0 eliminates the extraneous integration func­
tions. Then, 

1 
Uz = 2G (O"xzx + O"yzY)· (6.96) 

We summarize the main steps to obtain this solution. 

(1) The stress function r/J is selected in a form that is constant along the 
perimeter of the cross section to satisfy the boundary conditions. 

(2) The stress function r/J is related to the constant H through Eq. (6.68), 
which expresses compatibility. 

(3) The stress function r/J in terms of H is related to the twisting moment M z 

by Eq. (6.84), which is an expression of overall equilibrium. 
(4) H is then found in terms of M z so that r/J becomes a function of M z . 

(5) The stresses O"xz and O"yz are calculated from Eqs. (6.65). 
(6) The rate of twist 0( is found from Eq. (6.90). 
(7) The total angle of rotation d is given by Eq. (6.91). 
(8) The displacements ux , uy and U z are computed from Eqs. (6.92) and (6.96). 

6.4.3 Torsion of Elliptical Shaft 

As an example of the application of the St. Venant torsion theory, we con­
sider the cross section shown in Fig. 6.7(a). The equation of the boundary is 

so we take 

x2 y2 
-+--1=0 D2 B2 ' 

where C is a constant, to satisfy step (1) of the previous paragraph. 
Next, we calculate 

(6.97) 

(6.98) 
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r;;:---t--y 

x 
(a) x (b) 

(c ) 

Fig. 6.7. (a) Elliptical cross section; (b) shearing stresses; (c) contours for normal dis­
placement (after Timoshenko and Goodier, Theory of Elasticity, McGraw-Hill, 
1951). Reprinted with permission. 

H = 2C(~2 + ~2). 
From Eq. (6.68) as suggested in step (2), solve for 

HD2B2 
C = 2(D2 + B2)' 

from which 

HD2 B2 (X2 y2 ) 
¢J = 2(D2 + B2) D2 + B2 - 1 . 

(6.99) 

(6.100) 

(6.101) 

Proceeding to step (3), we substitute Eq. (6.101) into Eq. (6.84), which be-
comes 

f HD2B2 (X2 y2 ) 
Mz = 2 A 2(D2 + B2) D2 + B2 - 1 dx dy 

HD2B2 ( 1 1 ) 
= D2 + B2 D2 I yy + B2 I xx - A , (6.102) 

in which the moments of inertia and the area for the ellipse are given by 

nBD3 

Iyy = -4-' (a) 

nDB3 

I xx =-4-' 

A = nDB. 

(b) (6.103) 

(c) 
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Then, following step (4), we substitute Eqs. (6.103) into Eq. (6.102) and sim­
plify to 

(6.104) 

so that 

(6.105) 

and, from Eq. (6.101), 

A. __ -+--1 M -1 (X2 y2 ) 
If' - nDB D2 B2 z' 

(6.106) 

Now, we evaluate the stresses as suggested in step (5). Equations (6.65) 
yield 

(a) 

2x 
(Jyz = - <P,x = nD3 B Mz • 

(6.107) 

(b) 

Clearly, the maximum values occur at the boundaries and, if B > D, the 
absolute maximum is 

(6.108) 

that is, at the extremity of the minor diameter. This is perhaps the most 
startling difference from the Coulomb approach where r is proportional to r. 
It is also illustrative to consider a ray, say of in Fig. 6.7(a), for which x/y is 
constant. Thus, the ratio of shearing stresses 

(Jyz D2 x 
- = - - - = constant. 
(Jxz B2 Y 

(6.109) 

This indicates that the direction of the resultant shear must likewise be con­
stant. From the boundary requirement, this direction is tangent to the perim­
eter at F. This is illustrated in Fig. 6.7(b) for several rays. 

Next, as step (6), the rate of twist is calculated from Eqs. (6.90) and (6.105) 
as 

(a) 

where (6.110) 

(b) 
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GJe is the torsional rigidity for the ellipse. The total angle of rotation .91, step 
(7), is evaluated at any point along the shaft as z times oc, Eq. (6.91). 

Finally, the displacements may be found as indicated in step (8). From Eqs. 
(6.92) and (6.110) 

(a) 

(6.111) 
Mz 

u =-xz. 
Y GJe 

(b) 

Proceeding to the normal displacement and using Eqs. (6.96) and (6.107), we 
find 

(6.112) 

Of interest is the alternating algebraic sign of Uz in each quadrant as shown 
in Fig. 6.7(c), illustrating the departure from the plane cross section (warping) 
and the hyperbolic contours of Uz [6.1]. Also, we observe that a classical 
"fixed" or "built-in" support which is intended to develop an applied M z may 
not permit the Uz displacements to occur. If so, a self-equilibrating set of axial 
stresses would develop near the support, negating Eq. (6.63). This is of com­
paratively minor importance in solid shafts. 

Torsion of rectangular bars is of practical interest but is considerably more 
complicated [6.3]. An approximate energy-based solution is presented in 
Section 10.7.3. A distinguishing feature carried over from the elliptical cross­
section solution to the rectangular is that the maximum shearing stress oc­
curs at the center of the short side [6.1]. A lesser maximum occurs at the 
center of the long side, while the corner paradox is resolved by letting the 
shearing stresses approach zero, as is easily visualized using the membrane 
analogy discussed in the next section. 

The torsional capacity of thin-walled members, comparatively small as 
previously argued with the membrane analogy, may be considerably en­
hanced by including the non-uniform torsion associated with the warping 
[6.4]. However, this discussion is beyond our present scope. 

6.4.4 Membrane Analogy 

Since the governing equation for the stress function ,p, Eq. (6.68), is the same 
as that describing the deflection Uz of a uniformly loaded membrane, Eq. 
(5.26), we may derive an analogy to assist our understanding and interpreta­
tion of the St. Venant torsion problem. This analogy is attributed to Ludwig 
Prandl [6.1] and was extended into the inelastic range by Arpad Nadai (6.1]. 

We note from Eq. (6.91) that the r.h.s. of Eq. (6.68) is 

H = - 2Goc (6.113) 
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so that replacing the quantity - q/T in Eq. (5.26) by - 2Ga allows us to 
establish some important characteristics of the stress distribution on a solid 
bar under torsion. 

(1) From Eq. (6.84), the total torque is proportional to the volume between 
the membrane, which follows the stress function, and the cross section of the 
bar. 

(2) From Eq. (6.65), the shearing stresses are proportional to the slope of 
the membrane at any point. 

To compare the relative torsional capacities of two cross sections, we need 
only visualize a membrane with the same maximum slope (that is, shearing 
stress) spanning both. It is apparent that a square or circular cross section 
has considerably more capacity than, say, a long narrow shape of the same 
area. Also, for a given cross-sectional area, St. Venant showed that the circu­
lar cross section is most efficient [6.1]. 

To illustrate a quantitative application of the membrane analogy, we con­
sider a narrow rectangular bar as shown in Fig. 6.8(a). For the moment we 
neglect the effects of the short side boundaries and assume that the surface of 
the membrane is a parabolic cylinder as shown in Fig. 6.8(b). 

The deflection of the membrane Uz is written in terms of the maximum 
deflection at the center, (j = uAO, 0), by the well-known property of the offsets 
to parabolas, 

(6.114) 

so that 

(6.115) 

-lcr-

G I- c ·1 Cit 

E t~t~r X 

b X 

[ 
,,~/ 

(aJ (6) 
Z 

Y 

Fig.6.S. Membrane stretched over narrow rectangular cross section. From Timoshenko 
and Goodier, Theory of Elasticity, © 1951. Reproduced with permission of McGraw­
Hill. 
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The maximum slope is at the intersection of the x axis with the boundary 
along the long side (± e/2) and is evaluated from 

(6. 116a) 

as 

uz,x(±e/2, 0) = 4b/e (6. 116b) 

retaining only the positive value because of symmetry. 
By considering the statical moment about x = 0 in Fig. 6.8(b), we can write 

the equilibrium equation for a unit width of the parabolic cylinder, essentially 
the equation of a uniformly loaded string 

-q~G) + q~(i) + Tb = 0 

or 

b = qe2/(8 T). (6.117) 

Therefore, Eq. (6.116b) becomes 

(uz,x)max = qe/(2 T). (6.118) 

Now we compute the torsion in the bar by evaluating the volume under 
the membrane 

v = iebb 

= qbe3/(12T). 

Using the analogy and replacing q/T by 2Grt., we have 

V = ibe3 Grt.. 

Inasmuch as M z is twice the volume, as per Eq. (6.84), 

Mz = ibe3 Grt. 

or the rate of twist rt. is given by 

rt. = Mz/(ibe 3G). 

(6.119) 

(6.120) 

(6.121) 

(6.122) 

Turning to the maximum stress in the bar, Fig. 6.8(a), we have from Eqs. 
(6.65) and (6.118), 

!max = I(O'yz)lmax 

= ItP.xImax 

= qe/(2T) 

= eGrt. 

= Mt /(ibe 2 ). (6.123) 
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a 

1 c 

l--a----l1 

(a) (b) (e) 

Fig. 6.9. Cross sections of thin-walled members. From Timoshenko and Goodier, 
Theory of Elasticity, © 1951. Reproduced with permission of McGraw-Hill. 

The quantities (!bc 3 ) and (!bc 2 ) can be interpreted as section properties of 
rectangular bars related to torsional stiffnesses, much as moments of inertia 
relate to bending stiffness. 

From Eq. (6.116a), the shearing stresses are distributed linearly across the 
width of the cross section. It may be shown that the shearing stresses are 
directed along the contours of the deflected membrane, [6.1] depicted in Fig. 
6.8(a). Also, the shearing stresses acting near the short side, (Jxz' are not 
calculated by this simplification. They are smaller in magnitude but further 
separated than the (Jyz stresses and thus contribute equally to the total resis­
tance provided by the cross section to M z • 

Equations (6.122) and (6.123) have great generality. If a thin-walled mem­
ber, such as those shown in Fig. 6.9, is composed of several long rectangular 
pieces, each with c = Ci and b = bi' then we can imagine a parabolic cylindri­
cal membrane spanning each segment independently so that 

(6.124) 

and 

(6.125) 

For example, considering the flanges of the H-section shown in Fig. 6.9(c), 

(6.126) 

Exercises 

6.1 Consider the solution for the bending of a cantilever, described in Sec. 6.2 and 
Sec. 6.3, and sketch a lateral and a top view of the deflected beam using Fig. 6.2 
as a reference. 

6.2 Investigate the Coulomb (simple) torsion solution, as developed for the circular 
cross section and for a rectangular cross section. In what respect is it deficient 
insofar as the theory of elasticity is concerned? 
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6.3 Two bars made of the same material and having the same length are subjected to 
the same torque (from [6.5]). One bar has a square cross section of side a and the 
other bar has a circular cross section of diameter a. Which bar has the greater rate 
of twist? 

6.4 The torsion solution for a cylinder of equilateral triangular cross section is de­
rivable from the stress function [6.6] 

¢> = C(x - J3y - th)(x + J3y - th)(x + lh). 

Derive expressions for the maximum and minimum shearing stresses and the rate 
of twist for a torque M z • 

y 

x 

Problem 6.4. (From Ugural and Fenster, Advanced Strength and Applied Elasticity, 
Elsevier, 1975.) Reprinted with permission. 

6.5 The torsional rigidity of a circle, an ellipse, and an equilateral triangle are denoted 
by GJe, GJ., and GJ" respectively. If the cross-sectional areas ofthese sections are 
equal, demonstrate that the following relationships exist (from [6.6]): 

2ab 2nJ3 
J. = a2 + b2 Je, J, = 15Je, 

where a and b are the semi-axes of the ellipse in the x and y directions. 
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CHAPTER 7 

Two-Dimensional Elasticity 

7.1 Introduction 

We briefly mentioned in Section 2.6.2 that an elasticity problem may be 
reduced from three- to two-dimensions if there is no traction on one plane 
passing through the body. This state is known as plane stress since all non­
zero stresses are confined to planes parallel to the traction-free plane. 

Many physical problems are reducible to two-dimensions, which facilitates 
the eventual solution. In this regard, we should mention the important engi­
neering theories of plate bending and thin shells. These theories may be 
regarded as extensions of the elementary theory of beam bending in that 
the concept of a reference datum (that is, a middle plane or middle surface) 
is used to reduce the model to two-dimensions. The description of stresses, 
strains and displacements for points lying away from this datum are related 
to the corresponding quantities on the datum through maintenance of plane 
sections. Also, deformations in the direction normal to the reference datum 
are neglected. Such problems are not addressed in this book; this is a choice 
made primarily to reduce the scope of this introductory treatment. However, 
the epic treastise of August E. H. Love [7.1] on the theory of elasticity in­
cludes plate and shell theories, as well as the theory of rods, beam bending, 
stability and many other topics. 1 

Since we have identified problems not strictly within the two-dimensional 
theory of elasticity, a brief remark on the class of problems that are is in 
order. We have mentioned plane stress, which is obviously a possibility for 
bodies with one dimension much smaller than the other two, such as a thin 
sheet or diaphram loaded in the plane perpendicular to the small dimension. 
A less obvious case is that of a body in which one dimension is much greater 
than the other two, such as a long pressurized pipe, or perhaps a dam be­
tween massive end walls. This is known as plane strain. 

1 This prompted a favorite saying among graduate students and professors in an 
earlier era, that "All you really need is Love." 

107 
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Our development is confined to the realm of isotropic elasticity but is 
easily extended to more complex material laws. 

7.2 Plane Stress Equations 

For plane stress with the z-axis stress-free, we have 

(7.1) 

Also, we assume that the remaining stresses do not vary with z, but are only 
functions of x and y. This reduces the equilibrium equations Eqs. (2.46), 
with 1 = x, 2 = y, 3 = z, to 

(Jxx.x + (Jxy.y + Ix = 0, (a) 

(Jxy.x + (Jyy,y + h = 0, (b) (7.2) 

Iz = 0. (c) 

For some linear problems, it is convenient to specify the body force vector 
in the form 

f = -VV= - ~iei' (7.3) 

where V is a potential function. This corresponds to a body force field that 
is conservative (elaborated in Sec. 10.6.2.). Introducing Eq. (7.3) into Eq. (7.2), 

(Jxx,x + (Jxy,y - ~x = 0, 

(Jxy,x + (Jyy,y - ~y = 0, 

~z = O. 

(a) 

(b) (7.4) 

(c) 

We now consolidate the equilibrium equations using a technique which we 
introduced in the study of bending in Section 6.3.2 and of torsion in Section 
6.4.2. The stresses are written as 

(Jxx = V + f/J,yy, (a) 

(Jyy = V + f/J,xx, (b) (7.5) 

(Jxy = -f/J,XY' (c) 

in which f/J is a stress function named after the astronomer George Airy. 
Substitution of Eqs. (7.5) into Eqs. (7.4a, b) satisfies these equations identi­
cally. 

We also develop the constitutive equations in terms of f/J. First, the general­
ized Hooke's law Eq. (4.29b) for the plane stress case becomes 

1 
8xx = E((Jxx - v(Jyy), (a) 

(b) 
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V 
8zz = -IE(O"XX + O"yy), (c) 

8xy = 2G O"xy, (d) 

Exz = Eyz = O. (e) (7.6) 

From Eqs. (7.6) we see that the strains do not depend on z, only on x and y. 
However, from Eq. (7.6c), we find a nonzero strain in the z direction, indi­
cating that a state of plane stress does not imply a corresponding state of 
plane strain. 

It is also convenient to write the stresses in terms of the strains by solving 
Eqs. (7.6a) and (7.6b) for O"xx and O"yy and Eq. (7.6d) for O"xy: 

E 
O"xx = (1 _ v 2 ) (Exx + VEyy) (a) (7.7) 

E 
O"yy = (1 _ v 2 ) (Eyy + VExx) 

Introducing Eqs. (7.5) into Eqs. (7.6) produces 

1 
8xx = IE [(t/I,yy - vt/I,xJ + (1 - v) V], 

1 
Eyy = IE [(t/I,xx - vt/l,yy) + (1 - v) V], 

V 
8zz = -IE [(t/I,xx + t/I,yy) + 2V], 

1 
Exy = - 2G t/I,XY 

(b) (7.7) 

(c) (7.7) 

(a) 

(b) 

(c) (7.8) 

(d) 

(e) 

Now, we establish the compatibility equations in terms of the stress func­
tion. We consider Eqs. (3.59). First, Eq. (3.59a), with substitution of the 
strains from Eqs. (7.8), becomes 

1 
IE [t/I,yyyy - vt/l,XXYy + (1 - v)~yy + t/I,xxxx - vt/l,XXYy + (1 - v)~xx] 

With EjG = 2(1 + v) from Eqs. (4.24a, e), Eq. (7.9a) reduces to 

V4 t/1 = -(1 - v)V2 V. 

(a) (7.9) 

(b) (7.9) 
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where the operator V4( ) is the two-dimensional contraction of the operator 
defined in Eq. (1.10c), i.e., 

V4( ) = ( ),xxxx + 2( ),xxyy + ( ),yyyy' (c) (7.9) 

Equations (3.59d, e) are identically satisfied, while the others Eqs. (3.59b, c, 
f) become 

Gzz,yy = f/l,XXYy + f/l,yyyy + 2~yy = 0, 

Gzz,xx = f/lxxxx + f/lyyXX + 2~xx = 0, 

Gzz,xy = f/l,XXXY + f/l,yyyX + 2~xy = 0. 

(a) 

(b) (7.10) 

(c) 

Elementary plane stress theory does not consider Eqs. (7.10), but only Eq. 
(7.9b). In a sense then this is an approximation, but Eqs. (7.10) only contain 
terms related to Gzz which, although not zero, is but a "Poisson" effect as 
shown by Eq. (7.8c). Especially for thin members, the error should be negligi­
ble. Thus, Eqs. (7.5) and the single compatibility equation Eq. (7.9b) consti­
tute the governing equations for isotropic plane stress theory. 

An extension of this theory, in which (Jzz is not equal to 0, as stated in 
Eq. (7.1), but is set to a known or assumed value, is known as generalized 
plane stress. 

7.3 Plane Strain Equations 

For plane strain with the z-axis strain-free, we have 

(7.11 ) 

As in the case of plane stress, all tractions and body forces are functions 
of x and y only. 

To enforce these conditions we use the generalized Hooke's law Eq. 
(4.29b), with 1 = x, 2 = y, 3 = z, 

1 
Gxx = E [(Jxx - v((Jyy + (Jzz)], (a) 

(b) 

(c) (7.12) 

(d) 

(e) 

Equation (7.12c) indicates that 
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(izz = V«(ixx + (iyy), (7.13) 

so that the strain-free plane is not stress-free, in general. The equilibrium 
equations Eqs. (2.46) are almost identical to the plane stress case Eqs. (7.2), 
except for Eq. (7.2c) where (izz.z remains; while fz = 0, since f = f(x, y). With 
Eq. (7.3) in force, we have 

(ixx,x + (ixy,y - "-:x = 0, 

(ixy,x + (iyy,y - "-:y = 0, 

(izz = constant. 

(a) 

(b) (7.14) 

(c) 

Turning to the compatibility equations Eqs. (3.59), all are identically satis­
fied except for Eq. (3.59a), 

(7.15) 

This is the same equation from which Eq. (7.9a) was derived. Thus, we again 
introduce the Airy stress function Eq. (7.5), along with Eq. (7.13), into Eqs. 
(7.12) which become 

1 
Exx = E [(1 - v2 )rfJ,yy - v(1 + v)rfJ,xx + [1 - v(1 + 2v)] V], (a) 

1 
Eyy = E [(1 - v2 )rfJ,xx - v(1 + v)rfJ,yy + [1 - v(1 + 2v)] V], (b) (7.16) 

1 
Exy = - 2G rfJ,XY' (c) 

Then, we write Eq. (7.15), using Eqs. (7.16), as 

1 2 ( E [(1 - v )rfJ,yyyy - v(1 + v)rfJ,XXYy + [1 - v 1 + 2v)]"-:yy 

+ (1 - v2 )rfJ,xxxx - v(1 + v)rfJ,XXYy + [1 - v(1 + 2v)] ..-:xx] 

(a) (7.17) 

which reduces to 

(b) (7.17) 

which is remarkably close to Eq. (7.9b). In fact, for no body forces, the two 
equations are identical. The resulting homogeneous compatibility equation 

(7.18) 

is known as the biharmonic equation. 
We see that plane strain is exact, insofar as satisfying the St. Venant com-
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patibility equations, while plane stress violates some of the equations. For 
applications with no body forces, the solution for either case involves the 
same equations, Eqs. (7.5) and Eq. (7.18); while if body forces are present, 
a slight alteration of the particular solution for the biharmonic equation 
is needed between the two theories. 

The solution to the biharmonic problem in Cartesian coordinates is most 
directly written in terms of polynomials having the general form 

(7.19) 
m n 

Obviously the lower-order terms, that is, m + n ~ 3, each satisfy the equa­
tion identically. However, the linear terms Coo + C10x + C01Y do not con­
tribute to stresses. The general strategy is to try and construct solutions 
from the lower-order terms that satisfy the biharmonic equation individually 
and the boundary conditions collectively. For more complicated problems, 
it is necessary to use higher-order terms, that is, m + n > 3, and achieve 
satisfaction of the equation by a combination of the individual terms. Finally, 
in the nature of general remarks, it is usually required to employ St. Venant's 
principle to satisfy some of the boundary conditions. 

We present some specific applications of this approach in Section 7.9. 
However, it is instructive to consider the plane stress problem on a circular 
domain first, both from the standpoints of mathematical simplicity and prac­
tical importance. 

7.4 Cylindrical Coordinates 

7.4.1 Geometric Relations 

There are many problems in two-dimensional elasticity that are most conve­
niently treated in cylindrical coordinates (which degenerate to polar coordi­
nates). Therefore, we develop the appropriate transformations between 
Cartesian and polar coordinates. 

Referring to Fig. 7.1, we have the relations [7.2] between x, y and r, () as 

r---+---V 

\ /uoo 

x __ ~::r 
Urr Fig. 7.1. Polar coordinates. 
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x = rcosO, 

y = r sin 0, 

r = (x2 + y2)1/2, 

O -1 Y = tan -. 
x 

(a) 

(b) 
(7.20) 

(c) 

(d) 

Also, the derivatives of the polar coordinates with respect to the Cartesian 
coordinates are of interest 

(a) 

y . 0 r = - = SIn 
,Y r ' (b) 

o = 1 (_~) = _l'.- = _sinO 
,x 1 + (Y/X)2 x 2 r2 r' 

(7.21) 

(c) 

o _ 1 (1) _ x _ cos 0 
,Y - 1 + (Y/X)2 X - r2 - -r-' (d) 

Using Eqs. (7.21), we may write the differentiation formulas for functions 
specified in terms of rand 0 as 

o( ) _ o( ) o( ) 0 
ax - Trr,x + 00 ,x 

= o( ) cos 0 + o( ) (- sin 0) 
or 00 r ' 

~ = o( ) r + o( ) 0 
oy or ,Y 00 ,Y 

(a) 

(7.22) 

= o( ) sin 0 + o( ) (cos 0). 
or 00 r 

(b) 

7.4.2 Transformation of Stress Tensor and Compatibility Equation 

The stress components are transformed using Eq. (2.13) to become 

The direction cosines are 

(a) 

(b) (7.23) 

(c) 
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x y z 

r cose sin e 0 
e -sine cose 0 
z 0 0 1 

and Eqs. (7.23) and (7.24) give 

(Jrr = (Jxx cos2 e + (Jyy sin2 e + 2(Jxy sin e cos e, 

(JOO = (Jxx sin2 e + (Jyy cos2 e - 2(Jxy sin e cos e, 

(JrO = - (Jxx sin e cos e + (Jyy sin e cos e 

+ (JxiCOS2 e - sin2 e), 

(a) 

(b) 

(c) 

(7.24) 

(7.25) 

which should be familiar from the Mohr's circle concept of elementary 
strength of materials [7.3]. 

We now introduce the Airy stress function Eq. (7.5) into Eq. (7.25), drop­
ping the body forces terms, to produce 

(Jrr = f1J. yy cos2 e + f1J.xx sin2 e - 2f1J,xy sin e cos e, 

(JOO = f1J,yy sin2 e + f1J,xx cos2 e + 2f1J,xy sin e cos e 

(JrO = - f1J,yy sin e cos e + f1J,xx sin e cos e 

- f1J,Xy(cos2e - sin2 e). 

(a) 

(b) 

(c) 

(7.26) 

The next step is to write Eqs. (7.26) entirely in terms of cylindrical coordi­
nates. This involves repeated application of Eq. (7.22), for example, 

fIJ = ~ (OfIJ) = ~ [OfIJ cos e _ ofIJ sin eJ 
,xx ox ox ox or oe r 

Il [02fIJ II o2fIJ sin eJ ofIJ [0 sin2 eJ = coso -coso - ---- + - +--
or2 oroe r or r 

_ sin e [02fIJ cos e _ o2fIJ sin eJ 
r oroe oe2 r 

ofIJ [ sin e II cos e sin eJ 
- oe -7cOS O - r2 

_ '" 2 II _ '" sin e cos e 2'" sin e cos e 
- 'l'rrcos 0 2'1' rO + 'I' 0----, 'r 'r 

'" sin2 e '" sin2 e + 'l'r-- + '1'00--2-' 
'r 'r 

(7.27) 

Continuing with f1J,yy and f1J,zz and back-substituting into Eqs. (7.25) eventu­
ally produces the usable relations [7.4] 
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(a) 

(b) (7.28) 

(c) 

The (invariant) biharmonic equation in cylindrical coordinates is written 
by using the appropriate operator. Thus, from Eq. 7.18, the expression 

(7.29) 

holds, where 

211 
V ¢J = ¢Jrr + -¢Jr + -2¢J99 , r' r' 

(a) (7.30) 

and 

which constitute the transformation of Eqs. (1-10b,c) into cylindrical 
coordinates. 

7.4.3 Axisymmetric Stresses and Displacements 

Many problems in the circular domain are axisymmetric, depending only on 
r and not on e. In these cases, we may use a simplified form of the preceding 
equations 

2 1 1 
V ¢J = ¢J + -¢J = -[r(¢J) ] ,rr r ,r r " .r 

= ~[r(~[r¢J ] ) ] r r ,r ,r 
,r ,r 

=0. 

(a) 

(b) 

(c) 

(d) (7.31) 

(e) 

The compact forms for V2¢J and V4¢J are easily verified by expansion of the 
terms and are readily integrated as follows. 
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~ [r G [r~.rl)Jr = 0 

[ 1 =0 

[ ] = C1 

( t 
( ) 

[ 

r 

[ ] = C1 (r; In r - r;) + c/; + C3 

~.r 

= C~r2lnr + C2r2 + C3 

= C~rlnr + C2r + C3 

r 

or, redefining the constants, 

~ = C1 r2lnr + C2r2 + C3 lnr + C4 • (7.32) 

The corresponding stresses are found by substituting Eq. (7.32) into Eqs. 
(7.31a-c) 

(a) 

(b) (7.33) 

(c) 

The transformation into cylindrical coordinates is sufficient to solve some 
representative stress analysis problems that are of great practical interest. 
However, in order to derive the corresponding displacements, we would need 
to have the kinematic law Eq. (3.14) also transformed into cylindrical coordi­
nates. This is rather involved, but is carried out neatly by Little [7.4] using 
dyadic notation. Here, we simply record the results without derivation 

(a) 
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Ur 1 
eoo = - + -Uo 0 

r r ' 
(b) 

Ur = ~{Clr[(1 - v)(2lnr - 1) - 2v] + 2C2 (1 - v)r 

(1 + v). } - C3~r~ + C4 sm() + Cs cos () (c) 

1 . 
Uo = E[4C1 r() + C4 cos() - Cssm() + C6 r] (d) (7.34) 

in which C4 - C6 multiply rigid body terms. Notice that Eqs. (7.34) contain 
()-dependent terms, although they are derived from the axisymmetric stress 
field Eqs. (7.33). This is a so-called "quasi-axisymmetric" case which occa­
sionally proves to be useful, as we will see later. 

7.5 Thick-Walled Cylinder or Disk 

We examine a thick-walled cylinder constrained along the normal axis, plane 
strain, or its counterpart-a thin disk with a circular hole in the center, 
plane stress. 

The cylinder is subjected to external and internal pressures shown in Fig. 
7.2(a), clearly an axisymmetrical loading case that should exhibit only an 
axisymmetric response. Thus, Eqs. (7.33) are applicable. 

We consider Eqs. (7.33a, b). There are two obvious boundary conditions 
to evaluate the three constants 

O"rr(Ro) = - Po, (a) 
(7.35) 

O"rr(RJ = - Pi' (b) 

which give 
C3 (c) -Pi = C1 (1 + 2lnRJ + 2C2 + 2' 
Ri 

(7.35) 
C3 (d) -Po = C1 (1 + 2lnRo) + 2C2 + 2' 
Ro 

To obtain a third condition, we must resort to the displacement expressions 
Eqs. (7.34). The expression for Uo is multi-valued in () and, since uo(O) = 

uo(2n) = uo(4n), etc., we have C1 = O. 
Then, we solve Eqs. (7.35) to get 

PiRr - PoR6 
C2 = 2(R6 - Rr) , 

C _ RrR6(po - pJ 
3 - (R6 - Rf) , 

(a) 

(7.36) 

(b) 
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Internal 
Pressure 

(a) 

External 
Pressure 

~=3 
R; 

(b) 

Fig. 7.2. (a) Thick-walled cylinder under external and internal pressure; (b) stress 
distribution. 

which, when substituted into Eqs. (7.33a, b), give the stress distributions 

p;R; - PoR6 R; R6(Po - p;) 
(Jrr = R6 - R; + r2(R6 - R?) , 

R; R6(Po - p;) 
r2(R6 - R?) , 

and, from Eqs. (7.13) for the constrained (plane strain) case, 

(a) 

(7.37) 

(b) 
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azz = v(axx + ayy ) = v(arr + (88) 

2V(PiR f - PoR6) 
R6 - Rf 

(c) (7.37) 

This solution was presented by G. Lame [7.2] in the middle 19th century. 
The complete solution contains the displacements as well. These may be 

routinely evaluated from Eqs. (7.34c, d) and are given explicitly by Timo­
shenko and Goodier [7.2]. 

We may also obtain the solution for the case of pressure within a small 
hole in an infinite plane, a two-dimensional static representation of an explo­
sion. We divide the numerator and the denominator of all terms in Eqs. (7.37) 
by R6, take Po = 0 and let Ro --> 00. This leaves only the second terms of Eqs. 
(7.37a, b), simplified to 

(a) 

(7.38) 

(b) 

The physical behavior of a thick-walled cylinder is easiest to appreciate 
by considering the cases of internal pressure and external pressure sepa­
rately. Results for these two cases and Ro/Ri = 3 are shown through the 
wall thickness on Fig. 7.2(b). For comparison, the nominal circumferential 
stress from the simple formula of the strength of materials a88 = pR/t; where 
R = Ro or Ri for Po or Pi' respectively, and t = Ro - Ri; is shown as (a88 )av' 
Obviously, the latter formula greatly underestimates the maximum circum­
ferential stress that occurs at the inside wall and also does not recognize the 
radial stress. 

The plane stress counterpart of this solution is a thin disk under radial 
loading Po and Pi' In this case, instead of Eq. (7.37c), we would have from 
Eq. (7.6c) 

2v (PoR6 - piRf) 

E R6 - Rf 
(7.39) 

Another variant to the solution is the case of a thick-walled pipe with 
closed ends. This is neither plane strain nor plane stress, but can be viewed 
as a superposition of the two-dimensional solution in the cross section, and 
an axial stress that is uniformly distributed and maintains overall equilib­
rium in the z direction. The net force is 

(a) (7.40) 

and 
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Fz piRf - PoR6 
(Jzz = n(R6 - Rf) = R6 - Rf . (b) (7.40) 

The in-plane strains should account for (Jzz (Eqs. 7.l2a, b). 

7.6 Sheet with Small Circular Hole 

We consider a sheet of unit thickness under uniaxial uniform tension 
Tx = T.ex with a small circular hole of radius A in the interior, as shown in 
Fig. 7.3(a). Without the hole, the stress would be uniform 

(a) (7.41) 
(b) 

This distribution should be altered only in the vicinity of the hole, with the 
stresses maintaining the uniform values in the remainder of the domain by St. 
Venant's principle. Based on this reasoning, it is convenient to construct a 
hypothetical circle with a radius equal to the sheet width as shown on the 
figure, thus facilitating a solution in polar coordinates. We use Eqs. (7.25) to 
transform the uniform stress state at r = B 

2B T. B (Jrr(B, B) = Tx cos = "2 (1 + cos 2 ), 

(Joo(B, B) = Tx sin2 B = ~x (1 + cos 2B), 

(Jro(B, B) = - Tx sin B cos B = - ~x sin 2B. 

(a) 

(b) (7.42) 

(c) 

The stresses along the circular boundary at r = B can be separated into two 
parts, as shown in Figs. 7.3(b) and (c). On Fig. 7.3(b), we have the axisym­
metric stress state 

(J~J)(B, B) = o. 

(a) 

(7.43) 
(b) 

Of course, (Joo does not act on the boundary. On Fig. 7.3(c), we have a stress 
state dependent on B in the form 

(Jr<?-)(B, B) = ; cos 2B, (a) 

(7.44) 

(b) 

The advantage to the separation is that we may use the solution for a 
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Fig. 7.3. (a) Sheet with small hole under tension; (b) axisymmetric state of stress; (c) 
8-dependent state of stress. 
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thin-disk under axisymmetrical radial load for the first part, Eqs. 7.37(a, b). 
With Ri = A, Ro = B, Pi = 0 and Po = - Tx/2 (since it was originally shown 
as (+) inward in Fig. 7.2), we have 

(1) _ Tx B2 Tx A2B2 
(Jrr "2 B2 _ A2 -"2 B2 _ A2 r2' (a) 

(1) _ Tx B2 Tx A2B2 1 
(Joe "2 B2 _ A 2 + "2 B2 _ A 2 r2' 

(7.45) 

(b) 

Thus, we need only focus on the second part. 
We must consider the general form of the biharmonic equation Eq. (7.30b). 

Recognizing the periodicity of the boundary conditions Eq. (7.44), we assume 
a solution in the separated form 

¢J = F(r) cos 28. (7.46) 

If we substitute into Eq. (7.30b), we get an ordinary differential equation 

[::2 +~:r + r12a:2J[COS28(F.rr+~F.r- ~F)J=O, (a) (7.47) 

which ultimately expands to [7.2] 

2 9 9 
F rrrr + - F rrr - -2 F rr + -3 F r = O. . r' r' r' 

(b) (7.47) 

The solution to Eq. (7.47b) may be verified by back-substitution to be 

Then, 

( 
2 4 1) ¢J= C1 +C2r +C3 r +C4r2 cos 28. 

This expression for ¢J is inserted into Eqs. (7.28) to obtain 

(J~;) = - (4C1 :2 + 2C2 + 6C4 :4) cos 28, 

(J~~) = (2C2 + 12C3 r2 + 6C4r~)COS28, 

(2) (1 2 1). {) (JrB = - 2C1 r2 + 2C2 + 6C3 r - 6C4 r4 sm2u. 

(7.48) 

(7.49) 

(a) 

(b) (7.50) 

(c) 

The appropriate boundary conditions to evaluate the constants are Eqs. 
(7.44) and the stress-free conditions at the hole 

(J~;)(A, 8) = 0 

(J~i)(A, 8) = 0, 
(7.51) 



7.6 Sheet with Small Circular Hole 123 

which leads to 

4 6 
- A2 -2 ° - A4 

° 
2 6 C1 

° A2 2 6A2 - A4 C2 T,; (7.52) 
4 6 C3 2 

-B2 -2 ° B4 C4 Tx 
2 

6B2 
6 2 

- B2 2 - B4 

Equation (7.52) may be simplified for the case where the hole is small 
compared to the width of the sheet. We first multiply both sides of the fourth 
equation by (AIB)2 and then let AlB --+ 0, which gives C3 = 0. Next, we multi­
ply both sides of the third equation by A 2 , let AlB --+ 0, and get C2 = - Tx/4. 
Then, we have the first and second equations 

4 Tx 6 
- A2 C1 + 2 - A4 C4 = ° (a) 

2 Tx 6 
--C ----C =0 A2 1 2 A4 4 

(7.53) 

(b) 

(a) 

(Jaa = - - + - - T. cos 28 (2) (1 3 A4) 
uv 2 2 r4 x , 

(b) (7.54) 

(c) 

We may re-evaluate Eqs. (7.45) by dividing the numerator and denomina­
tor of each term by B2, letting AlB --+ 0, and then adding the results to Eq. 
(7.54) to produce, finally, the total solution 

(J,,(r,8) = i (1 -::) + ~x (1 - 4 :: + 3 ::) cos 28, (a) 

(b) (7.55) 

(c) 

Most interesting is to consider the maximum stress that occurs at r = A 
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(7.56) 

which is largest when () = n/2 or 3n/2, that is, at the sides of the hole where 
the tangent vector is parallel to the direction of the applied Tx , 

(O"OO)max = 0"00 ( A'~) = O"xAO,A) = 3Tx, (a) (7.57) 

At () = 0 or n, the sides where the tangent vector is perpendicular to Tx , we 
find 

(b) (7.57) 

The ratio of the maximum to the nominal stress is called the stress concen­
tration factor K. In this case, K = 3. By superposition, it is easy to see that a 
uniform biaxial tension would produce (O"OO)max = 3Tx - T" = 2Tx and K = 2, 
while an equal tension in one direction and compression in the perpendicular 
direction would give (O"OO)max = 3Tx + Tx = 4Tx and K = 4. 

It is apparent from the 1/r2 and 1/r4 factors in Eqs. (7.55), which are indica­
tive of the 'strength' of the singularity, that the high stress concentration is 
quite localized and decays rapidly away from the hole. It is also obvious that 
K is independent of the actual size of the hole thus making the solution very 
general. Stress concentrations are of great importance in structural fatigue 
and crack propagation studies, which are part of a relatively new and impor­
tant branch of elasticity known as fracture mechanics. 

7.7 Curved Beam 

We now consider a beam that is curved in the plane of bending, as shown in 
Fig. 7.4(a). The outside and inside faces are cylindrical, the cross section is 
rectangular and the loading is a constant bending moment M. With these 
restrictions, we may consider the stresses to be independent of () and use the 
axisymmetric plane stress solution as given by Eqs. (7.33). 

We have the stress-free boundary conditions at the upper and lower faces 

O"rr(Ro) = O"rr(R;) = 0 

O"ro(Ro) = O"rO(Ri) = 0 

along with the equilibrium conditions 

L O"oodA = ° 
L rCToodA = M 

where the stresses are shown in Fig. 7.4(b). 

(a) 
(7.58) 

(b) 

(a) 

(7.59) 

(b) 

Obviously, Eq. (7.58b) is identically satisfied by the axisymmetric solution. 
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Fig. 7.4. (a) Curved beam in bending; (b) stresses in beam; (c) stress distribution 
through depth. 

However, it appears that the problem may be over-specified, that is, more 
conditions than unevaluated constants. 

We evaluate Eq. (7.33a) for (Jrr on the boundaries using Eq. (7.58a) as 

1 
C1 (1 + 2lnRo) + 2C2 + C32 = 0, 

Ro 

1 
C1(1 + 2lnRJ + 2C2 + C32 = O. 

Ri 

(a) 

(b) 

(7.60) 

Next, we have Eq. (7.59a) that may be written in terms of the stress func­
tion, using Eq. (7.31b), 

f (J88dA = B fRO ,p.rr dr 
A R; 

(7.61) 

where B is the width of the beam. Noting that ,p.r is proportional to (Jrr via Eq. 
7.28(a) and comparing the integrated function to Eq. (7.31a) for (Jm we see 
that the condition is identical to Eq. (7.58a) that produced Eqs. (7.60). We 
conclude that ,p,r = 0 on the boundaries. 

Then, the remaining equilibrium condition is Eq. (7.59b), 
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f raoodA = B fRO r¢l.rrdr = M. 
A Ri 

(7.62) 

Considering the integral and using integration by parts, 

f Ro JRO fRO 
r¢l.rr dr = r¢l.r - ¢l.r dr, 

Ri Ri Ri 

(7.63) 

the first term on the r.h.s. is zero since ¢l.r has been shown to be zero on the 
boundaries, while the second term, upon back-substitution into Eq. 7.62, 
leads to 

(7.64) 

or, by Eq. (7.32), 

2 2 2 2 Ro _ M 6 ) C1(RolnRo - R; InR;) + C2 (Ro - R;) + C3 1n- - --B' (7. 5 
R; 

Thus, we have produced three equations, Eqs. (7.60a, b) and Eq. (7.65), for the 
constants C1 - C3 . These are solved [7.5] routinely as 

where 

2M 2 2 
C1 = NB(Ro-R;) 

C2 = ~~ [R~ - Rf + 2(R~lnRo - RflnR;)] 

4M 2 2 Ro 
C3 = ~RoR In-

NB ' R;' 

N = (R~ - R?f - 4R~R? (In ~~y. 
Finally, the stresses are written [7.2] explicitly as 

4M ( 2 2 Ro 1 2 r 2 R;) (J = ~ RoR. In- - + Roln- + R In-
rr N B 'R; r2 Ro' r' 

4M ( 2 2 Ro 1 2 r 2 R; 2 2) (Joo = ~ RoR. In- - - Roln- - R· In- - Ro + R 
N B 'R; r2 Ro' r ' , 

(JrO = O. 

(a) 

(b) (7.66) 

(c) 

(d) (7.66) 

(a) 

(b) (7.67) 

(c) 

To be applicable for the entire beam, the end moments M must be distrib­
uted in accordance with (Joo, see Eq. (7.67b). Otherwise, the results are valid 
overall, except for the immediate region of moment application, through 
St. Vena nt's principle. 

In order to study the stress distribution for a typical case, we choose Ro/ 
R; = 2. Then, in Fig. 7.4(c), the stresses (Jrr and (Joo are plotted through the 
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depth of the beam along with the straight line distribution obtained from 
elementary beam theory, (Jb = (Jzz from Eq. (6.20b), [7.2]. Notice that the 
elementary beam solution underestimates the maximum stress that occurs 
along the inside boundary and, of course, does not indicate (Jrr at all. We may 
explain heuristically the increase in stress along the inside boundary and the 
decrease along the outside boundary as compared to elementary theory by 
recognizing that the inside fibers are shorter and the outside fibers are longer 
than those along the center-line, which correspond to a straight beam of the 
same length. Therefore, the same extension or contraction would produce a 
correspondingly greater, or lesser, strain in these fibers. Also the sense of (Jrr 
may be related to the radial components of the stresses (J88 shown on the left 
portion of Fig. 7.4(b). Near the outside face, this component is directed 
inward, while near the outside face it acts outward to produce the radial 
compressIOn. 

It should also be mentioned that there is a strength-of-materials solution 
for curved beams that produces results for (J88 practically identically to those 
obtained from the plane stress solution for beams in which the radius of the 
centroidal axis 1/2(Ro + RJ is greater than the depth Ro - R i , but still no 
values for ¢Jrr. This solution is presented in detail in Ref. [7.6] and is adequate 
for many practical cases. 

7.8 Rotational Dislocation 

An interesting variant on the thick-walled cylinder problem treated in Sec­
tion 7.5 is shown in Fig. 7.5 where the ring has been formed as open and 
separated by an angle oc, assumed as the zero stress state, and then forced 
together and joined. The appropriate boundary conditions are 

(Jrr(Ro) = (Jrr(RJ = 0, 

u8(r,2n) = roc. 

Fig. 7.5. Thick-walled cylinder with rotational dislocation. 

(a) 
(7.68) 

(b) 
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The utility of the "quasi-axisymmetric" displacement equations is now ap­
parent, since we may use Eq. (7.34d) to write Eq. (7.6Sb) as 

1 
rr:J. = ~SnClr 

E ' 

or 

(7.69) 

We then introduce the boundary conditions Eq. (7.6Sa) along with substi­
tuting Eq. (7.69) into Eqs. (7.33a and b) producing 

Er:J. C3 
-S (1 + 2ln Ro) + 2C2 + 2 = 0, 

n Ro 
(a) 

(7.70) 
Er:J. C3 
-S (1+2InRJ+2C2 + 2 =0, 

n R; 
(b) 

and yielding 

Er:J. (1 + 21nRo)R6 ~ (1 + 2lnRJRf 
C2 = ~ 16n R6 ~ R? ' 

Er:J. R6 R? I Ro 
C3 = 4n R6 ~ R? n If' 

I I 

(a) 

(7.71) 

(b) 

which can be back-substituted into Eqs. (7.33) along with C1 to find (Jrr and 
(Jee' 

We may easily find the total bending moment across the section from Eq. 
(7.66a) to be 

C1 NB 
M =2 R6 ~ R? 

Er:J.B (R6 ~ R?)2 ~ 4R6R? In(Ro/RY 
16n R6 ~ R? 

7.9 Narrow, Simply Supported Beam 

(7.72) 

The previous examples of two-dimensional elasticity solutions have focused 
on problems in cylindrical coordinates. We now turn to a Cartesian domain 
and again consider the beam bending problem, which was analyzed in Sec­
tion 6.3 in the context of three-dimensional elasticity. 

We examine a simply supported beam of unit width under self-weight as 
shown in Fig. 7.6, closely following the treatment by Little [7.4]. The sup­
ports are precisely located within the depth, since we are seeking an elasticity 
solution. 

We employ the plane strain formulation Eq. (7.9) in terms of the Airy stress 
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Fig. 7.6. Narrow beam in bending. 

function. With the body forces given by 

f = -pgey, (7.73) 

where p is the mass density and g the acceleration of gravity, the potential V, 
as defined in Eq. (7.3), becomes 

v = pgy. 

Thus, Eq. (7.9b) takes the form 

V4¢J = -(1 - V)V2(pgy). 

The boundary conditions on the top and bottom faces are 

ITXY(x, ± D) = ITyy(x, ± D) = 0, 

and on the ends, 

ITxx(±L,y) = 0, 

f:D ITxy( -L,y)dy = -2pgDL, 

f:D ITxy(L,y)dy = 2pgDL. 

(7.74) 

(7.75) 

(7.76) 

(a) 

(b) (7.77) 

(c) 

The latter two equations reflect the acceptance of St. Venant's principle for 
this case. 

Once the stress function is found, the stresses can be calculated from Eqs. 
(7.5) 

ITxx = pgy + ¢J,yy, (a) 

ITyy = pgy + ¢J,xx, (b) (7.78) 

ITxy = -¢J,xY' (c) 

Recalling the idea of expressing the solution ¢J in the form of selected 
polynomial terms, as suggested in Eq. (7.19), and recognizing that the stress 
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would likely follow an even functional distribution in x and an odd distribu­
tion in y, then we have 

¢J = C21 X2y + C23 X2y3 + C03y3 + Cos Ys (7.79) 

as proposed in [7.4]. From the discussion in Section 7.3, it is evident that the 
first and third terms satisfy Eq. (7.75) individually, but the second and fourth 
terms must satisfy the equation in combination. 

Substituting Eq. (7.79) into Eqs. (7.78) yields 

for the stresses. 

(Jxx = pgy + 6C23 X2y + 6C03 Y + 20Cos y3 

(Jyy = pgy + 2C21 y + 2C23y3 

(Jxy = -2C21 X - 6C23Xy2 

(a) 

(b) (7.80) 

(c) 

Since we have chosen appropriate even or odd functions, we may select 
either the (+) or (-) conditions in Eqs. (7.76). Using the condition at (+) D, 

from which 

(Jxy(x,D) = -2C21 X - 6C23 XD 2 = 0 

(Jyix,D) = pgD + 2C21 D + 2C23 D3 = 0, 

From Eq. (7.75) applied to Eq. (7.79), we find 

1 
Cos = -SC23 

1 pg 
-20 D2 ' 

(a) (7.81) 
(b) 

(a) 

(7.82) 

(b) 

(7.83) 

Finally, we turn to Eq. (7.77a). The form of (Jxx in Eq. (7.80a) makes it 
impossible to satisfy this equation identically in a pointwise fashion. There­
fore, we invoke St. Venant's principle whereby 

f:D (JxAL,y)dy = 0, 

f:D (JxAL,y)ydy = O. 

(a) 

(b) 

(7.84) 

Substituting Eq. (7.80a), along with Eqs. (7.82) and (7.83), into Eq. (7.84a), 
we find that it is satisfied identically since (Jxx is an odd function in y. Equa­
tion (7.84b) yields 

(7.85) 
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from which 

( 1 1 L2) 
C03 = -pg -+--15 4 D2 . 

Inserting the evaluated constants into Eqs. (7.80) gives 

[ 1 1 2 2 ] y2 
(J'xx = 3pg S + 2D2 (x - L ) y - pg D2 

pgD [2 2 2 3 2 2] 
=-]- SD Y-3 Y +(x -L )y , 

1 [ y2] 
(J'yy = - 2. pg 1 - D2 Y 

_ pgD [ D2y y3] -- --+-] 33' 

3 [ l] (J'xy = 2. pg 1 - D2 X 

(7.86) 

(a) 

(7.87) 

(b) 

(c) 

where] is the moment of inertia/unit width about the centroidal axis = ~D3. 
Elementary beam theory, which was derived for a cantilever beam in Sec­

tion 6.3.1, gives only the underlined term in Eq. (7.87a) for (J'xx, so that the 
other terms in Eqs. (7.87a, b) represent the modification due to the two­
dimensional stress state produced by the presence of (J'yy. The value of (J'xy is 
not changed from the elementary theory result. The analysis may be carried 
on to produce strains and eventually displacements, but little that is new is 
revealed [7.4]. 

Of interest in the family of two-dimensional beam solutions are the various 
possibilities for applying the transverse loading, in addition to the uniform 
distribution through the depth studied here. Loading on the top face or the 
bottom face produces alterations to Eq. (7.87), especially in the (J'yy (transverse 
normal) stresses [7.5]. 

7.10 Semi-Infinite Plate with a Concentrated Load 

A semi-infinite plate of unit thickness under a concentrated vertical loading, 
shown in Figure 7.7, may be solved in either polar or Cartesian coordinates. 
The general three-dimensional case is known as the Boussinesq problem and 
is reknown in the Theory of Elasticity. Here, we present the two-dimensional 
version in polar coordinates and leave the Cartesian coordinate solution for 
the exercises. 

It is postulated that any element located by (r,O) is under a state of pure 
radial compression, i.e., 
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x 

Fig. 7.7. Semi-infinite plate with concentrated load (from Ugural and Fenster, Ad­
vanced Strength and Applied Elasticity, Elsevi 1975.) Reprinted with permission. 

cos 0 
(Jrr(r,O) = -2(P/n)­

r 

which will be verified shortly. 

(a) 

(b) (7.88) 

(c) 

If the vertical component of (Jrr> (JrrCOS 0, is integrated over a cylindrical 
surface described by r, we have 

2 t'/2 ((Jrr cos O)(rdO) = - P (7.89) 

so that overall equilibrium is satisfied. Obviously the coefficient 2/n in Eq. 
(7.88a) was chosen to scale the integral to the r.h.s. of Eq. (7.89). 

The boundary conditions on the free surface are obviously satisfied since 
the stresses vanish at every point, except under the load where the infinite 
stress is given by Eq. 7.88 with 0 = 0 and r = O. 

To complete the solution, it must be shown that local equilibrium and 
compatibility are also satisfied. It is convenient to use the stress function 

rP = -(P/n)rOsinO (7.90) 

which may be substituted into Eqs. 7.28 to confirm that Eqs. 7.88 produce 
equilibrium and then into Eq. 7.29 to verify compatibility. 

We now consider a horizontal plane x = H and compute the Cartesian 
components of stress using Eq. 2.13. From Fig. 7.7, the direction cosines are 
found as 

x 
y 
z 

r 

cos 0 
sin 0 
o 

o 
-sin 0 
cos 0 

o 

z 

o 
o 
1 

(7.91) 
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Since 

we find 

2 ( P ) 4 CTxAH,B) = CTrrCOS B=-2 nH cos B 

CTyy(H,B) = CTrr sin2B = -2(~)sin2Bcos2B 

CTxy(H, e) = CTrr sin e cos e = - 2 (n:) sin e cos3 e. 

(7.92) 

(a) 

(b) (7.93) 

(c) 

For a point directly beneath the load, e = 0 and CTrr = CTxx = - ~;. As 

shown on the figure, the vertical compression attenuates away from the load. 
A detailed study of the stress distribution is presented in [7.2] along with a 
solution for a concentrated horizontal force at the origin. 

These solutions are of great utility in determining the stresses and the 
corresponding displacements in soil deposits due to surface loading, such as 
building columns or vehicular wheels. 

Exercises 

7.1 Using the element shown in the figure below solve the following problems. 
(a) Derive the equilibrium equations in polar coordinates, neglecting body 

forces. 

~~r--------------------- X 

y 

Problem 7.1 

Answer: 

1 2 
~(fOO 0 + (frO r + ~(frO = 0 
r' . r 
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(b) Verify that the above equations are satisfied by Eqs. (7.28). 

7.2 Consider a thick-walled cylinder with an outside diameter of 5. The internal 
pressure is 0.5 (force/length2 ). 

(a) For an inside diameter of 4, compute the maximum normal and circum­
feren tial stresses. 

(b) How much error would be involved if part (a) were carried out using thin­
walled cylinder theory. 

(c) Determine the radial displacement of a point on the inside surface. 

7.3 A cylinder with inside radius a and outside radius b = 1.20a is subjected to: 
(1) internal pressure Pi only, 
(2) external pressure Po only. 
Determine the ratio of maximum to minimum tangential stress for each case 
(from (7.7]). 

7.4 Determine the value of the constant C in the stress function 

tP = C[r2(IX - 8) + r2 sin 8 cos 8 - r2 cos2 8 tan IX] 

required to satisfy the conditions on the upper and lower edges of the triangular 
plate shown in the figure. Evaluate the stress components (lxx, (lyy, (lXY at M for 
the case IX = 30°. In what way is this solution different from that found by the 
elementary beam theory? 

q 

Problem 7.4 

7.5 Determine the stress concentration factor for the plate as shown in the figure 
below. 

s 

s s 

s 

Problem 7.5 
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7.6 Consider a curved beam as shown in the figure below. 

o 

Problem 7.6 

The values of the dimensions and moments are 

a = 10; b = 13; M = 11,000 (length-force); t = 0.8. 

Calculate the maximum stress arising from M and compare this with (joo = 
M(b - a)/2I, computed from elementary beam theory. 

7.7 For problem 5.2, show that the corresponding Airy stress function may be writ­
ten as 

1 v 
I/J = -21 + /(X,Y)Z2 + A + Bx + Cy + I/Jdx,y)z + I/Jo(x,y), 

where I/J, A, B, C may be functions of z, and I/Jo is a specialized Airy stress function 
for problems symmetrical about the plane z = 0 (from [7.4]). 

7.8 A stress distribution is given by 

(jxx = C,yx 3 - 2C2 xy + C3 y 

(jyy = C, xy 3 - 2C,x 3y 

3 22 2 1 4 
(jxy = -2 C,x y + C2 y + 2C,x + C4 

where C, - C4 are constants (from [7.7]). 
(a) Show that this field represents a solution for a thin plate as shown below. 
(b) Derive the corresponding stress function. 
(c) Evaluate the surface forces along the edges y = 0 and y = b of the plate. 

y 

T 
b 

L ~I------~r----a--~I x 
a----I---

Problem 7.8. (From Ugural and Fenster, Advanced Strength and Applied Elasticity, 
Elsevier, 1975.) Reprinted with permission. 
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7.9 Consider the semi-infinite plate treated in Section 7.10 using Cartesian coordi­
nates. Show that the stress function <p = -(P/n)ytan-1(y/x) results in the follow­
ing stress field within the plate (from [7.7]): 

2P x 3 2P xy2 2P yx2 
(J = -- . (J = -- . (J = -- ----.-~~ 

xx n (x2 + y2 f' YY n (x2 + y2 f 'xy n (x2 + y2)2 . 

p 

'-~--~~--------------r---Y 

----t---a xx 

x 

Problem 7.9. (From Ugural and Fenster, Advanced Strength and Applied Elasticity, 
Elsevier, 1975.) Reprinted with permission. 

Also, plot the resulting stress distribution for (Jxx and (Jxy at a constant depth H 
below the boundary (from [7.7]). 

7.10 The thin cantilever beam shown is subjected to a uniform shearing stress To 
along the upper surface, y = +D; while the surfaces y = -D and x = L are 
stress-free. Determine if the Airy stress function 

_ 1 ( xy2 xy3 Ly2 Ly3) 
<p - 4To xy - D - [j2 + D + [j2 

satisfies the required conditions for this problem (from [7.7]). 

Problem 7.10. (From Ugural and Fenster, Advanced Strength and Applied Elasticity, 
Elsevier, 1975.) Reprinted with permission. 

7.11 Show that for the case of plane stress with no body forces present: 
(a) The equations of equilibrium may be expressed in terms of displacements ux 

and uy as follows (from [7.7]): 
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(b) Verify that the indicial form of these equations, following steps analogous to 
those in Section 5.2, is 

V2u. + (1 + v) u . .. = 0 i, j = 1,2. 
I 1 _ V J,JI 

7.12 For the stress function in Eq. 7.90, 

<p = -(P/n)re sin e, 

verify that equilibrium and compatibility are satisfied. 

7.13 Refer to the solution in Sec. 7.10. 
(a) Compute the Cartesian components of stress as a function of r and e. 
(b) Show that the integral of 17" along any semicircle about the origin is equal to 

P (from [7.7]). 

7.14 An edge-loaded diaphragm is sometimes called a "deep beam" since it spans 
between columns and has a depth/span ratio outside the limitations of simple 
beam theory. For the simply-supported case shown [7.8], based on the assump­
tion that the column reactions are uniformly distributed over the width c, formu­
late the problem within the theory of elasticity: 
(a) State the governing equation. 
(b) State the boundary conditions on all edges. 
(c) Suppose the load is applied along the lower edge instead. How will the 

boundary conditions be altered? What limitation of elementary beam theory 
does this illustrate? 

2b 

Problem 7.14 

7.15 Derive Eqs. 7.28. 

7.16 A pipe is composed of two concentric cylinders. The outer radius is 3a, the radius 
along the interface is 2a and the inner radius is a. For the outer cylinder, E = Eo 
while for the inner cylinder, E = Ej = tEo; 
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(a) For an internal pressure p, compute the circumferential and radial stress 
distributions in the pipes. 

(b) Evaluate the shear stress along the interface. 
(c) Compute the radial displacement at both surfaces. 

7.17 Consider the material law stated in Eq. (4.33): 
(a) Re-write these equations in terms of the engineering constants E and v. 
(b) Specialize and expand the equations for the cylindrical coordinates r, e, z 

introduced in Sec. 7.4. 
(c) Consider the concentric cylinders described in Problem 7.16. When the outer 

cylinder is much stifTer than the inner, Eo « Ei , the inner cylinder may be 
considered to be in a state of generalized plane stress, with (J" taken as equal 
to - p, or an assumed a,,(p, z), throughout. Show that the remaining stress­
strain equations are: 

E· v 
(J88 = --' -2 [e88 + flezz - (1 + v)IX~T] + --a" 

I-v I-v 

E. v 
(Jzz = --' -2 [fle88 + ezz - (1 + V)IX~T] + --a". 

I-v I-v 

a 

Problems 7.18 and 7.19 

7.18 A skewed plate of unit thickness is loaded by uniformly distributed stresses, Sl 
and S2, applied perpendicular to the sides of the plate as shown in the figure. 
[7.9] 
(a) Solve the equilibrium equations for the plate in terms of Sl, S2, a, band e. 
(b) Determine the elongation of the diagonal AC under the action of the 

stresses, Sl and S2, assuming that the material is linearly elastic and isotropic 
and that e = 90°. 

7.19 Now, consider the stresses, Sl and S2, to be applied so that they are directed 
parallel to the edges AB and AD, respectively, of the skewed plate. Derive ex­
pressions for the principal stresses and the principal strains in terms of Sl' S2, a, 
b, e, E, and v where E and v denote Young's modulus and Poisson's ratio, 
respectively. [7.9] 

7.20 Consider the stress-strain relationships in terms of the engineering constants, 
Eqs. (7.7), and Eq. (4.13b) simplified for the plane strain case in the x-y plane. 

Show that Eqs. (7.7) may be generalized for a homogeneous orthotropic mate-
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rial [7.10] defined by 

to the form 

7.21 Consider the axisymmetrical thermal elasticity problem in two dimensions. 
Prove that the compatibility equation in polar coordinates is given by [7.7] 

1 
-(ri/J ,), + ErxA.T = 0 r .. 

where 

A.T=T-To as defined by Eq. (4.31) 

and 

I/J = Airy stress function. 
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CHAPTER 8 

Bending of Thin Plates 

8.1 Introduction 

In the preceding chapter, a thin elastic plate loaded in the plane of the plate 
was analyzed. The resulting deformations are confined to the plane of the 
plate in accordance with the plane strain assumption. 

If such a plate is loaded transverse to the plane, as shown in Figure 8.1, 
where a distributed load q(x, y) is applied to the upper surface, the plate 
bends and the deflection of the surface in the normal direction is predomi­
nant. The problem of plate bending is, in part, an extension of the elementary 
theory of beams. However, plate bending is more complicated than beam 
bending, or even the compatible bending of a network of orthogonal beams 
connected at their intersections. In effect, a solid plate is much stiffer than 
such a gridwork. This will be elaborated on in a later section. 

Transversely loaded plates are classifled in terms of their thinness by a 
characteristic ratio hll, where h is the thickness and 1 is a plan dimension such 
as the length of a side or a radius. If the plate is very thin, hll < 0.001, 
in-plane or membrane forces are needed to provide equilibrium mobilizing 
finite deformations. On the other hand, if the plate is thick, hll < 0.4, three­
dimensional effects are relevant. Between these bounds lie medium-thin 
plates which can be analyzed by a linear theory in reference to a middle 
plane, a two-dimensional analog to the familiar neutral axis of a beam. 

8.2 Assumptions 

(1) Based on the relative thinness of the plate and the orientation of the 
loading, the plate is assumed to be approximately in both plane strain and 
plane stress, i.e., 

(a) 

and (8.1) 

(b) 

140 
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z 

)-------y 

x 

Middle Plane 

~~~---------~--y 
n 

Fig. 8.1. Thin plate under transverse loading. 

except directly under a surface load. The corresponding strain-stress equa­
tions (7.12 a,b,d) become 

(a) 

(b) (8.2) 

(c) 

Also, the plate thickness does not change, so that the normal displacement is 
constant along a normal through the thickness, i.e., 

Uz = uAx,y). (8.3) 

(2) The second assumption is stated with respect to the line mn, shown in 
Figure 8.1 and again in the section normal to the x-axis, Figure 8.2. Line mn 
represents all lines initially perpendicular to the undeformed middle plane 
and is presumed to remain straight and normal to the deformed middle plane. 
This is the hypothesis of linear elements, attributed to G. Kirchhoff by 
Filonenko-Borodich [8.1]. 

Referring to Figure 8.2, the undeflected line mn is superimposed on the 
deflected line m'n' in the upper cross section. The rotation of the line is wyz • 

By the application of the hypothesis, this rotation is equal to the rotation of 
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Fig. 8.2. Deformation of thin plate. 

a tangent to the middle plane: 

(8.4) 

(3) The last essential assumption states that the middle plane deflects only 
in the z direction. Thus, on the middle plane where the normal coordinate ,= 0, 

uAx,y,O) = 0 

uy(x, y, 0) = 0 

uAx, y, 0) = f(x, y). 

(a) 

(b) (8.5) 

(c) 

Therefore, there can be no extensional deformations or shears on the middle 
plane and 

O"xAx, y, 0) = 0 

O"yy(x, y, 0) = 0 

O"Xy(x, y, 0) = O. 

(8.6) 

The preceding assumptions enable a classical displacement formulation for 
transversely loaded medium-thin plates. All stresses, strains and in-plane dis­
placements will be described in terms of the normal displacement uAx, y). 

8.3 Formulation 

8.3.1 Geometric Relationships 

We focus on two points which lie on mn, the normal to the middle plane, 
in Figure 8.2. Point p is also on the middle plane, while point q is initially 
located a distance, away from the plane in the positive z direction. 
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On the displaced surface, point q remains (from point p by Assumption (1) 
and has the same normal displacement uAx, y) by Assumption (3). So the 
in-plane displacement is given by 

(8.7) 

by Assumption (2), Eq. 8.4. The negative sign indicates that a positive (uz •y 
produces a uy in the negative y direction. 

A similar section perpendicular to the y-axis would reveal the x-z plane 
and yield 

(8.8) 

Thus, the in-plane displacements Ux and uy are functions of the normal dis­
placement Uz • 

8.3.2 Strains and Stresses 

Using Eqs. (8.7) and (8.8), we may write the in-plane strain-displacement 
relationships from Eqs. (3.15 a,b,c) with 1,2,3 = x, y, z: 

(a) 

(b) (8.9) 

(c) 

The corresponding stresses are formed by inverting Eqs. (8.2) and sub­
stituting Eqs. (8.9). 

(a) 

(b) (8.10) 

E 
= (1 + v) Gxy 

(E 
=---u (1 + v) z.xy 

(c) 
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It should be mentioned that efficient application of the theory of plates is 
facilitated by the introduction of stress resultants, which are bending and 
twisting moments per width of middle surface. However, to retain a strictly 
pointwise description consistent with the remainder of this text, the resul­
tants are not introduced here. 

We now calculate the remaining components of stress from the equilib­
rium equations, 2.46, again with 1, 2, 3 = x, y, z and Eqs. (8.10). From Eq. 
(2.46a) and Ix = 0, 

,E 2 

(1 _ v2) (V uz),x' (8.11) 

Similarly, from Eq. (2.46b) and /y = 0 

,E 2 

ayz,z = (1 _ v2) (V uz),y' (8.12) 

The preceding equations may be integrated with respect to z. Only' is a 
function of z, so that 

f ' dz = f' d, =~ + C. (8.13) 

Since axz and ayz should vanish at the surfaces, = ±~, 

(8.14) 

The final expressions for the transverse shearing stresses are found from the 
integrals of Eqs. (8.11) and (8.12), considering Eq. (8.14), as 

E('2 - ~) 2 

axz = 2(1 _ v2) (V uz),x (a) 

(8.15) 

(b) 

Now, we consider the normal stress azz given by Eq. (2.46c), with fz = 0 
since there are no body forces: 
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(S.16) 

The stress {lzz is of little practical consequence since, at most, it is equal to the 
magnitude ofthe surface loading. However, Eq. (S.16) is useful in establishing 
the governing equation for the normal displacement. 

8.3.3 Plate Equation 

We first consider the z-dependent terms (,2 -~) of Eq. (S.16) integrated 

through the thickness 

(S.17) 

Substituting Eqs. (S.17) into the integral through the thickness of Eq. (S.16) 
gives 

(lzz G) - {lzz ( -~) = 12(~~ y2) V4 uz · 
(S.lS) 

Since the load q(x, y) is assumed to be applied to the top surface in the 
positive z-direction 

(a) (S.19) 

(b) (S.19) 

while 

(a) (S.20) 

where 

Eh3 

D = 12(1 _ y2) 
(b) (S.20) 

is termed the flexural rigidity and is roughly equivalent to E times the mo­
ment of inertia of a unit width of plate, in consort with the theory of flexure 
where El is termed the bending or flexural rigidity. 

Equation (S.20a) is widely known as the plate equation and is of the same 
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biharmonic form as the compatibility equations encountered in the two­
dimensional elasticity formulation in Chapter 7. 

Although the parallel between the plate equation and the bending of a 
beam of unit width is evident, Eq. (8.20a) represents more than one- or even 
two-directional flexure. Writing the equation in expanded form gives 

Uz,xxxx + 2uz ,xxyy + Uz,yyyy = q(x,y)/D. (8.21) 

While the first and third terms on the l.h.s indeed represent flexure in the 
respective directions, each presumably resisting a portion of the load q(x, y), 
the second term involves the mixed partial derivative and describes relative 
twisting of parallel fibers in the plate. It is this torsional resistance which 
differentiates a plate from a system of intersecting beams and contributes 
significantly to the overall rigidity of a solid plate. 

The goal of the formulation, to express all displacements, strains and 
stresses in terms of a single displacement component Uz has been achieved. 
Once Eq. (8.21) is solved, the remaining components of displacement are 
found from Eqs. (8.7) and (8.8); the in-plane strains are given by Eq. (8.9); and 
the stresses follow Eqs. (8.10) and (8.15). 

8.3.4 Polar Coordinates 

For a circular plate, it is expedient to use polar coordinates, Figure 7.1. 
Inasmuch as the "plate" equation, Eq. (8.20a), and the compatibility equation 
from two-dimensional elasticity, Eq. (7.18), are essentially the same bihar­
monic equation, we may directly use the information given in Ch. 7. We 
simply replace rjJ with Uz in Eqs. (7.30) for the general case uz(r, 8) to get 

V4 uz = q(r, 8)/D (8.22) 

and in Eq. (7.31e) for the axisymmetric case u.(r) to get 

(8.23) 

where the V4( ) operator has been transformed to polar coordinates. Of 
course, appropriate particular solutions will be needed for the plate problem. 

8.4 Solutions 

8.4.1 Rectangular Plate 

Since the theory of thin plates has an extensive specialized literature. residing 
for the most part outside of elasticity, we shall not pursue the analysis in 
depth here. However, much insight into the difficulty involved in obtaining 
analytical solutions may be gained by considering a rectangular plate, such 
as that shown in Figure 8.1, with plan dimensions a along the x-axis and b 
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along the y-axis and subjected to an arbitrary distributed loading q(x, y). The 
origin for x and y is set at one corner of the plate. 

If the plate is simply supported, which means that the normal displace­
ment, uz, and the bending moments, Mx and My, are equal to zero on the 
boundaries, harmonic functions in the form of a double-sine series 

00 00. x y 
U z = L L u~ksinjn-sinkn-b 

j=l k=l a 

identically satisfy the displacement boundary conditions 

~~~=~~~=~~m=~~~=Q 

(8.24) 

(8.25) 

Now, considering the bending moments on the boundary, they are computed 
from the integrals of the respective extensional stresses aUi) through the thick­
ness, just as in the case of a beam, see Eq. (7.59b). However, for a plate, each 
stress is proportional to the curvatures in both coordinate directions, Eqs. 
(8.10 a,b). 

This condition is therefore written as 

(a) (8.26) 

at (0, y) and (a, y) and 

(b) (8.26) 

at (x, 0) and (x, b). The double-sine function in Eq. (8.24) satisfies these condi­
tions as well. 

When the loading is expanded in a similar double series 

0000. x y 
q(x,y) = L L qJksinjn-sinkn-b' 

j=l k=l a 
(8.27) 

standard Fourier analysis may be used to obtain the solution for a general 
harmonic jk [8.2], 

(8.28) 

Then the complete solution for the displacement at any point (x, y) is ob­
tained by superposition from Eq. (8.22) as 

1 00 00 . { 1 } x y 
u, ~ n'D jft Jl q" W)' + GH sinjnasinkn); 

(8.29) 

We may verify that Eq. (8.29) is indeed the solution by performing the opera­
tions indicated on the l.h.s. of Eq. (8.21). Since the solution is formed by 
superimposing the individual harmonic contributions, it is sufficient to con-
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sider a typical component ]k. Common to each term is the function 

F(x,y;],k) ~ :~ {[ (0' : (~n} sin].~Sinkn~ 
whereupon 

and the sum is 

from Eq. (8.27). 

(In)4 
uz.xxxx = a F 

(In) 2 (kn)2 2uz ,xxyy = 2 a b F 

(kn)4 
UZ,YYYY = b F 

V4
Uz = [(l:r + 2(l:Y (~Y + (:nrJF 

= n4[(iY + (~YJF 

= q(x,y)/D 

(8.30) 

(8.31 ) 

It remains to examine the convergence of the series Eq. (8.29) so as to set 
appropriate truncation limits for j and k. To illustrate, we take the example 
of a uniformly loaded plate with 

q(x,y) = qo (8.32) 

and set about to determine the Fourier coefficients qik. 

Starting with Eq. (8.27) 
OC! OC!. X Y 

qo = L L qJksinjn-sinkn-b' 
i=l k=l a 

(8.33) 

the procedure is to multiply both sides by sin mn ~ sin nn ~, where m and n 

represent arbitrary harmonics, and integrate over the area: 

f afb X Y 
o 0 qosinmnCisinnnbdxdy 

OC! OC! • fax X fb Y Y 
= ~ L qJk sin mn - sin jn - dx sin nn -b sin kn -b dy. 

J=l k=l 0 a a a 
(8.34) 
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For the l.h.s. of Eq. (8.34) 

f
a fb . x. Y a [ mnxJa b [ nnYJb qosmmn-smnn-bdxdy = qo- -cos-- - -coS-b o 0 a mn a onn 0 

a b = qo-[cosmn - 1]-[cosnn - 1]. (8.35) 
mn nn 

If m and/or n is an even integer, the expression = O. But, for m and n both 
odd, 

a b 4ab 
qo-[cosmn - 1]-[cosnn - 1] = -2-qO' (8.36) 

mn nn n mn 

Now, considering the r.h.s. of Eq. (8.34), 

fa. x .. Yd a 
smmn-sm]n- X =­

o a a 2 

=0 

fb. y. k Yd b 
smnn-sm n- Y =­

o b b 2 

m=j 

m#j 

n=k 

=0 n#k. 

Therefore, the entire summation reduces to 

jk ab 
q 4' (8.37) 

Replacing m and n by j and k to denote a general but specific harmonic, we 
have by equating Eqs. (8.36) and (8.37) 

'k 16 
qJ = 2'k qo 

nJ 

and the complete displacement function follows from Eq. (8.29) as 

(8.38) 

U = 16qo f f ~ { 1 } sinjn~sinkn:!:' j = 1,3,5, .. . 

z n6 D j=l k=dk [(~Y + GYT a b k = 1,3,5, .. .. 

(8.39) 

The series will obviously converge very rapidly since j and k are of the fifth 
power in the denominator. Also, it should be dominated by the first terms 
j = k = 1; j = 1, k = 3; j = = 3, k = 1; since j = k = 3 and higher terms will 
carry at least (3)5 in the denominator. 

Once the displacement function is found, the various stresses are computed 
routinely. For the in-plane or membrane stresses, (ixx, (iyy, (ixy, we use Eqs. 
(8.10), which requires differentiating the series. For the transverse shearing 



150 Chapter 8. Bending of Thin Plates 

stresses, CTxz and CTyz , Eqs. (8.11) and (8.12) respectively are integrated through 
the thickness. 

In considering the truncation of a series such as Eq. (8.39), we must be 
cautious. We remember that we seek not only the displacements for the plate, 
but the stresses as well. We see from Eqs. (8.10) that the stresses CTij are given 
by various combinations of Uz,ij' For example, 

Uz xx = 4 - 2 L L -k sm J1C - sm kn -b' (8.40) 16 q ° 1 00 00 (j) { 1 } . . x. y 

, n D a j=l k=l [eY + GYJ a 

which will converge slower than Eq. (8.39). The expressions for Uz,yy and Uz,xy 

are similar. 
The double series is known as Navier's solution and is recognized as a 

great accomplishment in solid mechanics. However, if boundary conditions 
other than all sides simply supported are encountered or if the planform is 
other than rectangular or circular, the difficulty of choosing harmonic func­
tions which identically satisfy the boundary conditions increases enormously. 
Therefore, numerical methods are widely applied to the analysis of plates. 

8.4.2 Circular Plate 

8.4.2.1 General Solution for Axisymmetric Loading 

We consider a circular plate subject to a uniform load qo, initially without 
specifying boundary conditions. A plate so loaded will deform uniformly 
around the circumference so that the axisymmetric form of the governing 
equation may be considered. The solution to Eq. (8.23) may be written by 
analogy with Eq. (7.32) as 

(8.41 ) 

where uzp is a particular solution. For the case of a uniform load, uzp must 
be proportional to r4, say Cr4. Performing the operations indicated by Eq. 
(7.31e). 

V4(Cr4) = ~[rG[r(Cr4),rJ.)J.r = 64e. 

With 64C = qo/D, 

and 

C=~ 
64D 

(8.42) 

(8.43) 

(8.44) 

A variety of support conditions and geometries may be solved with Eq. 
(8.41). First, it is convenient to form the first and second derivatives 
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1 qo 3 
Uz r = C1 r(2lnr + 1) + 2C2r + Cr + -6 r (a) 

, r 1 D 

1 3qo 2 
Uz rr = C1 (21nr + 3) + 2C2 - C3 - 2 + -6 r, 

, r 1 D 

(8.45) 

(b) 

Next, second derivatives of Uz with respect to x and y, which are contained in 
the simply supported boundary conditions Eqs. (8.26), are transformed into 
polar coordinates. We refer to Fig. 7.1 and the r-dependent portions of Eqs. 
(7.22): 

(8.46) 

(b) 

from which 

02Uz = ~ 02uz + oUz,r (r - xr. x) 
ox2 r or2 or r2 

02uz = .JI 02uz + oUz,r (r - yr,y) 
oy2 r or2 or r2 . 

(a) 

(8.47) 

(b) 

Taking r along the x-axis in Fig. 7.1, x = r, y = 0, r,x = cos e = 1 and r,y = 

sin e = 0, leaving 

(a) 
(8.48) 

U z yy = -Uz r 
, r' 

(b) 

as the transformed derivatives. 

8.4.2.2 Solid Plate 

We consider a circular plate with outside radius Ro. Since the terms contain­
ing lnr would be singular at r = 0, we may set C1 and C3 = ° in Eq. (8.41), 
which leaves 

uAr) = C2r2 + C4 + 6~~ r4. (8.49) 

If the plate is clamped at the boundary, we have uARo) = uz,r(Ro) = 0, or 

(8.50) 

(b) 
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from which 

c - _~R2 
2 - 32D 0 

(a) 

(8.51 ) 

(b) 

and 

qo (R2 2) 
= 64D 0 - r . (8.52) 

If the plate is simply supported at the boundary, we have Eq. (8.50a) along 
with Eqs. (8. 26), which are written in polar coordinates using Eqs. (8.48) as 

(Uz.rr + ~Uz.r) = O. 
r r=Ro 

(8.53) 

Substituting Eqs. (8.45), 

(3 + v) 2 
2(1 + v)C2 + 16f)qoRo = 0 (8.54) 

so that 

C = _2(3 + V)qoR~ 
2 1 + v 64D 

(8.55a) 

and from Eq. (8.50a) 

C = qORri[2(3 + v) - 1J 
4 64D 1 + v 

=~[~JR4 64D 1 + v 0 
(8.55b) 

and then from Eq. (8.49) 

qo 2 2 {[5 + VJ 2 2} uAr) = 64D (Ro - r) 1 + v Ro - r . (8.56) 

8.4.2.3 Annular Plate 

We may also consider an annular plate with planform as shown in Fig. 7.2(a), 
but subjected to a transverse uniform loading q. We again consider the 
clamped boundary condition corresponding to 

(8.57) 
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at the outer ring and 

(8.58) 

on the inner ring. Since the singularity as r --+ 0 is not an issue, we retain C1 

and C3 and evaluate from Eqs. (8.41) and (8.45a): 

CIR6lnRo + C2R6 + C3lnRo + C4 + 6~~R6 = 0 (a) 

C3 qo 3 0 
CIRo(2InRo + 1) + 2C2Ro + Ro + 16DRo = (b) 

(8.59) 

C1RiInR1 + C2Ri + C3lnRl + C4 + 6~~Ri = 0 (c) 

C3 qo R3 0 
C1R1(21nR1 + 1) + 2C2 R 1 + R + 16D 1 = . (d) 

1 

The equations are best solved using numerical values for Ro and R 1 , where­
upon the determined constants are used in Eq. (8.41) and subsequent 
calculations. 

8.4.2.4 Stresses 

After the appropriate boundary conditions are applied and the constants 
determined, the complete displacement function and derivatives are available 
from Eqs. (8.41), (8.44) and (8.45). Returning to the stresses for the axisym­
metric case, (Jxx and (Jyy in Eqs. (8.10 a,b) become (Jrr and (Joo' Substituting Eqs. 
(8.48) for the curvatures gives 

(Jrr = -1 ~EV2 (Uz,rr + ~Uz,r) (a) 

(8.60) 
(E 1 

(Joo = --1--2 -(Uz r + vUz rJ - v r' , 
(b) 

The evaluation of the stresses, in particular the maximum value through the 

thickness at ( = ±~, may proceed routinely. 

8.5 Commentary 

It should also be mentioned that more refined theories of plates, between the 
elementary theory presented here and a three-dimensional elasticity solution, 
are available. Most prominent is a theory which relaxes part of Assumption 
(2). In effect, the line mn remains straight but not necessarily normal to the 
deformed middle surface. This negates Eq. (8.4) and gives independent rota-
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tions Wyz and Wxz in addition to uAx, y). The difference between the two 
deformation fields are due to transverse shearing strains. Although these 
differences are seldom signficant in magnitude, the inclusion of these defor­
mations often facilitates numerically based solutions [8.2]. 

Exercises 

8.1 Consider a thin plate having the elliptical planform shown in Fig. 6.7(a). Follow­
ing the strategy used for the torsion problem, the solution is assumed propor­
tional to the equation of the boundary [8.1J 

( X2 y2 )2 
Uz = C D2 + 8 2 - 1 . 

(a) Show that this solution satisfies the clamped boundary conditions. 
(b) For a uniform load, qo, compute the constant C. 
(c) Evaluate the maximum displacement. 

8.2 Consider the solution for a simply supported plate, Eq. (8.39), and particularly the 
displacement at the center of the plate. 
(a) Compare the values after 1, 3 and 5 terms. 
(b) Repeat the computation for the stress O"xx at the center. 

8.3 Consider a clamped solid circular plate of radius Ro with a "sand heap" loading 

q(z) = qo(R - Ro) 

and determine the deflection function. 

8.4 Consider the solutions for the solid plate with both clamped and simply sup­
ported boundary conditions. 
(a) Why are the values of O"rr and 0"99 equal at r = 0 in each case? 
(b) Evaluate O"rr(O) for the two boundary conditions. How does this compare to 

the difference between a clamped and simply supported beam if v = 0.3? 
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CHAPTER 9 

Time-Dependent Effects 

9.1 Introduction 

The strains in an elastic body may be computed from a specified displace­
ment field using the equations of compatibility, regardless of whether the 
displacements arise from static or dynamic excitation. The corresponding 
stresses and, indeed, the displacements themselves may be dependent on the 
rate characteristics of the loading function. Therefore, the time derivatives of 
the displacements, i.e., velocities and accelerations, enter into these equations. 

It is often convenient to separate the response of a linear system into a 
product of the effects of the system and the effects of the load. This concept is 
useful in static cases and is usually based on identifying the Green's function 
for the system, the response (displacement, strain, stress) due to the applica­
tion of a unit load, and integrating that function over a specified load range 
to evaluate the corresponding total response. For example, Eqs. 7.93 with 
P = 1 would be Green's functions for a vertical load on a semi-infinite plate. 

In the case of dynamic excitation, two important system characteristics 
are the natural frequencies or their inverse, the periods of vibration, and 
the corresponding mode shapes. Once these are found by considering the 
homogeneous part of the governing differential equation, the response to a 
forcing function may be readily obtained as a particular solution. Also, even 
if the loading is not specified, these system characteristics are useful for classi­
fication. For example, structures are said to be stiff or flexible based on the 
relative natural frequencies. A related characteristic, which is dependent only 
on the material properties, is the velocity at which an elastic wave propagates 
through a medium or a body. Again, this value leads to useful comparative 
classifications of media and materials. 

In dynamic response computations, damping is very important. Damping 
represents internal energy dissipation and may be dependent on the displace­
ment, the velocity or other rate quantities. In effect, damping is a quantity 
which is considered at the macro level of linear elasticity but which really 
represents micro-level molecular processes. Obviously, there are a variety of 
models which attempt to depict physical reality. 

155 
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In this chapter, the field equations of linear elasticity will be generalized to 
include rate-dependent terms. We will first focus on the propagation of waves 
through the medium and then describe the motion of the particles com­
prising the medium. 

9.2 Vibrations in an Infinite Elastic Medium 

9.2.1 Equilibrium Equations 

We begin with the Lame equations (5.7) and consider the body forces to be 
the inertial forces corresponding to the acceleration, by D' Alembert's princi­
ple. Thus, we have 

/lUj,ii + (,l. + /l)ui,ij - pUj = 0 (9.1) 

h (.). d' a() d . h' . bl were III Icates - an t IS t e tIme van a e. at 
Initially, we are not concerned with boundary conditions on Ui since the 

medium is assumed to be infinite. We follow the treatment of Filonenko­
Borodich [9.1] in explicit notation and generalize to the indicial form when 
convenient. 

9.2.2 Longitudinal Vibrations 

We refer to a Cartesian coordinate system and consider time-dependent dis­
placements along one axis, say the x-axis in Figure 9.1. For the moment, 
we do not dwell on the source of the motion but only the response. The 
displacement field is 

Ux = uAx,t) 

uy = 0 

Uz = O. 

(a) 

(b) (9.2) 

(c) 

Considering the plane L parallel to the y-z plane at a distance Xo from 
the origin, it will assume a position x = Xo + uAxo, t) at any time t > 0 dur­
ing the motion. 

If excitations along the x-axis are present, the plane will travel back and 
forth along the axis. Other planes initially parallel to L will move in a like 
manner. While the planes will remain parallel, the distance between any 
two will alternately increase and decrease, creating a state of uniform longitu­
dinal vibration. Two planes initially at x = Xo and x = Xl will be separated 
by a distance 

at any time t. 

d(xO,x1,t) = [Xl + uAxl,t)] - [xo + uAxo,t)] 

= Xl - Xo + uAxl , t) - uAxo, t) (9.3) 
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z y 

L 

~-----------+---''---r---------X 

Fig. 9.1. Plane in Cartesian space. 

For this case, Eqs. (9.1) with i = x, y, z become 

}lux,xx + (2 + }l)ux,xx - piix = ° (9.4) 

since the motion is uniform and only a function of x. Equation (9.4) may be 
written as 

(a) (9.5) 

where 

Cp = J2: 2}l = 
E(1 - v) 

(b) (9.5) 
p(1 + v)(1 - 2v)' 

which is known as the one-dimensional wave equation. 
Thus, longitudinal vibrations described by Eqs. (9.2) are possible if uAx, t) 

satisfies Eq. (9.Sa). The parameter Cp will be interpreted later. Since the waves 
generated oscillate along the axis producing extension and contraction, they 
are dilation waves, usually called P (for pressure) waves. 

The preceding equation may be derived from another approach. The con­
dition of no rotation, 

Wij = !(ui,j - Uj,i) = 0, (9.6) 

from Eq. (3.32) is satisfied by defining a potential function <D such that 

(a) (9.7) 

and 
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(b) (9.7) 

from which 

Ui,i = <I>,ii' (9.8) 

Then Eq. (9.1) becomes 

j1<1>,jii + (Je + j1)<I>,iij - pUj = O. (9.9) 

Using Eq. (9.7b) to replace <I>,j, we get 

(Je + 2j1)Uj ,ii - pUj = 0 (9.10a) 

or 

(9.lOb) 

which reduces to Eq. (9.5a) for the one directional motion described by Eq. 
(9.2). Thus, the specialization which produces P waves is known as irrota­
tional wave propagation. 

Also, the form of Eq. (9.10) is more general, in that the motion need not be 
completely uniform throughout the medium so long as it is irrotational. 

9.2.3 Transverse Vibrations 

Now we choose a displacement field normal to the x-axis, say in the z­
direction, 

Ux = 0 

uy = 0 

Uz = uAx,t). 

(a) 

(b) (9.11) 

(c) 

In this case the plane L and all parallel planes will move perpendicular 
to the x-axis. All points on L move the same distance Uz , but the planes move 
relative to one another in the z-direction, setting up a state of uniform trans­
verse vibrations. 

Equation (9.1) reduces to 

j1Uz ,xx - pUz = 0 

since the motion is still only a function of x, or 

Uz = c~uz,xx 

where 

Cs = Ji; = J 2P(lE + v)' 

(9.12) 

(a) (9.13) 

(b) (9.13) 

Thus, transverse vibrations described by Eqs. (9.11) may occur if uAx, t) 
satisfies Eq. (9.13a). Again the parameter Cs will be interpreted later. The 
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waves produced are known as shear or S waves since they produce transverse 
motion but no extensional deformation. 

We may also derive the preceding equations by noting that the transverse 
vibrations cause no volume change. From Eq. (3.41), the dilation 

d = eii = ui , i = 0, (9.14) 

Setting ui,i = 0 in Eq. (9.1) gives 

f..lUj,ii - pUj = 0 (a) (9.15) 

or 
V2 .. 0 f..l uj - pUj = , (b) (9.15) 

which reduces to Eq. (9.12) for the motion described by Eq. (9.11). Therefore, 
the specialization which produces S waves is known as incompressible wave 
propagation. 

It should also be noted that an identical solution could have been con­
structed for the displacement in the y direction, i.e., uy = uy(x, t), so that two 
orthogonal sets of shear waves, SH and SV waves, may be generated. 

Again, the form of Eqs. (9.15) is more general than the reduced Eq. (9.12). 

9.2.4 Harmonic Vibrations 

9.2.4.1 Longitudinal Motion 

We now consider a sinusoidal form for the function Ux in Eq. (9.2a) 

. (x t) uAx,t) = Asm2n T; - Tp . (9.16) 

The normalizing terms Ip and Tp will be interpreted later. Equation (9.16) is 
substituted into Eq. (9.5a) to get 

1 c~ 
Ti I;' (9.17) 

Therefore, the conditions on Ip and Tp to produce the motion described by 
Eq. (9.16) are 

~ = Cp = JA + 2f..l. 
Tp P 

(9.18) 

The amplitude of the vibration, A, is arbitrary. 
This motion is represented by the trace of the planes such as L on the 

x-z plane in Figure 9.2. The term Tp in Eq. (9.16) is called the period of 
the traveling waves. For a point at x = X, which represents all points on a 
single plane, the displacement uAx, t) evaluated at a specific time tis 
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z 

fL 
x 

x 

Fig. 9.2. Traces of longitudinally vibrating planes. 

while at a time t + Tp 

uAx,t + Tp) = A[sin(2n~)cos(2nt ~pTp) -cos(2n~)sin(2n t ~pTp) ] 

= A [sin ( 2n~)cos( 2n + 2n :J -cos(2n~)sin( 2n + 2n :JJ 
= ux(x, i) (9.20) 

since cos(2n + t) = cos t and sin(2n + t) = sin t. The same would be true at 
t = t + 2Tp, or t = t + nTp, where n is an integer. Thus, the motion is re­
peated after a duration of Tp. 

To interpret parameter lp, we consider the axial strain Eq. (3.15a) 

2n (x t) exAx, t) = ux,x = A 1; cos 2n r;, - Tp . (9.21) 

At an instant in time t = t, we consider a representative sampling of planes 
which were equally spaced when the system was at rest. It may be shown 
that at t = t, a plane located at x + lp has the same strain as the plane 
at x, i.e., 

(a) (9.22) 

or, in general, 

(b) (9.22) 

The relationship between equally strained planes is shown in Figure 9.2. 
The separation lp is known as the wave length. The maximum contraction 
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strain is in the region where the planes are most dense while the maximum 
extension is in the least dense region. Referring to Eq. (9.21), these maxima 
occur when 

cos2n(~ -~) = + 1 
Ip Tp -

(a) (9.23) 

or 

x n 
(b) (9.23) ---= 

Ip Tp 2 

where n is an integer. 
Also, Eq. (9.23b) indicates that the coordinates of these points of extreme 

strain x = Xe move linearly in time with a velocity 

. Ip 
Xe=-' 

Tp 
(9.24) 

But, from Eq. (9.18), 

~ = Cp = JA + 2/1 
Tp p 

(9.25) 

so that the parameter Cp encountered originally in Eqs. (9.5) has finally been 
identified as the velocity of propagation of the pressure waves produced by 
longitudinal vibrations. 

An important application is for sonic vibrations and the associated strains, 
which occur in the range l6 sec> Tp> 2 x 10- 5 sec [9.1]. Such waves prop­
agate through an infinite medium with a velocity dependent on the material 
properties A, /1 and p which enter into Eq. (9.25). 

Some closely related applications in the strength of materials are the longi­
tudinal vibration of a bar and longitudinal wave motion in a fluid column. 

9.2.4.2 Transverse Motion 

If we assume an analogous sinusoidal form for Uz in Eq. (9.l1c) 

U = BSin2n(~ -~) 
z Is Ts 

(9.26) 

we describe the transverse vibration of the waves for which the traces are 
shown in Figure 9.3. The wavelength is Is and the velocity of propagation is 

Cs = A, (9.27) 

which is smaller than Cpo Here, we have a shear strain computed from Eq. 
(3.l5e) as 
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Fig. 9.3. Traces of transversely vibrating planes. 

= B~COS2n(~ - ;J. (9.28) 

The shear strain propagates with the same velocity cs. 
In the strength of materials, the transverse vibration of a shear beam is 

described by the response to waves propagating with velocity cs . 
To compare the longitudinal and transverse motions, we form the ratio 

~; = JA: 2J1' (9.29) 

Both J1 and A may be expressed in terms of Poisson's ratio v and Young's 
modulus E through Eqs. (4.24a and b). Then, 

Cs = J1 - 2v. 
Cp 2 - 2v 

(9.30) 

For v = t, 

While the velocities Cp and Cs are very large, on the order of 5 km/sec 
through metal [9.1], the difference in velocities can often be distinguished 
and the P and S waves thus identified. In Figure 9.4 a seismogram which 
records the period wave motion is shown [9.2]. The marked record is an 
earthquake in Alaska recorded in California. The peaks corresponding to the 
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Fig. 9.4. Seismogram from a long-period seismograph showing the vertical compo­
nent of elastic wave motion recorded at Oroville, California, during part of one day. 
The third trace from the bottom is from a magnitude-5 earthquake in Alaska. The 
time between breaks in the trace is 1 min. Bruce A. Bolt, "Elastic Waves in the Vicinity 
of the Earthquake Source," in Earthquake Engineering, Robert Weigel, ed., © 1970, 
p. 5. Reprinted by permission of Prentice Hall, Englewood Cliffs, New Jersey. 

faster-moving P waves followed by the slower S waves are shown, along with 
peaks due to another even slower moving type of wave, the L or Love waves 
which are caused by surface effects. 

Again we note the possibility of a second orthogonal set of S waves acting 
in the x-y plane and the muitidirectional forms of the wave propagation 
equations, Eqs. (9.10) and (9.15). However, in any case the velocity of propa­
gation remains a constant dependent only on the properties of the medium. 
The differences in velocity between the P waves and S waves is used in many 
geophysical techniques. 

9.3 Free Vibration 

9.3.1 Equations of Motion 

Vibration of elastic bodies is very important in practical engineering and is 
most often applied to specialized structural forms such as beams and plates. 
However, the governing equations can be developed to a certain extent with­
in the present context of elasticity. 

While the previous sections have focused on the propagation of waves 
through a medium, we now focus on the motion of particles within the 
medium. Again, the source of the motion is not germane at this point. We 
simply assume that the body is vibrating in a normal mode, which means that 
all particles are moving synchronously and pass through the zero or rest 
position simultaneously [9.3]. The deformation may be visualized as a series 
of independently vibrating orthogonal modes, such as sine or cosine curves, 
which may be superposed to approximate a more complicated motion. This 
is, of course, the physical interpretation of a Fourier series and is the basis of 
one of the most powerful analytical tools in mathematical physics, harmonic 
analysis. 
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Referring to Eq. (9.1), the displacement is taken as the product of a func­
tion, Aj , of the spatial coordinates Xj and a function, f, of the time coordinate 
t, i.e., 

Uj(Xj, t) = Aj(xj)f(t). (9.31) 

Substituting into Eq. (9.1) gives 

J1 [A. .. + (2 + J1) A· .. Jf = pA.j 
).u J1 1.'1 ) 

(9.32) 

or 

~[A'" + (~)A ... J = p{ Aj ).u J1 1,1) f (9.33) 

With the l.h.s. being a function of Xj and the r.h.s. being a function of t, j is at 

most a constant, i.e., 

Thus, 

j 2 7= -w. 

f= Ccoswt + Dsinwt 

but since the time origin is arbitrary, we may take 

f = Dsinwt. 

Then, the equilibrium equation (9.1) becomes, in view of Eq. (9.34), 

J1[U'" + (2 + J1)u ... + ~W2U.J = 0 
),U J1 1,1) J1 ) 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

or by comparing Equations (5.1) and (5.7) and reintroducing the stress tensor, 
we can write Eq. (9.37) as 

(9.38) 

Equation (9.38) may also be stated in terms of the engineering constants G 
and v using Eqs. (4.24) as 

(9.39) 

For a set of boundary conditions prescribed on the surface of the body, 
Eqs. (9.38) or (9.39) may be satisfied only for certain values of w which are 
called characteristic or eigenvalues. The corresponding uj are the eigenvectors. 

Eigenvalue problems were encountered in the solution for principal stresses 
in Chapter 2. Within the context of our general treatment, we may proceed 
with a general proof of the orthogonality condition, which is an important 
component to this analysis. 
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9.3.2 Orthogonality Conditions 

We seek to derive certain conditions on the solutions of Eqs. (9.39). We select 
two such solutions, say u?) and uY) and first specialize the equation for u?): 

u(l}. + _I_uP). + ~W2U(1) = 0 (9,40) 
j, n 1 _ 2v I, lJ G 1 j 

or in terms of the stresses, as given by Eq. (9.38), 

aln + pwi u?) = o. 
We multiply Eq. (9,41) by uy) and integrate over the volume to get 

f u(2)al.11dV = -PW21 f u(2)uP)dV. 
j Ij, I j J . 

V V 

Next, we expand the l.h.s. using integration by parts [9,4] as 

f u(2)al.11 dV = f u(2)aL1)n. dA - f u(2)aL1) dV. J 1].1 J l} , 1.1 lJ • 
V A V 

(9,41) 

(9,42) 

(9,43) 

The first term on the r.h.s. ofEq. (9,43) is written in terms of the traction ~ as 

f u(~)al.1)n. dA = f u(2)T(1) dA 
I) I) I J ) 

A A 

(9,44) 

using Eq. (2.11). The second term may be manipulated into a form that is 
symmetric in (1) and (2) by first rearranging the integrand as 

recognizing the summation convention. 
Continuing, 

We use the constitutive law, Eq. (4.30) to replace elJ) and produce 

1 
e(2)aL1) = - [(1 + v)al~)al.1) - v«5 .. ak(2k )al1 )] 
1)1) E 1)1) I) lJ 

Obviously, Eq. (9.46b) is symmetric. 
Finally using Eqs. (9,44) and (9,46), Eq. (9,42) becomes 

f u(2)T(1) dA - r .!.. [(1 + v)al,oal2) - vaWaP)] dV 
A J) J v E I) lJ )) 

= - pwi Iv uY)u?) dV 

(9,45) 

(9,46a) 

(9,46b) 

(9,47) 

If the calculations on Eq. (9.39) are repeated for uY), the resulting equation 
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will be identical to Eq. (9.47) with the indices 1 and 2 interchanged. Then 
subtracting the two equations, we find 

L (UY)1j(I) - uY)1j(2»)dA = -p(wi - wn Iv uY)uY)dV (9.48) 

recognizing the symmetry. We refer to Betti's Law, in integral form [9.5], 
which is to be discussed in Sect. 10.5.4, to set the l.h.s. = 0, whereupon 

-p(wi - wn Iv uY)uY)dV = 0 (9.49) 

Since WI and W 2 are presumed to be different, 

f U(2)u(1) dV = 0 
J J 

V 

(9.50) 

is the statement of orthogonality. 

9.3.3 Rayleigh's Quotient 

It is often useful to rewrite Eq. (9.39) in a form in which w 2 is expressed 
explicitly. Taking the first two terms in operator form 

1 
Uj,ii + 1 _ 2v Ui,ij = LiUj), (9.51) 

we have 

Lj(u) = -fw2uj . (9.52) 

We multiply by uj and integrate to get 

r uL(u.)dV 
2 G Jv J J J 

W = -- , (9.53) 

p Iv ujujdV 

which is called Rayleigh's quotient [9.3]. 
This form allows the mode shapes to be approximated in the manner of 

the Rayleigh-Ritz method, Section 10.7.2. So long as the assumed functions 
satisfy the boundary conditions, good approximations for the eigenvalues, 
which are the natural frequencies of the system, may be obtained. 

9.3.4 Axial Vibration of a Bar 

As an elementary example, we consider a slender bar of length H which is 
oriented along the x-axis in Fig. 9.1 and which vibrates in an axial mode as 
discussed in Sec. 9.2.2. 
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In accordance with the elementary theory, we neglect the transverse dis­
placements uy and Uz . Then Eq. (9.37) becomes 

(A + 2f.l)ux ,xx + pw2ux = 0 (9.54) 

in the manner of Eq. (9.4). Equation (9.54) is written compactly as 

(9.55) 

following Eq. (9.5). Also, the assumption of one-dimensional motion implies 
that Poisson's ratio v = 0 so that 

Cp = Cp1 = A· (9.56) 

The spatial solution is taken as 

( ) . w w 
Ux x = Asm-x + Bcos-x. 

Cp1 CP1 
(9.57) 

Now the boundary conditions on the bar must be considered to evaluate 
w. For a bar that is free to displace at both ends, the displacement oscillates 
between + Ux and - Ux at each end. Since the stress-free condition implies 
that the axial strain is zero, ux,x = O. Thus, we have 

(9.58) 

From Eq. (9.57), 

u = - Acos-x - Bsm-x w[ w . w ] 
X,x cPl cPl cPl 

(9.59) 

so that, for a nontrivial solution, we have A = 0 and B i= 0 if 

. w 0 sm-H= . (9.60) 
CP1 

Equation (9.60) is a transcendental equation which is typical of eigenvalue 
problems. It is satisfied when 

or 

w 
-H = nn 
Cpl 

nn 
w =-CP1 

H 

(a) (9.61) 

(b) (9.61) 
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This result is identical to that obtained from the specialized formulation for 
a one-dimensional bar [9.5]. 

The complete solution is found by substituting w into Eqs. (9.57) and (9.35) 
and then recombining these equations into Eq. (9.31). Thus, 

nn 
uAx) = Bcos H x (9.62) 

f(t) = Ccoswt + Dsinwt (9.63) 

and 

(9.64) 

In the last equation, the constants have been combined and the solution 
specified for a harmonic n. 

Free vibration and the propagation of elastic waves discussed in the pre­
ceding sections may be initiated by a specified displacement or velocity distri­
bution at t = O. This distribution may be in the form of a single harmonic, i.e., 

. I nn . nn b I proportlona to cos H x or sm H x, or may e a more genera pattern re-

quiring several terms of the form of Eq. (9.64) to describe. Thus, the complete 
solution is 

(9.65) 

Correspondingly, the initial conditions are specified in terms of a similar 
Fourier series and the constants Cn and Dn are evaluated harmonic by har­
monic, using the orthogonality property discussed in Sec. 9.3.2. 

Additional details on the vibration of prismatic bars with various bound­
ary conditions are presented in Jacobsen and Ayre [9.5]. 

9.4 Uniform Rotation of a Beam 

9.4.1 Equilibrium Equations 

We consider a beam with an arbitrary cross section, as shown Fig. 9.5, which 
rotates about the x-axis with a constant angular velocity n. The cross­
sectional x and yare chosen to be principal axes in order to preclude torsion 
due to asymmetric body forces. The beam is subjected to extension along the 
z-axis and bending in the y-z plane and is essentially a combination of the 
problems discussed in Sections 6.2 and 6.3. 

This model represents an idealized turbine blade, which is of great practi­
cal interest. The self-weight of the member is neglected, as well as the time-
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x 

Fig. 9.5. Cross section of rotating beam. 

dependent effects in the transient phase while the blade is brought up to 
speed. Essentially, each point in the member is subjected to a centrifugal 
acceleration Rn,zez where R(y, z) is the projection of the position vector 
emanating from the origin onto the y-z plane. The components of the inertial 
force are 

fy = p Rn,z(y/R) = p02y (a) 

and (9.66) 

fz = pR02(Z/R) = p02Z (b) 

respectively and Eqs (2.46) for (x, y, z) become 

(Jxx.x + (Jyx,y + (Jzx.z = 0 (a) 

(Jxy.x + (Jyy,y + (Jzx,z + p02y = 0 (b) (9.67) 

(Jxz.x + (Jyz,y + (Jzz,z + p02Z = O. (c) 

9.4.2 Boundary Conditions 

All lateral boundaries and the end z = L are presumed to be traction-free. 
For the lateral boundaries, we write the components ofthe traction from Eq. 
(2.44) as 

For the end z = L, 

Tx = (Jxxnx + (Jyxny = 0 

1'y = (Jxynx + (Jyyny = 0 

T" = (Jxznx + (Jyzny = O. 

(a) 

(b) (9.68) 

(c) 

(9.69) 
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9.4.3 Semi-Inverse Solution 

Employing the semi-inverse method of St. Venant, which has been discussed 
in Section 5.7 and used extensively in Chapter 6, Stephen and Wang [9.6] 
stated the following assumptions: 

(a) Shearing stresses and strains in the z direction are zero: 

(9.70) 

(b) Planar stresses and strains are independent of z: 

and Gxy # J(z). (9.71) 

(c) Longitudinal strain taken in the form 

1 p 
Gzz = Go + 2. lE Q2 (L2 - Z2) - KoX - K~Y + G1(X 2 + y2) (9.72) 

where Go, G1' Ko and K~ are constants to be determined. In Eq. (9.72) the 
first two terms are similar to those found in the solution for the extension 
problem in Section 6.2, Eq. (6.5c), but one degree higher since the loading 
here is linear in z rather than constant. Similarly, the last term represents 
the distortion of the cross section into a paraboloid of revolution as de­
scribed by Eq. (6. 19c). The third and fourth terms are associated with bending 
since they are linear in the cross-sectional coordinates. 

With these assumptions, the equilibrium equations (9.67) reduce to 

O"xx,x + O"yx,y = 0 

O"xy,x + O"yy,y + pQ2y = 0 

O"zz,z + pQ2z = 0 

and the St. Venant compatibility equations, Eqs. 
become 

Gxx,yy + Gyy,xx = 2Gxy ,xy 

Gyy,zz + Gzz,yy = 0 

Gzz,xx + Gxx,zz = 0 

Gxx,yz = 0 

Gyy,xz = 0 

Gzz,xy = O. 

Note that Eq. (9.72) satisfies Eq. (9.74f). 
A stress function ¢J(x, y) such that 

O"xx = ¢J,yy 

O"xy = -¢J,XY 

(3.59), 

(a) 

(b) (9.73) 

(c) 

for (x,y,z) 

(a) 

(b) 

(c) 
(9.74) 

(d) 

(e) 

(f) 

(a) 

(b) (9.75) 

(c) 
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satisfies the equilibrium equations Eq. (9.73a,b). 
We now consider Hooke's law specialized from the first three of Eqs. 

(4.29b): 

Gxx = (1/E)O'xx - (v/E)(O'yy + O'zz) 

Gyy = (1/E)O'yy - (v/E)(O'xx + O'zz) 

Gzz = (1/E)O'zz - (v/E)(O'xx + O'yy). 

(a) 

(b) (9.76) 

(c) 

The first two equations are differentiated with respect to z, recalling Eqs. 
(9.71), to produce 

Gxx.zz = Gyy,zz = -(v/E)O'zz,zz = (v/E)pQz. (9.77) 

The last equality is stated after considering Eq. (9.73c). Returning to compati­
bility equations Eqs. (9.74b,c) gives 

Gzz,yy = Gzz,xx = -(v/E)pQz 

from which we may assign the value 

Gl = -t(v/E)pQz 

(9.78a) 

(9.78b) 

to the constant in Eq. (9.72), since it is the only term which multiplies qua­
dratic functions of x and y. 

The remaining extensional stress-strain equation Eq. (9.76c) is now solved 
for O'zz in terms of the remaining unknown constants in Eq. (9.72): 

O'zz = EBo + tpQZ(U - zZ) - EKox - EK~y 

-tvpQZ(XZ + /) + v(O'xx + O'yy). (9.79) 

At this point the evaluation of these constants requires consideration of the 
resultant force and bending moment on the cross section. 

We first form the resultant axial force on the cross section as 

where 

and 

T(z) = L O'zzdxdy 

= EAGo + tpQzA(LZ - zZ) - tvpQz(Ix + Iy) 

+ v L (O'xx + O'yy) dx dy 

A = area of cross section, 

Ix = LyZdXdY 

(9.80) 

(a) 

(9.81 ) 

(b) 
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are the principal moments of inertia. Note that the first moment terms in Eq. 
(9.79) do not contribute to the integral. 

Next, we focus on the last term of T(z) and recall the useful relationship 
between contour and area integrals known as Green's theorem. From Eq. 
(1.13), 

~c (Pdx + Qdy) = L (Q,x - P,y)dxdy (9.82) 

where P(x, y) and Q(x, y) are C1 continuous functions. 
Now we express 

(9.83) 

where 

(a) (9.84) 

and 

12 = - L {x(O'xx,x + O'Xy,y) + Y(O'yX,X + O'yy,y)}dxdy. (b) (9.84) 

The separation of the integral into two parts may be easily verified by ex­
panding the derivatives. Involking Green's theorem Eq. (9.82) with 

(a) 

and (9.85) 

P = - (xO'yX + YO'yy) (b) 

II = t (-xO'yx dx - YO'yydx + xO'xxdy + YO'xydy) 

Further, we may write the contour integral in terms of the differential con­
tour increment ds by noting the n - s coordinates on the contour in Fig. 9.5 
and refering to Eq. (2.18) which gives 

dy 
-=S =e 's=n ds y y x 

(a) (9.87) 
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and 

dx 
ds = Sx = ex·s = -ny. (b) (9.87) 

Replacing dy and dx in Eq. (9.86) by the relationships in terms of ds produces 

11 = f {x(O"xxnx + O"YXny) + y(O"YXnX + O"yyny)} ds (9.88) 

which vanishes by virtue of the lateral bounding conditions, Eq. (9.68a,b). 
Thus, we have remaining in Eq. (9.83) 

12 = L (O"xx + O"yy) dx dy 

= L pO?y2 dxdy (9.89) 

by comparison of Eq. (9.84b) to the equilibrium equations, Eqs. (9.73a,b). 
Finally, returning to the original term in Eq. (9.80) and noting Eq. (9.81b), 

v L (O"xx + O"yy) dx dy = vpQ2 Ix (9.90) 

and the resultant axial force becomes 

T(z) = EAeo + tpQ2 A(L2 - Z2) + tvpQ2(Ix - Iy). (9.91) 

The stress-free end condition 

T(L) = 0 (9.92) 

requires that 

(9.93) 

from which 

(9.94) 

The constants "0 and ,,~ in Eq. (9.79) remain to be evaluated by considering 
the bending moments on the cross section 

Mx = - L O"zzydxdy (a) 

(9.95) 

(b) 
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First, consider Mx 

MAz) = - L O'zzy dx dy 

= - L {£BoY + !pQ2(L2 - x 2)y - EKoXy - EK~y2 

- JVpQ2(X 2 + y2)y + v(O'xx + O'yy)y}dxdy. 

The first three terms do not contribute since x and yare principal axes, so 

MAz) = EK~lx + JvpQ2 L (x 2 + y2)ydxdy - v L (O'xx + O'yy)ydxdy. 

(9.96) 

Again, we have an area integral to be transformed, 

(9.97) 

where 

(a) 

14 = - L {xY(O'xx.x + O'Xy.y) + J(y2 - x 2)(O'yX,X + O'yy,y)} dxdy, (b) 

(9.98) 

which is easily verified. Then taking 

p = - [J(y2 - x 2)O'yy + xYO'yx] (a) 

and (9.99) 

(b) 

in Eq. (9.82), 

13 = ~ {_J(y2 - x 2)O'yydx - xYO'YXdx + xYO'xxdy + J(y2 - x 2)O'xy dy} 

= f {xY(O'xxdy - O'yx dx) + J(y2 - x 2)(O'xy dy - O'yydx)}. (9.100) 

The terms in parentheses are identical to those in Eq. (9.86), so that 13 = 0 
and 
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14 = L (O"xx + O"yy)Y dx dy 

= ~pQ2 L (y2 - x2)ydxdy (9.101) 

from Eqs. (9.98b) and (9.73a,b). Continuing from Eq. (9.96) after including 
Eq. (9.101) multiplied by -v, 

(9.102) 

Similarly, we may compute 

My(z) = -ElyKO + !VpQ2 L (y2 - x2)xdxdy. (9.103) 

These expressions are independent of z and are required to vanish at z = 0; 
hence, 

1 vp f Ko = -2 _Q2 (y2 - x2)xdxdy 
Ely A 

(9.104) 

and 

(9.105) 

This completes the general solutions for O"zz, Eq. (9.79), in terms of Go, K o, K~ 
and ¢J which are functions of the cross-sectional geometry. It is also useful to 
have expressions for the direct strains as defined in Eq. (9.76), incorporating 
Go from Eq. (9.93), and Ko and K~ from Eqs. (9.104) and (9.105) into the 
equation for O"zz. The results are given by Stephen and Wang [9.6J and are 
used along with the shear stain Gxy , which may be obtained from Eq. (4.29b), 
to derive a two-dimensional approximation. 

9.4.4 Two-Dimensional Problem 

A solution independent of the axial coordinate z is sought by considering the 
first of the compatibility equations, Eq. (9.74a), in the form 

The resulting equation is found from Eqs. (9.76) and (9.75) as 

'\j4¢J = _v(l + 3V) PQ 2. 
1 - v2 

(9.106) 

(9.107) 
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The remainder of the compatibility equations (9.74) are satisfied identically. 
The applicable boundary conditions, Eqs. (9.68a,b), may be written in 

terms of f/J and the differential along the contour, ds, by using Eqs. (9.75) for 
the stress and Eqs. (9.87) for the components of the normal to the contour. 
The relationships are 

d dy d dx 
= dy (f/J,y) ds + dx (f/J,y) ds 

d 
= ds (f/J,y) 

=0 (a) (9.108) 

and 

dy 1 2 2 dx 
1'y = -f/J,XY ds - [f/J,xx - "2pQ y ] ds 

d 1 2 2 dx 
= ds (f/J,x) + "2pQ y ds 

=0. (b) (9.108) 

9.4.5 Circular Cross Section 

Stephen and Wang [9.6] give a solution for the stress function for a member 
with a circular cross section, Fig. 7.1, with the contour equation 

(9.109) 

in the form 

(9.110) 

As in previous examples, the equation of the contour is included in the stress 
function. This function is easily shown to satisfy Eq. (9.107) by differentiation 
and substitution. Also, it must satisfy Eqs. (9.108). In order to compute the 
derivatives along the boundary when f/J = f/J(x, y), the chain rule 

(9.111) 

is required. For a circular contour, 



9.4 Uniform Rotation of a Beam 177 

dx dx dO 
ds - dO ds' 

dy dy dO 
ds - dO ds' 

(9.112) 

With x = rcos 0 and y = r sin 0, Eqs. (7.20a,b), and noting from Fig. 7.1 
that ds = r dO 

dO 1 
--

ds r' 
dx . -y 
- = -smO =-' 
ds r ' 

dy x 
- = cosO =­
ds r 

so that the differentiation formula, Eq. (9.111), becomes 

d(O) = _() :!:' + () ~. 
ds ,x r ,y r 

(9.113) 

(9.114) 

This may be directly applied to Eq. (9.110) to check Eqs. (9.108). To illustrate, 
consider Eq. (9.108a), and form 

( V + 3v2 ) pQ2 2 2 2 
¢J,y = - 1 _ v2 64 4y(x + y - r ) 

pQ2 

+ 64 (4y3 + 4x2y - 4r2y) 

d y x 
ds (¢J,y) = -(¢J,y),x,. + (¢J,y),y,. 

= (V + 3v2) pQ2(2 ):!:' _ pQ2(8 ):!:' 
1 - v2 16 xy r 64 xy r 

( A. ) ~ = _ (V + 3V2) pQ2 (2 3 2 _ 2) ~ + 'I',y ,y r 1 _ v2 16 x + y r r 

PQ2 x 
+ 64 4(3y2 + x 2 - r2),.. 

The first set of variable terms becomes 

X(2y2 - x2 - 3y2 + r2) -+ 0 on C. 

while the second set is 

x( _8y2 + 12y2 + 4x2 - 4r2) -+ 0 on C 

(9.115) 

(a) 

(9.116) 

(b) 

(9.117) 

(9.118) 

so that Eq. (9.108a) is satisfied. The stresses Uxx , Uyy and uxy are evaluated 
from Eqs. (9.75) as 

pQ2 (V + 3V2) 
Uxx = 64 [12y2 + 4x2 - 4r2 - 4 1 _ v2 (x2 + 3y2 - r2)] (a) 

pQ2 2 2 2 [ (V + 3v2)] 
Uyy = 64 [12x + 4y - 4r ] 1 - 1 _ v2 

(9.119) 
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(b) 

(c) 

To compute O'zz, we must first consider the geometric constants 60 , Ko and K~. 
For the circular cross section, Ix = Iy so that 60 = 0, Eq. (9.93). Likewise, the 
functions Ko and K~, when evaluated with x and y from Eq. (9.113), vanish for 
this cross section. Therefore, from Eq. (9.79) 

(9.120) 

Exercises 

9.1 Perform the calculations in Sec. 9.3.2 using uj2) in place of ujl). 

9.2 Assume that the motion of the free-free bar solved in Sec. 9.3.4 is initiated by 
equal and opposite static forces of magnitude P at each end which are released at 
t = O. The area and Young's modulus are given by A and E, respectively. Find Ux ' 

9.3 For the bar solved in Problem 9.2, evaluate the stress. 

9.4 Consider the vibration of an elastic bar as solved in Sec. 9.3.4 but with one end 
fixed and the other free. Determine Ux ' 

9.5 Repeat Problem 9.2 for the boundary conditions of Problem 9.4. 

9.6 Repeat Problem 9.3 for the boundary conditions of Problem 9.4. 

9.7 In Ref. [9.6] a solution for the uniform rotation of a shaft with an elliptical cross 
section with the equation 

x2 y2 
-+--1=0 D2 B2 

is given. The cross section is shown in Fig 6.7(a). The stress function is 

A 2 2(x2 y2 )2 Po.(B)2 4 po. 2 2 
(,b(x,y) = gD B D2 + B2 - 1 . - 24 15 x + 4 D x 

where 

Verify that 
(a) (,b satisfies Eqs. (9.107) and (9.108). 
(b) Ko and K~ are zero. 
(c) And compute the stresses. 
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CHAPTER 10 

Energy Principles 

10.1 Introduction 

The theory of elasticity may be developed from energy considerations, lead­
ing to the field equations in the form of differential equations. This approach 
does not promise any computational advantage from the standpoint of ana­
lytical solutions, since the same equations found from the classical formula­
tions are produced. However, for the pursuit of numerical solutions, energy 
methods are extensively developed and are the basis of powerful contempo­
rary programs for solving complex problems in solid mechanics. This devel­
opment is rather recent and was brought about by the use of the digital 
computer. This probably explains the relatively few applications of energy 
methods to elasticity problems found in the classical texts. However, even in 
the 18th century, the mathematician Leonhard Euler contrasted the direct 
formulation of the governing differential equations, known then as the meth­
od of effective causes, with the energy approach, known then as the method 
of final causes, in an argument that skillfully blended science and theology 
(this may have been diplomatic considering the well-known plight of perhaps 
the first "elastician," Galileo, a century earlier). Euler wrote [10.1] 

"Since the fabric of the universe is most perfect, and is the work of a most wise 
Creator, nothing whatsoever takes place in the universe in which some relation of 
maximum and minimum does not appear. Wherefore there is absolutely no doubt 
that every effect in the universe can be explained as satisfactorily from final causes, 
by the aid of the method of maxima and minima, as it can from the effective causes 
themselves ... " 

In this chapter, we derive the theoretical underpinnings for energy-based 
numerical methods, but we do not discuss actual solution techniques since 
that is a vast field in itself. 

180 
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to.2 Conservation of Energy 

Energy methods are developed from the law of conservation of energy. As­
suming that a set of loads is applied slowly and that we have an adiabatic 
deformation process, 

(10.1) 

where WE is the work done by the external loading and Wv is the change in 
internal energy. With an elastic material, the work WE will be recovered if the 
loads are removed, so that Wv may be regarded as stored energy, called strain 
energy. We previously introduced this concept in Section 4.3 and will develop 
it further in the next section. 

to.3 Strain Energy 

10.3.1 Strain Energy Density 

We represent the strain energy in the form 

Wv = Iv WdV, (10.2) 

where the general form of the strain energy density W has been stated in Eq. 
(4.8). For the case of isotropic materials, we consider Eqs. (4.2a) to write 

F or the linear elastic case, 

using Eq. (4.18). 

W = r
E

. (2JlBij + Ac5ijBkk ) dBij 
J", 

(10.3) 

It is also convenient to define a dual quantity to W, following Eq. (4.2a), 

oW* 
B(iil =--

OCT(ii) 

10W* 
B .. =--­

'J 2 OCTij 

(10.4) 

i#j 

where W* is called the complementary strain energy density. Following Eq. 
(10.3), we have 
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L-______ ~~~ __________ ~ € 

Fig. 10.1. Stress-strain curve for nonlinear elastic material. 

(10.5) 

For the linear elastic case, Eq. (4.19) gives 

1 A 2 

W* = 4,u ai/iij - 4,u(2,u + 3A) (akk) = W (10.6) 

since the same equation may be obtained from Eq. (10.3) using Eq. (4.19). 
It is of interest to graphically interpret the strain energy and complemen­

tary strain energy densities for a one-dimensional elastic, but not necessarily 
linear, material, as shown in Fig. 10.1. For the linear case, the densities Wand 
W* are obviously equal, while for the nonlinear case they are not. 

We may illustrate the evaluation of W for a basic problem in elasticity, the 
prismatic bar under axial load previously solved in Section 6.2. We first 
rewrite Eq. (10.6) for the principal stress state (aij = 0, i =1= j) 

* __ 1[ A ] 2 
W - W - 4,u 1 - (2,u + 3A) (akd (10.7a) 

In terms of the engineering constants, introducing Eq. (4.24c) gives 

1 2 
W = 2E(akk ) . (1O.7b) 

When azz is the only nonzero stress, Eq. (1O.7b) reduces to 

1 2 
W = 2E(azz ) (10.7c) 
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and for the bar with rrzz = yz, 

Then, 

from Eq. (10.2). 

Y2 

W - 2 
- 2E Z • 

y2 AL3 
Wv =---

6 E 

10.3.2 Strain Energy Density of Distortion 

(10.7d) 

(10.8) 

We consider the strain energy density in terms of stress, Eq. (10.6), and con­
vert to engineering constants using Eqs. (4.24). The result is 

1 + v V 2 
W = ~rriPij - 2E(rrkk ) • (10.9) 

Then, we expand the equation for 1,2,3 = x, y, z and get 

(10.10) 

so that we have separated the normal and shearing contributions. 
Equation (10.10) may also be written in terms of the stress invariants, Eqs. 

(2.59), as 

[1O.2J, which emphasizes the nondirectionality of energy. 
Next, we consider principal stress components 

rr = rr(1) rr = rr(2) rr = rr(3) rr rr rr 0 xx 'yy 'zz 'xy = yz = zx = 

and rewrite Eq. (10.11) in the form [1O.2J 

W = (1 + v) {[rr(1) _ rr(2)J 2 + [rr(2) _ rr(3)J 2 + [rr(3) _ rr(1)J2} 

6E 

1 - 2v + __ [rr(l) + rr(2) + rr(3)J 2 

6E ' 

which may be verified by expansion. 

(10.11) 

(10.12) 

(10.13) 
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The second part of Eq. (10.13) represents the mean stress t[cr(1) + cr(2) + 
cr(3)], which contributes only to volume change, as discussed with respect to 
the mean strain in Sec. 3.5. Therefore, the first part represents the strain 
energy density associated with change in shape or distortion, and is so de­
fined. Using Eqs. (4.24a, e), 

1 
Wo = 12G {[cr(l) - cr(2)]2 + [cr(2) - cr(3)]2 + [cr(3) - cr(1)]2}. (10.14) 

This quantity is associated with the failure of elastic materials. 
The term in brackets is recognized as being proportional to the octahedral 

shearing stress, Eq. (2.84b), so that the strain energy density of distortion may 
be written as 

w; = ~ (croct )2 o 4G ns • 
(10.15) 

Therefore, the resolution of the strain energy density into the sum of a vol­
ume change component and a distortional component corresponds to the 
state of stress referred to the octahedral planes. 

10.4 Work of External Loading 

The elastic body is assumed to be loaded by a system of Q external forces F Q' 

where Q indicates the point of application of the force. It is sufficient for our 
introductory purposes to assume that the forces are concentrated or discrete, 
as opposed to being distributed. Corresponding to each force is a displace­
ment uQ• By correspondence, we mean that uQ is at the same point and in the 
same direction as F Q. 

The external work produced is then 

Q 1 
WE = L -2 FQ ·uQ 

Q=l 
(10.16) 

It turns out that the direct application of the principal of conservation of 
energy is rather limited so that more useful forms are now sought. 

10.5 Principle of Virtual Work 

10.5.1 Definitions 

Many problems in structural mechanics can be solved by the application of 
the Principal of Virtual Work, PVW. In this context, the word virtual means 
not real, but not necessarily small. As discussed later, the name "work" is 
somewhat of a misnomer, resulting from the appearance of force-times­
distance products having the units of work in the resulting equations. 
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F,. u, 

(a) (b) 

Fig. 10.2. (a) Elastic body in equilibrium under applied forces; (b) elastic body in 
equilibrium under virtual forces. 

We consider a body in equilibrium under a set of Q applied forces F Q as 
shown in Fig. 10.2 (a). At any point Q in the body, the state of stress is given 
by the components of the stress tensor aij that satisfy the equilibrium equa­
tions Eq. (2.45). Also indicated are the corresponding displacements uQ as 
well as those at unloaded points that will be of interest later. 

Now, the body is subjected to a second system of Q forces in equilibrium, 
bFQ , as shown in Fig. 10.2 (b). This produces a displaced configuration bUQ 

that does not violate the prescribed boundary conditions. (This constraint is 
not strictly necessary, but is sufficient for our purposes.) 

Note that the set Q includes all referenced points in either system. For 
unloaded points in Fig. 1O.2(a), FQ = 0; and in Fig. 10.2(b), bFQ = O. 

In the second system, the stresses, strains and displacement components at 
Q are ba;i' be;i' and bu;, respectively. The bFQ are termed virtual forces, the 
bUQ are called virtual displacements, and 

1 
be·· = -(bu . . + bu· .) 

IJ 2 I,) ),1 
(10.17) 

are virtual strains. Furthermore, the product of either FQ' bUQ or bFQ' uQ is 
known as external virtual work. Clearly, the product is not conventional work 
since each component is due to a different source; that is, bUQ is not due to or 
caused by FQ• Since we have stipulated that the virtual forces and virtual 
distortions, Fig. 10.2(b), are applied after the actual or real loading system 
and displacements Fig. 10.2 (a), we may envisage virtual work as either the 
product of a virtual force being "dragged through" a real displacement, or a 
virtual displacement "acted through" by a real force. The actual work per­
formed by the virtual system, 
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is of no apparent interest here. 

to.S.2 Principle of Virtual Displacements 

We begin with the virtual work due to virtual displacements bUQ applied to 
a system in equilibrium under a set of surface tractions and body forces 

bWE = t T;bUi dA + Iv /;bUi dV. (10.18) 

The surface integral is transformed, using Eq. (2.11) and the divergence theo­
rem in component form, Eq. (2.32), into 

L T;bUi dA = IA (Jijnjbu i dA 

= Iv ((JijbU;),j dV. 

Substituting Eq. (10.19) into Eq. (10.18) gives 

bWE = f [((Jij,j + /;) bUi + (JijbUi,j] dV 
v 

(10.19) 

(10.20) 

since the first term is the (satisfied) equilibrium equation Eq. (2.45). Next, we 
introduce Eq. (10.17) into Eq. (10,20), recognizing that both i and j become 
repeated indices. This produces 

bWE = Iv (JijbUi,j dV = Iv (Jijbeij dV. (10.21) 

which may be restated as 

(1O.22a) 

where 

bWv = Iv (Jijbeij dV 

= internal virtual work. (10.22b) 

This is the principle of virtual displacements (PVD) derived for a body in 
equilibrium that is subjected to virtual displacements produced by a virtual 
force system also in equilibrium. The important result ofthis derivation is the 
converse: If Eq. (10.22a) is satisfied, then the system is in equilibrium. 
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n 

Fig. 10.3. Elastic continuum. 

To illustrate an application of the PVD, we attempt to re-derive the equa­
tions of equilibrium for an elastic continuum, Fig. 10.3, in terms of displace­
ments. These were previously found in Sec. 5.2 and are given as Eqs. (5.7). 

We first treat the internal virtual work. From Eqs. (10.2) and (10.3), the 
strain energy is 

Wv = Iv [J.lBijBij + ~(Bkk)2 ] dV. (10.23) 

Using explicit notation initially, following the presentation of Forray [10.3], 
and selecting Xl> X 2 , X3 = X, y, Z, as shown on Fig. 10.3, Eq. (10.23) becomes 

Wv = Iv [ G + J.l ) (B;x + B;y + B;z) + 2J.l(B;y + B;z + B;x) 

+ ,l.(BxxByy + ByyBzz + BzzBxx )] dV 

and the internal virtual work is 

+ 2J.l(2Bxy&xy + 2Byz &yz + 2Bzx&zx) 

+ ,l.(Bxx&yy + Byy&xx + Byy&zz 

+ Bzz&yy + Bzz&xx + Bxx&zz)] dV. 

The strain-displacement relations are written from Eq. (3.14) as 

(10.24) 

(10.25) 
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Now, we apply a virtual displacement consisting of only one component, 
say c5ux. The corresponding virtual strain-displacement equations are 

Substituting Eqs. (10.26) and (10.27) into Eq. (10.25) yields 

c5Wv = Iv [ G + fJ. ) 2uxjc5uJ.x + fJ.[(ux.y + uy.J(c5ux).y 

+ (ux,z + uz,x)(c5uJ,z] 

+ A[(Uy,y + uz,z)(c5ux),x]] dV. 

Equation (10.28) may be integrated by parts [10.4] to produce 

c5Wv = - Iv [ G + fJ. ) 2ux,xAc5ux) 

(10.27) 

(10.28) 

+ fJ.(2ux,n + uy,n + uz,n) c5ux + A(Uy,n + uz,n) c5ux] dA (10.29) 

where n is directed along the outer normal to the surface, Fig. 10.3. Since the 
surface terms enter only into the boundary conditions, we concentrate on the 
first integral and rearrange Eq. (10.29) as 

c5Wv = - Iv [2(A + 2fJ.)ux,xx + fJ.(UX,yy + Uy,xy + ux,zz + uz,xz) 

+ A(Uy,yx + uz,zx)] c5ux dV + [Surface terms] 

= - Iv [fJ.(ux,xx + Ux,yy + Ux,zz) + (A + fJ.)(ux,x + Uy,y + Uz,z),x] c5ux dV 

+ [Surface terms] 

= - Iv [fJ.V 2Ux + (A + fJ.)(Au),x] c5ux dV + [Surface terms] 

where 

V2( ) = V( ). V( ) = ( ),ii 

V2( ) is defined in Eq. (LlOb), and 

Au = div u = Ui,i 

as defined in Eq. (Lll). 

(10.30a) 

(10.30b) 

(1O.30c) 
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Next, we have the external virtual work, as given by Eq. (10.18) specialized 
for Ui = Ux : 

bWE = t Txbux dA + Iv fxbux dV 

= Iv fxbux dV + [Surface Terms]. (10.31) 

We now substitute Eqs. (1O.30a) and (10.31) into Eq. (10.21). Since the virtual 
displacement bux is arbitrary, we may equate the coefficients of the volume 
terms in the integrands to get 

(10.32) 

which is Eq. (5.7) withj = x. 
The remaining equations are found by permutation, with a virtual dis­

placement of buy and then buz • 

For completeness, we carry out the same derivation in concise form using 
indicial notation beginning from Eq. (10.23): 

bWv = Iv (2/1Bijbeij + A.Bkkbekk ) dV (10.33a) 

where 

1 
B·· = -(u, . + u .. ) 

IJ 2 I.J ).1 • 
(10.33b) 

With a virtual displacement bu" 

bu, = buibil = bUjbj, 

1 
be·· = - [(bu.) .b., + (bu.) .b.,] 

IJ 2 I .J I ) .1 J 

(10.33c) 

Then, Eq. (1O.33a) becomes 

bWv = Iv [2/1 [~(Ui,j + uj,J ] ~ [(bU,),j + (bu,),;] + A.(Uk,k)(bU,),,] dV 

= Iv [~[(U"j + uj,,)(bU,),j + (ui" + U,,;)(bU,),;] + A.(Uk,d(bU,),,] dV 

(10.33d) 

Integrating by parts produces typically 

Iv Ui,jbU"j = Ui,jbU']surface - Iv Ui,jjbU, (1O.33e) 
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so that 

c:5Wv = - Iv [~(u/.jj + Uj,/j + Ui,/i + u/,;;) + 2(Uk,k),,] c:5u/ dV 

+ [Surface Terms] 

= - Iv [,u(U/),ii + (2 + ,u)(Ui,J,/] c:5u/ dV 

+ [Surface Terms] 

with all dummy indices taken as i. 

(10.34) 

c:5WE is given in Eq. (10.31) with x = 1. Then, setting c:5Wv = c:5WE , equating 
the volume terms, and changing 1 to j, we have 

(10.35) 

which is the same as Eq. 5.7. Thus, we see that the PVD is an artifice for 
establishing equilibrium relationships. 

We may return to the discrete loading system shown in Fig. 10.1(a) and 
write 

(10.36) 

Of interest in Eq. (10.36), in the context of work, is the absence of the familiar 
factor of! [see Eq. (10.16)]. This is explained by insisting that the real load­
ing precedes the virtual distortion, so that the real forces and displacements 
are at full value before the corresponding virtual effects act. 

The main use of this form of the PVW is to compute the set of equilibrating 
forces, one at a time, for a system in which the actual deformations and the 
corresponding stresses are known. Since the choice of the virtual distortion is 
open, it is conveniently selected so that the point of application of the single 
force to be evaluated, say F3 , is given a virtual displacement c:5u 3 , while no 
virtual displacements are permitted at other load points. Equation (1O.22a) 
then reduces to 

(10.37) 

or, for simplicity, choosing c:5u 3 in the direction of F 3, 

F3 = Iv (Jijbeij dV. (10.38) 

A judicious choice of the virtual deformation allows F 3 to be computed. 
The procedure may be repeated to calculate the entire set of Q loads, pro­
vided that the real stresses (Jij and the virtual strains beij , corresponding to 
the particular unit c:5uQ, can be evaluated. This principle is particularly useful 
in rigid plastic analysis where the virtual deformation may be discretized at a 
"plastic hinge." 
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10.5.3 Principle of Virtual Forces 

First we consider the virtual work produced by virtual surface tractions .5Ti 
and virtual body forces Mi . 

.5Wi' = t t5T;ui dA + L t5/;Ui dV 

= Iv t5(Ji/"ij dV 

= .5W: (10.39) 

following the same steps as in the previous section, Eqs. (10.19) through 
(10.22). 

This is the so-called principle of virtual forces PVF, which describes com­
patibility between internal strains and external displacements. 

We now consider the external virtual work produced by virtual forces .5FQ 

Q 

t5Wi' = L .5FQ • uQ• (10.40) 
Q=l 

In this form, the principle is useful for computing displacements, one at a 
time, for a system in which the actual stresses and the corresponding strains 
are known. If the displacement U3, is sought, we choose .5F3 = 1 with all 
other t5FQ = 0, and Eq. (10.39) becomes 

(10.41) 

Equation (10.41) may be solved, provided that the real strains Gij correspond­
ing to the particular t5FQ (in this case .5F3 = 1) can be evaluated. 

A somewhat trivial example is selected to illustrate this technique. The bar 
shown in Fig. 6.1 is again considered, where it is desired to compute the axial 
deformation along the centerline uAO, 0, z). A unit virtual force produces a 
stress t5(Jij = .5(Jzz = 1/ A, and the corresponding strain, given by Eq. (6.4), is 
Gzz = (I/E)yz. Then, Eq. (10.41) becomes 

fz f 1 1 uz(O, 0, z) = - -yz dA dz 
L A A E 

= [ YZ2JZ = ~(Z2 _ L2) 
2E L 2E 

(10.42) 

which checks with Eq. (6.l9c). 

10.5.4 Reciprocal Theorems 

We again refer to the elastic body in Fig. 10.2(a) subjected, in turn, to two 
sets of forces FQ and F; which produce displacements uQ and u~, respec­
tively. The corresponding displacement components, stresses and strains are 
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(U i , (Jij' 8ij) and (ur, (Jt, 8t). Two sequences are considered: 

(1) The F Q applied first, then F:; 
(2) The F: applied first, then FQ• 

For the first case, FQ may be considered as the real system and F: as the 
virtual system; then Eqs. (10.36) and (10.22) give 

t F Q. u~ = r (Jij8t dV. 
Q=l Jv (10.43) 

For the second sequence, 

f F:· UR = f (Ji)8ij dV. (10.44) 
R=l V 

In each case the linear elastic stress strain law Eq. (4.3) is applicable. There­
fore, 

(Jij = Eijkl8kl, 

(Ji) = Eijkl8tl· 

(a) 
(10.45) 

(b) 

After substitution of Eqs. (1O.45a and b) into the r.h.s. of Eqs. (10.43) and 
(10.44), respectively, recognition that the dummy indices may be inter­
changed, and realization that E ijk1 = E klij , it is evident that the r.h.s. of the 
later equations are identical. Then, equating the l.h.s. gives 

Q Ii 
L FQ·u~ = L F:·uR , (10.46) 

Q=l R=l 

which is known at Betti's law, after Enrico Betti. That is, if a linearly elastic 
body is subjected to two separate loading systems, the product of the forces 
on the first system and the corresponding displacements of the second system 
is equal to the product of the forces on the second system and the corre­
sponding displacements of the first system. 

As a special case, let each loading system be a single unit force, applied at 
Q and R, respectively. Then Eq. (10.46) reduces to 

(10.47) 

which is known as Maxwell's law of reciprocal displacements after the 19th 
century physicist James Clerk Maxwell. That is, the displacement at Q due to 
a unit force at R is equal to the displacement at R due to a unit force at Q-a 
remarkable result. Moreover, the unit "forces" do not have to even be of the 
same type, that is, F Q may be an actual force and F~ a unit moment; where­
upon u~ is a displacement, but UR is a rotation. Still, they are equal. 

10.6 Variational Principles 

10.6.1 Definitions 

The PVW may be recast in the form of variational theorems to remove the 
necessity of dealing with the virtual system per se. We concisely define the 
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variation operation b( ) as an arbitrary linear increment of a functional (a 
generalized function) that satisfies all constraints on the body, including 
maintenance of equilibrium. As a simple example, a virtual displacement bu; 
may be interpreted as a variation on the displacement field U;. The variation 
of a function is computationally the same as the differential, so that 

b(u;u;) = b(u;)2 = 2u;bu; = 2u;<5;jbUj 

and 

10.6.2 Principle of Minimum Total Potential Energy 

Corresponding to bu;, we have the variation of the strain field bBij. We now 
proceed to compute the resulting variation of the internal strain energy Eq. 
(10.2) with the strain energy density in the form of Eq. (10.3), 

bWv = 15 t [IlB;ilij + ~(Bkk)2 ] dV 

= t ([1l2BijbBij + ~2BkkbijbBijJ dV, 

or using Eq. (4.18), 

(10.48) 

In a similar manner, the external virtual work 15 WE may be equated to the 
work done by the surface tractions r; and body forces;; during the variation 
using Eq. (10.18). It is convenient to represent these contributions in terms of 
potential functions [10.5] 

off 
T=-­
'ou; , 

Of 
;; = -",. 

uU; 

When such functions exist, Eq. (10.18) may be written as 

bWE = t §ibU; dA + fjibU; dV 

= -f off bu· dA - r 01 Du· dV 
A au; I J v au; I 

= -15 t ff dA - D tldV 

(a) 

(10.49) 

(b) 

(10.50) 
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where VE is defined as the potential of the external forces, given by 

VE = t ff dA + Iv I dV (10.51) 

Further, it is assumed that the surface and body forces are vector point 
functions of position only; that is, they are not dependent on the deformation 
of the body, either in magnitude or direction. This type of force field is said 
to be conservative and encompasses a large majority of problems in solid 
mechanics. In this case, 

and 

VE = -f T;ui dA - f /;u i dV 
A V 

(a) 
(10.52) 

(b) 

(c) (10.52) 

The principle of minimum total potential energy PMPE is properly writ­
ten as 

(10.53) 

in which II is called the potential energy functional. The form of Eq. (10.53) 
emphasizes that both terms of II are subjected to the same variation and that 
the variation is performed after Wv and VE are evaluated and combined. This 
is a so-called extremum statement since only the first variation is expressed. 
To show the actual minimum character, the second variation would have to 
be considered, but this is beyond our scope. 

This principle implies that the correct displacement state of all those states 
which may satisfy the boundary conditions is that which makes the total 
potential energy a minimum. The great utility of the PMPE is that it is 
relatively straightforward to approximate displacement fields by shape func­
tions that satisfy the kinematic boundary conditions, and to scale these fields 
by minimizing the resulting total potential energy. We illustrate this point in 
a later section. 

10.6.3 Principle of Minimum Complementary Energy 

Recalling that two versions of the virtual work principle were derived, de­
pending on which form of external virtual work was manipulated, it follows 
that a dual to the PMPE can be created by focusing on the stress field (Jij and 
the variation (j(Jij. 

With the strain energy density in the form of Eq. (10.6) and the system 
subjected to an arbitrary (j(Jij' we have 
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bW; = b L [4~ (JiPij - 411(211).+ 3),) «(Jkk)2] dV 

= L [2~ (Jijb(Jij - 211(211).+ 3),) (Jkkbijb(Jij] dV, 

or, using Eq. (4.19), 

(10.54) 

where bW; is the internal virtual work, as derived in Eq. (10.39). 
Analogous to Eq. (10.50), we may represent the external virtual work in 

potential form 

bWI = t n;Ui dA + 1 b/;ui dV = -bVI, (10.55) 

where VI = VE as given by Eq. (1O.52c), for conservative fields. Finally, the 
principle of minimum complementary energy PMCE is properly written as 

bII* = b(W; + VI) = 0, (10.56) 

where II* is called the complementary energy functional. Again, it is appar­
ent that the variations are performed on II* rather than on the individual 
terms. 

This principle implies that the correct stress state of all those that satisfy 
equilibrium is that which makes the total complementary energy a minimum. 
In contrast to the attractiveness of selecting displacement functions that sat­
isfy compatibility, it may be more difficult to find stress distributions that 
satisfy equilibrium. 

For an elastic, isotropic structure, W; = Wv and VI = VE • However, the 
variations of these quantities that appear in the foregoing principles are not 
equal since in the PMPE, the displacements are varied; while in the PMCE, 
the stresses are varied. 

10.7 Direct Variational Methods 

10.7.1 Motivation 

As we mentioned in the introductory comments to this chapter, the acceler­
ated prominence of energy methods for the solution of elasticity problems is 
a fairly recent development. The underlying basis of most of the computer­
based techniques, which have come to be known as finite element methods, 
are the previously derived variational principles, together with the appropri­
ate numerical analysis algorithms. Using the PMPE as an example, functions 
that satisfy the kinematic constraints are selected to represent the dependent 
variables, which are most frequently generalized displacements. These so-
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called shape or comparison functions are scaled in accordance with the PMPE 
to provide the best approximation to equilibrium. To be specific, recall how 
a sine wave may closely match the deformation of a simply supported beam, 
both under static loading and in free vibration. 

In the course of introducing shape functions to represent the generalized 
displacements, the extremum problem of the calculus of variations is trans­
formed to the maximum-minimum problem of the classical calculus. Such 
techniques are termed direct variational methods. The treatment of the vi­
bration of elastic bodies by Lord Rayleigh (John W. Strutt) in Theory of 
Sound [10.6] is probably the origin of this approach, and it is fitting that the 
Rayleigh-Ritz method be recognized as the most prominent direct method. 

10.7.2 Rayleigh-Ritz Method 

To illustrate the Rayleigh-Ritz idea, we focus on Eq. (10.53) where both Wv 
and VE are regarded as functions of the displacement field Ui • We select kine­
matically admissible polynomials for each U i consisting of ni terms 

U i ~ ui = CiO + Cilx + Ci2 y + Ci3 Z + Ci4 X2 + ... 

(10.57) 

where the Cij are as yet undetermined coefficients; Ui represents ux , uy and Uz ' 

in turn; and m, p and q are the exponents of x, y and z up to m, p and q, in 
each polynomial. 

After the introduction of the three Eqs. (10.57) into Eq. (10.2), expressed in 
terms of displacements using Eqs. (10.3) and (3.14), and then into Eqs. (10.52) 
and (10.53), the subsequent integration and minimization leads to 

n, an 
bn(u;) = I -bCij , 

j=l aCij 

where the usual summation convention applies on i. 

(10.58) 

Since the variations bCij are arbitrary. Eq. (10.58) may be satisfied only if 

an 
- = 0 i = 1, 2, 3; j = 1,2, ... , ni , (10.59) 
aCij 

which produce a set of 3(ni + n2 + n3 ) simultaneous algebraic equations for 
the unknown coefficients. With the coefficients Cij evaluated, Eqs. (10.57) 
represent the displacements over the domain; the strains and stresses may be 
computed accordingly from the laws of the theory of elasticity. 

A similar technique may be applied to minimize the functional n* given by 
Eq. (10.56). 

10.7.3 Torsion of Rectangular Cross Section 

We return to the St. Venant torsion solution for an illustration of the 
Rayleigh-Ritz method. Here, we study a rectangular cross section as shown 
in Fig. 10.4, an elusive problem by analytical means. 
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Fig. 10.4. Rectangular cross section. 
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First, we consider the strain energy Wv defined by Eq. (10.2) with the 
density W given by Eq. (lOA). Based on the developments in Section 604.2, the 
formulation is in terms of the stress function r/J: 

(10.60) 

and the strain energy per unit length is given by 

1 II 2 2 Wv = 2G [(r/J,y) + (r/J,X> ] dx dy. (10.61) 

Next, the corresponding potential of the applied loads is given in the form 
of Eq. (1O.52c), using Eq. (6.84): 

VE = -Mrx = -2rx L r/J dA. (10.62) 

Forming the functional as defined in Eq. (10.53), we have 

II = I I {2~ [(r/J,y)2 + (r/J,x)2] - 2rxr/J} dx dy. (10.63) 

At this point, we could address Eq. (10.63) directly, seeking a function r/J 
that is a solution to JII = 0, which is a traditional problem in the calculus of 
variations. However, we follow the Rayleigh-Ritz approach whereby we as­
sume a solution in the form [10.7]. 
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(10.64) 
m n 

This approximation satisfies the condition that r/J must vanish on the bound­
aries x = ±D, y = ±B. 

The solution proceeds by substituting Eq. (10.64) into Eq. (10.63) and in­
tegrating over the area to get the approximate functional II. Thus, the 
variational problem is transformed into a calculus problem, for which the 
equations 

all = 0 
aCmn 

(10.65) 

are used to obtain a set of simultaneous equations for the Cmn coefficients. 
We do not carry out a detailed solution for this problem; however, we may 

illustrate with a coarse approximation, a single term of Eq. (10.64) and a 
square cross section B = D, 

After evaluating 

(fi,y = 2CO(x2 - B2)y 

(fi,x = 2CO(y2 - B2)X, 

(10.66) 

(10.67) 

we are ready to substitute Eqs. (10.66) and (10.67) into Eq. (10.63). However, 
since we may anticipate integrating to find II and then taking aII/aCo, it is 
expedient to commute these operations and write the minimum condition as 

all = fB fB {_I [2(fi a((fi,y) + 2(fi a((fi,x)] _ 2(.( a(fi} dx dy = 0 (10.68) 
aco -B -B 2G ,y aco ,x aco aco 

or 

After integration and simplification, this gives 

(10.70) 

and, from Eq. (6.84), 

(10.71) 

which differs by just over 1% from the correct solution [10.7] 
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Timoshenko and Goodier [10.7] have also used a three-term approxima­
tion, 

(10.72) 

where C1 is a combined coefficient due to symmetry. The resulting M z is but 
0.15% from the correct value. However, the corresponding error in the maxi­
mum shear stress is about 4%. The distribution of the shearing stresses is 
quite similar to the elliptical cross section, as previously illustrated in Section 
6.4.3, with maxima at the center of the sides decreasing to zero at the corners. 

Considering that M z was approximated almost exactly, the relatively large 
error in the maximum shear stress may be surprising; however, we recall that 
the stresses are obtained by differentiation of </J, Eqs. (6.65), so that they may 
indeed be less accurate. This demonstrates that extreme care should be exer­
cised in measuring convergence for approximate solutions, specifically the 
most highly differentiated quantities should be considered. In this case, more 
terms in the approximation will improve convergence. 

10.7.4 Commentary 

Although a considerable mathematical simplification is accomplished, in 
principle, with the Rayleigh-Ritz technique, two rather formidable obsta­
cles are evident once more complex problems are investigated. First, it may 
be difficult to find kinematically admissible representations for displacement 
functions over the entire domain. Secondly, if appropriate functions are 
found, the resulting set of simultaneous algebraic equations may be rather 
large if suitable accuracy is to be achieved. 

These obstables have been overcome by two modern developments. The 
first is the notion that perhaps it is sufficient for the approximate displace­
ment functions to span over only a portion or element of the continuum and 
to be constrained to satisfy interelement continuity. This was apparently 
recognized early on by Courant and Hilbert [10.8], but was not fully ex­
ploited, perhaps since it exacerbates the second obstacle by producing even 
more simultaneous equations. The ultimate solution is achieved by the use of 
a high-speed digital computer with its ability for "number-crunching." Prop­
erly ordered, tens of thousands of simultaneous equations may be solved 
routinely. 

The prophesy of Euler, quoted in the introductory section of this chapter, 
has been richly fulfilled by the development of the finite element method. Yet, 
we should not dismiss the rigorous analytical solutions demanded by the 
theory of elasticity as archaic, for the finite element solutions are still approx­
imations. They need to be calibrated with selected analytical solutions, both 
numerically andjudgmentally, to establish confidence and to quantify errors. 
In the opinion of the author, total reliance on finite element methods or 
other numerical techniques that are implemented in "black box" computer 
programs is surely unwise, probably uneconomical, and possibly unsafe. 
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Exercises 

10.1 Consider the right half of the thin plate shown as Problem 7.8. The boundary 
conditions, which represent a diaphragm, are given by 

ux = 0 along y = 0 and y = b 

uy = 0 along x = 0 and x = a 

For a constant body force h = p, consider the PVD and the Rayleigh-Ritz 
method with displacement functions in the form 

00 { 00 (mnx)} . (nny) 
Ux = n~l Con + m~l C mn cos a sm b 

00 { 00 (nny)} . (mnx) uy = mi;l Dom + n~ Dmn cos b sm -a-

Assuming m = n = 1, compute the displacements, strains, and stresses for a 
square plate with a = b. 

10.2 Use the PVF to verify the solution Eq. (6.62) for the rate of twist in the circular 
rod subject to a constant torque shown in Fig. 6.5. 

10.3 Re-solve the St. Venant torsion of a square cross section discussed in Section 
10.7.3 using the improved approximation Eq. (10.72) and evaluate the shear 
stresses. Compare these results to the values obtained from the one-term 
approximation. 

10.4 Show that Eq. (10.6) can be written in terms of the engineering material con­
stants as [10.9] 

W = 2~((JIl + (Ji2 + (J~3) - ~((Jll(J22 + (Jll(J33 + (J22(J33) 

for a triaxial stress state, (Jij = 0 (i =1= j). 

10.5 A state of plane strain relative to the (x, y) plane has a strain energy density 
function given by 

W = tbll G;x + b22 G;y + b33 G;y + 2b12GxxGyy + 2b13GxxGxy + 2b23GyyGxy 

where the bij are elastic coefficients. Derive the equations of equilibrium in terms 
of the displacements ux(x, y) and uy(x, y) including the effects of body forces 
[10.10]. 
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CHAPTER 11 

Strength and Failure Criteria 

11.1 Introduction 

The application of the rigorous methods of analysis embodied in the theory 
of elasticity is naturally of interest to engineers. While a broad discussion of 
this issue is beyond our scope, it is of interest to introduce the fundamental 
basis of such application, namely, the comparison of the analytical results 
obtained from an elasticity solution to the expected capacity of the resisting 
material. 

Historically, the capacity of a specific material has been stated in terms of 
a failure criteria, whereby the exceedance of a critical value of a controlling 
parameter marks the limit of the functional range. More recently, it has been 
recognized that factors other than an explicit extreme failure criterion may 
govern the limit, such as excessive flexibility or fatigue. Therefore, we choose 
to add the term strength criteria, which implies that there may be additional 
considerations in assessing the utility of the material. Furthermore, we re­
strict the discussion to criteria that are correlated to the pointwise focus of 
the theory, and thereby exclude stability considerations which are strongly 
controlled by topological parameters. 

11.2 Isotropic Materials 

11.2.1 Classical Tests 

For isotropic materials, it is helpful to discuss the measures of capacity with 
respect to tests that are easily performed on small specimens. Most common 
are the uniaxial tensile test and the torsion test, which imparts a state of pure 
shear. The state of stress in the x-y plane from each of these tests is shown in 
Figure 11.1. Within each element, the state of stress for a rotation of 45° is 
shown since this orientation produces the maximum shear stress in the ten­
sion test and the maximum extensional stress in the shear test. 

For calculation purposes, we assume a circular cross section of radius B 
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Fig. 11.1. Tension and torsion tests. 

for each test with an area A = nB2 and polar moment of inertia, Eq. 6.60(b), 
nB4 

ofl, = 2' 
It is of interest in what follows to carry out a rather complete analysis 

and comparison of key parameters in the two classical tests. The parameters 
of interest are measures of stress, strain and energy. 

We first consider stress quantities. In the tensile test, the load produces an 
axial stress 

(11.1) 

while in the torsion test, the torque produces a shearing stress, Eq. (6.61) 

T TB 2T 
(Jxy = T = nB3 ' 

c 

On the 45° planes, the respective stresses are 

pIp 
(Jx'y' = -:2 (Jxx 

(11.2) 

(11.3) 

from Eq. (2.13) with iY.x'x = f and iY.y'x = - f for the tensile test, and 

(11.4) 

for the torsion test since the stress state is pure shear. 
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We may also evaluate the octahedral shearing stresses for each case using 
Eq. (2.84b). For the tensile test, 

aoctP = ! [(a P )2 + (-aP )2]1/2 
ns 3 xx xx 

(11.5) 

1 
aoctT = _[(aT + a T)2 + (_a T )2 + (_a T)2]1/2 

ns 3 xy xy xy xy 

(11.6) 

Turning to the strains, for the tensile test the maximum normal strain is 

(11. 7) 

while the corresponding value in the torsion test may be evaluated from Eq. 
(4.29b), referred to the 45° axes, 

(11.8) 

We now consider energy measures. The strain energy density for a uniaxial 
load is given by Eq. (10. 7b), which is for this case 

(11.9) 

In the torsion test 

(11.10) 

Finally, we consider the strain energy density of distortion, as derived in 
Eq. (10.14). For the tensile test, 

Wo = I~G [(a;x)2 + (-a;J2] 

while for the torsion test, 

1 p2 

= 6G axx (11.11) 



1 T2 

= 2G axy • 
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(11.12) 

Recall from Eq. (10.15) that the octahedral shearing stress and Wo are related. 

11.2.2 Failure Theories 

We first designate the states of stress, strain and energy for the limit states of 
the tension and torsion tests by the subscript c, standing for capacity. Thus, 
the failure loads are Pc and 7;" the stresses a:~, etc. Next, strength theories are 
postulated whereby a single parameter, such as a state of stress, strain, and/or 
energy at a point in an elastic body, is correlated to the like state in either the 
tensile or torsion test situation. Six such theories, referred to a tension test, 
are summarized in Table 11.1 [11.1]. 

It is obvious that a parallel table could be produced with the torsion 
test limits replacing the tension test values. An interesting format for compar­
ing the dual statements is presented in Table 11.2 after Boresi, et al. [11.1]. 
Experimental evidence for metals suggests that the shear yield stress a I; is in 
the range of 0.5 to 0.58 of the tensile yield stress a:~, giving credence to the 
maximum shearing stress and octahedral shearing stress criteria. For more 
complex materials, it is advantageous to work with nondirectional or in­
variant quantities such as energy. 

11.2.3 Invariants 

A direct relationship between the invariants of the stress tensor, which are 
stated in terms of the principal stresses in Eq. (2.61), and the strain energy of 
distortion or octahedral shearing stress criteria may be established. 

Initially, the hydrostatic stresses are discounted as a contributor to the 
plastic deformation of metals, in accordance with experimental observations 
[11.2]. As a result, the mean normal stress as defined in Eq. (3.48) is disre­
garded. Since this quantity is proportional to the first invariant, we concen­
trate on the second and third invariants, defined in Eqs. (2.61) and (2.63), 
respectively, as 

(11.13) 

and 

13 = ~ [a(1)3 + a(2)3 + a(3)3]. (11.14) 

In Section 3.5, the stress tensor was represented as the sum of a mean 
normal stress component and a stress deviator component, Eqs. (3.47)-(3.50). 
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Table 11.1 

Theory/Criteria 

Maximum principal stress 
(Rankine's criterion) 

Maximum shearing stress 
(Tresca's or Coulomb's 
criterion) 

Maximum strain (St. 
Venant's criterion) 

Strain energy density 
(Beltrami and Haigh 
criterion) 

Strain energy density of 
distortion (Huber, von 
Mises, Hencky criterion) 

Octahedral shearing stress 

Statement 

Inelastic action begins when 
the maximum principal 
stress at any point u(l), 

reaches the tensile 
yield stress of the 
material, u!~. 

Inelastic action begins when 
the maximum shearing 
stress at any point in a 
member, u::;ax reaches the 
value which occurs in a 
tensile specimen at the 
onset of yielding, !u;;-. 

Inelastic action begins when 
the maximum (normal) 
strain of any point in a 
member, e(l), reaches the 
value which occurs in a 
tensile specimen at the 

1 
onset of yielding, E u;;-. 

Inelastic action begins when 
the strain energy density 
at any point, W, is equal to 
the value which occurs in 
a tensile specimen at the 

1 
onset of yielding 2E(u;;Y 

Inelastic action begins when 
the strain energy density 
of distortion at any point, 
Wo, is equal to the value 
which occurs in a tensile 
specimen at the onset of 

1 
yielding 6G(u;;Y 

Inelastic action begins when 
the octahedral shearing stress 
at any point, u:;', is equal to 
the value which occurs in a 
tensile specimen at the onset 

of yielding J2 u;;. 
3 

Applicability 

Normal and shear stresses 
acting on other planes 
have no influence. Limited 
to materials that fail by 
brittle fracture since, for 
ductile materials, u T , is 
much less than u;;-. 

Justified for ductile materials 
in which fairly high shears 
are developed. 

Improvement over maxi­
mum principal stress crite­
rion since it accounts for 
biaxial and triaxial stress 
states. Does not reliably 
predict failures in ductile 
materials but is widely 
used for brittle materials 
such as concrete. 

Not applicable for biaxial 
and triaxial stress states. 

Accounts for the delay of in­
elastic action under large 
hydrostatic stresses. Asso­
ciates failure with energy 
absorbed in changing 
shape, since hydrostatic 
stresses are associated with 
volume change only. 

Same as strain energy of dis­
tortion. 
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Table 11.2 

Failure Criterion 

(I) 

Maximum principal 
stress 

Maximum shearing 
stress 

Maximum strain 

Strain energy 
density 

Strain energy density 
of distortion 

Octahedral shearing 
stress 

Value from Tensile 
Test 

(2) 

(1(1) = a;; 

1 
a::;ax = - (fPc 

2 xx 

1 
B(l) = _ (fPc 

E xx 

1 
W = _(aPo )2 

2E xx 

1 
It: = _(aPo )2 

o 6G xx 

a 0ct = fi aPo 
ns 3 xx 

Value from Tor­
sion Test 

(3) 

0-(1) = (J~c 

u::;ax = (J~c 

1 + v 
8(1) = __ aTo 

E XY 

1 
W = _(a To )2 

E XY 

1 
It: = _(a To )2 

o 2G XY 

a 0ct = --J6 a To 
PIS 3 xy 

Relationship be­
tween u:; and (J~c 
if criterion is cor­
rect for both states 
(2) = (3) 

(4) 

Following a construction suggested by Prager and Hodge [11.3], the normal 
stress on the octahedral surface is entirely due to CJM while CJD produces only 
the octahedral shearing stress. Hence, the Cartesian components of the octa­
hedral shearing stress can be computed from Eq. 2.21(a) as 

k = 1,2,3 

since a:~tk) = o. 1k in each case is found as 

1k = agc)nk 

following Eq. (2.11) written for principal stresses. Since 

1 
nk = )3 k = 1,2,3 

from Eq. (2.82), the components of 1k are 

_ (1) 1 
T1 - aD )3' 

and, from Eq. (2.84b), 

in view of Eq. (11.13). 

(11.15) 

(11.16) 

(11.17) 

(11.18) 

(11.19) 
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The octahedral shearing stress is thus shown to be proportional to the 
second invariant of the stress deviator. Likewise, the strain energy density of 
distortion is related to that quantity. 

11.3 Yield Surfaces 

11.3.1 General 

Since the state of stress at a point is specified by the value of six independent 
stress components (Jij referred to an arbitrary set of orthogonal coordinate 
axes x, y, z, it might seem that a general stress criteria would be a function in 
six-dimensional space, f((Jxx, (Jyy, (Jzz, (Jxy, (Jyz, (JzJ = O. Choosing the princi­
pal axes as the basis eliminates the shear stresses (Jij (i -# j) and does not 
reduce generality for isotropic systems. This produces yield criteria in terms 
of a three-dimensional principal stress space f((J(1l, (J(2l, (J(3 l ) = O. The states 
of stress referred to both sets of axes are shown in Fig. 11.2(a). 

It is informative to demonstrate these criteria using yield surfaces which 
are an essential component of the theory of plasticity [11.4]. The yield sur-

z 

y 

J-, 

(1) 
a 

(3) 
a 

Fig. 1l.2(a). Three-dimensional state of stress and space diagonal. 
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face is produced by all points that satisfy a particular strength criteria. In the 
three-dimensional principal stress space, the surface may be visualized as a 
prism, with the axis along the space diagonal U(l) = U(2) = u(3), which is the 
ray DC as shown in Fig. 11.2(a). Since the stress state (J may be resolved into 
a mean normal component (JM and a stress deviator component (JD' as dis­
cussed in Section 3.5, the cross section of the prism essentially represents (JD' 

Any point on the yield surface may be represented by the sum of the mean 
and deviatoric components. From Eqs. (3.48)-(3.52), we have 

(11.20) 

For the principal stresses determined in Section 2.4.3, U(l) = -1168, U(2) = 

1380, U(3) = 988. 

1 
Um = 3( -1168 + 1380 + 988) = 400 

(11 ) = -1168 - 400 = -1568 

u}i) = 1380 - 400 = 980 

uji) = 988 - 400 = 588 

Check: uli) + u}i) + uji) = -1568 + 980 + 588 = 0 after Eq. (3.54). 
The cross section of the prism may be plotted on any plane perpendicular 

to the space diagonal. Such planes have the equation u(1) + U(2) + U(3) = 
constant [11.4]. As suggested by Calladine [11.4], the plane passing through 
the origin is conveniently selected and called the II-plane, Fig. 1 1.2 (b), and 
the corresponding cross-sectional boundary is the so-called C-curve, Fig. 
11.2(c). 

Also, a triangular grid may be inscribed on the n-plane, which represents 

a 
(3) 

(1) 
-a 

(2) 
-a 

o 

a 
(1) 

-a 
(3) 

Fig. 1l.2(b). Plan view of the n-plane [11.3]. 



210 Chapter 11. Strength and Failure Criteria 

./ 
-u 

(2) 

-u 
(3) 

Fig.11.2(c). C-curve in the n-plane and axes of symmetry [11.3]. 

a view of a cubic lattice in the first octant, as shown by the shaded unit cube 
and on the inset of Fig. 11.2(b). Point A represents a principal stress state 
a(i) = (1, 4, 2). 

Sliding along the space diagonal gives parallel cross sections correspond­
ing to various values of the hydrostatic stress aM' But various yield condi­
tions can be represented on the n-plane. 

11.3.2 Tresca Yield Condition 

The maximum shearing stress criteria in Table 11.1 may be stated in terms 
of the principal stresses by Eq. (2.87), which is rewritten for our purposes 
here as 

(11.21) 

where k is the limiting value of the shear stress. Taking for the moment 

(11.22) 

the projection of the stress point, Eq. (11.21) with i = 1, j = 3 lies between 
the projections of the ( + )0'(1) axis and the ( - )0'(3) axis on the n-plane and 

(11.23) 
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a (3 ) _ a Cl ) _ 2k 

_aCl) 

a (2 ) 

a(2) _ a(3) _ 2k 

Fig. 11.3. Tresca yield surface: plan view of the n-plane [11.3]. 

is a straight line perpendicular to the bisector of the boundaries of the region. 1 

Each of the other five permutations of Eq. (11.22) will produce similar lines, 
and the composite C-hexagon is shown in Fig. 11.3. 

Within the theory of elasticity we focus on the states of stress within or 
impinging on the yield surface. From that point, plastic deformation will 
ensue and a more inclusive theory is required. This is briefly elaborated on in 
Sec. 11.5. 

11.3.3 von Mises Yield Condition 

The yield condition attributed to R. von Mises is represented by a circle 
replacing the hexagon on the n-plane, as shown in Fig. 11.4. The circle is the 
intersection of a sphere of radius r 

((J(1»)2 + ((J(2»)2 + ((J(3»)2 = r2 

in the stress space and the plane 

(J(1) + (J(2) + (J(3) = o. 

(11.24) 

(11.25) 

Since Eq. (11.25) is identically satisfied by the components of CfD , the required 
equation is 

(11.26) 

I To locate a point along the line defined in Eq. (11.23) on Fig. 11.2(b), find a(l) on the 
a(1) axis and move along the grid parallel to the _a(3) axis. Then find a(3) on the _a(3) 

axis and move along the grid parallel to the a(l) axis. The intersection lies on the line. 
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a 
(1) 

Fig. 11.4. Von Mises yield surface (plan view of n-plane) [11.3]. 

The radius r is evaluated to make the circle coincide with the Tresca hexa­
gon in the n-plane for states of pure tension and compression. With the yield 
stress in pure tension = ay, we compute the radius as the projection of the 
radius vector a(1)ex = ayex onto the n-plane. Denoting the angle of inclina­
tion between the vector and the n-plane as ex, we have 

ex·(~ex + ~ey + ~ez) = cosG - ex) = ~ (11.27) 

since the axis of the prism is along the space diagonal. This simplifies to 

. e 1 
sm x = J3 (11.28a) 

or 

e = cos-1 ~ 
x ...)3 (11.28b) 

from which 

(11.29) 

and Eq. (11.26) becomes 

which may also be written as 

[a(1) _ a(2)Y + [a(2) _ a(3)]2 + [a(3) - a(1)]2 = 2a;' (11.30b) 



11.3 Yield Surfaces 213 

In terms of the stress deviator invariant given by Eq. (11.13) with a(i) = a£), 

eq. (11.30a) becomes 

ay = J3J2D • (11.31) 

The Tresca criterion Eq. (11.21), written in terms of the yield stress ay = 2k, is 

(11.32) 

Comparing Eq. (11.30b) to Eq. (11.32), Calladine [11.4] observed that the 
Mises condition is related to the rms of the principal stress differences while 
the Tresca condition considers only the largest absolute value. He also calcu­
lates that the differences between the two criteria are at most 15%. 

11.3.4 General Criterion for Isotropic Media 

The Tresca and von Mises yield conditions are based on the stress deviator 
aD and thus are essentially independent of the mean or hydrostatic stress aM' 

This is appropriate for ductile materials but is not sufficiently broad to de­
scribe all isotropic materials, specifically those where the behavior is depen­
dent on the hydrostatic pressure and the third stress invariant, Eq. (11.14). 
Examples of such materials cited by Podgorski [11.5] include plain concrete 
and sand. 

The general failure criterion is expressed in terms of the octahedral shear­
ing stress as 

(11.33) 

where Ao is a function of hydrostatic pressure only; and Al and Az depend on 
the second and/or third stress invariants. According to Podgorski [11.5], the 
von Mises yield condition derived in the previous section fits into this form 
with 

Ao = -J2/3J2D 

J = ~ a a = ~ [(a(1)2) + (a(Z)2) + (a(3)2)] 
ZD 2 D;j D;; 2 D D D 

and 

Checking, we have 

Ao = -n·~[(a1:»)2 + (aif»)2 + (a}]ln f /Z 
= -a:%I. 

He also gives the requisite constants for the Tresca conditions. While both 
the von Mises and Tresca conditions represent yield surfaces with constant 
cross sections along the main stress axis, ~C, in Fig. 1 1.2 (a), yield conditions 
that reflect dependence on the hydrostatic stress would be nonprismatic. 
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Conical, pyramidal and paraboloidal surfaces are represented by Eq. (11.33) 
[11.5]. 

11.4 Anisotropic Materials 

11.4.1 Objectives 

For anisotropic materials, it is desirable to have a criterion that is invariant 
with respect to coordinate transformation; treats interaction terms (such as 
between normal and shear stresses) as independent components; accounts for 
the difference in strengths due to positive and negative stresses; and can be 
specialized to account for different material symmetries, multidimensional 
space and multiaxial stresses [11.6]. 

On the other hand, the sixth-order tensor which would emerge from link­
ing all of the stress components is forbidding, and a simpler form is preferred. 

11.4.2 Failure Surface 

As proposed by Tsai and Wu [11.6], the equation of a failure surface can 
be written as the sum of a second order tensor and a fourth order tensor. 

!((Jk) = Fi(Ji + Fij(Ji(Jj = 1 (11.34) 

in which i, j, k = 1, 2, ... , 6; Fi and Fij are the components of the strength 
tensors; and the single subscripted stress (Ji represents the following compo­
nents of stress: 

The ordering was apparently chosen to allow planar problems to be con­
sidered in the 2-3 plane, so that plane stress can be extracted as the second, 
third and fourth rows and columns without reordering. 

The linear terms (Ji are useful to describe the difference between positive 
and negative (tension and compression) stress induced failures; and also load 
reversal phenomena, such as the Bauschinger effect which is a reduction of 
the yield stress upon loading in the direction opposite from the previous 
direction [11.5]. 

The quadratic terms (Ji(Jj define an ellipsoid in the stress space, which may 
be considered as a generalization of the sphere described in Sec. 11.3.3. 

Following the symmetry argument presented for the generalized Hooke's 
Law in Sec. 4.3, [Fij] is taken as symmetric and Eq. (11.34) can be written 
in matrix form as 

(11.35) 
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in which 

{FJ = {Fl F2 F3 F4 F5 F 6 } (a) 

Fll F12 F13 F14 F 15 F16 

F12 F22 F 23 F24 F 25 F 26 

[Fij] = 
F13 F 23 F33 F34 F35 F36 

F14 F24 F34 F44 F45 F46 
(b) (11.36) 

F 15 F 25 F35 F45 F55 F56 

F16 F 26 F36 F46 F56 F66 

and 

{G} = {O"l 0"2 0"3 0"4 0"5 0"6}· (c) (11.36) 

It is necessary to constrain the terms of [Fij] such that the diagonal terms 
are positive and dominate the interaction terms. The latter is expressed in 
terms of a stability condition 

(11.37) 

11.4.3 Specializations 

Again, guided by the reductions for material symmetry used in Section 4.3, 
the tensors {FJ and [Fij] may be specialized for some special cases. For a 
specifically orthotropic material, Eqs. (4.13), we assume that the sign of the 
shear stress does not change the failure stress to eliminate F 4 , F 5 , F6 and the 
shear-normal coupling terms F 14 , F 15 , F 16 , F 24 , F 25 , F 26 , F 34 , F 35 , F 36 . Fur­
ther, if shear stresses are all uncoupled, we eliminate F 45 , F 46 , F 56 . Remaining 
are three terms in {FJand nine in [Fij], the same terms as in [Cij] in Eq. 
(4.13a). The off-diagonal coefficients F 12 , F 13 , F 23 represent coupling between 
the normal strengths. 

Another common case in composites is transverse or planar isotropy, 
which refers to a plane such as 2-3 shown in Fig. 11.5. The indices associated 
with the isotropic plane are identical, i.e., 

F2 = F 3 , F12 = F 13 , F22 = F 33 , F55 = F 66 · (11.38) 

Thus, Eq. (11.35) becomes 

Fl Fll F12 F12 0 0 0 

F2 F12 F22 F 23 0 0 0 

{G}T F2 + {G}T F12 F 23 F22 0 0 0 
{G} = 1. (11.39) 

0 F44 

0 F55 

0 F55 

We note that the two stress states shown in Fig. 11.5, pure shear and equal 
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3 Y" 

Fig. 11.5. Equivalent states of stress in pure shear and tension-compression. 

principal tension and compression, are equivalent. Therefore, we may evalu­
ate Eq. (11.39), first with 0"4(0"23) = CT, then with 0"2(0"22) = CT and 0"3(0"33) = 
- CT, and equate the results. This gives an additional relationship between the 
components 

(11.40) 

so that the transverse isotropic case retains two independent F; components 
and five Fij components. 

By extending Eqs. (11.39) and (11.40) to the other two orthogonal planes, 
creating a totally isotropic case, we get Fll = F22 , F44 = Fss and F12 = F23 
with the components related by Eq. (11.39). This leaves one independent 
component in F; and two in Fij. Further, if internal stresses are not consid­
ered, the F; component is dropped to produce the expected two-parameter 
isotropic equation. 

Another specialization proposed by Tsai and Wu [11.6] is to eliminate the 
failures due to the hydrostatic stress state 0"(;) = CT, as defined in Section 2.6.5. 
The rationale for this assumption, which is known as zero volume change or 
incompressibility, has been presented in the preceding sections. For the gen­
eral case, the assumption is implemented by setting 0"1 = 0"2 = 0"3 = CT in Eq. 
(11.35), factoring the F;j coefficients of CT, and zeroing the factor. This gives 

Fll + F22 + F33 + 2(F12 + F23 + F13 ) = O. (11.41) 

For the isotropic case, the direct stress components corresponding to (1, 
2, 3) become identical. Likewise, the shear components (4, 5, 6). Thus, we have 

F22 = F33 = Fll 

Fss = F66 = F44 (11.42) 

F12 = F23 = F13 = -tFll 

and, from Eq. (11.40) 

F44 = 2Fll [1 - (-t)] = 3Fll · (11.43) 

In summary, for incompressible isotropic materials with zero initial stress 

{F;} = 0 (11.44) 
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and 

1 1 1 0 0 0 -2" -2" 

1 1 0 0 0 -2" 

[F;J = Fll 
1 0 0 0 

(11.45) 
3 0 0 

3 0 
3 

Another case of practical interest is that of plane stress. Considering the 
1-2 plane and Eqs. (11.35) and (11.36), we retain 

{F;} = {Fl F2 F 6 } (a) (11.46) 

and 

[

Fll F12 F16] 

[F;j] = F22 F 26 , 

F66 

(b) (11.46) 

a total of 9 independent components. If the material is specifically ortho­
tropic, 

(11.47) 

as discussed earlier in this section. Thus, 2 and 4 components are retained 
in {F;} and [F;J, respectively. 

11.4.4 Evaluation of Components 

The format presented in Eq. (11.34), or in matrix form in Eq. (11.35), requires 
the evaluation of the components of the strength tensors, F; and F;j. Tsai and 
Wu [11.6] present a detailed discussion of the evaluation of the key compo­
nents, which is of interest in providing some physical meaning to strength 
theories. It is helpful to expand Eq. (11.34) in explicit form as 

~~+~~+~~+~~+~~+~~ 

+ Fll (1r + 2F12 (11(12 + 2F13 (11(13 + 2F14 (11 (14 + 2Fl 5 (11 (15 + 2F16 (11 (16 

+ F 22 (1i + 2F23 (12(13 + 2F24 (12(14 + 2F25 (12(15 + 2F26 (12(16 

+ F33(1~ + 2F34 (13(14 + 2F35 (13(15 + 2F36 (13(16 

+ F 44 (1l + 2F45 (14(15 + 2F46 (14(16 

+ F5s(1~ + 2Fs6 (1s(16 

+ F66(1~ = 1 
(11.48) 

accounting for the symmetry relationship in Eq. (11.36). 
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To start, assume that a uniaxial stress is imposed on a specimen oriented 
along the I-axis, and the measured tensile and compressive failure stresses 
are (J T and (Jf. Substitution into Eq. (11.48) with all other stresses equal to 
zero gIves 

which yields 

and 

F1(JT + Fll((J[)2 = 1 

- Fl (Jf + Fll ((Jf)2 = 1, 

1 1 
Fl =---

(JT (Jf 

Uniaxial tension and compression tests along the 2 and 3 axes give 

and 

1 1 
F2 =---

(Ji (Jf 

1 1 
F3 =---

(Jj (Jf 

1 
F33=~ (J3 (J3 

where (Ji, (Jf, (Jj, (Jf are the corresponding failure stresses. 

(11.49) 

(11.50) 

(11.51) 

(11.52) 

Next, pure shear is imposed in the three horizontal planes producing 

(11.53) 

where (Jft, (Jf:; ; (Jft, (Jf:; : (Jf; , (Jf; ; are the positive and negative pure shear 
strengths in the 2-3, 1-3, and 1-2 planes, respectively. 

The preceding procedures established all of the components of F; and the 
diagonal components of Fij and are relatively straightforward in principle. 
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The off-diagonal components relate to the interaction of two stress compo­
nents and require more complicated tests. 

A biaxial tension with 

(11.54) 

in Eq. (11.48) gives 

a[2(F1 + F2) + (a[2)2(Fll + F22 + 2F12 ) = 1 (11.55) 

from which 

Also, biaxial compression a1 = a2 = al2 could have been applied. Similarly, 
F23 and F31 can be determined using biaxial states a2 = a3 = aT3 or af3' and 
a1 = a3 = a[3 or af3. There are other tests, specifically 45° specimens, which 
are preferred by some investigators for determining the interaction terms, as 
discussed by Tsai and Wu [11.6]. 

For anisotropic materials, the components F16 are determined from an 
axial-torque combination performed on a tubular specimen with the 1-axis 
along the tube. This produces the desired tension-shear combination, 

(11.57) 

Equation 11.48 becomes 

a[t(Fl + F6) + (art)2(Fll + F66 + 2F16 ) = 1 (11.58) 

from which 

1 [ TS( 1 1 1 1 ) 
F16 = 2(a[t)2 1 - a16 a[ - af + an - afi 

TS 2 ( 1 1)] - (a16) ----rc + s+ s . a 1 a 1 a12 a12 
(11.59) 

Also, compression shear a1 = a6 = afg could have been used. Components 
F26 can be determined by the same test with the 1-axis along the circumfer­
ence of the tube. If the tube axis coincides with the material symmetry axis, a 
specifically orthotropic material is produced for which F16 and F26 are zero. 

Finally, it was indicated that such tests as the biaxial and the axial torque 
can be performed using either tension or compression. This leads to redun­
dant measurements of the interaction terms, which may be used to establish 
the validity and accuracy of the procedure. 

As a numerical illustration, Tsai and Wu [11.6] considered a unidirec­
tional graphite-epoxy composite as a specifically orthotropic material. The 
1-axis is oriented along the fibers and the 2-axis transverse to the fibers. 
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The strengths are 

(J[ = 150 ksi, 

(JJ = 6 ksi, 

which gives in Eqs. (11.46) 

(Jf = 100 ksi, 

(Jf = 17 ksi, 

{FJ = {Fl F2 F6 } = {-0.003 +0.108 O} 

and 

[
0.00007 ± 0.0008 0 ] 

[FiJ = 0.0098 0 
0.01 

where F12 has been bounded as F12 = ±JFllF22 = ±0.0008 by Eq. (11.37). 
A more precise determination of F12 would require a combined test as dis­
cussed previously. 

It is evident that the proper determination of material constants requires 
careful and appropriate testing and evaluation. 

11.5 Failure of Structures 

The preceding sections are directed toward the establishment of strength 
limitations based on the initiation of inelastic action. Barring premature fail­
ure due to loss of stability or fatigue, the loads that produce the yield condi­
tion at the critical point can be expected to be lower bounds on the actual 
capacity of the structure. That is, the entire system may possess the capability 
to resist loads beyond those corresponding to the criterion. Moreover, the 
concept of yield is associated with ductile materials, and brittle materials are 
also of considerable practical interest. 

As suggested by Bazant and Mazars, [11.7] the two classical theories for 
the prediction of complete structural failure are (I) plasticity, which describes 
material failure distributed over a plastic zone and occurring throughout 
the entire plastic zone simultaneously; and (2) fracture mechanics, which de­
scribes material failure that is concentrated into a very small fracture process 
zone which propagates throughout the structure. Basically, plasticity would 
seem to be appropriate for ductile materials while fracture mechanics would 
apply to brittle materials. 

For complex materials such as cement-based aggregate composites (con­
crete, mortar, fiber-reinforced concrete), rocks and soils, and various fibrous 
and particulate composites, a more elaborate theory may be appropriate. It 
has been suggested that the material failure begins simultaneously over a 
larger zone but then localizes into a relatively small zone that propagates 
throughout the structure. This concept is complicated by size effects, but 
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promises to somewhat unify some of the basic theories into a more gen­
eral concept applicable for the prediction of the total failure of arbitrary 
structures. 

Exercises 

11.1 A closed ended thin walled cylinder of titanium alloy (ay = 800 MPa) has an 
inside diameter of 38 mm and a wall of thickness of 2 mm. The cylinder is 
subjected to an internal pressure p = 20.0 MPa and an axial load P = 40.0 kN. 
Determine the torque T that can be applied to the cylinder if the factor of safety 
for design is FS = 2.00. The design is based on the maximum shearing stress 
criterion offailure assuming that failure occurs at initiation of yielding [11.1]. 

11.2 Re-solve Problem 11.1 based on the maximum octahedral shearing stress crite­
rion. 

p 

y 

Problem 11.3 

11.3 The 100-mm-diameter bar shown is made of a ductile steel that has a yield stress 
ay = 420 MPa. The free end of the bar is subjected to a load P making equal 
angles with the positive directions of the three coordinate axes. Using the maxi­
mum octahedral shearing stress criterion of failure, determine the magnitude of 
P that will initiate yielding. 

11.4 Consider a square shaft with a side dimension of 20 mm made of aluminum 
alloy with ay = 300 MPa. The shaft is subjected to axial load and P = 40 kN. 
(a) Determine the torque that can be applied to the shaft to initiate yielding. 
(b) Determine the torque that can be applied if the shaft is designed for a factor 

of safety of 2.0 for both P and T. Base the calculations on the octahedral 
shear stress criterion. 

11.5 Consider the n-plane shown in Fig. 11.2(b). Verify that the lines which bisect the 
projections of the axes of principal stress correspond to state of pure shear. 
(Hint: Compute the principal deviatoric stresses corresponding to a state of pure 
shear and plot them on the TI-plane, or consider any two vectors corresponding 
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to known states of principal stress in the II-plane, add them to establish the 
direction of the resultant, and examine the corresponding state of principal stress 
[11.4]. 

11.6 Verify the equality of Eqs. (11.30a) and (11.31). 
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CHAPTER 12 

Something New 

It was stated in the first introductory Section 1.1 that the theory of elasticity 
originated in the first half of the 19th century. Most of the original work 
supporting the presentation in this introductory text is many decades old. 

Occasionally new developments emerge, even in such a mature theory. A 
recent contribution, notable because it is attributed to an elementary course 
in elasticity theory, was developed by Prof. R. Lakes of the University of 
Iowa. Spurred by the common notion that a real material cannot have a 
negative Poisson's ratio, as noted in Section 4.3, he developed a substance 
called antirubber that bulges in the middle when the ends are pulled, an 
indication of a negative Poisson's ratio. This was accomplished by collapsing 
or folding cells of polyurethane into a configuration, which is solidified after 
heating. Then, as the foam is pulled apart, the cells unfold and expand in the 
direction being pulled and in lateral directions. 

The process is shown in Fig. 12.1, which may be the only fundamental 
development in the theory of elasticity reported in a newspaper article in 
quite a while [12.1]. 

There may indeed be something new under the sun. 

Reference 

[12.1J Chicago Sunday Tribune, Aug. 6, 1989. 
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Antirubber. Roderic Lakes of the 
University of Iowa has developed a 
material that, when pulled apart on 
two sides, expands on all sides. When 
pushed together, it contracts on all 
sides. It also absorbs energy more 
effectively than other materials. 

Uncompressed cell. Antirubber is created by 
transforming the open-cell structure in normal 
polyurethane or metal foam. 

Collapsed cell. The foam is compressed by putting 
pressure on it from all directions. The cells 
collapse or fold in upon themselves, and after 
heating, are solidified into the collapsed 
configuration. 

Expanded cell. It's the new, collapsed internal 
structure that produces the antirubber 
characteristics. As the foam is pulled apart, the 
cells unfold and open up in the direction being 
pulled as well as in all other directions. 

Fig. 12.1. Antirubber. 
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Equations 68, 156 

Lateral Contraction (See Contraction, 
Laterial) 

Lim, C. K. 28, 38 
Lin, W. J. 205,222 
Linear Momentum, Principle of (See 

Principle of Linear Momentum) 

Little, R. W. 59,60,66,74,75, 116, 
128, 130, 131, 135, 139 

Loads (Loading) 
Applied 13 
Axisymmetric 150 
Concentrated 81,84, 131-133 
Discrete 190 
Distributed 128, 134, 137, 140, 141 
Dynamic 155 
External 13, 181, 184 
Gravity (See Self-Weight) 
Pressure 117-119, 138 
Radial 122 
Sand Heap 154 
Statically Equivalent 74 
Thermal 59 
Transverse 131 
Uniform 137,148 
Work done by 181, 184 

Love, A. E. H. 56, 57, 66, 107, 
139 

Ma, Y. 6,12,45,54 
Malvern, L. E. 51,53,54 
Mariotte, E. 81 
Mass Density 22, 129 
Material(s) 

Anistropic 58,65,214-220 
Behavior 55-66 
Brittle 206, 220 
Capacity 31 
Constants (See Elastic Constants) 
Cubic 60 
Directional Independence of 66 
Ductile 206,213,220 
Elastic 55-66, 181 
Isotropic 61,63,65, 108, 181,201-

208,215,216 
Law 56-64 
Linear(ly) Elastic 55,56 
Mechanical Properties of 55 
Monoclinic 59 
Nonlinear 182 
Nonlinear Elastic 182 
Orthorhombic 60 
Orthotropic 60,65,217,219 
Properties of 64 



Rigid Plastic 190 
Rotational Independence of 60 
Strain Tensor (See Strain Tensor, Ma-

terial) 
Uniaxial Behavior of 55, 56 

Maximum Shearing Stress (See Shearing 
Stress, Maximum) 

Maxwell, J. C. 192 
Maxwell's Law of Reciprocal Displace-

ments 192 
Mazors 220, 222 
Mean Pressure (See Pressure, Mean) 
Meek, J. L. 205,222 
Membrane 

Analogy 87,88,101-104 
Deflection of 87, 102 
Slope of 103 
Volume under 102, 103 

Mechanical Tests 58,61,64 
Michell, J. H. 70 
Minimum 193-195 (Also See Princi­

ples of Minimum ... ) 
v. Mises Yield Condition 211-213 
Mixed Formulation (See Formulation, 

Mixed) 
Modulus (Modulii) 

Bulk 66 
of Elasticity 55 
Shear 62 
Young's 55 

Mohr's Circle 37, 114 
Moment 

Bending 124, 126, 128, 147, 173 
First Moment of Area 81 
of Inertia 81, 131 
Polar Moment of Inertia 91 
Twisting (See Torsion) 

. Monoclinic Material (See Material, Mo­
noclinic) 

Mosallam, A. S. vii 
Movement, Relative 43 

Nadai, A. 101 
Navier, L. M. H. 1,81 
Navier's Equation 150 
Navier's Hypothesis 1 
Necessary Conditions 67 

Normal 
Face 13 
Plane 17,18 
Section 25 

Index 231 

Stress (See Stress, Normal) 
Unit 13, 26, 29, 35 

Normality 10 
Numerical Solutions 199 

Oblique Planes (See Planes, Oblique) 
Octahedral Planes (See Planes, Octahe­

dral) 
Shearing Strains on (See Shearing 

Strain, Octahedral) 
Shearing Stresses on (See Shearing 

Stress, Octahedral) 
Odd Function (See Function, Odd) 
Ohtani, Y. C. 66 
Operator Notation 3,4 
Ordered Triple 2, 5 
Orthogonality 10, 164, 165 
Orthorhombic Material (See Material, 

Orthorhombic) 
Orthotropic Material (See Material, Or­

thotropic) 
Outer Product 2, 3 

Pearson, C. E. 27,38,49,54,74,163, 
167,179 

Peng, M. viii 
Permutation Symbol 8, 9 
Pi Convention (See Convention, Pi) 
Pi Plane 209-212, 221 
Pierce, B. O. 165, 179, 188,200 
Pipe, Pressurized 117-119,137,138 
Plane(s) (Also See Sheets, Thin) 

Middle 141, 142 
Oblique 32, 33 
Octahedral 33 
of Maximum Shearing Stress 33, 34 
of Principal Strain 45, 46 
of Principal Stress 27 
Sections 107 
Strain (See Strain, Plane) 
Stress (See Stress, Plane) 

Plastic Hinge 190 



232 Index 

Plasticity, Theory of 48,208,211,220 
Plate (Also See Disk, Thin and Sheet, 

Thin) 
Annular 152, 153 
Bending of 107, 140-154 
Circular 150-153 
Clamped 151 
Equation 145, 146 
Rectangular 146, 150 
Semi-Infinite 131-133, 155 
Simply Supported 147,151-154 
Solid 151, 154 
Triangular 134 

Podg6rski, J. 213,214,222 
Point 

Neighboring 39 
Reference 39 

Pointwise Description 1 
Poisson Effect 80, 83, 84 
Poisson, S. D. 1 
Poisson's 

Equation 94 
Ratio 62,80,167,223,224 

Polar 
Coordinates (See Coordinates, Polar) 
Moment of Inertia 91 

Polynomial(s) 
Solutions 112, 130, 151 

Popov, E. P. 114, 139 
Position Vector (See Vector, Position) 
Potential 

Energy, Principle of (See Principle of 
Minimum Total Potential En­
ergy) 

Energy Functional 193 
Function (See Function, Potential) 
of Applied Loads 194 
of External Forces 194 

Praeger, VV. 207,222 
Prandl, L. 101 
Pressure Loading (See Loading, Pres­

sure) 
Principal 

Axis 32,60 
Coordinates 27, 30, 32, 46 
Directions 28 
Planes 27-30,33,37,38 
Strain(s) 45,46 
Stress(es) 25-27,34,37,46 

Principle(s) 
of Angular Momentum 23, 24 
of Linear Momentum 23 
of Minimum Complementary En­

ergy 194, 195 
of Minimum Total Potential En­

ergy 193, 194 
of St. Venant (See St. Venant's Prin­

ciple) 
of Superposition 124 
of Virtual Displacements 186-190, 

200 
of Virtual Forces 191,200 
of Virtual VVork 184-190 
Variational 192-195 

Prismatic Bar (See Bar, Prismatic) 
Projection Theorem 35 
Proportional Limit 56 
Pure 

Bending 124 
Shear 62,91,203,215 

Quasi-Axisymmetric 117,128 

Rayleigh, Lord (John VV. Strutt) 196 
Rayleigh's Quotient 167 
Rayleigh-Ritz Method 166, 196-

200 
Radius Vector 90-92 
Range Convention (See Convention, 

Range) 
Reciprocal Theorems 191,192 
Rectangular Bar 

in Bending (See Bar, Bending of) 
in Torsion (See Bar, Torsion of) 

Rectangular Cross-Section (See Cross­
Section, Rectangular) 

Region, Simply Connected 53, 72 
Relative Elongation (See Elongation, 

Relative) 
Rigid Body Motion 39, 72, 79, 112 
Rigid Plastic Analysis 190 
Ring (See Rotational Dislocation) 
Rotation 

Angle of 44, 45, 52, 86, 90-92, 
97 

Average 45,86 



Matrix 7 
of Coordinates 6, 7 
of Fibers 44 
Rate of Change of 80, 92 (Also See 

Twist, Rate of) 
Tensor 45,51 

Rotational Dislocation (See Disloca­
tion, Rotational) 

Saint-Venant, B. d. A. J. C. 73,74, 
76, 84, 92, 102, 170 

Saint-Venant'(s) 
Criterion 206 
(Strain) Compatibility 

Equations 50,70,82, 109-112, 
170 

Principle 74, 76, 92, 112, 120, 
126 

Theory of Bending 84-89 
Theory of Torsion 92-101 

Saleeb, A. F. 64, 66 
Scalar 3,4, 8 

Field 3 
Schallert, K. vii 
Schokker, A. viii 
Seeley, F. B. 127,139,200,201,205, 

221,222 
Self-Equilibrated State of Stress (See 

Stress, Self-Equilibrated State 
of) 

Self-Weight 13,76, 128 
Semi-Inverse Method 68, 71, 78, 86, 

170 
Shafigh-Nobari, F. 28, 38 
Shaft, Circular 90-92 

Prismatic 92-98 
Shape Change(s) 46-48 
Shear 53 

Horizontal 81 
Pure 36, 62, 91 
Test 218 

Shearing 
Modulus (See Modulus, Shearing) 
Strain 43,44,49, 161, 162, 170, 

176 
Maximum 46 
Octahedral (See Strain on Octahe­

dral Planes) 

Index 233 

Stress(es) 65, 80-89, 92-95, 100, 
103, 104, 108-111, 114, 115, 120, 
122, 123, 128-139, 170,203, 
207-210 

Absolute Maximum 33, 34 
Components of (See Stress, Shear-

ing Components of) 
Distribution of 99, 199 
In-plane 92 
Maximum 101, 103 
Octahedral (See Stress on Octahe-

dral Planes) 
Pure (See Pure Shear) 
Transverse 144 
Yield 205 

Sheet, Thin 119-124 
Shin, S-H viii 
Shorthand Notation (See Indicial Nota­

tion) 
Sidebottom, O. M. 127,139,200, 

201,205,221,222 
Sierakowski, R. L. 64, 66 
Sign Convention for Stresses 15 
Single-Valued Displacements (See Dis-

placements, Single-Valued) 
Singly-Connected Regions 53,72 
Singularity 124 
Smith, J. 127,139,200,201,205,221, 

222 
Solution Strategies 73, 74, 98, 108-

110 
Space Diagonal 208-211 
Spatial Strain Tensor (See Straiil Ten-

sor, Spatial) 
Sridharan, S. vii 
Stability Condition 215 
Statically Indeterminate System 24 
Strain(s) 41-54, 170, 186-190,203, 

207 
Absolute Maximum Shearing 33, 

34,101 
Axial 160, 168 
Compatibility 49, 50 
Components of 42-45 
Cubical 66 
Detrusional 47 
Deviator 47, 48 
Dilatational 47 
Displacement Relations 42, 143, 187 



234 Index 

Strain(s) (cont.) 
Energy 71, 184, 187, 192 
Energy Density 56, 181, 183, 184, 

189,193,194,204-208 
Energy Density, Complementary (See 

Complementary Strain Energy 
Density) 

Engineering 56 
Extensional 42 
Field 51,53,68 
Finite 45 
Function 57 
Homogeneous 53 
Linear 51,53 
Infinitesimal 42, 53 
Invariant(s) (See Invariants, Strain) 
Mean 17,48,51 
Normal 47,48,51,204 
on an Oblique Plane 46 
on Octahedral Planes 46, 51 
Physical Interpretation of 42-45 
Plane 107, 11 0-112, 128 
Principal 45,46 
Principal Axes of 60 
Real 138 
Shearing (See Shearing Strain) 
Stress Relations 59, 71 
Symmetry of Strain Tensor 42 
Tensor 39-42,46-48,51 

Eulerian 41, 45 
Lagrangian 41,45 
Material 41 
Spatial 41 

Thermal 64 
Transformations 42 
Virtual (See Virtual Strain) 
Volumetric 47 

Strength of Materials vii, 76, 80, 90, 
92,119,127,131,161,162 

Stress(es) 13-38, 170, 181-184,203 
Absolute Maximum Shearing 33, 

34 
at a Point 14-17,37 
Axial 76,203,218 
Axisymmetrical 115-117,120-127 
Biaxial 219 
Circumferential 113,115,117-127, 

138 

Components of 14,15,17,19-22, 
56,57,61,144 

Concentration 124 
Concentration Factor 124, 134 
Displacement Relations 67 
Deviator 48, 205, 209, 210, 212 
Dyadic Representation of 18, 19 
Field 68, 126 
Formulation (See Formulation, 

Force) 
Function 85-90,93-96,98-100, 

108-112,114-116,122,125,126, 
129,130,132,134-139,170,177, 
179 (Also See Airy Stress Func­
tion) 

Hydrostatic 36,213,216 
in a Bar 76-80 
in a Beam 80-89 
in a Curved Beam 124-127 
in a Narrow Beam 128-131 
in a Shaft 90-101 
in a Thick-Walled Cylinder 117-120 
in a Thin Plate 149, 153 
in a Thin Sheet 117-124 
in Principal Coordinates 32-35 
Intensity 13 
Internal 13 
Invariants (See Invariants, Stress) 
Linear 36 
Maximum 89, 118, 119 
Membrane 149 
Nominal 118, 119 
Normal 84, 144, 145 
Normal Component 15,33,205, 

209 
on a Normal Plane 17,18 
on an Oblique Plane 32, 33 
on Octahedral Planes 33, 37, 38, 

204-208, 213, 221 
Plane 36,108-110,117-127, 

214 
Principal 25-32,207,210,216 
Principal Axes of 65 
Pure Shear 36,62,91,203,218 
Radial 113, 115, 117-127 
Resultant 144 
Shearing (See Shearing Stress) 
Shearing Components of 14, 15 



Space 208, 214 
State of 13-21,35,36 

Strain Equations 56-61,143,172 
(Also See Constitutive Equations 
and Material Law) 

Strain Curve 56 
Stephen, N. G. 170, 175, 179 
Symmetry of Stress Tensor 24 
Tangential Component of 36 
Tensor 14,17,19-21,23,38,56, 

164 
Transformation of 113-115 
Torsional (See Shearing Stresses) 
Transformation Law 17, 35 
Triaxial 200 
Vector 13 

Strength Criteria 202-222 
Strutt, John W. (See Lord Rayleigh) 
Subscript 14 (Also See Index) 
Sufficient Conditions 67 
Summation Convention (See Conven-

tion, Summation) 
Superposition, Principle of (See Princi­

ple of Superposition) 
Surface 

Cylindrical 88 
Forces 13 
Integral 22 
Lateral 84, 92 
Tractions (See Boundary Conditions, 

Traction) 
Symmetry 

Conditions 58-61 
Double-Plane 59 
of the Strain Tensor 42 
of the Stress Tensor 24 
Single-Plane 58 

System 155 

Tauchert, T. R. 2,6, 11-16,30,36-
39,42,43,53,54,58,65,66, 
193,201 

Temperature 
Changes 64 
Datum 64 

Tensile Test Diagram (See Stress-Strain 
Curve) 

Tension 
Biaxial 124 
Test 203-205,207 
Uniaxial 120, 121 
Uniform 120 

Tensor(s) 

Index 235 

Algebra of 8-10 
Cartesian 7, 8, 10 
Components of 7, 8 
Contraction of 9 
Definition of 7 
First-order 8, 11 
Fourth-order 8, 57, 214 
Higher-order 8 
Notation 8 
Operational 8-10 
Operations 8-11 
Rotation of (See Transformation of) 
Second-order 8, 11,214 
Sixth-order 214 
Skew-Symmetric 42 
Strength 214-220 
Stress (See Stress Tensor) 
Strain (See Strain Tensor) 
Symmetric (See Symmetry) 
Third-order 8, 11 
Transformation Law (See Transfor­

mation Law for Tensors) 
Zero-order 8 

Tetrahedron, Differential 15, 16 
Thermal 

Expansion, Coefficient of (See Coef­
ficient of Thermal Expansion) 

Loads 64 
Strain(s) 64 

Theory of 
Beam Bending 1, 107 
Elasticity (See Elasticity, Theory of) 
Plates 1, 107 
Rods 1,107 
Shells 1, 107 
Stability 107 

Thick-Walled Cylinder (See Cylinder, 
Thick-Walled) 

Thick-Walled Pipe (See Pipe, Thick­
Walled) 

Thin Disk (See Disk, Thin) 
Time-Dependent Effects 155-179 



236 Index 

Timoshenko, S. 72,74-77,85,87-89, 
97,99,101,102,104-106,112, 
119, 122, 127, 133, 139, 180, 
197-199,200,201 

Todhunter, I. 74 
Tong, G. viii 
Torque 90,105,221 
Torsion 90-105 

Boundary Conditions in (See Bound­
ary Conditions in Torsion Prob­
lems) 

Capacity 102 
Coulomb (See Coulomb Theory of 

Torsion) 
Displacements in (See Displacements 

in Torsion) 
Non-uniform 101 
of Various Cross-Sections 

Circular 90-92 
Elliptical 98-101 
Prismatic 92-98 
Rectangular 196-199 
Square 198, 199 
Thin-Walled Members 102-104 

St. Venant (See St. Venant Theory of 
Torsion) 

Shearing Stress in (See Shearing 
Stresses) 

Semi-Inverse Method in (See St. Ven­
ant Theory of Torsion) 

Test 203-205,207,218-220 
Uniform 92 

Torsional 
Moment 90, 91 
Rigidity 91, 146 
Stress (See Shearing Stress) 

Traction(s) 13-26, 30, 32, 35, 36, 38, 
72,83-85,165 

Components of 14-19,26,30,83, 
169 

Transformation 
Law for Tensors 8, 11, 17 
of Coordinates 6, 7, 58-61, 214 
of Strains 42, 113-115 
of Stresses 17,37,113-'115 

Tresca Yield Condition 206, 210-
213 

Triangular Bar (See Cross-Section, Tri­
angular) 

Trigonometric Series (See Fourier Se-
ries) 

Tsai, S. W. 214-220,222 
Turbine Blade 169, 170 
Twist, Rate of 91,97,98,100,101, 

103-105 (Also See Torsion) 
Twisting Moment (See Moment, 

Twisting) 
Two-Dimensional Elasticity 107 -13 7 , 

175,176 

Ugural, A. C. 34,37,38,51,54, 
83,105,106,132,135-137, 
139 

Uniaxial 
Behavior 55, 56 
Tension 55, 56 
Test 55,56 

Uniqueness 49,71,72 

Variational 
Methods, Direct 195-199 
Operation 193 
Principles 192-195 

Variation of 
Displacement 193 
Internal Strain Energy 193 
Strain 193 

Vector(s) 1-7 
Algebra 1-5 
Basis 32 
Components 2, 6 
Couple-Stress 13 
Double 18, 19 (Also See Dyads) 
Field 1,3 
Length 1 
Magnitude 
Multiplication 2 
Point Function 3, 5 
Position 6, 7, 22, 23 
Tangent 124 
Unit 2, 5, 15, 18, 30, 32 

Velocity, Angular 168, 169 



Vibration(s) 155-169 
Axial 166-168 
Free 163-168 
Harmonic 159-163 
Longitudinal 156-162 
Period of 159 
Transverse 158-159, 161-163 

Vinson, V. R. 64, 66 
Virtual 

Displacements 185-190 
Displacements, Principle of 186 
Effects 137 
Force(s) 191 
Forces, Principle of 191 
Strain(s) 185 
Stress(es) 185 
Work, External 185, 189 
Work, Internal 186, 187 
Work, Principal of 184-186 

Volterra, E. 74, 75, 105, 106 
Volume 

Change 46-48 
Element 46 
Integral 22 

Wang, P. J. 170,175,179 
Wang, X. F. viii 
Warping 97 

Function 98 

Wave 
Equation 157 
Length 161 
Velocity 155, 161, 162 

Waves 
Dilatation 157 
Incompressible 159 
Irrotational 158 
Love 163 

Index 237 

Pressure 157, 161 
Propagation of 156-159, 169 
Shear 169 

Westergaard, H. M. 1, 12, 15,38,44, 
47,54,55,66,74,75,92,105 

Work 
of External Loading 184 
Virtual, Principle of (See Virtual 

Work, Principle of) 
Wu, E. M. 214-220, 222 

Yielding 55, 205 
Yield Point 55 
Yield Surface 208-214 
Young, T. 55 
Young's Modulus 55, 178 

Zahalak, G. vii 
Zubelwicz, A. 53, 54 
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