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Learning Tools

Preface

The fourth edition of this textbook sees some additions and deletions but no philo-
sophical change. The basic outline of eleven chapters and five appendices remains the
same. The triad of integral, differential, and experimental approaches is retained and
is approached in that order of presentation. The book is intended for an undergraduate
course in fluid mechanics, and there is plenty of material for a full year of instruction.
The author covers the first six chapters and part of Chapter 7 in the introductory se-
mester. The more specialized and applied topics from Chapters 7 to 11 are then cov-
ered at our university in a second semester. The informal, student-oriented style is re-
tained and, if it succeeds, has the flavor of an interactive lecture by the author.

Approximately 30 percent of the problem exercises, and some fully worked examples,
have been changed or are new. The total number of problem exercises has increased
to more than 1500 in this fourth edition. The focus of the new problems is on practi-
cal and realistic fluids engineering experiences. Problems are grouped according to
topic, and some are labeled either with an asterisk (especially challenging) or a com-
puter-disk icon (where computer solution is recommended). A number of new pho-
tographs and figures have been added, especially to illustrate new design applications
and new instruments.

Professor John Cimbala, of Pennsylvania State University, contributed many of the
new problems. He had the great idea of setting comprehensive problems at the end of
each chapter, covering a broad range of concepts, often from several different chap-
ters. These comprehensive problems grow and recur throughout the book as new con-
cepts arise. Six more open-ended design projects have been added, making 15 projects
in all. The projects allow the student to set sizes and parameters and achieve good de-
sign with more than one approach.

An entirely new addition is a set of 95 multiple-choice problems suitable for prepar-
ing for the Fundamentals of Engineering (FE) Examination. These FE problems come
at the end of Chapters 1 to 10. Meant as a realistic practice for the actual FE Exam,
they are engineering problems with five suggested answers, all of them plausible, but
only one of them correct.

xi
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Content Changes

New to this book, and to any fluid mechanics textbook, is a special appendix, Ap-
pendix E, Introduction to the Engineering Equation Solver (EES), which is keyed to
many examples and problems throughout the book. The author finds EES to be an ex-
tremely attractive tool for applied engineering problems. Not only does it solve arbi-
trarily complex systems of equations, written in any order or form, but also it has built-
in property evaluations (density, viscosity, enthalpy, entropy, etc.), linear and nonlinear
regression, and easily formatted parameter studies and publication-quality plotting. The
author is indebted to Professors Sanford Klein and William Beckman, of the Univer-
sity of Wisconsin, for invaluable and continuous help in preparing this EES material.
The book is now available with or without an EES problems disk. The EES engine is
available to adopters of the text with the problems disk.

Another welcome addition, especially for students, is Answers to Selected Prob-
lems. Over 600 answers are provided, or about 43 percent of all the regular problem
assignments. Thus a compromise is struck between sometimes having a specific nu-
merical goal and sometimes directly applying yourself and hoping for the best result.

There are revisions in every chapter. Chapter 1—which is purely introductory and
could be assigned as reading—has been toned down from earlier editions. For ex-
ample, the discussion of the fluid acceleration vector has been moved entirely to Chap-
ter 4. Four brief new sections have been added: (1) the uncertainty of engineering
data, (2) the use of EES, (3) the FE Examination, and (4) recommended problem-
solving techniques.

Chapter 2 has an improved discussion of the stability of floating bodies, with a fully
derived formula for computing the metacentric height. Coverage is confined to static
fluids and rigid-body motions. An improved section on pressure measurement discusses
modern microsensors, such as the fused-quartz bourdon tube, micromachined silicon
capacitive and piezoelectric sensors, and tiny (2 mm long) silicon resonant-frequency
devices.

Chapter 3 tightens up the energy equation discussion and retains the plan that
Bernoulli’s equation comes last, after control-volume mass, linear momentum, angu-
lar momentum, and energy studies. Although some texts begin with an entire chapter
on the Bernoulli equation, this author tries to stress that it is a dangerously restricted
relation which is often misused by both students and graduate engineers.

In Chapter 4 a few inviscid and viscous flow examples have been added to the ba-
sic partial differential equations of fluid mechanics. More extensive discussion con-
tinues in Chapter 8.

Chapter 5 is more successful when one selects scaling variables before using the pi
theorem. Nevertheless, students still complain that the problems are too ambiguous and
lead to too many different parameter groups. Several problem assignments now con-
tain a few hints about selecting the repeating variables to arrive at traditional pi groups.

In Chapter 6, the “alternate forms of the Moody chart” have been resurrected as
problem assignments. Meanwhile, the three basic pipe-flow problems—pressure drop,
flow rate, and pipe sizing—can easily be handled by the EES software, and examples
are given. Some newer flowmeter descriptions have been added for further enrichment.
Chapter 7 has added some new data on drag and resistance of various bodies, notably
biological systems which adapt to the flow of wind and water.
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EES Software

Preface xiii

Chapter 8 picks up from the sample plane potential flows of Section 4.10 and plunges
right into inviscid-flow analysis, especially aerodynamics. The discussion of numeri-
cal methods, or computational fluid dynamics (CFD), both inviscid and viscous, steady
and unsteady, has been greatly expanded. Chapter 9, with its myriad complex algebraic
equations, illustrates the type of examples and problem assignments which can be
solved more easily using EES. A new section has been added about the suborbital X-
33 and VentureStar vehicles.

In the discussion of open-channel flow, Chapter 10, we have further attempted to
make the material more attractive to civil engineers by adding real-world comprehen-
sive problems and design projects from the author’s experience with hydropower proj-
ects. More emphasis is placed on the use of friction factors rather than on the Man-
ning roughness parameter. Chapter 11, on turbomachinery, has added new material on
compressors and the delivery of gases. Some additional fluid properties and formulas
have been included in the appendices, which are otherwise much the same.

The all new Instructor’s Resource CD contains a PowerPoint presentation of key text
figures as well as additional helpful teaching tools. The list of films and videos, for-
merly App. C, is now omitted and relegated to the Instructor’s Resource CD.

The Solutions Manual provides complete and detailed solutions, including prob-
lem statements and artwork, to the end-of-chapter problems. It may be photocopied for
posting or preparing transparencies for the classroom.

The Engineering Equation Solver (EES) was developed by Sandy Klein and Bill Beck-
man, both of the University of Wisconsin—Madison. A combination of equation-solving
capability and engineering property data makes EES an extremely powerful tool for your
students. EES (pronounced “ease’) enables students to solve problems, especially design
problems, and to ask “what if” questions. EES can do optimization, parametric analysis,
linear and nonlinear regression, and provide publication-quality plotting capability. Sim-
ple to master, this software allows you to enter equations in any form and in any order. It
automatically rearranges the equations to solve them in the most efficient manner.

EES is particularly useful for fluid mechanics problems since much of the property
data needed for solving problems in these areas are provided in the program. Air ta-
bles are built-in, as are psychometric functions and Joint Army Navy Air Force (JANAF)
table data for many common gases. Transport properties are also provided for all sub-
stances. EES allows the user to enter property data or functional relationships written
in Pascal, C, C++, or Fortran. The EES engine is available free to qualified adopters
via a password-protected website, to those who adopt the text with the problems disk.
The program is updated every semester.

The EES software problems disk provides examples of typical problems in this text.
Problems solved are denoted in the text with a disk symbol. Each fully documented
solution is actually an EES program that is run using the EES engine. Each program
provides detailed comments and on-line help. These programs illustrate the use of EES
and help the student master the important concepts without the calculational burden
that has been previously required.
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Hurricane Elena in the Gulf of Mexico. Unlike most small-scale fluids engineering applications,
hurricanes are strongly affected by the Coriolis acceleration due to the rotation of the earth, which
causes them to swirl counterclockwise in the Northern Hemisphere. The physical properties and
boundary conditions which govern such flows are discussed in the present chapter. (Courtesy of
NASA/Color-Pic Inc./E.R. Degginger/Color-Pic Inc.)



1.1 Preliminary Remarks

Chapter 1
Introduction

Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid
statics) and the subsequent effects of the fluid upon the boundaries, which may be ei-
ther solid surfaces or interfaces with other fluids. Both gases and liquids are classified
as fluids, and the number of fluids engineering applications is enormous: breathing,
blood flow, swimming, pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes,
missiles, icebergs, engines, filters, jets, and sprinklers, to name a few. When you think
about it, almost everything on this planet either is a fluid or moves within or near a
fluid.

The essence of the subject of fluid flow is a judicious compromise between theory
and experiment. Since fluid flow is a branch of mechanics, it satisfies a set of well-
documented basic laws, and thus a great deal of theoretical treatment is available. How-
ever, the theory is often frustrating, because it applies mainly to idealized situations
which may be invalid in practical problems. The two chief obstacles to a workable the-
ory are geometry and viscosity. The basic equations of fluid motion (Chap. 4) are too
difficult to enable the analyst to attack arbitrary geometric configurations. Thus most
textbooks concentrate on flat plates, circular pipes, and other easy geometries. It is pos-
sible to apply numerical computer techniques to complex geometries, and specialized
textbooks are now available to explain the new computational fluid dynamics (CFD)
approximations and methods [1, 2, 29]." This book will present many theoretical re-
sults while keeping their limitations in mind.

The second obstacle to a workable theory is the action of viscosity, which can be
neglected only in certain idealized flows (Chap. 8). First, viscosity increases the diffi-
culty of the basic equations, although the boundary-layer approximation found by Lud-
wig Prandtl in 1904 (Chap. 7) has greatly simplified viscous-flow analyses. Second,
viscosity has a destabilizing effect on all fluids, giving rise, at frustratingly small ve-
locities, to a disorderly, random phenomenon called furbulence. The theory of turbu-
lent flow is crude and heavily backed up by experiment (Chap. 6), yet it can be quite
serviceable as an engineering estimate. Textbooks now present digital-computer tech-
niques for turbulent-flow analysis [32], but they are based strictly upon empirical as-
sumptions regarding the time mean of the turbulent stress field.

"Numbered references appear at the end of each chapter.
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1.2 The Concept of a Fluid

Thus there is theory available for fluid-flow problems, but in all cases it should be
backed up by experiment. Often the experimental data provide the main source of in-
formation about specific flows, such as the drag and lift of immersed bodies (Chap. 7).
Fortunately, fluid mechanics is a highly visual subject, with good instrumentation [4,
5, 35], and the use of dimensional analysis and modeling concepts (Chap. 5) is wide-
spread. Thus experimentation provides a natural and easy complement to the theory.
You should keep in mind that theory and experiment should go hand in hand in all
studies of fluid mechanics.

From the point of view of fluid mechanics, all matter consists of only two states, fluid
and solid. The difference between the two is perfectly obvious to the layperson, and it
is an interesting exercise to ask a layperson to put this difference into words. The tech-
nical distinction lies with the reaction of the two to an applied shear or tangential stress.
A solid can resist a shear stress by a static deformation; a fluid cannot. Any shear
stress applied to a fluid, no matter how small, will result in motion of that fluid. The
fluid moves and deforms continuously as long as the shear stress is applied. As a corol-
lary, we can say that a fluid at rest must be in a state of zero shear stress, a state of-
ten called the hydrostatic stress condition in structural analysis. In this condition, Mohr’s
circle for stress reduces to a point, and there is no shear stress on any plane cut through
the element under stress.

Given the definition of a fluid above, every layperson also knows that there are two
classes of fluids, liguids and gases. Again the distinction is a technical one concerning
the effect of cohesive forces. A liquid, being composed of relatively close-packed mol-
ecules with strong cohesive forces, tends to retain its volume and will form a free sur-
face in a gravitational field if unconfined from above. Free-surface flows are domi-
nated by gravitational effects and are studied in Chaps. 5 and 10. Since gas molecules
are widely spaced with negligible cohesive forces, a gas is free to expand until it en-
counters confining walls. A gas has no definite volume, and when left to itself with-
out confinement, a gas forms an atmosphere which is essentially hydrostatic. The hy-
drostatic behavior of liquids and gases is taken up in Chap. 2. Gases cannot form a
free surface, and thus gas flows are rarely concerned with gravitational effects other
than buoyancy.

Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own
weight. The solid sags into a static deflection, shown as a highly exaggerated dashed
line, resisting shear without flow. A free-body diagram of element A on the side of the
block shows that there is shear in the block along a plane cut at an angle 6 through A.
Since the block sides are unsupported, element A has zero stress on the left and right
sides and compression stress o = —p on the top and bottom. Mohr’s circle does not
reduce to a point, and there is nonzero shear stress in the block.

By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls in or-
der to eliminate shear stress. The walls exert a compression stress of —p and reduce
Mohr’s circle to a point with zero shear everywhere, i.e., the hydrostatic condition. The
liquid retains its volume and forms a free surface in the container. If the walls are re-
moved, shear develops in the liquid and a big splash results. If the container is tilted,
shear again develops, waves form, and the free surface seeks a horizontal configura-



Fig. 1.1 A solid at rest can resist
shear. (a) Static deflection of the
solid; (b) equilibrium and Mohr’s
circle for solid element A. A fluid
cannot resist shear. (¢) Containing
walls are needed; (d) equilibrium
and Mohr’s circle for fluid
element A.
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tion, pouring out over the lip if necessary. Meanwhile, the gas is unrestrained and ex-
pands out of the container, filling all available space. Element A in the gas is also hy-
drostatic and exerts a compression stress —p on the walls.

In the above discussion, clear decisions could be made about solids, liquids, and
gases. Most engineering fluid-mechanics problems deal with these clear cases, i.e., the
common liquids, such as water, oil, mercury, gasoline, and alcohol, and the common
gases, such as air, helium, hydrogen, and steam, in their common temperature and pres-
sure ranges. There are many borderline cases, however, of which you should be aware.
Some apparently “solid” substances such as asphalt and lead resist shear stress for short
periods but actually deform slowly and exhibit definite fluid behavior over long peri-
ods. Other substances, notably colloid and slurry mixtures, resist small shear stresses
but “yield” at large stress and begin to flow as fluids do. Specialized textbooks are de-
voted to this study of more general deformation and flow, a field called rheology [6].
Also, liquids and gases can coexist in two-phase mixtures, such as steam-water mix-
tures or water with entrapped air bubbles. Specialized textbooks present the analysis
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1.3 The Fluid as a Continuum

Fig. 1.2 The limit definition of con-
tinuum fluid density: (a) an ele-
mental volume in a fluid region of
variable continuum density; (b) cal-
culated density versus size of the
elemental volume.

of such rwo-phase flows [7]. Finally, there are situations where the distinction between
a liquid and a gas blurs. This is the case at temperatures and pressures above the so-
called critical point of a substance, where only a single phase exists, primarily resem-
bling a gas. As pressure increases far above the critical point, the gaslike substance be-
comes so dense that there is some resemblance to a liquid and the usual thermodynamic
approximations like the perfect-gas law become inaccurate. The critical temperature
and pressure of water are 7, = 647 K and p, = 219 atm,” so that typical problems in-
volving water and steam are below the critical point. Air, being a mixture of gases, has
no distinct critical point, but its principal component, nitrogen, has 7, = 126 K and
p. = 34 atm. Thus typical problems involving air are in the range of high temperature
and low pressure where air is distinctly and definitely a gas. This text will be concerned
solely with clearly identifiable liquids and gases, and the borderline cases discussed
above will be beyond our scope.

We have already used technical terms such as fluid pressure and density without a rig-
orous discussion of their definition. As far as we know, fluids are aggregations of mol-
ecules, widely spaced for a gas, closely spaced for a liquid. The distance between mol-
ecules is very large compared with the molecular diameter. The molecules are not fixed
in a lattice but move about freely relative to each other. Thus fluid density, or mass per
unit volume, has no precise meaning because the number of molecules occupying a
given volume continually changes. This effect becomes unimportant if the unit volume
is large compared with, say, the cube of the molecular spacing, when the number of
molecules within the volume will remain nearly constant in spite of the enormous in-
terchange of particles across the boundaries. If, however, the chosen unit volume is too
large, there could be a noticeable variation in the bulk aggregation of the particles. This
situation is illustrated in Fig. 1.2, where the “density” as calculated from molecular
mass ém within a given volume 8V is plotted versus the size of the unit volume. There
is a limiting volume 87 below which molecular variations may be important and

p Microscopic
Elemental uncertainty

volume

_ 3
p = 1000 kg/m Macroscopic

p =1100 uncertainty

p =1200

p =1300

80

0 8U* =107 mm?

Region containing fluid

(a) ()

2One atmosphere equals 2116 Ibf/ft> = 101,300 Pa.
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above which aggregate variations may be important. The density p of a fluid is best
defined as
. om

p= lim. 5 an
The limiting volume &V* is about 10~° mm? for all liquids and for gases at atmospheric
pressure. For example, 10~° mm® of air at standard conditions contains approximately
3 X 107 molecules, which is sufficient to define a nearly constant density according to
Eq. (1.1). Most engineering problems are concerned with physical dimensions much larger
than this limiting volume, so that density is essentially a point function and fluid proper-
ties can be thought of as varying continually in space, as sketched in Fig. 1.2a. Such a
fluid is called a continuum, which simply means that its variation in properties is so smooth
that the differential calculus can be used to analyze the substance. We shall assume that
continuum calculus is valid for all the analyses in this book. Again there are borderline
cases for gases at such low pressures that molecular spacing and mean free path® are com-
parable to, or larger than, the physical size of the system. This requires that the contin-
uum approximation be dropped in favor of a molecular theory of rarefied-gas flow [8]. In
principle, all fluid-mechanics problems can be attacked from the molecular viewpoint, but
no such attempt will be made here. Note that the use of continuum calculus does not pre-
clude the possibility of discontinuous jumps in fluid properties across a free surface or
fluid interface or across a shock wave in a compressible fluid (Chap. 9). Our calculus in
Chap. 4 must be flexible enough to handle discontinuous boundary conditions.

A dimension is the measure by which a physical variable is expressed quantitatively.
A unit is a particular way of attaching a number to the quantitative dimension. Thus
length is a dimension associated with such variables as distance, displacement, width,
deflection, and height, while centimeters and inches are both numerical units for ex-
pressing length. Dimension is a powerful concept about which a splendid tool called
dimensional analysis has been developed (Chap. 5), while units are the nitty-gritty, the
number which the customer wants as the final answer.

Systems of units have always varied widely from country to country, even after in-
ternational agreements have been reached. Engineers need numbers and therefore unit
systems, and the numbers must be accurate because the safety of the public is at stake.
You cannot design and build a piping system whose diameter is D and whose length
is L. And U.S. engineers have persisted too long in clinging to British systems of units.
There is too much margin for error in most British systems, and many an engineering
student has flunked a test because of a missing or improper conversion factor of 12 or
144 or 32.2 or 60 or 1.8. Practicing engineers can make the same errors. The writer is
aware from personal experience of a serious preliminary error in the design of an air-
craft due to a missing factor of 32.2 to convert pounds of mass to slugs.

In 1872 an international meeting in France proposed a treaty called the Metric Con-
vention, which was signed in 1875 by 17 countries including the United States. It was
an improvement over British systems because its use of base 10 is the foundation of
our number system, learned from childhood by all. Problems still remained because

3The mean distance traveled by molecules between collisions.
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Primary Dimensions

Table 1.1 Primary Dimensions in
SI and BG Systems

even the metric countries differed in their use of kiloponds instead of dynes or new-
tons, kilograms instead of grams, or calories instead of joules. To standardize the met-
ric system, a General Conference of Weights and Measures attended in 1960 by 40
countries proposed the International System of Units (SI). We are now undergoing a
painful period of transition to SI, an adjustment which may take many more years to
complete. The professional societies have led the way. Since July 1, 1974, SI units have
been required by all papers published by the American Society of Mechanical Engi-
neers, which prepared a useful booklet explaining the SI [9]. The present text will use
SI units together with British gravitational (BG) units.

In fluid mechanics there are only four primary dimensions from which all other dimen-
sions can be derived: mass, length, time, and temperature.4 These dimensions and their units
in both systems are given in Table 1.1. Note that the kelvin unit uses no degree symbol.
The braces around a symbol like {M} mean “the dimension” of mass. All other variables
in fluid mechanics can be expressed in terms of {M}, {L}, {T}, and {®}. For example, ac-
celeration has the dimensions {L7~2}. The most crucial of these secondary dimensions is
force, which is directly related to mass, length, and time by Newton’s second law

F = ma (1.2)

From this we see that, dimensionally, {F} = {MLT ?}. A constant of proportionality
is avoided by defining the force unit exactly in terms of the primary units. Thus we
define the newton and the pound of force

1 newton of force = 1 N = 1 kg - m/s*

(1.3)
1 pound of force = 1 Ibf = 1 slug - ft/s*> = 4.4482 N

In this book the abbreviation Ibf is used for pound-force and /b for pound-mass. If in-
stead one adopts other force units such as the dyne or the poundal or kilopond or adopts
other mass units such as the gram or pound-mass, a constant of proportionality called
g. must be included in Eq. (1.2). We shall not use g, in this book since it is not nec-
essary in the SI and BG systems.

A list of some important secondary variables in fluid mechanics, with dimensions
derived as combinations of the four primary dimensions, is given in Table 1.2. A more
complete list of conversion factors is given in App. C.

Primary dimension SI unit BG unit Conversion factor
Mass {M} Kilogram (kg) Slug 1 slug = 14.5939 kg
Length {L} Meter (m) Foot (ft) 1 ft = 0.3048 m
Time {T} Second (s) Second (s) Is=1s
Temperature {O} Kelvin (K) Rankine (°R) 1 K=1.8°R

“If electromagnetic effects are important, a fifth primary dimension must be included, electric current
{I}, whose SI unit is the ampere (A).
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Secondary dimension SI unit BG unit Conversion factor
Area {L*} m? ft? 1 m? = 10.764 ft>
Volume {L*} m’ ft3 1 m® = 35315
Velocity (LT~} m/s ft/s 1 ft/s = 0.3048 m/s
Acceleration {LT 2} m/s? ft/s> 1 ft/s*> = 0.3048 m/s>
Pressure or stress

{(ML™'T™%) Pa = N/m? Ibf/ft 1 Ibf/ft> = 47.88 Pa
Angular velocity {7~} st st Ist=1s""1
Energy, heat, work

{(ML*T~?)} J=N-m ft - Ibf 1 ft - Ibf = 1.3558 J
Power {ML*T 3} W =1/s ft - 1bf/s 1 ft - Ibf/s = 1.3558 W
Density {ML™3} kg/m? slugs/ft® 1 slug/ft® = 515.4 kg/m?
Viscosity (ML™'T™"} kg/(m - s) slugs/(ft - s) 1 slug/(ft - s) = 47.88 kg/(m - s)
Specific heat {L*T 2071} m?/(s> - K) ft%/(s? - °R) 1 m?(s* - K) = 5.980 ft*/(s” - °R)
EXAMPLE 1.1

A body weighs 1000 Ibf when exposed to a standard earth gravity g = 32.174 ft/s>. (a) What is
its mass in kg? (b) What will the weight of this body be in N if it is exposed to the moon’s stan-
dard acceleration gpoon = 1.62 m/s?? (¢) How fast will the body accelerate if a net force of 400
Ibf is applied to it on the moon or on the earth?

Solution

Equation (1.2) holds with F' = weight and a = geau:
F =W =mg = 1000 Ibf = (m slugs)(32.174 ft/s?)
o 1000
m=
32.174

The change from 31.08 slugs to 453.6 kg illustrates the proper use of the conversion factor
14.5939 kg/slug.

= (31.08 slugs)(14.5939 kg/slug) = 453.6 kg Ans. (a)

The mass of the body remains 453.6 kg regardless of its location. Equation (1.2) applies with a
new value of a and hence a new force

F = Winoon = Mgmoon = (453.6 kg)(1.62 m/s?) = 735 N Ans. (b)

This problem does not involve weight or gravity or position and is simply a direct application
of Newton’s law with an unbalanced force:

F = 400 1bf = ma = (31.08 slugs)(a ft/s?)
or

400 2 2
=——=1243 ft/s* = 3. Ans.
a 31,08 3 ft/s 3.79 m/s ns. (c)

This acceleration would be the same on the moon or earth or anywhere.
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Part (a)

Part (b)

Many data in the literature are reported in inconvenient or arcane units suitable only
to some industry or specialty or country. The engineer should convert these data to the
SI or BG system before using them. This requires the systematic application of con-
version factors, as in the following example.

EXAMPLE 1.2

An early viscosity unit in the cgs system is the poise (abbreviated P), or g/(cm - s), named after
J. L. M. Poiseuille, a French physician who performed pioneering experiments in 1840 on wa-
ter flow in pipes. The viscosity of water (fresh or salt) at 293.16 K = 20°C is approximately
= 0.01 P. Express this value in (a) SI and (b) BG units.

Solution
_ 1 kg _
n=1[0.01 g/(cm - s)] (100 cm/m) = 0.001 kg/(m - s) Ans. (a)
1000 g
1slug

= [0.001 kg/(m - s)] ———=— (0.3048 m/ft

w=1 g/(m - 8)] 14.59kg( )
=2.09 X 1077 slug/(ft - s) Ans. (b)

Note: Result (b) could have been found directly from (a) by dividing (a) by the viscosity con-
version factor 47.88 listed in Table 1.2.

We repeat our advice: Faced with data in unusual units, convert them immediately
to either SI or BG units because (1) it is more professional and (2) theoretical equa-
tions in fluid mechanics are dimensionally consistent and require no further conversion
factors when these two fundamental unit systems are used, as the following example
shows.

EXAMPLE 1.3

A useful theoretical equation for computing the relation between pressure, velocity, and altitude
in a steady flow of a nearly inviscid, nearly incompressible fluid with negligible heat transfer
and shaft work® is the Bernoulli relation, named after Daniel Bernoulli, who published a hy-
drodynamics textbook in 1738:

po=p +3pV’ + pgZ (1)

where py = stagnation pressure
p = pressure in moving fluid

V = velocity
p = density
Z = altitude

g = gravitational acceleration

SThat’s an awful lot of assumptions, which need further study in Chap. 3.
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(a) Show that Eq. (1) satisfies the principle of dimensional homogeneity, which states that all
additive terms in a physical equation must have the same dimensions. (b) Show that consistent
units result without additional conversion factors in SI units. (¢) Repeat (b) for BG units.

Solution

We can express Eq. (1) dimensionally, using braces by entering the dimensions of each term
from Table 1.2:

(ML™'T™%} = {(ML™'T™2} + {ML™3{L*T?} + {ML3}{LT %}{L}
= {ML™'T?} for all terms Ans. (a)
Enter the SI units for each quantity from Table 1.2:
{N/m?} = {N/m?} + {kg/m’*}{m?%s?} + {kg/m>}{m/s?}{m}
= {N/m*} + {kg/(m - s*)}
The right-hand side looks bad until we remember from Eq. (1.3) that 1 kg = 1 N - s>/m.

. <
(ke/(m - 7)) = NS g2y Ans. (b)
{m-s7}
Thus all terms in Bernoulli’s equation will have units of pascals, or newtons per square meter,
when SI units are used. No conversion factors are needed, which is true of all theoretical equa-
tions in fluid mechanics.

Introducing BG units for each term, we have
{Ibf/f*} = {Ibf/f*} + {slugs/f} {ft*/s?} + {slugs/ft’} {ft/s*} {ft}
= {Ibf/ft*} + {slugs/(ft - s?)}
But, from Eq. (1.3), 1 slug = 1 Ibf - s?/ft, so that

{Ibf - s%/ft}

. g2 =
{slugs/(ft - s7)} fi-5)

= {Ibf/ft*} Ans. (c)

All terms have the unit of pounds-force per square foot. No conversion factors are needed in the
BG system either.

There is still a tendency in English-speaking countries to use pound-force per square
inch as a pressure unit because the numbers are more manageable. For example, stan-
dard atmospheric pressure is 14.7 Ibf/in> = 2116 Ibf/ft> = 101,300 Pa. The pascal is a
small unit because the newton is less than § Ibf and a square meter is a very large area.
It is felt nevertheless that the pascal will gradually gain universal acceptance; e.g., re-
pair manuals for U.S. automobiles now specify pressure measurements in pascals.

Note that not only must all (fluid) mechanics equations be dimensionally homogeneous,
one must also use consistent units; that is, each additive term must have the same units.
There is no trouble doing this with the SI and BG systems, as in Ex. 1.3, but woe unto
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Homogeneous versus
Dimensionally Inconsistent
Equations

those who try to mix colloquial English units. For example, in Chap. 9, we often use
the assumption of steady adiabatic compressible gas flow:

h+ %Vz = constant

where / is the fluid enthalpy and V?/2 is its kinetic energy. Colloquial thermodynamic
tables might list 4 in units of British thermal units per pound (Btu/lb), whereas V is
likely used in ft/s. It is completely erroneous to add Btu/Ib to ft?/s*. The proper unit
for h in this case is ft - Ibf/slug, which is identical to ft?/s>. The conversion factor is
1 Btw/lb =~ 25,040 ft°/s* = 25,040 ft - Ibf/slug.

All theoretical equations in mechanics (and in other physical sciences) are dimension-
ally homogeneous; i.e., each additive term in the equation has the same dimensions.
For example, Bernoulli’s equation (1) in Example 1.3 is dimensionally homogeneous:
Each term has the dimensions of pressure or stress of {F/L*}. Another example is the
equation from physics for a body falling with negligible air resistance:

S = S() + V()[ + %gtz

where S is initial position, Vj is initial velocity, and g is the acceleration of gravity. Each
term in this relation has dimensions of length {L}. The factor 3, which arises from inte-
gration, is a pure (dimensionless) number, {1}. The exponent 2 is also dimensionless.

However, the reader should be warned that many empirical formulas in the engi-
neering literature, arising primarily from correlations of data, are dimensionally in-
consistent. Their units cannot be reconciled simply, and some terms may contain hid-
den variables. An example is the formula which pipe valve manufacturers cite for liquid
volume flow rate Q (m?/s) through a partially open valve:

_ & 1/2
0 —CV<SG)

where Ap is the pressure drop across the valve and SG is the specific gravity of the
liquid (the ratio of its density to that of water). The quantity Cy is the valve flow co-
efficient, which manufacturers tabulate in their valve brochures. Since SG is dimen-
sionless {1}, we see that this formula is totally inconsistent, with one side being a flow
rate {L*/T} and the other being the square root of a pressure drop {M"*/L"*T}. It fol-
lows that Cy must have dimensions, and rather odd ones at that: {L”?/M"?}. Nor is
the resolution of this discrepancy clear, although one hint is that the values of Cy in
the literature increase nearly as the square of the size of the valve. The presentation of
experimental data in homogeneous form is the subject of dimensional analysis (Chap.
5). There we shall learn that a homogeneous form for the valve flow relation is

Ap 172
Q = CdAopening(7>

where p is the liquid density and A the area of the valve opening. The discharge coeffi-
cient C, is dimensionless and changes only slightly with valve size. Please believe—un-
til we establish the fact in Chap. 5—that this latter is a much better formulation of the data.
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Table 1.3 Convenient Prefixes
for Engineering Units

Multiplicative

factor Prefix Symbol
10'? tera T
10° giga G
10° mega M
10° kilo k
107 hecto h
10 deka da
107! deci d
1072 centi c
1073 milli m
107 micro w
107° nano n
10712 pico p
1071 femto f
10718 atto a
Part (a)
Part (b)
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Meanwhile, we conclude that dimensionally inconsistent equations, though they
abound in engineering practice, are misleading and vague and even dangerous, in the
sense that they are often misused outside their range of applicability.

Engineering results often are too small or too large for the common units, with too
many zeros one way or the other. For example, to write p = 114,000,000 Pa is long
and awkward. Using the prefix “M” to mean 10°, we convert this to a concise p =
114 MPa (megapascals). Similarly, = 0.000000003 s is a proofreader’s nightmare
compared to the equivalent = 3 ns (nanoseconds). Such prefixes are common and
convenient, in both the SI and BG systems. A complete list is given in Table 1.3.

EXAMPLE 14

In 1890 Robert Manning, an Irish engineer, proposed the following empirical formula for the
average velocity V in uniform flow due to gravity down an open channel (BG units):
V= 1'49R2/3Sl/2 (1)
n
where R = hydraulic radius of channel (Chaps. 6 and 10)
S = channel slope (tangent of angle that bottom makes with horizontal)
n = Manning’s roughness factor (Chap. 10)

and n is a constant for a given surface condition for the walls and bottom of the channel. (a) Is
Manning’s formula dimensionally consistent? (b) Equation (1) is commonly taken to be valid in
BG units with n taken as dimensionless. Rewrite it in SI form.

Solution

Introduce dimensions for each term. The slope S, being a tangent or ratio, is dimensionless, de-
noted by {unity} or {1}. Equation (1) in dimensional form is

L) _[149]),;23
H { : }{L J1)

This formula cannot be consistent unless {1.49/n} = {L"3/T}. If n is dimensionless (and it is
never listed with units in textbooks), then the numerical value 1.49 must have units. This can be
tragic to an engineer working in a different unit system unless the discrepancy is properly doc-
umented. In fact, Manning’s formula, though popular, is inconsistent both dimensionally and
physically and does not properly account for channel-roughness effects except in a narrow range
of parameters, for water only.

From part (a), the number 1.49 must have dimensions {L'?/T} and thus in BG units equals
1.49 ft'”/s. By using the SI conversion factor for length we have

(1.49 £t'3/5)(0.3048 m/ft)'* = 1.00 m"?/s

Therefore Manning’s formula in SI becomes

V= QRz/ssl/z Ans. (b) (2)

n
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1.5 Properties of the
Velocity Field

Eulerian and Lagrangian
Desciptions

The Velocity Field

with R in m and V in m/s. Actually, we misled you: This is the way Manning, a metric user, first
proposed the formula. It was later converted to BG units. Such dimensionally inconsistent formu-
las are dangerous and should either be reanalyzed or treated as having very limited application.

In a given flow situation, the determination, by experiment or theory, of the properties
of the fluid as a function of position and time is considered to be the solution to the
problem. In almost all cases, the emphasis is on the space-time distribution of the fluid
properties. One rarely keeps track of the actual fate of the specific fluid particles.® This
treatment of properties as continuum-field functions distinguishes fluid mechanics from
solid mechanics, where we are more likely to be interested in the trajectories of indi-
vidual particles or systems.

There are two different points of view in analyzing problems in mechanics. The first
view, appropriate to fluid mechanics, is concerned with the field of flow and is called
the eulerian method of description. In the eulerian method we compute the pressure
field p(x, y, z, f) of the flow pattern, not the pressure changes p(f) which a particle ex-
periences as it moves through the field.

The second method, which follows an individual particle moving through the flow,
is called the lagrangian description. The lagrangian approach, which is more appro-
priate to solid mechanics, will not be treated in this book. However, certain numerical
analyses of sharply bounded fluid flows, such as the motion of isolated fluid droplets,
are very conveniently computed in lagrangian coordinates [1].

Fluid-dynamic measurements are also suited to the eulerian system. For example,
when a pressure probe is introduced into a laboratory flow, it is fixed at a specific po-
sition (x, y, z). Its output thus contributes to the description of the eulerian pressure
field p(x, y, z, £). To simulate a lagrangian measurement, the probe would have to move
downstream at the fluid particle speeds; this is sometimes done in oceanographic mea-
surements, where flowmeters drift along with the prevailing currents.

The two different descriptions can be contrasted in the analysis of traffic flow along
a freeway. A certain length of freeway may be selected for study and called the field
of flow. Obviously, as time passes, various cars will enter and leave the field, and the
identity of the specific cars within the field will constantly be changing. The traffic en-
gineer ignores specific cars and concentrates on their average velocity as a function of
time and position within the field, plus the flow rate or number of cars per hour pass-
ing a given section of the freeway. This engineer is using an eulerian description of the
traffic flow. Other investigators, such as the police or social scientists, may be inter-
ested in the path or speed or destination of specific cars in the field. By following a
specific car as a function of time, they are using a lagrangian description of the flow.

Foremost among the properties of a flow is the velocity field V(x, y, z, £). In fact, de-
termining the velocity is often tantamount to solving a flow problem, since other prop-

%One example where fluid-particle paths are important is in water-quality analysis of the fate of
contaminant discharges.
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erties follow directly from the velocity field. Chapter 2 is devoted to the calculation of
the pressure field once the velocity field is known. Books on heat transfer (for exam-
ple, Ref. 10) are essentially devoted to finding the temperature field from known ve-
locity fields.

In general, velocity is a vector function of position and time and thus has three com-
ponents u, v, and w, each a scalar field in itself:

Vx, y, z, ) = iux, y, z, 1) + ju(x, y, z, 1) + kw(x, y, z, 1) (1.4)

The use of u, v, and w instead of the more logical component notation V,, V,, and V.,
is the result of an almost unbreakable custom in fluid mechanics.

Several other quantities, called kinematic properties, can be derived by mathemati-
cally manipulating the velocity field. We list some kinematic properties here and give
more details about their use and derivation in later chapters:

1. Displacement vector: r= f V dt (Sec. 1.9)

2. Acceleration: a= % (Sec. 4.1)

3.  Volume rate of flow: 0= J (V-n)dA (Sec.3.2)

4. Volume expansion rate: L dv =V-V (Sec. 4.2)
Vv dt

5. Local angular velocity: w=+3VXV (Sec. 4.8)

We will not illustrate any problems regarding these kinematic properties at present. The
point of the list is to illustrate the type of vector operations used in fluid mechanics and
to make clear the dominance of the velocity field in determining other flow properties.
Note: The fluid acceleration, item 2 above, is not as simple as it looks and actually in-
volves four different terms due to the use of the chain rule in calculus (see Sec. 4.1).

EXAMPLE 1.5

Fluid flows through a contracting section of a duct, as in Fig. E1.5. A velocity probe inserted at
section (1) measures a steady value #; = 1 m/s, while a similar probe at section (2) records a
steady u, = 3 m/s. Estimate the fluid acceleration, if any, if Ax = 10 cm.

Solution

The flow is steady (not time-varying), but fluid particles clearly increase in velocity as they pass
from (1) to (2). This is the concept of convective acceleration (Sec. 4.1). We may estimate the
acceleration as a velocity change Au divided by a time change At = Ax/u,,g:

velocity change Uy — U _ (3.0 — 1.0 m/s)(1.0 + 3.0 m/s)

time change Ax/[E(uy + un)] 2(0.1 m)

~40 m/s®>  Ans.

A simple estimate thus indicates that this seemingly innocuous flow is accelerating at 4 times
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1.6 Thermodynamic Properties
of a Fluid

the acceleration of gravity. In the limit as Ax and Ar become very small, the above estimate re-
duces to a partial-derivative expression for convective x-acceleration:

_ Au _ du
Ay, convective — AI%E}O At = ME

In three-dimensional flow (Sec. 4.1) there are nine of these convective terms.

While the velocity field V is the most important fluid property, it interacts closely with
the thermodynamic properties of the fluid. We have already introduced into the dis-
cussion the three most common such properties

1. Pressure p
2. Density p
3. Temperature T

These three are constant companions of the velocity vector in flow analyses. Four other
thermodynamic properties become important when work, heat, and energy balances are
treated (Chaps. 3 and 4):

4. Internal energy e

5. Enthalpy h =i + plp
6. Entropy s

7. Specific heats ¢, and ¢,

In addition, friction and heat conduction effects are governed by the two so-called trans-
port properties:

8. Coefficient of viscosity w
9. Thermal conductivity k

All nine of these quantities are true thermodynamic properties which are determined
by the thermodynamic condition or state of the fluid. For example, for a single-phase
substance such as water or oxygen, two basic properties such as pressure and temper-
ature are sufficient to fix the value of all the others:

p=p(p.T)  h=hp,T) w=upT) (1.5)

and so on for every quantity in the list. Note that the specific volume, so important in
thermodynamic analyses, is omitted here in favor of its inverse, the density p.

Recall that thermodynamic properties describe the state of a system, i.e., a collec-
tion of matter of fixed identity which interacts with its surroundings. In most cases
here the system will be a small fluid element, and all properties will be assumed to be
continuum properties of the flow field: p = p(x, y, z, 1), etc.

Recall also that thermodynamics is normally concerned with static systems, whereas
fluids are usually in variable motion with constantly changing properties. Do the prop-
erties retain their meaning in a fluid flow which is technically not in equilibrium? The
answer is yes, from a statistical argument. In gases at normal pressure (and even more
so for liquids), an enormous number of molecular collisions occur over a very short
distance of the order of 1 wm, so that a fluid subjected to sudden changes rapidly ad-
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justs itself toward equilibrium. We therefore assume that all the thermodynamic prop-
erties listed above exist as point functions in a flowing fluid and follow all the laws
and state relations of ordinary equilibrium thermodynamics. There are, of course, im-
portant nonequilibrium effects such as chemical and nuclear reactions in flowing flu-
ids which are not treated in this text.

Pressure is the (compression) stress at a point in a static fluid (Fig. 1.1). Next to ve-
locity, the pressure p is the most dynamic variable in fluid mechanics. Differences or
gradients in pressure often drive a fluid flow, especially in ducts. In low-speed flows,
the actual magnitude of the pressure is often not important, unless it drops so low as to
cause vapor bubbles to form in a liquid. For convenience, we set many such problem
assignments at the level of 1 atm = 2116 Ibf/ft* = 101,300 Pa. High-speed (compressible)
gas flows (Chap. 9), however, are indeed sensitive to the magnitude of pressure.

Temperature T is a measure of the internal energy level of a fluid. It may vary con-
siderably during high-speed flow of a gas (Chap. 9). Although engineers often use Cel-
sius or Fahrenheit scales for convenience, many applications in this text require ab-
solute (Kelvin or Rankine) temperature scales:

°R = °F + 459.69
K ="°C + 273.16

If temperature differences are strong, heat transfer may be important [10], but our con-
cern here is mainly with dynamic effects. We examine heat-transfer principles briefly
in Secs. 4.5 and 9.8.

The density of a fluid, denoted by p (lowercase Greek rho), is its mass per unit vol-
ume. Density is highly variable in gases and increases nearly proportionally to the pres-
sure level. Density in liquids is nearly constant; the density of water (about 1000 kg/m?)
increases only 1 percent if the pressure is increased by a factor of 220. Thus most lig-
uid flows are treated analytically as nearly “incompressible.”

In general, liquids are about three orders of magnitude more dense than gases at at-
mospheric pressure. The heaviest common liquid is mercury, and the lightest gas is hy-
drogen. Compare their densities at 20°C and 1 atm:

Mercury: p = 13,580 kg/m® Hydrogen: p = 0.0838 kg/m®

They differ by a factor of 162,000! Thus the physical parameters in various liquid and
gas flows might vary considerably. The differences are often resolved by the use of di-
mensional analysis (Chap. 5). Other fluid densities are listed in Tables A.3 and A.4 (in
App. A).

The specific weight of a fluid, denoted by vy (lowercase Greek gamma), is its weight
per unit volume. Just as a mass has a weight W = mg, density and specific weight are
simply related by gravity:

Y =P8 (1.6)
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Specific Gravity

Potential and Kinetic Energies

State Relations for Gases

The units of 7y are weight per unit volume, in Ibf/ft* or N/m>. In standard earth grav-
ity, g = 32.174 ft/s*> = 9.807 m/s*. Thus, e.g., the specific weights of air and water at
20°C and 1 atm are approximately

Yair = (1.205 kg/m?)(9.807 m/s%) = 11.8 N/m® = 0.0752 Ibf/ft®
Ywater = (998 kg/m?)(9.807 m/s?) = 9790 N/m> = 62.4 Ibf/ft’

Specific weight is very useful in the hydrostatic-pressure applications of Chap. 2. Spe-
cific weights of other fluids are given in Tables A.3 and A.4.

Specific gravity, denoted by SG, is the ratio of a fluid density to a standard reference
fluid, water (for liquids), and air (for gases):
_ pgas pgas

SG,, =g = _Ffes 1.7
g e 1.205 kg/m® (.7

Pliquid Pliquid
BT e 998 kg/m®

For example, the specific gravity of mercury (Hg) is SGy, = 13,580/998 ~ 13.6. En-
gineers find these dimensionless ratios easier to remember than the actual numerical
values of density of a variety of fluids.

In thermostatics the only energy in a substance is that stored in a system by molecu-
lar activity and molecular bonding forces. This is commonly denoted as internal en-
ergy ii. A commonly accepted adjustment to this static situation for fluid flow is to add
two more energy terms which arise from newtonian mechanics: the potential energy
and kinetic energy.

The potential energy equals the work required to move the system of mass m from
the origin to a position vector r = ix + jy + Kkz against a gravity field g. Its value is
—mg - r,or —g - r per unit mass. The kinetic energy equals the work required to change
the speed of the mass from zero to velocity V. Its value is 3mV?* or 3V per unit mass.
Then by common convention the total stored energy e per unit mass in fluid mechan-
ics is the sum of three terms:

e=0+3V+(-g-r) (1.8)

Also, throughout this book we shall define z as upward, so that g = —gk and g-r =
—gz. Then Eq. (1.8) becomes

e=0+3V+ gz (1.9)

The molecular internal energy i is a function of T and p for the single-phase pure sub-
stance, whereas the potential and kinetic energies are kinematic properties.

Thermodynamic properties are found both theoretically and experimentally to be re-
lated to each other by state relations which differ for each substance. As mentioned,
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we shall confine ourselves here to single-phase pure substances, e.g., water in its lig-
uid phase. The second most common fluid, air, is a mixture of gases, but since the mix-
ture ratios remain nearly constant between 160 and 2200 K, in this temperature range
air can be considered to be a pure substance.

All gases at high temperatures and low pressures (relative to their critical point) are
in good agreement with the perfect-gas law

p = pRT R = ¢, — ¢, = gas constant (1.10)

Since Eq. (1.10) is dimension