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Preface

The fourth edition of this textbook sees some additions and deletions but no philo-
sophical change. The basic outline of eleven chapters and five appendices remains the
same. The triad of integral, differential, and experimental approaches is retained and
is approached in that order of presentation. The book is intended for an undergraduate
course in fluid mechanics, and there is plenty of material for a full year of instruction.
The author covers the first six chapters and part of Chapter 7 in the introductory se-
mester. The more specialized and applied topics from Chapters 7 to 11 are then cov-
ered at our university in a second semester. The informal, student-oriented style is re-
tained and, if it succeeds, has the flavor of an interactive lecture by the author.

Approximately 30 percent of the problem exercises, and some fully worked examples,
have been changed or are new. The total number of problem exercises has increased
to more than 1500 in this fourth edition. The focus of the new problems is on practi-
cal and realistic fluids engineering experiences. Problems are grouped according to
topic, and some are labeled either with an asterisk (especially challenging) or a com-
puter-disk icon (where computer solution is recommended). A number of new pho-
tographs and figures have been added, especially to illustrate new design applications
and new instruments.

Professor John Cimbala, of Pennsylvania State University, contributed many of the
new problems. He had the great idea of setting comprehensive problems at the end of
each chapter, covering a broad range of concepts, often from several different chap-
ters. These comprehensive problems grow and recur throughout the book as new con-
cepts arise. Six more open-ended design projects have been added, making 15 projects
in all. The projects allow the student to set sizes and parameters and achieve good de-
sign with more than one approach.

An entirely new addition is a set of 95 multiple-choice problems suitable for prepar-
ing for the Fundamentals of Engineering (FE) Examination. These FE problems come
at the end of Chapters 1 to 10. Meant as a realistic practice for the actual FE Exam,
they are engineering problems with five suggested answers, all of them plausible, but
only one of them correct.
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Content Changes

New to this book, and to any fluid mechanics textbook, is a special appendix, Ap-
pendix E, Introduction to the Engineering Equation Solver (EES), which is keyed to
many examples and problems throughout the book. The author finds EES to be an ex-
tremely attractive tool for applied engineering problems. Not only does it solve arbi-
trarily complex systems of equations, written in any order or form, but also it has built-
in property evaluations (density, viscosity, enthalpy, entropy, etc.), linear and nonlinear
regression, and easily formatted parameter studies and publication-quality plotting. The
author is indebted to Professors Sanford Klein and William Beckman, of the Univer-
sity of Wisconsin, for invaluable and continuous help in preparing this EES material.
The book is now available with or without an EES problems disk. The EES engine is
available to adopters of the text with the problems disk.

Another welcome addition, especially for students, is Answers to Selected Prob-
lems. Over 600 answers are provided, or about 43 percent of all the regular problem
assignments. Thus a compromise is struck between sometimes having a specific nu-
merical goal and sometimes directly applying yourself and hoping for the best result.

There are revisions in every chapter. Chapter 1—which is purely introductory and
could be assigned as reading—has been toned down from earlier editions. For ex-
ample, the discussion of the fluid acceleration vector has been moved entirely to Chap-
ter 4. Four brief new sections have been added: (1) the uncertainty of engineering
data, (2) the use of EES, (3) the FE Examination, and (4) recommended problem-
solving techniques.

Chapter 2 has an improved discussion of the stability of floating bodies, with a fully
derived formula for computing the metacentric height. Coverage is confined to static
fluids and rigid-body motions. An improved section on pressure measurement discusses
modern microsensors, such as the fused-quartz bourdon tube, micromachined silicon
capacitive and piezoelectric sensors, and tiny (2 mm long) silicon resonant-frequency
devices.

Chapter 3 tightens up the energy equation discussion and retains the plan that
Bernoulli’s equation comes last, after control-volume mass, linear momentum, angu-
lar momentum, and energy studies. Although some texts begin with an entire chapter
on the Bernoulli equation, this author tries to stress that it is a dangerously restricted
relation which is often misused by both students and graduate engineers.

In Chapter 4 a few inviscid and viscous flow examples have been added to the ba-
sic partial differential equations of fluid mechanics. More extensive discussion con-
tinues in Chapter 8.

Chapter 5 is more successful when one selects scaling variables before using the pi
theorem. Nevertheless, students still complain that the problems are too ambiguous and
lead to too many different parameter groups. Several problem assignments now con-
tain a few hints about selecting the repeating variables to arrive at traditional pi groups.

In Chapter 6, the “alternate forms of the Moody chart” have been resurrected as
problem assignments. Meanwhile, the three basic pipe-flow problems—pressure drop,
flow rate, and pipe sizing—can easily be handled by the EES software, and examples
are given. Some newer flowmeter descriptions have been added for further enrichment.
Chapter 7 has added some new data on drag and resistance of various bodies, notably
biological systems which adapt to the flow of wind and water.
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Supplements

EES Software

Chapter 8 picks up from the sample plane potential flows of Section 4.10 and plunges
right into inviscid-flow analysis, especially aerodynamics. The discussion of numeri-
cal methods, or computational fluid dynamics (CFD), both inviscid and viscous, steady
and unsteady, has been greatly expanded. Chapter 9, with its myriad complex algebraic
equations, illustrates the type of examples and problem assignments which can be
solved more easily using EES. A new section has been added about the suborbital X-
33 and VentureStar vehicles.

In the discussion of open-channel flow, Chapter 10, we have further attempted to
make the material more attractive to civil engineers by adding real-world comprehen-
sive problems and design projects from the author’s experience with hydropower proj-
ects. More emphasis is placed on the use of friction factors rather than on the Man-
ning roughness parameter. Chapter 11, on turbomachinery, has added new material on
compressors and the delivery of gases. Some additional fluid properties and formulas
have been included in the appendices, which are otherwise much the same.

The all new Instructor’s Resource CD contains a PowerPoint presentation of key text
figures as well as additional helpful teaching tools. The list of films and videos, for-
merly App. C, is now omitted and relegated to the Instructor’s Resource CD.

The Solutions Manual provides complete and detailed solutions, including prob-
lem statements and artwork, to the end-of-chapter problems. It may be photocopied for
posting or preparing transparencies for the classroom.

The Engineering Equation Solver (EES) was developed by Sandy Klein and Bill Beck-
man, both of the University of Wisconsin—Madison. A combination of equation-solving
capability and engineering property data makes EES an extremely powerful tool for your
students. EES (pronounced “ease”) enables students to solve problems, especially design
problems, and to ask “what if” questions. EES can do optimization, parametric analysis,
linear and nonlinear regression, and provide publication-quality plotting capability. Sim-
ple to master, this software allows you to enter equations in any form and in any order. It
automatically rearranges the equations to solve them in the most efficient manner.

EES is particularly useful for fluid mechanics problems since much of the property
data needed for solving problems in these areas are provided in the program. Air ta-
bles are built-in, as are psychometric functions and Joint Army Navy Air Force (JANAF)
table data for many common gases. Transport properties are also provided for all sub-
stances. EES allows the user to enter property data or functional relationships written
in Pascal, C, C��, or Fortran. The EES engine is available free to qualified adopters
via a password-protected website, to those who adopt the text with the problems disk.
The program is updated every semester.

The EES software problems disk provides examples of typical problems in this text.
Problems solved are denoted in the text with a disk symbol. Each fully documented
solution is actually an EES program that is run using the EES engine. Each program
provides detailed comments and on-line help. These programs illustrate the use of EES
and help the student master the important concepts without the calculational burden
that has been previously required.
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Hurricane Elena in the Gulf of Mexico. Unlike most small-scale fluids engineering applications,
hurricanes are strongly affected by the Coriolis acceleration due to the rotation of the earth, which
causes them to swirl counterclockwise in the Northern Hemisphere. The physical properties and
boundary conditions which govern such flows are discussed in the present chapter. (Courtesy of
NASA/Color-Pic Inc./E.R. Degginger/Color-Pic Inc.)
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1.1 Preliminary Remarks Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid
statics) and the subsequent effects of the fluid upon the boundaries, which may be ei-
ther solid surfaces or interfaces with other fluids. Both gases and liquids are classified
as fluids, and the number of fluids engineering applications is enormous: breathing,
blood flow, swimming, pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes,
missiles, icebergs, engines, filters, jets, and sprinklers, to name a few. When you think
about it, almost everything on this planet either is a fluid or moves within or near a
fluid.

The essence of the subject of fluid flow is a judicious compromise between theory
and experiment. Since fluid flow is a branch of mechanics, it satisfies a set of well-
documented basic laws, and thus a great deal of theoretical treatment is available. How-
ever, the theory is often frustrating, because it applies mainly to idealized situations
which may be invalid in practical problems. The two chief obstacles to a workable the-
ory are geometry and viscosity. The basic equations of fluid motion (Chap. 4) are too
difficult to enable the analyst to attack arbitrary geometric configurations. Thus most
textbooks concentrate on flat plates, circular pipes, and other easy geometries. It is pos-
sible to apply numerical computer techniques to complex geometries, and specialized
textbooks are now available to explain the new computational fluid dynamics (CFD)
approximations and methods [1, 2, 29].1 This book will present many theoretical re-
sults while keeping their limitations in mind.

The second obstacle to a workable theory is the action of viscosity, which can be
neglected only in certain idealized flows (Chap. 8). First, viscosity increases the diffi-
culty of the basic equations, although the boundary-layer approximation found by Lud-
wig Prandtl in 1904 (Chap. 7) has greatly simplified viscous-flow analyses. Second,
viscosity has a destabilizing effect on all fluids, giving rise, at frustratingly small ve-
locities, to a disorderly, random phenomenon called turbulence. The theory of turbu-
lent flow is crude and heavily backed up by experiment (Chap. 6), yet it can be quite
serviceable as an engineering estimate. Textbooks now present digital-computer tech-
niques for turbulent-flow analysis [32], but they are based strictly upon empirical as-
sumptions regarding the time mean of the turbulent stress field.

Chapter 1
Introduction
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1.2 The Concept of a Fluid

Thus there is theory available for fluid-flow problems, but in all cases it should be
backed up by experiment. Often the experimental data provide the main source of in-
formation about specific flows, such as the drag and lift of immersed bodies (Chap. 7).
Fortunately, fluid mechanics is a highly visual subject, with good instrumentation [4,
5, 35], and the use of dimensional analysis and modeling concepts (Chap. 5) is wide-
spread. Thus experimentation provides a natural and easy complement to the theory.
You should keep in mind that theory and experiment should go hand in hand in all
studies of fluid mechanics.

From the point of view of fluid mechanics, all matter consists of only two states, fluid
and solid. The difference between the two is perfectly obvious to the layperson, and it
is an interesting exercise to ask a layperson to put this difference into words. The tech-
nical distinction lies with the reaction of the two to an applied shear or tangential stress.
A solid can resist a shear stress by a static deformation; a fluid cannot. Any shear
stress applied to a fluid, no matter how small, will result in motion of that fluid. The
fluid moves and deforms continuously as long as the shear stress is applied. As a corol-
lary, we can say that a fluid at rest must be in a state of zero shear stress, a state of-
ten called the hydrostatic stress condition in structural analysis. In this condition, Mohr’s
circle for stress reduces to a point, and there is no shear stress on any plane cut through
the element under stress.

Given the definition of a fluid above, every layperson also knows that there are two
classes of fluids, liquids and gases. Again the distinction is a technical one concerning
the effect of cohesive forces. A liquid, being composed of relatively close-packed mol-
ecules with strong cohesive forces, tends to retain its volume and will form a free sur-
face in a gravitational field if unconfined from above. Free-surface flows are domi-
nated by gravitational effects and are studied in Chaps. 5 and 10. Since gas molecules
are widely spaced with negligible cohesive forces, a gas is free to expand until it en-
counters confining walls. A gas has no definite volume, and when left to itself with-
out confinement, a gas forms an atmosphere which is essentially hydrostatic. The hy-
drostatic behavior of liquids and gases is taken up in Chap. 2. Gases cannot form a
free surface, and thus gas flows are rarely concerned with gravitational effects other
than buoyancy.

Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own
weight. The solid sags into a static deflection, shown as a highly exaggerated dashed
line, resisting shear without flow. A free-body diagram of element A on the side of the
block shows that there is shear in the block along a plane cut at an angle � through A.
Since the block sides are unsupported, element A has zero stress on the left and right
sides and compression stress � � �p on the top and bottom. Mohr’s circle does not
reduce to a point, and there is nonzero shear stress in the block.

By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls in or-
der to eliminate shear stress. The walls exert a compression stress of �p and reduce
Mohr’s circle to a point with zero shear everywhere, i.e., the hydrostatic condition. The
liquid retains its volume and forms a free surface in the container. If the walls are re-
moved, shear develops in the liquid and a big splash results. If the container is tilted,
shear again develops, waves form, and the free surface seeks a horizontal configura-
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tion, pouring out over the lip if necessary. Meanwhile, the gas is unrestrained and ex-
pands out of the container, filling all available space. Element A in the gas is also hy-
drostatic and exerts a compression stress �p on the walls.

In the above discussion, clear decisions could be made about solids, liquids, and
gases. Most engineering fluid-mechanics problems deal with these clear cases, i.e., the
common liquids, such as water, oil, mercury, gasoline, and alcohol, and the common
gases, such as air, helium, hydrogen, and steam, in their common temperature and pres-
sure ranges. There are many borderline cases, however, of which you should be aware.
Some apparently “solid” substances such as asphalt and lead resist shear stress for short
periods but actually deform slowly and exhibit definite fluid behavior over long peri-
ods. Other substances, notably colloid and slurry mixtures, resist small shear stresses
but “yield” at large stress and begin to flow as fluids do. Specialized textbooks are de-
voted to this study of more general deformation and flow, a field called rheology [6].
Also, liquids and gases can coexist in two-phase mixtures, such as steam-water mix-
tures or water with entrapped air bubbles. Specialized textbooks present the analysis

1.2 The Concept of a Fluid 5
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1.3 The Fluid as a Continuum

of such two-phase flows [7]. Finally, there are situations where the distinction between
a liquid and a gas blurs. This is the case at temperatures and pressures above the so-
called critical point of a substance, where only a single phase exists, primarily resem-
bling a gas. As pressure increases far above the critical point, the gaslike substance be-
comes so dense that there is some resemblance to a liquid and the usual thermodynamic
approximations like the perfect-gas law become inaccurate. The critical temperature
and pressure of water are Tc � 647 K and pc � 219 atm,2 so that typical problems in-
volving water and steam are below the critical point. Air, being a mixture of gases, has
no distinct critical point, but its principal component, nitrogen, has Tc � 126 K and
pc � 34 atm. Thus typical problems involving air are in the range of high temperature
and low pressure where air is distinctly and definitely a gas. This text will be concerned
solely with clearly identifiable liquids and gases, and the borderline cases discussed
above will be beyond our scope.

We have already used technical terms such as fluid pressure and density without a rig-
orous discussion of their definition. As far as we know, fluids are aggregations of mol-
ecules, widely spaced for a gas, closely spaced for a liquid. The distance between mol-
ecules is very large compared with the molecular diameter. The molecules are not fixed
in a lattice but move about freely relative to each other. Thus fluid density, or mass per
unit volume, has no precise meaning because the number of molecules occupying a
given volume continually changes. This effect becomes unimportant if the unit volume
is large compared with, say, the cube of the molecular spacing, when the number of
molecules within the volume will remain nearly constant in spite of the enormous in-
terchange of particles across the boundaries. If, however, the chosen unit volume is too
large, there could be a noticeable variation in the bulk aggregation of the particles. This
situation is illustrated in Fig. 1.2, where the “density” as calculated from molecular
mass �m within a given volume �� is plotted versus the size of the unit volume. There
is a limiting volume ��* below which molecular variations may be important and
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culated density versus size of the
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2One atmosphere equals 2116 lbf/ft2 � 101,300 Pa.



1.4 Dimensions and Units

above which aggregate variations may be important. The density � of a fluid is best
defined as

� � lim
��→��*

�
�

�

�
m
� (1.1)

The limiting volume ��* is about 10�9 mm3 for all liquids and for gases at atmospheric
pressure. For example, 10�9 mm3 of air at standard conditions contains approximately
3 	 107 molecules, which is sufficient to define a nearly constant density according to
Eq. (1.1). Most engineering problems are concerned with physical dimensions much larger
than this limiting volume, so that density is essentially a point function and fluid proper-
ties can be thought of as varying continually in space, as sketched in Fig. 1.2a. Such a
fluid is called a continuum, which simply means that its variation in properties is so smooth
that the differential calculus can be used to analyze the substance. We shall assume that
continuum calculus is valid for all the analyses in this book. Again there are borderline
cases for gases at such low pressures that molecular spacing and mean free path3 are com-
parable to, or larger than, the physical size of the system. This requires that the contin-
uum approximation be dropped in favor of a molecular theory of rarefied-gas flow [8]. In
principle, all fluid-mechanics problems can be attacked from the molecular viewpoint, but
no such attempt will be made here. Note that the use of continuum calculus does not pre-
clude the possibility of discontinuous jumps in fluid properties across a free surface or
fluid interface or across a shock wave in a compressible fluid (Chap. 9). Our calculus in
Chap. 4 must be flexible enough to handle discontinuous boundary conditions.

A dimension is the measure by which a physical variable is expressed quantitatively.
A unit is a particular way of attaching a number to the quantitative dimension. Thus
length is a dimension associated with such variables as distance, displacement, width,
deflection, and height, while centimeters and inches are both numerical units for ex-
pressing length. Dimension is a powerful concept about which a splendid tool called
dimensional analysis has been developed (Chap. 5), while units are the nitty-gritty, the
number which the customer wants as the final answer.

Systems of units have always varied widely from country to country, even after in-
ternational agreements have been reached. Engineers need numbers and therefore unit
systems, and the numbers must be accurate because the safety of the public is at stake.
You cannot design and build a piping system whose diameter is D and whose length
is L. And U.S. engineers have persisted too long in clinging to British systems of units.
There is too much margin for error in most British systems, and many an engineering
student has flunked a test because of a missing or improper conversion factor of 12 or
144 or 32.2 or 60 or 1.8. Practicing engineers can make the same errors. The writer is
aware from personal experience of a serious preliminary error in the design of an air-
craft due to a missing factor of 32.2 to convert pounds of mass to slugs.

In 1872 an international meeting in France proposed a treaty called the Metric Con-
vention, which was signed in 1875 by 17 countries including the United States. It was
an improvement over British systems because its use of base 10 is the foundation of
our number system, learned from childhood by all. Problems still remained because

1.4 Dimensions and Units 7
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even the metric countries differed in their use of kiloponds instead of dynes or new-
tons, kilograms instead of grams, or calories instead of joules. To standardize the met-
ric system, a General Conference of Weights and Measures attended in 1960 by 40
countries proposed the International System of Units (SI). We are now undergoing a
painful period of transition to SI, an adjustment which may take many more years to
complete. The professional societies have led the way. Since July 1, 1974, SI units have
been required by all papers published by the American Society of Mechanical Engi-
neers, which prepared a useful booklet explaining the SI [9]. The present text will use
SI units together with British gravitational (BG) units.

In fluid mechanics there are only four primary dimensions from which all other dimen-
sions can be derived: mass, length, time, and temperature.4 These dimensions and their units
in both systems are given in Table 1.1. Note that the kelvin unit uses no degree symbol.
The braces around a symbol like {M} mean “the dimension” of mass. All other variables
in fluid mechanics can be expressed in terms of {M}, {L}, {T}, and {
}. For example, ac-
celeration has the dimensions {LT�2}. The most crucial of these secondary dimensions is
force, which is directly related to mass, length, and time by Newton’s second law

F � ma (1.2)

From this we see that, dimensionally, {F} � {MLT�2}. A constant of proportionality
is avoided by defining the force unit exactly in terms of the primary units. Thus we
define the newton and the pound of force

1 newton of force � 1 N � 1 kg � m/s2

(1.3)
1 pound of force � 1 lbf � 1 slug � ft/s2 � 4.4482 N

In this book the abbreviation lbf is used for pound-force and lb for pound-mass. If in-
stead one adopts other force units such as the dyne or the poundal or kilopond or adopts
other mass units such as the gram or pound-mass, a constant of proportionality called
gc must be included in Eq. (1.2). We shall not use gc in this book since it is not nec-
essary in the SI and BG systems.

A list of some important secondary variables in fluid mechanics, with dimensions
derived as combinations of the four primary dimensions, is given in Table 1.2. A more
complete list of conversion factors is given in App. C.

8 Chapter 1 Introduction

4If electromagnetic effects are important, a fifth primary dimension must be included, electric current
{I}, whose SI unit is the ampere (A).

Primary dimension SI unit BG unit Conversion factor

Mass {M} Kilogram (kg) Slug 1 slug � 14.5939 kg
Length {L} Meter (m) Foot (ft) 1 ft � 0.3048 m
Time {T} Second (s) Second (s) 1 s � 1 s
Temperature {
} Kelvin (K) Rankine (°R) 1 K � 1.8°R

Table 1.1 Primary Dimensions in
SI and BG Systems

Primary Dimensions



Part (a)

Part (b)

Part (c)

EXAMPLE 1.1

A body weighs 1000 lbf when exposed to a standard earth gravity g � 32.174 ft/s2. (a) What is
its mass in kg? (b) What will the weight of this body be in N if it is exposed to the moon’s stan-
dard acceleration gmoon � 1.62 m/s2? (c) How fast will the body accelerate if a net force of 400
lbf is applied to it on the moon or on the earth?

Solution

Equation (1.2) holds with F � weight and a � gearth:

F � W � mg � 1000 lbf � (m slugs)(32.174 ft/s2)

or
m � �

3
1
2
0
.1
0
7
0
4

� � (31.08 slugs)(14.5939 kg/slug) � 453.6 kg Ans. (a)

The change from 31.08 slugs to 453.6 kg illustrates the proper use of the conversion factor
14.5939 kg/slug.

The mass of the body remains 453.6 kg regardless of its location. Equation (1.2) applies with a
new value of a and hence a new force

F � Wmoon � mgmoon � (453.6 kg)(1.62 m/s2) � 735 N Ans. (b)

This problem does not involve weight or gravity or position and is simply a direct application
of Newton’s law with an unbalanced force:

F � 400 lbf � ma � (31.08 slugs)(a ft/s2)

or

a � �
3
4
1
0
.0
0
8

� � 12.43 ft/s2 � 3.79 m/s2 Ans. (c)

This acceleration would be the same on the moon or earth or anywhere.
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Secondary dimension SI unit BG unit Conversion factor

Area {L2} m2 ft2 1 m2 � 10.764 ft2

Volume {L3} m3 ft3 1 m3 � 35.315 ft3

Velocity {LT�1} m/s ft/s 1 ft/s � 0.3048 m/s
Acceleration {LT�2} m/s2 ft/s2 1 ft/s2 � 0.3048 m/s2

Pressure or stress
{ML�1T�2} Pa � N/m2 lbf/ft2 1 lbf/ft2 � 47.88 Pa

Angular velocity {T�1} s�1 s�1 1 s�1 � 1 s�1

Energy, heat, work
{ML2T�2} J � N � m ft � lbf 1 ft � lbf � 1.3558 J

Power {ML2T�3} W � J/s ft � lbf/s 1 ft � lbf/s � 1.3558 W
Density {ML�3} kg/m3 slugs/ft3 1 slug/ft3 � 515.4 kg/m3

Viscosity {ML�1T�1} kg/(m � s) slugs/(ft � s) 1 slug/(ft � s) � 47.88 kg/(m � s)
Specific heat {L2T�2
�1} m2/(s2 � K) ft2/(s2 � °R) 1 m2/(s2 � K) � 5.980 ft2/(s2 � °R)

Table 1.2 Secondary Dimensions in
Fluid Mechanics



Part (a)

Part (b)

Many data in the literature are reported in inconvenient or arcane units suitable only
to some industry or specialty or country. The engineer should convert these data to the
SI or BG system before using them. This requires the systematic application of con-
version factors, as in the following example.

EXAMPLE 1.2

An early viscosity unit in the cgs system is the poise (abbreviated P), or g/(cm � s), named after
J. L. M. Poiseuille, a French physician who performed pioneering experiments in 1840 on wa-
ter flow in pipes. The viscosity of water (fresh or salt) at 293.16 K � 20°C is approximately
� � 0.01 P. Express this value in (a) SI and (b) BG units.

Solution

� � [0.01 g/(cm � s)] �
10
1
0
k
0
g

g
� (100 cm/m) � 0.001 kg/(m � s) Ans. (a)

� � [0.001 kg/(m � s)] �
14
1
.5
sl
9
ug

kg
� (0.3048 m/ft)

� 2.09 	 10�5 slug/(ft � s) Ans. (b)

Note: Result (b) could have been found directly from (a) by dividing (a) by the viscosity con-
version factor 47.88 listed in Table 1.2.

We repeat our advice: Faced with data in unusual units, convert them immediately
to either SI or BG units because (1) it is more professional and (2) theoretical equa-
tions in fluid mechanics are dimensionally consistent and require no further conversion
factors when these two fundamental unit systems are used, as the following example
shows.

EXAMPLE 1.3

A useful theoretical equation for computing the relation between pressure, velocity, and altitude
in a steady flow of a nearly inviscid, nearly incompressible fluid with negligible heat transfer
and shaft work5 is the Bernoulli relation, named after Daniel Bernoulli, who published a hy-
drodynamics textbook in 1738:

p0 � p 
 �12��V2 
 �gZ (1)

where p0 � stagnation pressure
p � pressure in moving fluid
V � velocity
� � density
Z � altitude
g � gravitational acceleration

10 Chapter 1 Introduction

5That’s an awful lot of assumptions, which need further study in Chap. 3.



Part (a)

Part (b)

Part (c)

(a) Show that Eq. (1) satisfies the principle of dimensional homogeneity, which states that all
additive terms in a physical equation must have the same dimensions. (b) Show that consistent
units result without additional conversion factors in SI units. (c) Repeat (b) for BG units.

Solution

We can express Eq. (1) dimensionally, using braces by entering the dimensions of each term
from Table 1.2:

{ML�1T�2} � {ML�1T�2} 
 {ML�3}{L2T�2} 
 {ML�3}{LT�2}{L}

� {ML�1T�2} for all terms Ans. (a)

Enter the SI units for each quantity from Table 1.2:

{N/m2} � {N/m2} 
 {kg/m3}{m2/s2} 
 {kg/m3}{m/s2}{m}

� {N/m2} 
 {kg/(m � s2)}

The right-hand side looks bad until we remember from Eq. (1.3) that 1 kg � 1 N � s2/m.

{kg/(m � s2)} � �
{N

{m
� s
�

2

s
/
2
m
}

}
� � {N/m2} Ans. (b)

Thus all terms in Bernoulli’s equation will have units of pascals, or newtons per square meter,
when SI units are used. No conversion factors are needed, which is true of all theoretical equa-
tions in fluid mechanics.

Introducing BG units for each term, we have

{lbf/ft2} � {lbf/ft2} 
 {slugs/ft3}{ft2/s2} 
 {slugs/ft3}{ft/s2}{ft}

� {lbf/ft2} 
 {slugs/(ft � s2)}

But, from Eq. (1.3), 1 slug � 1 lbf � s2/ft, so that

{slugs/(ft � s2)} � �
{l

{
b
f
f
t
�

�

s
s

2

2
/
}
ft}

� � {lbf/ft2} Ans. (c)

All terms have the unit of pounds-force per square foot. No conversion factors are needed in the
BG system either.

There is still a tendency in English-speaking countries to use pound-force per square
inch as a pressure unit because the numbers are more manageable. For example, stan-
dard atmospheric pressure is 14.7 lbf/in2 � 2116 lbf/ft2 � 101,300 Pa. The pascal is a
small unit because the newton is less than �14� lbf and a square meter is a very large area.
It is felt nevertheless that the pascal will gradually gain universal acceptance; e.g., re-
pair manuals for U.S. automobiles now specify pressure measurements in pascals.

Note that not only must all (fluid) mechanics equations be dimensionally homogeneous,
one must also use consistent units; that is, each additive term must have the same units.
There is no trouble doing this with the SI and BG systems, as in Ex. 1.3, but woe unto
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Homogeneous versus
Dimensionally Inconsistent
Equations

those who try to mix colloquial English units. For example, in Chap. 9, we often use
the assumption of steady adiabatic compressible gas flow:

h 
 �
1
2

�V2 � constant

where h is the fluid enthalpy and V2/2 is its kinetic energy. Colloquial thermodynamic
tables might list h in units of British thermal units per pound (Btu/lb), whereas V is
likely used in ft/s. It is completely erroneous to add Btu/lb to ft2/s2. The proper unit
for h in this case is ft � lbf/slug, which is identical to ft2/s2. The conversion factor is
1 Btu/lb � 25,040 ft2/s2 � 25,040 ft � lbf/slug.

All theoretical equations in mechanics (and in other physical sciences) are dimension-
ally homogeneous; i.e., each additive term in the equation has the same dimensions.
For example, Bernoulli’s equation (1) in Example 1.3 is dimensionally homogeneous:
Each term has the dimensions of pressure or stress of {F/L2}. Another example is the
equation from physics for a body falling with negligible air resistance:

S � S0 
 V0t 
 �12�gt2

where S0 is initial position, V0 is initial velocity, and g is the acceleration of gravity. Each
term in this relation has dimensions of length {L}. The factor �12�, which arises from inte-
gration, is a pure (dimensionless) number, {1}. The exponent 2 is also dimensionless.

However, the reader should be warned that many empirical formulas in the engi-
neering literature, arising primarily from correlations of data, are dimensionally in-
consistent. Their units cannot be reconciled simply, and some terms may contain hid-
den variables. An example is the formula which pipe valve manufacturers cite for liquid
volume flow rate Q (m3/s) through a partially open valve:

Q � CV��
S
�

G
p
��

1/2

where �p is the pressure drop across the valve and SG is the specific gravity of the
liquid (the ratio of its density to that of water). The quantity CV is the valve flow co-
efficient, which manufacturers tabulate in their valve brochures. Since SG is dimen-
sionless {1}, we see that this formula is totally inconsistent, with one side being a flow
rate {L3/T} and the other being the square root of a pressure drop {M1/2/L1/2T}. It fol-
lows that CV must have dimensions, and rather odd ones at that: {L7/2/M1/2}. Nor is
the resolution of this discrepancy clear, although one hint is that the values of CV in
the literature increase nearly as the square of the size of the valve. The presentation of
experimental data in homogeneous form is the subject of dimensional analysis (Chap.
5). There we shall learn that a homogeneous form for the valve flow relation is

Q � CdAopening��
�

�

p
��

1/2

where � is the liquid density and A the area of the valve opening. The discharge coeffi-
cient Cd is dimensionless and changes only slightly with valve size. Please believe—un-
til we establish the fact in Chap. 5—that this latter is a much better formulation of the data.
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Convenient Prefixes in 
Powers of 10

Part (a)

Part (b)

Meanwhile, we conclude that dimensionally inconsistent equations, though they
abound in engineering practice, are misleading and vague and even dangerous, in the
sense that they are often misused outside their range of applicability.

Engineering results often are too small or too large for the common units, with too
many zeros one way or the other. For example, to write p � 114,000,000 Pa is long
and awkward. Using the prefix “M” to mean 106, we convert this to a concise p �
114 MPa (megapascals). Similarly, t � 0.000000003 s is a proofreader’s nightmare
compared to the equivalent t � 3 ns (nanoseconds). Such prefixes are common and
convenient, in both the SI and BG systems. A complete list is given in Table 1.3.

EXAMPLE 1.4

In 1890 Robert Manning, an Irish engineer, proposed the following empirical formula for the
average velocity V in uniform flow due to gravity down an open channel (BG units):

V � �
1.

n
49
�R2/3S1/2 (1)

where R � hydraulic radius of channel (Chaps. 6 and 10)
S � channel slope (tangent of angle that bottom makes with horizontal)
n � Manning’s roughness factor (Chap. 10)

and n is a constant for a given surface condition for the walls and bottom of the channel. (a) Is
Manning’s formula dimensionally consistent? (b) Equation (1) is commonly taken to be valid in
BG units with n taken as dimensionless. Rewrite it in SI form.

Solution

Introduce dimensions for each term. The slope S, being a tangent or ratio, is dimensionless, de-
noted by {unity} or {1}. Equation (1) in dimensional form is

��
T
L

�� � ��1.
n
49
��{L2/3}{1}

This formula cannot be consistent unless {1.49/n} � {L1/3/T}. If n is dimensionless (and it is
never listed with units in textbooks), then the numerical value 1.49 must have units. This can be
tragic to an engineer working in a different unit system unless the discrepancy is properly doc-
umented. In fact, Manning’s formula, though popular, is inconsistent both dimensionally and
physically and does not properly account for channel-roughness effects except in a narrow range
of parameters, for water only.

From part (a), the number 1.49 must have dimensions {L1/3/T} and thus in BG units equals 
1.49 ft1/3/s. By using the SI conversion factor for length we have

(1.49 ft1/3/s)(0.3048 m/ft)1/3 � 1.00 m1/3/s

Therefore Manning’s formula in SI becomes

V � �
1
n
.0
�R2/3S1/2 Ans. (b) (2)
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Table 1.3 Convenient Prefixes 
for Engineering Units

Multiplicative
factor Prefix Symbol

1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
10 deka da
10�1 deci d
10�2 centi c
10�3 milli m
10�6 micro �
10�9 nano n
10�12 pico p
10�15 femto f
10�18 atto a



1.5 Properties of the 
Velocity Field

Eulerian and Lagrangian
Desciptions

The Velocity Field

with R in m and V in m/s. Actually, we misled you: This is the way Manning, a metric user, first
proposed the formula. It was later converted to BG units. Such dimensionally inconsistent formu-
las are dangerous and should either be reanalyzed or treated as having very limited application.

In a given flow situation, the determination, by experiment or theory, of the properties
of the fluid as a function of position and time is considered to be the solution to the
problem. In almost all cases, the emphasis is on the space-time distribution of the fluid
properties. One rarely keeps track of the actual fate of the specific fluid particles.6 This
treatment of properties as continuum-field functions distinguishes fluid mechanics from
solid mechanics, where we are more likely to be interested in the trajectories of indi-
vidual particles or systems.

There are two different points of view in analyzing problems in mechanics. The first
view, appropriate to fluid mechanics, is concerned with the field of flow and is called
the eulerian method of description. In the eulerian method we compute the pressure
field p(x, y, z, t) of the flow pattern, not the pressure changes p(t) which a particle ex-
periences as it moves through the field.

The second method, which follows an individual particle moving through the flow,
is called the lagrangian description. The lagrangian approach, which is more appro-
priate to solid mechanics, will not be treated in this book. However, certain numerical
analyses of sharply bounded fluid flows, such as the motion of isolated fluid droplets,
are very conveniently computed in lagrangian coordinates [1].

Fluid-dynamic measurements are also suited to the eulerian system. For example,
when a pressure probe is introduced into a laboratory flow, it is fixed at a specific po-
sition (x, y, z). Its output thus contributes to the description of the eulerian pressure
field p(x, y, z, t). To simulate a lagrangian measurement, the probe would have to move
downstream at the fluid particle speeds; this is sometimes done in oceanographic mea-
surements, where flowmeters drift along with the prevailing currents.

The two different descriptions can be contrasted in the analysis of traffic flow along
a freeway. A certain length of freeway may be selected for study and called the field
of flow. Obviously, as time passes, various cars will enter and leave the field, and the
identity of the specific cars within the field will constantly be changing. The traffic en-
gineer ignores specific cars and concentrates on their average velocity as a function of
time and position within the field, plus the flow rate or number of cars per hour pass-
ing a given section of the freeway. This engineer is using an eulerian description of the
traffic flow. Other investigators, such as the police or social scientists, may be inter-
ested in the path or speed or destination of specific cars in the field. By following a
specific car as a function of time, they are using a lagrangian description of the flow.

Foremost among the properties of a flow is the velocity field V(x, y, z, t). In fact, de-
termining the velocity is often tantamount to solving a flow problem, since other prop-
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erties follow directly from the velocity field. Chapter 2 is devoted to the calculation of
the pressure field once the velocity field is known. Books on heat transfer (for exam-
ple, Ref. 10) are essentially devoted to finding the temperature field from known ve-
locity fields.

In general, velocity is a vector function of position and time and thus has three com-
ponents u, v, and w, each a scalar field in itself:

V(x, y, z, t) � iu(x, y, z, t) 
 jv(x, y, z, t) 
 kw(x, y, z, t) (1.4)

The use of u, v, and w instead of the more logical component notation Vx, Vy, and Vz

is the result of an almost unbreakable custom in fluid mechanics.
Several other quantities, called kinematic properties, can be derived by mathemati-

cally manipulating the velocity field. We list some kinematic properties here and give
more details about their use and derivation in later chapters:

1. Displacement vector: r � � V dt (Sec. 1.9)

2. Acceleration: a � �
d
d
V
t
� (Sec. 4.1)

3. Volume rate of flow: Q � � (V � n) dA (Sec. 3.2)

4. Volume expansion rate: �
�
1
� �

d
d
�
t
� � � � V (Sec. 4.2)

5. Local angular velocity: � � �12�� 	 V (Sec. 4.8)

We will not illustrate any problems regarding these kinematic properties at present. The
point of the list is to illustrate the type of vector operations used in fluid mechanics and
to make clear the dominance of the velocity field in determining other flow properties.
Note: The fluid acceleration, item 2 above, is not as simple as it looks and actually in-
volves four different terms due to the use of the chain rule in calculus (see Sec. 4.1).

EXAMPLE 1.5

Fluid flows through a contracting section of a duct, as in Fig. E1.5. A velocity probe inserted at
section (1) measures a steady value u1 � 1 m/s, while a similar probe at section (2) records a
steady u2 � 3 m/s. Estimate the fluid acceleration, if any, if �x � 10 cm.

Solution

The flow is steady (not time-varying), but fluid particles clearly increase in velocity as they pass
from (1) to (2). This is the concept of convective acceleration (Sec. 4.1). We may estimate the
acceleration as a velocity change �u divided by a time change �t � �x/uavg:

ax ��ve
t
l
i
o
m
c
e
ity

ch
c
a
h
n
a
g
n
e
ge

�� � � 40 m/s2 Ans.

A simple estimate thus indicates that this seemingly innocuous flow is accelerating at 4 times

(3.0 � 1.0 m/s)(1.0 
 3.0 m/s)
����

2(0.1 m)
u2 � u1��

�x/[�12�(u1 
 u2)]
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(2)

u1 u2

�x
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1.6 Thermodynamic Properties
of a Fluid

the acceleration of gravity. In the limit as �x and �t become very small, the above estimate re-
duces to a partial-derivative expression for convective x-acceleration:

ax,convective � lim
�t→0

�
�

�

u
t

� � u�
�

�

u
x
�

In three-dimensional flow (Sec. 4.1) there are nine of these convective terms.

While the velocity field V is the most important fluid property, it interacts closely with
the thermodynamic properties of the fluid. We have already introduced into the dis-
cussion the three most common such properties

1. Pressure p

2. Density �

3. Temperature T

These three are constant companions of the velocity vector in flow analyses. Four other
thermodynamic properties become important when work, heat, and energy balances are
treated (Chaps. 3 and 4):

4. Internal energy e

5. Enthalpy h � û 
 p/�

6. Entropy s

7. Specific heats cp and cv

In addition, friction and heat conduction effects are governed by the two so-called trans-
port properties:

8. Coefficient of viscosity �

9. Thermal conductivity k

All nine of these quantities are true thermodynamic properties which are determined
by the thermodynamic condition or state of the fluid. For example, for a single-phase
substance such as water or oxygen, two basic properties such as pressure and temper-
ature are sufficient to fix the value of all the others:

� � �(p, T ) h � h(p, T ) � � �(p, T ) (1.5)

and so on for every quantity in the list. Note that the specific volume, so important in
thermodynamic analyses, is omitted here in favor of its inverse, the density �.

Recall that thermodynamic properties describe the state of a system, i.e., a collec-
tion of matter of fixed identity which interacts with its surroundings. In most cases
here the system will be a small fluid element, and all properties will be assumed to be
continuum properties of the flow field: � � �(x, y, z, t), etc.

Recall also that thermodynamics is normally concerned with static systems, whereas
fluids are usually in variable motion with constantly changing properties. Do the prop-
erties retain their meaning in a fluid flow which is technically not in equilibrium? The
answer is yes, from a statistical argument. In gases at normal pressure (and even more
so for liquids), an enormous number of molecular collisions occur over a very short
distance of the order of 1 �m, so that a fluid subjected to sudden changes rapidly ad-
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Temperature

Specific Weight

Density

justs itself toward equilibrium. We therefore assume that all the thermodynamic prop-
erties listed above exist as point functions in a flowing fluid and follow all the laws
and state relations of ordinary equilibrium thermodynamics. There are, of course, im-
portant nonequilibrium effects such as chemical and nuclear reactions in flowing flu-
ids which are not treated in this text.

Pressure is the (compression) stress at a point in a static fluid (Fig. 1.1). Next to ve-
locity, the pressure p is the most dynamic variable in fluid mechanics. Differences or
gradients in pressure often drive a fluid flow, especially in ducts. In low-speed flows,
the actual magnitude of the pressure is often not important, unless it drops so low as to
cause vapor bubbles to form in a liquid. For convenience, we set many such problem
assignments at the level of 1 atm � 2116 lbf/ft2 � 101,300 Pa. High-speed (compressible)
gas flows (Chap. 9), however, are indeed sensitive to the magnitude of pressure.

Temperature T is a measure of the internal energy level of a fluid. It may vary con-
siderably during high-speed flow of a gas (Chap. 9). Although engineers often use Cel-
sius or Fahrenheit scales for convenience, many applications in this text require ab-
solute (Kelvin or Rankine) temperature scales:

°R � °F 
 459.69
K � °C 
 273.16

If temperature differences are strong, heat transfer may be important [10], but our con-
cern here is mainly with dynamic effects. We examine heat-transfer principles briefly
in Secs. 4.5 and 9.8.

The density of a fluid, denoted by � (lowercase Greek rho), is its mass per unit vol-
ume. Density is highly variable in gases and increases nearly proportionally to the pres-
sure level. Density in liquids is nearly constant; the density of water (about 1000 kg/m3)
increases only 1 percent if the pressure is increased by a factor of 220. Thus most liq-
uid flows are treated analytically as nearly “incompressible.”

In general, liquids are about three orders of magnitude more dense than gases at at-
mospheric pressure. The heaviest common liquid is mercury, and the lightest gas is hy-
drogen. Compare their densities at 20°C and 1 atm:

Mercury: � � 13,580 kg/m3 Hydrogen: � � 0.0838 kg/m3

They differ by a factor of 162,000! Thus the physical parameters in various liquid and
gas flows might vary considerably. The differences are often resolved by the use of di-
mensional analysis (Chap. 5). Other fluid densities are listed in Tables A.3 and A.4 (in
App. A).

The specific weight of a fluid, denoted by � (lowercase Greek gamma), is its weight
per unit volume. Just as a mass has a weight W � mg, density and specific weight are
simply related by gravity:

� � �g (1.6)
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Specific Gravity

Potential and Kinetic Energies

The units of � are weight per unit volume, in lbf/ft3 or N/m3. In standard earth grav-
ity, g � 32.174 ft/s2 � 9.807 m/s2. Thus, e.g., the specific weights of air and water at
20°C and 1 atm are approximately

�air � (1.205 kg/m3)(9.807 m/s2) � 11.8 N/m3 � 0.0752 lbf/ft3

�water � (998 kg/m3)(9.807 m/s2) � 9790 N/m3 � 62.4 lbf/ft3

Specific weight is very useful in the hydrostatic-pressure applications of Chap. 2. Spe-
cific weights of other fluids are given in Tables A.3 and A.4.

Specific gravity, denoted by SG, is the ratio of a fluid density to a standard reference
fluid, water (for liquids), and air (for gases):

SGgas � �
�

�

g

a

a

ir

s
� � �

1.20

�

5
g

k
as

g/m3� (1.7)

SGliquid � �
�

�

l

w

iq

a

u

te

id

r
� � �

99

�

8
li

k
qu

g
i

/
d

m3�

For example, the specific gravity of mercury (Hg) is SGHg � 13,580/998 � 13.6. En-
gineers find these dimensionless ratios easier to remember than the actual numerical
values of density of a variety of fluids.

In thermostatics the only energy in a substance is that stored in a system by molecu-
lar activity and molecular bonding forces. This is commonly denoted as internal en-
ergy û. A commonly accepted adjustment to this static situation for fluid flow is to add
two more energy terms which arise from newtonian mechanics: the potential energy
and kinetic energy.

The potential energy equals the work required to move the system of mass m from
the origin to a position vector r � ix 
 jy 
 kz against a gravity field g. Its value is
�mg � r, or �g � r per unit mass. The kinetic energy equals the work required to change
the speed of the mass from zero to velocity V. Its value is �12�mV2 or �12�V2 per unit mass.
Then by common convention the total stored energy e per unit mass in fluid mechan-
ics is the sum of three terms:

e � û 
 �12�V2 
 (�g � r) (1.8)

Also, throughout this book we shall define z as upward, so that g � �gk and g � r �
�gz. Then Eq. (1.8) becomes

e � û 
 �12�V2 
 gz (1.9)

The molecular internal energy û is a function of T and p for the single-phase pure sub-
stance, whereas the potential and kinetic energies are kinematic properties.

Thermodynamic properties are found both theoretically and experimentally to be re-
lated to each other by state relations which differ for each substance. As mentioned,
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we shall confine ourselves here to single-phase pure substances, e.g., water in its liq-
uid phase. The second most common fluid, air, is a mixture of gases, but since the mix-
ture ratios remain nearly constant between 160 and 2200 K, in this temperature range
air can be considered to be a pure substance.

All gases at high temperatures and low pressures (relative to their critical point) are
in good agreement with the perfect-gas law

p � �RT R � cp � cv � gas constant (1.10)

Since Eq. (1.10) is dimensionally consistent, R has the same dimensions as specific
heat, {L2T�2
�1}, or velocity squared per temperature unit (kelvin or degree Rank-
ine). Each gas has its own constant R, equal to a universal constant � divided by the
molecular weight

Rgas � �
M

�

gas
� (1.11)

where � � 49,700 ft2/(s2 � °R) � 8314 m2/(s2 � K). Most applications in this book are
for air, with M � 28.97:

Rair � 1717 ft2/(s2 � °R) � 287 m2/(s2 � K) (1.12)

Standard atmospheric pressure is 2116 lbf/ft2, and standard temperature is 60°F �
520°R. Thus standard air density is

�air � �
(171

2
7
1
)
1
(
6
520)
� � 0.00237 slug/ft3 � 1.22 kg/m3 (1.13)

This is a nominal value suitable for problems.
One proves in thermodynamics that Eq. (1.10) requires that the internal molecular

energy û of a perfect gas vary only with temperature: û � û(T). Therefore the specific
heat cv also varies only with temperature:

cv � ��
�

�

T
û
���

� �
d
d
T
û
� � cv(T)

or dû � cv(T) dT (1.14)

In like manner h and cp of a perfect gas also vary only with temperature:

h � û 
 �
p
�

� � û 
 RT � h(T)

cp � ��
�

�

T
h
��p

� �
d
d
T
h
� � cp(T) (1.15)

dh � cp(T) dT

The ratio of specific heats of a perfect gas is an important dimensionless parameter in
compressible-flow analysis (Chap. 9)

k � �
c

c
p

v
� � k(T) � 1 (1.16)
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Part (a)

Part (b)

As a first approximation in airflow analysis we commonly take cp, cv, and k to be constant

kair � 1.4

cv � �
k �

R
1

� � 4293 ft2/(s2 � °R) � 718 m2/(s2 � K)
(1.17)

cp � �
k

k
�

R
1

� � 6010 ft2/(s2 � °R) � 1005 m2/(s2 � K)

Actually, for all gases, cp and cv increase gradually with temperature, and k decreases
gradually. Experimental values of the specific-heat ratio for eight common gases are
shown in Fig. 1.3.

Many flow problems involve steam. Typical steam operating conditions are rela-
tively close to the critical point, so that the perfect-gas approximation is inaccurate.
The properties of steam are therefore available in tabular form [13], but the error of
using the perfect-gas law is sometimes not great, as the following example shows.

EXAMPLE 1.6

Estimate � and cp of steam at 100 lbf/in2 and 400°F (a) by a perfect-gas approximation and
(b) from the ASME steam tables [13].

Solution

First convert to BG units: p � 100 lbf/in2 � 14,400 lb/ft2, T � 400°F � 860°R. From Table A.4
the molecular weight of H2O is 2MH 
 MO � 2(1.008) 
 16.0 � 18.016. Then from Eq. (1.11)
the gas constant of steam is approximately

R � �
4
1
9
8
,
.
7
0
0
1
0
6

� � 2759 ft2/(s2 � °R)

whence, from the perfect-gas law,

� � �
R

p

T
� � �

27
1
5
4
9
,4
(8
0
6
0
0)

� � 0.00607 slug/ft3 Ans. (a)

From Fig. 1.3, k for steam at 860°R is approximately 1.30. Then from Eq. (1.17),

cp � �
k

k
�

R
1

� � �
1
1
.3
.3
0
0
(2

�

75
1
9)

� � 12,000 ft2/(s2 � °R) Ans. (a)

From Ref. 13, the specific volume v of steam at 100 lbf/in2 and 400°F is 4.935 ft3/lbm. Then
the density is the inverse of this, converted to slugs:

� � �
1
v
� � � 0.00630 slug/ft3 Ans. (b)

This is about 4 percent higher than our ideal-gas estimate in part (a).
Reference 13 lists the value of cp of steam at 100 lbf/in2 and 400°F as 0.535 Btu/(lbm � °F).

Convert this to BG units:

cp � [0.535 Btu/(lbm � °R)](778.2 ft � lbf/Btu)(32.174 lbm/slug)

� 13,400 ft � lbf/(slug � °R) � 13,400 ft2/(s2 � °R) Ans. (b)

1
����
(4.935 ft2/lbm)(32.174 lbm/slug)
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Fig. 1.3 Specific-heat ratio of eight
common gases as a function of tem-
perature. (Data from Ref. 12.)

This is about 11 percent higher than our ideal-gas estimate in part (a). The chief reason for the
discrepancy is that this temperature and this pressure are quite close to the critical point and sat-
uration line of steam. At higher temperatures and lower pressures, say, 800°F and 50 lbf/in2, the
perfect-gas law gives � and cp of steam within an accuracy of �1 percent.

Note that the use of pound-mass and British thermal units in the traditional steam tables re-
quires continual awkward conversions to BG units. Newer tables and disks are in SI units.

The writer knows of no “perfect-liquid law” comparable to that for gases. Liquids are
nearly incompressible and have a single reasonably constant specific heat. Thus an ide-
alized state relation for a liquid is

� � const cp � cv � const dh � cp dT (1.18)

Most of the flow problems in this book can be attacked with these simple as-
sumptions. Water is normally taken to have a density of 1.94 slugs/ft3 and a spe-
cific heat cp � 25,200 ft2/(s2 � °R). The steam tables may be used if more accuracy
is required.
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1.7 Viscosity and Other
Secondary Properties

Viscosity

The density of a liquid usually decreases slightly with temperature and increases
moderately with pressure. If we neglect the temperature effect, an empirical pressure-
density relation for a liquid is

�
p
p

a
� � (B 
 1)��

�

�

a
��

n

� B (1.19)

where B and n are dimensionless parameters which vary slightly with temperature and
pa and �a are standard atmospheric values. Water can be fitted approximately to the
values B � 3000 and n � 7.

Seawater is a variable mixture of water and salt and thus requires three thermody-
namic properties to define its state. These are normally taken as pressure, temperature,
and the salinity Ŝ, defined as the weight of the dissolved salt divided by the weight of
the mixture. The average salinity of seawater is 0.035, usually written as 35 parts per
1000, or 35 ‰. The average density of seawater is 2.00 slugs/ft3. Strictly speaking,
seawater has three specific heats, all approximately equal to the value for pure water
of 25,200 ft2/(s2 � °R) � 4210 m2/(s2 � K).

EXAMPLE 1.7

The pressure at the deepest part of the ocean is approximately 1100 atm. Estimate the density
of seawater at this pressure.

Solution

Equation (1.19) holds for either water or seawater. The ratio p/pa is given as 1100:

1100 � (3001)��
�

�

a
��

7

� 3000

or �
�

�

a
� � ��431

0
0
0
0
1

��
1/7

� 1.046

Assuming an average surface seawater density �a � 2.00 slugs/ft3, we compute

� � 1.046(2.00) � 2.09 slugs/ft3 Ans.

Even at these immense pressures, the density increase is less than 5 percent, which justifies the
treatment of a liquid flow as essentially incompressible.

The quantities such as pressure, temperature, and density discussed in the previous sec-
tion are primary thermodynamic variables characteristic of any system. There are also
certain secondary variables which characterize specific fluid-mechanical behavior. The
most important of these is viscosity, which relates the local stresses in a moving fluid
to the strain rate of the fluid element.

When a fluid is sheared, it begins to move at a strain rate inversely proportional to a
property called its coefficient of viscosity �. Consider a fluid element sheared in one
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Fig. 1.4 Shear stress causes contin-
uous shear deformation in a fluid:
(a) a fluid element straining at a
rate ��/�t; (b) newtonian shear dis-
tribution in a shear layer near a
wall.

plane by a single shear stress �, as in Fig. 1.4a. The shear strain angle �� will contin-
uously grow with time as long as the stress � is maintained, the upper surface moving
at speed �u larger than the lower. Such common fluids as water, oil, and air show a
linear relation between applied shear and resulting strain rate

� � �
�

�

�

t
� (1.20)

From the geometry of Fig. 1.4a we see that

tan �� � �
�u

�y
�t
� (1.21)

In the limit of infinitesimal changes, this becomes a relation between shear strain rate
and velocity gradient

�
d
d
�

t
� � �

d
d
u
y
� (1.22)

From Eq. (1.20), then, the applied shear is also proportional to the velocity gradient
for the common linear fluids. The constant of proportionality is the viscosity coeffi-
cient �

� � ��
d
d
�

t
� � ��

d
d
u
y
� (1.23)

Equation (1.23) is dimensionally consistent; therefore � has dimensions of stress-time:
{FT/L2} or {M/(LT)}. The BG unit is slugs per foot-second, and the SI unit is kilo-
grams per meter-second. The linear fluids which follow Eq. (1.23) are called newton-
ian fluids, after Sir Isaac Newton, who first postulated this resistance law in 1687.

We do not really care about the strain angle �(t) in fluid mechanics, concentrating
instead on the velocity distribution u(y), as in Fig. 1.4b. We shall use Eq. (1.23) in
Chap. 4 to derive a differential equation for finding the velocity distribution u(y)—and,
more generally, V(x, y, z, t)—in a viscous fluid. Figure 1.4b illustrates a shear layer,
or boundary layer, near a solid wall. The shear stress is proportional to the slope of the
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The Reynolds Number

velocity profile and is greatest at the wall. Further, at the wall, the velocity u is zero
relative to the wall: This is called the no-slip condition and is characteristic of all 
viscous-fluid flows.

The viscosity of newtonian fluids is a true thermodynamic property and varies with
temperature and pressure. At a given state (p, T) there is a vast range of values among the
common fluids. Table 1.4 lists the viscosity of eight fluids at standard pressure and tem-
perature. There is a variation of six orders of magnitude from hydrogen up to glycerin.
Thus there will be wide differences between fluids subjected to the same applied stresses.

Generally speaking, the viscosity of a fluid increases only weakly with pressure. For
example, increasing p from 1 to 50 atm will increase � of air only 10 percent. Tem-
perature, however, has a strong effect, with � increasing with T for gases and decreas-
ing for liquids. Figure A.1 (in App. A) shows this temperature variation for various com-
mon fluids. It is customary in most engineering work to neglect the pressure variation.

The variation � (p, T) for a typical fluid is nicely shown by Fig. 1.5, from Ref. 14,
which normalizes the data with the critical-point state (�c, pc, Tc). This behavior, called
the principle of corresponding states, is characteristic of all fluids, but the actual nu-
merical values are uncertain to �20 percent for any given fluid. For example, values
of � (T) for air at 1 atm, from Table A.2, fall about 8 percent low compared to the
“low-density limit” in Fig. 1.5.

Note in Fig. 1.5 that changes with temperature occur very rapidly near the critical
point. In general, critical-point measurements are extremely difficult and uncertain.

As we shall see in Chaps. 5 through 7, the primary parameter correlating the viscous
behavior of all newtonian fluids is the dimensionless Reynolds number:

Re � �
�

�

VL
� � �

V
�

L
� (1.24)

where V and L are characteristic velocity and length scales of the flow. The second form
of Re illustrates that the ratio of � to � has its own name, the kinematic viscosity:

� � �
�

�
� (1.25)

It is called kinematic because the mass units cancel, leaving only the dimensions {L2/T}.
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�, Ratio �, � Ratio
Fluid kg/(m � s)† �/�(H2) kg/m3 m2/s† �/�(Hg)

Hydrogen 8.8 E–6 00,0001.0 00,000.084 1.05 E–4 00,920
Air 1.8 E–5 0,00002.1 00,001.20 1.51 E–5 00,130
Gasoline 2.9 E–4 00,0033 0,0680 4.22 E–7 00,003.7
Water 1.0 E–3 00,0114 0,0998 1.01 E–6 0000,8.7
Ethyl alcohol 1.2 E–3 0,00135 0,0789 1.52 E–6 000,13
Mercury 1.5 E–3 00,0170 13,580 1.16 E–7 0000,1.0
SAE 30 oil 0.29 033,000 0,0891 3.25 E–4 02,850
Glycerin 1.5 170,000 01,264 1.18 E–3 10,300

†1 kg/(m � s) � 0.0209 slug/(ft � s); 1 m2/s � 10.76 ft2/s.

Table 1.4 Viscosity and Kinematic
Viscosity of Eight Fluids at 1 atm
and 20°C



Fig. 1.5 Fluid viscosity nondimen-
sionalized by critical-point proper-
ties. This generalized chart is char-
acteristic of all fluids but is only
accurate to �20 percent. (From
Ref. 14.)

Flow between Plates

Generally, the first thing a fluids engineer should do is estimate the Reynolds num-
ber range of the flow under study. Very low Re indicates viscous creeping motion,
where inertia effects are negligible. Moderate Re implies a smoothly varying laminar
flow. High Re probably spells turbulent flow, which is slowly varying in the time-mean
but has superimposed strong random high-frequency fluctuations. Explicit numerical
values for low, moderate, and high Reynolds numbers cannot be stated here. They de-
pend upon flow geometry and will be discussed in Chaps. 5 through 7.

Table 1.4 also lists values of � for the same eight fluids. The pecking order changes
considerably, and mercury, the heaviest, has the smallest viscosity relative to its own
weight. All gases have high � relative to thin liquids such as gasoline, water, and al-
cohol. Oil and glycerin still have the highest �, but the ratio is smaller. For a given
value of V and L in a flow, these fluids exhibit a spread of four orders of magnitude
in the Reynolds number.

A classic problem is the flow induced between a fixed lower plate and an upper plate
moving steadily at velocity V, as shown in Fig. 1.6. The clearance between plates is
h, and the fluid is newtonian and does not slip at either plate. If the plates are large,
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Fig. 1.6 Viscous flow induced by
relative motion between two paral-
lel plates.

this steady shearing motion will set up a velocity distribution u(y), as shown, with v �
w � 0. The fluid acceleration is zero everywhere.

With zero acceleration and assuming no pressure variation in the flow direction, you
should show that a force balance on a small fluid element leads to the result that the
shear stress is constant throughout the fluid. Then Eq. (1.23) becomes

�
d
d
u
y
� � �

�

�
� � const

which we can integrate to obtain

u � a 
 by

The velocity distribution is linear, as shown in Fig. 1.6, and the constants a and b can
be evaluated from the no-slip condition at the upper and lower walls:

0 � a 
 b(0) at y � 0
V � a 
 b(h) at y � h

Hence a � 0 and b � V/h. Then the velocity profile between the plates is given by

u � V �
h
y

� (1.26)

as indicated in Fig. 1.6. Turbulent flow (Chap. 6) does not have this shape.
Although viscosity has a profound effect on fluid motion, the actual viscous stresses

are quite small in magnitude even for oils, as shown in the following example.

EXAMPLE 1.8

Suppose that the fluid being sheared in Fig. 1.6 is SAE 30 oil at 20°C. Compute the shear stress
in the oil if V � 3 m/s and h � 2 cm.

Solution

The shear stress is found from Eq. (1.23) by differentiating Eq. (1.26):

� � ��
d
d
u
y
� � �

�

h
V
� (1)
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Variation of Viscosity with
Temperature

Thermal Conductivity

From Table 1.4 for SAE 30 oil, � � 0.29 kg/(m � s). Then, for the given values of V and h,
Eq. (1) predicts

� � � 43 kg/(m � s2)

� 43 N/m2 � 43 Pa Ans.

Although oil is very viscous, this is a modest shear stress, about 2400 times less than atmos-
pheric pressure. Viscous stresses in gases and thin liquids are even smaller.

Temperature has a strong effect and pressure a moderate effect on viscosity. The vis-
cosity of gases and most liquids increases slowly with pressure. Water is anomalous
in showing a very slight decrease below 30°C. Since the change in viscosity is only a
few percent up to 100 atm, we shall neglect pressure effects in this book.

Gas viscosity increases with temperature. Two common approximations are the
power law and the Sutherland law:

��
T
T

0
��

n
power law

�
(T/T0)

T

3/2




(T
S
0 
 S)
� Sutherland law

where �0 is a known viscosity at a known absolute temperature T0 (usually 273 K). The
constants n and S are fit to the data, and both formulas are adequate over a wide range of
temperatures. For air, n � 0.7 and S � 110 K � 199°R. Other values are given in Ref. 3.

Liquid viscosity decreases with temperature and is roughly exponential, � � ae�bT;
but a better fit is the empirical result that ln � is quadratic in 1/T, where T is absolute
temperature

ln�
�

�

0
� � a 
 b��

T
T
0�� 
 c��

T
T
0��

2

(1.28)

For water, with T0 � 273.16 K, �0 � 0.001792 kg/(m � s), suggested values are a �
�1.94, b � �4.80, and c � 6.74, with accuracy about �1 percent. The viscosity of
water is tabulated in Table A.1. Curve-fit viscosity formulas for 355 organic liquids are
given by Yaws et al. [34]. For further viscosity data, see Refs. 28 and 36.

Just as viscosity relates applied stress to resulting strain rate, there is a property called
thermal conductivity k which relates the vector rate of heat flow per unit area q to the
vector gradient of temperature �T. This proportionality, observed experimentally for
fluids and solids, is known as Fourier’s law of heat conduction

q � �k�T (1.29a)

which can also be written as three scalar equations

qx � �k�
�

�

T
x
� qy � �k�

�

�

T
y
� qz � �k�

�

�

T
z
� (1.29b)

[0.29 kg/(m � s)](3 m/s)
���

0.02 m
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Nonnewtonian Fluids

The minus sign satisfies the convention that heat flux is positive in the direction of de-
creasing temperature. Fourier’s law is dimensionally consistent, and k has SI units of
joules per second-meter-kelvin. Thermal conductivity k is a thermodynamic property
and varies with temperature and pressure in much the same way as viscosity. The ra-
tio k/k0 can be correlated with T/T0 in the same manner as Eqs. (1.27) and (1.28) for
gases and liquids, respectively.

Further data on viscosity and thermal-conductivity variations can be found in 
Ref. 11.

Fluids which do not follow the linear law of Eq. (1.23) are called nonnewtonian and
are treated in books on rheology [6]. Figure 1.7a compares four examples with a new-
tonian fluid. A dilatant, or shear-thickening, fluid increases resistance with increasing
applied stress. Alternately, a pseudoplastic, or shear-thinning, fluid decreases resistance
with increasing stress. If the thinning effect is very strong, as with the dashed-line
curve, the fluid is termed plastic. The limiting case of a plastic substance is one which
requires a finite yield stress before it begins to flow. The linear-flow Bingham plastic
idealization is shown, but the flow behavior after yield may also be nonlinear. An ex-
ample of a yielding fluid is toothpaste, which will not flow out of the tube until a fi-
nite stress is applied by squeezing.

A further complication of nonnewtonian behavior is the transient effect shown in
Fig. 1.7b. Some fluids require a gradually increasing shear stress to maintain a con-
stant strain rate and are called rheopectic. The opposite case of a fluid which thins out
with time and requires decreasing stress is termed thixotropic. We neglect nonnewton-
ian effects in this book; see Ref. 6 for further study.
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A liquid, being unable to expand freely, will form an interface with a second liquid or
gas. The physical chemistry of such interfacial surfaces is quite complex, and whole
textbooks are devoted to this specialty [15]. Molecules deep within the liquid repel
each other because of their close packing. Molecules at the surface are less dense and
attract each other. Since half of their neighbors are missing, the mechanical effect is
that the surface is in tension. We can account adequately for surface effects in fluid
mechanics with the concept of surface tension.

If a cut of length dL is made in an interfacial surface, equal and opposite forces of
magnitude � dL are exposed normal to the cut and parallel to the surface, where � is
called the coefficient of surface tension. The dimensions of � are {F/L}, with SI units
of newtons per meter and BG units of pounds-force per foot. An alternate concept is
to open up the cut to an area dA; this requires work to be done of amount � dA. Thus
the coefficient � can also be regarded as the surface energy per unit area of the inter-
face, in N � m/m2 or ft � lbf/ft2.

The two most common interfaces are water-air and mercury-air. For a clean surface
at 20°C � 68°F, the measured surface tension is

0.0050 lbf/ft � 0.073 N/m air-water
0.033 lbf/ft � 0.48 N/m         air-mercury

These are design values and can change considerably if the surface contains contami-
nants like detergents or slicks. Generally � decreases with liquid temperature and is
zero at the critical point. Values of � for water are given in Fig. 1.8.

If the interface is curved, a mechanical balance shows that there is a pressure dif-
ference across the interface, the pressure being higher on the concave side, as illus-
trated in Fig. 1.9. In Fig. 1.9a, the pressure increase in the interior of a liquid cylinder
is balanced by two surface-tension forces

2RL �p � 2�L

or                                                 �p � �
�

R
� (1.31) 

We are not considering the weight of the liquid in this calculation. In Fig. 1.9b, the pres-
sure increase in the interior of a spherical droplet balances a ring of surface-tension force

�R2 �p � 2�R�

or �p � �
2
R
�
� (1.32)

We can use this result to predict the pressure increase inside a soap bubble, which has
two interfaces with air, an inner and outer surface of nearly the same radius R:

�pbubble � 2 �pdroplet � �
4
R
�
� (1.33)

Figure 1.9c shows the general case of an arbitrarily curved interface whose principal
radii of curvature are R1 and R2. A force balance normal to the surface will show that
the pressure increase on the concave side is

�p � �(R1
�1 
 R2

�1) (1.34)
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Fig. 1.8 Surface tension of a clean
air-water interface. Data from Table
A.5.

Fig. 1.9 Pressure change across a curved interface due to surface tension: (a) interior of a liquid cylinder; (b) interior of a spherical
droplet; (c) general curved interface.

Equations (1.31) to (1.33) can all be derived from this general relation; e.g., in
Eq. (1.31), R1 � R and R2 � �.

A second important surface effect is the contact angle � which appears when a
liquid interface intersects with a solid surface, as in Fig. 1.10. The force balance
would then involve both � and �. If the contact angle is less than 90°, the liquid is
said to wet the solid; if � � 90°, the liquid is termed nonwetting. For example, wa-
ter wets soap but does not wet wax. Water is extremely wetting to a clean glass sur-
face, with � � 0°. Like �, the contact angle � is sensitive to the actual physico-
chemical conditions of the solid-liquid interface. For a clean mercury-air-glass
interface, � � 130°.

Example 1.9 illustrates how surface tension causes a fluid interface to rise or fall in
a capillary tube.
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Fig. 1.10 Contact-angle effects at
liquid-gas-solid interface. If � �
90°, the liquid “wets” the solid; if
� � 90°, the liquid is nonwetting.

EXAMPLE 1.9

Derive an expression for the change in height h in a circular tube of a liquid with surface ten-
sion � and contact angle �, as in Fig. E1.9.

Solution

The vertical component of the ring surface-tension force at the interface in the tube must bal-
ance the weight of the column of fluid of height h

2�R� cos � � ��R2h

Solving for h, we have the desired result

h � �
2�

�

c
R
os �
� Ans.

Thus the capillary height increases inversely with tube radius R and is positive if � � 90° (wet-
ting liquid) and negative (capillary depression) if � � 90°.

Suppose that R � 1 mm. Then the capillary rise for a water-air-glass interface, � � 0°, � �
0.073 N/m, and � � 1000 kg/m3 is

h � � 0.015 (N � s2)/kg � 0.015 m � 1.5 cm

For a mercury-air-glass interface, with � � 130°, � � 0.48 N/m, and � � 13,600 kg/m3, the cap-
illary rise is

h � � �0.46 cm

When a small-diameter tube is used to make pressure measurements (Chap. 2), these capillary
effects must be corrected for.

Vapor pressure is the pressure at which a liquid boils and is in equilibrium with its
own vapor. For example, the vapor pressure of water at 68°F is 49 lbf/ft2, while that
of mercury is only 0.0035 lbf/ft2. If the liquid pressure is greater than the vapor

2(0.48)(cos 130°)
���
13,600(9.81)(0.001)

2(0.073 N/m)(cos 0°)
����
(1000 kg/m3)(9.81 m/s2)(0.001 m)
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No-Slip and No-Temperature-
Jump Conditions

pressure, the only exchange between liquid and vapor is evaporation at the inter-
face. If, however, the liquid pressure falls below the vapor pressure, vapor bubbles
begin to appear in the liquid. If water is heated to 212°F, its vapor pressure rises to
2116 lbf/ft2, and thus water at normal atmospheric pressure will boil. When the liq-
uid pressure is dropped below the vapor pressure due to a flow phenomenon, we
call the process cavitation. As we shall see in Chap. 2, if water is accelerated from
rest to about 50 ft/s, its pressure drops by about 15 lbf/in2, or 1 atm. This can cause
cavitation.

The dimensionless parameter describing flow-induced boiling is the cavitation 
number

Ca � (1.35)

where pa � ambient pressure
pv � vapor pressure  
V � characteristic flow velocity

Depending upon the geometry, a given flow has a critical value of Ca below which the
flow will begin to cavitate. Values of surface tension and vapor pressure of water are
given in Table A.5. The vapor pressure of water is plotted in Fig. 1.11.

Figure 1.12a shows cavitation bubbles being formed on the low-pressure surfaces
of a marine propeller. When these bubbles move into a higher-pressure region, they
collapse implosively. Cavitation collapse can rapidly spall and erode metallic surfaces
and eventually destroy them, as shown in Fig. 1.12b.

When a fluid flow is bounded by a solid surface, molecular interactions cause the fluid
in contact with the surface to seek momentum and energy equilibrium with that surface.
All liquids essentially are in equilibrium with the surface they contact. All gases are, too,

pa � pv�
�12��V2
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Fig. 1.12 Two aspects of cavitation
bubble formation in liquid flows:
(a) Beauty: spiral bubble sheets
form from the surface of a marine
propeller. (Courtesy of the Garfield
Thomas Water Tunnel, Pennsylva-
nia State University); (b) ugliness:
collapsing bubbles erode a pro-
peller surface. (Courtesy of Thomas
T. Huang, David Taylor Research
Center.)



Fig. 1.13 The no-slip condition in
water flow past a thin fixed plate.
The upper flow is turbulent; the
lower flow is laminar. The velocity
profile is made visible by a line of
hydrogen bubbles discharged from
the wire across the flow. [From Il-
lustrated Experiments in Fluid Me-
chanics (The NCFMF Book of Film
Notes), National Committee for
Fluid Mechanics Films, Education
Development Center, Inc., copy-
right 1972.]

except under the most rarefied conditions [8]. Excluding rarefied gases, then, all fluids
at a point of contact with a solid take on the velocity and temperature of that surface

Vfluid � Vwall Tfluid � Twall (1.36)

These are called the no-slip and no-temperature-jump conditions, respectively. They
serve as boundary conditions for analysis of fluid flow past a solid surface (Chap. 6).
Figure 1.13 illustrates the no-slip condition for water flow past the top and bottom sur-
faces of a fixed thin plate. The flow past the upper surface is disorderly, or turbulent,
while the lower surface flow is smooth, or laminar.7 In both cases there is clearly no
slip at the wall, where the water takes on the zero velocity of the fixed plate. The ve-
locity profile is made visible by the discharge of a line of hydrogen bubbles from the
wire shown stretched across the flow.

To decrease the mathematical difficulty, the no-slip condition is partially relaxed in
the analysis of inviscid flow (Chap. 8). The flow is allowed to “slip” past the surface
but not to permeate through the surface

Vnormal(fluid) � Vnormal(solid) (1.37)

while the tangential velocity Vt is allowed to be independent of the wall. The analysis
is much simpler, but the flow patterns are highly idealized.
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7Laminar and turbulent flows are studied in Chaps. 6 and 7.



Speed of Sound In gas flow, one must be aware of compressibility effects (significant density changes
caused by the flow). We shall see in Sec. 4.2 and in Chap. 9 that compressibility be-
comes important when the flow velocity reaches a significant fraction of the speed of
sound of the fluid. The speed of sound a of a fluid is the rate of propagation of small-
disturbance pressure pulses (“sound waves”) through the fluid. In Chap. 9 we shall
show, from momentum and thermodynamic arguments, that the speed of sound is de-
fined by

a2 � ��
�

�

p
�
��s

� k��
�

�

p
�
��T

k � �
c
c

p

v
� (1.38)

This is true for either a liquid or a gas, but it is for gases that the problem of com-
pressibility occurs. For an ideal gas, Eq. (1.10), we obtain the simple formula

aideal gas � (kRT)1/2 (1.39)

where R is the gas constant, Eq. (1.11), and T the absolute temperature. For example,
for air at 20°C, a � {(1.40)[287 m2/(s2 � K)](293 K)}1/2 � 343 m/s (1126 ft/s � 768
mi/h). If, in this case, the air velocity reaches a significant fraction of a, say, 100 m/s,
then we must account for compressibility effects (Chap. 9). Another way to state this
is to account for compressibility when the Mach number Ma � V/a of the flow reaches
about 0.3.

The speed of sound of water is tabulated in Table A.5. The speed of sound of air
(or any approximately perfect gas) is simply calculated from Eq. (1.39).

There are three basic ways to attack a fluid-flow problem. They are equally important
for a student learning the subject, and this book tries to give adequate coverage to each
method:

1. Control-volume, or integral analysis (Chap. 3)

2. Infinitesimal system, or differential analysis (Chap. 4)

3. Experimental study, or dimensional analysis (Chap. 5)

In all cases, the flow must satisfy the three basic laws of mechanics8 plus a thermo-
dynamic state relation and associated boundary conditions:

1. Conservation of mass (continuity)

2. Linear momentum (Newton’s second law)

3. First law of thermodynamics (conservation of energy)

4. A state relation like � � �(p, T)

5. Appropriate boundary conditions at solid surfaces, interfaces, inlets, and exits

In integral and differential analyses, these five relations are modeled mathematically
and solved by computational methods. In an experimental study, the fluid itself per-
forms this task without the use of any mathematics. In other words, these laws are be-
lieved to be fundamental to physics, and no fluid flow is known to violate them.

1.8 Basic Flow-Analysis Techniques 35

1.8 Basic Flow-Analysis
Techniques

8In fluids which are variable mixtures of components, such as seawater, a fourth basic law is required,
conservation of species. For an example of salt conservation analysis, see Chap. 4, Ref. 16.



A control volume is a finite region, chosen carefully by the analyst, with open bound-
aries through which mass, momentum, and energy are allowed to cross. The analyst
makes a budget, or balance, between the incoming and outgoing fluid and the resul-
tant changes within the control volume. The result is a powerful tool but a crude one.
Details of the flow are normally washed out or ignored in control-volume analyses.
Nevertheless, the control-volume technique of Chap. 3 never fails to yield useful and
quantitative information to the engineering analyst.

When the conservation laws are written for an infinitesimal system of fluid in motion,
they become the basic differential equations of fluid flow. To apply them to a specific
problem, one must integrate these equations mathematically subject to the boundary con-
ditions of the particular problem. Exact analytic solutions are often possible only for very
simple geometries and boundary conditions (Chap. 4). Otherwise, one attempts numeri-
cal integration on a digital computer, i.e., a summing procedure for finite-sized systems
which one hopes will approximate the exact integral calculus [1]. Even computer analy-
sis often fails to provide an accurate simulation, because of either inadequate storage or
inability to model the finely detailed flow structure characteristic of irregular geometries
or turbulent-flow patterns. Thus differential analysis sometimes promises more than it
delivers, although we can successfully study a number of classic and useful solutions.

A properly planned experiment is very often the best way to study a practical en-
gineering flow problem. Guidelines for planning flow experiments are given in Chap.
5. For example, no theory presently available, whether differential or integral, calcu-
lus or computer, is able to make an accurate computation of the aerodynamic drag and
side force of an automobile moving down a highway with crosswinds. One must solve
the problem by experiment. The experiment may be full-scale: One can test a real au-
tomobile on a real highway in real crosswinds. For that matter, there are wind tunnels
in existence large enough to hold a full-scale car without significant blockage effects.
Normally, however, in the design stage, one tests a small-model automobile in a small
wind tunnel. Without proper interpretation, the model results may be poor and mislead
the designer (Chap. 5). For example, the model may lack important details such as sur-
face finish or underbody protuberances. The “wind” produced by the tunnel propellers
may lack the turbulent gustiness of real winds. It is the job of the fluid-flow analyst,
using such techniques as dimensional analysis, to plan an experiment which gives an
accurate estimate of full-scale or prototype results expected in the final product.

It is possible to classify flows, but there is no general agreement on how to do it.
Most classifications deal with the assumptions made in the proposed flow analysis.
They come in pairs, and we normally assume that a given flow is either

Steady or unsteady (1.40a)

Inviscid or viscous (1.40b)

Incompressible or compressible (1.40c)

Gas or liquid (1.40d)

As Fig. 1.14 indicates, we choose one assumption from each pair. We may have a steady
viscous compressible gas flow or an unsteady inviscid (� � 0) incompressible liquid
flow. Although there is no such thing as a truly inviscid fluid, the assumption � � 0
gives adequate results in many analyses (Chap. 8). Often the assumptions overlap: A
flow may be viscous in the boundary layer near a solid surface (Fig. 1.13) and effec-
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Fig. 1.14 Ready for a flow analy-
sis? Then choose one assumption
from each box.

1.9 Flow Patterns: Streamlines,
Streaklines, and Pathlines

tively inviscid away from the surface. The viscous part of the flow may be laminar or
transitional or turbulent or combine patches of all three types of viscous flow. A flow
may involve both a gas and a liquid and the free surface, or interface, between them
(Chap. 10). A flow may be compressible in one region and have nearly constant den-
sity in another. Nevertheless, Eq. (1.40) and Fig. 1.14 give the basic binary assump-
tions of flow analysis, and Chaps. 6 to 10 try to separate them and isolate the basic ef-
fect of each assumption.

Fluid mechanics is a highly visual subject. The patterns of flow can be visualized in a
dozen different ways, and you can view these sketches or photographs and learn a great
deal qualitatively and often quantitatively about the flow.

Four basic types of line patterns are used to visualize flows:

1. A streamline is a line everywhere tangent to the velocity vector at a given in-
stant.

2. A pathline is the actual path traversed by a given fluid particle.

3. A streakline is the locus of particles which have earlier passed through a pre-
scribed point.

4. A timeline is a set of fluid particles that form a line at a given instant.

The streamline is convenient to calculate mathematically, while the other three are eas-
ier to generate experimentally. Note that a streamline and a timeline are instantaneous
lines, while the pathline and the streakline are generated by the passage of time. The
velocity profile shown in Fig. 1.13 is really a timeline generated earlier by a single dis-
charge of bubbles from the wire. A pathline can be found by a time exposure of a sin-
gle marked particle moving through the flow. Streamlines are difficult to generate ex-
perimentally in unsteady flow unless one marks a great many particles and notes their
direction of motion during a very short time interval [17, p. 35]. In steady flow the sit-
uation simplifies greatly:

Streamlines, pathlines, and streaklines are identical in steady flow.

In fluid mechanics the most common mathematical result for visualization purposes
is the streamline pattern. Figure 1.15a shows a typical set of streamlines, and Fig. 1.15b
shows a closed pattern called a streamtube. By definition the fluid within a streamtube
is confined there because it cannot cross the streamlines; thus the streamtube walls
need not be solid but may be fluid surfaces.

Figure 1.16 shows an arbitrary velocity vector. If the elemental arc length dr of a
streamline is to be parallel to V, their respective components must be in proportion:

Streamline: �
d
u
x
� � �

d
v
y
� � �

d
w
z
� � �

d
V
r
� (1.41)
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If the velocities (u, v, w) are known functions of position and time, Eq. (1.41) can be
integrated to find the streamline passing through the initial point (x0, y0, z0, t0). The
method is straightforward for steady flows (Example 1.10) but may be laborious for
unsteady flow.

The pathline, or displacement of a particle, is defined by integration of the velocity
components, as mentioned in Sec. 1.5:

Pathline: x � � u dt y � � v dt z � � w dt (1.42)

Given (u, v, w) as known functions of position and time, the integration is begun at a
specified initial position (x0, y0, z0, t0). Again the integration may be laborious.

Streaklines, easily generated experimentally with smoke, dye, or bubble releases,
are very difficult to compute analytically. See Ref. 18 for mathematical details.
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Fig. 1.15 The most common
method of flow-pattern presenta-
tion: (a) Streamlines are every-
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EXAMPLE 1.10

Given the steady two-dimensional velocity distribution

u � Kx v � �Ky w � 0 (1)

where K is a positive constant, compute and plot the streamlines of the flow, including direc-
tions, and give some possible interpretations of the pattern.

Solution

Since time does not appear explicitly in Eq. (1), the motion is steady, so that streamlines, path-
lines, and streaklines will coincide. Since w � 0 everywhere, the motion is two dimensional, in
the xy plane. The streamlines can be computed by substituting the expressions for u and v into
Eq. (1.41):

�
K
dx
x
� � ��

K
dy
y
�

or � �
d
x
x
� � �� �

d
y
y
�

Integrating, we obtain ln x � �ln y 
 ln C, or

xy � C Ans. (2)

This is the general expression for the streamlines, which are hyperbolas. The complete pat-
tern is plotted in Fig. E1.10 by assigning various values to the constant C. The arrowheads
can be determined only by returning to Eqs. (1) to ascertain the velocity component direc-
tions, assuming K is positive. For example, in the upper right quadrant (x � 0, y � 0), u is
positive and v is negative; hence the flow moves down and to the right, establishing the ar-
rowheads as shown.
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Note that the streamline pattern is entirely independent of constant K. It could represent the
impingement of two opposing streams, or the upper half could simulate the flow of a single down-
ward stream against a flat wall. Taken in isolation, the upper right quadrant is similar to the flow
in a 90° corner. This is definitely a realistic flow pattern and is discussed again in Chap. 8.

Finally note the peculiarity that the two streamlines (C � 0) have opposite directions and in-
tersect. This is possible only at a point where u � v � w � 0, which occurs at the origin in this
case. Such a point of zero velocity is called a stagnation point.

A streakline can be produced experimentally by the continuous release of marked par-
ticles (dye, smoke, or bubbles) from a given point. Figure 1.17 shows two examples. The
flow in Fig. 1.17b is unsteady and periodic due to the flapping of the plate against the
oncoming stream. We see that the dash-dot streakline does not coincide with either the
streamline or the pathline passing through the same release point. This is characteristic
of unsteady flow, but in Fig. 1.17a the smoke filaments form streaklines which are iden-
tical to the streamlines and pathlines. We noted earlier that this coincidence of lines is
always true of steady flow: Since the velocity never changes magnitude or direction at
any point, every particle which comes along repeats the behavior of its earlier neighbors.

Methods of experimental flow visualization include the following:

1. Dye, smoke, or bubble discharges

2. Surface powder or flakes on liquid flows

3. Floating or neutral-density particles

4. Optical techniques which detect density changes in gas flows: shadowgraph,
schlieren, and interferometer

5. Tufts of yarn attached to boundary surfaces

6. Evaporative coatings on boundary surfaces

7. Luminescent fluids or additives
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Fig. 1.17 Experimental visualization of steady and unsteady flow: (a) steady flow past an airfoil
visualized by smoke filaments (C. A. A. SCIENTIFIC—Prime Movers Laboratory Systems);
(b) unsteady flow past an oscillating plate with a point bubble release (from an experiment in
Ref. 17).
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The mathematical implications of flow-pattern analysis are discussed in detail in Ref.
18. References 19 and 20 are beautiful albums of photographs. References 21 and 22
are monographs on flow visualization.

Most of the examples and exercises in this text are amenable to direct calculation with-
out guessing or iteration or looping. Until recently, only such direct problem assign-
ments, whether “plug-and-chug” or more subtle, were appropriate for undergraduate
engineering courses. However, the recent introduction of computer software solvers
makes almost any set of algebraic relations viable for analysis and solution. The solver
recommended here is the Engineering Equation Solver (EES) developed by Klein and
Beckman [33] and described in Appendix E.

Any software solver should handle a purely mathematical set of relations, such as
the one posed in Ref. 33: X ln (X) � Y3, X1/2 � 1/Y. Submit that pair to any commer-
cial solver and you will no doubt receive the answer: X � 1.467, Y � 0.826. However,
for engineers, in the author’s opinion, EES is superior to most solvers because (1) equa-
tions can be entered in any order; (2) scores of mathematical formulas are built-in, such
as the Bessel functions; and (3) thermophysical properties of many fluids are built-in,
such as the steam tables [13]. Both metric and English units are allowed. Equations
need not be written in the traditional BASIC or FORTRAN style. For example, X �
Y 
 1 � 0 is perfectly satisfactory; there is no need to retype this as X � Y � 1.

For example, reconsider Example 1.7 as an EES exercise. One would first enter the
reference properties p0 and �0 plus the curve-fit constants B and n:

Pz � 1.0

Rhoz � 2.0

B � 3000

n � 7

Then specify the given pressure ratio and the curve-fit relation, Eq. (1.19), for the equa-
tion of state of water:

P � 1100*Pz

P/Pz � (B 
 1)*(Rho/Rhoz)̂ n � B

If you request an initial opinion from the CHECK/FORMAT menu, EES states that
there are six equations in six unknowns and there are no obvious difficulties. Then
request SOLVE from the menu and EES quickly prints out Rho � 2.091, the correct
answer as seen already in Ex. 1.7. It also prints out values of the other five variables.
Occasionally EES reports “unable to converge” and states what went wrong (division
by zero, square root of a negative number, etc.). One needs only to improve the guesses
and ranges of the unknowns in Variable Information to assist EES to the solution.

In subsequent chapters we will illustrate some implicit (iterative) examples by us-
ing EES and will also assign some advanced problem exercises for which EES is an
ideal approach. The use of an engineering solver, notably EES, is recommended to all
engineers in this era of the personal computer.
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Earlier in this chapter we referred to the uncertainty of the principle of corresponding
states in discussing Fig. 1.5. Uncertainty is a fact of life in engineering. We rarely know
any engineering properties or variables to an extreme degree of accuracy. Therefore,
we need to know the uncertainty U of our data, usually defined as the band within
which the experimenter is 95 percent confident that the true value lies (Refs. 30, 31).
In Fig. 1.5, we were given that the uncertainty of �/�c is U � �20 percent.

Fluid mechanics is heavily dependent upon experimentation, and the data uncer-
tainty is needed before we can use it for prediction or design purposes. Sometimes un-
certainty completely changes our viewpoint. As an offbeat example, suppose that as-
tronomers reported that the length of the earth year was 365.25 days “give or take a
couple of months.” First, that would make the five-figure accuracy ridiculous, and the
year would better be stated as Y � 365 � 60 days. Second, we could no longer plan
confidently or put together accurate calendars. Scheduling Christmas vacation would
be chancy.

Multiple variables make uncertainty estimates cumulative. Suppose a given result P
depends upon N variables, P � P(x1, x2, x3, . . . , xN), each with its own uncertainty;
for example, x1 has uncertainty �x1. Then, by common agreement among experimenters,
the total uncertainty of P is calculated as a root-mean-square average of all effects:
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(1.43)

This calculation is statistically much more probable than simply adding linearly the
various uncertainties �xi, thereby making the unlikely assumption that all variables
simultaneously attain maximum error. Note that it is the responsibility of the ex-
perimenter to establish and report accurate estimates of all the relevant uncertain-
ties �xi.

If the quantity P is a simple power-law expression of the other variables, for ex-
ample, P � Const x1

n1x2
n2x3

n3 . . . , then each derivative in Eq. (1.43) is proportional to
P and the relevant power-law exponent and is inversely proportional to that variable.

If P � Const x1
n1x2

n2x3
n3 . . . , then
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Thus, from Eq. (1.43),
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(1.44)

Evaluation of �P is then a straightforward procedure, as in the following example.

EXAMPLE 1.11

The so-called dimensionless Moody pipe-friction factor f, plotted in Fig. 6.13, is calculated in
experiments from the following formula involving pipe diameter D, pressure drop �p, density
�, volume flow rate Q, and pipe length L:

f � �
3
�

2

2

� �
D
�Q

5�
2L
p

�
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Measurement uncertainties are given for a certain experiment: for D: 0.5 percent, �p: 2.0 per-
cent, �: 1.0 percent, Q: 3.5 percent, and L: 0.4 percent. Estimate the overall uncertainty of the
friction factor f.

Solution

The coefficient �2/32 is assumed to be a pure theoretical number, with no uncertainty. The other
variables may be collected using Eqs. (1.43) and (1.44):
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� [{5(0.5%)}2 
 (2.0%)2 
 (1.0%)2 
 {2(3.5%)}2 
 (0.4%)2]1/2 � 7.8% Ans.

By far the dominant effect in this particular calculation is the 3.5 percent error in Q, which is
amplified by doubling, due to the power of 2 on flow rate. The diameter uncertainty, which is
quintupled, would have contributed more had �D been larger than 0.5 percent.

The road toward a professional engineer’s license has a first stop, the Fundamentals 
of Engineering Examination, known as the FE exam. It was formerly known as 
the Engineer-in-Training (E-I-T) Examination. This 8-h national test will probably 
soon be required of all engineering graduates, not just for licensure, but as a student-
assessment tool. The 120-problem morning session covers many general studies:

Chemistry Computers Dynamics

Electric circuits Engineering economics Fluid Mechanics

Materials science Mathematics Mechanics of materials

Statics Thermodynamics Ethics

For the 60-problem afternoon session you may choose chemical, civil, electrical, in-
dustrial, or mechanical engineering or take more general-engineering problems for re-
maining disciplines. As you can see, fluid mechanics is central to the FE exam. There-
fore, this text includes a number of end-of-chapter FE problems where appropriate.

The format for the FE exam questions is multiple-choice, usually with five selec-
tions, chosen carefully to tempt you with plausible answers if you used incorrect units
or forgot to double or halve something or are missing a factor of �, etc. In some cases,
the selections are unintentionally ambiguous, such as the following example from a
previous exam:

Transition from laminar to turbulent flow occurs at a Reynolds number of
(A) 900 (B) 1200 (C) 1500 (D) 2100 (E) 3000

The “correct” answer was graded as (D), Re � 2100. Clearly the examiner was think-
ing, but forgot to specify, Red for flow in a smooth circular pipe, since (see Chaps. 6
and 7) transition is highly dependent upon geometry, surface roughness, and the length
scale used in the definition of Re. The moral is not to get peevish about the exam but
simply to go with the flow (pun intended) and decide which answer best fits an 
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undergraduate-training situation. Every effort has been made to keep the FE exam ques-
tions in this text unambiguous.

Fluid flow analysis generates a plethora of problems, 1500 in this text alone! To solve
these problems, one must deal with various equations, data, tables, assumptions, unit
systems, and numbers. The writer recommends these problem-solving steps:

1. Gather all the given system parameters and data in one place.

2. Find, from tables or charts, all needed fluid property data: �, �, cp, k, �, etc.

3. Use SI units (N, s, kg, m) if possible, and no conversion factors will be neces-
sary.

4. Make sure what is asked. It is all too common for students to answer the wrong
question, for example, reporting mass flow instead of volume flow, pressure in-
stead of pressure gradient, drag force instead of lift force. Engineers are ex-
pected to read carefully.

5. Make a detailed sketch of the system, with everything clearly labeled.

6. Think carefully and then list your assumptions. Here knowledge is power; you
should not guess the answer. You must be able to decide correctly if the flow
can be considered steady or unsteady, compressible or incompressible, one-
dimensional, or multidimensional, viscous or inviscid, and whether a control vol-
ume or partial differential equations are needed.

7. Based on steps 1 to 6 above, write out the appropriate equations, data correla-
tions, and fluid state relations for your problem. If the algebra is straightforward,
solve for what is asked. If the equations are complicated, e.g., nonlinear or too
plentiful, use the Engineering Equation Solver (EES).

8. Report your solution clearly, with proper units listed and to the proper number
of significant figures (usually two or three) that the overall uncertainty of the
data will allow.

Like most scientific disciplines, fluid mechanics has a history of erratically occurring
early achievements, then an intermediate era of steady fundamental discoveries in the
eighteenth and nineteenth centuries, leading to the twentieth-century era of “modern
practice,” as we self-centeredly term our limited but up-to-date knowledge. Ancient
civilizations had enough knowledge to solve certain flow problems. Sailing ships with
oars and irrigation systems were both known in prehistoric times. The Greeks produced
quantitative information. Archimedes and Hero of Alexandria both postulated the par-
allelogram law for addition of vectors in the third century B.C. Archimedes (285–212
B.C.) formulated the laws of buoyancy and applied them to floating and submerged
bodies, actually deriving a form of the differential calculus as part of the analysis. The
Romans built extensive aqueduct systems in the fourth century B.C. but left no records
showing any quantitative knowledge of design principles.

From the birth of Christ to the Renaissance there was a steady improvement in the
design of such flow systems as ships and canals and water conduits but no recorded
evidence of fundamental improvements in flow analysis. Then Leonardo da Vinci
(1452–1519) derived the equation of conservation of mass in one-dimensional steady
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flow. Leonardo was an excellent experimentalist, and his notes contain accurate de-
scriptions of waves, jets, hydraulic jumps, eddy formation, and both low-drag (stream-
lined) and high-drag (parachute) designs. A Frenchman, Edme Mariotte (1620–1684),
built the first wind tunnel and tested models in it.

Problems involving the momentum of fluids could finally be analyzed after Isaac New-
ton (1642–1727) postulated his laws of motion and the law of viscosity of the linear flu-
ids now called newtonian. The theory first yielded to the assumption of a “perfect” or
frictionless fluid, and eighteenth-century mathematicians (Daniel Bernoulli, Leonhard
Euler, Jean d’Alembert, Joseph-Louis Lagrange, and Pierre-Simon Laplace) produced
many beautiful solutions of frictionless-flow problems. Euler developed both the differ-
ential equations of motion and their integrated form, now called the Bernoulli equation.
D’Alembert used them to show his famous paradox: that a body immersed in a friction-
less fluid has zero drag. These beautiful results amounted to overkill, since perfect-fluid
assumptions have very limited application in practice and most engineering flows are
dominated by the effects of viscosity. Engineers began to reject what they regarded as a
totally unrealistic theory and developed the science of hydraulics, relying almost entirely
on experiment. Such experimentalists as Chézy, Pitot, Borda, Weber, Francis, Hagen,
Poiseuille, Darcy, Manning, Bazin, and Weisbach produced data on a variety of flows
such as open channels, ship resistance, pipe flows, waves, and turbines. All too often the
data were used in raw form without regard to the fundamental physics of flow.

At the end of the nineteenth century, unification between experimental hydraulics
and theoretical hydrodynamics finally began. William Froude (1810–1879) and his son
Robert (1846–1924) developed laws of model testing, Lord Rayleigh (1842–1919) pro-
posed the technique of dimensional analysis, and Osborne Reynolds (1842–1912) pub-
lished the classic pipe experiment in 1883 which showed the importance of the di-
mensionless Reynolds number named after him. Meanwhile, viscous-flow theory was
available but unexploited, since Navier (1785–1836) and Stokes (1819–1903) had suc-
cessfully added newtonian viscous terms to the equations of motion. The resulting
Navier-Stokes equations were too difficult to analyze for arbitrary flows. Then, in 1904,
a German engineer, Ludwig Prandtl (1875–1953), published perhaps the most impor-
tant paper ever written on fluid mechanics. Prandtl pointed out that fluid flows with
small viscosity, e.g., water flows and airflows, can be divided into a thin viscous layer,
or boundary layer, near solid surfaces and interfaces, patched onto a nearly inviscid
outer layer, where the Euler and Bernoulli equations apply. Boundary-layer theory has
proved to be the single most important tool in modern flow analysis. The twentieth-
century foundations for the present state of the art in fluid mechanics were laid in a
series of broad-based experiments and theories by Prandtl and his two chief friendly
competitors, Theodore von Kármán (1881–1963) and Sir Geoffrey I. Taylor (1886–
1975). Many of the results sketched here from a historical point of view will, of course,
be discussed in this textbook. More historical details can be found in Refs. 23 to 25.

Since the earth is 75 percent covered with water and 100 percent covered with air,
the scope of fluid mechanics is vast and touches nearly every human endeavor. The
sciences of meteorology, physical oceanography, and hydrology are concerned with
naturally occurring fluid flows, as are medical studies of breathing and blood circula-
tion. All transportation problems involve fluid motion, with well-developed specialties
in aerodynamics of aircraft and rockets and in naval hydrodynamics of ships and sub-
marines. Almost all our electric energy is developed either from water flow or from



P1.4 A beaker approximates a right circular cone of diameter 7 in
and height 9 in. When filled with liquid, it weighs 70 oz.
When empty, it weighs 14 oz. Estimate the density of this
liquid in both SI and BG units.

P1.5 The mean free path of a gas, �, is defined as the average
distance traveled by molecules between collisions. A pro-
posed formula for estimating � of an ideal gas is

� � 1.26�
��

�

R�T�
�

What are the dimensions of the constant 1.26? Use the for-
mula to estimate the mean free path of air at 20°C and 7 kPa.
Would you consider air rarefied at this condition?

P1.6 In the {MLT
} system, what is the dimensional represen-
tation of (a) enthalpy, (b) mass rate of flow, (c) bending mo-
ment, (d) angular velocity, (e) modulus of elasticity;
( f ) Poisson’s ratio?

P1.7 A small village draws 1.5 acre � ft/day of water from its
reservoir. Convert this average water usage to (a) gallons
per minute and (b) liters per second.

P1.8 Suppose we know little about the strength of materials
but are told that the bending stress � in a beam is pro-
portional to the beam half-thickness y and also depends
upon the bending moment M and the beam area moment
of inertia I. We also learn that, for the particular case
M � 2900 in � lbf, y � 1.5 in, and I � 0.4 in4, the pre-
dicted stress is 75 MPa. Using this information and di-
mensional reasoning only, find, to three significant fig-
ures, the only possible dimensionally homogeneous
formula � � y f(M, I ).

Problems

Most of the problems herein are fairly straightforward. More diffi-
cult or open-ended assignments are labeled with an asterisk as in
Prob. 1.18. Problems labeled with an EES icon (for example, Prob.
2.62), will benefit from the use of the Engineering Equation Solver
(EES), while problems labeled with a computer disk may require
the use of a computer. The standard end-of-chapter problems 1.1 to
1.85 (categorized in the problem list below) are followed by fun-
damentals of engineering (FE) exam problems FE3.1 to FE3.10,
and comprehensive problems C1.1 to C1.4.

Problem Distribution

Section Topic Problems

1.1, 1.2, 1.3 Fluid-continuum concept 1.1–1.3
1.4 Dimensions, units, dynamics 1.4–1.20
1.5 Velocity field 1.21–1.23
1.6 Thermodynamic properties 1.24–1.37
1.7 Viscosity; no-slip condition 1.38–1.61
1.7 Surface tension 1.62–1.71
1.7 Vapor pressure; cavitation 1.72–1.75
1.7 Speed of sound; Mach number 1.76–1.78
1.8,9 Flow patterns, streamlines, pathlines 1.79–1.84
1.10 History of fluid mechanics 1.85

P1.1 A gas at 20°C may be considered rarefied, deviating from
the continuum concept, when it contains less than 1012 mol-
ecules per cubic millimeter. If Avogadro’s number is 6.023
E23 molecules per mole, what absolute pressure (in Pa) for
air does this represent?

P1.2 Table A.6 lists the density of the standard atmosphere as a
function of altitude. Use these values to estimate, crudely—
say, within a factor of 2—the number of molecules of air
in the entire atmosphere of the earth.

P1.3 For the triangular element in Fig. P1.3, show that a tilted
free liquid surface, in contact with an atmosphere at pres-
sure pa, must undergo shear stress and hence begin to flow.
Hint: Account for the weight of the fluid and show that a
no-shear condition will cause horizontal forces to be out of
balance.

steam flow through turbine generators. All combustion problems involve fluid motion,
as do the more classic problems of irrigation, flood control, water supply, sewage dis-
posal, projectile motion, and oil and gas pipelines. The aim of this book is to present
enough fundamental concepts and practical applications in fluid mechanics to prepare
you to move smoothly into any of these specialized fields of the science of flow—and
then be prepared to move out again as new technologies develop.
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where Q is the volume rate of flow and �p is the pressure
rise produced by the pump. Suppose that a certain pump
develops a pressure rise of 35 lbf/in2 when its flow rate is
40 L/s. If the input power is 16 hp, what is the efficiency?

*P1.14 Figure P1.14 shows the flow of water over a dam. The vol-
ume flow Q is known to depend only upon crest width B,
acceleration of gravity g, and upstream water height H
above the dam crest. It is further known that Q is propor-
tional to B. What is the form of the only possible dimen-
sionally homogeneous relation for this flow rate?

P1.9 The kinematic viscosity of a fluid is the ratio of viscosity
to density, � � �/�. What is the only possible dimension-
less group combining � with velocity V and length L? What
is the name of this grouping? (More information on this
will be given in Chap. 5.)

P1.10 The Stokes-Oseen formula [18] for drag force F on a
sphere of diameter D in a fluid stream of low velocity V,
density �, and viscosity �, is

F � 3��DV 
 �
9
1
�

6
��V2D2

Is this formula dimensionally homogeneous?
P1.11 Engineers sometimes use the following formula for the

volume rate of flow Q of a liquid flowing through a hole
of diameter D in the side of a tank:

Q � 0.68 D2�g�h�

where g is the acceleration of gravity and h is the height
of the liquid surface above the hole. What are the dimen-
sions of the constant 0.68?

P1.12 For low-speed (laminar) steady flow through a circular
pipe, as shown in Fig. P1.12, the velocity u varies with ra-
dius and takes the form

u � B�
�

�

p
�(r0

2 � r2)

where � is the fluid viscosity and �p is the pressure drop
from entrance to exit. What are the dimensions of the con-
stant B?
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r = 0

r

u (r)

Pipe wall

r = r0

P1.13 The efficiency � of a pump is defined as the (dimension-
less) ratio of the power developed by the flow to the power
required to drive the pump:

� � �
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Q
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Q
Water level

Dam

P1.15 As a practical application of Fig. P1.14, often termed a
sharp-crested weir, civil engineers use the following for-
mula for flow rate: Q � 3.3BH3/2, with Q in ft3/s and B
and H in feet. Is this formula dimensionally homogeneous?
If not, try to explain the difficulty and how it might be con-
verted to a more homogeneous form.

P1.16 Algebraic equations such as Bernoulli’s relation, Eq. (1)
of Ex. 1.3, are dimensionally consistent, but what about
differential equations? Consider, for example, the bound-
ary-layer x-momentum equation, first derived by Ludwig
Prandtl in 1904:

�u�
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 �gx 
 �

�
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where � is the boundary-layer shear stress and gx is the
component of gravity in the x direction. Is this equation
dimensionally consistent? Can you draw a general con-
clusion?

P1.17 The Hazen-Williams hydraulics formula for volume rate of
flow Q through a pipe of diameter D and length L is given by

Q � 61.9 D2.63��
�

L
p
��

0.54

P1.14



Q/Across-section and the dimensionless Reynolds number of the
flow, Re � �VavgD/�. Comment on your results.

P1.24 Air at 1 atm and 20°C has an internal energy of approxi-
mately 2.1 E5 J/kg. If this air moves at 150 m/s at an al-
titude z � 8 m, what is its total energy, in J/kg, relative to
the datum z � 0? Are any energy contributions negligible?

P1.25 A tank contains 0.9 m3 of helium at 200 kPa and 20°C.
Estimate the total mass of this gas, in kg, (a) on earth and
(b) on the moon. Also, (c) how much heat transfer, in MJ,
is required to expand this gas at constant temperature to a
new volume of 1.5 m3?

P1.26 When we in the United States say a car’s tire is filled “to
32 lb,” we mean that its internal pressure is 32 lbf/in2 above
the ambient atmosphere. If the tire is at sea level, has a
volume of 3.0 ft3, and is at 75°F, estimate the total weight
of air, in lbf, inside the tire.

P1.27 For steam at 40 lbf/in2, some values of temperature and
specific volume are as follows, from Ref. 13:

T, °F 400 500 600 700 800

v, ft3/lbm 12.624 14.165 15.685 17.195 18.699

Is steam, for these conditions, nearly a perfect gas, or is it
wildly nonideal? If reasonably perfect, find a least-squares†

value for the gas constant R, in m2/(s2 � K), estimate the per-
cent error in this approximation, and compare with Table A.4.

P1.28 Wet atmospheric air at 100 percent relative humidity con-
tains saturated water vapor and, by Dalton’s law of partial
pressures,

patm � pdry air 
 pwater vapor

Suppose this wet atmosphere is at 40°C and 1 atm. Cal-
culate the density of this 100 percent humid air, and com-
pare it with the density of dry air at the same conditions.

P1.29 A compressed-air tank holds 5 ft3 of air at 120 lbf/in2

“gage,” that is, above atmospheric pressure. Estimate the
energy, in ft-lbf, required to compress this air from the at-
mosphere, assuming an ideal isothermal process.

P1.30 Repeat Prob. 1.29 if the tank is filled with compressed wa-
ter instead of air. Why is the result thousands of times less
than the result of 215,000 ft � lbf in Prob. 1.29?

*P1.31 The density of (fresh) water at 1 atm, over the tempera-
ture range 0 to 100°C, is given in Table A.1. Fit these val-
ues to a least-squares† equation of the form � � a 
 bT 

cT2, with T in °C, and estimate its accuracy. Use your for-
mula to compute the density of water at 45°C, and com-
pare your result with the accepted experimental value of
990.1 kg/m3.

where �p is the pressure drop required to drive the flow.
What are the dimensions of the constant 61.9? Can this for-
mula be used with confidence for various liquids and gases?

*P1.18 For small particles at low velocities, the first term in the
Stokes-Oseen drag law, Prob. 1.10, is dominant; hence,
F � KV, where K is a constant. Suppose a particle of mass
m is constrained to move horizontally from the initial po-
sition x � 0 with initial velocity V0. Show (a) that its ve-
locity will decrease exponentially with time and (b) that it
will stop after traveling a distance x � mV0/K.

*P1.19 For larger particles at higher velocities, the quadratic term
in the Stokes-Oseen drag law, Prob. 1.10, is dominant;
hence, F � CV2, where C is a constant. Repeat Prob. 1.18
to show that (a) its velocity will decrease as 1/(1 
 CV0t/m)
and (b) it will never quite stop in a finite time span.

P1.20 A baseball, with m � 145 g, is thrown directly upward from
the initial position z � 0 and V0 � 45 m/s. The air drag on
the ball is CV2, as in Prob. 1.19, where C � 0.0013 N �
s2/m2. Set up a differential equation for the ball motion, and
solve for the instantaneous velocity V(t) and position z(t).
Find the maximum height zmax reached by the ball, and
compare your results with the classical case of zero air drag.

P1.21 A velocity field is given by V � Kxti � Kytj 
 0k, where
K is a positive constant. Evaluate (a) � � � and (b)
� � V.

*P1.22 According to the theory of Chap. 8, as a uniform stream
approaches a cylinder of radius R along the symmetry line
AB in Fig. P1.22, the velocity has only one component:

u � U��1 � �
R
x2

2

�� for �� � x � � R

where U� is the stream velocity far from the cylinder. Us-
ing the concepts from Ex. 1.5, find (a) the maximum flow
deceleration along AB and (b) its location.
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P1.23 Experiment with a faucet (kitchen or otherwise) to determine
typical flow rates Q in m3/h, perhaps timing the discharge of
a known volume. Try to achieve an exit jet condition which
is (a) smooth and round and (b) disorderly and fluctuating.
Measure the supply-pipe diameter (look under the sink). For
both cases, calculate the average flow velocity, Vavg �

† The concept of “least-squares” error is very important and should be
learned by everyone.



P1.32 A blimp is approximated by a prolate spheroid 90 m long
and 30 m in diameter. Estimate the weight of 20°C gas
within the blimp for (a) helium at 1.1 atm and (b) air at
1.0 atm. What might the difference between these two val-
ues represent (see Chap. 2)?

*P1.33 Experimental data for the density of mercury versus pres-
sure at 20°C are as follows:

p, atm 1 500 1,000 1,500 2,000

�, kg/m3 13,545 13,573 13,600 13,625 13,653

Fit this data to the empirical state relation for liquids,
Eq. (1.22), to find the best values of B and n for mercury.
Then, assuming the data are nearly isentropic, use these
values to estimate the speed of sound of mercury at 1 atm
and compare with Table 9.1.

P1.34 If water occupies 1 m3 at 1 atm pressure, estimate the pres-
sure required to reduce its volume by 5 percent.

P1.35 In Table A.4, most common gases (air, nitrogen, oxygen,
hydrogen) have a specific heat ratio k � 1.40. Why do ar-
gon and helium have such high values? Why does NH3

have such a low value? What is the lowest k for any gas
that you know of?

P1.36 The isentropic bulk modulus B of a fluid is defined as the
isentropic change in pressure per fractional change in den-
sity:

B � ���
�

�

p
�
��s

What are the dimensions of B? Using theoretical p(�) re-
lations, estimate the bulk modulus of (a) N2O, assumed to
be an ideal gas, and (b) water, at 20°C and 1 atm.

P1.37 A near-ideal gas has a molecular weight of 44 and a spe-
cific heat cv � 610 J/(kg � K). What are (a) its specific heat
ratio, k, and (b) its speed of sound at 100°C?

P1.38 In Fig. 1.6, if the fluid is glycerin at 20°C and the width be-
tween plates is 6 mm, what shear stress (in Pa) is required
to move the upper plate at 5.5 m/s? What is the Reynolds
number if L is taken to be the distance between plates?

P1.39 Knowing � for air at 20°C from Table 1.4, estimate its vis-
cosity at 500°C by (a) the power law and (b) the Suther-
land law. Also make an estimate from (c) Fig. 1.5. Com-
pare with the accepted value of � � 3.58 E-5 kg/m � s.

*P1.40 For liquid viscosity as a function of temperature, a sim-
plification of the log-quadratic law of Eq. (1.31) is An-
drade’s equation [11], � � A exp (B/T), where (A, B) are
curve-fit constants and T is absolute temperature. Fit this
relation to the data for water in Table A.1 and estimate the
percent error of the approximation.

P1.41 Some experimental values of the viscosity of argon gas at
1 atm are as follows:

T, K 300 400 500 600 700 800

�, kg/(m � s) 2.27 E-5 2.85 E-5 3.37 E-5 3.83 E-5 4.25 E-5 4.64 E-5

Fit these value to either (a) a power law or (b) the Suther-
land law, Eq. (1.30).

P1.42 Experimental values for the viscosity of helium at 1 atm
are as follows:

T, K 200 400 600 800 1000 1200

�, kg/(m � s) 1.50 E-5 2.43 E-5 3.20 E-5 3.88 E-5 4.50 E-5 5.08 E-5

Fit these values to either (a) a power law or (b) the Suther-
land law, Eq. (1.30).

*P1.43 Yaws et al. [34] suggest the following curve-fit formula
for viscosity versus temperature of organic liquids:

log10 � � A 
 �
B
T

� 
 CT 
 DT2

with T in absolute units. (a) Can this formula be criticized
on dimensional grounds? (b) Disregarding (a), indicate an-
alytically how the curve-fit constants A, B, C, D could be
found from N data points (�i, Ti) using the method of least
squares. Do not actually carry out a calculation.

P1.44 The values for SAE 30 oil in Table 1.4 are strictly “rep-
resentative,” not exact, because lubricating oils vary con-
siderably according to the type of crude oil from which
they are refined. The Society of Automotive Engineers [26]
allows certain kinematic viscosity ranges for all lubricat-
ing oils: for SAE 30, 9.3 � � � 12.5 mm2/s at 100°C. SAE
30 oil density can also vary �2 percent from the tabulated
value of 891 kg/m3. Consider the following data for an ac-
ceptable grade of SAE 30 oil:

T, °C 0 20 40 60 80 100

�, kg/(m � s) 2.00 0.40 0.11 0.042 0.017 0.0095

How does this oil compare with the plot in Appendix Fig.
A.1? How well does the data fit Andrade’s equation in
Prob. 1.40?

P1.45 A block of weight W slides down an inclined plane while
lubricated by a thin film of oil, as in Fig. P1.45. The film
contact area is A and its thickness is h. Assuming a linear
velocity distribution in the film, derive an expression for
the “terminal” (zero-acceleration) velocity V of the block.

P1.46 Find the terminal velocity of the block in Fig. P1.45 if the
block mass is 6 kg, A � 35 cm2, � � 15°, and the film is
1-mm-thick SAE 30 oil at 20°C.

P1.47 A shaft 6.00 cm in diameter is being pushed axially
through a bearing sleeve 6.02 cm in diameter and 40 cm
long. The clearance, assumed uniform, is filled with oil

Problems 49
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whose properties are � � 0.003 m2/s and SG � 0.88. Es-
timate the force required to pull the shaft at a steady ve-
locity of 0.4 m/s.

P1.48 A thin plate is separated from two fixed plates by very vis-
cous liquids �1 and �2, respectively, as in Fig. P1.48. The
plate spacings h1 and h2 are unequal, as shown. The con-
tact area is A between the center plate and each fluid.
(a) Assuming a linear velocity distribution in each fluid,
derive the force F required to pull the plate at velocity V.
(b) Is there a necessary relation between the two viscosi-
ties, �1 and �2?

sured torque is 0.293 N � m, what is the fluid viscosity?
Suppose that the uncertainties of the experiment are as fol-
lows: L (�0.5 mm), M (�0.003 N � m),  (�1 percent),
and ri or ro (�0.02 mm). What is the uncertainty in the
measured viscosity?

P1.52 The belt in Fig. P1.52 moves at a steady velocity V and
skims the top of a tank of oil of viscosity �, as shown. As-
suming a linear velocity profile in the oil, develop a sim-
ple formula for the required belt-drive power P as a func-
tion of (h, L, V, b, �). What belt-drive power P, in watts,
is required if the belt moves at 2.5 m/s over SAE 30W oil
at 20°C, with L � 2 m, b � 60 cm, and h � 3 cm?
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Liquid film of
thickness h

W

V Block contact
area Aθ

P1.45

P1.48

h1

h2

µ1

µ2

F, V

P1.49 The shaft in Prob. 1.47 is now fixed axially and rotated in-
side the sleeve at 1500 r/min. Estimate (a) the torque 
(N � m) and (b) the power (kW) required to rotate the shaft.

P1.50 An amazing number of commercial and laboratory devices
have been developed to measure the viscosity of fluids, as
described in Ref. 27. The concentric rotating shaft of Prob.
1.49 is an example of a rotational viscometer. Let the in-
ner and outer cylinders have radii ri and ro, respectively,
with total sleeve length L. Let the rotational rate be  
(rad/s) and the applied torque be M. Derive a theoretical
relation for the viscosity of the clearance fluid, �, in terms
of these parameters.

P1.51 Use the theory of Prob. 1.50 (or derive an ad hoc expres-
sion if you like) for a shaft 8 cm long, rotating at 1200
r/min, with ri � 2.00 cm and ro � 2.05 cm. If the mea-

L

V

Oil, depth h

Moving belt, width b        

P1.52

*P1.53 A solid cone of angle 2�, base r0, and density �c is rotat-
ing with initial angular velocity �0 inside a conical seat,
as shown in Fig. P1.53. The clearance h is filled with oil
of viscosity �. Neglecting air drag, derive an analytical ex-
pression for the cone’s angular velocity �(t) if there is no
applied torque.

Oil

h

Base
radius r0

ω (t) 

2θ

P1.53

*P1.54 A disk of radius R rotates at an angular velocity  inside
a disk-shaped container filled with oil of viscosity �, as
shown in Fig. P1.54. Assuming a linear velocity profile
and neglecting shear stress on the outer disk edges, derive
a formula for the viscous torque on the disk.



*P1.55 The device in Fig. P1.54 is called a rotating disk viscometer
[27]. Suppose that R � 5 cm and h � 1 mm. If the torque
required to rotate the disk at 900 r/min is 0.537 N � m,
what is the viscosity of the fluid? If the uncertainty in each
parameter (M, R, h,  ) is �1 percent, what is the overall
uncertainty in the viscosity?

*P1.56 The device in Fig. P1.56 is called a cone-plate viscometer
[27]. The angle of the cone is very small, so that sin � �
�, and the gap is filled with the test liquid. The torque M
to rotate the cone at a rate  is measured. Assuming a lin-
ear velocity profile in the fluid film, derive an expression
for fluid viscosity � as a function of (M, R,  , �).

� � �
�

8
r
L
0
4

Q
�p
�

Pipe end effects are neglected [27]. Suppose our capillary
has r0 � 2 mm and L � 25 cm. The following flow rate
and pressure drop data are obtained for a certain fluid:

Q, m3/h 0.36 0.72 1.08 1.44 1.80

�p, kPa 159 318 477 1274 1851

What is the viscosity of the fluid? Note: Only the first three
points give the proper viscosity. What is peculiar about the
last two points, which were measured accurately?

P1.59 A solid cylinder of diameter D, length L, and density �s

falls due to gravity inside a tube of diameter D0. The clear-
ance, D0 � D �� D, is filled with fluid of density � and
viscosity �. Neglect the air above and below the cylinder.
Derive a formula for the terminal fall velocity of the cylin-
der. Apply your formula to the case of a steel cylinder,
D � 2 cm, D0 � 2.04 cm, L � 15 cm, with a film of SAE
30 oil at 20°C.

P1.60 For Prob. 1.52 suppose that P � 0.1 hp when V � 6 ft/s,
L � 4.5 ft, b � 22 in, and h � 7/8 in. Estimate the vis-
cosity of the oil, in kg/(m � s). If the uncertainty in each
parameter (P, L, b, h, V) is �1 percent, what is the over-
all uncertainty in the viscosity?

*P1.61 An air-hockey puck has a mass of 50 g and is 9 cm in di-
ameter. When placed on the air table, a 20°C air film, of
0.12-mm thickness, forms under the puck. The puck is
struck with an initial velocity of 10 m/s. Assuming a lin-
ear velocity distribution in the air film, how long will it
take the puck to (a) slow down to 1 m/s and (b) stop com-
pletely? Also, (c) how far along this extremely long table
will the puck have traveled for condition (a)?

P1.62 The hydrogen bubbles which produced the velocity pro-
files in Fig. 1.13 are quite small, D � 0.01 mm. If the hy-
drogen-water interface is comparable to air-water and the
water temperature is 30°C estimate the excess pressure
within the bubble.

P1.63 Derive Eq. (1.37) by making a force balance on the fluid
interface in Fig. 1.9c.

P1.64 At 60°C the surface tension of mercury and water is 0.47
and 0.0662 N/m, respectively. What capillary height
changes will occur in these two fluids when they are in
contact with air in a clean glass tube of diameter 0.4 mm?

P1.65 The system in Fig. P1.65 is used to calculate the pressure
p1 in the tank by measuring the 15-cm height of liquid in
the 1-mm-diameter tube. The fluid is at 60°C (see Prob.
1.64). Calculate the true fluid height in the tube and the
percent error due to capillarity if the fluid is (a) water and
(b) mercury.
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*P1.57 For the cone-plate viscometer of Fig. P1.56, suppose that
R � 6 cm and � � 3°. If the torque required to rotate the
cone at 600 r/min is 0.157 N � m, what is the viscosity of
the fluid? If the uncertainty in each parameter (M, R,  ,
�) is �1 percent, what is the overall uncertainty in the vis-
cosity?

*P1.58 The laminar-pipe-flow example of Prob. 1.12 can be used
to design a capillary viscometer [27]. If Q is the volume
flow rate, L is the pipe length, and �p is the pressure drop
from entrance to exit, the theory of Chap. 6 yields a for-
mula for viscosity:

P1.56



P1.66 A thin wire ring, 3 cm in diameter, is lifted from a water
surface at 20°C. Neglecting the wire weight, what is the
force required to lift the ring? Is this a good way to mea-
sure surface tension? Should the wire be made of any par-
ticular material?

P1.67 Experiment with a capillary tube, perhaps borrowed from
the chemistry department, to verify, in clean water, the rise
due to surface tension predicted by Example 1.9. Add small
amounts of liquid soap to the water, and report to the class
whether detergents significantly lower the surface tension.
What practical difficulties do detergents present?

*P1.68 Make an analysis of the shape �(x) of the water-air inter-
face near a plane wall, as in Fig. P1.68, assuming that the
slope is small, R�1 � d2�/dx2. Also assume that the pres-
sure difference across the interface is balanced by the spe-
cific weight and the interface height, �p � �g�. The
boundary conditions are a wetting contact angle � at x � 0
and a horizontal surface � � 0 as x → �. What is the max-
imum height h at the wall?

mula for the maximum diameter dmax able to float in the
liquid. Calculate dmax for a steel needle (SG � 7.84) in
water at 20°C.

P1.70 Derive an expression for the capillary height change h for
a fluid of surface tension Y and contact angle � between
two vertical parallel plates a distance W apart, as in Fig.
P1.70. What will h be for water at 20°C if W � 0.5 mm?
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15 cm

p1

P1.65

  (x)

θ

x = 0

y = h

y

x
η

P1.68

P1.69 A solid cylindrical needle of diameter d, length L, and den-
sity �n may float in liquid of surface tension Y. Neglect
buoyancy and assume a contact angle of 0°. Derive a for-

W 

h

θ

P1.70

*P1.71 A soap bubble of diameter D1 coalesces with another bub-
ble of diameter D2 to form a single bubble D3 with the
same amount of air. Assuming an isothermal process, de-
rive an expression for finding D3 as a function of D1, D2,
patm, and Y.

P1.72 Early mountaineers boiled water to estimate their altitude.
If they reach the top and find that water boils at 84°C, ap-
proximately how high is the mountain?

P1.73 A small submersible moves at velocity V, in fresh water
at 20°C, at a 2-m depth, where ambient pressure is 131
kPa. Its critical cavitation number is known to be Ca �
0.25. At what velocity will cavitation bubbles begin to form
on the body? Will the body cavitate if V � 30 m/s and the
water is cold (5°C)?

P1.74 A propeller is tested in a water tunnel at 20°C as in Fig.
1.12a. The lowest pressure on the blade can be estimated
by a form of Bernoulli’s equation (Ex. 1.3):

pmin � p0 � �12��V2

where p0 � 1.5 atm and V � tunnel velocity. If we run the
tunnel at V � 18 m/s, can we be sure that there will be no
cavitation? If not, can we change the water temperature
and avoid cavitation?

P1.75 Oil, with a vapor pressure of 20 kPa, is delivered through
a pipeline by equally spaced pumps, each of which in-
creases the oil pressure by 1.3 MPa. Friction losses in the
pipe are 150 Pa per meter of pipe. What is the maximum
possible pump spacing to avoid cavitation of the oil?
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P1.76 An airplane flies at 555 mi/h. At what altitude in the stan-
dard atmosphere will the airplane’s Mach number be ex-
actly 0.8?

*P1.77 The density of 20°C gasoline varies with pressure ap-
proximately as follows:

p, atm 1 500 1000 1500

�, lbm/ft3 42.45 44.85 46.60 47.98

Use these data to estimate (a) the speed of sound (m/s)
and (b) the bulk modulus (MPa) of gasoline at 1 atm.

P1.78 Sir Isaac Newton measured the speed of sound by timing
the difference between seeing a cannon’s puff of smoke
and hearing its boom. If the cannon is on a mountain 5.2 mi
away, estimate the air temperature in degrees Celsius if the
time difference is (a) 24.2 s and (b) 25.1 s.

P1.79 Examine the photographs in Figs. 1.12a, 1.13, 5.2a, 7.14a,
and 9.10b and classify them according to the boxes in Fig.
1.14.

*P1.80 A two-dimensional steady velocity field is given by u �
x2 � y2, v � �2xy. Derive the streamline pattern and
sketch a few streamlines in the upper half plane. Hint: The
differential equation is exact.

P1.81 Repeat Ex. 1.10 by letting the velocity components in-
crease linearly with time:

V � Kxti � Kytj 
 0k

Find and sketch, for a few representative times, the in-
stantaneous streamlines. How do they differ from the
steady flow lines in Ex. 1.10?

P1.82 A velocity field is given by u � V cos �, v � V sin �, and
w � 0, where V and � are constants. Derive a formula for
the streamlines of this flow.

*P1.83 A two-dimensional unsteady velocity field is given by u �
x(1 
 2t), v � y. Find the equation of the time-varying
streamlines which all pass through the point (x0, y0) at
some time t. Sketch a few of these.

*P1.84 Repeat Prob. 1.83 to find and sketch the equation of the
pathline which passes through (x0, y0) at time t � 0.

P1.85 Do some reading and report to the class on the life and
achievements, especially vis-à-vis fluid mechanics, of

(a) Evangelista Torricelli (1608–1647)

(b) Henri de Pitot (1695–1771)

(c) Antoine Chézy (1718–1798)

(d) Gotthilf Heinrich Ludwig Hagen (1797–1884)

(e) Julius Weisbach (1806–1871)

(f) George Gabriel Stokes (1819–1903)

(g) Moritz Weber (1871–1951)

(h) Theodor von Kármán (1881–1963)

(i) Paul Richard Heinrich Blasius (1883–1970)

(j) Ludwig Prandtl (1875–1953)

(k) Osborne Reynolds (1842–1912)

(l) John William Strutt, Lord Rayleigh (1842–1919)

(m) Daniel Bernoulli (1700–1782)

(n) Leonhard Euler (1707–1783)
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FE1.1 The absolute viscosity � of a fluid is primarily a func-
tion of
(a) Density, (b) Temperature, (c) Pressure, (d) Velocity,
(e) Surface tension

FE1.2 If a uniform solid body weighs 50 N in air and 30 N in
water, its specific gravity is
(a) 1.5, (b) 1.67, (c) 2.5, (d) 3.0, (e) 5.0

FE1.3 Helium has a molecular weight of 4.003. What is the
weight of 2 m3 of helium at 1 atm and 20°C?
(a) 3.3 N, (b) 6.5 N, (c) 11.8 N, (d) 23.5 N, (e) 94.2 N

FE1.4 An oil has a kinematic viscosity of 1.25 E-4 m2/s and a
specific gravity of 0.80. What is its dynamic (absolute)
viscosity in kg/(m � s)?
(a) 0.08, (b) 0.10, (c) 0.125, (d) 1.0, (e) 1.25

FE1.5 Consider a soap bubble of diameter 3 mm. If the surface
tension coefficient is 0.072 N/m and external pressure is
0 Pa gage, what is the bubble’s internal gage pressure?

(a) �24 Pa, (b) 
48 Pa, (c) 
96 Pa, (d) 
192 Pa,
(e) �192 Pa

FE1.6 The only possible dimensionless group which combines
velocity V, body size L, fluid density �, and surface ten-
sion coefficient � is
(a) L��/V, (b) �VL2/�, (c) ��V2/L, (d) �LV2/�,
(e) �LV2/�

FE1.7 Two parallel plates, one moving at 4 m/s and the other
fixed, are separated by a 5-mm-thick layer of oil of spe-
cific gravity 0.80 and kinematic viscosity 1.25 E-4 m2/s.
What is the average shear stress in the oil?
(a) 80 Pa, (b) 100 Pa, (c) 125 Pa, (d) 160 Pa, (e) 200 Pa

FE1.8 Carbon dioxide has a specific heat ratio of 1.30 and a
gas constant of 189 J/(kg � °C). If its temperature rises
from 20 to 45°C, what is its internal energy rise?
(a) 12.6 kJ/kg, (b) 15.8 kJ/kg, (c) 17.6 kJ/kg, (d) 20.5
kJ/kg, (e) 25.1 kJ/kg
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FE1.9 A certain water flow at 20°C has a critical cavitation
number, where bubbles form, Ca � 0.25, where Ca �
2(pa � pvap)/�V2. If pa � 1 atm and the vapor pressure
is 0.34 pounds per square inch absolute (psia), for what
water velocity will bubbles form?
(a) 12 mi/h, (b) 28 mi/h, (c) 36 mi/h, (d) 55 mi/h,
(e) 63 mi/h

FE1.10 A steady incompressible flow, moving through a con-
traction section of length L, has a one-dimensional av-
erage velocity distribution given by u � U0(1 
 2x/L).
What is its convective acceleration at the end of the con-
traction, x � L?
(a) U0

2/L, (b) 2U0
2/L, (c) 3U0

2/L, (d) 4U0
2/L, (e) 6U0

2/L
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Comprehensive Problems

C1.1 Sometimes equations can be developed and practical prob-
lems can be solved by knowing nothing more than the di-
mensions of the key parameters in the problem. For ex-
ample, consider the heat loss through a window in a
building. Window efficiency is rated in terms of “R value”
which has units of (ft2 � h � °F)/Btu. A certain manufac-
turer advertises a double-pane window with an R value of
2.5. The same company produces a triple-pane window
with an R value of 3.4. In either case the window dimen-
sions are 3 ft by 5 ft. On a given winter day, the temper-
ature difference between the inside and outside of the
building is 45°F.
(a) Develop an equation for the amount of heat lost in a

given time period �t, through a window of area A, with
R value R, and temperature difference �T. How much
heat (in Btu) is lost through the double-pane window
in one 24-h period?

(b) How much heat (in Btu) is lost through the triple-pane
window in one 24-h period?

(c) Suppose the building is heated with propane gas, which
costs $1.25 per gallon. The propane burner is 80 per-
cent efficient. Propane has approximately 90,000 Btu
of available energy per gallon. In that same 24-h pe-
riod, how much money would a homeowner save per
window by installing triple-pane rather than double-
pane windows?

(d) Finally, suppose the homeowner buys 20 such triple-
pane windows for the house. A typical winter has the
equivalent of about 120 heating days at a temperature
difference of 45°F. Each triple-pane window costs $85
more than the double-pane window. Ignoring interest
and inflation, how many years will it take the home-
owner to make up the additional cost of the triple-pane
windows from heating bill savings?

C1.2 When a person ice skates, the surface of the ice actually
melts beneath the blades, so that he or she skates on a thin
sheet of water between the blade and the ice.
(a) Find an expression for total friction force on the bot-

tom of the blade as a function of skater velocity V, blade
length L, water thickness (between the blade and the
ice) h, water viscosity �, and blade width W.

(b) Suppose an ice skater of total mass m is skating along
at a constant speed of V0 when she suddenly stands stiff
with her skates pointed directly forward, allowing her-
self to coast to a stop. Neglecting friction due to air re-
sistance, how far will she travel before she comes to a
stop? (Remember, she is coasting on two skate blades.)
Give your answer for the total distance traveled, x, as
a function of V0, m, L, h, �, and W.

(c) Find x for the case where V0 � 4.0 m/s, m � 100 kg, L �
30 cm, W � 5.0 mm, and h � 0.10 mm. Do you think our
assumption of negligible air resistance is a good one?

C1.3 Two thin flat plates, tilted at an angle !, are placed in a
tank of liquid of known surface tension � and contact an-
gle �, as shown in Fig. C1.3. At the free surface of the liq-
uid in the tank, the two plates are a distance L apart and
have width b into the page. The liquid rises a distance h
between the plates, as shown. 
(a) What is the total upward (z-directed) force, due to sur-

face tension, acting on the liquid column between the
plates? 

(b) If the liquid density is �, find an expression for surface
tension � in terms of the other variables.

h

z

g

L

�

! !

�
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C1.4 Oil of viscosity � and density � drains steadily down the
side of a tall, wide vertical plate, as shown in Fig. C1.4.
In the region shown, fully developed conditions exist; that
is, the velocity profile shape and the film thickness � are
independent of distance z along the plate. The vertical ve-
locity w becomes a function only of x, and the shear re-
sistance from the atmosphere is negligible.
(a) Sketch the approximate shape of the velocity profile
w(x), considering the boundary conditions at the wall and
at the film surface. 
(b) Suppose film thickness �, and the slope of the veloc-
ity profile at the wall, (dw/dx)wall, are measured by a laser
Doppler anemometer (to be discussed in Chap. 6). Find an
expression for the viscosity of the oil as a function of �,
�, (dw/dx)wall, and the gravitational accleration g. Note

that, for the coordinate system given, both w and
(dw/dx)wall are negative. 

z

�

x

g

Oil film

Air

Plate
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Roosevelt Dam in Arizona. Hydrostatic pressure, due to the weight of a standing fluid, can cause
enormous forces and moments on large-scale structures such as a dam. Hydrostatic fluid analy-
sis is the subject of the present chapter. (Courtesy of Dr. E.R. Degginger/Color-Pic Inc.)
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2.1 Pressure and Pressure
Gradient

Motivation. Many fluid problems do not involve motion. They concern the pressure
distribution in a static fluid and its effect on solid surfaces and on floating and sub-
merged bodies.

When the fluid velocity is zero, denoted as the hydrostatic condition, the pressure
variation is due only to the weight of the fluid. Assuming a known fluid in a given
gravity field, the pressure may easily be calculated by integration. Important applica-
tions in this chapter are (1) pressure distribution in the atmosphere and the oceans, (2)
the design of manometer pressure instruments, (3) forces on submerged flat and curved
surfaces, (4) buoyancy on a submerged body, and (5) the behavior of floating bodies.
The last two result in Archimedes’ principles.

If the fluid is moving in rigid-body motion, such as a tank of liquid which has been
spinning for a long time, the pressure also can be easily calculated, because the fluid
is free of shear stress. We apply this idea here to simple rigid-body accelerations in
Sec. 2.9. Pressure measurement instruments are discussed in Sec. 2.10. As a matter of
fact, pressure also can be easily analyzed in arbitrary (nonrigid-body) motions V(x, y,
z, t), but we defer that subject to Chap. 4.

In Fig. 1.1 we saw that a fluid at rest cannot support shear stress and thus Mohr’s cir-
cle reduces to a point. In other words, the normal stress on any plane through a fluid
element at rest is equal to a unique value called the fluid pressure p, taken positive for
compression by common convention. This is such an important concept that we shall
review it with another approach.

Figure 2.1 shows a small wedge of fluid at rest of size �x by �z by �s and depth b
into the paper. There is no shear by definition, but we postulate that the pressures px, pz,
and pn may be different on each face. The weight of the element also may be important.
Summation of forces must equal zero (no acceleration) in both the x and z directions.

� Fx � 0 � pxb �z � pnb �s sin �
(2.1)

� Fz � 0 � pzb �x � pnb �s cos � � �12� �b �x �z
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Fig. 2.1 Equilibrium of a small
wedge of fluid at rest.

Pressure Force on a Fluid
Element

but the geometry of the wedge is such that

�s sin � � �z �s cos � � �x (2.2)

Substitution into Eq. (2.1) and rearrangement give

px � pn pz � pn 	 �12�� �z (2.3)

These relations illustrate two important principles of the hydrostatic, or shear-free, con-
dition: (1) There is no pressure change in the horizontal direction, and (2) there is a
vertical change in pressure proportional to the density, gravity, and depth change. We
shall exploit these results to the fullest, starting in Sec. 2.3.

In the limit as the fluid wedge shrinks to a “point,’’ �z → 0 and Eqs. (2.3) become

px � pz � pn � p (2.4)

Since � is arbitrary, we conclude that the pressure p at a point in a static fluid is inde-
pendent of orientation.

What about the pressure at a point in a moving fluid? If there are strain rates in a
moving fluid, there will be viscous stresses, both shear and normal in general (Sec.
4.3). In that case (Chap. 4) the pressure is defined as the average of the three normal
stresses 
ii on the element

p � � �13�(
xx 	 
yy 	 
zz) (2.5)

The minus sign occurs because a compression stress is considered to be negative
whereas p is positive. Equation (2.5) is subtle and rarely needed since the great ma-
jority of viscous flows have negligible viscous normal stresses (Chap. 4).

Pressure (or any other stress, for that matter) causes no net force on a fluid element
unless it varies spatially.1 To see this, consider the pressure acting on the two x faces
in Fig. 2.2. Let the pressure vary arbitrarily

p � p(x, y, z, t) (2.6)
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Fig. 2.2 Net x force on an element
due to pressure variation.

2.2 Equilibrium of a Fluid
Element

The net force in the x direction on the element in Fig. 2.2 is given by

dFx � p dy dz � �p 	 �
�

�

p
x
� dx� dy dz � ��

�

�

p
x
� dx dy dz (2.7)

In like manner the net force dFy involves ��p/�y, and the net force dFz concerns
��p/�z. The total net-force vector on the element due to pressure is

dFpress � ��i �
�

�

p
x
� � j �

�

�

p
y
� � k �

�

�

p
z
�� dx dy dz (2.8)

We recognize the term in parentheses as the negative vector gradient of p. Denoting f
as the net force per unit element volume, we rewrite Eq. (2.8) as

fpress � �∇p (2.9)

Thus it is not the pressure but the pressure gradient causing a net force which must be
balanced by gravity or acceleration or some other effect in the fluid.

The pressure gradient is a surface force which acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting on
the entire mass of the element. Here we consider only the gravity force, or weight of
the element

dFgrav � �g dx dy dz
(2.10)

or fgrav � �g

In general, there may also be a surface force due to the gradient, if any, of the vis-
cous stresses. For completeness, we write this term here without derivation and con-
sider it more thoroughly in Chap. 4. For an incompressible fluid with constant viscos-
ity, the net viscous force is

fVS � 
��
�

�

2

x
V
2� 	 �

�

�

2

y
V
2� 	 �

�

�

2

z
V
2�� � 
∇2V (2.11)

where VS stands for viscous stresses and 
 is the coefficient of viscosity from Chap.
1. Note that the term g in Eq. (2.10) denotes the acceleration of gravity, a vector act-
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ing toward the center of the earth. On earth the average magnitude of g is 32.174 ft/s2 �
9.807 m/s2.

The total vector resultant of these three forces—pressure, gravity, and viscous
stress—must either keep the element in equilibrium or cause it to move with acceler-
ation a. From Newton’s law, Eq. (1.2), we have

�a � � f � fpress 	 fgrav 	 fvisc � �∇p 	 �g 	 
∇2V (2.12)

This is one form of the differential momentum equation for a fluid element, and it is
studied further in Chap. 4. Vector addition is implied by Eq. (2.12): The acceleration
reflects the local balance of forces and is not necessarily parallel to the local-velocity
vector, which reflects the direction of motion at that instant.

This chapter is concerned with cases where the velocity and acceleration are known,
leaving one to solve for the pressure variation in the fluid. Later chapters will take up
the more general problem where pressure, velocity, and acceleration are all unknown.
Rewrite Eq. (2.12) as

∇p � �(g � a) 	 
∇2V � B(x, y, z, t) (2.13)

where B is a short notation for the vector sum on the right-hand side. If V and a �
dV/dt are known functions of space and time and the density and viscosity are known,
we can solve Eq. (2.13) for p(x, y, z, t) by direct integration. By components, Eq. (2.13)
is equivalent to three simultaneous first-order differential equations

�
�

�

p
x
� � Bx(x, y, z, t) �

�

�

p
y
� � By(x, y, z, t) �

�

�

p
z
� � Bz(x, y, z, t) (2.14)

Since the right-hand sides are known functions, they can be integrated systematically
to obtain the distribution p(x, y, z, t) except for an unknown function of time, which
remains because we have no relation for �p/�t. This extra function is found from a con-
dition of known time variation p0(t) at some point (x0, y0, z0). If the flow is steady (in-
dependent of time), the unknown function is a constant and is found from knowledge
of a single known pressure p0 at a point (x0, y0, z0). If this sounds complicated, it is
not; we shall illustrate with many examples. Finding the pressure distribution from a
known velocity distribution is one of the easiest problems in fluid mechanics, which
is why we put it in Chap. 2.

Examining Eq. (2.13), we can single out at least four special cases:

1. Flow at rest or at constant velocity: The acceleration and viscous terms vanish
identically, and p depends only upon gravity and density. This is the hydrostatic
condition. See Sec. 2.3.

2. Rigid-body translation and rotation: The viscous term vanishes identically,
and p depends only upon the term �(g � a). See Sec. 2.9.

3. Irrotational motion (� � V � 0): The viscous term vanishes identically, and
an exact integral called Bernoulli’s equation can be found for the pressure distri-
bution. See Sec. 4.9.

4. Arbitrary viscous motion: Nothing helpful happens, no general rules apply, but
still the integration is quite straightforward. See Sec. 6.4.

Let us consider cases 1 and 2 here.
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Fig. 2.3 Illustration of absolute,
gage, and vacuum pressure read-
ings.

Gage Pressure and Vacuum
Pressure: Relative Terms

2.3 Hydrostatic Pressure
Distributions

Before embarking on examples, we should note that engineers are apt to specify pres-
sures as (1) the absolute or total magnitude or (2) the value relative to the local am-
bient atmosphere. The second case occurs because many pressure instruments are of
differential type and record, not an absolute magnitude, but the difference between the
fluid pressure and the atmosphere. The measured pressure may be either higher or lower
than the local atmosphere, and each case is given a name:

1. p � pa Gage pressure: p(gage) � p � pa

2. p � pa Vacuum pressure: p(vacuum) � pa � p

This is a convenient shorthand, and one later adds (or subtracts) atmospheric pressure
to determine the absolute fluid pressure.

A typical situation is shown in Fig. 2.3. The local atmosphere is at, say, 90,000 Pa,
which might reflect a storm condition in a sea-level location or normal conditions at
an altitude of 1000 m. Thus, on this day, pa � 90,000 Pa absolute � 0 Pa gage � 0 Pa
vacuum. Suppose gage 1 in a laboratory reads p1 � 120,000 Pa absolute. This value
may be reported as a gage pressure, p1 � 120,000 � 90,000 � 30,000 Pa gage. (One
must also record the atmospheric pressure in the laboratory, since pa changes gradu-
ally.) Suppose gage 2 reads p2 � 50,000 Pa absolute. Locally, this is a vacuum pres-
sure and might be reported as p2 � 90,000 � 50,000 � 40,000 Pa vacuum. Occasion-
ally, in the Problems section, we will specify gage or vacuum pressure to keep you
alert to this common engineering practice.

If the fluid is at rest or at constant velocity, a � 0 and ∇2V � 0. Equation (2.13) for
the pressure distribution reduces to

∇p � �g (2.15)

This is a hydrostatic distribution and is correct for all fluids at rest, regardless of their
viscosity, because the viscous term vanishes identically.

Recall from vector analysis that the vector ∇p expresses the magnitude and direc-
tion of the maximum spatial rate of increase of the scalar property p. As a result, ∇p
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Fig. 2.4 Hydrostatic-pressure distri-
bution. Points a, b, c, and d are at
equal depths in water and therefore
have identical pressures. Points A,
B, and C are also at equal depths in
water and have identical pressures
higher than a, b, c, and d. Point D
has a different pressure from A, B,
and C because it is not connected
to them by a water path.

is perpendicular everywhere to surfaces of constant p. Thus Eq. (2.15) states that a fluid
in hydrostatic equilibrium will align its constant-pressure surfaces everywhere normal
to the local-gravity vector. The maximum pressure increase will be in the direction of
gravity, i.e., “down.’’ If the fluid is a liquid, its free surface, being at atmospheric pres-
sure, will be normal to local gravity, or “horizontal.’’ You probably knew all this be-
fore, but Eq. (2.15) is the proof of it.

In our customary coordinate system z is “up.’’Thus the local-gravity vector for small-
scale problems is

g � �gk (2.16)

where g is the magnitude of local gravity, for example, 9.807 m/s2. For these coordi-
nates Eq. (2.15) has the components

�
�

�

p
x
� � 0 �

�

�

p
y
� � 0 �

�

�

p
z
� � ��g � �� (2.17)

the first two of which tell us that p is independent of x and y. Hence �p/�z can be re-
placed by the total derivative dp/dz, and the hydrostatic condition reduces to

�
d
d
p
z
� � ��

or p2 � p1 � ��2

1
� dz (2.18)

Equation (2.18) is the solution to the hydrostatic problem. The integration requires an
assumption about the density and gravity distribution. Gases and liquids are usually
treated differently.

We state the following conclusions about a hydrostatic condition:

Pressure in a continuously distributed uniform static fluid varies only with vertical
distance and is independent of the shape of the container. The pressure is the same
at all points on a given horizontal plane in the fluid. The pressure increases with
depth in the fluid.

An illustration of this is shown in Fig. 2.4. The free surface of the container is atmos-
pheric and forms a horizontal plane. Points a, b, c, and d are at equal depth in a horizon-
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Effect of Variable Gravity

Hydrostatic Pressure in Liquids

tal plane and are interconnected by the same fluid, water; therefore all points have the
same pressure. The same is true of points A, B, and C on the bottom, which all have the
same higher pressure than at a, b, c, and d. However, point D, although at the same depth
as A, B, and C, has a different pressure because it lies beneath a different fluid, mercury.

For a spherical planet of uniform density, the acceleration of gravity varies inversely
as the square of the radius from its center

g � g0� �
2

(2.19)

where r0 is the planet radius and g0 is the surface value of g. For earth, r0 � 3960
statute mi � 6400 km. In typical engineering problems the deviation from r0 extends
from the deepest ocean, about 11 km, to the atmospheric height of supersonic transport
operation, about 20 km. This gives a maximum variation in g of (6400/6420)2, or 0.6
percent. We therefore neglect the variation of g in most problems.

Liquids are so nearly incompressible that we can neglect their density variation in hy-
drostatics. In Example 1.7 we saw that water density increases only 4.6 percent at the
deepest part of the ocean. Its effect on hydrostatics would be about half of this, or 2.3
percent. Thus we assume constant density in liquid hydrostatic calculations, for which
Eq. (2.18) integrates to

Liquids: p2 � p1 � ��(z2 � z1) (2.20)

or z1 � z2 � �
p
�
2� � �

p
�
1�

We use the first form in most problems. The quantity � is called the specific weight of
the fluid, with dimensions of weight per unit volume; some values are tabulated in
Table 2.1. The quantity p/� is a length called the pressure head of the fluid.

For lakes and oceans, the coordinate system is usually chosen as in Fig. 2.5, with
z � 0 at the free surface, where p equals the surface atmospheric pressure pa. When

r0�
r
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Table 2.1 Specific Weight of Some
Common Fluids Specific weight �

at 68°F � 20°C

Fluid lbf/ft3 N/m3

Air (at 1 atm) 000.0752 000,011.8
Ethyl alcohol 049.2 007,733 
SAE 30 oil 055.5 008,720 
Water 062.4 009,790 
Seawater 064.0 010,050 
Glycerin 078.7 012,360 
Carbon tetrachloride 099.1 015,570 
Mercury 846 133,100 



Fig. 2.5 Hydrostatic-pressure distri-
bution in oceans and atmospheres.

The Mercury Barometer

we introduce the reference value (p1, z1) � (pa, 0), Eq. (2.20) becomes, for p at any
(negative) depth z,

Lakes and oceans: p � pa � �z (2.21) 

where � is the average specific weight of the lake or ocean. As we shall see, Eq. (2.21)
holds in the atmosphere also with an accuracy of 2 percent for heights z up to 1000 m.

EXAMPLE 2.1

Newfound Lake, a freshwater lake near Bristol, New Hampshire, has a maximum depth of 60
m, and the mean atmospheric pressure is 91 kPa. Estimate the absolute pressure in kPa at this
maximum depth.

Solution

From Table 2.1, take � � 9790 N/m3. With pa � 91 kPa and z � �60 m, Eq. (2.21) predicts that
the pressure at this depth will be

p � 91 kN/m2 � (9790 N/m3)(�60 m) �
1
1
00

k
0
N
N

�

� 91 kPa 	 587 kN/m2 � 678 kPa Ans.

By omitting pa we could state the result as p � 587 kPa (gage).

The simplest practical application of the hydrostatic formula (2.20) is the barometer
(Fig. 2.6), which measures atmospheric pressure. A tube is filled with mercury and in-
verted while submerged in a reservoir. This causes a near vacuum in the closed upper
end because mercury has an extremely small vapor pressure at room temperatures (0.16
Pa at 20°C). Since atmospheric pressure forces a mercury column to rise a distance h
into the tube, the upper mercury surface is at zero pressure.
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Fig. 2.6 A barometer measures local absolute atmospheric pressure: (a) the height of a mercury column is pro-
portional to patm; (b) a modern portable barometer, with digital readout, uses the resonating silicon element of
Fig. 2.28c. (Courtesy of Paul Lupke, Druck Inc.)

Hydrostatic Pressure in Gases

From Fig. 2.6, Eq. (2.20) applies with p1 � 0 at z1 � h and p2 � pa at z2 � 0:

pa � 0 � ��M(0 � h)

or h � (2.22) 

At sea-level standard, with pa � 101,350 Pa and �M � 133,100 N/m3 from Table 2.1,
the barometric height is h � 101,350/133,100 � 0.761 m or 761 mm. In the United
States the weather service reports this as an atmospheric “pressure’’ of 29.96 inHg
(inches of mercury). Mercury is used because it is the heaviest common liquid. A wa-
ter barometer would be 34 ft high.

Gases are compressible, with density nearly proportional to pressure. Thus density must
be considered as a variable in Eq. (2.18) if the integration carries over large pressure
changes. It is sufficiently accurate to introduce the perfect-gas law p � �RT in Eq.
(2.18)

� ��g � � g
p

�
RT

dp
�
dz

pa�
�M
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Separate the variables and integrate between points 1 and 2:

�2

1
� ln � � �2

1
(2.23) 

The integral over z requires an assumption about the temperature variation T(z). One
common approximation is the isothermal atmosphere, where T � T0:

p2 � p1 exp�� � (2.24) 

The quantity in brackets is dimensionless. (Think that over; it must be dimensionless,
right?) Equation (2.24) is a fair approximation for earth, but actually the earth’s mean
atmospheric temperature drops off nearly linearly with z up to an altitude of about
36,000 ft (11,000 m):

T � T0 � Bz (2.25) 

Here T0 is sea-level temperature (absolute) and B is the lapse rate, both of which vary
somewhat from day to day. By international agreement [1] the following standard val-
ues are assumed to apply from 0 to 36,000 ft:

T0 � 518.69°R � 288.16 K � 15°C

B � 0.003566°R/ft � 0.00650 K/m (2.26) 

This lower portion of the atmosphere is called the troposphere. Introducing Eq. (2.25)
into (2.23) and integrating, we obtain the more accurate relation

p � pa�1 � �
g/(RB)

where �
R
g
B
� � 5.26 (air) (2.27) 

in the troposphere, with z � 0 at sea level. The exponent g/(RB) is dimensionless (again
it must be) and has the standard value of 5.26 for air, with R � 287 m2/(s2 � K).

The U.S. standard atmosphere [1] is sketched in Fig. 2.7. The pressure is seen to be
nearly zero at z � 30 km. For tabulated properties see Table A.6.

EXAMPLE 2.2

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m, us-
ing (a) the exact formula and (b) an isothermal assumption at a standard sea-level temperature
of 15°C. Is the isothermal approximation adequate?

Solution

Use absolute temperature in the exact formula, Eq. (2.27):

p � pa�1 � �
5.26

� (101,350 Pa)(0.8872)5.26

� 101,350(0.52388) � 54,000 Pa Ans. (a)

This is the standard-pressure result given at z � 5000 m in Table A.6.

(0.00650 K/m)(5000 m)
���

288.16 K

Bz
�
T0

g(z2 � z1)
��

RT0

dz
�
T

g
�
R

p2�
p1

dp
�
p
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Is the Linear Formula Adequate
for Gases?

If the atmosphere were isothermal at 288.16 K, Eq. (2.24) would apply:

p � pa exp���
R
g
T
z
�� � (101,350 Pa) exp	� 


� (101,350 Pa) exp( � 0.5929) � 60,100 Pa Ans. (b)

This is 11 percent higher than the exact result. The isothermal formula is inaccurate in the tro-
posphere.

The linear approximation from Eq. (2.20) or (2.21), �p � � �z, is satisfactory for liq-
uids, which are nearly incompressible. It may be used even over great depths in the
ocean. For gases, which are highly compressible, it is valid only over moderate changes
in altitude.

The error involved in using the linear approximation (2.21) can be evaluated by ex-
panding the exact formula (2.27) into a series

�1 � �
n

� 1 � n 	 � �
2

� ��� (2.28)

where n � g/(RB). Introducing these first three terms of the series into Eq. (2.27) and
rearranging, we obtain

p � pa � �az�1 � 	 ���� (2.29) 
Bz
�
T0

n � 1
�

2

Bz
�
T0

n(n � 1)
�

2!
Bz
�
T0

Bz
�
T0

(9.807 m/s2)(5000 m)
���
[287 m2/(s2 � K)](288.16 K)
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Fig. 2.7 Temperature and pressure
distribution in the U.S. standard at-
mosphere. (From Ref. 1.)
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2.4 Application to Manometry

A Memory Device: Up Versus
Down

Fig. 2.8 Evaluating pressure
changes through a column of multi-
ple fluids.

Thus the error in using the linear formula (2.21) is small if the second term in paren-
theses in (2.29) is small compared with unity. This is true if

z � � 20,800 m (2.30) 

We thus expect errors of less than 5 percent if z or �z is less than 1000 m.

From the hydrostatic formula (2.20), a change in elevation z2 � z1 of a liquid is equiv-
alent to a change in pressure (p2 � p1)/�. Thus a static column of one or more liquids
or gases can be used to measure pressure differences between two points. Such a de-
vice is called a manometer. If multiple fluids are used, we must change the density in
the formula as we move from one fluid to another. Figure 2.8 illustrates the use of the
formula with a column of multiple fluids. The pressure change through each fluid is
calculated separately. If we wish to know the total change p5 � p1, we add the suc-
cessive changes p2 � p1, p3 � p2, p4 � p3, and p5 � p4. The intermediate values of p
cancel, and we have, for the example of Fig. 2.8,

p5 � p1 � � �0(z2 � z1) � �w(z3 � z2) � �G(z4 � z3) � �M(z5 � z4) (2.31)

No additional simplification is possible on the right-hand side because of the dif-
ferent densities. Notice that we have placed the fluids in order from the lightest 
on top to the heaviest at bottom. This is the only stable configuration. If we attempt
to layer them in any other manner, the fluids will overturn and seek the stable
arrangement.

The basic hydrostatic relation, Eq. (2.20), is mathematically correct but vexing to en-
gineers, because it combines two negative signs to have the pressure increase down-
ward. When calculating hydrostatic pressure changes, engineers work instinctively by
simply having the pressure increase downward and decrease upward. Thus they use the
following mnemonic, or memory, device, first suggested to the writer by Professor John

2T0�
(n � 1)B
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Known pressure p1

Oil,   o ρ

Water,   w ρ
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Mercury,   M ρ
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z2
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 z4
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 z

p2 – p1 = –   og(z2 – z1) ρ 

p3 – p2 = –   wg(z3 – z2) ρ 

p4 – p3 = –   Gg(z4 – z3) ρ 

p5 – p4 = –   M g(z5 – z4) ρ 
Sum =  p5 – p1 



Fig. 2.9 Simple open manometer
for measuring pA relative to atmos-
pheric pressure.

Foss of Michigan State University:

pdown � pup 	 ��z (2.32)

Thus, without worrying too much about which point is “z1” and which is “z2”, the for-
mula simply increases or decreases the pressure according to whether one is moving
down or up. For example, Eq. (2.31) could be rewritten in the following “multiple in-
crease” mode:

p5 � p1 	 �0z1 � z2 	 �wz2 � z3 	 �Gz3 � z4 	 �Mz4 � z5

That is, keep adding on pressure increments as you move down through the layered
fluid. A different application is a manometer, which involves both “up” and “down”
calculations.

Figure 2.9 shows a simple open manometer for measuring pA in a closed chamber
relative to atmospheric pressure pa, in other words, measuring the gage pressure. The
chamber fluid �1 is combined with a second fluid �2, perhaps for two reasons: (1) to
protect the environment from a corrosive chamber fluid or (2) because a heavier fluid
�2 will keep z2 small and the open tube can be shorter. One can, of course, apply the
basic hydrostatic formula (2.20). Or, more simply, one can begin at A, apply Eq. (2.32)
“down” to z1, jump across fluid 2 (see Fig. 2.9) to the same pressure p1, and then use
Eq. (2.32) “up” to level z2:

pA 	 �1zA � z1 � �2z1 � z2 � p2 � patm (2.33)

The physical reason that we can “jump across” at section 1 in that a continuous length
of the same fluid connects these two equal elevations. The hydrostatic relation (2.20)
requires this equality as a form of Pascal’s law:

Any two points at the same elevation in a continuous mass of the same static fluid
will be at the same pressure.

This idea of jumping across to equal pressures facilitates multiple-fluid problems.

EXAMPLE 2.3

The classic use of a manometer is when two U-tube legs are of equal length, as in Fig. E2.3,
and the measurement involves a pressure difference across two horizontal points. The typical ap-
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ρ2

ρ1

z1, p1
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z2 , p2 ≈ pa

p = p1 at z = z1 in fluid 2



Fig. 2.10 A complicated multiple-
fluid manometer to relate pA to pB.
This system is not especially prac-
tical but makes a good homework
or examination problem.

plication is to measure pressure change across a flow device, as shown. Derive a formula for the
pressure difference pa � pb in terms of the system parameters in Fig. E2.3.

Solution

Using our “up-down” concept as in Eq. (2.32), start at (a), evaluate pressure changes around the
U-tube, and end up at (b):

pa 	 �1gL 	 �1gh � �2gh � �1gL � pb

or pa � pb � (�2 � �1)gh Ans.

The measurement only includes h, the manometer reading. Terms involving L drop out. Note the
appearance of the difference in densities between manometer fluid and working fluid. It is a com-
mon student error to fail to subtract out the working fluid density �1—a serious error if both
fluids are liquids and less disastrous numerically if fluid 1 is a gas. Academically, of course,
such an error is always considered serious by fluid mechanics instructors.

Although Ex. 2.3, because of its popularity in engineering experiments, is some-
times considered to be the “manometer formula,” it is best not to memorize it but
rather to adapt Eq. (2.20) or (2.32) to each new multiple-fluid hydrostatics problem.
For example, Fig. 2.10 illustrates a multiple-fluid manometer problem for finding the

72 Chapter 2 Pressure Distribution in a Fluid

zA, pA

z1, p1 z1, p1

Jump across

 A 
ρ1

ρ2

z2, p2 z2, p2

ρ3

Jump across

Jump across
z3, p3 z3, p3

ρ4

B zB, pB

Flow device

�1

�2

(a)

L

h

(b)

E2.3



E2.4

difference in pressure between two chambers A and B. We repeatedly apply Eq. (2.20),
jumping across at equal pressures when we come to a continuous mass of the same
fluid. Thus, in Fig. 2.10, we compute four pressure differences while making three jumps:

pA � pB � (pA � p1) 	 (p1 � p2) 	 (p2 � p3) 	 (p3 � pB) 

� ��1(zA � z1) � �2(z1 � z2) � �3(z2 � z3) � �4(z3 � zB) (2.34) 

The intermediate pressures p1,2,3 cancel. It looks complicated, but really it is merely
sequential. One starts at A, goes down to 1, jumps across, goes up to 2, jumps across,
goes down to 3, jumps across, and finally goes up to B.

EXAMPLE 2.4

Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B is 87
kPa, estimate the pressure at A, in kPa. Assume all fluids are at 20°C. See Fig. E2.4.
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A

Water
flow

5 cm

4 cm

Mercury

SAE 30 oil Gage B

6 cm

11 cm

Solution

First list the specific weights from Table 2.1 or Table A.3:

�water � 9790 N/m3 �mercury � 133,100 N/m3 �oil � 8720 N/m3

Now proceed from A to B, calculating the pressure change in each fluid and adding:

pA � �W(�z)W � �M(�z)M � �O(�z)O � pB

or pA � (9790 N/m3)(� 0.05 m) � (133,100 N/m3)(0.07 m) � (8720 N/m3)(0.06 m)

� pA 	 489.5 Pa � 9317 Pa � 523.2 Pa � pB � 87,000 Pa 

where we replace N/m2 by its short name, Pa. The value �zM � 0.07 m is the net elevation
change in the mercury (11 cm � 4 cm). Solving for the pressure at point A, we obtain

pA � 96,351 Pa � 96.4 kPa Ans.

The intermediate six-figure result of 96,351 Pa is utterly fatuous, since the measurements
cannot be made that accurately.



Fig. 2.11 Hydrostatic force and
center of pressure on an arbitrary
plane surface of area A inclined at
an angle � below the free surface.

In making these manometer calculations we have neglected the capillary-height
changes due to surface tension, which were discussed in Example 1.9. These effects
cancel if there is a fluid interface, or meniscus, on both sides of the U-tube, as in Fig.
2.9. Otherwise, as in the right-hand U-tube of Fig. 2.10, a capillary correction can be
made or the effect can be made negligible by using large-bore ( � 1 cm) tubes.

A common problem in the design of structures which interact with fluids is the com-
putation of the hydrostatic force on a plane surface. If we neglect density changes in
the fluid, Eq. (2.20) applies and the pressure on any submerged surface varies linearly
with depth. For a plane surface, the linear stress distribution is exactly analogous to
combined bending and compression of a beam in strength-of-materials theory. The hy-
drostatic problem thus reduces to simple formulas involving the centroid and moments
of inertia of the plate cross-sectional area.

Figure 2.11 shows a plane panel of arbitrary shape completely submerged in a liq-
uid. The panel plane makes an arbitrary angle � with the horizontal free surface, so
that the depth varies over the panel surface. If h is the depth to any element area dA
of the plate, from Eq. (2.20) the pressure there is p � pa 	 �h.

To derive formulas involving the plate shape, establish an xy coordinate system in
the plane of the plate with the origin at its centroid, plus a dummy coordinate � down
from the surface in the plane of the plate. Then the total hydrostatic force on one side
of the plate is given by

F � �p dA � �(pa 	 �h) dA � paA 	 � �h dA (2.35) 

The remaining integral is evaluated by noticing from Fig. 2.11 that h � � sin � and,
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by definition, the centroidal slant distance from the surface to the plate is

�CG � �
A
1

� �� dA (2.36) 

Therefore, since � is constant along the plate, Eq. (2.35) becomes

F � paA 	 � sin � �� dA � paA 	 � sin � �CGA (2.37)

Finally, unravel this by noticing that �CG sin � � hCG, the depth straight down from
the surface to the plate centroid. Thus

F � paA 	 �hCGA � (pa 	 �hCG)A � pCGA (2.38)

The force on one side of any plane submerged surface in a uniform fluid equals the
pressure at the plate centroid times the plate area, independent of the shape of the plate
or the angle � at which it is slanted.

Equation (2.38) can be visualized physically in Fig. 2.12 as the resultant of a lin-
ear stress distribution over the plate area. This simulates combined compression and
bending of a beam of the same cross section. It follows that the “bending’’ portion of
the stress causes no force if its “neutral axis’’ passes through the plate centroid of area.
Thus the remaining “compression’’ part must equal the centroid stress times the plate
area. This is the result of Eq. (2.38).

However, to balance the bending-moment portion of the stress, the resultant force
F does not act through the centroid but below it toward the high-pressure side. Its line
of action passes through the center of pressure CP of the plate, as sketched in Fig. 2.11.
To find the coordinates (xCP, yCP), we sum moments of the elemental force p dA about
the centroid and equate to the moment of the resultant F. To compute yCP, we equate

FyCP � �yp dA � �y(pa 	 �� sin �) dA � � sin � �y� dA (2.39)

The term � pay dA vanishes by definition of centroidal axes. Introducing � � �CG � y,
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Fig. 2.12 The hydrostatic-pressure
force on a plane surface is equal,
regardless of its shape, to the resul-
tant of the three-dimensional linear
pressure distribution on that surface
F � pCGA.

Pressure distribution

p (x, y)

Centroid of the plane surface

Arbitrary
plane surface
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pav = p
CG



we obtain

FyCP � � sin ���CG �y dA � �y2 dA� � � � sin � Ixx (2.40)

where again � y dA � 0 and Ixx is the area moment of inertia of the plate area about its
centroidal x axis, computed in the plane of the plate. Substituting for F gives the result

yCP � �� sin � �
pC

Ix

G

x

A
� (2.41)

The negative sign in Eq. (2.41) shows that yCP is below the centroid at a deeper level
and, unlike F, depends upon angle �. If we move the plate deeper, yCP approaches the
centroid because every term in Eq. (2.41) remains constant except pCG, which increases.

The determination of xCP is exactly similar:

FxCP � �xp dA � �x[pa 	 �(�CG � y) sin �] dA

� �� sin � �xy dA � �� sin � Ixy (2.42)

where Ixy is the product of inertia of the plate, again computed in the plane of the
plate. Substituting for F gives

xCP � �� sin � (2.43)

For positive Ixy, xCP is negative because the dominant pressure force acts in the third,
or lower left, quadrant of the panel. If Ixy � 0, usually implying symmetry, xCP � 0
and the center of pressure lies directly below the centroid on the y axis.

Ixy�
pCGA
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inertia for various cross sections:
(a) rectangle, (b) circle, (c) trian-
gle, and (d) semicircle.



Part (a)

Part (b)

In most cases the ambient pressure pa is neglected because it acts on both sides of the
plate; e.g., the other side of the plate is inside a ship or on the dry side of a gate or dam.
In this case pCG � �hCG, and the center of pressure becomes independent of specific weight

F � �hCGA yCP � ��
Ix

h
x

C

s

G

in
A

�
� xCP � ��

Ix

h
y

C

s

G

in
A

�
� (2.44)

Figure 2.13 gives the area and moments of inertia of several common cross sections
for use with these formulas.

EXAMPLE 2.5

The gate in Fig. E2.5a is 5 ft wide, is hinged at point B, and rests against a smooth wall at point
A. Compute (a) the force on the gate due to seawater pressure, (b) the horizontal force P exerted
by the wall at point A, and (c) the reactions at the hinge B.
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Gage-Pressure Formulas

15 ft

Wall 

6 ft

8 ft

θ

Gate

Hinge

B

A

Seawater:
64 lbf/ft3

pa

pa

Solution

By geometry the gate is 10 ft long from A to B, and its centroid is halfway between, or at eleva-
tion 3 ft above point B. The depth hCG is thus 15 � 3 � 12 ft. The gate area is 5(10) � 50 ft2. Ne-
glect pa as acting on both sides of the gate. From Eq. (2.38) the hydrostatic force on the gate is

F � pCGA � �hCGA � (64 lbf/ft3)(12 ft)(50 ft2) � 38,400 lbf Ans. (a)

First we must find the center of pressure of F. A free-body diagram of the gate is shown in Fig.
E2.5b. The gate is a rectangle, hence

Ixy � 0 and Ixx � �
b
1
L
2

3

� � �
(5 ft)

1
(1
2
0 ft)3

� � 417 ft4

The distance l from the CG to the CP is given by Eq. (2.44) since pa is neglected.

l � �yCP � 	 �
Ix

h
x

C

s

G

in
A

�
� � � 0.417 ft 

(417 ft4)(�1
6
0�) 

��
(12 ft)(50 ft2)

E2.5a 



The distance from point B to force F is thus 10 � l � 5 � 4.583 ft. Summing moments coun-
terclockwise about B gives

PL sin � � F(5 � l) � P(6 ft) � (38,400 lbf)(4.583 ft) � 0

or                                          P � 29,300 lbf Ans. (b)

With F and P known, the reactions Bx and Bz are found by summing forces on the gate

� Fx � 0 � Bx 	 F sin � � P � Bx 	 38,400(0.6) � 29,300

or                                                 Bx � 6300 lbf

� Fz � 0 � Bz � F cos � � Bz � 38,400(0.8)

or Bz � 30,700 lbf Ans. (c)

This example should have reviewed your knowledge of statics.

EXAMPLE 2.6

A tank of oil has a right-triangular panel near the bottom, as in Fig. E2.6. Omitting pa, find the
(a) hydrostatic force and (b) CP on the panel.
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2.6 Hydrostatic Forces on
Curved Surfaces

Fig. 2.14 Computation of hydro-
static force on a curved surface:
(a) submerged curved surface; (b)
free-body diagram of fluid above
the curved surface.

Solution

The triangle has properties given in Fig. 2.13c. The centroid is one-third up (4 m) and one-third
over (2 m) from the lower left corner, as shown. The area is

�12�(6 m)(12 m) � 36 m2

The moments of inertia are

Ixx � �
b
3
L
6

3

� � � 288 m4

and Ixy � �
b(b �

72
2s)L2

� � � �72 m4

The depth to the centroid is hCG � 5 	 4 � 9 m; thus the hydrostatic force from Eq. (2.44) is

F � �ghCGA � (800 kg/m3)(9.807 m/s2)(9 m)(36 m2)

� 2.54 � 106 (kg � m)/s2 � 2.54 � 106 N � 2.54 MN Ans. (a)

The CP position is given by Eqs. (2.44):

yCP � ��
Ix

h
x

C

s

G

in
A

�
� � � � �0.444 m

xCP � ��
Ix

h
y

C

s

G

in
A

�
� � � � 	0.111 m Ans. (b)

The resultant force F � 2.54 MN acts through this point, which is down and to the right of the
centroid, as shown in Fig. E2.6.

The resultant pressure force on a curved surface is most easily computed by separat-
ing it into horizontal and vertical components. Consider the arbitrary curved surface
sketched in Fig. 2.14a. The incremental pressure forces, being normal to the local area
element, vary in direction along the surface and thus cannot be added numerically. We

(�72 m4)(sin 30°)
��

(9 m)(36 m2)

(288 m4)(sin 30°)
��

(9 m)(36 m2)

(6 m)[6 m � 2(6 m)](12 m)2

���
72

(6 m)(12 m)3

��
36
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could sum the separate three components of these elemental pressure forces, but it turns
out that we need not perform a laborious three-way integration.

Figure 2.14b shows a free-body diagram of the column of fluid contained in the ver-
tical projection above the curved surface. The desired forces FH and FV are exerted by
the surface on the fluid column. Other forces are shown due to fluid weight and hori-
zontal pressure on the vertical sides of this column. The column of fluid must be in
static equilibrium. On the upper part of the column bcde, the horizontal components
F1 exactly balance and are not relevant to the discussion. On the lower, irregular por-
tion of fluid abc adjoining the surface, summation of horizontal forces shows that the
desired force FH due to the curved surface is exactly equal to the force FH on the ver-
tical left side of the fluid column. This left-side force can be computed by the plane-
surface formula, Eq. (2.38), based on a vertical projection of the area of the curved
surface. This is a general rule and simplifies the analysis:

The horizontal component of force on a curved surface equals the force on the plane
area formed by the projection of the curved surface onto a vertical plane normal to
the component.

If there are two horizontal components, both can be computed by this scheme.
Summation of vertical forces on the fluid free body then shows that

FV � W1 	 W2 	 Wair (2.45) 

We can state this in words as our second general rule:

The vertical component of pressure force on a curved surface equals in magnitude
and direction the weight of the entire column of fluid, both liquid and atmosphere,
above the curved surface.

Thus the calculation of FV involves little more than finding centers of mass of a col-
umn of fluid—perhaps a little integration if the lower portion abc has a particularly
vexing shape.

EXAMPLE 2.7

A dam has a parabolic shape z/z0 � (x/x0)2 as shown in Fig. E2.7a, with x0 � 10 ft and z0 � 24
ft. The fluid is water, � � 62.4 lbf/ft3, and atmospheric pressure may be omitted. Compute the

80 Chapter 2 Pressure Distribution in a Fluid

z = z0( x
x0

(2��
��
��pa = 0 lbf/ft2 gage

FV

FH
z

CP

x0

x

z0

E2.7a 



E2.7b 

forces FH and FV on the dam and the position CP where they act. The width of the dam is 
50 ft.

Solution

The vertical projection of this curved surface is a rectangle 24 ft high and 50 ft wide, with its
centroid halfway down, or hCG � 12 ft. The force FH is thus

FH � �hCGAproj � (62.4 lbf/ft3)(12 ft)(24 ft)(50 ft)

� 899,000 lbf � 899 � 103 lbf Ans.

The line of action of FH is below the centroid by an amount

yCP � ��
h
Ix

C

x

G

s
A
in

pro

�

j
� � � � �4 ft 

Thus FH is 12 	 4 � 16 ft, or two-thirds, down from the free surface or 8 ft from the bottom,
as might have been evident by inspection of the triangular pressure distribution.

The vertical component FV equals the weight of the parabolic portion of fluid above the
curved surface. The geometric properties of a parabola are shown in Fig. E2.7b. The weight of
this amount of water is

FV � � (�23�x0z0b) � (62.4 lbf/ft3)(�23�)(10 ft)(24 ft)(50 ft)

� 499,000 lbf � 499 � 103 lbf Ans.

�1
1
2�(50 ft)(24 ft)3(sin 90°)
���

(12 ft)(24 ft)(50 ft)
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3z0
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Area = 
2x0z0

3

z0

0 3x0

8

x0 = 10 ft

Parabola

FV

This acts downward on the surface at a distance 3x0/8 � 3.75 ft over from the origin of coordi-
nates. Note that the vertical distance 3z0/5 in Fig. E2.7b is irrelevant.

The total resultant force acting on the dam is

F � (F2
H 	 F2

V)1/2 � [(499)2 	 (899)2]1/2 � 1028 � 103 lbf 

As seen in Fig. E2.7c, this force acts down and to the right at an angle of 29° � tan�1 �48
9
9

9
9�. The

force F passes through the point (x, z) � (3.75 ft, 8 ft). If we move down along the 29° line un-
til we strike the dam, we find an equivalent center of pressure on the dam at

xCP � 5.43 ft zCP � 7.07 ft Ans.

This definition of CP is rather artificial, but this is an unavoidable complication of dealing with
a curved surface.



E2.7c 

2.7 Hydrostatic Forces in
Layered Fluids

The formulas for plane and curved surfaces in Secs. 2.5 and 2.6 are valid only for a
fluid of uniform density. If the fluid is layered with different densities, as in Fig. 2.15,
a single formula cannot solve the problem because the slope of the linear pressure dis-
tribution changes between layers. However, the formulas apply separately to each layer,
and thus the appropriate remedy is to compute and sum the separate layer forces and
moments.

Consider the slanted plane surface immersed in a two-layer fluid in Fig. 2.15. The
slope of the pressure distribution becomes steeper as we move down into the denser
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Part (a)

E2.8

second layer. The total force on the plate does not equal the pressure at the centroid
times the plate area, but the plate portion in each layer does satisfy the formula, so that
we can sum forces to find the total:

F � � Fi � � pCGi
Ai (2.46)

Similarly, the centroid of the plate portion in each layer can be used to locate the cen-
ter of pressure on that portion

yCPi
� ��

�ig

p

s

C

in

Gi

�

A
i

i

Ixxi� xCPi
� ��

�ig

p

s

C

in

Gi

�

A
i

i

Ixyi� (2.47)

These formulas locate the center of pressure of that particular Fi with respect to the
centroid of that particular portion of plate in the layer, not with respect to the centroid
of the entire plate. The center of pressure of the total force F � � Fi can then be found
by summing moments about some convenient point such as the surface. The follow-
ing example will illustrate.

EXAMPLE 2.8

A tank 20 ft deep and 7 ft wide is layered with 8 ft of oil, 6 ft of water, and 4 ft of mercury.
Compute (a) the total hydrostatic force and (b) the resultant center of pressure of the fluid on
the right-hand side of the tank.

Solution

Divide the end panel into three parts as sketched in Fig. E2.8, and find the hydrostatic pressure
at the centroid of each part, using the relation (2.38) in steps as in Fig. E2.8:
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pa = 0
z = 0

4 ft

11 ft

16 ft

7 ft

8 ft

6 ft

Water (62.4)

Oil: 55.0 lbf/ft 3

(1)

(2)

4 ft

Mercury (846)

(3)

PCG1
� (55.0 lbf/ft3)(4 ft) � 220 lbf/ft2

pCG2
� (55.0)(8) 	 62.4(3) � 627 lbf/ft2

pCG3
� (55.0)(8) 	 62.4(6) 	 846(2) � 2506 lbf/ft2
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These pressures are then multiplied by the respective panel areas to find the force on each portion:

F1 � pCG1
A1 � (220 lbf/ft2)(8 ft)(7 ft) � 12,300 lbf 

F2 � pCG2
A2 � 627(6)(7) � 26,300 lbf

F3 � pCG3
A3 � 2506(4)(7) � 70,200 lbf

F � � Fi � 108,800 lbf Ans. (a)

Equations (2.47) can be used to locate the CP of each force Fi, noting that � � 90° and sin � �
1 for all parts. The moments of inertia are Ixx1

� (7 ft)(8 ft)3/12 � 298.7 ft4, Ixx2
� 7(6)3/12 �

126.0 ft4, and Ixx3
� 7(4)3/12 � 37.3 ft4. The centers of pressure are thus at

yCP1
� ��

�1

F

gI

1

xx
1� � � � �1.33 ft 

yCP2
� ��

62
2
.4
6
(
,
1
3
2
0
6
0
.0)

� � �0.30 ft yCP3
� � � �0.45 ft 

This locates zCP1
� �4 � 1.33 � �5.33 ft, zCP2

� �11 � 0.30 � �11.30 ft, and zCP3
�

�16 � 0.45 � �16.45 ft. Summing moments about the surface then gives

� FizCPi
� FzCP

or 12,300(�5.33) 	 26,300(�11.30) 	 70,200(�16.45) � 108,800zCP

or zCP � � � �13.95 ft Ans. (b)

The center of pressure of the total resultant force on the right side of the tank lies 13.95 ft be-
low the surface.

The same principles used to compute hydrostatic forces on surfaces can be applied to
the net pressure force on a completely submerged or floating body. The results are the
two laws of buoyancy discovered by Archimedes in the third century B.C.:

1. A body immersed in a fluid experiences a vertical buoyant force equal to the
weight of the fluid it displaces.

2. A floating body displaces its own weight in the fluid in which it floats.

These two laws are easily derived by referring to Fig. 2.16. In Fig. 2.16a, the body
lies between an upper curved surface 1 and a lower curved surface 2. From Eq. (2.45)
for vertical force, the body experiences a net upward force

FB � FV(2) � FV (1)

� (fluid weight above 2) � (fluid weight above 1)

� weight of fluid equivalent to body volume (2.48)

Alternatively, from Fig. 2.16b, we can sum the vertical forces on elemental vertical
slices through the immersed body:

FB � �
body

(p2 � p1) dAH � �� �(z2 � z1) dAH � (�)(body volume) (2.49)

1,518,000
��
108,800

846(37.3)
��

70,200

(55.0 lbf/ft3)(298.7 ft4)
���

12,300 lbf
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These are identical results and equivalent to law 1 above.
Equation (2.49) assumes that the fluid has uniform specific weight. The line of ac-

tion of the buoyant force passes through the center of volume of the displaced body;
i.e., its center of mass is computed as if it had uniform density. This point through
which FB acts is called the center of buoyancy, commonly labeled B or CB on a draw-
ing. Of course, the point B may or may not correspond to the actual center of mass of
the body’s own material, which may have variable density.

Equation (2.49) can be generalized to a layered fluid (LF) by summing the weights
of each layer of density �i displaced by the immersed body:

(FB)LF � � �ig(displaced volume)i (2.50)

Each displaced layer would have its own center of volume, and one would have to sum
moments of the incremental buoyant forces to find the center of buoyancy of the im-
mersed body.

Since liquids are relatively heavy, we are conscious of their buoyant forces, but gases
also exert buoyancy on any body immersed in them. For example, human beings have
an average specific weight of about 60 lbf/ft3. We may record the weight of a person 
as 180 lbf and thus estimate the person’s total volume as 3.0 ft3. However, in so doing
we are neglecting the buoyant force of the air surrounding the person. At standard con-
ditions, the specific weight of air is 0.0763 lbf/ft3; hence the buoyant force is approxi-
mately 0.23 lbf. If measured in vacuo, the person would weigh about 0.23 lbf more. 
For balloons and blimps the buoyant force of air, instead of being negligible, is the 
controlling factor in the design. Also, many flow phenomena, e.g., natural convection 
of heat and vertical mixing in the ocean, are strongly dependent upon seemingly small
buoyant forces.

Floating bodies are a special case; only a portion of the body is submerged, with
the remainder poking up out of the free surface. This is illustrated in Fig. 2.17, where
the shaded portion is the displaced volume. Equation (2.49) is modified to apply to this
smaller volume

FB � (�)(displaced volume) � floating-body weight (2.51)
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Surface
1

Surface
2

FV (1) Horizontal
elemental
area dAH

z1 – z2

p1

p2

 (a)

FV (2)

 (b)

Fig. 2.16 Two different approaches
to the buoyant force on an arbitrary
immersed body: (a) forces on up-
per and lower curved surfaces; (b)
summation of elemental vertical-
pressure forces.



E2.9 

Not only does the buoyant force equal the body weight, but also they are collinear
since there can be no net moments for static equilibrium. Equation (2.51) is the math-
ematical equivalent of Archimedes’ law 2, previously stated.

EXAMPLE 2.9

A block of concrete weighs 100 lbf in air and “weighs’’ only 60 lbf when immersed in fresh wa-
ter (62.4 lbf/ft3). What is the average specific weight of the block?

Solution

A free-body diagram of the submerged block (see Fig. E2.9) shows a balance between the ap-
parent weight, the buoyant force, and the actual weight

� Fz � 0 � 60 	 FB � 100 

or FB � 40 lbf � (62.4 lbf/ft3)(block volume, ft3) 

Solving gives the volume of the block as 40/62.4 � 0.641 ft3. Therefore the specific weight of
the block is

�block � �
0
1
.6
0
4
0
1
lb
ft
f
3� � 156 lbf/ft3 Ans.

Occasionally, a body will have exactly the right weight and volume for its ratio to
equal the specific weight of the fluid. If so, the body will be neutrally buoyant and will
remain at rest at any point where it is immersed in the fluid. Small neutrally buoyant
particles are sometimes used in flow visualization, and a neutrally buoyant body called
a Swallow float [2] is used to track oceanographic currents. A submarine can achieve
positive, neutral, or negative buoyancy by pumping water in or out of its ballast tanks.

A floating body as in Fig. 2.17 may not approve of the position in which it is floating.
If so, it will overturn at the first opportunity and is said to be statically unstable, like
a pencil balanced upon its point. The least disturbance will cause it to seek another
equilibrium position which is stable. Engineers must design to avoid floating instabil-
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W = 100 lbf

60 lbf

Stability

Fig. 2.17 Static equilibrium of a
floating body.

CG
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(Displaced volume) × ( γ of fluid) = body weight

Neglect the displaced air up here.



Stability Related to Waterline
Area

ity. The only way to tell for sure whether a floating position is stable is to “disturb’’
the body a slight amount mathematically and see whether it develops a restoring mo-
ment which will return it to its original position. If so, it is stable; if not, unstable. Such
calculations for arbitrary floating bodies have been honed to a fine art by naval archi-
tects [3], but we can at least outline the basic principle of the static-stability calcula-
tion. Figure 2.18 illustrates the computation for the usual case of a symmetric floating
body. The steps are as follows:

1. The basic floating position is calculated from Eq. (2.51). The body’s center of
mass G and center of buoyancy B are computed.

2. The body is tilted a small angle ��, and a new waterline is established for the
body to float at this angle. The new position B� of the center of buoyancy is cal-
culated. A vertical line drawn upward from B� intersects the line of symmetry at
a point M, called the metacenter, which is independent of �� for small angles.

3. If point M is above G, that is, if the metacentric height M�G� is positive, a restor-
ing moment is present and the original position is stable. If M is below G (nega-
tive M�G�, the body is unstable and will overturn if disturbed. Stability increases
with increasing M�G�.

Thus the metacentric height is a property of the cross section for the given weight, and
its value gives an indication of the stability of the body. For a body of varying cross
section and draft, such as a ship, the computation of the metacenter can be very in-
volved.

Naval architects [3] have developed the general stability concepts from Fig. 2.18 into
a simple computation involving the area moment of inertia of the waterline area about
the axis of tilt. The derivation assumes that the body has a smooth shape variation (no
discontinuities) near the waterline and is derived from Fig. 2.19.

The y-axis of the body is assumed to be a line of symmetry. Tilting the body a small
angle � then submerges small wedge Obd and uncovers an equal wedge cOa, as shown.
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Fig. 2.18 Calculation of the meta-
center M of the floating body
shown in (a). Tilt the body a small
angle ��. Either (b) B� moves far
out (point M above G denotes sta-
bility); or (c) B� moves slightly
(point M below G denotes instabil-
ity).
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cOdea Obd cOa Obd cOa

Obd cOa waterline 

x� υabOde � �x dυ � �x dυ � �x dυ � 0 � �x (L dA) � �x (L dA)

The new position B� of the center of buoyancy is calculated as the centroid of the sub-
merged portion aObde of the body:

y

c

a

e

d x
x

b

M

O

B

�

�

�

dA = x tan � dx

Tilted floating body

�

�

Variable-width
L(x) into paper

Original
waterline 
area

��

B�Fig. 2.19 A floating body tilted
through a small angle �. The move-
ment x� of the center of buoyancy B
is related to the waterline area mo-
ment of inertia.

� 0 � �x L (x tan � dx) � �xL (�x tan � dx) � tan � �x2 dAwaterline � IO tan �

where IO is the area moment of inertia of the waterline footprint of the body about its
tilt axis O. The first integral vanishes because of the symmetry of the original sub-
merged portion cOdea. The remaining two “wedge” integrals combine into IO when
we notice that L dx equals an element of waterline area. Thus we determine the de-
sired distance from M to B:

� M�B� � � M�G� � G�B� or M�G� � �
υ
I

s

O

ub
� � G�B� (2.52)

The engineer would determine the distance from G to B from the basic shape and
design of the floating body and then make the calculation of IO and the submerged
volume υsub. If the metacentric height MG is positive, the body is stable for small
disturbances. Note that if G�B� is negative, that is, B is above G, the body is always
stable.

EXAMPLE 2.10

A barge has a uniform rectangular cross section of width 2L and vertical draft of height H, as
in Fig. E2.10. Determine (a) the metacentric height for a small tilt angle and (b) the range of
ratio L/H for which the barge is statically stable if G is exactly at the waterline as shown.

IO��υsubmerged

x��



Solution

If the barge has length b into the paper, the waterline area, relative to tilt axis O, has a base b
and a height 2L; therefore, IO � b(2L)3/12. Meanwhile, υsub � 2LbH. Equation (2.52) predicts

M�G� � �υ
I

s

O

ub
� � G�B� � � �

H
2

� � �
3
L
H

2

� � �
H
2

� Ans. (a)

The barge can thus be stable only if

L2 � 3H2/2 or 2L � 2.45H Ans. (b)

The wider the barge relative to its draft, the more stable it is. Lowering G would help also.

Even an expert will have difficulty determining the floating stability of a buoyant
body of irregular shape. Such bodies may have two or more stable positions. For ex-
ample, a ship may float the way we like it, so that we can sit upon the deck, or it may
float upside down (capsized). An interesting mathematical approach to floating stabil-
ity is given in Ref. 11. The author of this reference points out that even simple shapes,
e.g., a cube of uniform density, may have a great many stable floating orientations, not
necessarily symmetric. Homogeneous circular cylinders can float with the axis of sym-
metry tilted from the vertical.

Floating instability occurs in nature. Living fish generally swim with their plane
of symmetry vertical. After death, this position is unstable and they float with their
flat sides up. Giant icebergs may overturn after becoming unstable when their shapes
change due to underwater melting. Iceberg overturning is a dramatic, rarely seen
event.

Figure 2.20 shows a typical North Atlantic iceberg formed by calving from a Green-
land glacier which protruded into the ocean. The exposed surface is rough, indicating
that it has undergone further calving. Icebergs are frozen fresh, bubbly, glacial water
of average density 900 kg/m3. Thus, when an iceberg is floating in seawater, whose
average density is 1025 kg/m3, approximately 900/1025, or seven-eighths, of its vol-
ume lies below the water.

In rigid-body motion, all particles are in combined translation and rotation, and there
is no relative motion between particles. With no relative motion, there are no strains

8bL3/12
�

2LbH
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or strain rates, so that the viscous term 
∇2V in Eq. (2.13) vanishes, leaving a balance
between pressure, gravity, and particle acceleration

∇p � �(g � a) (2.53) 

The pressure gradient acts in the direction g � a, and lines of constant pressure (in-
cluding the free surface, if any) are perpendicular to this direction. The general case
of combined translation and rotation of a rigid body is discussed in Chap. 3, Fig. 3.12.
If the center of rotation is at point O and the translational velocity is V0 at this point,
the velocity of an arbitrary point P on the body is given by2

V � V0 	 � � r0

where � is the angular-velocity vector and r0 is the position of point P. Differentiat-
ing, we obtain the most general form of the acceleration of a rigid body:

a � 	 � � (� � r0) 	 � r0 (2.54) 

Looking at the right-hand side, we see that the first term is the translational accel-
eration; the second term is the centripetal acceleration, whose direction is from point

d�
�
dt

dV0�
dt
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Fig. 2.20 A North Atlantic iceberg
formed by calving from a Green-
land glacier. These, and their even
larger Antarctic sisters, are the
largest floating bodies in the world.
Note the evidence of further calv-
ing fractures on the front surface.
(Courtesy of S/oren Thalund, Green-
land tourism a/s Iiulissat, Green-
land.)

2 For a more detailed derivation of rigid-body motion, see Ref. 4, Sec. 2.7.



P perpendicular toward the axis of rotation; and the third term is the linear accelera-
tion due to changes in the angular velocity. It is rare for all three of these terms to ap-
ply to any one fluid flow. In fact, fluids can rarely move in rigid-body motion unless
restrained by confining walls for a long time. For example, suppose a tank of water
is in a car which starts a constant acceleration. The water in the tank would begin to
slosh about, and that sloshing would damp out very slowly until finally the particles
of water would be in approximately rigid-body acceleration. This would take so long
that the car would have reached hypersonic speeds. Nevertheless, we can at least dis-
cuss the pressure distribution in a tank of rigidly accelerating water. The following is
an example where the water in the tank will reach uniform acceleration rapidly.

EXAMPLE 2.11

A tank of water 1 m deep is in free fall under gravity with negligible drag. Compute the pres-
sure at the bottom of the tank if pa � 101 kPa.

Solution

Being unsupported in this condition, the water particles tend to fall downward as a rigid hunk
of fluid. In free fall with no drag, the downward acceleration is a � g. Thus Eq. (2.53) for this
situation gives ∇p � �(g � g) � 0. The pressure in the water is thus constant everywhere and
equal to the atmospheric pressure 101 kPa. In other words, the walls are doing no service in sus-
taining the pressure distribution which would normally exist.

In this general case of uniform rigid-body acceleration, Eq. (2.53) applies, a having
the same magnitude and direction for all particles. With reference to Fig. 2.21, the par-
allelogram sum of g and �a gives the direction of the pressure gradient or greatest rate
of increase of p. The surfaces of constant pressure must be perpendicular to this and
are thus tilted at a downward angle � such that

� � tan�1�
g 	

ax

az
� (2.55) 
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Fig. 2.21 Tilting of constant-
pressure surfaces in a tank of 
liquid in rigid-body acceleration.



One of these tilted lines is the free surface, which is found by the requirement that the
fluid retain its volume unless it spills out. The rate of increase of pressure in the di-
rection g � a is greater than in ordinary hydrostatics and is given by

� �G where G � [a2
x 	 (g 	 az)

2]1/2 (2.56) 

These results are independent of the size or shape of the container as long as the
fluid is continuously connected throughout the container.

EXAMPLE 2.12

A drag racer rests her coffee mug on a horizontal tray while she accelerates at 7 m/s2. The mug
is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest. (a) Assuming rigid-
body acceleration of the coffee, determine whether it will spill out of the mug. (b) Calculate the
gage pressure in the corner at point A if the density of coffee is 1010 kg/m3.

Solution

The free surface tilts at the angle � given by Eq. (2.55) regardless of the shape of the mug. With
az � 0 and standard gravity,

� � tan�1 �
a
g
x� � tan�1 �

9
7
.
.
8
0
1

� � 35.5°

If the mug is symmetric about its central axis, the volume of coffee is conserved if the tilted sur-
face intersects the original rest surface exactly at the centerline, as shown in Fig. E2.12. 

dp
�
ds
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Part (a)

Part (b)

3 cm

ax = 7 m/s2

A

∆z

3 cm

7 cm

θ

E2.12

Thus the deflection at the left side of the mug is

z � (3 cm)(tan �) � 2.14 cm Ans. (a)

This is less than the 3-cm clearance available, so the coffee will not spill unless it was sloshed
during the start-up of acceleration.

When at rest, the gage pressure at point A is given by Eq. (2.20):

pA � �g(zsurf � zA) � (1010 kg/m3)(9.81 m/s2)(0.07 m) � 694 N/m2 � 694 Pa 



During acceleration, Eq. (2.56) applies, with G � [(7.0)2 	 (9.81)2]1/2 � 12.05 m/s2. The dis-
tance ∆s down the normal from the tilted surface to point A is

�s � (7.0 	 2.14)(cos �) � 7.44 cm 

Thus the pressure at point A becomes

pA � �G �s � 1010(12.05)(0.0744) � 906 Pa Ans. (b)

which is an increase of 31 percent over the pressure when at rest.

As a second special case, consider rotation of the fluid about the z axis without any
translation, as sketched in Fig. 2.22. We assume that the container has been rotating
long enough at constant � for the fluid to have attained rigid-body rotation. The fluid
acceleration will then be the centripetal term in Eq. (2.54). In the coordinates of Fig.
2.22, the angular-velocity and position vectors are given by

� � k� r0 � irr (2.57) 

Then the acceleration is given by

� � (� � r0) � �r�2ir (2.58) 

as marked in the figure, and Eq. (2.53) for the force balance becomes

∇p � ir 	 k � �(g � a) � �(�gk 	 r�2ir) (2.59) 

Equating like components, we find the pressure field by solving two first-order partial
differential equations

� �r�2 � �� (2.60) 

This is our first specific example of the generalized three-dimensional problem de-
scribed by Eqs. (2.14) for more than one independent variable. The right-hand sides of

�p
�
�z

�p
�
�r

�p
�
�z

�p
�
�r
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Fig. 2.22 Development of parabo-
loid constant-pressure surfaces in a
fluid in rigid-body rotation. The
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maximum pressure increase is an
exponential curve.
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(2.60) are known functions of r and z. One can proceed as follows: Integrate the first
equation “partially,’’ i.e., holding z constant, with respect to r. The result is

p � �12��r2�2 	 f(z) (2.61) 

where the “constant’’ of integration is actually a function f(z).† Now differentiate this
with respect to z and compare with the second relation of (2.60):

� 0 	 f�(z) � ��

or f(z) � ��z 	 C (2.62a)

where C is a constant. Thus Eq. (2.61) now becomes

p � const � �z 	 �12��r2�2 (2.62b) 

This is the pressure distribution in the fluid. The value of C is found by specifying the
pressure at one point. If p � p0 at (r, z) � (0, 0), then C � p0. The final desired dis-
tribution is

p � p0 � �z 	 �12��r2�2 (2.63)

The pressure is linear in z and parabolic in r. If we wish to plot a constant-pressure
surface, say, p � p1, Eq. (2.63) becomes

z � 	 � a 	 br2 (2.64) 

Thus the surfaces are paraboloids of revolution, concave upward, with their minimum
point on the axis of rotation. Some examples are sketched in Fig. 2.22.

As in the previous example of linear acceleration, the position of the free surface is
found by conserving the volume of fluid. For a noncircular container with the axis of
rotation off-center, as in Fig. 2.22, a lot of laborious mensuration is required, and a
single problem will take you all weekend. However, the calculation is easy for a cylin-
der rotating about its central axis, as in Fig. 2.23. Since the volume of a paraboloid is

r2�2

�
2g

p0 � p1�
�

�p
�
�z
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Volume =
π
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water
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Fig. 2.23 Determining the free-
surface position for rotation of a
cylinder of fluid about its central
axis.

†This is because f(z) vanishes when differentiated with respect to r. If you don’t see this, you should
review your calculus.



one-half the base area times its height, the still-water level is exactly halfway between
the high and low points of the free surface. The center of the fluid drops an amount
h/2 � �2R2/(4g), and the edges rise an equal amount.

EXAMPLE 2.13

The coffee cup in Example 2.12 is removed from the drag racer, placed on a turntable, and ro-
tated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity which
will cause the coffee to just reach the lip of the cup and (b) the gage pressure at point A for this
condition.

Solution

The cup contains 7 cm of coffee. The remaining distance of 3 cm up to the lip must equal the
distance h/2 in Fig. 2.23. Thus

�
h
2

� � 0.03 m � �
�

4

2

g
R2

� �

Solving, we obtain

�2 � 1308 or � � 36.2 rad/s � 345 r/min Ans. (a)

To compute the pressure, it is convenient to put the origin of coordinates r and z at the bottom
of the free-surface depression, as shown in Fig. E2.13. The gage pressure here is p0 � 0, and
point A is at (r, z) � (3 cm, �4 cm). Equation (2.63) can then be evaluated

pA � 0 � (1010 kg/m3)(9.81 m/s2)(�0.04 m) 

	 �12�(1010 kg/m3)(0.03 m)2(1308 rad2/s2)

� 396 N/m2 	 594 N/m2 � 990 Pa Ans. (b)

This is about 43 percent greater than the still-water pressure pA � 694 Pa.

Here, as in the linear-acceleration case, it should be emphasized that the paraboloid
pressure distribution (2.63) sets up in any fluid under rigid-body rotation, regardless
of the shape or size of the container. The container may even be closed and filled with
fluid. It is only necessary that the fluid be continuously interconnected throughout the
container. The following example will illustrate a peculiar case in which one can vi-
sualize an imaginary free surface extending outside the walls of the container.

EXAMPLE 2.14

A U-tube with a radius of 10 in and containing mercury to a height of 30 in is rotated about its
center at 180 r/min until a rigid-body mode is achieved. The diameter of the tubing is negligi-
ble. Atmospheric pressure is 2116 lbf/ft2. Find the pressure at point A in the rotating condition.
See Fig. E2.14.

�2(0.03 m)2

��
4(9.81 m/s2)

2.9 Pressure Distribution in Rigid-Body Motion 95

Part (a)

Part (b)

3 cm

A

3 cm

7 cm

3 cm

Ω

z

r0

E2.13 



96 Chapter 2 Pressure Distribution in a Fluid

Solution

Convert the angular velocity to radians per second:

� � (180 r/min) � 18.85 rad/s

From Table 2.1 we find for mercury that � � 846 lbf/ft3 and hence � � 846/32.2 � 26.3 slugs/ft3.
At this high rotation rate, the free surface will slant upward at a fierce angle [about 84°; check
this from Eq. (2.64)], but the tubing is so thin that the free surface will remain at approximately
the same 30-in height, point B. Placing our origin of coordinates at this height, we can calcu-
late the constant C in Eq. (2.62b) from the condition pB � 2116 lbf/ft2 at (r, z) � (10 in, 0):

pB � 2116 lbf/ft2 � C � 0 	 �12�(26.3 slugs/ft3)(�11
0
2� ft)2(18.85 rad/s)2

or C � 2116 � 3245 � �1129 lbf/ft2

We then obtain pA by evaluating Eq. (2.63) at (r, z) � (0, �30 in):

pA � �1129 � (846 lbf/ft3)(��31
0
2� ft) � �1129 	 2115 � 986 lbf/ft2 Ans. 

This is less than atmospheric pressure, and we can see why if we follow the free-surface pa-
raboloid down from point B along the dashed line in the figure. It will cross the horizontal por-
tion of the U-tube (where p will be atmospheric) and fall below point A. From Fig. 2.23 the ac-
tual drop from point B will be

h � �
�

2

2

g
R2

� � � 3.83 ft � 46 in 

Thus pA is about 16 inHg below atmospheric pressure, or about �11
6
2�(846) � 1128 lbf/ft2 below

pa � 2116 lbf/ft2, which checks with the answer above. When the tube is at rest,

pA � 2116 � 846(��31
0
2�) � 4231 lbf/ft2

Hence rotation has reduced the pressure at point A by 77 percent. Further rotation can reduce
pA to near-zero pressure, and cavitation can occur.

An interesting by-product of this analysis for rigid-body rotation is that the lines
everywhere parallel to the pressure gradient form a family of curved surfaces, as
sketched in Fig. 2.22. They are everywhere orthogonal to the constant-pressure sur-
faces, and hence their slope is the negative inverse of the slope computed from Eq.
(2.64):


GL

� � � �

where GL stands for gradient line

or � � (2.65) 
g

�
r�2

dz
�
dr

1
�
r�2/g

1
��
(dz/dr)p�const

dz
�
dr

(18.85)2(�11
0
2�)2

��
2(32.2)

2� rad/r
�
60 s/min

z

Ω

r

Imaginary
free surface

10 in

30 in

0

A

B

E2.14
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Separating the variables and integrating, we find the equation of the pressure-gradient
surfaces

r � C1 exp�� � (2.66) 

Notice that this result and Eq. (2.64) are independent of the density of the fluid. In the
absence of friction and Coriolis effects, Eq. (2.66) defines the lines along which the ap-
parent net gravitational field would act on a particle. Depending upon its density, a small
particle or bubble would tend to rise or fall in the fluid along these exponential lines,
as demonstrated experimentally in Ref. 5. Also, buoyant streamers would align them-
selves with these exponential lines, thus avoiding any stress other than pure tension. Fig-
ure 2.24 shows the configuration of such streamers before and during rotation.

Pressure is a derived property. It is the force per unit area as related to fluid molecu-
lar bombardment of a surface. Thus most pressure instruments only infer the pressure
by calibration with a primary device such as a deadweight piston tester. There are many
such instruments, both for a static fluid and a moving stream. The instrumentation texts
in Refs. 7 to 10, 12, and 13 list over 20 designs for pressure measurement instruments.
These instruments may be grouped into four categories:

1. Gravity-based: barometer, manometer, deadweight piston.

2. Elastic deformation: bourdon tube (metal and quartz), diaphragm, bellows,
strain-gage, optical beam displacement.

3. Gas behavior: gas compression (McLeod gage), thermal conductance (Pirani gage),
molecular impact (Knudsen gage), ionization, thermal conductivity, air piston.

4. Electric output: resistance (Bridgman wire gage), diffused strain gage, capacita-
tive, piezoelectric, magnetic inductance, magnetic reluctance, linear variable dif-
ferential transformer (LVDT), resonant frequency.

The gas-behavior gages are mostly special-purpose instruments used for certain scien-
tific experiments. The deadweight tester is the instrument used most often for calibra-
tions; for example, it is used by the U.S. National Institute for Standards and Tech-
nology (NIST). The barometer is described in Fig. 2.6.

The manometer, analyzed in Sec. 2.4, is a simple and inexpensive hydrostatic-
principle device with no moving parts except the liquid column itself. Manometer mea-
surements must not disturb the flow. The best way to do this is to take the measure-
ment through a static hole in the wall of the flow, as illustrated for the two instruments
in Fig. 2.25. The hole should be normal to the wall, and burrs should be avoided. If
the hole is small enough (typically 1-mm diameter), there will be no flow into the mea-
suring tube once the pressure has adjusted to a steady value. Thus the flow is almost
undisturbed. An oscillating flow pressure, however, can cause a large error due to pos-
sible dynamic response of the tubing. Other devices of smaller dimensions are used for
dynamic-pressure measurements. Note that the manometers in Fig. 2.25 are arranged
to measure the absolute pressures p1 and p2. If the pressure difference p1 � p2 is de-

�2z
�

g
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Fig. 2.24 Experimental demonstra-
tion with buoyant streamers of the
fluid force field in rigid-body rota-
tion: (top) fluid at rest (streamers
hang vertically upward); (bottom)
rigid-body rotation (streamers are
aligned with the direction of maxi-
mum pressure gradient). (From Ref.
5, courtesy of R. Ian Fletcher.)



Fig. 2.25 Two types of accurate
manometers for precise measure-
ments: (a) tilted tube with eye-
piece; (b) micrometer pointer with
ammeter detector.

sired, a significant error is incurred by subtracting two independent measurements, and
it would be far better to connect both ends of one instrument to the two static holes p1

and p2 so that one manometer reads the difference directly. In category 2, elastic-
deformation instruments, a popular, inexpensive, and reliable device is the bourdon
tube, sketched in Fig. 2.26. When pressurized internally, a curved tube with flattened
cross section will deflect outward. The deflection can be measured by a linkage at-
tached to a calibrated dial pointer, as shown. Or the deflection can be used to drive
electric-output sensors, such as a variable transformer. Similarly, a membrane or dia-
phragm will deflect under pressure and can either be sensed directly or used to drive
another sensor.
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Flow Flow

p2p1

(a) (b)

Fig. 2.26 Schematic of a bourdon-
tube device for mechanical mea-
surement of high pressures.

Bourdon
tube

Pointer for
dial gage

Section AA

A

A

Linkage

High  pressure

Flattened tube deflects
outward under pressure



Fig. 2.27 The fused-quartz, force-
balanced bourdon tube is the most
accurate pressure sensor used in
commercial applications today.
(Courtesy of Ruska Instrument 
Corporation, Houston, TX.) 
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An interesting variation of Fig. 2.26 is the fused-quartz, forced-balanced bourdon
tube, shown in Fig. 2.27, whose deflection is sensed optically and returned to a zero
reference state by a magnetic element whose output is proportional to the fluid pres-
sure. The fused-quartz, forced-balanced bourdon tube is reported to be one of the most
accurate pressure sensors ever devised, with uncertainty of the order of �0.003 per-
cent.

The last category, electric-output sensors, is extremely important in engineering
because the data can be stored on computers and freely manipulated, plotted, and an-
alyzed. Three examples are shown in Fig. 2.28, the first being the capacitive sensor
in Fig. 2.28a. The differential pressure deflects the silicon diaphragm and changes
the capacitancce of the liquid in the cavity. Note that the cavity has spherical end
caps to prevent overpressure damage. In the second type, Fig. 2.28b, strain gages and
other sensors are diffused or etched onto a chip which is stressed by the applied pres-
sure. Finally, in Fig. 2.28c, a micromachined silicon sensor is arranged to deform
under pressure such that its natural vibration frequency is proportional to the pres-
sure. An oscillator excites the element’s resonant frequency and converts it into ap-
propriate pressure units. For further information on pressure sensors, see Refs. 7 to
10, 12, and 13.

This chapter has been devoted entirely to the computation of pressure distributions and
the resulting forces and moments in a static fluid or a fluid with a known velocity field.
All hydrostatic (Secs. 2.3 to 2.8) and rigid-body (Sec. 2.9) problems are solved in this
manner and are classic cases which every student should understand. In arbitrary vis-
cous flows, both pressure and velocity are unknowns and are solved together as a sys-
tem of equations in the chapters which follow.

Summary



Seal diaphragm

Filling liquid
Sensing diaphragm

Cover flange

Low-pressure sideHigh-pressure side

(a)

Fig. 2.28 Pressure sensors with
electric output: (a) a silicon dia-
phragm whose deflection changes
the cavity capacitance (Courtesy of
Johnson-Yokogawa Inc.); (b) a sili-
con strain gage which is stressed
by applied pressure; (c) a microma-
chined silicon element which res-
onates at a frequency proportional
to applied pressure. [(b) and (c)
are courtesy of Druck, Inc., Fair-
field, CT.]
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chip to body plug
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optimum temperature
performance
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Problems

Most of the problems herein are fairly straightforward. More
difficult or open-ended assignments are indicated with an as-
terisk, as in Prob. 2.8. Problems labeled with an EES icon (for
example, Prob. 2.62), will benefit from the use of the Engi-
neering Equation Solver (EES), while problems labeled with a
disk icon may require the use of a computer. The standard end-
of-chapter problems 2.1 to 2.158 (categorized in the problem
list below) are followed by word problems W2.1 to W2.8, fun-
damentals of engineering exam problems FE2.1 to FE2.10, com-
prehensive problems C2.1 to C2.4, and design projects D2.1 and
D2.2.

Problem Distribution

Section Topic Problems

2.1, 2.2 Stresses; pressure gradient; gage pressure 2.1–2.6
2.3 Hydrostatic pressure; barometers 2.7–2.23
2.3 The atmosphere 2.24–2.29
2.4 Manometers; multiple fluids 2.30–2.47
2.5 Forces on plane surfaces 2.48–2.81
2.6 Forces on curved surfaces 2.82–2.100
2.7 Forces in layered fluids 2.101–2.102
2.8 Buoyancy; Archimedes’ principles 2.103–2.126
2.8 Stability of floating bodies 2.127–2.136
2.9 Uniform acceleration 2.137–2.151
2.9 Rigid-body rotation 2.152–2.158
2.10 Pressure measurements None

P2.1 For the two-dimensional stress field shown in Fig. P2.1 it
is found that


xx � 3000 lbf/ft2 
yy � 2000 lbf/ft2 
xy � 500 lbf/ft2

Find the shear and normal stresses (in lbf/ft2) acting on
plane AA cutting through the element at a 30° angle as
shown.
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P2.2 For the two-dimensional stress field shown in Fig. P2.1
suppose that


xx � 2000 lbf/ft2 
yy � 3000 lbf/ft2 
n(AA) � 2500 lbf/ft2

Compute (a) the shear stress 
xy and (b) the shear stress
on plane AA.

P2.3 Derive Eq. (2.18) by using the differential element in Fig.
2.2 with z “up,’’ no fluid motion, and pressure varying only
in the z direction.

P2.4 In a certain two-dimensional fluid flow pattern the lines
of constant pressure, or isobars, are defined by the ex-
pression P0 � Bz 	 Cx2 � constant, where B and C are
constants and p0 is the (constant) pressure at the origin,
(x, z) � (0, 0). Find an expression x � f (z) for the family
of lines which are everywhere parallel to the local pres-
sure gradient V�p.

P2.5 Atlanta, Georgia, has an average altitude of 1100 ft. On a
standard day (Table A.6), pressure gage A in a laboratory
experiment reads 93 kPa and gage B reads 105 kPa. Ex-
press these readings in gage pressure or vacuum pressure
(Pa), whichever is appropriate.

P2.6 Any pressure reading can be expressed as a length or head,
h � p/�g. What is standard sea-level pressure expressed in
(a) ft of ethylene glycol, (b) in Hg, (c) m of water, and (d)
mm of methanol? Assume all fluids are at 20°C.

P2.7 The deepest known point in the ocean is 11,034 m in the
Mariana Trench in the Pacific. At this depth the specific
weight of seawater is approximately 10,520 N/m3. At the
surface, � � 10,050 N/m3. Estimate the absolute pressure
at this depth, in atm.

P2.8 Dry adiabatic lapse rate (DALR) is defined as the nega-
tive value of atmospheric temperature gradient, dT/dz,
when temperature and pressure vary in an isentropic fash-
ion. Assuming air is an ideal gas, DALR � �dT/dz when
T � T0(p/p0)a, where exponent a � (k � 1)/k, k � cp/cv is
the ratio of specific heats, and T0 and p0 are the tempera-
ture and pressure at sea level, respectively. (a) Assuming
that hydrostatic conditions exist in the atmosphere, show
that the dry adiabatic lapse rate is constant and is given by
DALR � g(k� 1)/(kR), where R is the ideal gas constant
for air. (b) Calculate the numerical value of DALR for air
in units of °C/km.

*P2.9 For a liquid, integrate the hydrostatic relation, Eq. (2.18),
by assuming that the isentropic bulk modulus, B �
�(�p/��)s, is constant—see Eq. (9.18). Find an expression
for p(z) and apply the Mariana Trench data as in Prob. 2.7,
using Bseawater from Table A.3.

P2.10 A closed tank contains 1.5 m of SAE 30 oil, 1 m of wa-
ter, 20 cm of mercury, and an air space on top, all at 20°C.
The absolute pressure at the bottom of the tank is 60 kPa.
What is the pressure in the air space?

30°

A

A
σxx

σxy

σyx

σyy

σxx

σyy

σyx

σxy

=

=

P2.1



P2.16 A closed inverted cone, 100 cm high with diameter 60 cm
at the top, is filled with air at 20°C and 1 atm. Water at
20°C is introduced at the bottom (the vertex) to compress
the air isothermally until a gage at the top of the cone reads
30 kPa (gage). Estimate (a) the amount of water needed
(cm3) and (b) the resulting absolute pressure at the bottom
of the cone (kPa).

P2.11 In Fig. P2.11, pressure gage A reads 1.5 kPa (gage). The
fluids are at 20°C. Determine the elevations z, in meters,
of the liquid levels in the open piezometer tubes B and C.
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P2.12 In Fig. P2.12 the tank contains water and immiscible oil
at 20°C. What is h in cm if the density of the oil is 898
kg/m3?

1 m

1.5 m

2 m

z= 0

Gasoline

Glycerin

A

B C

Air

P2.11 

6 cm

12 cm

h

8 cm

Oil

Water

P2.12 

P2.13 In Fig. P2.13 the 20°C water and gasoline surfaces are
open to the atmosphere and at the same elevation. What is
the height h of the third liquid in the right leg?

P2.14 The closed tank in Fig. P2.14 is at 20°C. If the pressure
at point A is 95 kPa absolute, what is the absolute pres-
sure at point B in kPa? What percent error do you make
by neglecting the specific weight of the air?

P2.15 The air-oil-water system in Fig. P2.15 is at 20°C. Know-
ing that gage A reads 15 lbf/in2 absolute and gage B reads
1.25 lbf/in2 less than gage C, compute (a) the specific
weight of the oil in lbf/ft3 and (b) the actual reading of
gage C in lbf/in2 absolute.

1.5 m

1 m
h

Water
Gasoline

Liquid, SG = 1.60

P2.13 

A

Air

B
Air

4 m

2 m

2 m

4 m

Water

P2.14 

Air

Oil

Water

1 ft

1 ft

2 ft

2 ft

A

B

C

15 lbf/in2 abs

P2.15



P2.19 The U-tube in Fig. P2.19 has a 1-cm ID and contains mer-
cury as shown. If 20 cm3 of water is poured into the right-
hand leg, what will the free-surface height in each leg be
after the sloshing has died down?

P2.20 The hydraulic jack in Fig. P2.20 is filled with oil at 56
lbf/ft3. Neglecting the weight of the two pistons, what force
F on the handle is required to support the 2000-lbf weight
for this design?

P2.21 At 20°C gage A reads 350 kPa absolute. What is the height
h of the water in cm? What should gage B read in kPa ab-
solute? See Fig. P2.21.

P2.18 The system in Fig. P2.18 is at 20°C. If atmospheric pres-
sure is 101.33 kPa and the pressure at the bottom of the
tank is 242 kPa, what is the specific gravity of fluid X?

P2.17 The system in Fig. P2.17 is at 20°C. If the pressure at point
A is 1900 lbf/ft2, determine the pressures at points B, C,
and D in lbf/ft2.
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Air Air

Air

Water

A

B

C
2 ft

D

4 ft

3 ft

2 ft

5 ft

P2.17 

0.5 m

SAE 30 oil

Water

Fluid X

1 m

2 m

3 m

Mercury

P2.18 

Mercury

10 cm10 cm

10 cmP2.19

Oil

3-in diameter

1 in 15 in

1-in diameter

F

2000
lbf

Mercury80 cm

A B

h?

Air: 180 kPa abs

Water

P2.20

P2.21

P2.22 The fuel gage for a gasoline tank in a car reads propor-
tional to the bottom gage pressure as in Fig. P2.22. If the
tank is 30 cm deep and accidentally contains 2 cm of wa-
ter plus gasoline, how many centimeters of air remain at
the top when the gage erroneously reads “full’’?

P2.23 In Fig. P2.23 both fluids are at 20°C. If surface tension ef-
fects are negligible, what is the density of the oil, in kg/m3?

P2.24 In Prob. 1.2 we made a crude integration of the density
distribution �(z) in Table A.6 and estimated the mass of
the earth’s atmosphere to be m � 6 E18 kg. Can this re-



mental observations. (b) Find an expression for the pres-
sure at points 1 and 2 in Fig. P2.27b. Note that the glass
is now inverted, so the original top rim of the glass is at
the bottom of the picture, and the original bottom of the
glass is at the top of the picture. The weight of the card
can be neglected.
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sult be used to estimate sea-level pressure on the earth?
Conversely, can the actual sea-level pressure of 101.35 kPa
be used to make a more accurate estimate of the atmos-
pheric mass?

P2.25 Venus has a mass of 4.90 E24 kg and a radius of 6050 km.
Its atmosphere is 96 percent CO2, but let us assume it to
be 100 percent. Its surface temperature averages 730 K,
decreasing to 250 K at an altitude of 70 km. The average
surface pressure is 9.1 MPa. Estimate the atmospheric
pressure of Venus at an altitude of 5 km.

P2.26 Investigate the effect of doubling the lapse rate on atmos-
pheric pressure. Compare the standard atmosphere (Table
A.6) with a lapse rate twice as high, B2 � 0.0130 K/m.
Find the altitude at which the pressure deviation is (a) 1
percent and (b) 5 percent. What do you conclude?

P2.27 Conduct an experiment to illustrate atmospheric pressure.
Note: Do this over a sink or you may get wet! Find a drink-
ing glass with a very smooth, uniform rim at the top. Fill
the glass nearly full with water. Place a smooth, light, flat
plate on top of the glass such that the entire rim of the
glass is covered. A glossy postcard works best. A small in-
dex card or one flap of a greeting card will also work. See
Fig. P2.27a.
(a) Hold the card against the rim of the glass and turn the
glass upside down. Slowly release pressure on the card.
Does the water fall out of the glass? Record your experi-

Gasoline
SG = 0.68

30 cm

Water

h?

2 cm

Air

pgage

Vent

P2.22

8 cm
6 cm

Water

Oil

10 cm

P2.23

Card Top of glass

Bottom of glass

Card Original top of glass

Original bottom of glass

1 �

2 �

P2.27a

P2.27b

(c) Estimate the theoretical maximum glass height such
that this experiment could still work, i.e., such that the wa-
ter would not fall out of the glass.

P2.28 Earth’s atmospheric conditions vary somewhat. On a cer-
tain day the sea-level temperature is 45°F and the sea-level
pressure is 28.9 inHg. An airplane overhead registers an
air temperature of 23°F and a pressure of 12 lbf/in2. Esti-
mate the plane’s altitude, in feet.

P2.29 Under some conditions the atmosphere is adiabatic, p �
(const)(�k), where k is the specific heat ratio. Show that,
for an adiabatic atmosphere, the pressure variation is 
given by

p � p0�1 � �
k/(k�1)

Compare this formula for air at z � 5000 m with the stan-
dard atmosphere in Table A.6.

P2.30 In Fig. P2.30 fluid 1 is oil (SG � 0.87) and fluid 2 is glyc-
erin at 20°C. If pa � 98 kPa, determine the absolute pres-
sure at point A.

(k � 1)gz
��

kRT0

*



P2.34 Sometimes manometer dimensions have a significant ef-
fect. In Fig. P2.34 containers (a) and (b) are cylindrical and
conditions are such that pa � pb. Derive a formula for the
pressure difference pa � pb when the oil-water interface on
the right rises a distance �h � h, for (a) d � D and (b) d �
0.15D. What is the percent change in the value of �p?

P2.31 In Fig. P2.31 all fluids are at 20°C. Determine the pres-
sure difference (Pa) between points A and B.
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P2.33 In Fig. P2.33 the pressure at point A is 25 lbf/in2. All flu-
ids are at 20°C. What is the air pressure in the closed cham-
ber B, in Pa?

P2.30

P2.31

P2.32

P2.33

P2.34

ρ1

ρ2

pa

A

10 cm

32 cm

P2.35 Water flows upward in a pipe slanted at 30°, as in Fig.
P2.35. The mercury manometer reads h � 12 cm. Both flu-
ids are at 20°C. What is the pressure difference p1 � p2 in
the pipe?

P2.36 In Fig. P2.36 both the tank and the tube are open to the
atmosphere. If L � 2.13 m, what is the angle of tilt � of
the tube?

P2.37 The inclined manometer in Fig. P2.37 contains Meriam
red manometer oil, SG � 0.827. Assume that the reservoir

20 cm

40 cm

8 cm

9 cm

14 cm

A
B

Kerosine

Air

WaterMercury

Benzene

18 cm

H

35 cm

Mercury

Water

Meriam
red oil,

SG = 0.827

A

B

A
4 cm

3 cm

6 cm

8 cm

5 cm

3 cm

Air

Liquid, SG = 1.45

B

Water

SAE 30 oil

(a)

(b)

d

L  

h

D D

Water

SAE 30 oil
H

P2.32 For the inverted manometer of Fig. P2.32, all fluids are at
20°C. If pB � pA � 97 kPa, what must the height H be 
in cm?

*



with manometer fluid �m. One side of the manometer is open
to the air, while the other is connected to new tubing which
extends to pressure measurement location 1, some height H
higher in elevation than the surface of the manometer liquid.
For consistency, let �a be the density of the air in the room,
�t be the density of the gas inside the tube, �m be the den-
sity of the manometer liquid, and h be the height difference
between the two sides of the manometer. See Fig. P2.38.
(a) Find an expression for the gage pressure at the mea-
surement point. Note: When calculating gage pressure, use
the local atmospheric pressure at the elevation of the mea-
surement point. You may assume that h � H; i.e., assume
the gas in the entire left side of the manometer is of den-
sity �t. (b) Write an expression for the error caused by as-
suming that the gas inside the tubing has the same density
as that of the surrounding air. (c) How much error (in Pa)
is caused by ignoring this density difference for the fol-
lowing conditions: �m � 860 kg/m3, �a � 1.20 kg/m3,
�t � 1.50 kg/m3, H � 1.32 m, and h � 0.58 cm? (d) Can
you think of a simple way to avoid this error?

is very large. If the inclined arm is fitted with graduations
1 in apart, what should the angle � be if each graduation
corresponds to 1 lbf/ft2 gage pressure for pA?
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P2.38 An interesting article appeared in the AIAA Journal (vol. 30,
no. 1, January 1992, pp. 279–280). The authors explain that
the air inside fresh plastic tubing can be up to 25 percent
more dense than that of the surroundings, due to outgassing
or other contaminants introduced at the time of manufacture.
Most researchers, however, assume that the tubing is filled
with room air at standard air density, which can lead to sig-
nificant errors when using this kind of tubing to measure
pressures. To illustrate this, consider a U-tube manometer

h

(1)

(2)

30�

2 mP2.35

P2.39 An 8-cm-diameter piston compresses manometer oil into
an inclined 7-mm-diameter tube, as shown in Fig. P2.39.
When a weight W is added to the top of the piston, the oil
rises an additional distance of 10 cm up the tube, as shown.
How large is the weight, in N?

P2.40 A pump slowly introduces mercury into the bottom of the
closed tank in Fig. P2.40. At the instant shown, the air
pressure pB � 80 kPa. The pump stops when the air pres-
sure rises to 110 kPa. All fluids remain at 20°C. What will
be the manometer reading h at that time, in cm, if it is con-
nected to standard sea-level ambient air patm?

50 cm

50 cm

Oil
SG = 0.8

Water
SG = 1.0

L

�

P2.36

1 in

Reservoir

θ D = 
5

16
inpA

P2.37

h

H

1

U-tube 
manometer �m

�t 
(tubing gas)

�a  (air)

pa at location 1p1 

P2.38



P2.44 Water flows downward in a pipe at 45°, as shown in Fig.
P2.44. The pressure drop p1 � p2 is partly due to gravity
and partly due to friction. The mercury manometer reads
a 6-in height difference. What is the total pressure drop
p1 � p2 in lbf/in2? What is the pressure drop due to fric-
tion only between 1 and 2 in lbf/in2? Does the manome-
ter reading correspond only to friction drop? Why?
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P2.41 The system in Fig. P2.41 is at 20°C. Compute the pres-
sure at point A in lbf/ft2 absolute.

D = 8 cm

d = 7 mm

Meriam red
oil, SG = 0.827

10 cm

15˚

Piston

W

8 cm

9 cm

Air:  pB

Water

Mercury

Pump

patm

h

2 cm

Hg10 cm

P2.39

P2.40

Water

Water

5 in

10 in
6 in

Mercury

A

Oil, SG = 0.85
pa = 14.7 lbf/in2

P2.41

h1

pA

1

pB

1

h

2

h1

ρ ρ

ρ

P2.42

 5 ft

Flow

1

2

45˚

6 in

Mercury

Water

P2.44

P2.42 Very small pressure differences pA � pB can be measured
accurately by the two-fluid differential manometer in Fig.
P2.42. Density �2 is only slightly larger than that of the
upper fluid �1. Derive an expression for the proportional-
ity between h and pA � pB if the reservoirs are very large.

*P2.43 A mercury manometer, similar to Fig. P2.35, records h �
1.2, 4.9, and 11.0 mm when the water velocities in the pipe
are V � 1.0, 2.0, and 3.0 m/s, respectively. Determine if
these data can be correlated in the form p1 � p2 � Cf�V2,
where Cf is dimensionless.

P2.45 In Fig. P2.45, determine the gage pressure at point A in
Pa. Is it higher or lower than atmospheric?

P2.46 In Fig. P2.46 both ends of the manometer are open to the
atmosphere. Estimate the specific gravity of fluid X.

P2.47 The cylindrical tank in Fig. P2.47 is being filled with wa-
ter at 20°C by a pump developing an exit pressure of 175
kPa. At the instant shown, the air pressure is 110 kPa and
H � 35 cm. The pump stops when it can no longer raise
the water pressure. For isothermal air compression, esti-
mate H at that time.

P2.48 Conduct the following experiment to illustrate air pres-
sure. Find a thin wooden ruler (approximately 1 ft in

EES
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45 cm

30 cm

15 cm

40 cm

patm
Air

Oil,
SG = 0.85

Water Mercury

A

a karate chop on the portion of the ruler sticking out over
the edge of the desk. Record your results. (c) Explain
your results.

P2.49 A water tank has a circular panel in its vertical wall. The
panel has a radius of 50 cm, and its center is 2 m below
the surface. Neglecting atmospheric pressure, determine
the water force on the panel and its line of action.

P2.50 A vat filled with oil (SG � 0.85) is 7 m long and 3 m deep
and has a trapezoidal cross section 2 m wide at the bot-
tom and 4 m wide at the top. Compute (a) the weight of
oil in the vat, (b) the force on the vat bottom, and (c) the
force on the trapezoidal end panel.

P2.51 Gate AB in Fig. P2.51 is 1.2 m long and 0.8 m into the
paper. Neglecting atmospheric pressure, compute the force
F on the gate and its center-of-pressure position X.

*P2.52 Suppose that the tank in Fig. P2.51 is filled with liquid X,
not oil. Gate AB is 0.8 m wide into the paper. Suppose that
liquid X causes a force F on gate AB and that the moment
of this force about point B is 26,500 N � m. What is the
specific gravity of liquid X?

P2.45

7 cm

4 cm

6 cm

9 cm

5 cm

12 cm

SAE 30 oil

Water

Fluid X

10 cm

75 cm

H

50 cm

Air
20˚ C

Water
Pump

Newspaper

Ruler

Desk

P2.46

P2.48

P2.47

length) or a thin wooden paint stirrer. Place it on the edge
of a desk or table with a little less than half of it hang-
ing over the edge lengthwise. Get two full-size sheets of
newspaper; open them up and place them on top of the
ruler, covering only the portion of the ruler resting on the
desk as illustrated in Fig. P2.48. (a) Estimate the total
force on top of the newspaper due to air pressure in the
room. (b) Careful! To avoid potential injury, make sure
nobody is standing directly in front of the desk. Perform



P2.53 Panel ABC in the slanted side of a water tank is an isosce-
les triangle with the vertex at A and the base BC � 2 m,
as in Fig. P2.53. Find the water force on the panel and its
line of action.
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8 m

6 m

1.2 m

F
40°

X
1 m

A

B

4 m

Oil,
SG = 0.82

P2.51

P2.54 If, instead of water, the tank in Fig. P2.53 is filled with liq-
uid X, the liquid force on panel ABC is found to be 115 kN.
What is the density of liquid X? The line of action is found
to be the same as in Prob. 2.53. Why?

P2.55 Gate AB in Fig. P2.55 is 5 ft wide into the paper, hinged
at A, and restrained by a stop at B. The water is at 20°C.
Compute (a) the force on stop B and (b) the reactions at
A if the water depth h � 9.5 ft.

P2.56 In Fig. P2.55, gate AB is 5 ft wide into the paper, and stop
B will break if the water force on it equals 9200 lbf. For
what water depth h is this condition reached?

P2.57 In Fig. P2.55, gate AB is 5 ft wide into the paper. Suppose
that the fluid is liquid X, not water. Hinge A breaks when
its reaction is 7800 lbf, and the liquid depth is h � 13 ft.
What is the specific gravity of liquid X?

P2.58 In Fig. P2.58, the cover gate AB closes a circular opening
80 cm in diameter. The gate is held closed by a 200-kg
mass as shown. Assume standard gravity at 20°C. At what
water level h will the gate be dislodged? Neglect the weight
of the gate.

Water

B, C 3 m 

4 m 

A 

pa

Water
pa

4 ft

B

A

h

P2.53

P2.55

Water

30 cm

3 m

m

200 kg

h

B A

P2.58

P2.59

�

B

h

Hinge

A 

P 

L

*P2.59 Gate AB has length L, width b into the paper, is hinged at
B, and has negligible weight. The liquid level h remains
at the top of the gate for any angle �. Find an analytic ex-
pression for the force P, perpendicular to AB, required to
keep the gate in equilibrium in Fig. P2.59.

*P2.60 Find the net hydrostatic force per unit width on the rec-
tangular gate AB in Fig. P2.60 and its line of action.

*P2.61 Gate AB in Fig. P2.61 is a homogeneous mass of 180 kg,
1.2 m wide into the paper, hinged at A, and resting on a
smooth bottom at B. All fluids are at 20°C. For what wa-
ter depth h will the force at point B be zero?



P2.63 The tank in Fig. P2.63 has a 4-cm-diameter plug at the
bottom on the right. All fluids are at 20°C. The plug will
pop out if the hydrostatic force on it is 25 N. For this con-
dition, what will be the reading h on the mercury manome-
ter on the left side?

P2.62 Gate AB in Fig. P2.62 is 15 ft long and 8 ft wide into the
paper and is hinged at B with a stop at A. The water is at
20°C. The gate is 1-in-thick steel, SG � 7.85. Compute
the water level h for which the gate will start to fall.
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Water

Glycerin

A

B

1.8 m

1.2 m

2 m

2 m

P2.60

*P2.64 Gate ABC in Fig. P2.64 has a fixed hinge line at B and is
2 m wide into the paper. The gate will open at A to release
water if the water depth is high enough. Compute the depth
h for which the gate will begin to open.

*P2.65 Gate AB in Fig. P2.65 is semicircular, hinged at B, and
held by a horizontal force P at A. What force P is required
for equilibrium?

P2.66 Dam ABC in Fig. P2.66 is 30 m wide into the paper and
made of concrete (SG � 2.4). Find the hydrostatic force
on surface AB and its moment about C. Assuming no seep-
age of water under the dam, could this force tip the dam
over? How does your argument change if there is seepage
under the dam?

Water

B

A

Glycerin

1 m

h

2 m

60°

P2.61

Water

h

B

15 ft

60˚

10,000 lb

Pulley

A

P2.62

h

50°

2 cm

H

Water

Plug,
D = 4 cm

Mercury

P2.63

EES

Water at 20°C

A 20 cm B

C

1m

h

P2.64



**P2.67 Generalize Prob. 2.66 as follows. Denote length AB as H,
length BC as L, and angle ABC as �. Let the dam mater-
ial have specific gravity SG. The width of the dam is b.
Assume no seepage of water under the dam. Find an an-
alytic relation between SG and the critical angle �c for
which the dam will just tip over to the right. Use your re-
lation to compute �c for the special case SG � 2.4 (con-
crete).

P2.68 Isosceles triangle gate AB in Fig. P2.68 is hinged at A and
weighs 1500 N. What horizontal force P is required at point
B for equilibrium?

**P2.69 The water tank in Fig. P2.69 is pressurized, as shown by
the mercury-manometer reading. Determine the hydrosta-
tic force per unit depth on gate AB.

P2.70 Calculate the force and center of pressure on one side of
the vertical triangular panel ABC in Fig. P2.70. Neglect
patm.

**P2.71 In Fig. P2.71 gate AB is 3 m wide into the paper and is
connected by a rod and pulley to a concrete sphere (SG �
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P
A

B

5 m

Water

3 m Gate:
Side view

60  m

C��
��

A

B

Water 20˚C
80  m

Dam

P2.65

P2.66

A

P

3 m

Gate

50˚ B

1 mOil, SG = 0.83

2 m

P2.68

1 m

5 m

2 m

Water,
20˚C

Hg, 20˚C

A

B

80 cm

P2.69

C

Water

4 ft
B

A
2 ft

6 ft

P2.70



***P2.74 In “soft’’ liquids (low bulk modulus �), it may be neces-
sary to account for liquid compressibility in hydrostatic
calculations. An approximate density relation would be

dp � �
�
�

� d� � a2 d� or p � p0 	 a2(� � �0) 

where a is the speed of sound and (p0, �0) are the condi-
tions at the liquid surface z � 0. Use this approximation
to show that the density variation with depth in a soft liq-
uid is � � �0e�gz/a2

where g is the acceleration of gravity
and z is positive upward. Then consider a vertical wall of
width b, extending from the surface (z � 0) down to depth
z � � h. Find an analytic expression for the hydrostatic
force F on this wall, and compare it with the incompress-
ible result F � �0gh2b/2. Would the center of pressure be
below the incompressible position z � � 2h/3?

*P2.75 Gate AB in Fig. P2.75 is hinged at A, has width b into the
paper, and makes smooth contact at B. The gate has den-
sity �s and uniform thickness t. For what gate density �s,
expressed as a function of (h, t, �, �), will the gate just be-
gin to lift off the bottom? Why is your answer indepen-
dent of gate length L and width b?

2.40). What diameter of the sphere is just sufficient to keep
the gate closed?
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P2.72 The V-shaped container in Fig. P2.72 is hinged at A and
held together by cable BC at the top. If cable spacing is 
1 m into the paper, what is the cable tension?

P2.73 Gate AB is 5 ft wide into the paper and opens to let fresh
water out when the ocean tide is dropping. The hinge at A
is 2 ft above the freshwater level. At what ocean level h
will the gate first open? Neglect the gate weight.

A

4 m

B

Concrete
sphere, SG = 2.4

��8 m

6 m

Water

Cable

A

3 m

1 m
B

C

110˚

Water

P2.71

P2.72

**P2.76 Consider the angled gate ABC in Fig. P2.76, hinged at C
and of width b into the paper. Derive an analytic formula
for the horizontal force P required at the top for equilib-
rium, as a function of the angle �.

P2.77 The circular gate ABC in Fig. P2.77 has a 1-m radius and
is hinged at B. Compute the force P just sufficient to keep
the gate from opening when h � 8 m. Neglect atmospheric
pressure.

P2.78 Repeat Prob. 2.77 to derive an analytic expression for P
as a function of h. Is there anything unusual about your
solution?

P2.79 Gate ABC in Fig. P2.79 is 1 m square and is hinged at B.
It will open automatically when the water level h becomes
high enough. Determine the lowest height for which the

A

B

h

Stop

10 ft

Tide
range

Seawater, SG = 1.025

P2.73

A

L

t

h

�

�

B
P2.75
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gate will open. Neglect atmospheric pressure. Is this result
independent of the liquid density?

P2.80 For the closed tank in Fig. P2.80, all fluids are at 20°C, and
the airspace is pressurized. It is found that the net outward
hydrostatic force on the 30-by 40-cm panel at the bottom of
the water layer is 8450 N. Estimate (a) the pressure in the
airspace and (b) the reading h on the mercury manometer.

Water

A

B

C

1m

h

1m

P

pa

pa

P2.77

P2.81 Gate AB in Fig. P2.81 is 7 ft into the paper and weighs
3000 lbf when submerged. It is hinged at B and rests
against a smooth wall at A. Determine the water level h at
the left which will just cause the gate to open.

Water

A

B
C

h

60 cm

40 cm

P2.79

P2.82 The dam in Fig. P2.82 is a quarter circle 50 m wide into
the paper. Determine the horizontal and vertical compo-
nents of the hydrostatic force against the dam and the point
CP where the resultant strikes the dam.

P2.83 Gate AB in Fig. P2.83 is a quarter circle 10 ft wide into
the paper and hinged at B. Find the force F just sufficient
to keep the gate from opening. The gate is uniform and
weighs 3000 lbf.

P2.84 Determine (a) the total hydrostatic force on the curved sur-
face AB in Fig. P2.84 and (b) its line of action. Neglect at-
mospheric pressure, and let the surface have unit width.

Water

Water

4 ft

6 ft

8 ft

A

h

B

Air

SAE 30 oil

Water

60 cm

20 cm

80 cm

Panel, 30 cm high, 40 cm wide

Mercury

2 m

1 atm

h

P2.80

P2.81

h

��
��
��

Specific weight γ
θ
θ

P

B

A

C

P2.76

*

*
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P2.85 Compute the horizontal and vertical components of the hy-
drostatic force on the quarter-circle panel at the bottom of
the water tank in Fig. P2.85.

Water

20 m

���
���
���20 m

CP

pa
 = 0

P2.82

Water

A

B

F

r = 8 ft

A

B

Water at 20° C

1 m

x

z

z = x3

P2.87 The bottle of champagne (SG � 0.96) in Fig. P2.87 is un-
der pressure, as shown by the mercury-manometer read-
ing. Compute the net force on the 2-in-radius hemispher-
ical end cap at the bottom of the bottle.

P2.88 Gate ABC is a circular arc, sometimes called a Tainter gate,
which can be raised and lowered by pivoting about point
O. See Fig. P2.88. For the position shown, determine (a)
the hydrostatic force of the water on the gate and (b) its
line of action. Does the force pass through point O?

P2.83

P2.84

Water

6 m

2 m

5 m

2 m

P2.85

Water10 ft

2 ftP2.86

P2.86 Compute the horizontal and vertical components of the hy-
drostatic force on the hemispherical bulge at the bottom
of the tank in Fig. P2.86.

4 in
2 in

6 in

Mercuryr = 2 inP2.87

Water

B

C

O

R = 6 m

6 m

6 m

A

P2.88

*



P2.91 The hemispherical dome in Fig. P2.91 weighs 30 kN and
is filled with water and attached to the floor by six equally
spaced bolts. What is the force in each bolt required to
hold down the dome?

P2.92 A 4-m-diameter water tank consists of two half cylinders,
each weighing 4.5 kN/m, bolted together as shown in Fig.
P2.92. If the support of the end caps is neglected, deter-
mine the force induced in each bolt.

*P2.93 In Fig. P2.93, a one-quadrant spherical shell of radius R
is submerged in liquid of specific gravity � and depth 
h � R. Find an analytic expression for the resultant hydro-
static force, and its line of action, on the shell surface.

P2.89 The tank in Fig. P2.89 contains benzene and is pressur-
ized to 200 kPa (gage) in the air gap. Determine the ver-
tical hydrostatic force on circular-arc section AB and its
line of action.
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P2.90 A 1-ft-diameter hole in the bottom of the tank in Fig. P2.90
is closed by a conical 45° plug. Neglecting the weight of
the plug, compute the force F required to keep the plug in
the hole.

60 cm

60 cm

p = 200 kPa

Benzene
at 20�C

A

B

30 cm

P2.89

Air :

Water

45˚
cone

F

1 ft

p = 3 lbf/in2  gage

3 ft

1 ft

P2.90

P2.94 The 4-ft-diameter log (SG � 0.80) in Fig. P2.94 is 8 ft
long into the paper and dams water as shown. Compute
the net vertical and horizontal reactions at point C.

Water

4 m

3cm

Six
bolts

2 m

P2.91

2 m

2 m

Water

Bolt spacing 25 cm

P2.92

z

, γ

R

R

x

z
R

h

ρ

P2.93



wall at A. Compute the reaction forces at points A
and B.

***P2.95 The uniform body A in Fig. P2.95 has width b into the pa-
per and is in static equilibrium when pivoted about hinge
O. What is the specific gravity of this body if (a) h � 0
and (b) h � R?
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P2.96 The tank in Fig. P2.96 is 3 m wide into the paper. Ne-
glecting atmospheric pressure, compute the hydrostatic (a)
horizontal force, (b) vertical force, and (c) resultant force
on quarter-circle panel BC.

2ft
Log

2ft

Water

C

Water

P2.94

P2.98 Gate ABC in Fig. P2.98 is a quarter circle 8 ft wide into
the paper. Compute the horizontal and vertical hydrostatic
forces on the gate and the line of action of the resultant
force.

A

R

R

h

O

Water

P2.95

P2.99 A 2-ft-diameter sphere weighing 400 lbf closes a 1-ft-di-
ameter hole in the bottom of the tank in Fig. P2.99. Com-
pute the force F required to dislodge the sphere from the
hole.

4 m

4 m

6 m
Water

C

B

A

P2.96

P2.97 Gate AB in Fig. P2.97 is a three-eighths circle, 3 m wide
into the paper, hinged at B, and resting against a smooth

4 m

Seawater, 10,050  N/m3

2 m

45°

A

B

P2.97

45°
45°

r = 4 ft

B

C

Water

A

P2.98

 Water

 3 ft

 1 ft

 F

 1 ft

P2.99



whether his new crown was pure gold (SG � 19.3).
Archimedes measured the weight of the crown in air to be
11.8 N and its weight in water to be 10.9 N. Was it pure
gold?

P2.106 It is found that a 10-cm cube of aluminum (SG � 2.71)
will remain neutral under water (neither rise nor fall) if it
is tied by a string to a submerged 18-cm-diameter sphere
of buoyant foam. What is the specific weight of the foam,
in N/m3?

P2.107 Repeat Prob. 2.62, assuming that the 10,000-lbf weight is
aluminum (SG � 2.71) and is hanging submerged in the
water.

P2.108 A piece of yellow pine wood (SG � 0.65) is 5 cm square
and 2.2 m long. How many newtons of lead (SG � 11.4)
should be attached to one end of the wood so that it will
float vertically with 30 cm out of the water?

P2.109 A hydrometer floats at a level which is a measure of the
specific gravity of the liquid. The stem is of constant di-
ameter D, and a weight in the bottom stabilizes the body
to float vertically, as shown in Fig. P2.109. If the position
h � 0 is pure water (SG � 1.0), derive a formula for h as
a function of total weight W, D, SG, and the specific weight
�0 of water.

P2.100 Pressurized water fills the tank in Fig. P2.100. Compute
the net hydrostatic force on the conical surface ABC.

118 Chapter 2 Pressure Distribution in a Fluid

P2.101 A fuel truck has a tank cross section which is approxi-
mately elliptical, with a 3-m horizontal major axis and a
2-m vertical minor axis. The top is vented to the atmos-
phere. If the tank is filled half with water and half with
gasoline, what is the hydrostatic force on the flat ellipti-
cal end panel?

P2.102 In Fig. P2.80 suppose that the manometer reading is h �
25 cm. What will be the net hydrostatic force on the com-
plete end wall, which is 160 cm high and 2 m wide?

P2.103 The hydrogen bubbles in Fig. 1.13 are very small, less
than a millimeter in diameter, and rise slowly. Their drag
in still fluid is approximated by the first term of Stokes’
expression in Prob. 1.10: F � 3�
VD, where V is the rise
velocity. Neglecting bubble weight and setting bubble
buoyancy equal to drag, (a) derive a formula for the ter-
minal (zero acceleration) rise velocity Vterm of the bubble
and (b) determine Vterm in m/s for water at 20°C if D �
30 
m.

P2.104 The can in Fig. P2.104 floats in the position shown. What
is its weight in N?

P2.105 It is said that Archimedes discovered the buoyancy laws
when asked by King Hiero of Syracuse to determine

2 m

A C

B
150 kPa

gage

4 m

7 m

Water

P2.100

Water

3 cm

8 cm

D = 9 cmP2.104

P2.110 An average table tennis ball has a diameter of 3.81 cm and
a mass of 2.6 g. Estimate the (small) depth at which this
ball will float in water at 20°C and sea level standard air
if air buoyancy is (a) neglected and (b) included.

P2.111 A hot-air balloon must be designed to support basket, cords,
and one person for a total weight of 1300 N. The balloon
material has a mass of 60 g/m2. Ambient air is at 25°C and
1 atm. The hot air inside the balloon is at 70°C and 1 atm.
What diameter spherical balloon will just support the total
weight? Neglect the size of the hot-air inlet vent.

P2.112 The uniform 5-m-long round wooden rod in Fig. P2.112
is tied to the bottom by a string. Determine (a) the tension

h

Fluid, SG > 1

W

D

SG = 1.0

P2.109



P2.116 The homogeneous 12-cm cube in Fig. 2.116 is balanced
by a 2-kg mass on the beam scale when the cube is im-
mersed in 20°C ethanol. What is the specific gravity of the
cube?

in the string and (b) the specific gravity of the wood. Is it
possible for the given information to determine the incli-
nation angle �? Explain.
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Water at 20°C

String

1 m

4 m

θ

D = 8 cm

P2.112

P2.113 A spar buoy is a buoyant rod weighted to float and protrude
vertically, as in Fig. P2.113. It can be used for measurements
or markers. Suppose that the buoy is maple wood (SG �
0.6), 2 in by 2 in by 12 ft, floating in seawater (SG � 1.025).
How many pounds of steel (SG � 7.85) should be added to
the bottom end so that h � 18 in?

Wsteel

h

P2.113

8 m

Hinge

� = 30�

2 kg of lead

D = 4 cm
B

P2.114

P2.117 The balloon in Fig. P2.117 is filled with  helium and pres-
surized to 135 kPa and 20°C. The balloon material has a

P2.114 The uniform rod in Fig. P2.114 is hinged at point B on the
waterline and is in static equilibrium as shown when 2 kg
of lead (SG � 11.4) are attached to its end. What is the
specific gravity of the rod material? What is peculiar about
the rest angle � � 30?

P2.115 The 2-in by 2-in by 12-ft spar buoy from Fig. P2.113 has 5
lbm of steel attached and has gone aground on a rock, as in
Fig. P2.115. Compute the angle � at which the buoy will
lean, assuming that the rock exerts no moments on the spar.

Rock

Seawater

Wood

A

B

8 ft θ SG = 0.6

P2.115

12 cm

2 kg

P2.116



P2.120 A uniform wooden beam (SG � 0.65) is 10 cm by 10 cm
by 3 m and is hinged at A, as in Fig. P2.120. At what an-
gle � will the beam float in the 20°C water?

mass of 85 g/m2. Estimate (a) the tension in the mooring
line and (b) the height in the standard atmosphere to which
the balloon will rise if the mooring line is cut.
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P2.118 A 14-in-diameter hollow sphere is made of steel (SG �
7.85) with 0.16-in wall thickness. How high will this
sphere float in 20°C water? How much weight must be
added inside to make the sphere neutrally buoyant?

P2.119 When a 5-lbf weight is placed on the end of the uniform
floating wooden beam in Fig. P2.119, the beam tilts at an
angle � with its upper right corner at the surface, as shown.
Determine (a) the angle � and (b) the specific gravity of
the wood. (Hint: Both the vertical forces and the moments
about the beam centroid must be balanced.)

Air:
100 kPa at

20°C

D = 10 m

P2.117

Water 9 ft

5 lbf

4 in × 4 in

θ

P2.119

P2.121 The uniform beam in Fig. P2.121, of size L by h by b and
with specific weight �b, floats exactly on its diagonal when
a heavy uniform sphere is tied to the left corner, as shown.
Show that this can only happen (a) when �b � �/3 and (b)
when the sphere has size

D � � �
1/3Lhb

��
� (SG � 1)

θ

Water

1 m

A

P2.120

P2.122 A uniform block of steel (SG � 7.85) will “float’’ at a 
mercury-water interface as in Fig. P2.122. What is the 
ratio of the distances a and b for this condition?

�

L

Diameter D

γ

Width b << L

γ b

SG > 1

h << L

P2.121

Steel
block

Mercury: SG = 13.56

a

b

Water

P2.122

EES

P2.123 In an estuary where fresh water meets and mixes with sea-
water, there often occurs a stratified salinity condition with
fresh water on top and salt water on the bottom, as in Fig.
P2.123. The interface is called a halocline. An idealization
of this would be constant density on each side of the halo-
cline as shown. A 35-cm-diameter sphere weighing 50 lbf
would “float’’ near such a halocline. Compute the sphere
position for the idealization in Fig. P2.123.

P2.124 A balloon weighing 3.5 lbf is 6 ft in diameter. It is filled
with hydrogen at 18 lbf/in2 absolute and 60°F and is re-
leased. At what altitude in the U.S. standard atmosphere
will this balloon be neutrally buoyant?



Fig. P2.128 suppose that the height is L and the depth into
the paper is L, but the width in the plane of the paper is
H � L. Assuming S � 0.88 for the iceberg, find the ratio
H/L for which it becomes neutrally stable, i.e., about to
overturn.

P2.130 Consider a wooden cylinder (SG � 0.6) 1 m in diameter
and 0.8 m long. Would this cylinder be stable if placed to
float with its axis vertical in oil (SG � 0.8)?

P2.131 A barge is 15 ft wide and 40 ft long and floats with a draft
of 4 ft. It is piled so high with gravel that its center of grav-
ity is 2 ft above the waterline. Is it stable?

P2.132 A solid right circular cone has SG � 0.99 and floats ver-
tically as in Fig. P2.132. Is this a stable position for the
cone?

P2.125 Suppose that the balloon in Prob. 2.111 is constructed to
have a diameter of 14 m, is filled at sea level with hot air
at 70°C and 1 atm, and is released. If the air inside the bal-
loon remains constant and the heater maintains it at 70°C,
at what altitude in the U.S. standard atmosphere will this
balloon be neutrally buoyant?

*P2.126 A cylindrical can of weight W, radius R, and height H is
open at one end. With its open end down, and while filled
with atmospheric air (patm, Tatm), the can is eased down
vertically into liquid, of density �, which enters and com-
presses the air isothermally. Derive a formula for the height
h to which the liquid rises when the can is submerged with
its top (closed) end a distance d from the surface.

P2.127 Consider the 2-in by 2-in by 10-ft spar buoy of Prob. 2.113.
How many pounds of steel (SG � 7.85) should be added
at the bottom to ensure vertical floating with a metacen-
tric height M�G� of (a) zero (neutral stability) or (b) 1 ft
(reasonably stable)?

P2.128 An iceberg can be idealized as a cube of side length L, as
in Fig. P2.128. If seawater is denoted by S � 1.0, then
glacier ice (which forms icebergs) has S � 0.88. Deter-
mine if this “cubic’’ iceberg is stable for the position shown
in Fig. P2.128.
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Salinity Idealization

Halocline

SG = 1.025

35°/°°

SG = 1.0

0

P2.123

P2.129 The iceberg idealization in Prob. 2.128 may become un-
stable if its sides melt and its height exceeds its width. In

Water
S = 1.0

M?
G
B

Specific gravity

L

= S

h

P2.133 Consider a uniform right circular cone of specific gravity
S � 1, floating with its vertex down in water (S � 1). The
base radius is R and the cone height is H. Calculate and
plot the stability MM�G� of this cone, in dimensionless form,
versus H/R for a range of S � 1.

P2.134 When floating in water (SG � 1.0), an equilateral trian-
gular body (SG � 0.9) might take one of the two positions
shown in Fig. P2.134. Which is the more stable position?
Assume large width into the paper.

P2.128

*

Water :
SG = 1.0

SG = 0.99

P2.132

(a) (b)

P2.134

P2.135 Consider a homogeneous right circular cylinder of length
L, radius R, and specific gravity SG, floating in water
(SG � 1). Show that the body will be stable with its axis
vertical if

� [2SG(1 � SG)]1/2
R
�
L



P2.136 Consider a homogeneous right circular cylinder of length
L, radius R, and specific gravity SG � 0.5, floating in wa-
ter (SG � 1). Show that the body will be stable with its
axis horizontal if L/R � 2.0.

P2.137 A tank of water 4 m deep receives a constant upward ac-
celeration az. Determine (a) the gage pressure at the tank
bottom if az � 5 m2/s and (b) the value of az which causes
the gage pressure at the tank bottom to be 1 atm.

P2.138 A 12-fl-oz glass, of 3-in diameter, partly full of water, is
attached to the edge of an 8-ft-diameter merry-go-round
which is rotated at 12 r/min. How full can the glass be be-
fore water spills? (Hint: Assume that the glass is much
smaller than the radius of the merry-go-round.)

P2.139 The tank of liquid in Fig. P2.139 accelerates to the right
with the fluid in rigid-body motion. (a) Compute ax in
m/s2. (b) Why doesn’t the solution to part (a) depend upon
the density of the fluid? (c) Determine the gage pressure
at point A if the fluid is glycerin at 20°C.
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Fig. P2.139

P2.141

P2.140 Suppose that the elliptical-end fuel tank in Prob. 2.101 is
10 m long and filled completely with fuel oil (� � 890
kg/m3). Let the tank be pulled along a horizontal road. For
rigid-body motion, find the acceleration, and its direction,
for which (a) a constant-pressure surface extends from the
top of the front end wall to the bottom of the back end and
(b) the top of the back end is at a pressure 0.5 atm lower
than the top of the front end.

P2.141 The same tank from Prob. 2.139 is now moving with con-
stant acceleration up a 30° inclined plane, as in Fig.
P2.141. Assuming rigid-body motion, compute (a) the
value of the acceleration a, (b) whether the acceleration is
up or down, and (c) the gage pressure at point A if the fluid
is mercury at 20°C.

P2.142 The tank of water in Fig. P2.142 is 12 cm wide into the
paper. If the tank is accelerated to the right in rigid-body
motion at 6.0 m/s2, compute (a) the water depth on side
AB and (b) the water-pressure force on panel AB. Assume
no spilling.

P2.143 The tank of water in Fig. P2.143 is full and open to the at-
mosphere at point A. For what acceleration ax in ft/s2 will the
pressure at point B be (a) atmospheric and (b) zero absolute?

28 cm
100 cm

15 cm

V

A

a?

30°
z

x

A

28 cm

100 cm

ax

15 cm

P2.144 Consider a hollow cube of side length 22 cm, filled com-
pletely with water at 20°C. The top surface of the cube is
horizontal. One top corner, point A, is open through a small
hole to a pressure of 1 atm. Diagonally opposite to point
A is top corner B. Determine and discuss the various rigid-
body accelerations for which the water at point B begins
to cavitate, for (a) horizontal motion and (b) vertical mo-
tion.

P2.145 A fish tank 14 in deep by 16 by 27 in is to be carried 
in a car which may experience accelerations as high as 
6 m/s2. What is the maximum water depth which will avoid

Water at 20°C

24 cm

9 cm

A

B

P2.142

Water

2ft

2ft

1ft

1ft

A

B

ax

pa = 15 lbf/in2 abs

P2.143



with the child, which way will the balloon tilt, forward or
backward? Explain. (b) The child is now sitting in a car
which is stopped at a red light. The helium-filled balloon
is not in contact with any part of the car (seats, ceiling,
etc.) but is held in place by the string, which is in turn held
by the child. All the windows in the car are closed. When
the traffic light turns green, the car accelerates forward. In
a frame of reference moving with the car and child, which
way will the balloon tilt, forward or backward? Explain.
(c) Purchase or borrow a helium-filled balloon. Conduct a
scientific experiment to see if your predictions in parts (a)
and (b) above are correct. If not, explain.

P2.149 The 6-ft-radius waterwheel in Fig. P2.149 is being used to
lift water with its 1-ft-diameter half-cylinder blades. If the
wheel rotates at 10 r/min and rigid-body motion is as-
sumed, what is the water surface angle � at position A?

spilling in rigid-body motion? What is the proper align-
ment of the tank with respect to the car motion?

P2.146 The tank in Fig. P2.146 is filled with water and has a vent
hole at point A. The tank is 1 m wide into the paper. In-
side the tank, a 10-cm balloon, filled with helium at 130
kPa, is tethered centrally by a string. If the tank acceler-
ates to the right at 5 m/s2 in rigid-body motion, at what
angle will the balloon lean? Will it lean to the right or to
the left?
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P2.147 The tank of water in Fig. P2.147 accelerates uniformly by
freely rolling down a 30° incline. If the wheels are fric-
tionless, what is the angle �? Can you explain this inter-
esting result?

Water at 20°C

60 cm

40 cm

20 cm

D = 10 cm

String

1 atm

A

He

P2.146

θ

30°

P2.147

P2.148 A child is holding a string onto which is attached a he-
lium-filled balloon. (a) The child is standing still and sud-
denly accelerates forward. In a frame of reference moving

10 r/min

A

θ

1 ft

6 ft

P2.149

D

ax

L1
2

L

L1
2

h Rest level

P2.150

P2.150 A cheap accelerometer, probably worth the price, can be
made from a U-tube as in Fig. P2.150. If L � 18 cm and
D � 5 mm, what will h be if ax � 6 m/s2? Can the scale
markings on the tube be linear multiples of ax?

P2.151 The U-tube in Fig. P2.151 is open at A and closed at D.
If accelerated to the right at uniform ax, what acceleration



will cause the pressure at point C to be atmospheric? The
fluid is water (SG � 1.0).
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1 ft

1 ft1 ft

D

CB

A

P2.151

A

B

C

20 cm

10 cm 5 cm

12 cm

Ω

P2.155

P2.156 Suppose that the U-tube of Fig. P2.151 is rotated about
axis DC. If the fluid is water at 122°F and atmospheric
pressure is 2116 lbf/ft2 absolute, at what rotation rate will
the fluid within the tube begin to vaporize? At what point
will this occur?

P2.157 The 45° V-tube in Fig. P2.157 contains water and is open
at A and closed at C. What uniform rotation rate in r/min
about axis AB will cause the pressure to be equal at points
B and C? For this condition, at what point in leg BC will
the pressure be a minimum?

30 cm

45˚

A C

B

P2.157

P2.158 It is desired to make a 3-m-diameter parabolic telescope
mirror by rotating molten glass in rigid-body motion un-
til the desired shape is achieved and then cooling the glass
to a solid. The focus of the mirror is to be 4 m from the
mirror, measured along the centerline. What is the proper
mirror rotation rate, in r/min, for this task?

P2.152 A 16-cm-diameter open cylinder 27 cm high is full of wa-
ter. Compute the rigid-body rotation rate about its central
axis, in r/min, (a) for which one-third of the water will
spill out and (b) for which the bottom will be barely ex-
posed.

P2.153 Suppose the U-tube in Fig. P2.150 is not translated but
rather rotated about its right leg at 95 r/min. What will be
the level h in the left leg if L � 18 cm and D � 5 mm?

P2.154 A very deep 18-cm-diameter can contains 12 cm of water
overlaid with 10 cm of SAE 30 oil. If the can is 
rotated in rigid-body motion about its central axis at 
150 r/min, what will be the shapes of the air-oil and 
oil-water interfaces? What will be the maximum fluid pres-
sure in the can in Pa (gage)?

P2.155 For what uniform rotation rate in r/min about axis C will
the U-tube in Fig. P2.155 take the configuration shown?
The fluid is mercury at 20°C.

EES

*



Fundamentals of Engineering Exam Problems

FE2.1 A gage attached to a pressurized nitrogen tank reads a
gage pressure of 28 in of mercury. If atmospheric pres-
sure is 14.4 psia, what is the absolute pressure in the tank?
(a) 95 kPa, (b) 99 kPa, (c) 101 kPa, (d) 194 kPa,
(e) 203 kPa

FE2.2 On a sea-level standard day, a pressure gage, moored be-
low the surface of the ocean (SG � 1.025), reads an ab-
solute pressure of 1.4 MPa. How deep is the instrument?
(a) 4 m, (b) 129 m, (c) 133 m, (d) 140 m, (e) 2080 m

FE2.3 In Fig. FE2.3, if the oil in region B has SG � 0.8 and the
absolute pressure at point A is 1 atm, what is the absolute
pressure at point B?
(a) 5.6 kPa, (b) 10.9 kPa, (c) 106.9 kPa, (d) 112.2 kPa,
(e) 157.0 kPa

Word Problems

W2.1 Consider a hollow cone with a vent hole in the vertex at
the top, along with a hollow cylinder, open at the top, with
the same base area as the cone. Fill both with water to the
top. The hydrostatic paradox is that both containers have
the same force on the bottom due to the water pressure, al-
though the cone contains 67 percent less water. Can you
explain the paradox?

W2.2 Can the temperature ever rise with altitude in the real at-
mosphere? Wouldn’t this cause the air pressure to increase
upward? Explain the physics of this situation.

W2.3 Consider a submerged curved surface which consists of a
two-dimensional circular arc of arbitrary angle, arbitrary
depth, and arbitrary orientation. Show that the resultant hy-
drostatic pressure force on this surface must pass through
the center of curvature of the arc.

W2.4 Fill a glass approximately 80 percent with water, and add a
large ice cube. Mark the water level. The ice cube, having
SG � 0.9, sticks up out of the water. Let the ice cube melt
with negligible evaporation from the water surface. Will the
water level be higher than, lower than, or the same as before?
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5 cm

3 cm

4 cm

8 cm

A

B

Oil

Mercury
SG = 13.56

Water
SG = 1

FE2.3

W2.5 A ship, carrying a load of steel, is trapped while floating
in a small closed lock. Members of the crew want to get
out, but they can’t quite reach the top wall of the lock. A
crew member suggests throwing the steel overboard in the
lock, claiming the ship will then rise and they can climb
out. Will this plan work?

W2.6 Consider a balloon of mass m floating neutrally in the at-
mosphere, carrying a person/basket of mass M � m. Dis-
cuss the stability of this system to disturbances.

W2.7 Consider a helium balloon on a string tied to the seat of
your stationary car. The windows are closed, so there is no
air motion within the car. The car begins to accelerate for-
ward. Which way will the balloon lean, forward or back-
ward? (Hint: The acceleration sets up a horizontal pressure
gradient in the air within the car.)

W2.8 Repeat your analysis of Prob. W2.7 to let the car move at
constant velocity and go around a curve. Will the balloon
lean in, toward the center of curvature, or out?

FE2.4 In Fig. FE2.3, if the oil in region B has SG � 0.8 and the
absolute pressure at point B is 14 psia, what is the ab-
solute pressure at point B?
(a) 11 kPa, (b) 41 kPa, (c) 86 kPa, (d) 91 kPa, (e) 101 kPa

FE2.5 A tank of water (SG � 1,.0) has a gate in its vertical wall
5 m high and 3 m wide. The top edge of the gate is 2 m
below the surface. What is the hydrostatic force on the gate?
(a) 147 kN, (b) 367 kN, (c) 490 kN, (d) 661 kN,
(e) 1028 kN

FE2.6 In Prob. FE2.5 above, how far below the surface is the
center of pressure of the hydrostatic force?
(a) 4.50 m, (b) 5.46 m, (c) 6.35 m, (d) 5.33 m, (e) 4.96 m

FE2.7 A solid 1-m-diameter sphere floats at the interface between
water (SG � 1.0) and mercury (SG � 13.56) such that 40 per-
cent is in the water. What is the specific gravity of the sphere?
(a) 6.02, (b) 7.28, (c) 7.78, (d) 8.54, (e) 12.56

FE2.8 A 5-m-diameter balloon contains helium at 125 kPa absolute
and 15°C, moored in sea-level standard air. If the gas con-
stant of helium is 2077 m2/(s2�K) and balloon material weight
is neglected, what is the net lifting force of the balloon?
(a) 67 N, (b) 134 N, (c) 522 N, (d) 653 N, (e) 787 N

FE2.9 A square wooden (SG � 0.6) rod, 5 cm by 5 cm by 10 m
long, floats vertically in water at 20°C when 6 kg of steel
(SG � 7.84) are attached to one end. How high above the
water surface does the wooden end of the rod protrude?
(a) 0.6 m, (b) 1.6 m, (c) 1.9 m, (d) 2.4 m, (e) 4.0 m



of buoyancy is above its metacenter, (d) metacenter is
above its center of buoyancy, (e) metacenter is above its
center of gravity

FE2.10 A floating body will be stable when its
(a) center of gravity is above its center of buoyancy,
(b) center of buoyancy is below the waterline, (c) center
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D
h

d

Zero pressure level

To pressure measurement location

p1

�a (air)pa

�m

C2.1

Comprehensive Problems

C2.1 Some manometers are constructed as in Fig. C2.1, where
one side is a large reservoir (diameter D) and the other side
is a small tube of diameter d, open to the atmosphere. In
such a case, the height of manometer liquid on the reservoir
side does not change appreciably. This has the advantage
that only one height needs to be measured rather than two.
The manometer liquid has density �m while the air has den-
sity �a. Ignore the effects of surface tension. When there is
no pressure difference across the manometer, the elevations
on both sides are the same, as indicated by the dashed line.
Height h is measured from the zero pressure level as shown.
(a) When a high pressure is applied to the left side, the
manometer liquid in the large reservoir goes down, while
that in the tube at the right goes up to conserve mass. Write
an exact expression for p1gage, taking into account the move-
ment of the surface of the reservoir. Your equation should
give p1gage as a function of h, �m, and the physical para-
meters in the problem, h, d, D, and gravity constant g. 
(b) Write an approximate expression for p1gage, neglecting
the change in elevation of the surface of the reservoir liq-
uid. (c) Suppose h � 0.26 m in a certain application. If pa �
101,000 Pa and the manometer liquid has a density of 820
kg/m3, estimate the ratio D/d required to keep the error 
of the approximation of part (b) within 1 percent of the ex-
act measurement of part (a). Repeat for an error within 0.1
percent.

U-tube is still useful as a pressure-measuring device. It is
attached to a pressurized tank as shown in the figure. (a)
Find an expression for h as a function of H and other pa-
rameters in the problem. (b) Find the special case of your
result in (a) when ptank � pa. (c) Suppose H � 5.0 cm, pa

is 101.2kPa, ptank is 1.82 kPa higher than pa, and SG0 �
0.85. Calculate h in cm, ignoring surface tension effects and
neglecting air density effects.

Oil

Water

H
h

Pressurized air tank, 
with pressure � ptank

pa

C2.2

C2.3 Professor F. Dynamics, riding the merry-go-round with his
son, has brought along his U-tube manometer. (You never
know when a manometer might come in handy.) As shown
in Fig. C2.3, the merry-go-round spins at constant angular
velocity and the manometer legs are 7 cm apart. The
manometer center is 5.8 m from the axis of rotation. De-
termine the height difference h in two ways: (a) approxi-
mately, by assuming rigid body translation with a equal to
the average manometer acceleration; and (b) exactly, using
rigid-body rotation theory. How good is the approximation?

C2.4 A student sneaks a glass of cola onto a roller coaster ride.
The glass is cylindrical, twice as tall as it is wide, and filled
to the brim. He wants to know what percent of the cola he
should drink before the ride begins, so that none of it spills
during the big drop, in which the roller coaster achieves
0.55-g acceleration at a 45° angle below the horizontal.
Make the calculation for him, neglecting sloshing and as-
suming that the glass is vertical at all times.

C2.2 A prankster has added oil, of specific gravity SG0, to the
left leg of the manometer in Fig. C2.2. Nevertheless, the 



8. R. P. Benedict, Fundamentals of Temperature, Pressure, and
Flow Measurement, 3d ed., Wiley, New York, 1984.

9. T. G. Beckwith and R. G. Marangoni, Mechanical Measure-
ments, 4th ed., Addison-Wesley, Reading, MA, 1990.

10. J. W. Dally, W. F. Riley, and K. G. McConnell, Instrumenta-
tion for Engineering Measurements, Wiley, New York, 1984.

11. E. N. Gilbert, “How Things Float,’’ Am. Math. Monthly, vol.
98, no. 3, pp. 201–216, 1991.

12. R. J. Figliola and D. E. Beasley, Theory and Design for Me-
chanical Measurements, 2d ed., Wiley, New York, 1994.

13. R. W. Miller, Flow Measurement Engineering Handbook, 3d
ed., McGraw-Hill, New York, 1996.

References

1. U.S. Standard Atmosphere, 1976, Government Printing Of-
fice, Washington, DC, 1976.

2. G. Neumann and W. J. Pierson, Jr., Principles of Physical
Oceanography, Prentice-Hall, Englewood Cliffs, NJ, 1966.

3. T. C. Gillmer and B. Johnson, Introduction to Naval Archi-
tecture, Naval Institute Press, Annapolis, MD, 1982.

4. D. T. Greenwood, Principles of Dynamics, 2d ed., Prentice-
Hall, Englewood Cliffs, NJ, 1988.

5. R. I. Fletcher, “The Apparent Field of Gravity in a Rotating
Fluid System,’’ Am. J. Phys., vol. 40, pp. 959–965, July 1972.

6. National Committee for Fluid Mechanics Films, Illustrated
Experiments in Fluid Mechanics, M.I.T. Press, Cambridge,
MA, 1972.

7. J. P. Holman, Experimental Methods for Engineers, 6th ed.,
McGraw-Hill, New York, 1993.

h, m F, N h, m F, N

6.00 400 7.25 554
6.25 437 7.50 573
6.50 471 7.75 589
6.75 502 8.00 600
7.00 530

b

h

Y

L

W

Circular arc block

Fluid: �

Pivot arm Pivot
Counterweight

Side view
of block face

R

D2.2

Design Projects

D2.1 It is desired to have a bottom-moored, floating system
which creates a nonlinear force in the mooring line as the
water level rises. The design force F need only be accurate
in the range of seawater depths h between 6 and 8 m, as
shown in the accompanying table. Design a buoyant sys-
tem which will provide this force distribution. The system
should be practical, i.e., of inexpensive materials and sim-
ple construction.

D2.2 A laboratory apparatus used in some universities is shown
in Fig. D2.2. The purpose is to measure the hydrostatic
force on the flat face of the circular-arc block and com-
pare it with the theoretical value for given depth h. The
counterweight is arranged so that the pivot arm is hori-
zontal when the block is not submerged, whence the weight
W can be correlated with the hydrostatic force when the
submerged arm is again brought to horizontal. First show
that the apparatus concept is valid in principle; then derive
a formula for W as a function of h in terms of the system
parameters. Finally, suggest some appropriate values of Y,
L, etc., for a suitable appartus and plot theoretical W ver-
sus h for these values.

R � 5.80 m (to center of manometer)

h

Center of
rotation

� � 6.00 rpm

Water

7.00 cm

C2.3
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Table tennis ball suspended by an air jet. The control volume momentum principle, studied in
this chapter, requires a force to change the direction of a flow. The jet flow deflects around the
ball, and the force is the ball’s weight. (Courtesy of Paul Silverman/Fundamental Photographs)



3.1 Basic Physical Laws 
of Fluid Mechanics

Motivation. In analyzing fluid motion, we might take one of two paths: (1) seeking to
describe the detailed flow pattern at every point (x, y, z) in the field or (2) working
with a finite region, making a balance of flow in versus flow out, and determining gross
flow effects such as the force or torque on a body or the total energy exchange. The
second is the “control-volume” method and is the subject of this chapter. The first is
the “differential” approach and is developed in Chap. 4.

We first develop the concept of the control volume, in nearly the same manner as
one does in a thermodynamics course, and we find the rate of change of an arbitrary
gross fluid property, a result called the Reynolds transport theorem. We then apply this
theorem, in sequence, to mass, linear momentum, angular momentum, and energy, thus
deriving the four basic control-volume relations of fluid mechanics. There are many
applications, of course. The chapter then ends with a special case of frictionless, shaft-
work-free momentum and energy: the Bernoulli equation. The Bernoulli equation is a
wonderful, historic relation, but it is extremely restrictive and should always be viewed
with skepticism and care in applying it to a real (viscous) fluid motion.

It is time now to really get serious about flow problems. The fluid-statics applications
of Chap. 2 were more like fun than work, at least in my opinion. Statics problems ba-
sically require only the density of the fluid and knowledge of the position of the free
surface, but most flow problems require the analysis of an arbitrary state of variable
fluid motion defined by the geometry, the boundary conditions, and the laws of me-
chanics. This chapter and the next two outline the three basic approaches to the analy-
sis of arbitrary flow problems:

1. Control-volume, or large-scale, analysis (Chap. 3)

2. Differential, or small-scale, analysis (Chap. 4)

3. Experimental, or dimensional, analysis (Chap. 5)

The three approaches are roughly equal in importance, but control-volume analysis is
“more equal,” being the single most valuable tool to the engineer for flow analysis. It
gives “engineering” answers, sometimes gross and crude but always useful. In princi-
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Systems versus Control Volumes

ple, the differential approach of Chap. 4 can be used for any problem, but in practice
the lack of mathematical tools and the inability of the digital computer to model small-
scale processes make the differential approach rather limited. Similarly, although the
dimensional analysis of Chap. 5 can be applied to any problem, the lack of time and
money and generality often makes experimentation a limited approach. But a control-
volume analysis takes about half an hour and gives useful results. Thus, in a trio of ap-
proaches, the control volume is best. Oddly enough, it is the newest of the three. Dif-
ferential analysis began with Euler and Lagrange in the eighteenth century, and
dimensional analysis was pioneered by Lord Rayleigh in the late nineteenth century,
but the control volume, although proposed by Euler, was not developed on a rigorous
basis as an analytical tool until the 1940s.

All the laws of mechanics are written for a system, which is defined as an arbitrary
quantity of mass of fixed identity. Everything external to this system is denoted by the
term surroundings, and the system is separated from its surroundings by its bound-
aries. The laws of mechanics then state what happens when there is an interaction be-
tween the system and its surroundings.

First, the system is a fixed quantity of mass, denoted by m. Thus the mass of the
system is conserved and does not change.1 This is a law of mechanics and has a very
simple mathematical form, called conservation of mass:

msyst � const

or �
d
d
m
t
� � 0

(3.1)

This is so obvious in solid-mechanics problems that we often forget about it. In fluid
mechanics, we must pay a lot of attention to mass conservation, and it takes a little
analysis to make it hold.

Second, if the surroundings exert a net force F on the system, Newton’s second law
states that the mass will begin to accelerate2

F � ma � m �
d
d
V
t
� � �

d
d
t
� (mV) (3.2)

In Eq. (2.12) we saw this relation applied to a differential element of viscous incom-
pressible fluid. In fluid mechanics Newton’s law is called the linear-momentum rela-
tion. Note that it is a vector law which implies the three scalar equations Fx � max,
Fy � may, and Fz � maz.

Third, if the surroundings exert a net moment M about the center of mass of the
system, there will be a rotation effect

M � �
d
d
H
t
� (3.3)

where H � �(r � V) �m is the angular momentum of the system about its center of
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1We are neglecting nuclear reactions, where mass can be changed to energy.
2We are neglecting relativistic effects, where Newton’s law must be modified.



mass. Here we call Eq. (3.3) the angular-momentum relation. Note that it is also a vec-
tor equation implying three scalar equations such as Mx � dHx /dt.

For an arbitrary mass and arbitrary moment, H is quite complicated and contains
nine terms (see, e.g., Ref. 1, p. 285). In elementary dynamics we commonly treat only
a rigid body rotating about a fixed x axis, for which Eq. (3.3) reduces to

Mx � Ix �
d
d
t
� (�x) (3.4)

where �x is the angular velocity of the body and Ix is its mass moment of inertia about
the x axis. Unfortunately, fluid systems are not rigid and rarely reduce to such a sim-
ple relation, as we shall see in Sec. 3.5.

Fourth, if heat dQ is added to the system or work dW is done by the system, the
system energy dE must change according to the energy relation, or first law of ther-
modynamics,

dQ � dW � dE

or �
d
d
Q
t
� � �

d
d
W
t
� � �

d
d
E
t
�

(3.5)

Like mass conservation, Eq. (3.1), this is a scalar relation having only a single com-
ponent.

Finally, the second law of thermodynamics relates entropy change dS to heat added
dQ and absolute temperature T:

dS � �
d
T
Q
� (3.6)

This is valid for a system and can be written in control-volume form, but there are al-
most no practical applications in fluid mechanics except to analyze flow-loss details
(see Sec. 9.5).

All these laws involve thermodynamic properties, and thus we must supplement
them with state relations p � p(	, T) and e � e(	, T) for the particular fluid being stud-
ied, as in Sec. 1.6.

The purpose of this chapter is to put our four basic laws into the control-volume
form suitable for arbitrary regions in a flow:

1. Conservation of mass (Sec. 3.3)

2. The linear-momentum relation (Sec. 3.4)

3. The angular-momentum relation (Sec. 3.5)

4. The energy equation (Sec. 3.6)

Wherever necessary to complete the analysis we also introduce a state relation such as
the perfect-gas law.

Equations (3.1) to (3.6) apply to either fluid or solid systems. They are ideal for solid
mechanics, where we follow the same system forever because it represents the product
we are designing and building. For example, we follow a beam as it deflects under load.
We follow a piston as it oscillates. We follow a rocket system all the way to Mars.

But fluid systems do not demand this concentrated attention. It is rare that we wish
to follow the ultimate path of a specific particle of fluid. Instead it is likely that the
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Fig. 3.1 Volume rate of flow
through an arbitrary surface: (a) an
elemental area dA on the surface;
(b) the incremental volume swept
through dA equals V dt dA cos 
.

fluid forms the environment whose effect on our product we wish to know. For the
three examples cited above, we wish to know the wind loads on the beam, the fluid
pressures on the piston, and the drag and lift loads on the rocket. This requires that the
basic laws be rewritten to apply to a specific region in the neighborhood of our prod-
uct. In other words, where the fluid particles in the wind go after they leave the beam
is of little interest to a beam designer. The user’s point of view underlies the need for
the control-volume analysis of this chapter.

Although thermodynamics is not at all the main topic of this book, it would be a
shame if the student did not review at least the first law and the state relations, as dis-
cussed, e.g., in Refs. 6 and 7.

In analyzing a control volume, we convert the system laws to apply to a specific re-
gion which the system may occupy for only an instant. The system passes on, and other
systems come along, but no matter. The basic laws are reformulated to apply to this
local region called a control volume. All we need to know is the flow field in this re-
gion, and often simple assumptions will be accurate enough (e.g., uniform inlet and/or
outlet flows). The flow conditions away from the control volume are then irrelevant.
The technique for making such localized analyses is the subject of this chapter.

All the analyses in this chapter involve evaluation of the volume flow Q or mass flow
ṁ passing through a surface (imaginary) defined in the flow.

Suppose that the surface S in Fig. 3.1a is a sort of (imaginary) wire mesh through
which the fluid passes without resistance. How much volume of fluid passes through S
in unit time? If, typically, V varies with position, we must integrate over the elemental
surface dA in Fig. 3.1a. Also, typically V may pass through dA at an angle 
 off the
normal. Let n be defined as the unit vector normal to dA. Then the amount of fluid swept
through dA in time dt is the volume of the slanted parallelopiped in Fig. 3.1b:

d� � V dt dA cos 
 � (V � n) dA dt

The integral of d�/dt is the total volume rate of flow Q through the surface S

Q � �
S

(V � n) dA � �
S

Vn dA (3.7)
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3.2 The Reynolds Transport
Theorem

We could replace V � n by its equivalent, Vn, the component of V normal to dA, but
the use of the dot product allows Q to have a sign to distinguish between inflow and
outflow. By convention throughout this book we consider n to be the outward normal
unit vector. Therefore V � n denotes outflow if it is positive and inflow if negative. This
will be an extremely useful housekeeping device when we are computing volume and
mass flow in the basic control-volume relations.

Volume flow can be multiplied by density to obtain the mass flow ṁ . If density
varies over the surface, it must be part of the surface integral

ṁ � �
S

	(V� n) dA � �
S

	Vn dA

If density is constant, it comes out of the integral and a direct proportionality results:

Constant density: ṁ � 	Q

To convert a system analysis to a control-volume analysis, we must convert our math-
ematics to apply to a specific region rather than to individual masses. This conversion,
called the Reynolds transport theorem, can be applied to all the basic laws. Examin-
ing the basic laws (3.1) to (3.3) and (3.5), we see that they are all concerned with the
time derivative of fluid properties m, V, H, and E. Therefore what we need is to relate
the time derivative of a system property to the rate of change of that property within
a certain region.

The desired conversion formula differs slightly according to whether the control vol-
ume is fixed, moving, or deformable. Figure 3.2 illustrates these three cases. The fixed
control volume in Fig. 3.2a encloses a stationary region of interest to a nozzle designer.
The control surface is an abstract concept and does not hinder the flow in any way. It
slices through the jet leaving the nozzle, circles around through the surrounding at-
mosphere, and slices through the flange bolts and the fluid within the nozzle. This par-
ticular control volume exposes the stresses in the flange bolts, which contribute to ap-
plied forces in the momentum analysis. In this sense the control volume resembles the
free-body concept, which is applied to systems in solid-mechanics analyses.

Figure 3.2b illustrates a moving control volume. Here the ship is of interest, not the
ocean, so that the control surface chases the ship at ship speed V. The control volume
is of fixed volume, but the relative motion between water and ship must be considered.
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Fig. 3.2 Fixed, moving, and de-
formable control volumes: (a) fixed
control volume for nozzle-stress
analysis; (b) control volume mov-
ing at ship speed for drag-force
analysis; (c) control volume de-
forming within cylinder for tran-
sient pressure-variation analysis.



One-Dimensional Fixed Control
Volume

If V is constant, this relative motion is a steady-flow pattern, which simplifies the analy-
sis.3 If V is variable, the relative motion is unsteady, so that the computed results are
time-variable and certain terms enter the momentum analysis to reflect the noninertial
frame of reference.

Figure 3.2c shows a deforming control volume. Varying relative motion at the bound-
aries becomes a factor, and the rate of change of shape of the control volume enters
the analysis. We begin by deriving the fixed-control-volume case, and we consider the
other cases as advanced topics.

As a simple first example, consider a duct or streamtube with a nearly one-dimensional
flow V � V(x), as shown in Fig. 3.3. The selected control volume is a portion of the
duct which happens to be filled exactly by system 2 at a particular instant t. At time 
t � dt, system 2 has begun to move out, and a sliver of system 1 has entered from the
left. The shaded areas show an outflow sliver of volume AbVb dt and an inflow volume
AaVa dt.

Now let B be any property of the fluid (energy, momentum, etc.), and let 
 � dB/dm
be the intensive value or the amount of B per unit mass in any small portion of the
fluid. The total amount of B in the control volume is thus

BCV � �
CV


	 d� 
 � �
d
d
m
B
� (3.8)
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Fig. 3.3 Example of inflow and
outflow as three systems pass
through a control volume: (a) Sys-
tem 2 fills the control volume at
time t; (b) at time t � dt system 2
begins to leave and system 1 
enters.

3A wind tunnel uses a fixed model to simulate flow over a body moving through a fluid. A tow tank
uses a moving model to simulate the same situation.
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Arbitrary Fixed Control Volume

where 	 d� is a differential mass of the fluid. We want to relate the rate of change of
BCV to the rate of change of the amount of B in system 2 which happens to coincide
with the control volume at time t. The time derivative of BCV is defined by the calcu-
lus limit

�
d
d
t
� (BCV) � �

d
1
t
� BCV(t � dt) � �

d
1
t
� BCV(t)

� �
d
1
t
� [B2(t � dt) � (
	 d�)out � (
	d�)in] � �

d
1
t
� [B2(t)]

� �
d
1
t
� [B2(t � dt) � B2(t)] � (
	AV)out � (
	AV)in

The first term on the right is the rate of change of B within system 2 at the instant it
occupies the control volume. By rearranging the last line of the above equation, we
have the desired conversion formula relating changes in any property B of a local sys-
tem to one-dimensional computations concerning a fixed control volume which in-
stantaneously encloses the system.

�
d
d
t
� (Bsyst) � �

d
d
t
� ��CV


	 d�� � (
	AV)out � (
	AV)in (3.9)

This is the one-dimensional Reynolds transport theorem for a fixed volume. The three
terms on the right-hand side are, respectively,

1. The rate of change of B within the control volume

2. The flux of B passing out of the control surface

3. The flux of B passing into the control surface

If the flow pattern is steady, the first term vanishes. Equation (3.9) can readily be gen-
eralized to an arbitrary flow pattern, as follows.

Figure 3.4 shows a generalized fixed control volume with an arbitrary flow pattern
passing through. The only additional complication is that there are variable slivers of
inflow and outflow of fluid all about the control surface. In general, each differential
area dA of surface will have a different velocity V making a different angle 
 with the
local normal to dA. Some elemental areas will have inflow volume (VA cos 
)in dt, and
others will have outflow volume (VA cos 
)out dt, as seen in Fig. 3.4. Some surfaces
might correspond to streamlines (
 � 90°) or solid walls (V � 0) with neither inflow
nor outflow. Equation (3.9) generalizes to

�
d
d
t
� (Bsyst) � �

d
d
t
� ��CV


	d�� � �
CS


	V cos 
 dAout � �
CS


	V cos 
 dAin (3.10)

This is the Reynolds transport theorem for an arbitrary fixed control volume. By let-
ting the property B be mass, momentum, angular momentum, or energy, we can rewrite
all the basic laws in control-volume form. Note that all three of the control-volume in-
tegrals are concerned with the intensive property 
. Since the control volume is fixed
in space, the elemental volumes d � do not vary with time, so that the time derivative
of the volume integral vanishes unless either 
 or 	 varies with time (unsteady flow).
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Fig. 3.4 Generalization of Fig. 3.3
to an arbitrary control volume with
an arbitrary flow pattern.

Equation (3.10) expresses the basic formula that a system derivative equals the rate
of change of B within the control volume plus the flux of B out of the control surface
minus the flux of B into the control surface. The quantity B (or 
) may be any vector
or scalar property of the fluid. Two alternate forms are possible for the flux terms. First
we may notice that V cos 
 is the component of V normal to the area element of the
control surface. Thus we can write

Flux terms � �
CS


	Vn dAout � �
CS


	Vn dAin � �
CS


 dṁout � �
CS


 dṁin (3.11a)

where dṁ � 	Vn dA is the differential mass flux through the surface. Form (3.11a)
helps visualize what is being calculated.

A second alternate form offers elegance and compactness as advantages. If n is de-
fined as the outward normal unit vector everywhere on the control surface, then V �
n � Vn for outflow and V � n � �Vn for inflow. Therefore the flux terms can be rep-
resented by a single integral involving V � n which accounts for both positive outflow
and negative inflow

Flux terms � �
CS


	(V � n) dA (3.11b)

The compact form of the Reynolds transport theorem is thus

�
d
d
t
� (Bsyst) � �

d
d
t
� ��CV


	 d�� � �
CV


	(V � n) dA (3.12)

This is beautiful but only occasionally useful, when the coordinate system is ideally
suited to the control volume selected. Otherwise the computations are easier when the
flux of B out is added and the flux of B in is subtracted, according to (3.10) or (3.11a).
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Control Volume of Constant
Shape but Variable Velocity4

Arbitrarily Moving and
Deformable Control Volume5

Control Volume Moving at
Constant Velocity

The time-derivative term can be written in the equivalent form

�
d
d
t
� ��CV


	 d�� ��
CV

�
�

�

t
� (
	) d � (3.13)

for the fixed control volume since the volume elements do not vary.

If the control volume is moving uniformly at velocity Vs, as in Fig. 3.2b, an observer
fixed to the control volume will see a relative velocity Vr of fluid crossing the control
surface, defined by

Vr � V � Vs (3.14)

where V is the fluid velocity relative to the same coordinate system in which the con-
trol volume motion Vs is observed. Note that Eq. (3.14) is a vector subtraction. The
flux terms will be proportional to Vr, but the volume integral is unchanged because the
control volume moves as a fixed shape without deforming. The Reynolds transport the-
orem for this case of a uniformly moving control volume is

�
d
d
t
� (Bsyst) � �

d
d
t
� ��CV


	 d�� � �
CS


	(Vr � n) dA (3.15)

which reduces to Eq. (3.12) if Vs � 0.

If the control volume moves with a velocity Vs(t) which retains its shape, then the vol-
ume elements do not change with time but the boundary relative velocity Vr �
V(r, t) � Vs(t) becomes a somewhat more complicated function. Equation (3.15) is un-
changed in form, but the area integral may be more laborious to evaluate.

The most general situation is when the control volume is both moving and deforming
arbitrarily, as illustrated in Fig. 3.5. The flux of volume across the control surface is
again proportional to the relative normal velocity component Vr � n, as in Eq. (3.15).
However, since the control surface has a deformation, its velocity Vs � Vs(r, t), so that
the relative velocity Vr � V(r, t) � Vs(r, t) is or can be a complicated function, even
though the flux integral is the same as in Eq. (3.15). Meanwhile, the volume integral
in Eq. (3.15) must allow the volume elements to distort with time. Thus the time de-
rivative must be applied after integration. For the deforming control volume, then, the
transport theorem takes the form

�
d
d
t
� (Bsyst) � �

d
d
t
� ��CV


	 d�� � �
CS


	(Vr � n) dA (3.16)

This is the most general case, which we can compare with the equivalent form for a
fixed control volume
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Fig. 3.5 Relative-velocity effects
between a system and a control
volume when both move and de-
form. The system boundaries move
at velocity V, and the control sur-
face moves at velocity Vs.

�
d
d
t
� (Bsyst) � �

CV
�
�

�

t
� (
	) d� � �

CS

	(V � n) dA (3.17)

The moving and deforming control volume, Eq. (3.16), contains only two complica-
tions: (1) The time derivative of the first integral on the right must be taken outside,
and (2) the second integral involves the relative velocity Vr between the fluid system
and the control surface. These differences and mathematical subtleties are best shown
by examples.

In many applications, the flow crosses the boundaries of the control surface only at cer-
tain simplified inlets and exits which are approximately one-dimensional; i.e., the flow
properties are nearly uniform over the cross section of the inlet or exit. Then the double-
integral flux terms required in Eq. (3.16) reduce to a simple sum of positive (exit) and
negative (inlet) product terms involving the flow properties at each cross section

�
CS


	(Vr � n) dA � �(
i	iVriAi)out � �(
i	iVriAi)in (3.18)

An example of this situation is shown in Fig. 3.6. There are inlet flows at sections 1
and 4 and outflows at sections 2, 3, and 5. For this particular problem Eq. (3.18) would
be

�
CS


	(Vr � n) dA � 
2	2Vr2A2 � 
3	3Vr3A3

� 
5	5Vr5A5 � 
1	1Vr1A1 � 
4	4Vr4A4 (3.19)
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Fig. 3.6 A control volume with
simplified one-dimensional inlets
and exits.

with no contribution from any other portion of the control surface because there is no
flow across the boundary.

EXAMPLE 3.1

A fixed control volume has three one-dimensional boundary sections, as shown in Fig. E3.1. The
flow within the control volume is steady. The flow properties at each section are tabulated be-
low. Find the rate of change of energy of the system which occupies the control volume at this
instant.

Section Type 	, kg/m3 V, m/s A, m2 e, J/kg

1 Inlet 800 5.0 2.0 300
2 Inlet 800 8.0 3.0 100
3 Outlet 800 17.0 2.0 150

Solution

The property under study here is energy, and so B � E and 
 � dE/dm � e, the energy per unit
mass. Since the control volume is fixed, Eq. (3.17) applies:

��
d
d
E
t
��syst

� �
CV

�
�

�

t
�  (e	) d� � �

CS
e	(V � n) dA

The flow within is steady, so that �(e	)/�t � 0 and the volume integral vanishes. The area inte-
gral consists of two inlet sections and one outlet section, as given in the table

��
d
d
E
t
��syst

� �e1	1A1V1 � e2	2A2V2 � e3	3A3V3
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E3.2 

Introducing the numerical values from the table, we have

��
d
d
E
t
��syst

� �(300 J/kg)(800 kg/m3)(2 m2)(5 m/s) � 100(800)(3)(8) � 150(800)(2)(17)

� (�2,400,000 � 1,920,000 � 4,080,000) J/s

� �240,000 J/s � �0.24 MJ/s Ans.

Thus the system is losing energy at the rate of 0.24 MJ/s � 0.24 MW. Since we have accounted
for all fluid energy crossing the boundary, we conclude from the first law that there must be heat
loss through the control surface or the system must be doing work on the environment through
some device not shown. Notice that the use of SI units leads to a consistent result in joules per
second without any conversion factors. We promised in Chap. 1 that this would be the case.

Note: This problem involves energy, but suppose we check the balance of mass also.
Then B � mass m, and B � dm/dm � unity. Again the volume integral vanishes for steady flow,
and Eq. (3.17) reduces to

��
d
d
m
t
��syst

� �
CS

	(V � n) dA � �	1A1V1 � 	2A2V2 � 	3A3V3

� �(800 kg/m3)(2 m2)(5 m/s) � 800(3)(8) � 800(17)(2)

� (�8000 � 19,200 � 27,200) kg/s � 0 kg/s

Thus the system mass does not change, which correctly expresses the law of conservation of
system mass, Eq. (3.1).

EXAMPLE 3.2

The balloon in Fig. E3.2 is being filled through section 1, where the area is A1, velocity is V1,
and fluid density is 	1. The average density within the balloon is 	b(t). Find an expression for
the rate of change of system mass within the balloon at this instant.

Solution

It is convenient to define a deformable control surface just outside the balloon, expanding at 
the same rate R(t). Equation (3.16) applies with Vr � 0 on the balloon surface and Vr � V1

at the pipe entrance. For mass change, we take B � m and 
 � dm/dm � 1. Equation (3.16) 
becomes

��
d
d
m
t
��syst

� �
d
d
t
� ��CS

	 d�� � �
CS

	(Vr � n) dA

Mass flux occurs only at the inlet, so that the control-surface integral reduces to the single neg-
ative term �	1A1V1. The fluid mass within the control volume is approximately the average den-
sity times the volume of a sphere. The equation thus becomes

��
d
d
m
t
��syst

� �
d
d
t
� �	b �

4
3

� �R3� � 	1A1V1 Ans.

This is the desired result for the system mass rate of change. Actually, by the conservation law
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3.3 Conservation of Mass

(3.1), this change must be zero. Thus the balloon density and radius are related to the inlet mass
flux by

�
d
d
t
� (	bR3) � �

4
3
�
� 	1A1V1

This is a first-order differential equation which could form part of an engineering analysis of
balloon inflation. It cannot be solved without further use of mechanics and thermodynamics to
relate the four unknowns 	b, 	1, V1, and R. The pressure and temperature and the elastic prop-
erties of the balloon would also have to be brought into the analysis.

For advanced study, many more details of the analysis of deformable control vol-
umes can be found in Hansen [4] and Potter and Foss [5].

The Reynolds transport theorem, Eq. (3.16) or (3.17), establishes a relation between
system rates of change and control-volume surface and volume integrals. But system
derivatives are related to the basic laws of mechanics, Eqs. (3.1) to (3.5). Eliminating
system derivatives between the two gives the control-volume, or integral, forms of the
laws of mechanics of fluids. The dummy variable B becomes, respectively, mass, lin-
ear momentum, angular momentum, and energy.

For conservation of mass, as discussed in Examples 3.1 and 3.2, B � m and 
 �
dm/dm � 1. Equation (3.1) becomes

��
d
d
m
t
��syst

� 0 � �
d
d
t
� ��CV

	 d�� � �
CS

	(Vr � n) dA (3.20) 

This is the integral mass-conservation law for a deformable control volume. For a fixed
control volume, we have

�
CV

�
�

�

	
t
� d�� �

CS
	(V � n) dA � 0 (3.21) 

If the control volume has only a number of one-dimensional inlets and outlets, we can
write

�
CV

�
�

�

	
t
� d� � �

i

(	iAiVi)out ��
i

(	i AiVi)in � 0 (3.22)

Other special cases occur. Suppose that the flow within the control volume is steady;
then �	/�t � 0, and Eq. (3.21) reduces to

�
CS

	(V � n) dA � 0 (3.23)

This states that in steady flow the mass flows entering and leaving the control volume
must balance exactly.6 If, further, the inlets and outlets are one-dimensional, we have
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6Throughout this section we are neglecting sources or sinks of mass which might be embedded in the
control volume. Equations (3.20) and (3.21) can readily be modified to add source and sink terms, but this
is rarely necessary.
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for steady flow

�
i

(	i AiVi)in � �
i

(	i AiVi)out (3.24)

This simple approximation is widely used in engineering analyses. For example, re-
ferring to Fig. 3.6, we see that if the flow in that control volume is steady, the three
outlet mass fluxes balance the two inlets:

Outflow � inflow
	2A2V2 � 	3A3V3 � 	5A5V5 � 	1A1V1 � 	4A4V4 (3.25)

The quantity 	AV is called the mass flow ṁ passing through the one-dimensional cross
section and has consistent units of kilograms per second (or slugs per second) for SI
(or BG) units. Equation (3.25) can be rewritten in the short form

ṁ2 � ṁ3 � ṁ5 � ṁ1 � ṁ4 (3.26) 

and, in general, the steady-flow–mass-conservation relation (3.23) can be written as

�
i

(ṁi)out � �
i

(ṁi)in (3.27) 

If the inlets and outlets are not one-dimensional, one has to compute ṁ by integration
over the section

ṁcs � �
cs

	(V � n) dA (3.28) 

where “cs’’ stands for cross section. An illustration of this is given in Example 3.4.

Still further simplification is possible if the fluid is incompressible, which we may de-
fine as having density variations which are negligible in the mass-conservation re-
quirement.7As we saw in Chap. 1, all liquids are nearly incompressible, and gas flows
can behave as if they were incompressible, particularly if the gas velocity is less than
about 30 percent of the speed of sound of the gas.

Again consider the fixed control volume. If the fluid is nearly incompressible, �	/�t
is negligible and the volume integral in Eq. (3.21) may be neglected, after which the
density can be slipped outside the surface integral and divided out since it is nonzero.
The result is a conservation law for incompressible flows, whether steady or unsteady:

�
CS

(V � n) dA � 0 (3.29)

If the inlets and outlets are one-dimensional, we have

�
i

(ViAi) out � �
i

(ViAi)in (3.30)

or � Qout � � Qin

where Qi � ViAi is called the volume flow passing through the given cross section.
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7Be warned that there is subjectivity in specifying incompressibility. Oceanographers consider a 0.1
percent density variation very significant, while aerodynamicists often neglect density variations in highly
compressible, even hypersonic, gas flows. Your task is to justify the incompressible approximation when
you make it.
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Again, if consistent units are used, Q � VA will have units of cubic meters per second
(SI) or cubic feet per second (BG). If the cross section is not one-dimensional, we have
to integrate

QCS � �
CS

(V � n) dA (3.31)

Equation (3.31) allows us to define an average velocity Vav which, when multiplied by
the section area, gives the correct volume flow

Vav � �
Q
A

� � �
A
1

� � (V � n) dA (3.32)

This could be called the volume-average velocity. If the density varies across the sec-
tion, we can define an average density in the same manner:

	av � �
A
1

� � 	 dA (3.33)

But the mass flow would contain the product of density and velocity, and the average
product (	V)av would in general have a different value from the product of the aver-
ages

(	V)av � �
A
1

� � 	(V � n) dA � 	avVav (3.34)

We illustrate average velocity in Example 3.4. We can often neglect the difference or,
if necessary, use a correction factor between mass average and volume average.

EXAMPLE 3.3

Write the conservation-of-mass relation for steady flow through a streamtube (flow everywhere
parallel to the walls) with a single one-dimensional exit 1 and inlet 2 (Fig. E3.3).

Solution

For steady flow Eq. (3.24) applies with the single inlet and exit

ṁ � 	1A1V1 � 	2A2V2 � const

Thus, in a streamtube in steady flow, the mass flow is constant across every section of the tube.
If the density is constant, then

Q � A1V1 � A2V2 � const or V2 � �
A
A

1

2
� V1

The volume flow is constant in the tube in steady incompressible flow, and the velocity increases
as the section area decreases. This relation was derived by Leonardo da Vinci in 1500.

EXAMPLE 3.4

For steady viscous flow through a circular tube (Fig. E3.4), the axial velocity profile is given
approximately by
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2

1
Streamtube

control volume

V • n = 0

V1

V2
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u � U0�1 � �
R
r
��

m

so that u varies from zero at the wall (r � R), or no slip, up to a maximum u � U0 at the cen-
terline r � 0. For highly viscous (laminar) flow m � �12�, while for less viscous (turbulent) flow
m � �17�. Compute the average velocity if the density is constant.

Solution

The average velocity is defined by Eq. (3.32). Here V � iu and n � i, and thus V � n � u. Since
the flow is symmetric, the differential area can be taken as a circular strip dA � 2 �r dr. Equa-
tion (3.32) becomes

Vav � �
A
1

� � u dA � �
�

1
R2� �R

0
U0�1 � �

R
r
��

m

2�r dr

or Vav � U0 �(1 � m)
2
(2 � m)
� Ans.

For the laminar-flow approximation, m � �12� and Vav � 0.53U0. (The exact laminar theory in Chap.
6 gives Vav � 0.50U0.) For turbulent flow, m � �17� and Vav � 0.82U0. (There is no exact turbu-
lent theory, and so we accept this approximation.) The turbulent velocity profile is more uniform
across the section, and thus the average velocity is only slightly less than maximum.

EXAMPLE 3.5

Consider the constant-density velocity field

u � �
V
L
0x
� � � 0 w � ��

V
L
0z
�

similar to Example 1.10. Use the triangular control volume in Fig. E3.5, bounded by (0, 0),
(L, L), and (0, L), with depth b into the paper. Compute the volume flow through sections 1, 2,
and 3, and compare to see whether mass is conserved.

Solution

The velocity field everywhere has the form V � iu � kw. This must be evaluated along each
section. We save section 2 until last because it looks tricky. Section 1 is the plane z � L with
depth b. The unit outward normal is n � k, as shown. The differential area is a strip of depth b
varying with x: dA � b dx. The normal velocity is

(V � n)1 � (iu � kw) � k � w|1 � ��
V
L
0z
�z�L

� �V0

The volume flow through section 1 is thus, from Eq. (3.31),

Q1 � �0

1
(V � n) dA � �L

0 
(�V0)b dx � �V0bL Ans. 1
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n = k

(L, L)L

z

n = –i

0
0

x
n = ?

3

1

2

CV

Depth b into paper

r

r = R

x

u(r)

U0

u = 0 (no slip)
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Since this is negative, section 1 is a net inflow. Check the units: V0bL is a velocity times an 
area; OK.

Section 3 is the plane x � 0 with depth b. The unit normal is n � �i, as shown, and 
dA � b dz. The normal velocity is

(V � n)3 � (iu � kw) � (�i) � �u|3 � ��
V
L
0x
�s�0

� 0 Ans. 3

Thus Vn � 0 all along section 3; hence Q3 � 0.
Finally, section 2 is the plane x � z with depth b. The normal direction is to the right i and

down �k but must have unit value; thus n � (1/�2	)(i � k). The differential area is either dA �
�2	b dx or dA � �2	b dz. The normal velocity is

(V � n)2 � (iu � kw) � �
�
1
2	

� (i � k) � �
�
1
2	

� (u � w)2

� �
�
1
2	

� 
V0 �
L
x

� � ��V0 �
L
z
���x�z

� �
�2	

L
V0x
� or �

�2	
L
V0z
�

Then the volume flow through section 2 is

Q2 � �0

2
(V � n) dA � �L

0
�
�2	

L
V0x
� (�2	b dx) � V0bL Ans. 2

This answer is positive, indicating an outflow. These are the desired results. We should note that
the volume flow is zero through the front and back triangular faces of the prismatic control vol-
ume because Vn � � � 0 on those faces.

The sum of the three volume flows is

Q1 � Q2 � Q3 � �V0bL � V0bL � 0 � 0

Mass is conserved in this constant-density flow, and there are no net sources or sinks within the
control volume. This is a very realistic flow, as described in Example 1.10

EXAMPLE 3.6

The tank in Fig. E3.6 is being filled with water by two one-dimensional inlets. Air is trapped at
the top of the tank. The water height is h. (a) Find an expression for the change in water height
dh/dt. (b) Compute dh/dt if D1 � 1 in, D2 � 3 in, V1 � 3 ft/s, V2 � 2 ft/s, and At � 2 ft2, as-
suming water at 20°C.

Solution

A suggested control volume encircles the tank and cuts through the two inlets. The flow within
is unsteady, and Eq. (3.22) applies with no outlets and two inlets:

�
d
d
t
� ��

0

CV
	 d�� � 	1A1V1 � 	2A2V2 � 0 (1)

Now if At is the tank cross-sectional area, the unsteady term can be evaluated as follows:

�
d
d
t
� ��

0

CV
	 d�� � �

d
d
t
� (	wAth) � �

d
d
t
� [	aAt(H � h)] � 	wAt �

d
d
h
t
� (2)
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1
2

Tank area At

a

w
H

h

Fixed CS

ρ

ρ

Part (a)



Part (b)

3.4 The Linear Momentum
Equation

The 	a term vanishes because it is the rate of change of air mass and is zero because the air is
trapped at the top. Substituting (2) into (1), we find the change of water height

�
d
d
h
t
� ��

	1A1V1

	

�

wA
	

t

2A2V2� Ans. (a)

For water, 	1 � 	2 � 	w, and this result reduces to

�
d
d
h
t
� � �

A1V1 �

At

A2V2� � �
Q1 �

At

Q2� (3)

The two inlet volume flows are

Q1 � A1V1 � �14��(�1
1
2� ft)2(3 ft/s) � 0.016 ft3/s

Q2 � A2V2 � �14��(�1
3
2� ft)2(2 ft/s) � 0.098 ft3/s

Then, from Eq. (3),

�
d
d
h
t
� � � 0.057 ft/s Ans. (b)

Suggestion: Repeat this problem with the top of the tank open.

An illustration of a mass balance with a deforming control volume has already been
given in Example 3.2.

The control-volume mass relations, Eq. (3.20) or (3.21), are fundamental to all fluid-
flow analyses. They involve only velocity and density. Vector directions are of no con-
sequence except to determine the normal velocity at the surface and hence whether the
flow is in or out. Although your specific analysis may concern forces or moments or
energy, you must always make sure that mass is balanced as part of the analysis; oth-
erwise the results will be unrealistic and probably rotten. We shall see in the examples
which follow how mass conservation is constantly checked in performing an analysis
of other fluid properties.

In Newton’s law, Eq. (3.2), the property being differentiated is the linear momentum
mV. Therefore our dummy variable is B � mV and � � dB/dm � V, and application
of the Reynolds transport theorem gives the linear-momentum relation for a deformable
control volume

�
d
d
t
� (mV)syst � � F � �

d
d
t
� ��CV

V	 d�� � �
CS

V	(Vr � n) dA (3.35)

The following points concerning this relation should be strongly emphasized:

1. The term V is the fluid velocity relative to an inertial (nonaccelerating) coordi-
nate system; otherwise Newton’s law must be modified to include noninertial
relative-acceleration terms (see the end of this section).

2. The term � F is the vector sum of all forces acting on the control-volume mate-
rial considered as a free body; i.e., it includes surface forces on all fluids and

(0.016 � 0.098) ft3/s
���

2 ft2
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One-Dimensional Momentum
Flux

Net Pressure Force on a Closed
Control Surface

solids cut by the control surface plus all body forces (gravity and electromag-
netic) acting on the masses within the control volume.

3. The entire equation is a vector relation; both the integrals are vectors due to the
term V in the integrands. The equation thus has three components. If we want
only, say, the x component, the equation reduces to

� Fx � �
d
d
t
� ��CV

u	 d�� � �
CS

u	(Vr � n) dA (3.36)

and similarly, � Fy and � Fz would involve v and w, respectively. Failure to ac-
count for the vector nature of the linear-momentum relation (3.35) is probably the
greatest source of student error in control-volume analyses.

For a fixed control volume, the relative velocity Vr � V, and

� F � �
d
d
t
� ��CV

V	 d�� � �
CS

V	(V � n) dA (3.37)

Again we stress that this is a vector relation and that V must be an inertial-frame ve-
locity. Most of the momentum analyses in this text are concerned with Eq. (3.37).

By analogy with the term mass flow used in Eq. (3.28), the surface integral in Eq.
(3.37) is called the momentum-flux term. If we denote momentum by M, then

Ṁ 
CS � �0

sec
V	(V � n) dA (3.38)

Because of the dot product, the result will be negative for inlet momentum flux and
positive for outlet flux. If the cross section is one-dimensional, V and 	 are uniform
over the area and the integrated result is

Ṁ 
seci � Vi(	iVniAi) � ṁ iVi (3.39)

for outlet flux and �ṁ iVi for inlet flux. Thus if the control volume has only one-
dimensional inlets and outlets, Eq. (3.37) reduces to

�F � �
d
d
t
� ��CV

V	 d�� � �(ṁiVi)out ��(ṁ iVi)in (3.40)

This is a commonly used approximation in engineering analyses. It is crucial to real-
ize that we are dealing with vector sums. Equation (3.40) states that the net vector force
on a fixed control volume equals the rate of change of vector momentum within the
control volume plus the vector sum of outlet momentum fluxes minus the vector sum
of inlet fluxes.

Generally speaking, the surface forces on a control volume are due to (1) forces ex-
posed by cutting through solid bodies which protrude through the surface and (2) forces
due to pressure and viscous stresses of the surrounding fluid. The computation of pres-
sure force is relatively simple, as shown in Fig. 3.7. Recall from Chap. 2 that the ex-
ternal pressure force on a surface is normal to the surface and inward. Since the unit
vector n is defined as outward, one way to write the pressure force is

Fpress � �
CS

p(�n) dA (3.41)
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Fig. 3.7 Pressure-force computation
by subtracting a uniform distribu-
tion: (a) uniform pressure, F �

�pa �n dA � 0; (b) nonuniform 

pressure, F � ��(p � pa)n dA.

Now if the pressure has a uniform value pa all around the surface, as in Fig. 3.7a, the
net pressure force is zero

FUP �� pa(�n) dA � �pa � n dA � 0 (3.42)

where the subscript UP stands for uniform pressure. This result is independent of the 
shape of the surface8 as long as the surface is closed and all our control volumes are 
closed. Thus a seemingly complicated pressure-force problem can be simplified by sub-
tracting any convenient uniform pressure pa and working only with the pieces of gage
pressure which remain, as illustrated in Fig. 3.7b. Thus Eq. (3.41) is entirely equiva-
lent to

Fpress � �
CS 

( p � pa)(�n) dA ��
CS

pgage(�n) dA

This trick can mean quite a saving in computation.

EXAMPLE 3.7

A control volume of a nozzle section has surface pressures of 40 lbf/in2absolute at section 1 and
atmospheric pressure of 15 lbf/in2absolute at section 2 and on the external rounded part of the
nozzle, as in Fig. E3.7a. Compute the net pressure force if D1 � 3 in and D2 � 1 in.

Solution

We do not have to bother with the outer surface if we subtract 15 lbf/in2 from all surfaces.
This leaves 25 lbf/in2gage at section 1 and 0 lbf/in2 gage everywhere else, as in Fig. E3.7b.
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Closed
CS

pa

n

pa

pa

pa

pgage =  p – pa

Closed
CS pgage =  0

pgage

pgage

pa

(a) (b)

n

pa

8Can you prove this? It is a consequence of Gauss’ theorem from vector analysis.
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Then the net pressure force is computed from section 1 only

F � pg1(�n)1A1 � (25 lbf/in2) �
�

4
� (3 in)2i � 177i lbf Ans.

Notice that we did not change inches to feet in this case because, with pressure in pounds-force
per square inch and area in square inches, the product gives force directly in pounds. More of-
ten, though, the change back to standard units is necessary and desirable. Note: This problem
computes pressure force only. There are probably other forces involved in Fig. E3.7, e.g.,
nozzle-wall stresses in the cuts through sections 1 and 2 and the weight of the fluid within the
control volume.

Figure E3.7 illustrates a pressure boundary condition commonly used for jet exit-flow
problems. When a fluid flow leaves a confined internal duct and exits into an ambient
“atmosphere,” its free surface is exposed to that atmosphere. Therefore the jet itself
will essentially be at atmospheric pressure also. This condition was used at section 2
in Fig. E3.7.

Only two effects could maintain a pressure difference between the atmosphere and
a free exit jet. The first is surface tension, Eq. (1.31), which is usually negligible. The
second effect is a supersonic jet, which can separate itself from an atmosphere with
expansion or compression waves (Chap. 9). For the majority of applications, therefore,
we shall set the pressure in an exit jet as atmospheric.

EXAMPLE 3.8

A fixed control volume of a streamtube in steady flow has a uniform inlet flow (	1, A1, V1) and
a uniform exit flow (	2, A2, V2), as shown in Fig. 3.8. Find an expression for the net force on
the control volume.

Solution

Equation (3.40) applies with one inlet and exit

�F � ṁ2V2 � ṁ1V1 � (	2A2V2)V2 � (	1A1V1)V1
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1

40 lbf/in2 abs 15 lbf/in2 abs

Jet exit pressure is atmospheric

25 lbf/in2 gage

15 lbf/in2 abs
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abs
Flow Flow

0 lbf/in2 gage

0 lbf/in2 gage

0 lbf/in2 gage

Pressure Condition at a Jet Exit



Fig. 3.8 Net force on a one-dimen-
sional streamtube in steady flow:
(a) streamtube in steady flow; (b)
vector diagram for computing net
force.

Fig. 3.9 Net applied force on a
fixed jet-turning vane: (a) geometry
of the vane turning the water jet;
(b) vector diagram for the net
force.

The volume-integral term vanishes for steady flow, but from conservation of mass in Example
3.3 we saw that

ṁ1 � ṁ2 � ṁ � const
Therefore a simple form for the desired result is

�F � ṁ (V2 � V1) Ans.

This is a vector relation and is sketched in Fig. 3.8b. The term � F represents the net force act-
ing on the control volume due to all causes; it is needed to balance the change in momentum of
the fluid as it turns and decelerates while passing through the control volume.

EXAMPLE 3.9

As shown in Fig. 3.9a, a fixed vane turns a water jet of area A through an angle 
 without chang-
ing its velocity magnitude. The flow is steady, pressure is pa everywhere, and friction on the
vane is negligible. (a) Find the components Fx and Fy of the applied vane force. (b) Find ex-
pressions for the force magnitude F and the angle � between F and the horizontal; plot them
versus 
.

Solution

The control volume selected in Fig. 3.9a cuts through the inlet and exit of the jet and through
the vane support, exposing the vane force F. Since there is no cut along the vane-jet interface,
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2
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θ
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F

θ
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Fx
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φ

(a) (b)

Part (a)



Part (b)

vane friction is internally self-canceling. The pressure force is zero in the uniform atmosphere.
We neglect the weight of fluid and the vane weight within the control volume. Then Eq. (3.40)
reduces to

Fvane � ṁ2V2 � ṁ1V1

But the magnitude V1 � V2 � V as given, and conservation of mass for the streamtube requires
ṁ1 � ṁ2 � ṁ � 	AV. The vector diagram for force and momentum change becomes an isosce-
les triangle with legs ṁV and base F, as in Fig. 3.9b. We can readily find the force components
from this diagram

Fx � ṁV(cos 
 � 1) Fy � ṁV sin 
 Ans. (a)

where ṁV � 	AV2 for this case. This is the desired result.
The force magnitude is obtained from part (a):

F � (Fx
2� Fy

2)1/2� ṁV[sin2
 � (cos 
 � 1)2]1/2� 2ṁV sin �


2

� Ans. (b)

From the geometry of Fig. 3.9b we obtain

� � 180° � tan�1�
F
F

y

x
� � 90° � �




2
� Ans. (b)
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These can be plotted versus 
 as shown in Fig. E3.9. Two special cases are of interest. First, the
maximum force occurs at 
 � 180°, that is, when the jet is turned around and thrown back in
the opposite direction with its momentum completely reversed. This force is 2ṁV and acts to the
left; that is, � � 180°. Second, at very small turning angles (
 � 10°) we obtain approximately

F � ṁV
 � � 90°

The force is linearly proportional to the turning angle and acts nearly normal to the jet. This is
the principle of a lifting vane, or airfoil, which causes a slight change in the oncoming flow di-
rection and thereby creates a lift force normal to the basic flow.

EXAMPLE 3.10

A water jet of velocity Vj impinges normal to a flat plate which moves to the right at velocity
Vc, as shown in Fig. 3.10a. Find the force required to keep the plate moving at constant veloc-
ity if the jet density is 1000 kg/m3, the jet area is 3 cm2, and Vj and Vc are 20 and 15 m/s, re-



Fig. 3.10 Force on a plate moving
at constant velocity: (a) jet striking
a moving plate normally; (b) con-
trol volume fixed relative to the
plate.

spectively. Neglect the weight of the jet and plate, and assume steady flow with respect to the
moving plate with the jet splitting into an equal upward and downward half-jet.

Solution

The suggested control volume in Fig. 3.10a cuts through the plate support to expose the desired
forces Rx and Ry. This control volume moves at speed Vc and thus is fixed relative to the plate,
as in Fig. 3.10b. We must satisfy both mass and momentum conservation for the assumed steady-
flow pattern in Fig. 3.10b. There are two outlets and one inlet, and Eq. (3.30) applies for mass
conservation

ṁout � ṁin

or 	1A1V1 � 	2A2V2 � 	jAj(Vj � Vc) (1)

We assume that the water is incompressible 	1 � 	2 � 	j, and we are given that A1 � A2 � �12�Aj.
Therefore Eq. (1) reduces to

V1 � V2 � 2(Vj � Vc) (2)

Strictly speaking, this is all that mass conservation tells us. However, from the symmetry of the
jet deflection and the neglect of fluid weight, we conclude that the two velocities V1 and V2 must
be equal, and hence (2) becomes

V1 � V2 � Vj � Vc (3)

For the given numerical values, we have

V1 � V2 � 20 � 15 � 5 m/s

Now we can compute Rx and Ry from the two components of momentum conservation. Equa-
tion (3.40) applies with the unsteady term zero

� Fx � Rx � ṁ1u1 � ṁ2u2 � ṁjuj (4)

where from the mass analysis, ṁ1 � ṁ2 � �12�ṁj � �12�	jAj(Vj � Vc). Now check the flow directions
at each section: u1 � u2 � 0, and uj � Vj � Vc � 5 m/s. Thus Eq. (4) becomes

Rx � �ṁjuj � �[	jAj(Vj � Vc)](Vj � Vc) (5)
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Fig. 3.11 Control-volume analysis
of drag force on a flat plate due to
boundary shear.

For the given numerical values we have

Rx � �(1000 kg/m3)(0.0003 m2)(5 m/s)2� �7.5 (kg � m)/s2� �7.5 N Ans.

This acts to the left; i.e., it requires a restraining force to keep the plate from accelerating to the
right due to the continuous impact of the jet. The vertical force is

Fy � Ry � ṁ1�1 � ṁ2�2 � ṁj�j

Check directions again: �1 � V1, �2 � �V2, �j � 0. Thus

Ry � ṁ1(V1) � ṁ2(�V2) � �12�ṁj(V1 � V2) (6)

But since we found earlier that V1 � V2, this means that Ry � 0, as we could expect from the
symmetry of the jet deflection.9 Two other results are of interest. First, the relative velocity at
section 1 was found to be 5 m/s up, from Eq. (3). If we convert this to absolute motion by adding
on the control-volume speed Vc � 15 m/s to the right, we find that the absolute velocity V1 �
15i � 5j m/s, or 15.8 m/s at an angle of 18.4° upward, as indicated in Fig. 3.10a. Thus the ab-
solute jet speed changes after hitting the plate. Second, the computed force Rx does not change
if we assume the jet deflects in all radial directions along the plate surface rather than just up
and down. Since the plate is normal to the x axis, there would still be zero outlet x-momentum
flux when Eq. (4) was rewritten for a radial-deflection condition.

EXAMPLE 3.11

The previous example treated a plate at normal incidence to an oncoming flow. In Fig. 3.11 the
plate is parallel to the flow. The stream is not a jet but a broad river, or free stream, of uniform
velocity V � U0i. The pressure is assumed uniform, and so it has no net force on the plate. The
plate does not block the flow as in Fig. 3.10, so that the only effect is due to boundary shear,
which was neglected in the previous example. The no-slip condition at the wall brings the fluid
there to a halt, and these slowly moving particles retard their neighbors above, so that at the end
of the plate there is a significant retarded shear layer, or boundary layer, of thickness y � �. The
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9Symmetry can be a powerful tool if used properly. Try to learn more about the uses and misuses of
symmetry conditions. Here we doggedly computed the results without invoking symmetry.
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viscous stresses along the wall can sum to a finite drag force on the plate. These effects are il-
lustrated in Fig. 3.11. The problem is to make an integral analysis and find the drag force D in
terms of the flow properties 	, U0, and � and the plate dimensions L and b.†

Solution

Like most practical cases, this problem requires a combined mass and momentum balance. A
proper selection of control volume is essential, and we select the four-sided region from 0 to h
to � to L and back to the origin 0, as shown in Fig. 3.11. Had we chosen to cut across horizon-
tally from left to right along the height y � h, we would have cut through the shear layer and
exposed unknown shear stresses. Instead we follow the streamline passing through (x, y) �
(0, h), which is outside the shear layer and also has no mass flow across it. The four control-
volume sides are thus

1. From (0, 0) to (0, h): a one-dimensional inlet, V � n � �U0

2. From (0, h) to (L, �): a streamline, no shear, V � n � 0

3. From (L, �) to (L, 0): a two-dimensional outlet, V � n � �u(y)

4. From (L, 0) to (0, 0): a streamline just above the plate surface, V � n � 0, shear forces
summing to the drag force �Di acting from the plate onto the retarded fluid

The pressure is uniform, and so there is no net pressure force. Since the flow is assumed in-
compressible and steady, Eq. (3.37) applies with no unsteady term and fluxes only across sec-
tions 1 and 3:

� Fx � �D � 	 �0

1
u(V � n) dA � 	�0

3
u(V � n) dA

� 	 �h

0
U0(�U0)b dy � 	��

0
u(�u)b dy

Evaluating the first integral and rearranging give

D � 	U0
2bh � 	b��

0
u2dy (1)

This could be considered the answer to the problem, but it is not useful because the height h is
not known with respect to the shear-layer thickness �. This is found by applying mass conser-
vation, since the control volume forms a streamtube

	 �0

CS
(V � n) dA � 0 � 	�h

0
(�U0)b dy � 	��

0
ub dy

or U0h ���

0
u dy (2)

after canceling b and 	 and evaluating the first integral. Introduce this value of h into Eq. (1) for
a much cleaner result

D � 	b��

0
u(U0 � u) dyx�L

Ans. (3)

This result was first derived by Theodore von Kármán in 1921.10 It relates the friction drag on
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†The general analysis of such wall-shear problems, called boundary-layer theory, is treated in Sec. 7.3.
10The autobiography of this great twentieth-century engineer and teacher [2] is recommended for its

historical and scientific insight.



Momentum-Flux Correction
Factor

one side of a flat plate to the integral of the momentum defect u(U0 � u) across the trailing cross
section of the flow past the plate. Since U0 � u vanishes as y increases, the integral has a finite
value. Equation (3) is an example of momentum-integral theory for boundary layers, which is
treated in Chap. 7. To illustrate the magnitude of this drag force, we can use a simple parabolic
approximation for the outlet-velocity profile u(y) which simulates low-speed, or laminar, shear
flow

u � U0 ��
2
�
y
� � �

�
y2

2�� for 0 � y � � (4)

Substituting into Eq. (3) and letting � � y/� for convenience, we obtain

D � 	bU0
2� �1

0
(2� � �2)(1 � 2� ��2) d� � �1

2
5�	U0

2b� (5)

This is within 1 percent of the accepted result from laminar boundary-layer theory (Chap. 7) in
spite of the crudeness of the Eq. (4) approximation. This is a happy situation and has led to the
wide use of Kármán’s integral theory in the analysis of viscous flows. Note that D increases with
the shear-layer thickness �, which itself increases with plate length and the viscosity of the fluid
(see Sec. 7.4).

For flow in a duct, the axial velocity is usually nonuniform, as in Example 3.4. For

this case the simple momentum-flux calculation �u	(V � n) dA � ṁ V � 	AV2 is some-

what in error and should be corrected to 
	AV2, where 
 is the dimensionless 
momentum-flux correction factor, 
 � 1.

The factor 
 accounts for the variation of u2across the duct section. That is, we com-
pute the exact flux and set it equal to a flux based on average velocity in the duct

	� u2dA � 
ṁ Vav � 
	AVav
2

or 
 � �
A
1

�� ��
V
u

av
��

2

dA (3.43a)

Values of 
 can be computed based on typical duct velocity profiles similar to those
in Example 3.4. The results are as follows:

Laminar flow: u � U0�1 � �
R
r2

2�� 
 � �
4
3

� (3.43b)

Turbulent flow: u � U0�1 � �
R
r
��

m

�
1
9

� � m � �
1
5

�


 � (3.43c)

The turbulent correction factors have the following range of values:

Turbulent flow:

(1 � m)2(2 � m)2

���
2(1 � 2m)(2 � 2m)
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m �15� �16� �17� �18� �19�


 1.037 1.027 1.020 1.016 1.013



Noninertial Reference Frame11

These are so close to unity that they are normally neglected. The laminar correction
may sometimes be important.

To illustrate a typical use of these correction factors, the solution to Example 3.8
for nonuniform velocities at sections 1 and 2 would be given as

� F � ṁ (
2V2 � 
1V1) (3.43d )

Note that the basic parameters and vector character of the result are not changed at all
by this correction.

All previous derivations and examples in this section have assumed that the coordinate
system is inertial, i.e., at rest or moving at constant velocity. In this case the rate of
change of velocity equals the absolute acceleration of the system, and Newton’s law
applies directly in the form of Eqs. (3.2) and (3.35).

In many cases it is convenient to use a noninertial, or accelerating, coordinate sys-
tem. An example would be coordinates fixed to a rocket during takeoff. A second ex-
ample is any flow on the earth’s surface, which is accelerating relative to the fixed stars
because of the rotation of the earth. Atmospheric and oceanographic flows experience
the so-called Coriolis acceleration, outlined below. It is typically less than 10�5g, where
g is the acceleration of gravity, but its accumulated effect over distances of many kilo-
meters can be dominant in geophysical flows. By contrast, the Coriolis acceleration is
negligible in small-scale problems like pipe or airfoil flows.

Suppose that the fluid flow has velocity V relative to a noninertial xyz coordinate
system, as shown in Fig. 3.12. Then dV/dt will represent a noninertial acceleration
which must be added vectorially to a relative acceleration arel to give the absolute ac-
celeration ai relative to some inertial coordinate system XYZ, as in Fig. 3.12. Thus

ai � �
d
d
V
t
� � arel (3.44)
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11This section may be omitted without loss of continuity.
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Since Newton’s law applies to the absolute acceleration,

� F � mai � m��
d
d
V
t
� � arel�

or � F � marel � m �
d
d
V
t
� (3.45)

Thus Newton’s law in noninertial coordinates xyz is equivalent to adding more “force”
terms �marel to account for noninertial effects. In the most general case, sketched in
Fig. 3.12, the term arel contains four parts, three of which account for the angular ve-
locity �(t) of the inertial coordinates. By inspection of Fig. 3.12, the absolute dis-
placement of a particle is

Si � r � R (3.46)

Differentiation gives the absolute velocity

Vi � V � �
d
d
R
t
� �� � r (3.47)

A second differentiation gives the absolute acceleration:

ai � �
d
d
V
t
� � �

d
d

2

t
R
2� � �

d
d
�

t
� � r � 2� � V � � � (� � r) (3.48)

By comparison with Eq. (3.44), we see that the last four terms on the right represent
the additional relative acceleration:

1. d2R/dt2is the acceleration of the noninertial origin of coordinates xyz.

2. (d�/dt) � r is the angular-acceleration effect.

3. 2� � V is the Coriolis acceleration.

4. � � (� � r) is the centripetal acceleration, directed from the particle normal to
the axis of rotation with magnitude �2L, where L is the normal distance to the
axis.12

Equation (3.45) differs from Eq. (3.2) only in the added inertial forces on the left-
hand side. Thus the control-volume formulation of linear momentum in noninertial co-
ordinates merely adds inertial terms by integrating the added relative acceleration over
each differential mass in the control volume

� F ��0

CV
arel dm � �

d
d
t
� ��

0

CV 
V	 d�� � �0

CS
V	(Vr � n) dA (3.49)

where arel � �
d
d

2

t
R
2� � �

d
d
�
t
� � r � 2� � V � � � (� � r)

This is the noninertial equivalent to the inertial form given in Eq. (3.35). To analyze
such problems, one must have knowledge of the displacement R and angular velocity
� of the noninertial coordinates.

If the control volume is nondeformable, Eq. (3.49) reduces to
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12A complete discussion of these noninertial coordinate terms is given, e.g., in Ref. 4, pp. 49 – 51.



E3.12 

� F ��0

CV
arel dm � �

d
d
t
� ��

0

CV
V	 d�� ��

CS
V	(V � n) dA (3.50)

In other words, the right-hand side reduces to that of Eq. (3.37).

EXAMPLE 3.12

A classic example of an accelerating control volume is a rocket moving straight up, as in Fig.
E3.12. Let the initial mass be M0, and assume a steady exhaust mass flow ṁ and exhaust ve-
locity Ve relative to the rocket, as shown. If the flow pattern within the rocket motor is steady
and air drag is neglected, derive the differential equation of vertical rocket motion V(t) and in-
tegrate using the initial condition V � 0 at t � 0.

Solution

The appropriate control volume in Fig. E3.12 encloses the rocket, cuts through the exit jet, and
accelerates upward at rocket speed V(t). The z-momentum equation (3.49) becomes

� Fz � � arel dm � �
d
d
t
� ��CV

w dṁ� � (ṁw)e

or �mg � m �
d
d
V
t
� � 0 � ṁ Ve with m � m(t) � M0 � ṁt

The term arel � dV/dt of the rocket. The control volume integral vanishes because of the steady
rocket-flow conditions. Separate the variables and integrate, assuming V � 0 at t � 0:

�V

0
dV � ṁ Ve �t

0
�
M0

d
�

t
ṁt

� � g �t

0
dt or V(t) � �Veln �1 � �

M
ṁ

0

t
�� � gt Ans.

This is a classic approximate formula in rocket dynamics. The first term is positive and, if the
fuel mass burned is a large fraction of initial mass, the final rocket velocity can exceed Ve.

A control-volume analysis can be applied to the angular-momentum relation, Eq. (3.3),
by letting our dummy variable B be the angular-momentum vector H. However, since
the system considered here is typically a group of nonrigid fluid particles of variable ve-
locity, the concept of mass moment of inertia is of no help and we have to calculate the
instantaneous angular momentum by integration over the elemental masses dm. If O is
the point about which moments are desired, the angular momentum about O is given by

HO ��
syst

(r � V) dm (3.51)

where r is the position vector from 0 to the elemental mass dm and V is the velocity
of that element. The amount of angular momentum per unit mass is thus seen to be

� � �
d
d
H
m

O� � r � V
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The Reynolds transport theorem (3.16) then tells us that

�
dH

dt
O�syst

� �
d
d
t
� 
�CV

(r � V)	 d�� ��
CS

(r � V)	(Vr � n) dA (3.52)

for the most general case of a deformable control volume. But from the angular-
momentum theorem (3.3), this must equal the sum of all the moments about point O
applied to the control volume

�
dH

dt
O� � � MO � � (r � F)O

Note that the total moment equals the summation of moments of all applied forces
about point O. Recall, however, that this law, like Newton’s law (3.2), assumes that the
particle velocity V is relative to an inertial coordinate system. If not, the moments
about point O of the relative acceleration terms arel in Eq. (3.49) must also be included

� MO � � (r � F)O ��
CV

(r � arel) dm (3.53)

where the four terms constituting arel are given in Eq. (3.49). Thus the most general
case of the angular-momentum theorem is for a deformable control volume associated
with a noninertial coordinate system. We combine Eqs. (3.52) and (3.53) to obtain

� (r � F)0 ��
CV

(r � arel) dm � �
d
d
t
� 
�CV

(r � V)	 d�� ��
CS

(r � V)	(Vr � n) dA

(3.54)

For a nondeformable inertial control volume, this reduces to

� M0 � �
�

�

t
� 
�CV

(r � V)	 d�� � �
CS

(r � V)	(V � n) dA (3.55)

Further, if there are only one-dimensional inlets and exits, the angular-momentum flux
terms evaluated on the control surface become

�
CS

(r � V)	(V � n) dA � � (r � V)out ṁout �� (r � V)in ṁin (3.56)

Although at this stage the angular-momentum theorem can be considered to be a sup-
plementary topic, it has direct application to many important fluid-flow problems in-
volving torques or moments. A particularly important case is the analysis of rotating
fluid-flow devices, usually called turbomachines (Chap. 11).

EXAMPLE 3.13

As shown in Fig. E3.13a, a pipe bend is supported at point A and connected to a flow system
by flexible couplings at sections 1 and 2. The fluid is incompressible, and ambient pressure pa

is zero. (a) Find an expression for the torque T which must be resisted by the support at A, in
terms of the flow properties at sections 1 and 2 and the distances h1 and h2. (b) Compute this
torque if D1 � D2 � 3 in, p1 � 100 lbf/in2 gage, p2 � 80 lbf/in2 gage, V1 � 40 ft/s, h1 � 2 in,
h2 � 10 in, and 	 � 1.94 slugs/ft3.
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E3.13a

Solution

The control volume chosen in Fig. E3.13b cuts through sections 1 and 2 and through the sup-
port at A, where the torque TA is desired. The flexible-couplings description specifies that there
is no torque at either section 1 or 2, and so the cuts there expose no moments. For the angular-
momentum terms r � V, r should be taken from point A to sections 1 and 2. Note that the gage
pressure forces p1A1 and p2A2 both have moments about A. Equation (3.55) with one-dimen-
sional flux terms becomes

� MA � TA � r1 � (�p1A1n1) � r2 � (�p2A2n2)

� (r2 � V2)(�ṁout) � (r1 � V1)(�ṁin) (1)

Figure E3.13c shows that all the cross products are associated either with r1 sin 
1 � h1 or 
r2 sin 
2 � h2, the perpendicular distances from point A to the pipe axes at 1 and 2. Remember
that ṁin � ṁout from the steady-flow continuity relation. In terms of counterclockwise moments,
Eq. (1) then becomes

TA � p1A1h1 � p2A2h2 � ṁ (h2V2 � h1V1) (2)

Rewriting this, we find the desired torque to be

TA � h2(p2A2 � ṁ V2) � h1(p1A1 � ṁ V1) Ans. (a) (3)
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Part (b)

counterclockwise. The quantities p1 and p2 are gage pressures. Note that this result is indepen-
dent of the shape of the pipe bend and varies only with the properties at sections 1 and 2 and
the distances h1 and h2.†

The inlet and exit areas are the same:

A1 � A2 � �
�

4
� (3)2� 7.07 in2� 0.0491 ft2

Since the density is constant, we conclude from continuity that V2 � V1 � 40 ft /s. The mass
flow is

ṁ� 	A1V1 � 1.94(0.0491)(40) � 3.81 slug/s

Equation (3) can be evaluated as

TA � (�11
0
2� ft)[80(7.07) lbf � 3.81(40) lbf] � (�1

2
2� ft)[100(7.07) lbf � 3.81(40) lbf]

� 598 � 143 � 455 ft � lbf counterclockwise Ans. (b)

We got a little daring there and multiplied p in lbf/in2 gage times A in in2 to get lbf without
changing units to lbf/ft2 and ft2.

EXAMPLE 3.14

Figure 3.13 shows a schematic of a centrifugal pump. The fluid enters axially and passes through
the pump blades, which rotate at angular velocity �; the velocity of the fluid is changed from
V1 to V2 and its pressure from p1 to p2. (a) Find an expression for the torque TO which must be
applied to these blades to maintain this flow. (b) The power supplied to the pump would be P �
�TO. To illustrate numerically, suppose r1 � 0.2 m, r2 � 0.5 m, and b � 0.15 m. Let the pump
rotate at 600 r/min and deliver water at 2.5 m3/s with a density of 1000 kg/m3. Compute the ide-
alized torque and power supplied.

Solution

The control volume is chosen to be the angular region between sections 1 and 2 where the flow
passes through the pump blades (see Fig. 3.13). The flow is steady and assumed incompress-
ible. The contribution of pressure to the torque about axis O is zero since the pressure forces at
1 and 2 act radially through O. Equation (3.55) becomes

� MO � TO � (r2 � V2)ṁout � (r1 � V1)ṁin (1)

where steady-flow continuity tells us that

ṁin � 	Vn12�r1b � ṁout � 	Vn2�r2b � 	Q

The cross product r � V is found to be clockwise about O at both sections:

r2 � V2 � r2Vt2 sin 90° k � r2Vt2k clockwise

r1 � V1 � r1Vt1k clockwise

Equation (1) thus becomes the desired formula for torque

TO � 	Q(r2Vt2 � r1Vt1)k clockwise Ans. (a) (2a)
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Fig. 3.13 Schematic of a simplified
centrifugal pump.

This relation is called Euler’s turbine formula. In an idealized pump, the inlet and outlet tan-
gential velocities would match the blade rotational speeds Vt1 � �r1 and Vt2 � �r2. Then the
formula for torque supplied becomes

TO � 	Q�(r2
2� r1

2) clockwise (2b)

Convert � to 600(2�/60) � 62.8 rad/s. The normal velocities are not needed here but follow
from the flow rate

Vn1 � �
2�

Q
r1b
� ��

2�(0.
2
2
.5
m

m
)(

3

0
/
.
s
15 m)

�� 13.3 m/s

Vn2 � �
2�

Q
r2b
� � �

2�(0.
2
5
.
)
5
(0.15)
� � 5.3 m/s

For the idealized inlet and outlet, tangential velocity equals tip speed

Vt1 � �r1 � (62.8 rad/s)(0.2 m) � 12.6 m/s

Vt2 � �r2 � 62.8(0.5) � 31.4 m/s

Equation (2a) predicts the required torque to be

TO � (1000 kg/m3)(2.5 m3/s)[(0.5 m)(31.4 m/s) � (0.2 m)(12.6 m/s)]

� 33,000 (kg � m2)/s2� 33,000 N � m Ans.

The power required is

P � �TO � (62.8 rad/s)(33,000 N � m) � 2,070,000 (N � m)/s

� 2.07 MW (2780 hp) Ans.

In actual practice the tangential velocities are considerably less than the impeller-tip speeds, and
the design power requirements for this pump may be only 1 MW or less.
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Fig. 3.14 View from above of a
single arm of a rotating lawn 
sprinkler.

EXAMPLE 3.15

Figure 3.14 shows a lawn-sprinkler arm viewed from above. The arm rotates about O at con-
stant angular velocity �. The volume flux entering the arm at O is Q, and the fluid is incom-
pressible. There is a retarding torque at O, due to bearing friction, of amount �TOk. Find an ex-
pression for the rotation � in terms of the arm and flow properties.

Solution

The entering velocity is V0k, where V0 � Q/Apipe. Equation (3.55) applies to the control volume
sketched in Fig. 3.14 only if V is the absolute velocity relative to an inertial frame. Thus the exit
velocity at section 2 is

V2 � V0i � R�i

Equation (3.55) then predicts that, for steady flow,

� MO � � TOk � (r2 � V2)ṁout � (r1 � V1)ṁin (1)

where, from continuity, ṁout � ṁin � 	Q. The cross products with reference to point O are

r2 � V2 � Rj � (V0 � R�)i � (R2� � RV0)k

r1 � V1 � 0j � V0k � 0

Equation (1) thus becomes

�TOk � 	Q(R2� � RV0)k

� � �
V
R
O� � �

	Q
TO

R2� Ans.

The result may surprise you: Even if the retarding torque TO is negligible, the arm rotational
speed is limited to the value V0/R imposed by the outlet speed and the arm length.

As our fourth and final basic law, we apply the Reynolds transport theorem (3.12) to
the first law of thermodynamics, Eq. (3.5). The dummy variable B becomes energy E,
and the energy per unit mass is 
 � dE/dm � e. Equation (3.5) can then be written for
a fixed control volume as follows:15

�
d
d
Q
t
� � �

d
d
W
t
� � �

d
d
E
t
� � �

d
d
t
� ��CV

e	 d�� � �
CS 

e	(V � n) dA (3.57)

Recall that positive Q denotes heat added to the system and positive W denotes work
done by the system.

The system energy per unit mass e may be of several types:

e � einternal � ekinetic � epotential � eother
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y

x

R

ω

2 Absolute outlet
velocity

V2 = V0i – Rωi

CV

Retarding 
torque T0

O

 V0 = 
Q

Apipe
k

Inlet velocity

3.6 The Energy Equation14

14This section should be read for information and enrichment even if you lack formal background in
thermodynamics.

15The energy equation for a deformable control volume is rather complicated and is not discussed
here. See Refs. 4 and 5 for further details.



where eother could encompass chemical reactions, nuclear reactions, and electrostatic
or magnetic field effects. We neglect eother here and consider only the first three terms
as discussed in Eq. (1.9), with z defined as “up”:

e � û � �12�V2� gz (3.58)

The heat and work terms could be examined in detail. If this were a heat-transfer
book, dQ/dT would be broken down into conduction, convection, and radiation effects
and whole chapters written on each (see, e.g., Ref. 3). Here we leave the term un-
touched and consider it only occasionally.

Using for convenience the overdot to denote the time derivative, we divide the work
term into three parts:

Ẇ � Ẇshaft � Ẇpress � Ẇviscous stresses � Ẇs � Ẇp � Ẇ�

The work of gravitational forces has already been included as potential energy in Eq.
(3.58). Other types of work, e.g., those due to electromagnetic forces, are excluded
here.

The shaft work isolates that portion of the work which is deliberately done by a
machine (pump impeller, fan blade, piston, etc.) protruding through the control sur-
face into the control volume. No further specification other than Ẇs is desired at
this point, but calculations of the work done by turbomachines will be performed
in Chap. 11.

The rate of work Ẇp done on pressure forces occurs at the surface only; all work
on internal portions of the material in the control volume is by equal and opposite
forces and is self-canceling. The pressure work equals the pressure force on a small
surface element dA times the normal velocity component into the control volume

dẆp � �(p dA)Vn,in � �p(�V � n) dA

The total pressure work is the integral over the control surface

Ẇp � �
CS

p(V � n) dA (3.59)

A cautionary remark: If part of the control surface is the surface of a machine part, we
prefer to delegate that portion of the pressure to the shaft work term Ẇs, not to Ẇp,
which is primarily meant to isolate the fluid-flow pressure-work terms.

Finally, the shear work due to viscous stresses occurs at the control surface, the in-
ternal work terms again being self-canceling, and consists of the product of each vis-
cous stress (one normal and two tangential) and the respective velocity component

dẆ� � �� � V dA

or Ẇ� � � �
CS

� � V dA (3.60)

where � is the stress vector on the elemental surface dA. This term may vanish or be
negligible according to the particular type of surface at that part of the control volume:

Solid surface. For all parts of the control surface which are solid confining walls,
V � 0 from the viscous no-slip condition; hence Ẇ� � zero identically.
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One-Dimensional Energy-Flux
Terms

Surface of a machine. Here the viscous work is contributed by the machine, and
so we absorb this work in the term Ẇs.

An inlet or outlet. At an inlet or outlet, the flow is approximately normal to the
element dA; hence the only viscous-work term comes from the normal stress
�nnVn dA. Since viscous normal stresses are extremely small in all but rare
cases, e.g., the interior of a shock wave, it is customary to neglect viscous
work at inlets and outlets of the control volume.

Streamline surface. If the control surface is a streamline such as the upper curve
in the boundary-layer analysis of Fig. 3.11, the viscous-work term must be
evaluated and retained if shear stresses are significant along this line. In the
particular case of Fig. 3.11, the streamline is outside the boundary layer, and
viscous work is negligible.

The net result of the above discussion is that the rate-of-work term in Eq. (3.57)
consists essentially of

Ẇ � Ẇs ��
CS 

p(V � n) dA � �
CS 

(� � V)SS dA (3.61)

where the subscript SS stands for stream surface. When we introduce (3.61) and (3.58)
into (3.57), we find that the pressure-work term can be combined with the energy-flux
term since both involve surface integrals of V � n. The control-volume energy equation
thus becomes

Q̇ � Ẇs � (Ẇυ)SS � �
�

�

t
� ��CV 

ep d�� � �
CS 

(e � �
p
	

�)	(V � n) dA (3.62)

Using e from (3.58), we see that the enthalpy ĥ � û � p/	 occurs in the control-sur-
face integral. The final general form for the energy equation for a fixed control vol-
ume becomes

Q̇ � Ẇs � Ẇυ � �
�

�

t
� 
�CV �û � �12� V2� gz� 	 d�� � �

CS �ĥ � �12� V2� gz� 	(V � n) dA

(3.63)

As mentioned above, the shear-work term Ẇ� is rarely important.

If the control volume has a series of one-dimensional inlets and outlets, as in Fig.
3.6, the surface integral in (3.63) reduces to a summation of outlet fluxes minus in-
let fluxes

�
CS

(ĥ � �12�V2� gz)	(V � n) dA

��(ĥ � �12�V2� gz)outṁout ��(ĥ � �12�V2� gz)inṁin (3.64)

where the values of ĥ, �12�V2, and gz are taken to be averages over each cross section.
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EXAMPLE 3.16

A steady-flow machine (Fig. E3.16) takes in air at section 1 and discharges it at sections 2 and
3. The properties at each section are as follows:

Section A, ft2 Q, ft3/s T, °F p, lbf/in2 abs z, ft

1 0.4 100 70 20 1.0
2 1.0 40 100 30 4.0
3 0.25 50 200 ? 1.5

Work is provided to the machine at the rate of 150 hp. Find the pressure p3 in lbf/in2 absolute
and the heat transfer Q̇ in Btu/s. Assume that air is a perfect gas with R � 1715 and cp � 6003
ft � lbf/(slug � °R).

Solution

The control volume chosen cuts across the three desired sections and otherwise follows the solid
walls of the machine. Therefore the shear-work term W� is negligible. We have enough infor-
mation to compute Vi � Qi /Ai immediately

V1 � �
1
0
0
.4
0

� � 250 ft/s V2 � �
1
4
.
0
0
� � 40 ft/s V3 � �

0
5
.2
0
5

� � 200 ft/s

and the densities 	i � pi/(RTi)

	1 ��
1715

2
(
0
7
(
0
14

�

4)
460)

�� 0.00317 slug/ft3

	2 � �
1
3
7
0
1
(
5
1
(
4
5
4
6
)
0)

� � 0.00450 slug/ft3

but 	3 is determined from the steady-flow continuity relation:

ṁ1 � ṁ2 � ṁ3

	1Q1 � 	2Q2 � 	3Q3 (1)

0.00317(100) � 0.00450(40) � 	3(50)

or 50	3 � 0.317 � 0.180 � 0.137 slug/s

	3 � �
0.

5
1
0
37
� � 0.00274 slug/ft3� �

17
1
1
4
5
4
(6
p
6
3

0)
�

p3 � 21.5 lbf/in2 absolute Ans.

Note that the volume flux Q1 � Q2 � Q3 because of the density changes.
For steady flow, the volume integral in (3.63) vanishes, and we have agreed to neglect vis-

cous work. With one inlet and two outlets, we obtain

Q̇� Ẇs � �ṁ1(ĥ1 � �12�V1
2� gz1) � ṁ2(ĥ2 � �12�V2

2� gz2) � ṁ3(ĥ3 � �12�V3
2� gz3) (2)

where Ẇs is given in hp and can be quickly converted to consistent BG units:

Ẇs � �150 hp [550 ft � lbf/(s � hp)]

� �82,500 ft � lbf/s negative work on system
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Q = ?150 hp
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The Steady-Flow Energy Equation

For a perfect gas with constant cp, ĥ � cpT plus an arbitrary constant. It is instructive to sepa-
rate the flux terms in Eq. (2) above to examine their magnitudes:

Enthalpy flux:

cp(�ṁ1T1 � ṁ2T2 � ṁ3T3) � [6003 ft � lbf/(slug � °R)][(�0.317 slug/s)(530 °R)

� 0.180(560) � 0.137(660)]

� �1,009,000 � 605,000 � 543,000

� �139,000 ft � lbf/s

Kinetic-energy flux:

�ṁ1(�12�V1
2) � ṁ2(�12�V2

2) � ṁ3(�12�V3
2) � �12�[�0.317(250)2� 0.180(40)2� 0.137(200)2]

� �9900 � 150 � 2750 � �7000 ft � lbf/s

Potential-energy flux:

g(�ṁ1z1 � ṁ2z2 � ṁ3z3) � 32.2[�0.317(1.0) � 0.180(4.0) � 0.137(1.5)]

� �10 � 23 � 7 � �20 ft � lbf/s

These are typical effects: The potential-energy flux is negligible in gas flows, the kinetic-energy
flux is small in low-speed flows, and the enthalpy flux is dominant. It is only when we neglect
heat-transfer effects that the kinetic and potential energies become important. Anyway, we can
now solve for the heat flux

Q̇ � �82,500 � 139,000 � 7000 � 20 � 49,520 ft � lbf/s (3)

Converting, we get

Q̇ ��
778.2

49
ft
,5
�

2
lb
0
f/Btu

�� �63.6 Btu/s Ans.

For steady flow with one inlet and one outlet, both assumed one-dimensional, Eq. (3.63)
reduces to a celebrated relation used in many engineering analyses. Let section 1 be
the inlet and section 2 the outlet. Then

Q̇ � Ẇs � Ẇ� � �ṁ1(ĥ1 � �12�V1
2� gz1) � ṁ2(ĥ2 � �12�V2

2� gz2) (3.65)

But, from continuity, ṁ1 � ṁ2 � ṁ, and we can rearrange (3.65) as follows:

ĥ1 � �12�V1
2� gz1 � (ĥ2 � �12�V2

2� gz2) � q � ws � wυ (3.66)

where q � Q̇/ṁ � dQ/dm, the heat transferred to the fluid per unit mass. Similarly,
ws � Ẇs/ṁ � dWs/dm and wυ � Ẇυ/ṁ � dWυ/dm. Equation (3.66) is a general form
of the steady-flow energy equation, which states that the upstream stagnation enthalpy
H1 � (ĥ � �12�V 2� gz)1 differs from the downstream value H2 only if there is heat trans-
fer, shaft work, or viscous work as the fluid passes between sections 1 and 2. Recall
that q is positive if heat is added to the control volume and that ws and w� are positive
if work is done by the fluid on the surroundings.
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Friction Losses in Low-Speed
Flow

Each term in Eq. (3.66) has the dimensions of energy per unit mass, or velocity
squared, which is a form commonly used by mechanical engineers. If we divide through
by g, each term becomes a length, or head, which is a form preferred by civil engi-
neers. The traditional symbol for head is h, which we do not wish to confuse with en-
thalpy. Therefore we use internal energy in rewriting the head form of the energy re-
lation:

�
p
�
1� � �

û
g
1� � �

V
2g

1
2

� � z1 � �
p
�
2� � �

û
g
2� � �

V
2g

1
2

� � z2 � hq � hs � h� (3.67)

where hq � q/g, hs � ws/g, and hυ � wu/g are the head forms of the heat added, shaft
work done, and viscous work done, respectively. The term p/� is called pressure head
and the term V2/2g is denoted as velocity head.

A very common application of the steady-flow energy equation is for low-speed flow
with no shaft work and negligible viscous work, such as liquid flow in pipes. For this
case Eq. (3.67) may be written in the form

�
p
�
1� � �

V
2g

1
2

� � z1 � ��
p
�
2� � �

V
2g

2
2

� � z2� � �
û2 � û

g
1 � q
� (3.68)

The term in parentheses is called the useful head or available head or total head of
the flow, denoted as h0. The last term on the right is the difference between the avail-
able head upstream and downstream and is normally positive, representing the loss in
head due to friction, denoted as hf. Thus, in low-speed (nearly incompressible) flow
with one inlet and one exit, we may write

��
�

p
� � �

V
2g

2

� � z�in
� ��

�

p
� � �

V
2g

2

� � z�out
� hfriction � hpump � hturbine (3.69)

Most of our internal-flow problems will be solved with the aid of Eq. (3.69). The h
terms are all positive; that is, friction loss is always positive in real (viscous) flows, a
pump adds energy (increases the left-hand side), and a turbine extracts energy from the
flow. If hp and/or ht are included, the pump and/or turbine must lie between points 1
and 2. In Chaps. 5 and 6 we shall develop methods of correlating hf losses with flow
parameters in pipes, valves, fittings, and other internal-flow devices.

EXAMPLE 3.17

Gasoline at 20°C is pumped through a smooth 12-cm-diameter pipe 10 km long, at a flow rate
of 75 m3/h (330 gal/min). The inlet is fed by a pump at an absolute pressure of 24 atm. The exit
is at standard atmospheric pressure and is 150 m higher. Estimate the frictional head loss hf, and
compare it to the velocity head of the flow V2/(2g). (These numbers are quite realistic for 
liquid flow through long pipelines.)

Solution

For gasoline at 20°C, from Table A.3, 	 � 680 kg/m3, or � � (680)(9.81) � 6670 N/m3. There
is no shaft work; hence Eq. (3.69) applies and can be evaluated:
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�
p
�
in� � �

V
2g

in
2

� � zin � �
p
�
out� � �

V
2

2

g
out� � zout � hf (1)

The pipe is of uniform cross section, and thus the average velocity everywhere is

Vin � Vout � �
Q
A

� ��
(
(
7
�

5
/
/
4
3
)
6
(
0
0
0
.1
)
2
m
m

3/
)
s
2� � 1.84 m/s

Being equal at inlet and exit, this term will cancel out of Eq. (1) above, but we are asked to com-
pute the velocity head of the flow for comparison purposes:

�
V
2g

2

� � �
2
(
(
1
9
.8
.8
4
1

m
m

/
/
s
s
)
2

2

)
� � 0.173 m

Now we are in a position to evaluate all terms in Eq. (1) except the friction head loss:

� 0.173 m � 0 m � �
10

6
1
6
,
7
3
0
50

N
N
/m

/m
3

2

� � 0.173 m � 150 m � hf

or hf � 364.7 � 15.2 � 150 � 199 m Ans.

The friction head is larger than the elevation change �z, and the pump must drive the flow against
both changes, hence the high inlet pressure. The ratio of friction to velocity head is

�
V2/

h
(
f

2g)
� � �

0
1
.1
9
7
9
3
m
m

� � 1150 Ans.

This high ratio is typical of long pipelines. (Note that we did not make direct use of the 
10,000-m pipe length, whose effect is hidden within hf.) In Chap. 6 we can state this problem
in a more direct fashion: Given the flow rate, fluid, and pipe size, what inlet pressure is needed?
Our correlations for hf will lead to the estimate pinlet � 24 atm, as stated above.

EXAMPLE 3.18

Air [R � 1715, cp � 6003 ft � lbf/(slug � °R)] flows steadily, as shown in Fig. E3.18, through a
turbine which produces 700 hp. For the inlet and exit conditions shown, estimate (a) the exit ve-
locity V2 and (b) the heat transferred Q̇ in Btu/h.

(24)(101,350 N/m2)
���

6670 N/m3
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1 2

Turbomachine

ws = 700 hp⋅

D1 = 6 in

p1 = 150 lb/in2

T1 = 300° F

V1 = 100 ft/s

D2 = 6 in

p2 = 40 lb/in2

T2 = 35° FQ ?⋅
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Part (b)

Solution

The inlet and exit densities can be computed from the perfect-gas law:

	1 � �
R
p
T
1

1
� ��

1715
1
(
5
4
0
6
(
0
14

�

4)
300)

�� 0.0166 slug/ft3

	2 � �
R
p
T
2

2
� ��

1715
4
(
0
4
(
6
1
0
44

�

)
35)

�� 0.00679 slug/ft3

The mass flow is determined by the inlet conditions

ṁ � 	1A1V1 � (0.0166) �
�

4
� ��

1
6
2
��

2

(100) � 0.325 slug/s

Knowing mass flow, we compute the exit velocity

ṁ � 0.325 � 	2A2V2 � (0.00679) �
�

4
� ��

1
6
2
��

2

V2

or V2 � 244 ft/s Ans. (a)

The steady-flow energy equation (3.65) applies with Ẇ� � 0, z1 � z2, and ĥ � cpT:

Q̇ � Ẇs � ṁ (cpT2 � �12�V2
2� cpT1 � �12�V1

2)

Convert the turbine work to foot-pounds-force per second with the conversion factor 1 hp �
550 ft � lbf/s. The turbine work is positive

Q̇ � 700(550) � 0.325[6003(495) � �12�(244)2� 6003(760) � �12�(100)2]

� �510,000 ft � lbf/s

or Q̇ � �125,000 ft � lbf/s

Convert this to British thermal units as follows:

Q̇ � (�125,000 ft � lbf/s) �
778.

3
2
6
f
0
t
0
�

s
lb
/h
f/Btu

�

� �576,000 Btu/h Ans. (b)

The negative sign indicates that this heat transfer is a loss from the control volume.

Often the flow entering or leaving a port is not strictly one-dimensional. In particular,
the velocity may vary over the cross section, as in Fig. E3.4. In this case the kinetic-
energy term in Eq. (3.64) for a given port should be modified by a dimensionless cor-
rection factor � so that the integral can be proportional to the square of the average
velocity through the port

�
port

(�12�V2)	(V � n) dA � �(�12�Vav
2 )ṁ

where Vav � �
A
1

� � u dA for incompressible flow
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If the density is also variable, the integration is very cumbersome; we shall not treat
this complication. By letting u be the velocity normal to the port, the first equation
above becomes, for incompressible flow,

�12�	 � u3dA � �12�	�Vav
3 A

or � � �
A
1

� � ��
V
u

av
��

3

dA (3.70)

The term � is the kinetic-energy correction factor, having a value of about 2.0 for fully
developed laminar pipe flow and from 1.04 to 1.11 for turbulent pipe flow. The com-
plete incompressible steady-flow energy equation (3.69), including pumps, turbines,
and losses, would generalize to

��
	

p
g
� � �

2
�

g
� V2 � z�in

� ��
	

p
g
� � �

2
�

g
� V2 � z�out

� hturbine � hpump � hfriction  (3.71)

where the head terms on the right (ht, hp, hf) are all numerically positive. All additive
terms in Eq. (3.71) have dimensions of length {L}. In problems involving turbulent
pipe flow, it is common to assume that � � 1.0. To compute numerical values, we can
use these approximations to be discussed in Chap. 6:

Laminar flow: u � U0
1 � ��
R
r
��

2

�
from which Vav � 0.5U0

and � � 2.0 (3.72)

Turbulent flow: u � U0�1 � �
R
r
��

m

m � �
1
7

�

from which, in Example 3.4,

Vav ��
(1 � m

2
)
U
(2

0

� m)
�

Substituting into Eq. (3.70) gives

� � (3.73)

and numerical values are as follows:

Turbulent flow:

These values are only slightly different from unity and are often neglected in elemen-
tary turbulent-flow analyses. However, � should never be neglected in laminar flow.

(1 � m)3(2 � m)3

���
4(1 � 3m)(2 � 3m)
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m �15� �16� �17� �18� �19�

� 1.106 1.077 1.058 1.046 1.037



E3.19

EXAMPLE 3.19

A hydroelectric power plant (Fig. E3.19) takes in 30 m3/s of water through its turbine and dis-
charges it to the atmosphere at V2 � 2 m/s. The head loss in the turbine and penstock system is
hf � 20 m. Assuming turbulent flow, � � 1.06, estimate the power in MW extracted by the tur-
bine.
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Solution

We neglect viscous work and heat transfer and take section 1 at the reservoir surface (Fig. E3.19),
where V1 � 0, p1 � patm, and z1 � 100 m. Section 2 is at the turbine outlet. The steady-flow en-
ergy equation (3.71) becomes, in head form,

�
p
�
1� � �

�

2
1V
g

1
2

� � z1 � �
p
�
2� � �

�

2
2V
g

2
2

� � z2 � ht � hf

�
p
�
a� � �

1
2
.
(
0
9
6
.
(
8
0
1
)
)

2

� � 100 m � �
p
�
a� ��

1
2
.0
(9
6
.
(
8
2
1
.0

m
m
/s
/s
2
)
)

2

�� 0 m � ht � 20 m

The pressure terms cancel, and we may solve for the turbine head (which is positive):

ht � 100 � 20 � 0.2 � 79.8 m

The turbine extracts about 79.8 percent of the 100-m head available from the dam. The total
power extracted may be evaluated from the water mass flow:

P � ṁws � (	Q)(ght) � (998 kg/m3)(30 m3/s)(9.81 m/s2)(79.8 m)

� 23.4 E6 kg � m2/s3� 23.4 E6 N � m/s � 23.4 MW Ans. 7

The turbine drives an electric generator which probably has losses of about 15 percent, so the
net power generated by this hydroelectric plant is about 20 MW.

EXAMPLE 3.20

The pump in Fig. E3.20 delivers water (62.4 lbf/ft3) at 3 ft3/s to a machine at section 2, which
is 20 ft higher than the reservoir surface. The losses between 1 and 2 are given by hf � KV2

2/(2g),

Water

30 m3/s

z1 = 100 m

z2 = 0 m

2 m/s

Turbine

1
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where K � 7.5 is a dimensionless loss coefficient (see Sec. 6.7). Take � � 1.07. Find the horse-
power required for the pump if it is 80 percent efficient.

Solution

If the reservoir is large, the flow is steady, with V1 � 0. We can compute V2 from the given flow
rate and the pipe diameter:

V2 � �
A
Q

2
� � � 61.1 ft/s

The viscous work is zero because of the solid walls and near-one-dimensional inlet and exit. The
steady-flow energy equation (3.71) becomes

�
p
�
1� � �

�

2
1V
g

1
2

� � z1 � �
p
�
2� � �

�

2
2V
g

2
2

� � z2 � hs � hf

Introducing V1 � 0, z1 � 0, and hf � KV2
2/(2g), we may solve for the pump head:

hs � �
p1 �

�

p2� � z2 � (�2 � K)��
V
2g

2
2

��
The pressures should be in lbf/ft2 for consistent units. For the given data, we obtain

hs � � 20 ft � (1.07 � 7.5) �
2
(
(
6
3
1
2
.1
.2

f
f
t
t
/
/
s
s
)
2

2

)
�

� 11 � 20 � 497 � �506 ft

The pump head is negative, indicating work done on the fluid. As in Example 3.19, the power
delivered is computed from

P � ṁws � 	Qghs � (1.94 slug/ft3)(3.0 ft3/s)(32.2 ft/s2)(�507 ft) � �94,900 ft � lbf/s

or hp ��
55

9
0
4,

f
9
t
0
�

0
lb
ft
f/

�

(s
lb
�

f
h
/s
p)

�� 173 hp

(14.7 � 10.0)(144) lbf/ft2
���

62.4 lbf/ft3

3 ft3/s
��
(�/4)(�1

3
2� ft)2
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3.7 Frictionless Flow:
The Bernoulli Equation

We drop the negative sign when merely referring to the “power” required. If the pump is 80 per-
cent efficient, the input power required to drive it is

Pinput � �
effic

P
iency
� � �

17
0
3
.8

hp
� � 216 hp Ans.

The inclusion of the kinetic-energy correction factor � in this case made a difference of about
1 percent in the result.

Closely related to the steady-flow energy equation is a relation between pressure, ve-
locity, and elevation in a frictionless flow, now called the Bernoulli equation. It was
stated (vaguely) in words in 1738 in a textbook by Daniel Bernoulli. A complete der-
ivation of the equation was given in 1755 by Leonhard Euler. The Bernoulli equation
is very famous and very widely used, but one should be wary of its restrictions—all
fluids are viscous and thus all flows have friction to some extent. To use the Bernoulli
equation correctly, one must confine it to regions of the flow which are nearly fric-
tionless. This section (and, in more detail, Chap. 8) will address the proper use of the
Bernoulli relation.

Consider Fig. 3.15, which is an elemental fixed streamtube control volume of vari-
able area A(s) and length ds, where s is the streamline direction. The properties (	, V,
p) may vary with s and time but are assumed to be uniform over the cross section A.
The streamtube orientation 
 is arbitrary, with an elevation change dz � ds sin 
. Fric-
tion on the streamtube walls is shown and then neglected—a very restrictive assump-
tion.

Conservation of mass (3.20) for this elemental control volume yields

�
d
d
t
� ��CV

	 d�� � ṁout � ṁin � 0 � �
�

�

	

t
� d� � dṁ

where ṁ � 	AV and d� � A ds. Then our desired form of mass conservation is

dṁ � d(	AV) � ��
�

�

	

t
� A ds (3.74)
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This relation does not require an assumption of frictionless flow.
Now write the linear-momentum relation (3.37) in the streamwise direction:

�dFs � �
d
d
t
� ��CV

V	 d�� � (ṁV)out � (ṁV)in � �
�

�

t
� (	V) A ds � d(ṁV)

where Vs � V itself because s is the streamline direction. If we neglect the shear force
on the walls (frictionless flow), the forces are due to pressure and gravity. The stream-
wise gravity force is due to the weight component of the fluid within the control vol-
ume:

dFs,grav � �dW sin 
 � ��A ds sin 
 � ��A dz

The pressure force is more easily visualized, in Fig. 3.15b, by first subtracting a uni-
form value p from all surfaces, remembering from Fig. 3.7 that the net force is not
changed. The pressure along the slanted side of the streamtube has a streamwise com-
ponent which acts not on A itself but on the outer ring of area increase dA. The net
pressure force is thus

dFs,press � �12� dp dA � dp(A � dA) � �A dp

to first order. Substitute these two force terms into the linear-momentum relation:

� dFs � ��A dz � A dp � �
�

�

t
� (	V) A ds � d(ṁV)

� �
�

�

	

t
� VA ds � �

�

�

V
t
� 	A ds � ṁ dV � V dṁ

The first and last terms on the right cancel by virtue of the continuity relation (3.74).
Divide what remains by 	A and rearrange into the final desired relation:

�
�

�

V
t
� ds � �

d
	

p
� � V dV � g dz � 0 (3.75)

This is Bernoulli’s equation for unsteady frictionless flow along a streamline. It is in
differential form and can be integrated between any two points 1 and 2 on the stream-
line:

�2

1
�
�

�

V
t
� ds � �2

1
�
d
	

p
� � �

1
2

� (V2
2� V1

2) � g(z2 � z1) � 0 (3.76)

To evaluate the two remaining integrals, one must estimate the unsteady effect �V/�t and
the variation of density with pressure. At this time we consider only steady (�V/�t � 0)
incompressible (constant-density) flow, for which Eq. (3.76) becomes

�
p2 �

	

p1� � �
1
2

� (V2
2� V1

2) � g(z2 � z1) � 0

or �
p
	
1� � �

1
2

� V1
2� gz1 � �

p
	
2� � �

1
2

� V2
2� gz2 � const (3.77)

This is the Bernoulli equation for steady frictionless incompressible flow along a
streamline.
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Relation between the Bernoulli
and Steady-Flow Energy
Equations

Equation (3.77) is a widely used form of the Bernoulli equation for incompressible
steady frictionless streamline flow. It is clearly related to the steady-flow energy equa-
tion for a streamtube (flow with one inlet and one outlet), from Eq. (3.66), which we
state as follows:

�
p
	
1� � �

�1

2
V1

2

� � gz1 � �
p
	
2� � �

�2

2
V2

2

� � gz2 � (û2 � û1 � q) � ws � wv (3.78)

This relation is much more general than the Bernoulli equation, because it allows for
(1) friction, (2) heat transfer, (3) shaft work, and (4) viscous work (another frictional
effect).

If we compare the Bernoulli equation (3.77) with the energy equation (3.78), we
see that the Bernoulli equation contains even more restrictions than might first be re-
alized. The complete list of assumptions for Eq. (3.77) is as follows:

1. Steady flow—a common assumption applicable to many flows.

2. Incompressible flow—acceptable if the flow Mach number is less than 0.3.

3. Frictionless flow—very restrictive, solid walls introduce friction effects.

4. Flow along a single streamline—different streamlines may have different
“Bernoulli constants” w0 � p/	 � V2/2 � gz, depending upon flow conditions.

5. No shaft work between 1 and 2—no pumps or turbines on the streamline.

6. No heat transfer between 1 and 2—either added or removed.

Thus our warning: Be wary of misuse of the Bernoulli equation. Only a certain lim-
ited set of flows satisfies all six assumptions above. The usual momentum or “me-
chanical force” derivation of the Bernoulli equation does not even reveal items 5 and
6, which are thermodynamic limitations. The basic reason for restrictions 5 and 6 is
that heat transfer and work transfer, in real fluids, are married to frictional effects,
which therefore invalidate our assumption of frictionless flow.

Figure 3.16 illustrates some practical limitations on the use of Bernoulli’s equation
(3.77). For the wind-tunnel model test of Fig. 3.16a, the Bernoulli equation is valid in
the core flow of the tunnel but not in the tunnel-wall boundary layers, the model sur-
face boundary layers, or the wake of the model, all of which are regions with high fric-
tion.

In the propeller flow of Fig. 3.16b, Bernoulli’s equation is valid both upstream
and downstream, but with a different constant w0 � p/	 � V2/2 � gz, caused by the
work addition of the propeller. The Bernoulli relation (3.77) is not valid near the
propeller blades or in the helical vortices (not shown, see Fig. 1.12a) shed down-
stream of the blade edges. Also, the Bernoulli constants are higher in the flowing
“slipstream” than in the ambient atmosphere because of the slipstream kinetic en-
ergy.

For the chimney flow of Fig. 3.16c, Eq. (3.77) is valid before and after the fire, but
with a change in Bernoulli constant that is caused by heat addition. The Bernoulli equa-
tion is not valid within the fire itself or in the chimney-wall boundary layers.

The moral is to apply Eq. (3.77) only when all six restrictions can be satisfied: steady
incompressible flow along a streamline with no friction losses, no heat transfer, and
no shaft work between sections 1 and 2.
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A useful visual interpretation of Bernoulli’s equation is to sketch two grade lines of a
flow. The energy grade line (EGL) shows the height of the total Bernoulli constant
h0 � z � p/� � V2/(2g). In frictionless flow with no work or heat transfer, Eq. (3.77),
the EGL has constant height. The hydraulic grade line (HGL) shows the height corre-
sponding to elevation and pressure head z � p/�, that is, the EGL minus the velocity
head V2/(2g). The HGL is the height to which liquid would rise in a piezometer tube
(see Prob. 2.11) attached to the flow. In an open-channel flow the HGL is identical to
the free surface of the water.

Figure 3.17 illustrates the EGL and HGL for frictionless flow at sections 1 and 2
of a duct. The piezometer tubes measure the static-pressure head z � p/� and thus out-
line the HGL. The pitot stagnation-velocity tubes measure the total head z � p/� �
V2/(2g), which corresponds to the EGL. In this particular case the EGL is constant, and
the HGL rises due to a drop in velocity.

In more general flow conditions, the EGL will drop slowly due to friction losses
and will drop sharply due to a substantial loss (a valve or obstruction) or due to work
extraction (to a turbine). The EGL can rise only if there is work addition (as from a
pump or propeller). The HGL generally follows the behavior of the EGL with respect
to losses or work transfer, and it rises and/or falls if the velocity decreases and/or in-
creases.
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Fig. 3.17 Hydraulic and energy
grade lines for frictionless flow in a
duct.

E3.21 

As mentioned before, no conversion factors are needed in computations with the
Bernoulli equation if consistent SI or BG units are used, as the following examples
will show.

In all Bernoulli-type problems in this text, we consistently take point 1 upstream
and point 2 downstream.

EXAMPLE 3.21

Find a relation between nozzle discharge velocity V2and tank free-surface height h as in Fig.
E3.21. Assume steady frictionless flow.
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Solution

As mentioned, we always choose point 1 upstream and point 2 downstream. Try to choose points
1 and 2 where maximum information is known or desired. Here we select point 1 as the tank
free surface, where elevation and pressure are known, and point 2 as the nozzle exit, where again
pressure and elevation are known. The two unknowns are V1 and V2.

Mass conservation is usually a vital part of Bernoulli analyses. If A1 is the tank cross section
and A2 the nozzle area, this is approximately a one-dimensional flow with constant density, Eq.
(3.30),

A1V1 � A2V2 (1)

Bernoulli’s equation (3.77) gives

�
p
	
1� � �12�V1

2 � gz1 � �
p
	
2� � �12�V2

2 � gz2

But since sections 1 and 2 are both exposed to atmospheric pressure p1 � p2 � pa, the pressure
terms cancel, leaving

V2
2 � V1

2 � 2g(z1 � z2) � 2gh (2)

Eliminating V1 between Eqs. (1) and (2), we obtain the desired result:

V2
2 � �

1 �

2g
A
h

2
2/A1

2� Ans. (3)

Generally the nozzle area A2 is very much smaller than the tank area A1, so that the ratio A2
2/A1

2

is doubly negligible, and an accurate approximation for the outlet velocity is

V2 � (2gh)1/2 Ans. (4)

This formula, discovered by Evangelista Torricelli in 1644, states that the discharge velocity
equals the speed which a frictionless particle would attain if it fell freely from point 1 to point
2. In other words, the potential energy of the surface fluid is entirely converted to kinetic energy
of efflux, which is consistent with the neglect of friction and the fact that no net pressure work
is done. Note that Eq. (4) is independent of the fluid density, a characteristic of gravity-driven
flows.

Except for the wall boundary layers, the streamlines from 1 to 2 all behave in the same way,
and we can assume that the Bernoulli constant h0 is the same for all the core flow. However, the
outlet flow is likely to be nonuniform, not one-dimensional, so that the average velocity is only
approximately equal to Torricelli’s result. The engineer will then adjust the formula to include
a dimensionless discharge coefficient cd

(V2)av � �
A
Q

2
� � cd(2gh)1/2 (5)

As discussed in Sec. 6.10, the discharge coefficient of a nozzle varies from about 0.6 to 1.0 as
a function of (dimensionless) flow conditions and nozzle shape.

Before proceeding with more examples, we should note carefully that a solution by
Bernoulli’s equation (3.77) does not require a control-volume analysis, only a selec-
tion of two points 1 and 2 along a given streamline. The control volume was used to
derive the differential relation (3.75), but the integrated form (3.77) is valid all along
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the streamline for frictionless flow with no heat transfer or shaft work, and a control
volume is not necessary.

EXAMPLE 3.22

Rework Example 3.21 to account, at least approximately, for the unsteady-flow condition caused
by the draining of the tank.

Solution

Essentially we are asked to include the unsteady integral term involving �V/�t from Eq. (3.76).
This will result in a new term added to Eq. (2) from Example 3.21:

2 �2

1
�
�

�

V
t
� ds � V2

2 � V 1
2 � 2gh (1)

Since the flow is incompressible, the continuity equation still retains the simple form A1V1 �
A2V2 from Example 3.21. To integrate the unsteady term, we must estimate the acceleration all
along the streamline. Most of the streamline is in the tank region where �V/�t � dV1/dt. The
length of the average streamline is slightly longer than the nozzle depth h. A crude estimate for
the integral is thus

�2

1
�
�

�

V
t
� ds � �2

1
�
d
d
V
t
1� ds � ��

d
d
V
t
1� h (2)

But since A1 and A2 are constant, dV1/dt � (A2/A1)(dV2/dt). Substitution into Eq. (1) gives

�2h �
A
A

2

1
� �

d
d
V
t
2� � V2

2�1 � �
A
A1

2
2
2

�� � 2gh (3)

This is a first-order differential equation for V2(t). It is complicated by the fact that the depth h
is variable; therefore h � h(t), as determined by the variation in V1(t)

h(t) � h0 � �t

0
V1 dt (4)

Equations (3) and (4) must be solved simultaneously, but the problem is well posed and can be
handled analytically or numerically. We can also estimate the size of the first term in Eq. (3) by
using the approximation V2 � (2gh)1/2 from the previous example. After differentiation, we ob-
tain

2h �
A
A

2

1
� �

d
d
V
t
2� � ���

A
A

2

1
��

2

V2
2 (5)

which is negligible if A2 � A1, as originally postulated.

EXAMPLE 3.23

A constriction in a pipe will cause the velocity to rise and the pressure to fall at section 2 in the
throat. The pressure difference is a measure of the flow rate through the pipe. The smoothly
necked-down system shown in Fig. E3.23 is called a venturi tube. Find an expression for the
mass flux in the tube as a function of the pressure change.
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E3.23

Solution

Bernoulli’s equation is assumed to hold along the center streamline

�
p
	
1� � �12�V1

2 � gz1 � �
p
	
2� � �12�V2

2 � gz2

If the tube is horizontal, z1 � z2 and we can solve for V2:

V2
2 � V1

2 � �
2

	

�p
� �p � p1 � p2 (1)

We relate the velocities from the incompressible continuity relation

A1V1 � A2V2

or V1 � 
2V2 
 � �
D
D

2

1
� (2)

Combining (1) and (2), we obtain a formula for the velocity in the throat

V2 � 
�	(1
2

�

�p

4)

��
1/2

(3)

The mass flux is given by

ṁ � 	A2V2 � A2��12	

�

�




p
4��

1/2

(4)

This is the ideal frictionless mass flux. In practice, we measure ṁactual � cd ṁ ideal and correlate
the discharge coefficient cd.

EXAMPLE 3.24

A 10-cm fire hose with a 3-cm nozzle discharges 1.5 m3/min to the atmosphere. Assuming fric-
tionless flow, find the force FB exerted by the flange bolts to hold the nozzle on the hose.

Solution

We use Bernoulli’s equation and continuity to find the pressure p1 upstream of the nozzle and
then we use a control-volume momentum analysis to compute the bolt force, as in Fig. E3.24.

The flow from 1 to 2 is a constriction exactly similar in effect to the venturi in Example 3.23
for which Eq. (1) gave

p1 � p2 � �12�	(V2
2 � V1

2) (1)
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E3.24

The velocities are found from the known flow rate Q � 1.5 m3/min or 0.025 m3/s:

V2 � �
A
Q

2
� ��

(�
0
/4
.0
)
2
(0
5
.0
m
3

3

m
/s

)2�� 35.4 m/s

V1 � �
A
Q

1
� � �

(�
0
/
.
4
0
)
2
(
5
0.

m
1

3

m
/s

)2� � 3.2 m/s

We are given p2 � pa � 0 gage pressure. Then Eq. (1) becomes

p1 � �12�(1000 kg/m3)[(35.42� 3.22) m2/s2]

� 620,000 kg/(m � s2) � 620,000 Pa gage

The control-volume force balance is shown in Fig. E3.24b:

� Fx � �FB � p1A1

and the zero gage pressure on all other surfaces contributes no force. The x-momentum flux is
�ṁV2 at the outlet and �ṁV1 at the inlet. The steady-flow momentum relation (3.40) thus gives

�FB � p1A1 � ṁ(V2 � V1)

or FB � p1A1 � ṁ(V2 � V1) (2)

Substituting the given numerical values, we find

ṁ � 	Q � (1000 kg/m3)(0.025 m3/s) � 25 kg/s

A1 � �
�

4
� D1

2 � �
�

4
� (0.1 m)2 � 0.00785 m2

FB � (620,000 N/m2)(0.00785 m2) � (25 kg/s)[(35.4 � 3.2) m/s]

� 4872 N � 805 (kg � m)/s2 � 4067 N (915 lbf) Ans.

This gives an idea of why it takes more than one firefighter to hold a fire hose at full discharge.

Notice from these examples that the solution of a typical problem involving
Bernoulli’s equation almost always leads to a consideration of the continuity equation
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Summary

as an equal partner in the analysis. The only exception is when the complete velocity
distribution is already known from a previous or given analysis, but that means that
the continuity relation has already been used to obtain the given information. The point
is that the continuity relation is always an important element in a flow analysis.

This chapter has analyzed the four basic equations of fluid mechanics: conservation of
(1) mass, (2) linear momentum, (3) angular momentum, and (4) energy. The equations
were attacked “in the large,” i.e., applied to whole regions of a flow. As such, the typ-
ical analysis will involve an approximation of the flow field within the region, giving
somewhat crude but always instructive quantitative results. However, the basic control-
volume relations are rigorous and correct and will give exact results if applied to the
exact flow field.

There are two main points to a control-volume analysis. The first is the selection of
a proper, clever, workable control volume. There is no substitute for experience, but
the following guidelines apply. The control volume should cut through the place where
the information or solution is desired. It should cut through places where maximum
information is already known. If the momentum equation is to be used, it should not
cut through solid walls unless absolutely necessary, since this will expose possible un-
known stresses and forces and moments which make the solution for the desired force
difficult or impossible. Finally, every attempt should be made to place the control vol-
ume in a frame of reference where the flow is steady or quasi-steady, since the steady
formulation is much simpler to evaluate.

The second main point to a control-volume analysis is the reduction of the analy-
sis to a case which applies to the problem at hand. The 24 examples in this chapter
give only an introduction to the search for appropriate simplifying assumptions. You
will need to solve 24 or 124 more examples to become truly experienced in simplify-
ing the problem just enough and no more. In the meantime, it would be wise for the
beginner to adopt a very general form of the control-volume conservation laws and
then make a series of simplifications to achieve the final analysis. Starting with the
general form, one can ask a series of questions:

1. Is the control volume nondeforming or nonaccelerating?

2. Is the flow field steady? Can we change to a steady-flow frame?

3. Can friction be neglected?

4. Is the fluid incompressible? If not, is the perfect-gas law applicable?

5. Are gravity or other body forces negligible?

6. Is there heat transfer, shaft work, or viscous work?

7. Are the inlet and outlet flows approximately one-dimensional?

8. Is atmospheric pressure important to the analysis? Is the pressure hydrostatic on
any portions of the control surface?

9. Are there reservoir conditions which change so slowly that the velocity and time
rates of change can be neglected?

In this way, by approving or rejecting a list of basic simplifications like those above,
one can avoid pulling Bernoulli’s equation off the shelf when it does not apply.
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Problems

Most of the problems herein are fairly straightforward. More diffi-
cult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon, for example, Prob. 3.5, will benefit
from the use of the Engineering Equation Solver (EES), while fig-
ures labeled with a computer disk may require the use of a computer.
The standard end-of-chapter problems 3.1 to 3.182 (categorized in
the problem list below) are followed by word problems W3.1 to W3.7,
fundamentals of engineering (FE) exam problems FE3.1 to FE3.10,
comprehensive problems C3.1 to C3.4, and design project D3.1.

Problem Distribution

Section Topic Problems

3.1 Basic physical laws; volume flow 3.1–3.8
3.2 The Reynolds transport theorem 3.9–3.11
3.3 Conservation of mass 3.12–3.38
3.4 The linear momentum equation 3.39–3.109
3.5 The angular momentum theorem 3.110–3.125
3.6 The energy equation 3.126–3.146
3.7 The Bernoulli equation 3.147–3.182

P3.1 Discuss Newton’s second law (the linear-momentum rela-
tion) in these three forms:

�F � ma � F � �
d
d
t
� (mV)

� F � �
d
d
t
� ��system

V	 d��
Are they all equally valid? Are they equivalent? Are some
forms better for fluid mechanics as opposed to solid me-
chanics?

P3.2 Consider the angular-momentum relation in the form

� MO � �
d
d
t
� 
�system

(r � V)	 d��
What does r mean in this relation? Is this relation valid in
both solid and fluid mechanics? Is it related to the linear-
momentum equation (Prob. 3.1)? In what manner?

P3.3 For steady low-Reynolds-number (laminar) flow through
a long tube (see Prob. 1.12), the axial velocity distribution
is given by u � C(R2� r2), where R is the tube radius and
r � R. Integrate u(r) to find the total volume flow Q
through the tube.

P3.4 Discuss whether the following flows are steady or un-
steady: (a) flow near an automobile moving at 55 mi/h,
(b) flow of the wind past a water tower, (c) flow in a pipe
as the downstream valve is opened at a uniform rate, (d)
river flow over the spillway of a dam, and (e) flow in the
ocean beneath a series of uniform propagating surface
waves. Elaborate if these questions seem ambiguous.

*P3.5 A theory proposed by S. I. Pai in 1953 gives the follow-
ing velocity values u(r) for turbulent (high-Reynolds-num-
ber) airflow in a 4-cm-diameter tube:

r, cm 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0

u, m/s 6.00 5.97 5.88 5.72 5.51 5.23 4.89 4.43 0.00

Comment on these data vis-à-vis laminar flow, Prob. 3.3.
Estimate, as best you can, the total volume flow Q through
the tube, in m3/s.

P3.6 When a gravity-driven liquid jet issues from a slot in a
tank, as in Fig. P3.6, an approximation for the exit veloc-
ity distribution is u � �2	g	(h	 �	 z	)	, where h is the depth
of the jet centerline. Near the slot, the jet is horizontal,
two-dimensional, and of thickness 2L, as shown. Find a
general expression for the total volume flow Q issuing
from the slot; then take the limit of your result if L � h.
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z = +L

x
z = –L

hz

Fig. P3.6 

Fig. P3.7

P3.7 Consider flow of a uniform stream U toward a circular
cylinder of radius R, as in Fig. P3.7. An approximate the-
ory for the velocity distribution near the cylinder is devel-
oped in Chap. 8, in polar coordinates, for r � R:

υr � U cos 
 �1 � �
R
r2

2

�� υ
 � �U sin 
 �1 � �
R
r2

2

��
where the positive directions for radial (υr) and circum-
ferential (υ
) velocities are shown in Fig. P3.7. Compute
the volume flow Q passing through the (imaginary) sur-
face CC in the figure. (Comment: If CC were far upstream
of the cylinder, the flow would be Q � 2URb.)

U R
2R

C

C

R

r

θ

vr

vθ

Imaginary surface:
Width b into paper



P3.8 Consider the two-dimensional stagnation flow of Example
1.10, where u � Kx and v � �Ky, with K � 0. Evaluate
the volume flow Q, per unit depth into the paper, passing
through the rectangular surface normal to the paper which
stretches from (x, y) � (0, 0) to (1, 1).

P3.9 A laboratory test tank contains seawater of salinity S and
density 	. Water enters the tank at conditions (S1, 	1, A1,
V1) and is assumed to mix immediately in the tank. Tank
water leaves through an outlet A2 at velocity V2. If salt is
a “conservative” property (neither created nor destroyed),
use the Reynolds transport theorem to find an expression
for the rate of change of salt mass Msalt within the tank.

P3.10 Laminar steady flow, through a tube of radius R and length
L, is being heated at the wall. The fluid entered the tube
at uniform temperature T0 � Tw/3. As the fluid exits the
tube, its axial velocity and enthalpy profiles are approxi-
mated by

u � U0�1 � �
R
r2

2�� h � �
cp

2

Tw
� �1 � �

R
r2

2��
cp � const

(a) Sketch these profiles and comment on their physical
realism. (b) Compute the total flux of enthalpy through the
exit section.

P3.11 A room contains dust of uniform concentration C �
	dust/	. It is to be cleaned up by introducing fresh air at
velocity Vi through a duct of area Ai on one wall and ex-
hausting the room air at velocity V0 through a duct A0 on
the opposite wall. Find an expression for the instantaneous
rate of change of dust mass within the room.

P3.12 Water at 20°C flows steadily through a closed tank, as in
Fig. P3.12. At section 1, D1 � 6 cm and the volume flow
is 100 m3/h. At section 2, D2 � 5 cm and the average ve-
locity is 8 m/s. If D3 � 4 cm, what is (a) Q3 in m3/h and
(b) average V3 in m/s?

P3.14 The open tank in Fig. P3.14 contains water at 20°C and is
being filled through section 1. Assume incompressible
flow. First derive an analytic expression for the water-level
change dh/dt in terms of arbitrary volume flows (Q1, Q2,
Q3) and tank diameter d. Then, if the water level h is con-
stant, determine the exit velocity V2 for the given data 
V1 � 3 m/s and Q3 � 0.01 m3/s.
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1

2

3

Water

P3.12

P3.13

P3.14

P3.15
P3.13 Water at 20°C flows steadily at 40 kg/s through the noz-

zle in Fig. P3.13. If D1 � 18 cm and D2 � 5 cm, compute
the average velocity, in m/s, at (a) section 1 and (b) sec-
tion 2.

2

1

Water
D2 = 7 cm

Q3 = 0.01 m3/s

D1 = 5 cm

d 

2

3

1

h 

P3.15 Water, assumed incompressible, flows steadily through the
round pipe in Fig. P3.15. The entrance velocity is constant,
u � U0, and the exit velocity approximates turbulent flow,
u � umax(1 � r/R)1/7. Determine the ratio U0 /umax for this
flow.

r

r = R

x = 0

U0

x = L

u(r)

P3.16 An incompressible fluid flows past an impermeable flat
plate, as in Fig. P3.16, with a uniform inlet profile u � U0

and a cubic polynomial exit profile



u � U0 ��3� �

2
�3

�� where � � �
�

y
�

Compute the volume flow Q across the top surface of the
control volume.

P3.17 Incompressible steady flow in the inlet between parallel
plates in Fig. P3.17 is uniform, u � U0 � 8 cm/s, while
downstream the flow develops into the parabolic laminar
profile u � az(z0 � z), where a is a constant. If z0 � 4 cm
and the fluid is SAE 30 oil at 20°C, what is the value of
umax in cm/s?

P3.19 A partly full water tank admits water at 20°C and 85 N/s
weight flow while ejecting water on the other side at 5500
cm3/s. The air pocket in the tank has a vent at the top and
is at 20°C and 1 atm. If the fluids are approximately in-
compressible, how much air in N/h is passing through the
vent? In which direction?

P3.20 Oil (SG � 0.89) enters at section 1 in Fig. P3.20 at a
weight flow of 250 N/h to lubricate a thrust bearing. The
steady oil flow exits radially through the narrow clearance
between thrust plates. Compute (a) the outlet volume flux
in mL/s and (b) the average outlet velocity in cm/s.
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P3.17

P3.20

P3.18 P3.22

z = z0

umax

z = 0

 U0

h = 2 mm

D = 10 cm

2

1

2

D1 = 3 mm

1

2

Air

D1 = 1 cm

D2 = 2.5 cm

P3.18 An incompressible fluid flows steadily through the rec-
tangular duct in Fig. P3.18. The exit velocity profile is
given approximately by

u � umax�1 � �
b
y2

2���1 � �
h
z2

2��
(a) Does this profile satisfy the correct boundary condi-
tions for viscous fluid flow? (b) Find an analytical expres-
sion for the volume flow Q at the exit. (c) If the inlet flow
is 300 ft3/min, estimate umax in m/s for b � h � 10 cm.

P3.21 A dehumidifier brings in saturated wet air (100 percent rel-
ative humidity) at 30°C and 1 atm, through an inlet of 8-
cm diameter and average velocity 3 m/s. After some of the
water vapor condenses and is drained off at the bottom,
the somewhat drier air leaves at approximately 30°C, 1
atm, and 50 percent relative humidity. For steady opera-
tion, estimate the amount of water drained off in kg/h. (This
problem is idealized from a real dehumidifier.)

P3.22 The converging-diverging nozzle shown in Fig. P3.22 ex-
pands and accelerates dry air to supersonic speeds at the
exit, where p2 � 8 kPa and T2 � 240 K. At the throat, p1 �
284 kPa, T1 � 665 K, and V1 � 517 m/s. For steady com-
pressible flow of an ideal gas, estimate (a) the mass flow
in kg/h, (b) the velocity V2, and (c) the Mach number Ma2.

P3.16

y = 0 CV

 U0  U0y = δ Q?

Solid plate, width b into paper
Cubic

Inlet flow

L

2h

2b

z

x, u

y



P3.23 The hypodermic needle in Fig. P3.23 contains a liquid
serum (SG � 1.05). If the serum is to be injected steadily
at 6 cm3/s, how fast in in/s should the plunger be advanced
(a) if leakage in the plunger clearance is neglected and (b)
if leakage is 10 percent of the needle flow?

P3.26 A thin layer of liquid, draining from an inclined plane, as
in Fig. P3.26, will have a laminar velocity profile u �
U0(2y/h � y2/h2), where U0 is the surface velocity. If the
plane has width b into the paper, determine the volume
rate of flow in the film. Suppose that h � 0.5 in and the
flow rate per foot of channel width is 1.25 gal/min. Esti-
mate U0 in ft/s.
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P3.25
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V2

U0

U0
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Exponential curve

U + ∆U

z

L
2
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*P3.24 Water enters the bottom of the cone in Fig. P3.24 at a uni-
formly increasing average velocity V � Kt. If d is very
small, derive an analytic formula for the water surface rise
h(t) for the condition h � 0 at t � 0. Assume incompress-
ible flow.

*P3.27 The cone frustum in Fig. P3.27 contains incompressible
liquid to depth h. A solid piston of diameter d penetrates
the surface at velocity V. Derive an analytic expression for
the rate of rise dh/dt of the liquid surface.

P3.28 Consider a cylindrical water tank of diameter D and wa-
ter depth h. According to elementary theory, the flow rate
from a small hole of area A in the bottom of the tank would
be Q � CA �2	g	h	, where C � 0.61. If the initial water
level is h0 and the hole is opened, derive an expression for
the time required for the water level to drop to �13�h0.

P3.29 In elementary compressible-flow theory (Chap. 9), com-
pressed air will exhaust from a small hole in a tank at the
mass flow rate ṁ � C	, where 	 is the air density in the
tank and C is a constant. If 	0 is the initial density in a
tank of volume �, derive a formula for the density change
	(t) after the hole is opened. Apply your formula to the
following case: a spherical tank of diameter 50 cm, with
initial pressure 300 kPa and temperature 100°C, and a hole
whose initial exhaust rate is 0.01 kg/s. Find the time re-
quired for the tank density to drop by 50 percent.

h(t)

V = Kt

Diameter d

Cone





Piston

V

R


 d h
ConeP3.25 As will be discussed in Chaps. 7 and 8, the flow of a stream

U0 past a blunt flat plate creates a broad low-velocity wake
behind the plate. A simple model is given in Fig. P3.25,
with only half of the flow shown due to symmetry. The
velocity profile behind the plate is idealized as “dead air”
(near-zero velocity) behind the plate, plus a higher veloc-
ity, decaying vertically above the wake according to the
variation u � U0 � �U e�z/L, where L is the plate height
and z � 0 is the top of the wake. Find �U as a function of
stream speed U0.



*P3.30 The V-shaped tank in Fig. P3.30 has width b into the pa-
per and is filled from the inlet pipe at volume flow Q. De-
rive expressions for (a) the rate of change dh/dt and (b)
the time required for the surface to rise from h1 to h2.

P3.33 In some wind tunnels the test section is perforated to suck
out fluid and provide a thin viscous boundary layer. The
test section wall in Fig. P3.33 contains 1200 holes of 
5-mm diameter each per square meter of wall area. The
suction velocity through each hole is Vs � 8 m/s, and the
test-section entrance velocity is V1 � 35 m/s. Assuming
incompressible steady flow of air at 20°C, compute (a) V0,
(b) V2, and (c) Vf, in m/s.
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P3.33

P3.34

P3.35

Df = 2.2 m
D0 = 2.5 m

Vf V2 V1 V0

L = 4 m

Test section
Ds = 0.8 m

Uniform suction

1

3

2

Liquid oxygen:
0.5 slug/s

Liquid fuel:
0.1 slug/s

1100° F

15 lbf/in2

D2 = 5.5 in

4000° R
400 lbf/in2

Propellant

Propellant

Combustion:
1500 K, 950 kPa

Exit section
De = 18 cm
 pe = 90 kPa
 Ve = 1150 m/s
 Te = 750 K

P3.31 A bellows may be modeled as a deforming wedge-shaped
volume as in Fig. P3.31. The check valve on the left
(pleated) end is closed during the stroke. If b is the bel-
lows width into the paper, derive an expression for outlet
mass flow ṁ0 as a function of stroke 
(t).

P3.32 Water at 20°C flows steadily through the piping junction
in Fig. P3.32, entering section 1 at 20 gal/min. The aver-
age velocity at section 2 is 2.5 m/s. A portion of the flow
is diverted through the showerhead, which contains 100
holes of 1-mm diameter. Assuming uniform shower flow,
estimate the exit velocity from the showerhead jets.

P3.34 A rocket motor is operating steadily, as shown in Fig.
P3.34. The products of combustion flowing out the exhaust
nozzle approximate a perfect gas with a molecular weight
of 28. For the given conditions calculate V2 in ft/s.

P3.35 In contrast to the liquid rocket in Fig. P3.34, the solid-
propellant rocket in Fig. P3.35 is self-contained and has
no entrance ducts. Using a control-volume analysis for the
conditions shown in Fig. P3.35, compute the rate of mass
loss of the propellant, assuming that the exit gas has a mo-
lecular weight of 28.

P3.30

P3.31

P3.32

20˚ 20˚

Q

h

h

h

Stroke

L

d << h 

m0

 (t)θ 

 (t)θ 

(3)

(2) (1)

d = 4 cm

d = 1.5 cm

d = 2 cm



P3.36 The jet pump in Fig. P3.36 injects water at U1 � 40 m/s
through a 3-in-pipe and entrains a secondary flow of water
U2 � 3 m/s in the annular region around the small pipe.
The two flows become fully mixed downstream, where U3

is approximately constant. For steady incompressible flow,
compute U3 in m/s.

P3.40 The water jet in Fig. P3.40 strikes normal to a fixed plate.
Neglect gravity and friction, and compute the force F in
newtons required to hold the plate fixed.
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P3.40

P3.41
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D1 = 3 in

U2

U3

D2 = 10 in

rh(t)
V

CV CV
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V0

Fixed circular disk

1

2

30°

D1 = 10 cm

D2 = 6 cm

P3.37 A solid steel cylinder, 4.5 cm in diameter and 12 cm long,
with a mass of 1500 g, falls concentrically through a 
5-cm-diameter vertical container filled with oil (SG �
0.89). Assuming the oil is incompressible, estimate the oil
average velocity in the annular clearance between cylin-
der and container (a) relative to the container and (b) rel-
ative to the cylinder.

P3.38 An incompressible fluid in Fig. P3.38 is being squeezed
outward between two large circular disks by the uniform
downward motion V0 of the upper disk. Assuming one-
dimensional radial outflow, use the control volume shown
to derive an expression for V(r).

P3.39 For the elbow duct in Fig. P3.39, SAE 30 oil at 20°C en-
ters section 1 at 350 N/s, where the flow is laminar, and
exits at section 2, where the flow is turbulent:

u1 � Vav,1�1 � �
R
r2

1
2�� u2 � Vav,2�1 � �

R
r

2
��

1/ 7

Assuming steady incompressible flow, compute the force,
and its direction, of the oil on the elbow due to momen-
tum change only (no pressure change or friction effects)
for (a) unit momentum-flux correction factors and (b) ac-
tual correction factors 
1 and 
2.

P3.41 In Fig. P3.41 the vane turns the water jet completely
around. Find an expression for the maximum jet velocity
V0 if the maximum possible support force is F0.

P3.42 A liquid of density 	 flows through the sudden contraction
in Fig. P3.42 and exits to the atmosphere. Assume uniform
conditions (p1, V1, D1) at section 1 and (p2, V2, D2) at sec-



*P3.44 When a uniform stream flows past an immersed thick
cylinder, a broad low-velocity wake is created downstream,
idealized as a V shape in Fig. P3.44. Pressures p1 and p2

are approximately equal. If the flow is two-dimensional
and incompressible, with width b into the paper, derive a

P3.46 When a jet strikes an inclined fixed plate, as in Fig. P3.46,
it breaks into two jets at 2 and 3 of equal velocity V � Vjet

but unequal fluxes �Q at 2 and (1 � �)Q at section 3, �
being a fraction. The reason is that for frictionless flow the
fluid can exert no tangential force Ft on the plate. The con-
dition Ft � 0 enables us to solve for �. Perform this analy-
sis, and find � as a function of the plate angle 
. Why 
doesn’t the answer depend upon the properties of the jet?
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1

2

3

θ

F t = 0

(1-α)Q, V

αQ, V

F n 

, Q, A, Vρ

P3.43 Water at 20°C flows through a 5-cm-diameter pipe which
has a 180° vertical bend, as in Fig. P3.43. The total length
of pipe between flanges 1 and 2 is 75 cm. When the weight
flow rate is 230 N/s, p1 � 165 kPa and p2 � 134 kPa. Ne-
glecting pipe weight, determine the total force which the
flanges must withstand for this flow.

Water jet
D0 = 5 cm

W

P3.45

P3.46

formula for the drag force F on the cylinder. Rewrite your
result in the form of a dimensionless drag coefficient based
on body length CD � F/(	U2bL).

P3.45 In Fig. P3.45 a perfectly balanced weight and platform are
supported by a steady water jet. If the total weight sup-
ported is 700 N, what is the proper jet velocity?

P3.47 A liquid jet of velocity Vj and diameter Dj strikes a fixed
hollow cone, as in Fig. P3.47, and deflects back as a con-
ical sheet at the same velocity. Find the cone angle 
 for
which the restraining force F � �32�	Aj Vj

2.
P3.48 The small boat in Fig. P3.48 is driven at a steady speed

V0 by a jet of compressed air issuing from a 3-cm-diame-
ter hole at Ve � 343 m/s. Jet exit conditions are pe � 1 atm
and Te � 30°C. Air drag is negligible, and the hull drag is
kV0

2, where k � 19 N � s2/m2. Estimate the boat speed V0,
in m/s.

Atmosphere

pa p1

2

1

2

1

P3.42

P3.43

P3.44

2
1

U
U

2 L

L
U     

U

L

2

tion 2. Find an expression for the force F exerted by the
fluid on the contraction.

EES



P3.49 The horizontal nozzle in Fig. P3.49 has D1 � 12 in and
D2 � 6 in, with inlet pressure p1 � 38 lbf/in2absolute and
V2 � 56 ft/s. For water at 20°C, compute the horizontal
force provided by the flange bolts to hold the nozzle fixed.

tion 2 at atmospheric pressure and higher temperature,
where V2 � 900 m/s and A2 � 0.4 m2. Compute the hori-
zontal test stand reaction Rx needed to hold this engine
fixed.

P3.51 A liquid jet of velocity Vj and area Aj strikes a single 180°
bucket on a turbine wheel rotating at angular velocity �,
as in Fig. P3.51. Derive an expression for the power P de-
livered to this wheel at this instant as a function of the sys-
tem parameters. At what angular velocity is the maximum
power delivered? How would your analysis differ if there
were many, many buckets on the wheel, so that the jet was
continually striking at least one bucket?
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P3.47

P3.50 The jet engine on a test stand in Fig. P3.50 admits air at
20°C and 1 atm at section 1, where A1 � 0.5 m2 and V1 �
250 m/s. The fuel-to-air ratio is 1:30. The air leaves sec-

P3.52 The vertical gate in a water channel is partially open, as
in Fig. P3.52. Assuming no change in water level and a
hydrostatic pressure distribution, derive an expression for
the streamwise force Fx on one-half of the gate as a func-
tion of (	, h, w, 
, V1). Apply your result to the case of
water at 20°C, V1 � 0.8 m/s, h � 2 m, w � 1.5 m, and 
 �
50°.



P3.53 Consider incompressible flow in the entrance of a circular
tube, as in Fig. P3.53. The inlet flow is uniform, u1 � U0.
The flow at section 2 is developed pipe flow. Find the wall
drag force F as a function of (p1, p2, 	, U0, R) if the flow
at section 2 is

(a) Laminar: u2 � umax�1 � �
R
r2

2��
(b) Turbulent: u2 � umax�1 � �

R
r
��

1/7

the power P delivered to the cart. Also find the cart ve-
locity for which (c) the force Fx is a maximum and (d) the
power P is a maximum.

P3.56 For the flat-plate boundary-layer flow of Fig. 3.11, assume
that the exit profile is given by u � U0 sin[�y/(2�)] for
water flow at 20°C: U0 � 3 m/s, � � 2 mm, and L � 45
cm. Estimate the total drag force on the plate, in N, per
unit depth into the paper.

*P3.57 Laminar-flow theory [Ref. 3 of Chap. 1, p. 260] gives the
following expression for the wake behind a flat plate of
length L (see Fig. P3.44 for a crude sketch of wake):

u � U
1 � �
0.6

�

64
� ��

L
x

��
1/2

exp���
y
4

2

x
	

�

U
���

where U is the stream velocity, x is distance downstream
of the plate, and y � 0 is the plane of the plate. Sketch two
wake profiles, for umin � 0.9U and umin � 0.8U. For these
two profiles, evaluate the momentum-flux defect, i.e., the
difference between the momentum of a uniform stream U
and the actual wake profile. Comment on your results.

P3.58 The water tank in Fig. P3.58 stands on a frictionless cart
and feeds a jet of diameter 4 cm and velocity 8 m/s, which
is deflected 60° by a vane. Compute the tension in the sup-
porting cable.
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P3.54

P3.55

P3.58

P3.59

r = R
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x
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2

P3.54 For the pipe-flow-reducing section of Fig. P3.54, D1 � 8
cm, D2 � 5 cm, and p2 � 1 atm. All fluids are at 20°C. If
V1 � 5 m/s and the manometer reading is h � 58 cm, es-
timate the total force resisted by the flange bolts.

P3.55 In Fig. P3.55 the jet strikes a vane which moves to the
right at constant velocity Vc on a frictionless cart. Com-
pute (a) the force Fx required to restrain the cart and (b)

P3.59 When a pipe flow suddenly expands from A1 to A2, as in
Fig. P3.59, low-speed, low-friction eddies appear in the



corners and the flow gradually expands to A2 downstream.
Using the suggested control volume for incompressible
steady flow and assuming that p � p1 on the corner annu-
lar ring as shown, show that the downstream pressure is
given by

p2 � p1 � 	V1
2 �

A
A

1

2
� �1 � �

A
A

1

2
��

Neglect wall friction.
P3.60 Water at 20°C flows through the elbow in Fig. P3.60 and

exits to the atmosphere. The pipe diameter is D1 � 10 cm,
while D2 � 3 cm. At a weight flow rate of 150 N/s, the
pressure p1 � 2.3 atm (gage). Neglecting the weight of wa-
ter and elbow, estimate the force on the flange bolts at sec-
tion 1.

*P3.63 The sluice gate in Fig. P3.63 can control and measure flow
in open channels. At sections 1 and 2, the flow is uniform
and the pressure is hydrostatic. The channel width is b into
the paper. Neglecting bottom friction, derive an expression
for the force F required to hold the gate. For what condi-
tion h2/h1 is the force largest? For very low velocity V 1

2�
gh1, for what value of h2/h1 will the force be one-half of
the maximum?
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P3.61 A 20°C water jet strikes a vane mounted on a tank with
frictionless wheels, as in Fig. P3.61. The jet turns and falls
into the tank without spilling out. If 
 � 30°, evaluate the
horizontal force F required to hold the tank stationary.

P3.62 Water at 20°C exits to the standard sea-level atmosphere
through the split nozzle in Fig. P3.62. Duct areas are A1 �
0.02 m2 and A2 � A3 � 0.008 m2. If p1 � 135 kPa (ab-
solute) and the flow rate is Q2 � Q3 � 275 m3/h, compute
the force on the flange bolts at section 1.

P3.64 The 6-cm-diameter 20°C water jet in Fig. P3.64 strikes a
plate containing a hole of 4-cm diameter. Part of the jet



passes through the hole, and part is deflected. Determine
the horizontal force required to hold the plate.

P3.65 The box in Fig. P3.65 has three 0.5-in holes on the right
side. The volume flows of 20°C water shown are steady,
but the details of the interior are not known. Compute the
force, if any, which this water flow causes on the box.

P3.68 The rocket in Fig. P3.68 has a supersonic exhaust, and the
exit pressure pe is not necessarily equal to pa. Show that
the force F required to hold this rocket on the test stand is
F � 	eAeV e

2� Ae(pe � pa). Is this force F what we term
the thrust of the rocket?
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P3.66

P3.67

P3.68

P3.70

P3.71

P3.66 The tank in Fig. P3.66 weighs 500 N empty and contains
600 L of water at 20°C. Pipes 1 and 2 have equal diame-
ters of 6 cm and equal steady volume flows of 300 m3/h.
What should the scale reading W be in N?

P3.67 Gravel is dumped from a hopper, at a rate of 650 N/s, onto
a moving belt, as in Fig. P3.67. The gravel then passes off
the end of the belt. The drive wheels are 80 cm in diame-
ter and rotate clockwise at 150 r/min. Neglecting system
friction and air drag, estimate the power required to drive
this belt.

P3.69 The solution to Prob. 3.22 is a mass flow of 218 kg/h with
V2 � 1060 m/s and Ma2 � 3.41. If the conical section 
1–2 in Fig. P3.22 is 12 cm long, estimate the force on
these conical walls caused by this high-speed gas flow.

P3.70 The dredger in Fig. P3.70 is loading sand (SG � 2.6) onto
a barge. The sand leaves the dredger pipe at 4 ft/s with a
weight flux of 850 lbf/s. Estimate the tension on the moor-
ing line caused by this loading process.

*P3.72 When immersed in a uniform stream, a thick elliptical
cylinder creates a broad downstream wake, as idealized in

P3.71 Suppose that a deflector is deployed at the exit of the jet
engine of Prob. 3.50, as shown in Fig. P3.71. What will
the reaction Rx on the test stand be now? Is this reaction
sufficient to serve as a braking force during airplane land-
ing?

��
30˚

45°

45°



Fig. P3.72. The pressure at the upstream and downstream
sections are approximately equal, and the fluid is water at
20°C. If U0 � 4 m/s and L � 80 cm, estimate the drag
force on the cylinder per unit width into the paper. Also
compute the dimensionless drag coefficient CD �
2F/(	U0

2bL).

mentum changes. (b) Show that Fy � 0 only if � � 0.5. 
(c) Find the values of � and 
 for which both Fx and Fy

are zero.
*P3.76 The rocket engine of Prob. 3.35 has an initial mass of 

250 kg and is mounted on the rear of a 1300-kg racing car.
The rocket is fired up, and the car accelerates on level ground.
If the car has an air drag of kV2, where k � 0.65 N � s2/m2,
and rolling resistance cV, where c � 16 N � s/m, estimate the
velocity of the car after it travels 0.25 mi (1320 ft).

P3.77 Water at 20°C flows steadily through a reducing pipe bend,
as in Fig. P3.77. Known conditions are p1 � 350 kPa,
D1 � 25 cm, V1 � 2.2 m/s, p2 � 120 kPa, and D2 � 8 cm.
Neglecting bend and water weight, estimate the total force
which must be resisted by the flange bolts.
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P3.73 A pump in a tank of water at 20°C directs a jet at 45 ft/s
and 200 gal/min against a vane, as shown in Fig. P3.73.
Compute the force F to hold the cart stationary if the jet
follows (a) path A or (b) path B. The tank holds 550 gal
of water at this instant.
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P3.74 Water at 20°C flows down through a vertical, 6-cm-diam-
eter tube at 300 gal/min, as in Fig. P3.74. The flow then
turns horizontally and exits through a 90° radial duct seg-
ment 1 cm thick, as shown. If the radial outflow is uni-
form and steady, estimate the forces (Fx, Fy, Fz) required
to support this system against fluid momentum changes.

*P3.75 A jet of liquid of density 	 and area A strikes a block and
splits into two jets, as in Fig. P3.75. Assume the same ve-
locity V for all three jets. The upper jet exits at an angle

 and area �A. The lower jet is turned 90° downward. Ne-
glecting fluid weight, (a) derive a formula for the forces
(Fx, Fy) required to support the block against fluid mo-



P3.78 A fluid jet of diameter D1 enters a cascade of moving
blades at absolute velocity V1 and angle 
1, and it leaves
at absolute velocity V1 and angle 
2, as in Fig. P3.78. The
blades move at velocity u. Derive a formula for the power
P delivered to the blades as a function of these parame-
ters.

force exerted by the river on the obstacle in terms of V1,
h1, h2, b, 	, and g. Neglect water friction on the river
bottom.

P3.81 Torricelli’s idealization of efflux from a hole in the side of
a tank is V � �2	 g	h	, as shown in Fig. P3.81. The cylin-
drical tank weighs 150 N when empty and contains water
at 20°C. The tank bottom is on very smooth ice (static fric-
tion coefficient � � 0.01). The hole diameter is 9 cm. For
what water depth h will the tank just begin to move to the
right?
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P3.79 Air at 20°C and 1 atm enters the bottom of an 85° coni-
cal flowmeter duct at a mass flow of 0.3 kg/s, as shown in
Fig. P3.79. It is able to support a centered conical body by
steady annular flow around the cone, as shown. The air ve-
locity at the upper edge of the body equals the entering
velocity. Estimate the weight of the body, in newtons.

P3.80 A river of width b and depth h1 passes over a submerged
obstacle, or “drowned weir,” in Fig. P3.80, emerging at
a new flow condition (V2, h2). Neglect atmospheric pres-
sure, and assume that the water pressure is hydrostatic
at both sections 1 and 2. Derive an expression for the

*P3.82 The model car in Fig. P3.82 weighs 17 N and is to be
accelerated from rest by a 1-cm-diameter water jet mov-
ing at 75 m/s. Neglecting air drag and wheel friction,
estimate the velocity of the car after it has moved for-
ward 1 m.

P3.83 Gasoline at 20°C is flowing at V1 � 12 m/s in a 5-cm-
diameter pipe when it encounters a 1-m length of uniform
radial wall suction. At the end of this suction region, the
average fluid velocity has dropped to V2 � 10 m/s. If p1 �
120 kPa, estimate p2 if the wall friction losses are ne-
glected.

P3.84 Air at 20°C and 1 atm flows in a 25-cm-diameter duct
at 15 m/s, as in Fig. P3.84. The exit is choked by a 90°
cone, as shown. Estimate the force of the airflow on the
cone.

EES



P3.85 The thin-plate orifice in Fig. P3.85 causes a large pressure
drop. For 20°C water flow at 500 gal/min, with pipe D �
10 cm and orifice d � 6 cm, p1 � p2 � 145 kPa. If the
wall friction is negligible, estimate the force of the water
on the orifice plate.

P3.88 The boat in Fig. P3.88 is jet-propelled by a pump which
develops a volume flow rate Q and ejects water out the
stern at velocity Vj. If the boat drag force is F � kV2, where
k is a constant, develop a formula for the steady forward
speed V of the boat.

Problems 197

1 2

V1

p1

Vw

5D V2

p2

D

Porous section

Vw

V

VjPump
Q

V(t)

h

Stopper

pa

P3.84

P3.85

P3.87

P3.88

P3.90

40 cm90˚25 cm

1 cm

P3.86 For the water-jet pump of Prob. 3.36, add the following
data: p1 � p2 � 25 lbf/in2, and the distance between sec-
tions 1 and 3 is 80 in. If the average wall shear stress be-
tween sections 1 and 3 is 7 lbf/ft2, estimate the pressure
p3. Why is it higher than p1?

P3.87 Figure P3.87 simulates a manifold flow, with fluid removed
from a porous wall or perforated section of pipe. Assume
incompressible flow with negligible wall friction and small
suction Vw � V1. If (p1, V1, Vw, 	, D) are known, derive
expressions for (a) V2 and (b) p2.

P3.89 Consider Fig. P3.36 as a general problem for analysis of
a mixing ejector pump. If all conditions (p, 	, V) are known
at sections 1 and 2 and if the wall friction is negligible,
derive formulas for estimating (a) V3 and (b) p3.

P3.90 As shown in Fig. P3.90, a liquid column of height h is con-
fined in a vertical tube of cross-sectional area A by a stop-
per. At t � 0 the stopper is suddenly removed, exposing
the bottom of the liquid to atmospheric pressure. Using a
control-volume analysis of mass and vertical momentum,
derive the differential equation for the downward motion
V(t) of the liquid. Assume one-dimensional, incompress-
ible, frictionless flow.

P3.91 Extend Prob. 3.90 to include a linear (laminar) average
wall shear stress resistance of the form � � cV, where c is
a constant. Find the differential equation for dV/dt and then
solve for V(t), assuming for simplicity that the wall area
remains constant.

*P3.92 A more involved version of Prob. 3.90 is the elbow-shaped
tube in Fig. P3.92, with constant cross-sectional area A and
diameter D � h, L. Assume incompressible flow, neglect



P3.92

P3.96

friction, and derive a differential equation for dV/dt when
the stopper is opened. Hint: Combine two control volumes,
one for each leg of the tube.

*P3.98 As an extension of Example 3.10, let the plate and its
cart (see Fig. 3.10a) be unrestrained horizontally, with
frictionless wheels. Derive (a) the equation of motion for
cart velocity Vc(t) and (b) a formula for the time required
for the cart to accelerate from rest to 90 percent of the
jet velocity (assuming the jet continues to strike the plate
horizontally). (c) Compute numerical values for part (b)
using the conditions of Example 3.10 and a cart mass of
2 kg.

P3.99 Suppose that the rocket motor of Prob. 3.34 is attached to
a missile which starts from rest at sea level and moves
straight up, as in Fig. E3.12. If the system weighs 950 lbf,
which includes 300 lbf of fuel and oxidizer, estimate the
velocity and height of the missile (a) after 10 s and (b) af-
ter 20 s. Neglect air drag.

P3.100 Suppose that the solid-propellant rocket of Prob. 3.35 is
built into a missile of diameter 70 cm and length 4 m.
The system weighs 1800 N, which includes 700 N of
propellant. Neglect air drag. If the missile is fired verti-
cally from rest at sea level, estimate (a) its velocity and
height at fuel burnout and (b) the maximum height it will
attain.

P3.101 Modify Prob. 3.100 by accounting for air drag on the mis-
sile F � C	D2V2, where C � 0.02, 	 is the air density, D
is the missile diameter, and V is the missile velocity. Solve
numerically for (a) the velocity and altitude at burnout and
(b) the maximum altitude attained.

P3.102 As can often be seen in a kitchen sink when the faucet is
running, a high-speed channel flow (V1, h1) may “jump”
to a low-speed, low-energy condition (V2, h2) as in Fig.
P3.102. The pressure at sections 1 and 2 is approximately
hydrostatic, and wall friction is negligible. Use the conti-
nuity and momentum relations to find h2 and V2 in terms
of (h1, V1).
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P3.93 Extend Prob. 3.92 to include a linear (laminar) average
wall shear stress resistance of the form � � cV, where c is
a constant. Find the differential equation for dV/dt and then
solve for V(t), assuming for simplicity that the wall area
remains constant.

P3.94 Attempt a numerical solution of Prob. 3.93 for SAE 30 oil
at 20°C. Let h � 20 cm, L � 15 cm, and D � 4 mm. Use
the laminar shear approximation from Sec. 6.4: � �
8�V/D, where � is the fluid viscosity. Account for the de-
crease in wall area wetted by the fluid. Solve for the time
required to empty (a) the vertical leg and (b) the horizon-
tal leg.

P3.95 Attempt a numerical solution of Prob. 3.93 for mercury at
20°C. Let h � 20 cm, L � 15 cm, and D � 4 mm. For
mercury the flow will be turbulent, with the wall shear
stress estimated from Sec. 6.4: � � 0.005	V2, where 	 is
the fluid density. Account for the decrease in wall area wet-
ted by the fluid. Solve for the time required to empty (a)
the vertical leg and (b) the horizontal leg. Compare with
a frictionless flow solution.

P3.96 Extend Prob. 3.90 to the case of the liquid motion in a fric-
tionless U-tube whose liquid column is displaced a dis-
tance Z upward and then released, as in Fig. P3.96. Ne-
glect the short horizontal leg and combine control-volume
analyses for the left and right legs to derive a single dif-
ferential equation for V(t) of the liquid column.

*P3.97 Extend Prob. 3.96 to include a linear (laminar) average
wall shear stress resistance of the form � � 8�V/D, where
� is the fluid viscosity. Find the differential equation for
dV/dt and then solve for V(t), assuming an initial dis-
placement z � z0, V � 0 at t � 0. The result should be a
damped oscillation tending toward z � 0.



*P3.103 Suppose that the solid-propellant rocket of Prob. 3.35 is
mounted on a 1000-kg car to propel it up a long slope of
15°. The rocket motor weighs 900 N, which includes 500
N of propellant. If the car starts from rest when the rocket
is fired, and if air drag and wheel friction are neglected,
estimate the maximum distance that the car will travel up
the hill.

P3.104 A rocket is attached to a rigid horizontal rod hinged at the
origin as in Fig. P3.104. Its initial mass is M0, and its exit
properties are ṁ and Ve relative to the rocket. Set up the
differential equation for rocket motion, and solve for the
angular velocity �(t) of the rod. Neglect gravity, air drag,
and the rod mass.

dips h � 2.5 cm into a pond. Neglect air drag and wheel
friction. Estimate the force required to keep the cart mov-
ing.

*P3.108 A rocket sled of mass M is to be decelerated by a scoop,
as in Fig. P3.108, which has width b into the paper and
dips into the water a depth h, creating an upward jet at 60°.
The rocket thrust is T to the left. Let the initial velocity 
be V0, and neglect air drag and wheel friction. Find an 
expression for V(t) of the sled for (a) T � 0 and (b) finite
T � 0.
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P3.105 Extend Prob. 3.104 to the case where the rocket has a lin-
ear air drag force F � cV, where c is a constant. Assum-
ing no burnout, solve for �(t) and find the terminal angu-
lar velocity, i.e., the final motion when the angular
acceleration is zero. Apply to the case M0 � 6 kg, R � 3
m, m � 0.05 kg/s, Ve � 1100 m/s, and c � 0.075 N � s/m
to find the angular velocity after 12 s of burning.

P3.106 Extend Prob. 3.104 to the case where the rocket has a qua-
dratic air drag force F � kV2, where k is a constant. As-
suming no burnout, solve for �(t) and find the terminal
angular velocity, i.e., the final motion when the angular
acceleration is zero. Apply to the case M0 � 6 kg, R �
3 m, m � 0.05 kg/s, Ve � 1100 m/s, and k � 0.0011 N �
s2/m2 to find the angular velocity after 12 s of burning.

P3.107 The cart in Fig. P3.107 moves at constant velocity V0 �
12 m/s and takes on water with a scoop 80 cm wide which

P3.109 Apply Prob. 3.108 to the following case: Mtotal � 900 kg,
b � 60 cm, h � 2 cm, V0 � 120 m/s, with the rocket of
Prob. 3.35 attached and burning. Estimate V after 3 s.

P3.110 The horizontal lawn sprinkler in Fig. P3.110 has a water
flow rate of 4.0 gal/min introduced vertically through the
center. Estimate (a) the retarding torque required to keep
the arms from rotating and (b) the rotation rate (r/min) if
there is no retarding torque.
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P3.114

P3.115

P3.116

P3.117

P3.111 In Prob. 3.60 find the torque caused around flange 1 if the
center point of exit 2 is 1.2 m directly below the flange
center.

P3.112 The wye joint in Fig. P3.112 splits the pipe flow into equal
amounts Q/2, which exit, as shown, a distance R0 from the
axis. Neglect gravity and friction. Find an expression for
the torque T about the x-axis required to keep the system
rotating at angular velocity �.

P3.117 A simple turbomachine is constructed from a disk with
two internal ducts which exit tangentially through square
holes, as in Fig. P3.117. Water at 20°C enters normal to
the disk at the center, as shown. The disk must drive, at
250 r/min, a small device whose retarding torque is 
1.5 N � m. What is the proper mass flow of water, in kg/s?
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P3.113 Modify Example 3.14 so that the arm starts from rest and
spins up to its final rotation speed. The moment of inertia
of the arm about O is I0. Neglecting air drag, find d�/dt
and integrate to determine the angular velocity �(t), as-
suming � � 0 at t � 0.

P3.114 The three-arm lawn sprinkler of Fig. P3.114 receives 20°C
water through the center at 2.7 m3/h. If collar friction is
negligible, what is the steady rotation rate in r/min for (a)

 � 0° and (b) 
 � 40°?

P3.115 Water at 20°C flows at 30 gal/min through the 0.75-in-di-
ameter double pipe bend of Fig. P3.115. The pressures are
p1 � 30 lbf/in2 and p2 � 24 lbf/in2. Compute the torque T
at point B necessary to keep the pipe from rotating.

P3.116 The centrifugal pump of Fig. P3.116 has a flow rate Q and
exits the impeller at an angle 
2 relative to the blades, as
shown. The fluid enters axially at section 1. Assuming in-
compressible flow at shaft angular velocity �, derive a for-
mula for the power P required to drive the impeller.

P3.118 Reverse the flow in Fig. P3.116, so that the system oper-
ates as a radial-inflow turbine. Assuming that the outflow
into section 1 has no tangential velocity, derive an ex-
pression for the power P extracted by the turbine.



P3.119 Revisit the turbine cascade system of Prob. 3.78, and de-
rive a formula for the power P delivered, using the 
angular-momentum theorem of Eq. (3.55).

P3.120 A centrifugal pump impeller delivers 4000 gal/min of wa-
ter at 20°C with a shaft rotation rate of 1750 r/min. Ne-
glect losses. If r1 � 6 in, r2 � 14 in, b1 � b2 � 1.75 in,
Vt1 � 10 ft/s, and Vt2 � 110 ft/s, compute the absolute ve-
locities (a) V1 and (b) V2 and (c) the horsepower required.
(d) Compare with the ideal horsepower required.

P3.121 The pipe bend of Fig. P3.121 has D1 � 27 cm and D2 �
13 cm. When water at 20°C flows through the pipe at 4000
gal/min, p1 � 194 kPa (gage). Compute the torque re-
quired at point B to hold the bend stationary.

P3.124 A rotating dishwasher arm delivers at 60°C to six nozzles,
as in Fig. P3.124. The total flow rate is 3.0 gal/min. Each
nozzle has a diameter of �1

3
6� in. If the nozzle flows are equal

and friction is neglected, estimate the steady rotation rate
of the arm, in r/min.
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*P3.122 Extend Prob. 3.46 to the problem of computing the center
of pressure L of the normal face Fn, as in Fig. P3.122. (At
the center of pressure, no moments are required to hold
the plate at rest.) Neglect friction. Express your result in
terms of the sheet thickness h1 and the angle 
 between
the plate and the oncoming jet 1.

P3.123 The waterwheel in Fig. P3.123 is being driven at 200 r/min
by a 150-ft/s jet of water at 20°C. The jet diameter is 2.5
in. Assuming no losses, what is the horsepower developed
by the wheel? For what speed � r/min will the horsepower
developed be a maximum? Assume that there are many
buckets on the waterwheel.

*P3.125 A liquid of density 	 flows through a 90° bend as shown
in Fig. P3.125 and issues vertically from a uniformly
porous section of length L. Neglecting pipe and liquid
weight, derive an expression for the torque M at point 0
required to hold the pipe stationary.



P3.126

P3.130

P3.132

P3.127

P3.127 A power plant on a river, as in Fig. P3.127, must elimi-
nate 55 MW of waste heat to the river. The river condi-
tions upstream are Qi � 2.5 m3/s and Ti � 18°C. The river
is 45 m wide and 2.7 m deep. If heat losses to the atmos-
phere and ground are negligible, estimate the downstream
river conditions (Q0, T0).

P3.129 Multnomah Falls in the Columbia River Gorge has a sheer
drop of 543 ft. Using the steady-flow energy equation, esti-
mate the water temperature change in °F caused by this drop.

P3.130 When the pump in Fig. P3.130 draws 220 m3/h of water at
20°C from the reservoir, the total friction head loss is 5 m.
The flow discharges through a nozzle to the atmosphere.
Estimate the pump power in kW delivered to the water.
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P3.126 There is a steady isothermal flow of water at 20°C through
the device in Fig. P3.126. Heat-transfer, gravity, and tem-
perature effects are negligible. Known data are D1 � 9 cm,
Q1 � 220 m3/h, p1 � 150 kPa, D2 � 7 cm, Q2 � 100
m3/h, p2 � 225 kPa, D3 � 4 cm, and p3 � 265 kPa. Com-
pute the rate of shaft work done for this device and its di-
rection.

P3.128 For the conditions of Prob. 3.127, if the power plant is to
heat the nearby river water by no more than 12°C, what
should be the minimum flow rate Q, in m3/s, through the
plant heat exchanger? How will the value of Q affect the
downstream conditions (Q0, T0)?

P3.131 When the pump in Fig. P3.130 delivers 25 kW of power
to the water, the friction head loss is 4 m. Estimate (a) the
exit velocity Ve and (b) the flow rate Q.

P3.132 Consider a turbine extracting energy from a penstock in a
dam, as in Fig. P3.132. For turbulent pipe flow (Chap. 6),
the friction head loss is approximately hf � CQ2, where
the constant C depends upon penstock dimensions and the
properties of water. Show that, for a given penstock geom-
etry and variable river flow Q, the maximum turbine power
possible in this case is Pmax � 2	gHQ/3 and occurs when
the flow rate is Q � �H	/(	3	C	)	.

Penstock
Q

Turbine

H

P3.133 The long pipe in Fig. P3.133 is filled with water at 20°C.
When valve A is closed, p1 � p2 � 75 kPa. When the valve
is open and water flows at 500 m3/h, p1 � p2 � 160 kPa.



What is the friction head loss between 1 and 2, in m, for
the flowing condition?

P3.134 A 36-in-diameter pipeline carries oil (SG � 0.89) at 1 mil-
lion barrels per day (bbl/day) (1 bbl � 42 U.S. gal). The
friction head loss is 13 ft/1000 ft of pipe. It is planned to
place pumping stations every 10 mi along the pipe. Esti-
mate the horsepower which must be delivered to the oil by
each pump.

P3.135 The pump-turbine system in Fig. P3.135 draws water from
the upper reservoir in the daytime to produce power for a
city. At night, it pumps water from lower to upper reser-
voirs to restore the situation. For a design flow rate of
15,000 gal/min in either direction, the friction head loss is
17 ft. Estimate the power in kW (a) extracted by the tur-
bine and (b) delivered by the pump.

*P3.138Students in the fluid mechanics laboratory at Penn State use
a very simple device to measure the viscosity of water as a
function of temperature. The viscometer, shown in Fig.
P3.138, consists of a tank, a long vertical capillary tube, a
graduated cylinder, a thermometer, and a stopwatch. Because
the tube has such a small diameter, the flow remains lami-
nar. Because the tube is so long, entrance losses are negligi-
ble. It will be shown in Chap. 6 that the laminar head loss
through a long pipe is given by hf, laminar � (32�LV)/(	gd2),
where V is the average speed through the pipe. (a) In a given
experiment, diameter d, length L, and water level height H
are known, and volume flow rate Q is measured with the
stopwatch and graduated cylinder. The temperature of the
water is also measured. The water density at this tempera-
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Water level

H

L

Q

d

P3.138

P3.133

P3.137

P3.135

1

2

Constant-
diameter

pipe

A

Water at 20˚C

Pump-
turbine

1

2

Z1 = 150 ft

Z 2 = 25 ft

D = 2 in

120 ft/s

D = 6 in

Pump

6 ft

10 ft

P3.136 A pump is to deliver water at 20°C from a pond to an el-
evated tank. The pump is 1 m above the pond, and the tank
free surface is 20 m above the pump. The head loss in the
system is hf � cQ2, where c � 0.08 h2/m5. If the pump is
72 percent efficient and is driven by a 500-W motor, what
flow rate Q m3/h will result?

P3.137 A fireboat draws seawater (SG � 1.025) from a submerged
pipe and discharges it through a nozzle, as in Fig. P3.137.
The total head loss is 6.5 ft. If the pump efficiency is 75
percent, what horsepower motor is required to drive it?



P3.139

P3.141

P3.142

P3.143

P3.144

ture is obtained by weighing a known volume of water. Write
an expression for the viscosity of the water as a function of
these variables. (b) Here are some actual data from an ex-
periment: T � 16.5°C, 	 � 998.7 kg/m3, d � 0.041 in, Q �
0.310 mL/s, L � 36.1 in, and H � 0.153 m. Calculate the
viscosity of the water in kg/(m � s) based on these experi-
mental data. (c) Compare the experimental result with the
published value of � at this temperature, and report a per-
centage error. (d) Compute the percentage error in the cal-
culation of � which would occur if a student forgot to in-
clude the kinetic energy flux correction factor in part (b)
above (compare results with and without inclusion of kinetic
energy flux correction factor). Explain the importance (or
lack of importance) of kinetic energy flux correction factor
in a problem such as this.

P3.139 The horizontal pump in Fig. P3.139 discharges 20°C wa-
ter at 57 m3/h. Neglecting losses, what power in kW is de-
livered to the water by the pump?

P3.143 The insulated tank in Fig. P3.143 is to be filled from a
high-pressure air supply. Initial conditions in the tank are
T � 20°C and p � 200 kPa. When the valve is opened, the
initial mass flow rate into the tank is 0.013 kg/s. Assum-
ing an ideal gas, estimate the initial rate of temperature
rise of the air in the tank.
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D2 = 3 cm
D1 = 9 cm

120 kPa

400 kPa

Pump

z2 = 150 ft

z1 = 50 ft

D = 6 in

Pump

H
ea

d,
 f
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Flow rate, ft3/s

300

200

100

0
0 1 2 3 4

Pump performance

2 m

25 m

Jet

Pump

15 m
D = 10 cm

De = 5 cm

P3.140 Steam enters a horizontal turbine at 350 lbf/in2 absolute,
580°C, and 12 ft/s and is discharged at 110 ft/s and 25°C
saturated conditions. The mass flow is 2.5 lbm/s, and the
heat losses are 7 Btu/lb of steam. If head losses are negli-
gible, how much horsepower does the turbine develop?

P3.141 Water at 20°C is pumped at 1500 gal/min from the lower
to the upper reservoir, as in Fig. P3.141. Pipe friction losses
are approximated by hf � 27V2/(2g), where V is the aver-
age velocity in the pipe. If the pump is 75 percent effi-
cient, what horsepower is needed to drive it?

P3.144 The pump in Fig. P3.144 creates a 20°C water jet oriented
to travel a maximum horizontal distance. System friction
head losses are 6.5 m. The jet may be approximated by the
trajectory of frictionless particles. What power must be de-
livered by the pump?

is 75 percent efficient and is used for the system in Prob.
3.141. Estimate (a) the flow rate, in gal/min, and (b) the
horsepower needed to drive the pump.

P3.142 A typical pump has a head which, for a given shaft rota-
tion rate, varies with the flow rate, resulting in a pump per-
formance curve as in Fig. P3.142. Suppose that this pump

Valve
Air supply:

Tank : = 200 L
T1 = 20°C

P1 = 1500 kPa

P3.145 The large turbine in Fig. P3.145 diverts the river flow un-
der a dam as shown. System friction losses are hf �
3.5V2/(2g), where V is the average velocity in the supply

EES EES



pipe. For what river flow rate in m3/s will the power ex-
tracted be 25 MW? Which of the two possible solutions
has a better “conversion efficiency”?

P3.146 Kerosine at 20°C flows through the pump in Fig. P3.146
at 2.3 ft3/s. Head losses between 1 and 2 are 8 ft, and the
pump delivers 8 hp to the flow. What should the mercury-
manometer reading h ft be?

hf � �
2
V
g

2
1� �1 � �

A
A

1

2
��

2

See Sec. 6.7 for further details.
P3.151 In Prob. 3.63 the velocity approaching the sluice gate was

assumed to be known. If Bernoulli’s equation is valid with
no losses, derive an expression for V1 as a function of only
h1, h2, and g.

P3.152 A free liquid jet, as in Fig. P3.152, has constant ambient
pressure and small losses; hence from Bernoulli’s equa-
tion z � V2/(2g) is constant along the jet. For the fire noz-
zle in the figure, what are (a) the minimum and (b) the
maximum values of 
 for which the water jet will clear the
corner of the building? For which case will the jet veloc-
ity be higher when it strikes the roof of the building?
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Turbine

D = 4 m
z2 = 10 m

z3 = 0 m

z1 = 50 m

Mercury

V1

h?

V2

5 ft

D2 = 6 in

D1 = 3 in

Pump

Alcohol , SG = 0.79

FV1 –V2

D1 = 5 cm

D2 = 2 cm

pa = 101 kPa

40 ft

V1 = 100 ft/s

X

50 ft

θ

P3.145

P3.153

P3.152

P3.149

P3.146

P3.147 Repeat Prob. 3.49 by assuming that p1 is unknown and us-
ing Bernoulli’s equation with no losses. Compute the new
bolt force for this assumption. What is the head loss be-
tween 1 and 2 for the data of Prob. 3.49?

P3.148 Reanalyze Prob. 3.54 to estimate the manometer reading
h if Bernoulli’s equation is valid with zero losses. For the
reading h � 58 cm in Prob. 3.54, what is the head loss be-
tween sections 1 and 2?

P3.149 A jet of alcohol strikes the vertical plate in Fig. P3.149. A
force F � 425 N is required to hold the plate stationary.
Assuming there are no losses in the nozzle, estimate (a)
the mass flow rate of alcohol and (b) the absolute pressure
at section 1.

P3.150 Verify that Bernoulli’s equation is not valid for the sudden
expansion of Prob. 3.59 and that the actual head loss is
given by

P3.153 For the container of Fig. P3.153 use Bernoulli’s equation
to derive a formula for the distance X where the free jet

h

Free
jetH

X



P3.154

P3.155

P3.157

P3.158

P3.160

leaving horizontally will strike the floor, as a function of
h and H. For what ratio h/H will X be maximum? Sketch
the three trajectories for h/H � 0.4, 0.5, and 0.6.

P3.154 In Fig. P3.154 the exit nozzle is horizontal. If losses are
negligible, what should the water level h cm be for the free
jet to just clear the wall?

P3.161 A necked-down section in a pipe flow, called a venturi, de-
velops a low throat pressure which can aspirate fluid up-
ward from a reservoir, as in Fig. P3.161. Using Bernoulli’s
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40 cm

80 cm

h

30 cm

Thin
wall

Jet

Jet

1 in

3 in

D1 = 10 cm
D2 = 6 cm

8 cm

h = 3 cm

W = 50 kN

V

D = 6 m

1

P3.155 Bernoulli’s 1738 treatise Hydrodynamica contains many
excellent sketches of flow patterns related to his friction-
less relation. One, however, redrawn here as Fig. P3.155,
seems physically misleading. Can you explain what might
be wrong with the figure?

P3.156 A blimp cruises at 75 mi/h through sea-level standard air.
A differential pressure transducer connected between the
nose and the side of the blimp registers 950 Pa. Estimate
(a) the absolute pressure at the nose and (b) the absolute
velocity of the air near the blimp side.

P3.157 The manometer fluid in Fig. P3.157 is mercury. Estimate
the volume flow in the tube if the flowing fluid is (a) gaso-
line and (b) nitrogen, at 20°C and 1 atm.

P3.158 In Fig. P3.158 the flowing fluid is CO2 at 20°C. Neglect
losses. If p1 � 170 kPa and the manometer fluid is Meriam

red oil (SG � 0.827), estimate (a) p2 and (b) the gas flow
rate in m3/h.

P3.159 Our 0.625-in-diameter hose is too short, and it is 125 ft
from the 0.375-in-diameter nozzle exit to the garden. If
losses are neglected, what is the minimum gage pressure
required, inside the hose, to reach the garden?

P3.160 The air-cushion vehicle in Fig. P3.160 brings in sea-level
standard air through a fan and discharges it at high veloc-
ity through an annular skirt of 3-cm clearance. If the ve-
hicle weighs 50 kN, estimate (a) the required airflow rate
and (b) the fan power in kW.



equation with no losses, derive an expression for the ve-
locity V1 which is just sufficient to bring reservoir fluid
into the throat.

P3.162 Suppose you are designing an air hockey table. The table
is 3.0  6.0 ft in area, with �1

1
6�-in-diameter holes spaced

every inch in a rectangular grid pattern (2592 holes total).
The required jet speed from each hole is estimated to be
50 ft/s. Your job is to select an appropriate blower which
will meet the requirements. Estimate the volumetric flow
rate (in ft3/min) and pressure rise (in lb/in2) required of
the blower. Hint: Assume that the air is stagnant in the
large volume of the manifold under the table surface, and
neglect any frictional losses.

P3.163 The liquid in Fig. P3.163 is kerosine at 20°C. Estimate the
flow rate from the tank for (a) no losses and (b) pipe losses
hf � 4.5V2/(2g).

If the pressure at the centerline at section 1 is 110 kPa,
and losses are neglected, estimate (a) the mass flow in kg/s
and (b) the height H of the fluid in the stagnation tube.

P3.165 A venturi meter, shown in Fig. P3.165, is a carefully de-
signed constriction whose pressure difference is a measure
of the flow rate in a pipe. Using Bernoulli’s equation for
steady incompressible flow with no losses, show that the
flow rate Q is related to the manometer reading h by

Q � �

where 	M is the density of the manometer fluid.

2gh(	M � 	)
��

	

A2��
�1	 �	 (	D	2/	D	1)	4	
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Water
V1 V2, p2 = pa

h

pa

Water

D2

D1

P3.161

P3.164

5 ft D = 1 in

V

pa = 14.7 lbf/in2 abs

p = 20 lbf/in2 abs
Air:

h

1

2

p1

8 cm

Open
jet

2

5 cm

12 m

P3.163

P3.165

P3.167

P3.164 In Fig. P3.164 the open jet of water at 20°C exits a noz-
zle into sea-level air and strikes a stagnation tube as shown.

Sea-level air

12 cm (1) Open jet

4 cm
HWater

P3.166 An open-circuit wind tunnel draws in sea-level standard
air and accelerates it through a contraction into a 1-m by
1-m test section. A differential transducer mounted in the
test section wall measures a pressure difference of 45 mm
of water between the inside and outside. Estimate (a) the
test section velocity in mi/h and (b) the absolute pressure
on the front nose of a small model mounted in the test sec-
tion.

P3.167 In Fig. P3.167 the fluid is gasoline at 20°C at a weight flux
of 120 N/s. Assuming no losses, estimate the gage pres-
sure at section 1.

P3.168 In Fig. P3.168 both fluids are at 20°C. If V1 � 1.7 ft/s and
losses are neglected, what should the manometer reading
h ft be?



P3.168

P3.170

P3.171

P3.172

P3.169

P3.170 If losses are neglected in Fig. P3.170, for what water level
h will the flow begin to form vapor cavities at the throat
of the nozzle?

*P3.171 For the 40°C water flow in Fig. P3.171, estimate the vol-
ume flow through the pipe, assuming no losses; then ex-
plain what is wrong with this seemingly innocent ques-
tion. If the actual flow rate is Q � 40 m3/h, compute (a)
the head loss in ft and (b) the constriction diameter D which
causes cavitation, assuming that the throat divides the head
loss equally and that changing the constriction causes no
additional losses.

P3.172 The 35°C water flow of Fig. P3.172 discharges to sea-level
standard atmosphere. Neglecting losses, for what nozzle
diameter D will cavitation begin to occur? To avoid cavi-
tation, should you increase or decrease D from this criti-
cal value?
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D1 = 5 cm

pa = 100 kPa
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h
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10 m
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1

1 in 2

10 ft

2 ft
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h
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1

2

h

L

H

V2

P3.169 Once it has been started by sufficient suction, the siphon
in Fig. P3.169 will run continuously as long as reservoir
fluid is available. Using Bernoulli’s equation with no
losses, show (a) that the exit velocity V2 depends only upon
gravity and the distance H and (b) that the lowest (vac-
uum) pressure occurs at point 3 and depends on the dis-
tance L � H.

P3.173 The horizontal wye fitting in Fig. P3.173 splits the 
20°C water flow rate equally. If Q1 � 5 ft3/s and p1 �
25 lbf/in2(gage) and losses are neglected, estimate (a) p2,
(b) p3, and (c) the vector force required to keep the wye
in place.

1 2 3

D3 in1 in

6 ft



P3.174 In Fig. P3.174 the piston drives water at 20°C. Neglecting
losses, estimate the exit velocity V2 ft/s. If D2 is further
constricted, what is the maximum possible value of V2?

stream depth h2, and show that two realistic solutions are
possible.

P3.178 For the water-channel flow of Fig. P3.178, h1 � 0.45 ft,
H � 2.2 ft, and V1 � 16 ft/s. Neglecting losses and as-
suming uniform flow at sections 1 and 2, find the down-
stream depth h2; show that two realistic solutions are pos-
sible.
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P3.175 If the approach velocity is not too high, a hump in the bot-
tom of a water channel causes a dip �h in the water level,
which can serve as a flow measurement. If, as shown in
Fig. P3.175, �h � 10 cm when the bump is 30 cm high,
what is the volume flow Q1 per unit width, assuming no
losses? In general, is �h proportional to Q1?

P3.176 In the spillway flow of Fig. P3.176, the flow is assumed
uniform and hydrostatic at sections 1 and 2. If losses are
neglected, compute (a) V2 and (b) the force per unit width
of the water on the spillway.

P3.177 For the water-channel flow of Fig. P3.177, h1 � 1.5 m,
H � 4 m, and V1 � 3 m/s. Neglecting losses and as-
suming uniform flow at sections 1 and 2, find the down-

*P3.179 A cylindrical tank of diameter D contains liquid to an ini-
tial height h0. At time t � 0 a small stopper of diameter d
is removed from the bottom. Using Bernoulli’s equation
with no losses, derive (a) a differential equation for the
free-surface height h(t) during draining and (b) an expres-
sion for the time t0 to drain the entire tank.

*P3.180 The large tank of incompressible liquid in Fig. P3.180 is
at rest when, at t � 0, the valve is opened to the atmos-



phere. Assuming h � constant (negligible velocities and
accelerations in the tank), use the unsteady frictionless

Bernoulli equation to derive and solve a differential equa-
tion for V(t) in the pipe.

*P3.181 Modify Prob. 3.180 as follows. Let the top of the tank be
enclosed and under constant gage pressure p0. Repeat the
analysis to find V(t) in the pipe.

P3.182 The incompressible-flow form of Bernoulli’s relation, Eq.
(3.77), is accurate only for Mach numbers less than about
0.3. At higher speeds, variable density must be accounted
for. The most common assumption for compressible flu-
ids is isentropic flow of an ideal gas, or p � C	k, where
k � cp/c�. Substitute this relation into Eq. (3.75), integrate,
and eliminate the constant C. Compare your compressible
result with Eq. (3.77) and comment.
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Word Problems

W3.1 Derive a control-volume form of the second law of ther-
modynamics. Suggest some practical uses for your rela-
tion in analyzing real fluid flows.

W3.2 Suppose that it is desired to estimate volume flow Q in a
pipe by measuring the axial velocity u(r) at specific points.
For cost reasons only three measuring points are to be used.
What are the best radii selections for these three points?

W3.3 Consider water flowing by gravity through a short pipe
connecting two reservoirs whose surface levels differ by
an amount �z. Why does the incompressible frictionless
Bernoulli equation lead to an absurdity when the flow rate
through the pipe is computed? Does the paradox have
something to do with the length of the short pipe? Does
the paradox disappear if we round the entrance and exit
edges of the pipe?

W3.4 Use the steady-flow energy equation to analyze flow
through a water faucet whose supply pressure is p0. What

physical mechanism causes the flow to vary continuously
from zero to maximum as we open the faucet valve?

W3.5 Consider a long sewer pipe, half full of water, sloping
downward at angle 
. Antoine Chézy in 1768 determined
that the average velocity of such an open-channel flow
should be V � C�R	 t	an	 
	, where R is the pipe radius and
C is a constant. How does this famous formula relate to
the steady-flow energy equation applied to a length L of
the channel?

W3.6 Put a table tennis ball in a funnel, and attach the small end
of the funnel to an air supply. You probably won’t be able
to blow the ball either up or down out of the funnel. Ex-
plain why.

W3.7 How does a siphon work? Are there any limitations (e.g.,
how high or how low can you siphon water away from a
tank)? Also, how far�could you use a flexible tube to
siphon water from a tank to a point 100 ft away?

Fundamentals of Engineering Exam Problems

FE3.1 In Fig. FE3.1 water exits from a nozzle into atmospheric
pressure of 101 kPa. If the flow rate is 160 gal/min, what
is the average velocity at section 1?
(a) 2.6 m/s, (b) 0.81 m/s, (c) 93 m/s, (d) 23 m/s,
(e) 1.62 m/s

FE3.2 In Fig. FE3.1 water exits from a nozzle into atmospheric
pressure of 101 kPa. If the flow rate is 160 gal/min and
friction is neglected, what is the gage pressure at sec-
tion 1?
(a) 1.4 kPa, (b) 32 kPa, (c) 43 kPa, (d) 29 kPa,
(e) 123 kPa

FE3.3 In Fig. FE3.1 water exits from a nozzle into atmospheric
pressure of 101 kPa. If the exit velocity is V2 � 8 m/s and

h

(1) (2)
Jet

7 cm

4 cm

patm = 101 kPa

FE3.1



friction is neglected, what is the axial flange force required
to keep the nozzle attached to pipe 1?
(a) 11 N, (b) 56 N, (c) 83 N, (d) 123 N, (e) 110 N

FE3.4 In Fig. FE3.1 water exits from a nozzle into atmospheric
pressure of 101 kPa. If the manometer fluid has a specific
gravity of 1.6 and h � 66 cm, with friction neglected, what
is the average velocity at section 2?
(a) 4.55 m/s, (b) 2.4 m/s, (c) 2.95 m/s, (d) 5.55 m/s,
(e) 3.4 m/s

FE3.5 A jet of water 3 cm in diameter strikes normal to a plate
as in Fig. FE3.5. If the force required to hold the plate is
23 N, what is the jet velocity?
(a) 2.85 m/s, (b) 5.7 m/s, (c) 8.1 m/s, (d) 4.0 m/s, (e) 23 m/s

FE3.6 A fireboat pump delivers water to a vertical nozzle with a
3:1 diameter ratio, as in Fig. FE3.6. If friction is neglected
and the flow rate is 500 gal/min, how high will the outlet
water jet rise?
(a) 2.0 m, (b) 9.8 m, (c) 32 m, (d) 64 m, (e) 98 m

FE3.7 A fireboat pump delivers water to a vertical nozzle with a
3:1 diameter ratio, as in Fig. FE3.6. If friction is neglected
and the pump increases the pressure at section 1 to 51 kPa
(gage), what will be the resulting flow rate?
(a) 187 gal/min, (b) 199 gal/min, (c) 214 gal/min,
(d) 359 gal/min, (e) 141 gal/min

FE3.8 A fireboat pump delivers water to a vertical nozzle with a
3:1 diameter ratio, as in Fig. FE3.6. If duct and nozzle fric-
tion are neglected and the pump provides 12.3 ft of head
to the flow, what will be the outlet flow rate?
(a) 85 gal/min, (b) 120 gal/min, (c) 154 gal/min,
(d) 217 gal/min, (e) 285 gal/min

FE3.9 Water flowing in a smooth 6-cm-diameter pipe enters a
venturi contraction with a throat diameter of 3 cm. Up-
stream pressure is 120 kPa. If cavitation occurs in the
throat at a flow rate of 155 gal/min, what is the esti-
mated fluid vapor pressure, assuming ideal frictionless
flow?
(a) 6 kPa, (b) 12 kPa, (c) 24 kPa, (d) 31 kPa, (e) 52 kPa

FE3.10 Water flowing in a smooth 6-cm-diameter pipe enters a
venturi contraction with a throat diameter of 4 cm. Up-
stream pressure is 120 kPa. If the pressure in the throat is
50 kPa, what is the flow rate, assuming ideal frictionless
flow?
(a) 7.5 gal/min, (b) 236 gal/min, (c) 263 gal/min,
(d) 745 gal/min, (e) 1053 gal/min
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Comprehensive Problems

C3.1 In a certain industrial process, oil of density 	 flows
through the inclined pipe in Fig. C3.1. A U-tube manome-
ter, with fluid density 	m, measures the pressure difference
between points 1 and 2, as shown. The pipe flow is steady,
so that the fluids in the manometer are stationary. (a) Find
an analytic expression for p1 � p2 in terms of the system
parameters. (b) Discuss the conditions on h necessary for
there to be no flow in the pipe. (c) What about flow up,
from 1 to 2? (d) What about flow down, from 2 to 1?

C3.2 A rigid tank of volume � � 1.0 m3 is initially filled with
air at 20°C and p0 � 100 kPa. At time t � 0, a vacuum

pump is turned on and evacuates air at a constant volume
flow rate Q � 80 L/min (regardless of the pressure). As-
sume an ideal gas and an isothermal process. (a) Set up a
differential equation for this flow. (b) Solve this equation
for t as a function of (�, Q, p, p0). (c) Compute the time
in minutes to pump the tank down to p � 20 kPa. Hint:
Your answer should lie between 15 and 25 min.

C3.3 Suppose the same steady water jet as in Prob. 3.40 (jet ve-
locity 8 m/s and jet diameter 10 cm) impinges instead on
a cup cavity as shown in Fig. C3.3. The water is turned
180° and exits, due to friction, at lower velocity, Ve �

Pump
120 cm

70 cm
patm

d = 4 cm

d = 12 cm(1)

(2)

Water



4 m/s. (Looking from the left, the exit jet is a circular an-
nulus of outer radius R and thickness h, flowing toward
the viewer.) The cup has a radius of curvature of 25 cm.
Find (a) the thickness h of the exit jet and (b) the force F
required to hold the cupped object in place. (c) Compare
part (b) to Prob. 3.40, where F � 500 N, and give a phys-
ical explanation as to why F has changed.

C3.4 The air flow underneath an air hockey puck is very com-
plex, especially since the air jets from the air hockey

212 Chapter 3 Integral Relations for a Control Volume

R

F

h

Ve

Vj

Ve

(1)

s

h




(2)

	m

	

L table impinge on the underside of the puck at various
points nonsymmetrically. A reasonable approximation is
that at any given time, the gage pressure on the bottom
of the puck is halfway between zero (i.e., atmospheric
pressure) and the stagnation pressure of the impinging
jets. (Stagnation pressure is defined as p0 � �12�	Vjet

2  .) (a)
Find the jet velocity Vjet required to support an air hockey
puck of weight W and diameter d. Give your answer in
terms of W, d, and the density 	 of the air. (b) For W �
0.05 lbf and d � 2.5 in, estimate the required jet veloc-
ity in ft/s.

C3.1

C3.3

Design Project

D3.1 Let us generalize Probs. 3.141 and 3.142, in which a pump
performance curve was used to determine the flow rate be-
tween reservoirs. The particular pump in Fig. P3.142 is
one of a family of pumps of similar shape, whose dimen-
sionless performance is as follows:

Head:

� � 6.04 � 161� � � �
n
g
2D
h

p
2� and � � �

n
Q
Dp

3�

Efficiency:

� � 70� � 91,500�3 � ��
po

p
w
ow

er
er
to

in
w
p
a
u
t
t
er

�

where hp is the pump head (ft), n is the shaft rotation rate
(r/s), and Dp is the impeller diameter (ft). The range of va-
lidity is 0 � � � 0.027. The pump of Fig. P3.142 had Dp �
2 ft in diameter and rotated at n � 20 r/s (1200 r/min). The
solution to Prob. 3.142, namely, Q � 2.57 ft3/s and hp �
172 ft, corresponds to � � 3.46, � � 0.016, � � 0.75 (or
75 percent), and power to the water � 	gQhp � 27,500 ft �
lbf/s (50 hp). Please check these numerical values before
beginning this project.

Now restudy Prob. 3.142 to select a low-cost pump
which rotates at a rate no slower than 600 r/min and de-
livers no less than 1.0 ft3/s of water. Assume that the cost
of the pump is linearly proportional to the power input re-
quired. Comment on any limitations to your results.
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Inviscid potential flow past an array of cylinders. The mathematics of potential theory, pre-
sented in this chapter, is both beautiful and manageable, but results may be unrealistic when
there are solid boundaries. See Figure 8.13b for the real (viscous) flow pattern. (Courtesy of
Tecquipment Ltd., Nottingham, England)
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4.1 The Acceleration Field 
of a Fluid

Motivation. In analyzing fluid motion, we might take one of two paths: (1) seeking
an estimate of gross effects (mass flow, induced force, energy change) over a finite re-
gion or control volume or (2) seeking the point-by-point details of a flow pattern by
analyzing an infinitesimal region of the flow. The former or gross-average viewpoint
was the subject of Chap. 3.

This chapter treats the second in our trio of techniques for analyzing fluid motion,
small-scale, or differential, analysis. That is, we apply our four basic conservation laws
to an infinitesimally small control volume or, alternately, to an infinitesimal fluid sys-
tem. In either case the results yield the basic differential equations of fluid motion. Ap-
propriate boundary conditions are also developed.

In their most basic form, these differential equations of motion are quite difficult to
solve, and very little is known about their general mathematical properties. However,
certain things can be done which have great educational value. First, e.g., as shown in
Chap. 5, the equations (even if unsolved) reveal the basic dimensionless parameters
which govern fluid motion. Second, as shown in Chap. 6, a great number of useful so-
lutions can be found if one makes two simplifying assumptions: (1) steady flow and
(2) incompressible flow. A third and rather drastic simplification, frictionless flow,
makes our old friend the Bernoulli equation valid and yields a wide variety of ideal-
ized, or perfect-fluid, possible solutions. These idealized flows are treated in Chap. 8,
and we must be careful to ascertain whether such solutions are in fact realistic when
compared with actual fluid motion. Finally, even the difficult general differential equa-
tions now yield to the approximating technique known as numerical analysis, whereby
the derivatives are simulated by algebraic relations between a finite number of grid
points in the flow field which are then solved on a digital computer. Reference 1 is an
example of a textbook devoted entirely to numerical analysis of fluid motion.

In Sec. 1.5 we established the cartesian vector form of a velocity field which varies in
space and time:

V(r, t) � iu(x, y, z, t) � j�(x, y, z, t) � kw(x, y, z, t) (1.4) 
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This is the most important variable in fluid mechanics: Knowledge of the velocity vec-
tor field is nearly equivalent to solving a fluid-flow problem. Our coordinates are fixed
in space, and we observe the fluid as it passes by—as if we had scribed a set of co-
ordinate lines on a glass window in a wind tunnel. This is the eulerian frame of ref-
erence, as opposed to the lagrangian frame, which follows the moving position of in-
dividual particles.

To write Newton’s second law for an infinitesimal fluid system, we need to calcu-
late the acceleration vector field a of the flow. Thus we compute the total time deriv-
ative of the velocity vector:

a � � i � j � k 

Since each scalar component (u, �, w) is a function of the four variables (x, y, z, t), we
use the chain rule to obtain each scalar time derivative. For example,

� � � �

But, by definition, dx/dt is the local velocity component u, and dy/dt � �, and dz/dt �
w. The total derivative of u may thus be written in the compact form

� � u � � � w � � (V � �)u (4.1) 

Exactly similar expressions, with u replaced by � or w, hold for d�/dt or dw/dt. Sum-
ming these into a vector, we obtain the total acceleration:

a � � � �u � � � w � � � (V � �)V (4.2)

Local Convective

The term �V/�t is called the local acceleration, which vanishes if the flow is steady,
i.e., independent of time. The three terms in parentheses are called the convective ac-
celeration, which arises when the particle moves through regions of spatially varying
velocity, as in a nozzle or diffuser. Flows which are nominally “steady” may have large
accelerations due to the convective terms.

Note our use of the compact dot product involving V and the gradient operator �:

u � � � w � V � � where � � i � j � k 

The total time derivative—sometimes called the substantial or material derivative—
concept may be applied to any variable, e.g., the pressure:

� � u � � � w � � (V � �)p (4.3) 

Wherever convective effects occur in the basic laws involving mass, momentum, or en-
ergy, the basic differential equations become nonlinear and are usually more compli-
cated than flows which do not involve convective changes.

We emphasize that this total time derivative follows a particle of fixed identity, mak-
ing it convenient for expressing laws of particle mechanics in the eulerian fluid-field
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4.2 The Differential Equation
of Mass Conservation

description. The operator d/dt is sometimes assigned a special symbol such as D/Dt as
a further reminder that it contains four terms and follows a fixed particle.

EXAMPLE 4.1

Given the eulerian velocity-vector field

V � 3ti � xzj � ty2k

find the acceleration of a particle.

Solution

First note the specific given components

u � 3t � � xz w � ty2

Then evaluate the vector derivatives required for Eq. (4.2)

� i � j � k � 3i � y2k

� zj � 2tyk � xj

This could have been worse: There are only five terms in all, whereas there could have been as
many as twelve. Substitute directly into Eq. (4.2):

� (3i � y2k) � (3t)(zj) � (xz)(2tyk) � (ty2)(xj)

Collect terms for the final result

� 3i � (3tz � txy2)j � (2xyzt � y2)k Ans.

Assuming that V is valid everywhere as given, this acceleration applies to all positions and times
within the flow field.

All the basic differential equations can be derived by considering either an elemental
control volume or an elemental system. Here we choose an infinitesimal fixed control
volume (dx, dy, dz), as in Fig. 4.1, and use our basic control-volume relations from
Chap. 3. The flow through each side of the element is approximately one-dimensional,
and so the appropriate mass-conservation relation to use here is

�
CV

d� � �
i

(�iAiVi)out 	 �
i

(�iAiVi)in � 0 (3.22)   

The element is so small that the volume integral simply reduces to a differential term

�
CV

d� � dx dy dz
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Fig. 4.1 Elemental cartesian fixed
control volume showing the inlet
and outlet mass flows on the x
faces.

The mass-flow terms occur on all six faces, three inlets and three outlets. We make use
of the field or continuum concept from Chap. 1, where all fluid properties are consid-
ered to be uniformly varying functions of time and position, such as � � �(x, y, z, t).
Thus, if T is the temperature on the left face of the element in Fig. 4.1, the right face will
have a slightly different temperature T � (�T/�x) dx. For mass conservation, if �u is
known on the left face, the value of this product on the right face is �u � (��u/�x) dx.

Figure 4.1 shows only the mass flows on the x or left and right faces. The flows on
the y (bottom and top) and the z (back and front) faces have been omitted to avoid clut-
tering up the drawing. We can list all these six flows as follows:
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ρ ρu dy dzρ
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Face Inlet mass flow Outlet mass flow
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Introduce these terms into Eq. (3.22) above and we have

dx dy dz � (�u) dx dy dz � (��) dx dy dz � (�w) dx dy dz � 0 

The element volume cancels out of all terms, leaving a partial differential equation in-
volving the derivatives of density and velocity

� (�u) � (��) � (�w) � 0 (4.4)

This is the desired result: conservation of mass for an infinitesimal control volume. It
is often called the equation of continuity because it requires no assumptions except that
the density and velocity are continuum functions. That is, the flow may be either steady
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Fig. 4.2 Definition sketch for the
cylindrical coordinate system.

Cylindrical Polar Coordinates

or unsteady, viscous or frictionless, compressible or incompressible.1 However, the
equation does not allow for any source or sink singularities within the element.

The vector-gradient operator

� � i � j � k

enables us to rewrite the equation of continuity in a compact form, not that it helps
much in finding a solution. The last three terms of Eq. (4.4) are equivalent to the di-
vergence of the vector �V

(�u) � (��) � (�w) 	 � 
 (�V) (4.5) 

so that the compact form of the continuity relation is

� � 
 (�V) � 0 (4.6)

In this vector form the equation is still quite general and can readily be converted to
other than cartesian coordinate systems.

The most common alternative to the cartesian system is the cylindrical polar coordi-
nate system, sketched in Fig. 4.2. An arbitrary point P is defined by a distance z along
the axis, a radial distance r from the axis, and a rotation angle � about the axis. The
three independent velocity components are an axial velocity �z, a radial velocity �r, and
a circumferential velocity ��, which is positive counterclockwise, i.e., in the direction
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1 One case where Eq. (4.4) might need special care is two-phase flow, where the density is discontinu-
ous between the phases. For further details on this case, see, e.g., Ref. 2.



Steady Compressible Flow

of increasing �. In general, all components, as well as pressure and density and other
fluid properties, are continuous functions of r, �, z, and t.

The divergence of any vector function A(r, �, z, t) is found by making the trans-
formation of coordinates

r � (x2 � y2)1/2 � � tan	1 z � z (4.7)

and the result is given here without proof2

� � A � (rAr) � (A�) � (Az) (4.8) 

The general continuity equation (4.6) in cylindrical polar coordinates is thus

� (r��r) � (���) � (��z) � 0 (4.9) 

There are other orthogonal curvilinear coordinate systems, notably spherical polar co-
ordinates, which occasionally merit use in a fluid-mechanics problem. We shall not
treat these systems here except in Prob. 4.12.

There are also other ways to derive the basic continuity equation (4.6) which are in-
teresting and instructive. Ask your instructor about these alternate approaches.

If the flow is steady, �/�t 	 0 and all properties are functions of position only. Equa-
tion (4.6) reduces to

Cartesian: (�u) � (��) � (�w) � 0 

Cylindrical: (r��r) � (���) � (��z) � 0 (4.10) 

Since density and velocity are both variables, these are still nonlinear and rather for-
midable, but a number of special-case solutions have been found.

A special case which affords great simplification is incompressible flow, where the
density changes are negligible. Then ��/�t � 0 regardless of whether the flow is steady
or unsteady, and the density can be slipped out of the divergence in Eq. (4.6) and di-
vided out. The result is

� � V � 0 (4.11) 

valid for steady or unsteady incompressible flow. The two coordinate forms are

Cartesian: � � � 0 (4.12a) 

Cylindrical: (r�r) � (��) � (�z) � 0 (4.12b) 
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Incompressible Flow

2 See, e.g., Ref. 3, p. 783.



These are linear differential equations, and a wide variety of solutions are known, as
discussed in Chaps. 6 to 8. Since no author or instructor can resist a wide variety of
solutions, it follows that a great deal of time is spent studying incompressible flows.
Fortunately, this is exactly what should be done, because most practical engineering
flows are approximately incompressible, the chief exception being the high-speed gas
flows treated in Chap. 9.

When is a given flow approximately incompressible? We can derive a nice criterion
by playing a little fast and loose with density approximations. In essence, we wish to
slip the density out of the divergence in Eq. (4.6) and approximate a typical term as,
e.g.,

(�u) � � (4.13)

This is equivalent to the strong inequality

u  � � 
or   �   (4.14)

As we shall see in Chap. 9, the pressure change is approximately proportional to the
density change and the square of the speed of sound a of the fluid


p � a2 
� (4.15) 

Meanwhile, if elevation changes are negligible, the pressure is related to the velocity
change by Bernoulli’s equation (3.75)


p � 	�V 
V (4.16) 

Combining Eqs. (4.14) to (4.16), we obtain an explicit criterion for incompressible
flow:

� Ma2 � 1 (4.17) 

where Ma � V/a is the dimensionless Mach number of the flow. How small is small?
The commonly accepted limit is

Ma � 0.3 (4.18) 

For air at standard conditions, a flow can thus be considered incompressible if the ve-
locity is less than about 100 m/s (330 ft/s). This encompasses a wide variety of air-
flows: automobile and train motions, light aircraft, landing and takeoff of high-speed
aircraft, most pipe flows, and turbomachinery at moderate rotational speeds. Further,
it is clear that almost all liquid flows are incompressible, since flow velocities are small
and the speed of sound is very large.3
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3An exception occurs in geophysical flows, where a density change is imposed thermally or mechani-
cally rather than by the flow conditions themselves. An example is fresh water layered upon saltwater or
warm air layered upon cold air in the atmosphere. We say that the fluid is stratified, and we must account
for vertical density changes in Eq. (4.6) even if the velocities are small.



Before attempting to analyze the continuity equation, we shall proceed with the der-
ivation of the momentum and energy equations, so that we can analyze them as a group.
A very clever device called the stream function can often make short work of the con-
tinuity equation, but we shall save it until Sec. 4.7.

One further remark is appropriate: The continuity equation is always important and
must always be satisfied for a rational analysis of a flow pattern. Any newly discov-
ered momentum or energy “solution” will ultimately crash in flames when subjected
to critical analysis if it does not also satisfy the continuity equation.

EXAMPLE 4.2

Under what conditions does the velocity field

V � (a1x � b1y � c1z)i � (a2x � b2y � c2z)j � (a3x � b3y � c3z)k

where a1, b1, etc. � const, represent an incompressible flow which conserves mass?

Solution

Recalling that V � ui � �j � wk, we see that u � (a1x � b1y � c1z), etc. Substituting into Eq.
(4.12a) for incompressible continuity, we obtain

(a1x � b1y � c1z) � (a2x � b2y � c2z) � (a3x � b3y � c3z) � 0 

or a1 � b2 � c3 � 0 Ans.

At least two of constants a1, b2, and c3 must have opposite signs. Continuity imposes no re-
strictions whatever on constants b1, c1, a2, c2, a3, and b3, which do not contribute to a mass in-
crease or decrease of a differential element.

EXAMPLE 4.3

An incompressible velocity field is given by

u � a(x2 	 y2) � unknown w � b

where a and b are constants. What must the form of the velocity component � be?

Solution

Again Eq. (4.12a) applies

(ax2 	 ay2) � � � 0

or � 	2ax (1)

This is easily integrated partially with respect to y

� (x, y, z, t) � 	2axy � f(x, z, t) Ans.
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4.3 The Differential Equation
of Linear Momentum

This is the only possible form for � which satisfies the incompressible continuity equation. The
function of integration f is entirely arbitrary since it vanishes when � is differentiated with re-
spect to y.†

EXAMPLE 4.4

A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15°C and 1-atm pressure.
What is the maximum allowable impeller rotational speed to avoid compressibility effects at the
blade tips?

Solution

The speed of sound of hydrogen for these conditions is a � 1300 m/s. Assume that the gas ve-
locity leaving the impeller is approximately equal to the impeller-tip speed

V � �r � �12��D

Our rule of thumb, Eq. (4.18), neglects compressibility if

V � �12��D � 0.3a � 390 m/s 

or �12��(0.4 m) � 390 m/s � � 1950 rad/s 

Thus we estimate the allowable speed to be quite large

� � 310 r/s (18,600 r/min) Ans.

An impeller moving at this speed in air would create shock waves at the tips but not in a light
gas like hydrogen.

Having done it once in Sec. 4.2 for mass conservation, we can move along a little faster
this time. We use the same elemental control volume as in Fig. 4.1, for which the ap-
propriate form of the linear-momentum relation is

� F � ��CV
V� d�� � � (ṁ iVi)out 	 � (ṁ iVi)in (3.40)

Again the element is so small that the volume integral simply reduces to a derivative
term

��CV
V� d�� � (�V) dx dy dz (4.19)

The momentum fluxes occur on all six faces, three inlets and three outlets. Refer-
ring again to Fig. 4.1, we can form a table of momentum fluxes by exact analogy with
the discussion which led up to the equation for net mass flux:
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†This is a very realistic flow which simulates the turning of an inviscid fluid through a 60° angle; see
Examples 4.7 and 4.9.



Introduce these terms and Eq. (4.19) into Eq. (3.40), and get the intermediate result

� F � dx dy dz� (�V) � (�uV) � (��V) � (�wV)� (4.20) 

Note that this is a vector relation. A simplification occurs if we split up the term in
brackets as follows:

(�V) � (�uV) � (��V) � (�wV)

� V� � � � (�V)� � �� � u � � � w � (4.21) 

The term in brackets on the right-hand side is seen to be the equation of continuity,
Eq. (4.6), which vanishes identically. The long term in parentheses on the right-hand
side is seen from Eq. (4.2) to be the total acceleration of a particle which instanta-
neously occupies the control volume

� u � � � w � (4.2) 

Thus we have now reduced Eq. (4.20) to

� F � � dx dy dz (4.22) 

It might be good for you to stop and rest now and think about what we have just done.
What is the relation between Eqs. (4.22) and (3.40) for an infinitesimal control vol-
ume? Could we have begun the analysis at Eq. (4.22)?

Equation (4.22) points out that the net force on the control volume must be of dif-
ferential size and proportional to the element volume. These forces are of two types,
body forces and surface forces. Body forces are due to external fields (gravity, mag-
netism, electric potential) which act upon the entire mass within the element. The only
body force we shall consider in this book is gravity. The gravity force on the differ-
ential mass � dx dy dz within the control volume is

dFgrav � �g dx dy dz (4.23) 

where g may in general have an arbitrary orientation with respect to the coordinate
system. In many applications, such as Bernoulli’s equation, we take z “up,” and 
g � 	gk.
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Faces Inlet momentum flux Outlet momentum flux

x �uV dy dz ��uV � �
�

�

x
� (�uV) dx� dy dz

y ��V dx dz ���V � �
�

�

y
� (��V) dy� dx dz

z �wV dx dy ��wV � �
�

�

z
� (�wV) dz� dx dy



Fig. 4.3 Notation for stresses.

The surface forces are due to the stresses on the sides of the control surface. These
stresses, as discussed in Chap. 2, are the sum of hydrostatic pressure plus viscous
stresses �ij which arise from motion with velocity gradients


	p � �xx �yx �zx

�ij � �xy 	p � �yy �zy (4.24)
�xz �yz 	p � �zz

The subscript notation for stresses is given in Fig. 4.3.
It is not these stresses but their gradients, or differences, which cause a net force

on the differential control surface. This is seen by referring to Fig. 4.4, which shows
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Fig. 4.4 Elemental cartesian fixed
control volume showing the surface
forces in the x direction only.



only the x-directed stresses to avoid cluttering up the drawing. For example, the left-
ward force �xx dy dz on the left face is balanced by the rightward force �xx dy dz on
the right face, leaving only the net rightward force (��xx/�x) dx dy dz on the right face.
The same thing happens on the other four faces, so that the net surface force in the x
direction is given by

dFx,surf � � (�xx) � (�yx) � (�zx)� dx dy dz (4.25) 

We see that this force is proportional to the element volume. Notice that the stress terms
are taken from the top row of the array in Eq. (4.24). Splitting this row into pressure
plus viscous stresses, we can rewrite Eq. (4.25) as

� 	 � (�xx) � (�yx) � (�zx) (4.26) 

In exactly similar manner, we can derive the y and z forces per unit volume on the
control surface

� 	 � (�xy) � (�yy) � (�zy)

� 	 � (�xz) � (�yz) � (�zz) (4.27) 

Now we multiply Eqs. (4.26) and (4.27) by i, j, and k, respectively, and add to obtain
an expression for the net vector surface force

� �
surf

� 	�p � � �
viscous

(4.28) 

where the viscous force has a total of nine terms:

� �
viscous

� i� � � �
� j� � � �
� k� � � � (4.29) 

Since each term in parentheses in (4.29) represents the divergence of a stress-compo-
nent vector acting on the x, y, and z faces, respectively, Eq. (4.29) is sometimes ex-
pressed in divergence form

��
d
d
�
F
��

viscous

� � � �ij (4.30) 

�
�xx �yx �zx

where �ij � �xy �yy �zy (4.31) 
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Inviscid Flow: Euler’s Equation

is the viscous-stress tensor acting on the element. The surface force is thus the sum of
the pressure-gradient vector and the divergence of the viscous-stress tensor. Substitut-
ing into Eq. (4.22) and utilizing Eq. (4.23), we have the basic differential momentum
equation for an infinitesimal element

�g 	 �p � � � �ij � � (4.32) 

where � � u � � � w (4.33) 

We can also express Eq. (4.32) in words:

Gravity force per unit volume � pressure force per unit volume

� viscous force per unit volume � density � acceleration (4.34) 

Equation (4.32) is so brief and compact that its inherent complexity is almost invisi-
ble. It is a vector equation, each of whose component equations contains nine terms.
Let us therefore write out the component equations in full to illustrate the mathemati-
cal difficulties inherent in the momentum equation:

�gx 	 � � � � �� � u � � � w �
�gy 	 � � � � �� � u � � � w � (4.35) 

�gz 	 � � � � �� � u � � � w �
This is the differential momentum equation in its full glory, and it is valid for any fluid
in any general motion, particular fluids being characterized by particular viscous-stress
terms. Note that the last three “convective” terms on the right-hand side of each com-
ponent equation in (4.35) are nonlinear, which complicates the general mathematical
analysis.

Equation (4.35) is not ready to use until we write the viscous stresses in terms of ve-
locity components. The simplest assumption is frictionless flow �ij � 0, for which Eq.
(4.35) reduces to

�g 	 �p � � (4.36) 

This is Euler’s equation for inviscid flow. We show in Sec. 4.9 that Euler’s equation
can be integrated along a streamline to yield the frictionless Bernoulli equation, (3.75)
or (3.77). The complete analysis of inviscid flow fields, using continuity and the
Bernoulli relation, is given in Chap. 8.

For a newtonian fluid, as discussed in Sec. 1.7, the viscous stresses are proportional to
the element strain rates and the coefficient of viscosity. For incompressible flow, the
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generalization of Eq. (1.23) to three-dimensional viscous flow is4

�xx � 2� �yy � 2� �zz � 2�

�xy � �yx � �� � � �xz � �zx � �� � � (4.37) 

�yz � �zy � �� � �
where � is the viscosity coefficient. Substitution into Eq. (4.35) gives the differential
momentum equation for a newtonian fluid with constant density and viscosity

�gx 	 � �� � � � � �

�gy 	 � �� � � � � � �
d
d
�

t
� (4.38) 

�gz 	 � �� � � � � �

These are the Navier-Stokes equations, named after C. L. M. H. Navier (1785–1836)
and Sir George G. Stokes (1819–1903), who are credited with their derivation. They
are second-order nonlinear partial differential equations and are quite formidable, but
surprisingly many solutions have been found to a variety of interesting viscous-flow
problems, some of which are discussed in Sec. 4.11 and in Chap. 6 (see also Refs. 4
and 5). For compressible flow, see eq. (2.29) of Ref. 5.

Equation (4.38) has four unknowns: p, u, �, and w. It should be combined with the
incompressible continuity relation (4.12) to form four equations in these four unknowns.
We shall discuss this again in Sec. 4.6, which presents the appropriate boundary con-
ditions for these equations.

EXAMPLE 4.5

Take the velocity field of Example 4.3, with b � 0 for algebraic convenience

u � a(x2 	 y2) � � 	2axy w � 0 

and determine under what conditions it is a solution to the Navier-Stokes momentum equation
(4.38). Assuming that these conditions are met, determine the resulting pressure distribution when
z is “up” (gx � 0, gy � 0, gz � 	g).

Solution

Make a direct substitution of u, �, w into Eq. (4.38):

�(0) 	 � �(2a 	 2a) � 2a2�(x3 � xy2) (1) 
�p
�
�x

dw
�
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4When compressibility is significant, additional small terms arise containing the element volume ex-
pansion rate and a second coefficient of viscosity; see Refs. 4 and 5 for details.



�(0) 	 � �(0) � 2a2�(x2y � y3) (2) 

�(	g) 	 � �(0) � 0 (3) 

The viscous terms vanish identically (although � is not zero). Equation (3) can be integrated
partially to obtain

p � 	�gz � f1(x, y) (4) 

i.e., the pressure is hydrostatic in the z direction, which follows anyway from the fact that the
flow is two-dimensional (w � 0). Now the question is: Do Eqs. (1) and (2) show that the given
velocity field is a solution? One way to find out is to form the mixed derivative �2p/(�x �y) from
(1) and (2) separately and then compare them.

Differentiate Eq. (1) with respect to y

� 	4a2�xy (5) 

Now differentiate Eq. (2) with respect to x

� 	 [2a2�(x2y � y3)] � 	4a2�xy (6) 

Since these are identical, the given velocity field is an exact solution to the Navier-Stokes 
equation. Ans.

To find the pressure distribution, substitute Eq. (4) into Eqs. (1) and (2), which will enable
us to find f1(x, y)

� 	2a2�(x3 � xy2) (7)

� 	2a2�(x2y � y3) (8)

Integrate Eq. (7) partially with respect to x

f1 � 	�12�a2�(x4 � 2x2y2) � f2(y) (9)

Differentiate this with respect to y and compare with Eq. (8)

� 	2a2�x2y � f�2(y) (10) 

Comparing (8) and (10), we see they are equivalent if

f�2(y) � 	2a2�y3

or f2(y) � 	�12�a2�y4 � C (11)

where C is a constant. Combine Eqs. (4), (9), and (11) to give the complete expression for pres-
sure distribution

p(x, y, z) � 	�gz 	 �12�a2�(x4 � y4 � 2x2y2) � C Ans. (12)

This is the desired solution. Do you recognize it? Not unless you go back to the beginning and
square the velocity components:
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4.4 The Differential Equation
of Angular Momentum

u2 � �2 � w2 � V2 � a2(x4 � y4 � 2x2y2) (13) 

Comparing with Eq. (12), we can rewrite the pressure distribution as

p � �12��V2 � �gz � C (14) 

This is Bernoulli’s equation (3.77). That is no accident, because the velocity distribution given in
this problem is one of a family of flows which are solutions to the Navier-Stokes equation and
which satisfy Bernoulli’s incompressible equation everywhere in the flow field. They are called
irrotational flows, for which curl V � � � V 	 0. This subject is discussed again in Sec. 4.9.

Having now been through the same approach for both mass and linear momentum, we
can go rapidly through a derivation of the differential angular-momentum relation. The
appropriate form of the integral angular-momentum equation for a fixed control vol-
ume is

� MO � ��CV
(r � V)� d�� ��

CS
(r � V)�(V � n) dA (3.55) 

We shall confine ourselves to an axis O which is parallel to the z axis and passes through
the centroid of the elemental control volume. This is shown in Fig. 4.5. Let � be the
angle of rotation about O of the fluid within the control volume. The only stresses
which have moments about O are the shear stresses �xy and �yx. We can evaluate the
moments about O and the angular-momentum terms about O. A lot of algebra is in-
volved, and we give here only the result

��xy 	 �yx � (�xy) dx 	 (�yx) dy� dx dy dz

� �(dx dy dz)(dx2 � dy2) (4.39) 

Assuming that the angular acceleration d2�/dt2 is not infinite, we can neglect all higher-
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Fig. 4.5 Elemental cartesian fixed
control volume showing shear
stresses which may cause a net an-
gular acceleration about axis O.
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4.5 The Differential Equation
of Energy6

order differential terms, which leaves a finite and interesting result

�xy � �yx (4.40) 

Had we summed moments about axes parallel to y or x, we would have obtained ex-
actly analogous results

�xz � �zx �yz � �zy (4.41) 

There is no differential angular-momentum equation. Application of the integral theo-
rem to a differential element gives the result, well known to students of stress analy-
sis, that the shear stresses are symmetric: �ij � �ji. This is the only result of this sec-
tion.5 There is no differential equation to remember, which leaves room in your brain
for the next topic, the differential energy equation.

We are now so used to this type of derivation that we can race through the energy equa-
tion at a bewildering pace. The appropriate integral relation for the fixed control vol-
ume of Fig. 4.1 is

Q̇ 	 Ẇs 	 Ẇ� � ��CV
e� d�� � �

CS �e � ��(V � n) dA (3.63) 

where Ẇs � 0 because there can be no infinitesimal shaft protruding into the control
volume. By analogy with Eq. (4.20), the right-hand side becomes, for this tiny element,

Q̇ 	 Ẇ� � � (�e) � (�u�) � (��� ) � (�w� )� dx dy dz (4.42) 

where � � e � p/�. When we use the continuity equation by analogy with Eq. (4.21),
this becomes

Q̇ 	 Ẇ� � �� � V � �p� dx dy dz (4.43) 

To evaluate Q̇, we neglect radiation and consider only heat conduction through the sides
of the element. The heat flow by conduction follows Fourier’s law from Chap. 1

q � 	k �T (1.29a) 

where k is the coefficient of thermal conductivity of the fluid. Figure 4.6 shows the
heat flow passing through the x faces, the y and z heat flows being omitted for clarity.
We can list these six heat-flux terms:
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5We are neglecting the possibility of a finite couple being applied to the element by some powerful ex-
ternal force field. See, e.g., Ref. 6, p. 217.

6This section may be omitted without loss of continuity.
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Fig. 4.6 Elemental cartesian control
volume showing heat-flow and 
viscous-work-rate terms in the x
direction.

By adding the inlet terms and subtracting the outlet terms, we obtain the net heat
added to the element

Q̇ � 	� (qx) � (qy) � (qz)� dx dy dz � 	� � q dx dy dz (4.44) 

As expected, the heat flux is proportional to the element volume. Introducing Fourier’s
law from Eq. (1.29), we have

Q̇ � � � (k �T) dx dy dz (4.45) 

The rate of work done by viscous stresses equals the product of the stress compo-
nent, its corresponding velocity component, and the area of the element face. Figure
4.6 shows the work rate on the left x face is

Ẇυ,LF � wx dy dz where wx � 	(u�xx � υ�xy � w�xz) (4.46) 

(where the subscript LF stands for left face) and a slightly different work on the right
face due to the gradient in wx. These work fluxes could be tabulated in exactly the same
manner as the heat fluxes in the previous table, with wx replacing qx, etc. After outlet
terms are subtracted from inlet terms, the net viscous-work rate becomes

Ẇ� � 	� (u�xx � ��xy � w�xz) � (u�yx � ��yy � w�yz)

� (u�zx � ��zy � w�zz)� dx dy dz

� 	� � (V � �ij) dx dy dz (4.47) 

We now substitute Eqs. (4.45) and (4.47) into Eq. (4.43) to obtain one form of the dif-
ferential energy equation

� � V � �p � � � (k �T) � � � (V � �ij) where e � û � �12�V2 � gz (4.48) 

A more useful form is obtained if we split up the viscous-work term

� � (V � �ij) 	 V � (� � �ij) � � (4.49) 
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where � is short for the viscous-dissipation function.7 For a newtonian incompressible
viscous fluid, this function has the form

� � ��2� �
2

� 2� �
2

� 2� �
2

� � � �
2

� � � �
2

� � � �
2

� (4.50)

Since all terms are quadratic, viscous dissipation is always positive, so that a viscous
flow always tends to lose its available energy due to dissipation, in accordance with
the second law of thermodynamics.

Now substitute Eq. (4.49) into Eq. (4.48), using the linear-momentum equation (4.32)
to eliminate � � �ij. This will cause the kinetic and potential energies to cancel, leav-
ing a more customary form of the general differential energy equation

� � p(� � V) � � � (k �T) � � (4.51) 

This equation is valid for a newtonian fluid under very general conditions of unsteady,
compressible, viscous, heat-conducting flow, except that it neglects radiation heat trans-
fer and internal sources of heat that might occur during a chemical or nuclear reaction.

Equation (4.51) is too difficult to analyze except on a digital computer [1]. It is cus-
tomary to make the following approximations:

dû � c� dT c�, �, k, � � const (4.52) 

Equation (4.51) then takes the simpler form

�c� � k�2T � � (4.53)

which involves temperature T as the sole primary variable plus velocity as a secondary
variable through the total time-derivative operator

� � u � � � w (4.54)

A great many interesting solutions to Eq. (4.53) are known for various flow conditions,
and extended treatments are given in advanced books on viscous flow [4, 5] and books
on heat transfer [7, 8].

One well-known special case of Eq. (4.53) occurs when the fluid is at rest or has
negligible velocity, where the dissipation � and convective terms become negligible

�c� � k �2T (4.55)

This is called the heat-conduction equation in applied mathematics and is valid for
solids and fluids at rest. The solution to Eq. (4.55) for various conditions is a large part
of courses and books on heat transfer.

This completes the derivation of the basic differential equations of fluid motion.
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4.6 Boundary Conditions for
the Basic Equations

There are three basic differential equations of fluid motion, just derived. Let us sum-
marize them here:

Continuity: � � � (�V) � 0 (4.56) 

Momentum: � � �g 	 �p � � � �ij (4.57) 

Energy: � � p(� � V) � � � (k �T) � � (4.58) 

where � is given by Eq. (4.50). In general, the density is variable, so that these three
equations contain five unknowns, �, V, p, û, and T. Therefore we need two additional
relations to complete the system of equations. These are provided by data or algebraic
expressions for the state relations of the thermodynamic properties

� � �( p, T) û � û( p, T) (4.59) 

For example, for a perfect gas with constant specific heats, we complete the system with

� � û � � c� dT � c� T � const (4.60) 

It is shown in advanced books [4, 5] that this system of equations (4.56) to (4.59) is
well posed and can be solved analytically or numerically, subject to the proper bound-
ary conditions.

What are the proper boundary conditions? First, if the flow is unsteady, there must
be an initial condition or initial spatial distribution known for each variable:

At t � 0: �, V, p, û, T � known f(x, y, z) (4.61) 

Thereafter, for all times t to be analyzed, we must know something about the variables
at each boundary enclosing the flow.

Figure 4.7 illustrates the three most common types of boundaries encountered in
fluid-flow analysis: a solid wall, an inlet or outlet, a liquid-gas interface.

First, for a solid, impermeable wall, there is no slip and no temperature jump in a
viscous heat-conducting fluid

Vfluid � Vwall Tfluid � Twall solid wall (4.62) 

The only exception to Eq. (4.62) occurs in an extremely rarefied gas flow, where slip-
page can be present [5].

Second, at any inlet or outlet section of the flow, the complete distribution of ve-
locity, pressure, and temperature must be known for all times:

Inlet or outlet: Known V, p, T (4.63) 

These inlet and outlet sections can be and often are at � �, simulating a body im-
mersed in an infinite expanse of fluid.

Finally, the most complex conditions occur at a liquid-gas interface, or free surface,
as sketched in Fig. 4.7. Let us denote the interface by

Interface: z � �(x, y, t) (4.64) 

p
�
RT

dû
�
dt

dV
�
dt

��
�
�t

234 Chapter 4 Differential Relations for a Fluid Particle



Fig. 4.7 Typical boundary condi-
tions in a viscous heat-conducting
fluid-flow analysis.

Then there must be equality of vertical velocity across the interface, so that no holes
appear between liquid and gas:

wliq � wgas � � � u � � (4.65) 

This is called the kinematic boundary condition.
There must be mechanical equilibrium across the interface. The viscous-shear

stresses must balance

(�zy)liq � (�zy)gas (�zx)liq � (�zx)gas (4.66) 

Neglecting the viscous normal stresses, the pressures must balance at the interface ex-
cept for surface-tension effects

pliq � pgas 	 �(R	1
x  � R	1

y  ) (4.67) 

which is equivalent to Eq. (1.34). The radii of curvature can be written in terms of the
free-surface position �

Rx
	1 � Ry

	1 � �
�

�

x
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� �
�

�

y
� � � (4.68)
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Z

Gas

Liquid

Inlet:
known V, p, T

Outlet:
known V, p, T

Solid contact:
( V, T   )fluid = (  V, T   )wall

Solid impermeable wall

Liquid-gas interface z = η(x, y, t):
pliq = pgas –  (R–1 + R–1)x y

wliq = wgas =
d  

dt
Equality of q and     across interface

η
�

τ



Simplified Free-Surface
Conditions

Incompressible Flow with
Constant Properties

Finally, the heat transfer must be the same on both sides of the interface, since no
heat can be stored in the infinitesimally thin interface

(qz)liq � (qz)gas (4.69) 

Neglecting radiation, this is equivalent to

�k �
liq

� �k �
gas

(4.70)

This is as much detail as we wish to give at this level of exposition. Further and even
more complicated details on fluid-flow boundary conditions are given in Refs. 5 and 9.

In the introductory analyses given in this book, such as open-channel flows in Chap.
10, we shall back away from the exact conditions (4.65) to (4.69) and assume that the
upper fluid is an “atmosphere” which merely exerts pressure upon the lower fluid, with
shear and heat conduction negligible. We also neglect nonlinear terms involving the
slopes of the free surface. We then have a much simpler and linear set of conditions at
the surface

pliq � pgas 	 �� � � wliq �

� �
liq

� 0 � �
liq

� 0 (4.71)

In many cases, such as open-channel flow, we can also neglect surface tension, so that

pliq � patm (4.72) 

These are the types of approximations which will be used in Chap. 10. The nondi-
mensional forms of these conditions will also be useful in Chap. 5.

Flow with constant �, �, and k is a basic simplification which will be used, e.g., through-
out Chap. 6. The basic equations of motion (4.56) to (4.58) reduce to:

Continuity: � � V � 0 (4.73) 

Momentum: � � �g 	 �p � � �2V (4.74) 

Energy: �c� � k �2T � � (4.75) 

Since � is constant, there are only three unknowns: p, V, and T. The system is closed.8

Not only that, the system splits apart: Continuity and momentum are independent of
T. Thus we can solve Eqs. (4.73) and (4.74) entirely separately for the pressure and
velocity, using such boundary conditions as

Solid surface: V � Vwall (4.76) 

dT
�
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8For this system, what are the thermodynamic equivalents to Eq. (4.59)?



Inviscid-Flow Approximations

Inlet or outlet: Known V, p (4.77) 

Free surface: p � pa w � (4.78) 

Later, entirely at our leisure,9 we can solve for the temperature distribution from Eq.
(4.75), which depends upon velocity V through the dissipation � and the total time-
derivative operator d/dt.

Chapter 8 assumes inviscid flow throughout, for which the viscosity � � 0. The mo-
mentum equation (4.74) reduces to

� � �g 	 �p (4.79) 

This is Euler’s equation; it can be integrated along a streamline to obtain Bernoulli’s
equation (see Sec. 4.9). By neglecting viscosity we have lost the second-order deriva-
tive of V in Eq. (4.74); therefore we must relax one boundary condition on velocity.
The only mathematically sensible condition to drop is the no-slip condition at the wall.
We let the flow slip parallel to the wall but do not allow it to flow into the wall. The
proper inviscid condition is that the normal velocities must match at any solid surface:

Inviscid flow: (Vn)fluid � (Vn)wall (4.80) 

In most cases the wall is fixed; therefore the proper inviscid-flow condition is

Vn � 0 (4.81) 

There is no condition whatever on the tangential velocity component at the wall in in-
viscid flow. The tangential velocity will be part of the solution, and the correct value
will appear after the analysis is completed (see Chap. 8).

EXAMPLE 4.6

For steady incompressible laminar flow through a long tube, the velocity distribution is given
by

�z � U�1 	 � �r � �� � 0 

where U is the maximum, or centerline, velocity and R is the tube radius. If the wall tempera-
ture is constant at Tw and the temperature T � T(r) only, find T(r) for this flow.

Solution

With T � T(r), Eq. (4.75) reduces for steady flow to

�c��r � �r � � ���
d
d
�

r
z��

2

(1) 
dT
�
dr

d
�
dr

k
�
r

dT
�
dr

r2

�
R2

dV
�
dt

��
�
�t
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9Since temperature is entirely uncoupled by this assumption, we may never get around to solving for it
here and may ask you to wait until a course on heat transfer.



4.7 The Stream Function

But since �r � 0 for this flow, the convective term on the left vanishes. Introduce �z into Eq. (1)
to obtain

�r �
2

� 	���
d
d
�

r
z��

2

� 	 (2)

Multiply through by r/k and integrate once:

r � 	 � C1 (3) 

Divide through by r and integrate once again:

T � 	 � C1 ln r � C2 (4) 

Now we are in position to apply our boundary conditions to evaluate C1 and C2.
First, since the logarithm of zero is 	�, the temperature at r � 0 will be infinite unless

C1 � 0 (5) 

Thus we eliminate the possibility of a logarithmic singularity. The same thing will happen if we
apply the symmetry condition dT/dr � 0 at r � 0 to Eq. (3). The constant C2 is then found by
the wall-temperature condition at r � R

T � Tw � 	 � C2

or C2 � Tw � (6) 

The correct solution is thus

T(r) � Tw � �1 	 � Ans. (7) 

which is a fourth-order parabolic distribution with a maximum value T0 � Tw � �U2/(4k) at the
centerline.

We have seen in Sec. 4.6 that even if the temperature is uncoupled from our system of
equations of motion, we must solve the continuity and momentum equations simulta-
neously for pressure and velocity. The stream function � is a clever device which al-
lows us to wipe out the continuity equation and solve the momentum equation directly
for the single variable �.

The stream-function idea works only if the continuity equation (4.56) can be re-
duced to two terms. In general, we have four terms:

Cartesian: � (�u) � (��) � (�w) � 0 (4.82a)

Cylindrical: � (r��r) � (���) � (��z) � 0 (4.82b)
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First, let us eliminate unsteady flow, which is a peculiar and unrealistic application of
the stream-function idea. Reduce either of Eqs. (4.82) to any two terms. The most com-
mon application is incompressible flow in the xy plane

� � 0 (4.83) 

This equation is satisfied identically if a function �(x, y) is defined such that Eq. (4.83)
becomes

� � � �	 � 	 0 (4.84) 

Comparison of (4.83) and (4.84) shows that this new function � must be defined such
that

u � � � 	 (4.85) 

or V � i 	 j

Is this legitimate? Yes, it is just a mathematical trick of replacing two variables (u and
�) by a single higher-order function �. The vorticity, or curl V, is an interesting func-
tion

curl V � 2k�z � 	k�2� where �2� � � (4.86) 

Thus, if we take the curl of the momentum equation (4.74) and utilize Eq. (4.86), we
obtain a single equation for �

(�2�) 	 (�2�) � � �2(�2�) (4.87) 

where � � �/� is the kinematic viscosity. This is partly a victory and partly a defeat:
Eq. (4.87) is scalar and has only one variable, �, but it now contains fourth-order 
derivatives and probably will require computer analysis. There will be four boundary
conditions required on �. For example, for the flow of a uniform stream in the x di-
rection past a solid body, the four conditions would be

At infinity: � U� � 0 

At the body: � � 0 

(4.88)

Many examples of numerical solution of Eqs. (4.87) and (4.88) are given in Ref. 1.
One important application is inviscid irrotational flow in the xy plane, where �z 	 0.

Equations (4.86) and (4.87) reduce to

�2� � � � 0 (4.89)

This is the second-order Laplace equation (Chap. 8), for which many solutions and an-
alytical techniques are known. Also, boundary conditions like Eq. (4.88) reduce to
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Geometric Interpretation of �

At infinity: � � U�y � const (4.90)

At the body: � � const 

It is well within our capability to find some useful solutions to Eqs. (4.89) and (4.90),
which we shall do in Chap. 8.

The fancy mathematics above would serve by itself to make the stream function im-
mortal and always useful to engineers. Even better, though, � has a beautiful geomet-
ric interpretation: Lines of constant � are streamlines of the flow. This can be shown
as follows. From Eq. (1.41) the definition of a streamline in two-dimensional flow is

�

or u dy 	 � dx � 0 streamline (4.91) 

Introducing the stream function from Eq. (4.85), we have

dx � dy � 0 � d� (4.92) 

Thus the change in � is zero along a streamline, or

� � const along a streamline (4.93) 

Having found a given solution �(x, y), we can plot lines of constant � to give the
streamlines of the flow.

There is also a physical interpretation which relates � to volume flow. From Fig.
4.8, we can compute the volume flow dQ through an element ds of control surface of
unit depth

dQ � (V � n) dA � �i 	 j � 
 �i 	 j � ds(1)

� dx � dy � d� (4.94) 
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Fig. 4.8 Geometric interpretation of
stream function: volume flow
through a differential portion of a
control surface.

dQ = ( V • n) dA = d

Control surface
(unit depth
into paper)

dy

dx

V = i u + j v

n =
dy

ds
i –

dx

ds
j

ds

ψ



Fig. 4.9 Sign convention for flow
in terms of change in stream func-
tion: (a) flow to the right if �U is
greater; (b) flow to the left if �L is
greater.

Thus the change in � across the element is numerically equal to the volume flow through
the element. The volume flow between any two points in the flow field is equal to the
change in stream function between those points:

Q1→2 � �2

1
(V � n) dA � �2

1
d� � �2 	 �1 (4.95) 

Further, the direction of the flow can be ascertained by noting whether � increases or
decreases. As sketched in Fig. 4.9, the flow is to the right if �U is greater than �L,
where the subscripts stand for upper and lower, as before; otherwise the flow is to the
left.

Both the stream function and the velocity potential were invented by the French
mathematician Joseph Louis Lagrange and published in his treatise on fluid mechan-
ics in 1781.

EXAMPLE 4.7

If a stream function exists for the velocity field of Example 4.5

u � a(x2 	 y2) � � 	2axy w � 0 

find it, plot it, and interpret it.

Solution

Since this flow field was shown expressly in Example 4.3 to satisfy the equation of continuity,
we are pretty sure that a stream function does exist. We can check again to see if

� � 0 

Substitute: 2ax � (	2ax) � 0 checks 

Therefore we are certain that a stream function exists. To find �, we simply set

u � � ax2 	 ay2 (1)

� � 	 � 	2axy (2)
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Flow

(a) (b)

Flow

2 >   1ψψ

1ψ

2 <   1ψψ

1ψ



and work from either one toward the other. Integrate (1) partially

� � ax2y 	 � f(x) (3) 

Differentiate (3) with respect to x and compare with (2)

� 2axy � f�(x) � 2axy (4) 

Therefore f�(x) � 0, or f � constant. The complete stream function is thus found

� � a�x2y 	 � � C Ans. (5) 

To plot this, set C � 0 for convenience and plot the function

3x2y 	 y3 � (6) 

for constant values of �. The result is shown in Fig. E4.7a to be six 60° wedges of circulating
motion, each with identical flow patterns except for the arrows. Once the streamlines are labeled,
the flow directions follow from the sign convention of Fig. 4.9. How can the flow be interpreted?
Since there is slip along all streamlines, no streamline can truly represent a solid surface in a
viscous flow. However, the flow could represent the impingement of three incoming streams at
60, 180, and 300°. This would be a rather unrealistic yet exact solution to the Navier-Stokes
equation, as we showed in Example 4.5.
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 = 2a
a

0

–2a

   = 2a

a

– a

–2a

x

y

60°

– a
0

a
2 a

The origin is a
stagnation point

60°

60°

60°

60°

– a

ψ

 = – 2aψ

ψ

Flow around a 60° corner

Flow around a
rounded 60° corner

Incoming stream impinging
against a 120° corner

By allowing the flow to slip as a frictionless approximation, we could let any given stream-
line be a body shape. Some examples are shown in Fig. E4.7b.

A stream function also exists in a variety of other physical situations where only
two coordinates are needed to define the flow. Three examples are illustrated here.

E4.7a E4.7b



Steady Plane Compressible Flow Suppose now that the density is variable but that w � 0, so that the flow is in the xy
plane. Then the equation of continuity becomes

(�u) � (��) � 0 (4.96) 

We see that this is in exactly the same form as Eq. (4.84). Therefore a compressible-
flow stream function can be defined such that

�u � �� � 	 (4.97) 

Again lines of constant � are streamlines of the flow, but the change in � is now equal
to the mass flow, not the volume flow

dṁ� �(V � n) dA � d�

or ṁ1→2 � �2

1
�(V � n) dA � �2 	 �1 (4.98) 

The sign convention on flow direction is the same as in Fig. 4.9. This particular stream
function combines density with velocity and must be substituted into not only mo-
mentum but also the energy and state relations (4.58) and (4.59) with pressure and tem-
perature as companion variables. Thus the compressible stream function is not a great
victory, and further assumptions must be made to effect an analytical solution to a typ-
ical problem (see, e.g., Ref. 5, chap. 7).

Suppose that the important coordinates are r and �, with �z � 0, and that the density
is constant. Then Eq. (4.82b) reduces to

(r�r) � (��) � 0 (4.99) 

After multiplying through by r, we see that this is the same as the analogous form of
Eq. (4.84)

� � � �	 � � 0 (4.100) 

By comparison of (4.99) and (4.100) we deduce the form of the incompressible polar-
coordinate stream function

�r � �� � 	 (4.101) 

Once again lines of constant � are streamlines, and the change in � is the volume flow
Q1→2 � �2 	 �1. The sign convention is the same as in Fig. 4.9. This type of stream
function is very useful in analyzing flows with cylinders, vortices, sources, and sinks
(Chap. 8).

As a final example, suppose that the flow is three-dimensional (υr, υz) but with no cir-
cumferential variations, �� � �/�� � 0 (see Fig. 4.2 for definition of coordinates). Such
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Incompressible Plane Flow in
Polar Coordinates

Incompressible Axisymmetric Flow



a flow is termed axisymmetric, and the flow pattern is the same when viewed on any
meridional plane through the axis of revolution z. For incompressible flow, Eq. (4.82b)
becomes

(r�r) � (�z) � 0 (4.102) 

This doesn’t seem to work: Can’t we get rid of the one r outside? But when we real-
ize that r and z are independent coordinates, Eq. (4.102) can be rewritten as

(r�r) � (r�z) � 0 (4.103) 

By analogy with Eq. (4.84), this has the form

�	 � � � � � 0 (4.104) 

By comparing (4.103) and (4.104), we deduce the form of an incompressible axisym-
metric stream function �(r, z)

�r � 	 �z � (4.105) 

Here again lines of constant � are streamlines, but there is a factor (2�) in the volume
flow: Q1→2 � 2�(�2 	 �1). The sign convention on flow is the same as in Fig. 4.9.

EXAMPLE 4.8

Investigate the stream function in polar coordinates

� � U sin ��r 	 � (1) 

where U and R are constants, a velocity and a length, respectively. Plot the streamlines. What
does the flow represent? Is it a realistic solution to the basic equations?

Solution

The streamlines are lines of constant �, which has units of square meters per second. Note that
�/(UR) is dimensionless. Rewrite Eq. (1) in dimensionless form

� sin ��η 	 �
�
1

�� η � (2) 

Of particular interest is the special line � � 0. From Eq. (1) or (2) this occurs when (a) � � 0
or 180° and (b) r � R. Case (a) is the x-axis, and case (b) is a circle of radius R, both of which
are plotted in Fig. E4.8.

For any other nonzero value of � it is easiest to pick a value of r and solve for �:

sin � � (3) 

In general, there will be two solutions for � because of the symmetry about the y-axis. For ex-
ample take �/(UR) � �1.0:
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E4.8

Guess r/R 3.0 2.5 2.0 1.8 1.7 1.618

Compute � 22° 28° 42° 54° 64° 90°
158° 152° 138° 156° 116°

This line is plotted in Fig. E4.8 and passes over the circle r � R. You have to watch it, though,
because there is a second curve for � /(UR) � �1.0 for small r  R below the x-axis:

Guess r/R 0.618 0.6 0.5 0.4 0.3 0.2 0.1

Compute � 	90° 	70° 	42° 	28° 	19° 	12° 	6°
	110° 	138° 	152° 	161° 	168° 	174°

This second curve plots as a closed curve inside the circle r � R. There is a singularity of infi-
nite velocity and indeterminate flow direction at the origin. Figure E4.8 shows the full pattern.

The given stream function, Eq. (1), is an exact and classic solution to the momentum equa-
tion (4.38) for frictionless flow. Outside the circle r � R it represents two-dimensional inviscid
flow of a uniform stream past a circular cylinder (Sec. 8.3). Inside the circle it represents a rather
unrealistic trapped circulating motion of what is called a line doublet.

The assumption of zero fluid angular velocity, or irrotationality, is a very useful sim-
plification. Here we show that angular velocity is associated with the curl of the local-
velocity vector.

The differential relations for deformation of a fluid element can be derived by ex-
amining Fig. 4.10. Two fluid lines AB and BC, initially perpendicular at time t, move
and deform so that at t � dt they have slightly different lengths A�B� and B�C� and are
slightly off the perpendicular by angles d! and d". Such deformation occurs kinemat-
ically because A, B, and C have slightly different velocities when the velocity field V
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Fig. 4.10 Angular velocity and
strain rate of two fluid lines de-
forming in the xy plane.

has spatial gradients. All these differential changes in the motion of A, B, and C are
noted in Fig. 4.10.

We define the angular velocity �z about the z axis as the average rate of counter-
clockwise turning of the two lines

ωz � � 	 �
d
d
β
t
�� (4.106) 

But from Fig. 4.10, d! and d" are each directly related to velocity derivatives in the
limit of small dt

d! � lim
dt→0 �tan	1 � � dt

d" � lim
dt→0 �tan	1 � � dt

(4.107)

Combining Eqs. (4.106) and (4.107) gives the desired result:

�z � � 	 � (4.108) 

In exactly similar manner we determine the other two rates:

�x � � 	 � �y � � 	 � (4.109) 
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4.9 Frictionless Irrotational
Flows

The vector � � i�x � j�y � k�z is thus one-half the curl of the velocity vector

i j k

� � (curl V) �   (4.110) 

 u � w 
Since the factor of �12� is annoying, many workers prefer to use a vector twice as large,
called the vorticity:

� � 2� � curl V (4.111) 

Many flows have negligible or zero vorticity and are called irrotational

curl V 	 0 (4.112) 

The next section expands on this idea. Such flows can be incompressible or com-
pressible, steady or unsteady.

We may also note that Fig. 4.10 demonstrates the shear-strain rate of the element,
which is defined as the rate of closure of the initially perpendicular lines

#̇xy � � � � (4.113) 

When multiplied by viscosity �, this equals the shear stress �xy in a newtonian fluid,
as discussed earlier in Eqs. (4.37). Appendix E lists strain-rate and vorticity compo-
nents in cylindrical coordinates.

When a flow is both frictionless and irrotational, pleasant things happen. First, the mo-
mentum equation (4.38) reduces to Euler’s equation

� � �g 	 �p (4.114) 

Second, there is a great simplification in the acceleration term. Recall from Sec. 4.1
that acceleration has two terms

� � (V � �)V (4.2) 

A beautiful vector identity exists for the second term [11]:

(V � �)V 	 �(�12�V2) � � � V (4.115) 

where � � curl V from Eq. (4.111) is the fluid vorticity.
Now combine (4.114) and (4.115), divide by �, and rearrange on the left-hand side.

Dot the entire equation into an arbitrary vector displacement dr:

� � �� V2� � � � V � �p 	 g� 
 dr � 0 (4.116) 

Nothing works right unless we can get rid of the third term. We want

(� � V) 
 (dr) 	 0 (4.117) 
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Velocity Potential

This will be true under various conditions:

1. V is zero; trivial, no flow (hydrostatics).

2. � is zero; irrotational flow.

3. dr is perpendicular to � � V; this is rather specialized and rare.

4. dr is parallel to V; we integrate along a streamline (see Sec. 3.7).

Condition 4 is the common assumption. If we integrate along a streamline in friction-
less compressible flow and take, for convenience, g � 	gk, Eq. (4.116) reduces to


 dr � d� V2� � � g dz � 0 (4.118)

Except for the first term, these are exact differentials. Integrate between any two points
1 and 2 along the streamline:

�2

1
ds � �2

1
� (V 2

2 	 V 2
1) � g(z2 	 z1) � 0 (4.119)

where ds is the arc length along the streamline. Equation (4.119) is Bernoulli’s equa-
tion for frictionless unsteady flow along a streamline and is identical to Eq. (3.76). For
incompressible steady flow, it reduces to

� V2 � gz � constant along streamline (4.120)

The constant may vary from streamline to streamline unless the flow is also irrotational
(assumption 2). For irrotational flow � � 0, the offending term Eq. (4.117) vanishes
regardless of the direction of dr, and Eq. (4.120) then holds all over the flow field with
the same constant.

Irrotationality gives rise to a scalar function $ similar and complementary to the stream
function �. From a theorem in vector analysis [11], a vector with zero curl must be the
gradient of a scalar function

If � � V 	 0 then V � �$ (4.121)

where $ � $ (x, y, z, t) is called the velocity potential function. Knowledge of $ thus
immediately gives the velocity components

u � � � w � (4.122)

Lines of constant $ are called the potential lines of the flow.
Note that $, unlike the stream function, is fully three-dimensional and not limited

to two coordinates. It reduces a velocity problem with three unknowns u, �, and w to
a single unknown potential $; many examples are given in Chap. 8 and Sec. 4.10. The
velocity potential also simplifies the unsteady Bernoulli equation (4.118) because if $
exists, we obtain


 dr � (��) 
 dr � d� � (4.123)
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Orthogonality of Streamlines and
Potential Lines

Generation of Rotationality

Equation (4.118) then becomes a relation between $ and p

� � � ��2 � gz � const (4.124)

This is the unsteady irrotational Bernoulli equation. It is very important in the analy-
sis of accelerating flow fields (see, e.g., Refs. 10 and 15), but the only application in
this text will be in Sec. 9.3 for steady flow.

If a flow is both irrotational and described by only two coordinates, � and $ both ex-
ist and the streamlines and potential lines are everywhere mutually perpendicular ex-
cept at a stagnation point. For example, for incompressible flow in the xy plane, we
would have

u � � (4.125) 

� � 	 � (4.126) 

Can you tell by inspection not only that these relations imply orthogonality but also
that $ and � satisfy Laplace’s equation?10 A line of constant $ would be such that the
change in $ is zero

d$ � dx � dy � 0 � u dx � � dy (4.127)

Solving, we have

� �$�const
� 	 � 	 (4.128)

Equation (4.128) is the mathematical condition that lines of constant $ and � be mu-
tually orthogonal. It may not be true at a stagnation point, where both u and � are zero,
so that their ratio in Eq. (4.128) is indeterminate.

This is the second time we have discussed Bernoulli’s equation under different circum-
stances (the first was in Sec. 3.7). Such reinforcement is useful, since this is probably
the most widely used equation in fluid mechanics. It requires frictionless flow with no
shaft work or heat transfer between sections 1 and 2. The flow may or may not be ir-
rotational, the latter being an easier condition, allowing a universal Bernoulli constant.

The only remaining question is: When is a flow irrotational? In other words, when
does a flow have negligible angular velocity? The exact analysis of fluid rotationality
under arbitrary conditions is a topic for advanced study, e.g., Ref. 10, sec. 8.5; Ref. 9,
sec. 5.2; and Ref. 5, sec. 2.10. We shall simply state those results here without proof.

A fluid flow which is initially irrotational may become rotational if

1. There are significant viscous forces induced by jets, wakes, or solid boundaries.
In this case Bernoulli’s equation will not be valid in such viscous regions.

1
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10 Equations (4.125) and (4.126) are called the Cauchy-Riemann equations and are studied in com-
plex-variable theory.



Fig. 4.11 Typical flow patterns il-
lustrating viscous regions patched
onto nearly frictionless regions:
(a) low subsonic flow past a body
(U � a); frictionless, irrotational
potential flow outside the boundary
layer (Bernoulli and Laplace equa-
tions valid); (b) supersonic flow
past a body (U % a); frictionless,
rotational flow outside the bound-
ary layer (Bernoulli equation valid,
potential flow invalid).

2. There are entropy gradients caused by curved shock waves (see Fig. 4.11b).

3. There are density gradients caused by stratification (uneven heating) rather than
by pressure gradients.

4. There are significant noninertial effects such as the earth’s rotation (the Coriolis
acceleration).

In cases 2 to 4, Bernoulli’s equation still holds along a streamline if friction is negli-
gible. We shall not study cases 3 and 4 in this book. Case 2 will be treated briefly in
Chap. 9 on gas dynamics. Primarily we are concerned with case 1, where rotation is
induced by viscous stresses. This occurs near solid surfaces, where the no-slip condi-
tion creates a boundary layer through which the stream velocity drops to zero, and in
jets and wakes, where streams of different velocities meet in a region of high shear.

Internal flows, such as pipes and ducts, are mostly viscous, and the wall layers grow
to meet in the core of the duct. Bernoulli’s equation does not hold in such flows un-
less it is modified for viscous losses.

External flows, such as a body immersed in a stream, are partly viscous and partly
inviscid, the two regions being patched together at the edge of the shear layer or bound-
ary layer. Two examples are shown in Fig. 4.11. Figure 4.11a shows a low-speed 
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subsonic flow past a body. The approach stream is irrotational; i.e., the curl of a con-
stant is zero, but viscous stresses create a rotational shear layer beside and downstream
of the body. Generally speaking (see Chap. 6), the shear layer is laminar, or smooth,
near the front of the body and turbulent, or disorderly, toward the rear. A separated, or
deadwater, region usually occurs near the trailing edge, followed by an unsteady tur-
bulent wake extending far downstream. Some sort of laminar or turbulent viscous the-
ory must be applied to these viscous regions; they are then patched onto the outer flow,
which is frictionless and irrotational. If the stream Mach number is less than about 0.3,
we can combine Eq. (4.122) with the incompressible continuity equation (4.73).

� � V � � � (��) � 0 

or �2$ � 0 � � � (4.129)

This is Laplace’s equation in three dimensions, there being no restraint on the number
of coordinates in potential flow. A great deal of Chap. 8 will be concerned with solv-
ing Eq. (4.129) for practical engineering problems; it holds in the entire region of Fig.
4.11a outside the shear layer.

Figure 4.11b shows a supersonic flow past a body. A curved shock wave generally
forms in front, and the flow downstream is rotational due to entropy gradients (case
2). We can use Euler’s equation (4.114) in this frictionless region but not potential the-
ory. The shear layers have the same general character as in Fig. 4.11a except that the
separation zone is slight or often absent and the wake is usually thinner. Theory of sep-
arated flow is presently qualitative, but we can make quantitative estimates of laminar
and turbulent boundary layers and wakes.

EXAMPLE 4.9

If a velocity potential exists for the velocity field of Example 4.5

u � a(x2 	 y2) � � 	2axy w � 0 

find it, plot it, and compare with Example 4.7.

Solution

Since w � 0, the curl of V has only one z component, and we must show that it is zero:

(� � V)z � 2�z � 	 � (	2axy) 	 (ax2 	 ay2)

� 	2ay � 2ay � 0 checks Ans.

The flow is indeed irrotational. A potential exists.
To find $(x, y), set

u � � ax2 	 ay2 (1) 

� � � 	2axy (2) 
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Integrate (1)

$ � 	 axy2 � f(y) (3) 

Differentiate (3) and compare with (2)

� 	2axy � f�(y) � 	2axy (4) 

Therefore f � � 0, or f � constant. The velocity potential is

$ � 	 axy2 � C Ans.

Letting C � 0, we can plot the $ lines in the same fashion as in Example 4.7. The result is shown
in Fig. E4.9 (no arrows on $). For this particular problem, the $ lines form the same pattern as
the � lines of Example 4.7 (which are shown here as dashed lines) but are displaced 30°. The
$ and � lines are everywhere perpendicular except at the origin, a stagnation point, where they
are 30° apart. We expected trouble at the stagnation point, and there is no general rule for de-
termining the behavior of the lines at that point.

Chapter 8 is devoted entirely to a detailed study of inviscid incompressible flows, es-
pecially those which possess both a stream function and a velocity potential. As sketched
in Fig. 4.11a, inviscid flow is valid away from solid surfaces, and this inviscid pattern
is “patched” onto the near-wall viscous layers—an idea developed in Chap. 7. Various
body shapes can be simulated by the inviscid-flow pattern. Here we discuss plane flows,
three of which are illustrated in Fig. 4.12.

A uniform stream V � iU, as in Fig. 4.12a, possesses both a stream function and a ve-
locity potential, which may be found as follows:

u � U � � � � 0 � � 	
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Fig. 4.12 Three elementary plane
potential flows. Solid lines are
streamlines; dashed lines are poten-
tial lines.

We may integrate each expression and discard the constants of integration, which do
not affect the velocities in the flow. The results are

Uniform stream iU: � � Uy $ � Ux (4.130) 

The streamlines are horizontal straight lines (y � const), and the potential lines are ver-
tical (x � const), i.e., orthogonal to the streamlines, as expected.

Suppose that the z-axis were a sort of thin-pipe manifold through which fluid issued
at total rate Q uniformly along its length b. Looking at the xy plane, we would see a
cylindrical radial outflow or line source, as sketched in Fig. 4.12b. Plane polar coor-
dinates are appropriate (see Fig. 4.2), and there is no circumferential velocity. At any
radius r, the velocity is

�r � � � � �� � 0 � 	 �

where we have used the polar-coordinate forms of the stream function and the veloc-
ity potential. Integrating and again discarding the constants of integration, we obtain
the proper functions for this simple radial flow:

Line source or sink: � � m� $ � m ln r (4.131)

where m � Q/(2�b) is a constant, positive for a source, negative for a sink. As shown
in Fig. 4.12b, the streamlines are radial spokes (constant �), and the potential lines are
circles (constant r).

A (two-dimensional) line vortex is a purely circulating steady motion, �� � f(r) only,
�r � 0. This satisfies the continuity equation identically, as may be checked from Eq.
(4.12b). We may also note that a variety of velocity distributions ��(r) satisfy the 
�-momentum equation of a viscous fluid, Eq. (E.6). We may show, as a problem ex-
ercise, that only one function ��(r) is irrotational, i.e., curl V � 0, and that is �� � K/r,
where K is a constant. This is sometimes called a free vortex, for which the stream
function and velocity may be found:
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Fig. 4.13 Potential flow due to a
line source plus an equal line sink,
from Eq. (4.133). Solid lines are
streamlines; dashed lines are poten-
tial lines.

We may again integrate to determine the appropriate functions:

� � 	K ln r $ � K� (4.132) 

where K is a constant called the strength of the vortex. As shown in Fig. 4.12c, the
streamlines are circles (constant r), and the potential lines are radial spokes (constant
�). Note the similarity between Eqs. (4.131) and (4.132). A free vortex is a sort of re-
versed image of a source. The “bathtub vortex,” formed when water drains through a
bottom hole in a tank, is a good approximation to the free-vortex pattern.

Each of the three elementary flow patterns in Fig. 4.12 is an incompressible irrotational
flow and therefore satisfies both plane “potential flow” equations �2� � 0 and
�2$ � 0. Since these are linear partial differential equations, any sum of such basic
solutions is also a solution. Some of these composite solutions are quite interesting and
useful.

For example, consider a source �m at (x, y) � (	a, 0), combined with a sink of
equal strength 	m, placed at (�a, 0), as in Fig. 4.13. The resulting stream function is
simply the sum of the two. In cartesian coordinates,

� � �source � �sink � m tan	1 	 m tan	1

Similarly, the composite velocity potential is

$ � $source � $sink � m ln [(x � a)2 � y2] 	 m ln [(x 	 a)2 � y2]
1
�
2

1
�
2

y
�
x 	 a

y
�
x � a
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Fig. 4.14 Superposition of a sink
plus a vortex, Eq. (4.134), simu-
lates a tornado.

By using trigonometric and logarithmic identities, these may be simplified to

Source plus sink: � � 	m tan	1

$ � m ln 
(4.133)

These lines are plotted in Fig. 4.13 and are seen to be two families of orthogonal
circles, with the streamlines passing through the source and sink and the potential
lines encircling them. They are harmonic (laplacian) functions which are exactly
analogous in electromagnetic theory to the electric-current and electric-potential pat-
terns of a magnet with poles at (�a, 0).

An interesting flow pattern, approximated in nature, occurs by superposition of a sink
and a vortex, both centered at the origin. The composite stream function and velocity
potential are

Sink plus vortex: � � m� 	 K ln r $ � m ln r � K� (4.134) 

When plotted, these form two orthogonal families of logarithmic spirals, as shown in
Fig. 4.14. This is a fairly realistic simulation of a tornado (where the sink flow moves
up the z-axis into the atmosphere) or a rapidly draining bathtub vortex. At the center
of a real (viscous) vortex, where Eq. (4.134) predicts infinite velocity, the actual cir-
culating flow is highly rotational and approximates solid-body rotation �� ≈ Cr.

(x � a)2 � y2

��
(x 	 a)2 � y2

1
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2ay
��
x2 � y2 	 a2
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Uniform Stream Plus a Sink at
the Origin: The Rankine Half-
Body

If we superimpose a uniform x-directed stream against an isolated source, a half-body
shape appears. If the source is at the origin, the combined stream function is, in polar
coordinates,

Uniform stream plus source: � � Ur sin � � m� (4.135)

We can set this equal to various constants and plot the streamlines, as shown in Fig.
4.15. A curved, roughly elliptical, half-body shape appears, which separates the source
flow from the stream flow. The body shape, which is named after the Scottish engi-
neer W. J. M. Rankine (1820–1872), is formed by the particular streamlines � �
��m. The half-width of the body far downstream is �m/U. The upper surface may be
plotted from the relation

r � (4.136) 
m(� 	 �)
�
U sin �
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It is not a true ellipse. The nose of the body, which is a “stagnation” point where V �
0, stands at (x, y) � (	a, 0), where a � m/U. The streamline � � 0 also crosses this
point—recall that streamlines can cross only at a stagnation point.

The cartesian velocity components are found by differentiation:

u � � U � cos � � � 	 � sin � (4.137) 

Setting u � � � 0, we find a single stagnation point at � � 180° and r � m/U, or 
(x, y) � (	m/U, 0), as stated. The resultant velocity at any point is

V2 � u2 � �2 � U2�1 � � cos �� (4.138) 

where we have substituted m � Ua. If we evaluate the velocities along the upper sur-
face � � �m, we find a maximum value Us,max � 1.26U at � � 63°. This point is la-
beled in Fig. 4.15 and, by Bernoulli’s equation, is the point of minimum pressure on
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Fig. 4.15 Superposition of a source
plus a uniform stream forms a
Rankine half-body.



E4.10

the body surface. After this point, the surface flow decelerates, the pressure rises, and
the viscous layer grows thicker and more susceptible to “flow separation,” as we shall
see in Chap. 7.

EXAMPLE 4.10

The bottom of a river has a 4-m-high bump which approximates a Rankine half-body, as in
Fig. E4.10. The pressure at point B on the bottom is 130 kPa, and the river velocity is 
2.5 m/s. Use inviscid theory to estimate the water pressure at point A on the bump, which is 
2 m above point B.
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Solution

As in all inviscid theories, we ignore the low-velocity boundary layers which form on solid sur-
faces due to the no-slip condition. From Eq. (4.136) and Fig. 4.15, the downstream bump half-
height equals �a. Therefore, for our case, a � (4 m)/� � 1.27 m. We have to find the spot where
the bump height is half that much, h � 2 m � �a/2. From Eq. (4.136) we may compute

r � hA � � a or � � � 90°

Thus point A in Fig. E4.10 is directly above the (initially unknown) origin of coordinates (la-
beled O in Fig. E4.10) and is 1.27 m to the right of the nose of the bump. With r � �a/2 and 
� � �/2 known, we compute the velocity at point A from Eq. (4.138):

V2
A � U2�1 � � cos � � 1.405U2

or VA � 1.185U � 1.185(2.5 m/s) � 2.96 m/s 

For water at 20°C, take � � 998 kg/m2 and & � 9790 N/m3. Now, since the velocity and eleva-
tion are known at point A, we are in a position to use Bernoulli’s inviscid, incompressible-flow
equation (4.120) to estimate pA from the known properties at point B (on the same streamline):

� � zA � � � zB

or � � 2 m � � � 0

Solving, we find

pA � (13.60 	 2.45)(9790) � 109,200 Pa Ans.
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4.11 Some Illustrative
Incompressible Viscous Flows

If the approach velocity is uniform, this should be a pretty good approximation, since water is
relatively inviscid and its boundary layers are thin.

The inviscid flows of Sec. 4.10 do not satisfy the no-slip condition. They “slip” at the
wall but do not flow through the wall. To look at fully viscous no-slip conditions, we
must attack the complete Navier-Stokes equation (4.74), and the result is usually not
at all irrotational, nor does a velocity potential exist. We look here at three cases: (1)
flow between parallel plates due to a moving upper wall, (2) flow between parallel
plates due to pressure gradient, and (3) flow between concentric cylinders when the in-
ner one rotates. Other cases will be given as problem assignments or considered in
Chap. 6. Extensive solutions for viscous flows are discussed in Refs. 4 and 5.

Consider two-dimensional incompressible plane (�/�z � 0) viscous flow between par-
allel plates a distance 2h apart, as shown in Fig. 4.16. We assume that the plates are
very wide and very long, so that the flow is essentially axial, u ' 0 but � � w � 0.
The present case is Fig. 4.16a, where the upper plate moves at velocity V but there is
no pressure gradient. Neglect gravity effects. We learn from the continuity equation
(4.73) that

� � � 0 � � 0 � 0 or u � u(y) only 

Thus there is a single nonzero axial-velocity component which varies only across the
channel. The flow is said to be fully developed (far downstream of the entrance). Sub-
stitute u � u(y) into the x-component of the Navier-Stokes momentum equation (4.74)
for two-dimensional (x, y) flow:

��u � � � � 	 � �gx � �� � �

or �(0 � 0) � 0 � 0 � ��0 � � (4.139)
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Fig. 4.16 Incompressible viscous
flow between parallel plates: (a) no
pressure gradient, upper plate mov-
ing; (b) pressure gradient �p/�x
with both plates fixed.



Flow due to Pressure Gradient
between Two Fixed Plates

Most of the terms drop out, and the momentum equation simply reduces to

� 0 or u � C1y � C2

The two constants are found by applying the no-slip condition at the upper and lower
plates:

At y � �h: u � V � C1h � C2

At y � 	h: u � 0 � C1(	h) � C2

or C1 � and C2 �

Therefore the solution for this case (a), flow between plates with a moving upper wall, is

u � y � 	h � y � �h (4.140)

This is Couette flow due to a moving wall: a linear velocity profile with no-slip at each
wall, as anticipated and sketched in Fig. 4.16a. Note that the origin has been placed in
the center of the channel, for convenience in case (b) below.

What we have just presented is a rigorous derivation of the more informally dis-
cussed flow of Fig. 1.6 (where y and h were defined differently).

Case (b) is sketched in Fig. 4.16b. Both plates are fixed (V � 0), but the pressure varies
in the x direction. If � � w � 0, the continuity equation leads to the same conclusion
as case (a), namely, that u � u(y) only. The x-momentum equation (4.138) changes
only because the pressure is variable:

� � (4.141)

Also, since � � w � 0 and gravity is neglected, the y- and z-momentum equations 
lead to

� 0 and � 0 or p � p(x) only 

Thus the pressure gradient in Eq. (4.141) is the total and only gradient:

� � � const  0 (4.142)

Why did we add the fact that dp/dx is constant? Recall a useful conclusion from the
theory of separation of variables: If two quantities are equal and one varies only with
y and the other varies only with x, then they must both equal the same constant. Oth-
erwise they would not be independent of each other.

Why did we state that the constant is negative? Physically, the pressure must de-
crease in the flow direction in order to drive the flow against resisting wall shear stress.
Thus the velocity profile u(y) must have negative curvature everywhere, as anticipated
and sketched in Fig. 4.16b.
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The solution to Eq. (4.142) is accomplished by double integration:

u � � C1y � C2

The constants are found from the no-slip condition at each wall:

At y � �h: u � 0 or C1 � 0 and C2 � 	

Thus the solution to case (b), flow in a channel due to pressure gradient, is

u � 	 �1 	 � (4.143)

The flow forms a Poiseuille parabola of constant negative curvature. The maximum ve-
locity occurs at the centerline y � 0:

umax � 	 (4.144)

Other (laminar) flow parameters are computed in the following example.

EXAMPLE 4.11

For case (b) above, flow between parallel plates due to the pressure gradient, compute (a) the
wall shear stress, (b) the stream function, (c) the vorticity, (d) the velocity potential, and (e) the
average velocity.

Solution

All parameters can be computed from the basic solution, Eq. (4.143), by mathematical 
manipulation.

(a) The wall shear follows from the definition of a newtonian fluid, Eq. (4.37):

�w � �xy wall � �� � � �
y��h

� � ��	 ���
2

h

�

2

���1 	 �� �
y��h

� � h � ( Ans. (a)

The wall shear has the same magnitude at each wall, but by our sign convention of Fig. 4.3,
the upper wall has negative shear stress.

(b) Since the flow is plane, steady, and incompressible, a stream function exists:

u � � umax�1 	 � � � 	 � 0 

Integrating and setting � � 0 at the centerline for convenience, we obtain

� � umax�y 	 � Ans. (b)

At the walls, y � � h and � � � 2umaxh/3, respectively.
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Flow between Long Concentric
Cylinders

(c) In plane flow, there is only a single nonzero vorticity component:

�z � (curl V)z � 	 � y Ans. (c)

The vorticity is highest at the wall and is positive (counterclockwise) in the upper half and
negative (clockwise) in the lower half of the fluid. Viscous flows are typically full of vor-
ticity and are not at all irrotational.

(d) From part (c), the vorticity is finite. Therefore the flow is not irrotational, and the velocity
potential does not exist. Ans. (d)

(e) The average velocity is defined as Vav � Q/A, where Q � � u dA over the cross section. For
our particular distribution u(y) from Eq. (4.143), we obtain

Vav � � u dA � ��h

	h
umax�1 	 �b dy � umax Ans. (e)

In plane Poiseuille flow between parallel plates, the average velocity is two-thirds of the
maximum (or centerline) value. This result could also have been obtained from the stream
function derived in part (b). From Eq. (4.95),

Qchannel � �upper 	 �lower � 	 �	 � � umaxh per unit width

whence Vav � Q/Ab�1 � (4umaxh/3)/(2h) � 2umax/3, the same result.
This example illustrates a statement made earlier: Knowledge of the velocity vector V

[as in Eq. (4.143)] is essentially the solution to a fluid-mechanics problem, since all other
flow properties can then be calculated.

Consider a fluid of constant (�, �) between two concentric cylinders, as in Fig. 4.17.
There is no axial motion or end effect �z � �/�z � 0. Let the inner cylinder rotate at
angular velocity �i. Let the outer cylinder be fixed. There is circular symmetry, so the
velocity does not vary with � and varies only with r.
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Fixed

Ω i

ro

vθ

r
ri

Fluid: ρ, µ
Fig. 4.17 Coordinate system for
incompressible viscous flow be-
tween a fixed outer cylinder and a
steadily rotating inner cylinder.



Instability of Rotating Inner
Cylinder Flow

The continuity equation for this problem is Eq. (D.2):

(r�r) � � 0 � (r�r) or r�r � const

Note that �� does not vary with �. Since �r � 0 at both the inner and outer cylinders,
it follows that �r � 0 everywhere and the motion can only be purely circumferential,
�� � ��(r). The �-momentum equation (D.6) becomes

�(V � �)�� � � 	 � �g� � ���2�� 	 �
For the conditions of the present problem, all terms are zero except the last. Therefore
the basic differential equation for flow between rotating cylinders is

�2�� � �r � � (4.145)

This is a linear second-order ordinary differential equation with the solution

�� � C1r �

The constants are found by the no-slip condition at the inner and outer cylinders:

Outer, at r � ro: �� � 0 � C1ro �

Inner, at r � ri: �� � �iri � C1ri �

The final solution for the velocity distribution is

Rotating inner cylinder: �� � �iri (4.146) 

The velocity profile closely resembles the sketch in Fig. 4.17. Variations of this case,
such as a rotating outer cylinder, are given in the problem assignments.

The classic Couette-flow solution11 of Eq. (4.146) describes a physically satisfying con-
cave, two-dimensional, laminar-flow velocity profile as in Fig. 4.17. The solution is
mathematically exact for an incompressible fluid. However, it becomes unstable at a
relatively low rate of rotation of the inner cylinder, as shown in 1923 in a classic pa-
per by G. I. Taylor [17]. At a critical value of what is now called the Taylor number,
denoted Ta,

Tacrit � � 1700 (4.147) 

the plane flow of Fig. 4.17 vanishes and is replaced by a laminar three-dimensional
flow pattern consisting of rows of nearly square alternating toroidal vortices. An ex-
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11Named after M. Couette, whose pioneering paper in 1890 established rotating cylinders as a method,
still used today, for measuring the viscosity of fluids.



perimental demonstration of toroidal “Taylor vortices” is shown in Fig. 4.18a, mea-
sured at Ta � 1.16 Tacrit by Koschmieder [18]. At higher Taylor numbers, the vortices
also develop a circumferential periodicity but are still laminar, as illustrated in Fig.
4.18b. At still higher Ta, turbulence ensues. This interesting instability reminds us that
the Navier-Stokes equations, being nonlinear, do admit to multiple (nonunique) lami-
nar solutions in addition to the usual instabilities associated with turbulence and chaotic
dynamic systems.

This chapter complements Chap. 3 by using an infinitesimal control volume to derive
the basic partial differential equations of mass, momentum, and energy for a fluid.
These equations, together with thermodynamic state relations for the fluid and appro-
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(a)

(b)

Fig. 4.18 Experimental verification
of the instability of flow between a
fixed outer and a rotating inner
cylinder. (a) Toroidal Taylor vor-
tices exist at 1.16 times the critical
speed; (b) at 8.5 times the critical
speed, the vortices are doubly peri-
odic. (After Koschmieder, Ref. 18.)
This instability does not occur if
only the outer cylinder rotates.

Summary



Problems
Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equation Solver (EES), while problems labeled with a
computer disk may require the use of a computer. The standard
end-of-chapter problems 4.1 to 4.91 (categorized in the problem
list below) are followed by word problems W4.1 to W4.10, fun-
damentals of engineering exam problems FE4.1 to FE4.3, and com-
prehensive problem C4.1.

Problem distribution

Section Topic Problems

4.1 The acceleration of a fluid 4.1–4.8
4.2 The continuity equation 4.9–4.25
4.3 Linear momentum: Navier-Stokes 4.26–4.37
4.4 Angular momentum: couple stresses 4.38
4.5 The differential energy equation 4.39–4.42
4.6 Boundary conditions 4.43–4.46
4.7 Stream function 4.47–4.55
4.8 Vorticity, irrotationality 4.56–4.60
4.9 Velocity potential 4.61–4.67
4.10 Plane potential flows 4.68–4.78
4.11 Incompressible viscous flows 4.79–4.91

P4.1 An idealized velocity field is given by the formula

V � 4txi 	 2t2yj � 4xzk

Is this flow field steady or unsteady? Is it two- or three-di-
mensional? At the point (x, y, z) � (	1, 1, 0), compute (a)

the acceleration vector and (b) any unit vector normal to the
acceleration.

P4.2 Flow through the converging nozzle in Fig. P4.2 can be ap-
proximated by the one-dimensional velocity distribution

u � V0�1 � � � � 0 w � 0 

(a) Find a general expression for the fluid acceleration in
the nozzle. (b) For the specific case V0 � 10 ft/s and L �
6 in, compute the acceleration, in g’s, at the entrance and at
the exit.

2x
�
L
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priate boundary conditions, in principle can be solved for the complete flow field in
any given fluid-mechanics problem. Except for Chap. 9, in most of the problems to be
studied here an incompressible fluid with constant viscosity is assumed.

In addition to deriving the basic equations of mass, momentum, and energy, this
chapter introduced some supplementary ideas—the stream function, vorticity, irrota-
tionality, and the velocity potential—which will be useful in coming chapters, espe-
cially Chap. 8. Temperature and density variations will be neglected except in Chap.
9, where compressibility is studied.

This chapter ended by discussing a few classical solutions for inviscid flows (uni-
form stream, source, sink, vortex, half-body) and for viscous flows (Couette flow due
to moving walls and Poiseuille flow due to pressure gradient). Whole books [11, 13]
are written on the basic equations of fluid mechanics. Whole books [4, 5, 15] are writ-
ten on classical solutions to fluid-flow problems. Reference 12 contains 360 solved
problems which relate fluid mechanics to the whole of continuum mechanics. This does
not mean that all problems can be readily solved mathematically, even with the mod-
ern digital-computer codes now available. Often the geometry and boundary conditions
are so complex that experimentation (Chap. 5) is a necessity.

V0
u = 3V0

x = L
x

x = 0P4.2

P4.3 A two-dimensional velocity field is given by

V � (x2 	 y2 � x)i 	 (2xy � y)j

in arbitrary units. At (x, y) � (1, 2), compute (a) the accel-
erations ax and ay, (b) the velocity component in the direc-
tion � � 40°, (c) the direction of maximum velocity, and (d)
the direction of maximum acceleration.



P4.4 Suppose that the temperature field T � 4x2 	 3y3, in arbi-
trary units, is associated with the velocity field of Prob. 4.3.
Compute the rate of change dT/dt at (x, y) � (2, 1).

P4.5 The velocity field near a stagnation point (see Example 1.10)
may be written in the form

u � � � 	 U0 and L are constants 

(a) Show that the acceleration vector is purely radial. (b)
For the particular case L � 1.5 m, if the acceleration at (x,
y) � (1 m, 1 m) is 25 m/s2, what is the value of U0?

P4.6 Assume that flow in the converging nozzle of Fig. P4.2 has
the form V � V0[1 � (2x)/L]i. Compute (a) the fluid accel-
eration at x � L and (b) the time required for a fluid parti-
cle to travel from x � 0 to x � L.

P4.7 Consider a sphere of radius R immersed in a uniform stream
U0, as shown in Fig. P4.7. According to the theory of Chap.
8, the fluid velocity along streamline AB is given by

V � ui � U0�1 � �i

Find (a) the position of maximum fluid acceleration along
AB and (b) the time required for a fluid particle to travel
from A to B.

R3

�
x3

U0y
�

L
U0x
�

L

the time for which the fluid acceleration at x � L is zero.
Why does the fluid acceleration become negative after con-
dition (b)?

P4.9 A velocity field is given by V � (3y2 	 3x2)i � Cxyj � 0k.
Determine the value of the constant C if the flow is to be
(a) incompressible and (b) irrotational.

P4.10 Write the special cases of the equation of continuity for (a)
steady compressible flow in the yz plane, (b) unsteady in-
compressible flow in the xz plane, (c) unsteady compress-
ible flow in the y direction only, (d) steady compressible
flow in plane polar coordinates.

P4.11 Derive Eq. (4.12b) for cylindrical coordinates by consider-
ing the flux of an incompressible fluid in and out of the el-
emental control volume in Fig. 4.2.

P4.12 Spherical polar coordinates (r, �, $) are defined in Fig.
P4.12. The cartesian transformations are

x � r sin � cos $

y � r sin � sin $

z � r cos �
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x = 0 x = L

u (x, t)

U0

A

x = – 4R

B

y

x
Sphere

R

P4.7

P4.8 When a valve is opened, fluid flows in the expansion duct
of Fig. 4.8 according to the approximation

V � iU�1 	 � tanh 

Find (a) the fluid acceleration at (x, t) � (L, L/U) and (b)
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�
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υφ

r

r

υ

P4.12

The cartesian incompressible continuity relation (4.12a) can
be transformed to the spherical polar form

(r2�r) � (�� sin �) � (�$) � 0

What is the most general form of �r when the flow is purely
radial, that is, �� and �$ are zero?

P4.13 A two-dimensional velocity field is given by

u � 	 � �

where K is constant. Does this field satisfy incompressible

Kx
�
x2 � y2
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�
x2 � y2
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continuity? Transform these velocities to polar components
�r and ��. What might the flow represent?

P4.14 For incompressible polar-coordinate flow, what is the most
general form of a purely circulatory motion, �� � ��(r, �, t)
and �r � 0, which satisfies continuity?

P4.15 What is the most general form of a purely radial polar-
coordinate incompressible-flow pattern, �r � �r(r, �, t) and
�� � 0, which satisfies continuity?

P4.16 An incompressible steady-flow pattern is given by u � x3 �
2z2 and w � y3 	 2yz. What is the most general form of the
third component, �(x, y, z), which satisfies continuity?

P4.17 A reasonable approximation for the two-dimensional in-
compressible laminar boundary layer on the flat surface in
Fig. P4.17 is

u � U � 	 � for y � 
 where 
 � Cx1/2, C � const

(a) Assuming a no-slip condition at the wall, find an ex-
pression for the velocity component �(x, y) for y � 
. (b)
Then find the maximum value of � at the station x � 1 m,
for the particular case of airflow, when U � 3 m/s and 
 �
1.1 cm.

y2

�

2

2y
�



P4.20 A two-dimensional incompressible velocity field has u �
K(1 	 e	ay), for x � L and 0 � y � �. What is the most
general form of �(x, y) for which continuity is satisfied and
� � �0 at y � 0? What are the proper dimensions for con-
stants K and a?

P4.21 Air flows under steady, approximately one-dimensional
conditions through the conical nozzle in Fig. P4.21. If the
speed of sound is approximately 340 m/s, what is the min-
imum nozzle-diameter ratio De /D0 for which we can safely
neglect compressibility effects if V0 � (a) 10 m/s and (b)
30 m/s?
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D0

De

V0 Ve

P4.21

V = constant

x = 0 x = L (t)
x

 (t)
u (x, t)

ρ

P4.18

U
y

x

u (x, y)

U

Layer thickness    (x)

0

U = constant

δ

u (x, y)

P4.17

P4.18 A piston compresses gas in a cylinder by moving at constant
speed �, as in Fig. P4.18. Let the gas density and length at 
t � 0 be �0 and L0, respectively. Let the gas velocity vary lin-
early from u � V at the piston face to u � 0 at x � L. If the
gas density varies only with time, find an expression for �(t).

P4.19 An incompressible flow field has the cylindrical components
�� � Cr, �z � K(R2 	 r2), �r � 0, where C and K are con-
stants and r � R, z � L. Does this flow satisfy continuity?
What might it represent physically?

P4.22 Air at a certain temperature and pressure flows through a
contracting nozzle of length L whose area decreases linearly,
A � A0[1 	 x/(2L)]. The air average velocity increases
nearly linearly from 76 m/s at x � 0 to 167 m/s at x � L. If
the density at x � 0 is 2.0 kg/m3, estimate the density at 
x � L.

P4.23 A tank volume � contains gas at conditions (�0, p0, T0). At
time t � 0 it is punctured by a small hole of area A. Ac-
cording to the theory of Chap. 9, the mass flow out of such
a hole is approximately proportional to A and to the tank
pressure. If the tank temperature is assumed constant and
the gas is ideal, find an expression for the variation of den-
sity within the tank.

*P4.24 Reconsider Fig. P4.17 in the following general way. It is
known that the boundary layer thickness 
(x) increases mo-
notonically and that there is no slip at the wall (y � 0). Fur-
ther, u(x, y) merges smoothly with the outer stream flow,
where u � U � constant outside the layer. Use these facts
to prove that (a) the component �(x, y) is positive every-
where within the layer, (b) � increases parabolically with y
very near the wall, and (c) � is a maximum at y � 
.

P4.25 An incompressible flow in polar coordinates is given by

�r � K cos ��1 	 �
�� � 	K sin ��1 � �

Does this field satisfy continuity? For consistency, what

b
�
r2

b
�
r2



should the dimensions of constants K and b be? Sketch the
surface where �r � 0 and interpret.

*P4.26 Curvilinear, or streamline, coordinates are defined in Fig.
P4.26, where n is normal to the streamline in the plane of
the radius of curvature R. Show that Euler’s frictionless mo-
mentum equation (4.36) in streamline coordinates becomes

� V � 	 � gs (1)

	V 	 � 	 � gn (2)

Further show that the integral of Eq. (1) with respect to s is
none other than our old friend Bernoulli’s equation (3.76).
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Is this also the position of maximum fluid deceleration?
Evaluate the maximum viscous normal stress if the fluid is
SAE 30 oil at 20°C, with U � 2 m/s and a � 6 cm.

P4.32 The answer to Prob. 4.14 is �� � f(r) only. Do not reveal
this to your friends if they are still working on Prob. 4.14.
Show that this flow field is an exact solution to the Navier-
Stokes equations (4.38) for only two special cases of the
function f(r). Neglect gravity. Interpret these two cases phys-
ically.

P4.33 From Prob. 4.15 the purely radial polar-coordinate flow
which satisfies continuity is �r � f(�)/r, where f is an arbi-
trary function. Determine what particular forms of f(�) sat-
isfy the full Navier-Stokes equations in polar-coordinate
form from Eqs. (D.5) and (D.6).

P4.34 The fully developed laminar-pipe-flow solution of Prob.
3.53, �z � umax(1 	 r2/R2), �� � 0, �r � 0, is an exact so-
lution to the cylindrical Navier-Stokes equations (App. D).
Neglecting gravity, compute the pressure distribution in the
pipe p(r, z) and the shear-stress distribution �(r, z), using R,
umax, and � as parameters. Why does the maximum shear
occur at the wall? Why does the density not appear as a pa-
rameter?

P4.35 From the Navier-Stokes equations for incompressible flow
in polar coordinates (App. D for cylindrical coordinates),
find the most general case of purely circulating motion ��(r),
�r � �z � 0, for flow with no slip between two fixed con-
centric cylinders, as in Fig. P4.35.
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P4.26

P4.27 A frictionless, incompressible steady-flow field is given by

V � 2xyi 	 y2j

in arbitrary units. Let the density be �0 � constant and ne-
glect gravity. Find an expression for the pressure gradient
in the x direction.

P4.28 If z is “up,” what are the conditions on constants a and b
for which the velocity field u � ay, � � bx, w � 0 is an ex-
act solution to the continuity and Navier-Stokes equations
for incompressible flow?

P4.29 Consider a steady, two-dimensional, incompressible flow of
a newtonian fluid in which the velocity field is known, i.e.,
u � 	2xy, � � y2 	 x2, w � 0. (a) Does this flow satisfy
conservation of mass? (b) Find the pressure field, p(x, y) if
the pressure at the point (x � 0, y � 0) is equal to pa.

P4.30 Show that the two-dimensional flow field of Example 1.10
is an exact solution to the incompressible Navier-Stokes
equations (4.38). Neglecting gravity, compute the pressure
field p(x, y) and relate it to the absolute velocity V2 � u2 �
�2. Interpret the result.

P4.31 According to potential theory (Chap. 8) for the flow ap-
proaching a rounded two-dimensional body, as in Fig. P4.31,
the velocity approaching the stagnation point is given by 
u � U(1 	 a2/x2), where a is the nose radius and U is the
velocity far upstream. Compute the value and position of
the maximum viscous normal stress along this streamline.

EES



P4.36 A constant-thickness film of viscous liquid flows in lami-
nar motion down a plate inclined at angle �, as in Fig. P4.36.
The velocity profile is

u � Cy(2h 	 y) � � w � 0 

Find the constant C in terms of the specific weight and vis-
cosity and the angle �. Find the volume flux Q per unit width
in terms of these parameters.

u � � � w � 0 

If the wall temperature is Tw at both walls, use the incom-
pressible-flow energy equation (4.75) to solve for the tem-
perature distribution T(y) between the walls for steady flow.

*P4.41 The approximate velocity profile in Prob. 3.18 and Fig. P3.18
for steady laminar flow through a duct, was suggested as

u � umax �1 	 ��1 	 �
With � � w � 0, it satisfied the no-slip condition and gave
a reasonable volume-flow estimate (which was the point of
Prob. 3.18). Show, however, that it does not satsify the x-
momentum Navier-Stokes equation for duct flow with con-
stant pressure gradient �p/�x  0. For extra credit, explain
briefly how the actual exact solution to this problem is ob-
tained (see, for example, Ref. 5, pp. 120–121).

P4.42 In duct-flow problems with heat transfer, one often defines
an average fluid temperature. Consider the duct flow of Fig.
P4.40 of width b into the paper. Using a control-volume in-
tegral analysis with constant density and specific heat, de-
rive an expression for the temperature arising if the entire
duct flow poured into a bucket and was stirred uniformly.
Assume arbitrary u(y) and T(y). This average is called the
cup-mixing temperature of the flow.

P4.43 For the draining liquid film of Fig. P4.36, what are the ap-
propriate boundary conditions (a) at the bottom y � 0 and
(b) at the surface y � h?

P4.44 Suppose that we wish to analyze the sudden pipe-expansion
flow of Fig. P3.59, using the full continuity and Navier-
Stokes equations. What are the proper boundary conditions
to handle this problem?

P4.45 Suppose that we wish to analyze the U-tube oscillation flow
of Fig. P3.96, using the full continuity and Navier-Stokes
equations. What are the proper boundary conditions to han-
dle this problem?

P4.46 Fluid from a large reservoir at temperature T0 flows into a
circular pipe of radius R. The pipe walls are wound with an
electric-resistance coil which delivers heat to the fluid at a
rate qw (energy per unit wall area). If we wish to analyze

z2

�
h2

y2

�
b2

4umaxy(h 	 y)
��

h2
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*P4.37 A viscous liquid of constant � and � falls due to gravity be-
tween two plates a distance 2h apart, as in Fig. P4.37. The
flow is fully developed, with a single velocity component
w � w(x). There are no applied pressure gradients, only
gravity. Solve the Navier-Stokes equation for the velocity
profile between the plates.

P4.38 Reconsider the angular-momentum balance of Fig. 4.5 by
adding a concentrated body couple Cz about the z axis [6].
Determine a relation between the body couple and shear
stress for equilibrium. What are the proper dimensions for
Cz? (Body couples are important in continuous media with
microstructure, such as granular materials.)

P4.39 Problems involving viscous dissipation of energy are depen-
dent on viscosity �, thermal conductivity k, stream velocity U0,
and stream temperature T0. Group these parameters into the di-
mensionless Brinkman number, which is proportional to �.

P4.40 As mentioned in Sec. 4.11, the velocity profile for laminar
flow between two plates, as in Fig. P4.40, is



this problem by using the full continuity, Navier-Stokes, and
energy equations, what are the proper boundary conditions
for the analysis?

P4.47 A two-dimensional incompressible flow is given by the ve-
locity field V � 3yi � 2xj, in arbitrary units. Does this flow
satisfy continuity? If so, find the stream function �(x, y)
and plot a few streamlines, with arrows.

P4.48 Determine the incompressible two-dimensional stream
function �(x, y) which represents the flow field given in Ex-
ample 1.10.

P4.49 Investigate the stream function � � K(x2 	 y2), K � con-
stant. Plot the streamlines in the full xy plane, find any stag-
nation points, and interpret what the flow could represent.

P4.50 Investigate the polar-coordinate stream function � �
Kr1/2 sin �12��, K � constant. Plot the streamlines in the full
xy plane, find any stagnation points, and interpret.

P4.51 Investigate the polar-coordinate stream function � �
Kr2/3 sin (2�/3), K � constant. Plot the streamlines in all ex-
cept the bottom right quadrant, and interpret.

P4.52 A two-dimensional, incompressible, frictionless fluid is
guided by wedge-shaped walls into a small slot at the ori-
gin, as in Fig. P4.52. The width into the paper is b, and the
volume flow rate is Q. At any given distance r from the slot,
the flow is radial inward, with constant velocity. Find an ex-
pression for the polar-coordinate stream function of this flow.

(2L, 0, 0), (2L, 0, b), (0, L, b), and (0, L, 0). Show the di-
rection of Q.

*P4.55 In spherical polar coordinates, as in Fig. P4.12, the flow is
called axisymmetric if �$ 	 0 and �/�$ 	 0, so that �r �
�r(r, �) and �� � ��(r, �). Show that a stream function �(r,
�) exists for this case and is given by

�r � �� � 	

This is called the Stokes stream function [5, p. 204].
P4.56 Investigate the velocity potential $ � Kxy, K � constant.

Sketch the potential lines in the full xy plane, find any stag-
nation points, and sketch in by eye the orthogonal stream-
lines. What could the flow represent?

P4.57 Determine the incompressible two-dimensional velocity po-
tential $(x, y) which represents the flow field given in Ex-
ample 1.10. Sketch a few potential lines and streamlines.

P4.58 Show that the incompressible velocity potential in plane po-
lar coordinates $(r, �) is such that

�r � �� �

Further show that the angular velocity about the z-axis in
such a flow would be given by

2�z � (r��) 	 (�r) 

Finally show that $ as defined above satisfies Laplace’s
equation in polar coordinates for incompressible flow.

P4.59 Consider the simple flow defined by V � xi 	 yj, in arbi-
trary units. At t � 0, consider the rectangular fluid element
defined by the lines x � 2, x � 3 and y � 2, y � 3. Deter-
mine, and draw to scale, the location of this fluid element
at t � 0.5 unit. Relate this new element shape to whether
the flow is irrotational or incompressible.

P4.60 Liquid drains from a small hole in a tank, as shown in Fig.
P4.60, such that the velocity field set up is given by �r � 0,
�z � 0, �� � �R2/r, where z � H is the depth of the water  
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P4.53 For the fully developed laminar-pipe-flow solution of Prob.
4.34, find the axisymmetric stream function �(r, z). Use this
result to determine the average velocity V � Q/A in the pipe
as a ratio of umax.

P4.54 An incompressible stream function is defined by

�(x, y) � (3x2y 	 y3) 

where U and L are (positive) constants. Where in this chap-
ter are the streamlines of this flow plotted? Use this stream
function to find the volume flow Q passing through the rec-
tangular surface whose corners are defined by (x, y, z) �

U
�
L2



far from the hole. Is this flow pattern rotational or irrota-
tional? Find the depth zC of the water at the radius r � R.

P4.61 Investigate the polar-coordinate velocity potential $ �
Kr1/2 cos �

1
2

��, K � constant. Plot the potential lines in the
full xy plane, sketch in by eye the orthogonal streamlines,
and interpret.

P4.62 Show that the linear Couette flow between plates in Fig.
1.6 has a stream function but no velocity potential. Why
is this so?

P4.63 Find the two-dimensional velocity potential $(r, �) for the
polar-coordinate flow pattern �r � Q/r, �� � K/r, where Q
and K are constants.

P4.64 Show that the velocity potential $(r, z) in axisymmetric
cylindrical coordinates (see Fig. 4.2) is defined such that

�r � �z �

Further show that for incompressible flow this potential
satisfies Laplace’s equation in (r, z) coordinates.

P4.65 A two-dimensional incompressible flow is defined by

u � 	 � �

where K � constant. Is this flow irrotational? If so, find
its velocity potential, sketch a few potential lines, and in-
terpret the flow pattern.

P4.66 A plane polar-coordinate velocity potential is defined by

$ � K � const

Find the stream function for this flow, sketch some stream-
lines and potential lines, and interpret the flow pattern.

P4.67 A stream function for a plane, irrotational, polar-coordi-
nate flow is

� � C� 	 K ln r C and K � const

Find the velocity potential for this flow. Sketch some stream-
lines and potential lines, and interpret the flow pattern.

P4.68 Find the stream function and plot some streamlines for the
combination of a line source m at (x, y) � (0, �a) and an
equal line source placed at (0, 	a).

P4.69 Find the stream function and plot some streamlines for the
combination of a counterclockwise line vortex K at (x, y)
� (�a, 0) and an equal line vortex placed at (	a, 0).

*P4.70 Superposition of a source of strength m at (	a, 0) and a
sink (source of strength 	m) at (a, 0) was discussed briefly
in this chapter, where it was shown that the velocity po-
tential function is

$ � m 
 ln 
(x � a)2 � y2

��
(x 	 a)2 � y2

1
�
2

K cos �
�

r

Kx
�
x2 � y2

Ky
�
x2 � y2

�$
�
�z

�$
�
�r

A doublet is formed in the limit as a goes to zero (the source
and sink come together) while at the same time their
strengths m and 	m go to infinity and minus infinity, re-
spectively, with the product a 
 m remaining constant. (a)
Find the limiting value of velocity potential for the doublet.
Hint: Expand the natural logarithm as an infinite series of
the form

ln � 2�# � � 


�
as # goes to zero. (b) Rewrite your result for $doublet in cylin-
drical coordinates.

P4.71 Find the stream function and plot some streamlines for the
combination of a counterclockwise line vortex K at (x, y) �
(�a, 0) and an opposite (clockwise) line vortex placed at
(	a, 0).

P4.72 A coastal power plant takes in cooling water through a ver-
tical perforated manifold, as in Fig. P4.72. The total volume
flow intake is 110 m3/s. Currents of 25 cm/s flow past the
manifold, as shown. Estimate (a) how far downstream and
(b) how far normal to the paper the effects of the intake are
felt in the ambient 8-m-deep waters.

#3

�
3

1 � #
�
1 	 #
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P4.73 A two-dimensional Rankine half-body, 8 cm thick, is placed
in a water tunnel at 20°C. The water pressure far upstream
along the body centerline is 120 kPa. What is the nose ra-
dius of the half-body? At what tunnel flow velocity will cav-
itation bubbles begin to form on the surface of the body?

P4.74 Find the stream function and plot some streamlines for the
combination of a uniform stream iU and a clockwise line
vortex 	K at the origin. Are there any stagnation points in
the flow field?

*P4.75 Find the stream function and plot some streamlines for the
combination of a line source 2m at (x, y) � (�a, 0) and a
line source m at (	a, 0). Are there any stagnation points in
the flow field?

P4.76 Air flows at 1.2 m/s along a flat surface when it encounters
a jet of air issuing from the horizontal wall at point A, as in
Fig. 4.76. The jet volume flow is 0.4 m3/s per unit depth
into the paper. If the jet is approximated as an inviscid line
source, (a) locate the stagnation point S on the wall. (b) How
far vertically will the jet flow extend into the stream?



P4.77 A tornado is simulated by a line sink m � 	1000 m2/s plus
a line vortex K � �1600 m2/s. Find the angle between any
streamline and a radial line, and show that it is independent
of both r and �. If this tornado forms in sea-level standard
air, at what radius will the local pressure be equivalent to
29 inHg?

P4.78 The solution to Prob. 4.68 (do not reveal!) can represent a
line source m at (0, �a) near a horizontal wall (y � 0). [The
other source at (0, 	a) represents an “image” to create the
wall.] Find (a) the magnitude of the maxinun flow velocity
along the wall and (b) the point of minimum pressure along
the wall. Hint: Use Bernoulli’s equation.

*P4.79 Study the combined effect of the two viscous flows in Fig.
4.16. That is, find u(y) when the upper plate moves at speed
V and there is also a constant pressure gradient (dp/dx). Is
superposition possible? If so, explain why. Plot representa-
tive velocity profiles for (a) zero, (b) positive, and (c) neg-
ative pressure gradients for the same upper-wall speed V.

*P4.80 Oil, of density � and viscosity �, drains steadily down the
side of a vertical plate, as in Fig. P4.80. After a develop-
ment region near the top of the plate, the oil film will be-
come independent of z and of constant thickness 
. Assume
that w � w(x) only and that the atmosphere offers no shear
resistance to the surface of the film. (a) Solve the Navier-
Stokes equation for w(x), and sketch its approximate shape.
(b) Suppose that film thickness 
 and the slope of the ve-
locity profile at the wall [�w/�x]wall are measured with a
laser-Doppler anemometer (Chap. 6). Find an expression for
oil viscosity � as a function of (�, 
, g, [�w/�x]wall).

P4.81 Modify the analysis of Fig. 4.17 to find the velocity u� when
the inner cylinder is fixed and the outer cylinder rotates at
angular velocity �0. May this solution be added to Eq.
(4.146) to represent the flow caused when both inner and
outer cylinders rotate? Explain your conclusion.

*P4.82 A solid circular cylinder of radius R rotates at angular ve-
locity � in a viscous incompressible fluid which is at rest
far from the cylinder, as in Fig. P4.82. Make simplifying
assumptions and derive the governing differential equation
and boundary conditions for the velocity field �� in the fluid.
Do not solve unless you are obsessed with this problem.
What is the steady-state flow field for this problem?
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P4.83 The flow pattern in bearing lubrication can be illustrated by
Fig. P4.83, where a viscous oil (�, �) is forced into the gap
h(x) between a fixed slipper block and a wall moving at ve-
locity U. If the gap is thin, h �L, it can be shown that the
pressure and velocity distributions are of the form p � p(x),
u � u(y), � � w � 0. Neglecting gravity, reduce the Navier-
Stokes equations (4.38) to a single differential equation for
u(y). What are the proper boundary conditions? Integrate and
show that

u � (y2 	 yh) � U�1 	 �
where h � h(x) may be an arbitrary slowly varying gap
width. (For further information on lubrication theory, see
Ref. 16.)
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*P4.84 Consider a viscous film of liquid draining uniformly down
the side of a vertical rod of radius a, as in Fig. P4.84. At
some distance down the rod the film will approach a ter-
minal or fully developed draining flow of constant outer ra-
dius b, with �z � �z(r), �� � �r � 0. Assume that the at-
mosphere offers no shear resistance to the film motion.
Derive a differential equation for �z, state the proper bound-
ary conditions, and solve for the film velocity distribution.
How does the film radius b relate to the total film volume
flow rate Q?

P4.87 Suppose in Fig. 4.17 that neither cylinder is rotating. The
fluid has constant (�, �, k, cp). What, then, is the steady-
flow solution for ��(r)? For this condition, suppose that the
inner and outer cylinder surface temperatures are Ti and To,
respectively. Simplify the differential energy equation ap-
propriately for this problem, state the boundary conditions,
and find the temperature distribution in the fluid. Neglect
gravity.

P4.88 The viscous oil in Fig. P4.88 is set into steady motion by a
concentric inner cylinder moving axially at velocity U in-
side a fixed outer cylinder. Assuming constant pressure and
density and a purely axial fluid motion, solve Eqs. (4.38)
for the fluid velocity distribution �z(r). What are the proper
boundary conditions?
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P4.85 A flat plate of essentially infinite width and breadth oscil-
lates sinusoidally in its own plane beneath a viscous fluid,
as in Fig. P4.85. The fluid is at rest far above the plate. Mak-
ing as many simplifying assumptions as you can, set up the
governing differential equation and boundary conditions for
finding the velocity field u in the fluid. Do not solve (if you
can solve it immediately, you might be able to get exempted
from the balance of this course with credit).

x

y
Incompressible

viscous
fluid u (x, y, z, t)?

Plate velocity:

U0 sin ω t P4.85

P4.86 SAE 10 oil at 20°C flows between parallel plates 8 cm apart,
as in Fig. P4.86. A mercury manometer, with wall pressure
taps 1 m apart, registers a 6-cm height, as shown. Estimate
the flow rate of oil for this condition.

SAE 10
oil Q 8 mm

6 cm
Mercury

1 mP4.86

Fixed outer cylinder

U

Oil:ρ, µ vz

b vz(r)r

a

P4.88

*P4.89 Modify Prob. 4.88 so that the outer cylinder also moves to
the left at constant speed V. Find the velocity distribution
�z(r). For what ratio V/U will the wall shear stress be the
same at both cylinder surfaces?

P4.90 A 5-cm-diameter rod is pulled steadily at 2 m/s through a
fixed cylinder whose clearance is filled with SAE 10 oil at
20°C, as in Fig. P4.90. Estimate the (steady) force required
to pull the inner rod.

*P4.91 Consider two-dimensional, incompressible, steady Couette
flow (flow between two infinite parallel plates with the up-
per plate moving at constant speed and the lower plate sta-
tionary, as in Fig. 4.16a). Let the fluid be nonnewtonian,
with its viscous stresses given by

EES



�xx � a� �
c

�yy � a� �
c

�zz � a� �
c

�xy � �yx � �
1
2

�a� � �
c

�xz � �zx � �
1
2

�a� � �
c

�yz � �zy � �
1
2

�a� � �
c

where a and c are constants of the fluid. Make all the same
assumptions as in the derivation of Eq. (4.140). (a) Find the
velocity profile u(y). (b) How does the velocity profile for
this case compare to that of a newtonian fluid?
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Word Problems

W4.1 The total acceleration of a fluid particle is given by Eq.
(4.2) in the eulerian system, where V is a known function
of space and time. Explain how we might evaluate parti-
cle acceleration in the lagrangian frame, where particle po-
sition r is a known function of time and initial position,
r � fcn(r0, t). Can you give an illustrative example?

W4.2 Is it true that the continuity relation, Eq. (4.6), is valid for
both viscous and inviscid, newtonian and nonnewtonian,
compressible and incompressible flow? If so, are there any
limitations on this equation?

W4.3 Consider a CD compact disk rotating at angular velocity
�. Does it have vorticity in the sense of this chapter? If
so, how much vorticity?

W4.4 How much acceleration can fluids endure? Are fluids like
astronauts, who feel that 5g is severe? Perhaps use the flow
pattern of Example 4.8, at r � R, to make some estimates
of fluid-acceleration magnitudes.

W4.5 State the conditions (there are more than one) under which
the analysis of temperature distribution in a flow field can
be completely uncoupled, so that a separate analysis for
velocity and pressure is possible. Can we do this for both
laminar and turbulent flow?

W4.6 Consider liquid flow over a dam or weir. How might the
boundary conditions and the flow pattern change when we
compare water flow over a large prototype to SAE 30 oil
flow over a tiny scale model?

W4.7 What is the difference between the stream function � and
our method of finding the streamlines from Sec. 1.9? Or
are they essentially the same?

W4.8 Under what conditions do both the stream function � and
the velocity potential $ exist for a flow field? When does
one exist but not the other?

W4.9 How might the remarkable three-dimensional Taylor in-
stability of Fig. 4.18 be predicted? Discuss a general pro-
cedure for examining the stability of a given flow pattern.

W4.10 Consider an irrotational, incompressible, axisymmetric
(�/�� � 0) flow in (r, z) coordinates. Does a stream func-
tion exist? If so, does it satisfy Laplace’s equation? Are
lines of constant � equal to the flow streamlines? Does a
velocity potential exist? If so, does it satisfy Laplace’s
equation? Are lines of constant $ everywhere perpendicu-
lar to the � lines?

Fundamentals of Engineering Exam Problems
This chapter is not a favorite of the people who prepare the FE
Exam. Probably not a single problem from this chapter will appear
on the exam, but if some did, they might be like these.
FE4.1 Given the steady, incompressible velocity distribution V �

3xi � Cyj � 0k, where C is a constant, if conservation of
mass is satisfied, the value of C should be
(a) 3, (b) 3/2, (c) 0, (d) 	3/2, (e) 	3

FE4.2 Given the steady velocity distribution V � 3xi � 0j � Cyk,

where C is a constant, if the flow is irrotational, the value
of C should be
(a) 3, (b) 3/2, (c) 0, (d) 	3/2, (e) 	3

FE4.3 Given the steady, incompressible velocity distribution V �
3xi � Cyj � 0k, where C is a constant, the shear stress �xy

at the point (x, y, z) is given by
(a) 3� , (b) (3x � Cy)� , (c) 0, (d) C� ,
(e) (3 � C)�



Comprehensive Problem

C4.1 In a certain medical application, water at room temperature
and pressure flows through a rectangular channel of length
L � 10 cm, width s � 1.0 cm, and gap thickness b � 0.30
mm as in Fig. C4.1. The volume flow rate is sinusoidal with
amplitude Q̂ � 0.50 mL/s and frequency f � 20 Hz, i.e.,
Q � Q̂ sin (2� f t).
(a) Calculate the maximum Reynolds number (Re � Vb/�)
based on maximum average velocity and gap thickness.
Channel flow like this remains laminar for Re less than about
2000. If Re is greater than about 2000, the flow will be tur-
bulent. Is this flow laminar or turbulent? (b) In this problem,
the frequency is low enough that at any given time, the flow
can be solved as if it were steady at the given flow rate. (This
is called a quasi-steady assumption.) At any arbitrary instant
of time, find an expression for streamwise velocity u as a
function of y, �, dp/dx, and b, where dp/dx is the pressure
gradient required to push the flow through the channel at vol-
ume flow rate Q. In addition, estimate the maximum mag-
nitude of velocity component u. (c) At any instant of time,
find a relationship between volume flow rate Q and pressure
gradient dp/dx. Your answer should be given as an expres-
sion for Q as a function of dp/dx, s, b, and viscosity �. (d)

Estimate the wall shear stress, �w as a function of Q̂, f, �, b,
s, and time (t). (e) Finally, for the numbers given in the prob-
lem statement, estimate the amplitude of the wall shear stress,
�̂w, in N/m2.
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Wind tunnel test of an F-18 fighter plane model. Testing of models is imperative in the design
of complex, expensive fluids-engineering devices. Such tests use the principles of dimensional
analysis and modeling from this chapter. (Courtesy of Mark E. Gibson/Visuals Unlimited)
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5.1 Introduction

Motivation. In this chapter we discuss the planning, presentation, and interpretation
of experimental data. We shall try to convince you that such data are best presented in
dimensionless form. Experiments which might result in tables of output, or even mul-
tiple volumes of tables, might be reduced to a single set of curves—or even a single
curve—when suitably nondimensionalized. The technique for doing this is dimensional
analysis.

Chapter 3 presented gross control-volume balances of mass, momentum, and en-
ergy which led to estimates of global parameters: mass flow, force, torque, total heat
transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif-
ferential equations of fluid flow and some particular solutions. These two chapters cov-
ered analytical techniques, which are limited to fairly simple geometries and well-
defined boundary conditions. Probably one-third of fluid-flow problems can be attacked
in this analytical or theoretical manner.

The other two-thirds of all fluid problems are too complex, both geometrically and
physically, to be solved analytically. They must be tested by experiment. Their behav-
ior is reported as experimental data. Such data are much more useful if they are ex-
pressed in compact, economic form. Graphs are especially useful, since tabulated data
cannot be absorbed, nor can the trends and rates of change be observed, by most en-
gineering eyes. These are the motivations for dimensional analysis. The technique is
traditional in fluid mechanics and is useful in all engineering and physical sciences,
with notable uses also seen in the biological and social sciences.

Dimensional analysis can also be useful in theories, as a compact way to present an
analytical solution or output from a computer model. Here we concentrate on the pre-
sentation of experimental fluid-mechanics data.

Basically, dimensional analysis is a method for reducing the number and complexity
of experimental variables which affect a given physical phenomenon, by using a sort
of compacting technique. If a phenomenon depends upon n dimensional variables, di-
mensional analysis will reduce the problem to only k dimensionless variables, where
the reduction n � k � 1, 2, 3, or 4, depending upon the problem complexity. Gener-
ally n � k equals the number of different dimensions (sometimes called basic or pri-
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mary or fundamental dimensions) which govern the problem. In fluid mechanics, the
four basic dimensions are usually taken to be mass M, length L, time T, and tempera-
ture �, or an MLT� system for short. Sometimes one uses an FLT� system, with force
F replacing mass.

Although its purpose is to reduce variables and group them in dimensionless form,
dimensional analysis has several side benefits. The first is enormous savings in time
and money. Suppose one knew that the force F on a particular body immersed in a
stream of fluid depended only on the body length L, stream velocity V, fluid density
�, and fluid viscosity �, that is,

F � f(L, V, �, �) (5.1)

Suppose further that the geometry and flow conditions are so complicated that our in-
tegral theories (Chap. 3) and differential equations (Chap. 4) fail to yield the solution
for the force. Then we must find the function f(L, V, �, �) experimentally.

Generally speaking, it takes about 10 experimental points to define a curve. To find
the effect of body length in Eq. (5.1), we have to run the experiment for 10 lengths L.
For each L we need 10 values of V, 10 values of �, and 10 values of �, making a grand
total of 104, or 10,000, experiments. At $50 per experiment—well, you see what we
are getting into. However, with dimensional analysis, we can immediately reduce
Eq. (5.1) to the equivalent form

�
�V

F
2L2� � g��

�

�

VL
��

or CF � g(Re)

(5.2)

i.e., the dimensionless force coefficient F/(�V2L2) is a function only of the dimension-
less Reynolds number �VL/�. We shall learn exactly how to make this reduction in
Secs. 5.2 and 5.3.

The function g is different mathematically from the original function f, but it con-
tains all the same information. Nothing is lost in a dimensional analysis. And think of
the savings: We can establish g by running the experiment for only 10 values of the
single variable called the Reynolds number. We do not have to vary L, V, �, or � sep-
arately but only the grouping �VL/�. This we do merely by varying velocity V in, say,
a wind tunnel or drop test or water channel, and there is no need to build 10 different
bodies or find 100 different fluids with 10 densities and 10 viscosities. The cost is now
about $500, maybe less.

A second side benefit of dimensional analysis is that it helps our thinking and plan-
ning for an experiment or theory. It suggests dimensionless ways of writing equations
before we waste money on computer time to find solutions. It suggests variables which
can be discarded; sometimes dimensional analysis will immediately reject variables,
and at other times it groups them off to the side, where a few simple tests will show
them to be unimportant. Finally, dimensional analysis will often give a great deal of
insight into the form of the physical relationship we are trying to study.

A third benefit is that dimensional analysis provides scaling laws which can con-
vert data from a cheap, small model to design information for an expensive, large pro-
totype. We do not build a million-dollar airplane and see whether it has enough lift
force. We measure the lift on a small model and use a scaling law to predict the lift on
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the full-scale prototype airplane. There are rules we shall explain for finding scaling
laws. When the scaling law is valid, we say that a condition of similarity exists be-
tween the model and the prototype. In the simple case of Eq. (5.1), similarity is achieved
if the Reynolds number is the same for the model and prototype because the function
g then requires the force coefficient to be the same also:

If Rem � Rep then CFm � CFp (5.3)

where subscripts m and p mean model and prototype, respectively. From the definition
of force coefficient, this means that

�
F

F

m

p
� � �

�

�

m

p
���

V

V

m

p
��

2

��
L

L

m

p
��

2

(5.4)

for data taken where �pVpLp/�p � �mVmLm/�m. Equation (5.4) is a scaling law: If you
measure the model force at the model Reynolds number, the prototype force at the
same Reynolds number equals the model force times the density ratio times the ve-
locity ratio squared times the length ratio squared. We shall give more examples later.

Do you understand these introductory explanations? Be careful; learning dimensional
analysis is like learning to play tennis: There are levels of the game. We can establish some
ground rules and do some fairly good work in this brief chapter, but dimensional analy-
sis in the broad view has many subtleties and nuances which only time and practice and
maturity enable you to master. Although dimensional analysis has a firm physical and
mathematical foundation, considerable art and skill are needed to use it effectively.

EXAMPLE 5.1

A copepod is a water crustacean approximately 1 mm in diameter. We want to know the drag
force on the copepod when it moves slowly in fresh water. A scale model 100 times larger is
made and tested in glycerin at V � 30 cm/s. The measured drag on the model is 1.3 N. For sim-
ilar conditions, what are the velocity and drag of the actual copepod in water? Assume that
Eq. (5.1) applies and the temperature is 20°C.

Solution

From Table A.3 the fluid properties are:

Water (prototype): �p � 0.001 kg/(m � s) �p � 998 kg/m3

Glycerin (model): �m � 1.5 kg/(m � s) �m � 1263 kg/m3

The length scales are Lm � 100 mm and Lp � 1 mm. We are given enough model data to com-
pute the Reynolds number and force coefficient

Rem � �
�m

�

Vm

m

Lm� � � 25.3

CFm � �
�mV

F

m

m
2Lm

2� � � 1.14

Both these numbers are dimensionless, as you can check. For conditions of similarity, the pro-
totype Reynolds number must be the same, and Eq. (5.2) then requires the prototype force co-
efficient to be the same

1.3 N
����
(1263 kg/m3)(0.3 m/s)2(0.1 m)2

(1263 kg/m3)(0.3 m/s)(0.1 m)
����

1.5 kg/(m � s)
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5.2 The Principle of
Dimensional Homogeneity

Rep � Rem � 25.3 � �
998V

0.
p

0

(0

0

.

1

001)
�

or Vp � 0.0253 m/s � 2.53 cm/s Ans.

CFp � CFm � 1.14 �

or Fp � 7.31 	 10�7 N Ans.

It would obviously be difficult to measure such a tiny drag force.

Historically, the first person to write extensively about units and dimensional reasoning
in physical relations was Euler in 1765. Euler’s ideas were far ahead of his time, as were
those of Joseph Fourier, whose 1822 book Analytical Theory of Heat outlined what is now
called the principle of dimensional homogeneity and even developed some similarity rules
for heat flow. There were no further significant advances until Lord Rayleigh’s book in
1877, Theory of Sound, which proposed a “method of dimensions” and gave several ex-
amples of dimensional analysis. The final breakthrough which established the method as
we know it today is generally credited to E. Buckingham in 1914 [29], whose paper out-
lined what is now called the Buckingham pi theorem for describing dimensionless para-
meters (see Sec. 5.3). However, it is now known that a Frenchman, A. Vaschy, in 1892 and
a Russian, D. Riabouchinsky, in 1911 had independently published papers reporting re-
sults equivalent to the pi theorem. Following Buckingham’s paper, P. W. Bridgman pub-
lished a classic book in 1922 [1], outlining the general theory of dimensional analysis. The
subject continues to be controversial because there is so much art and subtlety in using di-
mensional analysis. Thus, since Bridgman there have been at least 24 books published on
the subject [2 to 25]. There will probably be more, but seeing the whole list might make
some fledgling authors think twice. Nor is dimensional analysis limited to fluid mechan-
ics or even engineering. Specialized books have been written on the application of di-
mensional analysis to metrology [26], astrophysics [27], economics [28], building scale
models [36], chemical processing pilot plants [37], social sciences [38], biomedical sci-
ences [39], pharmacy [40], fractal geometry [41], and even the growth of plants [42].

In making the remarkable jump from the five-variable Eq. (5.1) to the two-variable
Eq. (5.2), we were exploiting a rule which is almost a self-evident axiom in physics.
This rule, the principle of dimensional homogeneity (PDH), can be stated as follows:

If an equation truly expresses a proper relationship between variables in a physical
process, it will be dimensionally homogeneous; i.e., each of its additive terms will
have the same dimensions.

All the equations which are derived from the theory of mechanics are of this form. For
example, consider the relation which expresses the displacement of a falling body

S � S0 
 V0t 
 �12�gt2 (5.5)

Each term in this equation is a displacement, or length, and has dimensions {L}. The
equation is dimensionally homogeneous. Note also that any consistent set of units can
be used to calculate a result.

Fp
���
998(0.0253)2(0.001)2
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Consider Bernoulli’s equation for incompressible flow

�
p

�
� 
 �

1
2

�V2 
 gz � const (5.6)

Each term, including the constant, has dimensions of velocity squared, or {L2T �2}.
The equation is dimensionally homogeneous and gives proper results for any consis-
tent set of units.

Students count on dimensional homogeneity and use it to check themselves when
they cannot quite remember an equation during an exam. For example, which is it:

S � �12�gt2? or S � �12�g2t? (5.7)

By checking the dimensions, we reject the second form and back up our faulty mem-
ory. We are exploiting the principle of dimensional homogeneity, and this chapter sim-
ply exploits it further.

Equations (5.5) and (5.6) also illustrate some other factors that often enter into a di-
mensional analysis:

Dimensional variables are the quantities which actually vary during a given case
and would be plotted against each other to show the data. In Eq. (5.5), they are
S and t; in Eq. (5.6) they are p, V, and z. All have dimensions, and all can be
nondimensionalized as a dimensional-analysis technique.

Dimensional constants may vary from case to case but are held constant during a
given run. In Eq. (5.5) they are S0, V0, and g, and in Eq. (5.6) they are �, g,
and C. They all have dimensions and conceivably could be nondimensional-
ized, but they are normally used to help nondimensionalize the variables in the
problem.

Pure constants have no dimensions and never did. They arise from mathematical
manipulations. In both Eqs. (5.5) and (5.6) they are �12� and the exponent 2, both
of which came from an integration: �t dt � �12�t2, � V dV � �12�V2. Other common
dimensionless constants are � and e.

Note that integration and differentiation of an equation may change the dimensions
but not the homogeneity of the equation. For example, integrate or differentiate
Eq. (5.5):

� S dt � S0t 
 �12�V0t2 
 �16�gt3 (5.8a)

�
d
d
S
t
� � V0 
 gt (5.8b)

In the integrated form (5.8a) every term has dimensions of {LT}, while in the deriva-
tive form (5.8b) every term is a velocity {LT�1}.

Finally, there are some physical variables that are naturally dimensionless by virtue
of their definition as ratios of dimensional quantities. Some examples are strain (change
in length per unit length), Poisson’s ratio (ratio of transverse strain to longitudinal strain),
and specific gravity (ratio of density to standard water density). All angles are dimen-
sionless (ratio of arc length to radius) and should be taken in radians for this reason.

The motive behind dimensional analysis is that any dimensionally homogeneous
equation can be written in an entirely equivalent nondimensional form which is more
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Ambiguity: The Choice of
Variables and Scaling Parameters1

compact. Usually there is more than one method of presenting one’s dimensionless data
or theory. Let us illustrate these concepts more thoroughly by using the falling-body
relation (5.5) as an example.

Equation (5.5) is familiar and simple, yet illustrates most of the concepts of dimen-
sional analysis. It contains five terms (S, S0, V0, t, g) which we may divide, in our think-
ing, into variables and parameters. The variables are the things which we wish to plot,
the basic output of the experiment or theory: in this case, S versus t. The parameters
are those quantities whose effect upon the variables we wish to know: in this case S0,
V0, and g. Almost any engineering study can be subdivided in this manner.

To nondimensionalize our results, we need to know how many dimensions are con-
tained among our variables and parameters: in this case, only two, length {L} and time
{T}. Check each term to verify this:

{S} � {S0} � {L} {t} � {T} {V0} � {LT�1} {g} � {LT�2}

Among our parameters, we therefore select two to be scaling parameters, used to de-
fine dimensionless variables. What remains will be the “basic” parameter(s) whose ef-
fect we wish to show in our plot. These choices will not affect the content of our data,
only the form of their presentation. Clearly there is ambiguity in these choices, some-
thing that often vexes the beginning experimenter. But the ambiguity is deliberate. Its
purpose is to show a particular effect, and the choice is yours to make.

For the falling-body problem, we select any two of the three parameters to be scal-
ing parameters. Thus we have three options. Let us discuss and display them in turn.

Option 1: Scaling parameters S0 and V0: the effect of gravity g.
First use the scaling parameters (S0, V0) to define dimensionless (*) displacement

and time. There is only one suitable definition for each:2

S* � �
S
S

0
� t* � �

V
S

0

0

t
� (5.9)

Substitute these variables into Eq. (5.5) and clean everything up until each term is di-
mensionless. The result is our first option:

S* � 1 
 t* 
 �
1
2

��t*2 � � �
g
V
S

0
2
0� (5.10)

This result is shown plotted in Fig. 5.1a. There is a single dimensionless parameter �,
which shows here the effect of gravity. It cannot show the direct effects of S0 and V0,
since these two are hidden in the ordinate and abscissa. We see that gravity increases
the parabolic rate of fall for t* 
 0, but not the initial slope at t* � 0. We would learn
the same from falling-body data, and the plot, within experimental accuracy, would
look like Fig. 5.1a.
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a good idea.



Fig. 5.1 Three entirely equivalent
dimensionless presentations of the
falling-body problem, Eq. (5.5): the
effect of (a) gravity, (b) initial dis-
placement, and (c) initial velocity.
All plots contain the same informa-
tion.

Option 2: Scaling parameters V0 and g: the effect of initial displacement S0.
Now use the new scaling parameters (V0, g) to define dimensionless (**) displace-

ment and time. Again there is only one suitable definition:

S** � �
V
S

0
2
g
� t** � t�

V
g

0
� (5.11)

Substitute these variables into Eq. (5.5) and clean everything up again. The result is
our second option:

S** � � 
 t** 
 �
1
2

�t**2 � � �
g
V
S

0
2
0� (5.12)
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This result is plotted in Fig. 5.1b. The same single parameter � again appears and here
shows the effect of initial displacement, which merely moves the curves upward with-
out changing their shape.

Option 3: Scaling parameters S0 and g: the effect of initial speed V0.
Finally use the scaling parameters (S0, g) to define dimensionless (***) displace-

ment and time. Again there is only one suitable definition:

S*** � �
S
S

0
� t*** � t��

S
g

0
��

1/2

(5.13)

Substitute these variables into Eq. (5.5) and clean everything up as usual. The result
is our third and final option:

S*** � 1 
 �t*** 
 �
1
2

�t***2 � � �
�

1
��
� � �

�
V
g�
0

S�0�
� (5.14)

This final presentation is shown in Fig. 5.1c. Once again the parameter � appears, but
we have redefined it upside down, � � 1/���, so that our display parameter V0 is in
the numerator and is linear. This is our free choice and simply improves the display.
Figure 5.1c shows that initial velocity increases the falling displacement and that the
increase is proportional to time.

Note that, in all three options, the same parameter � appears but has a different
meaning: dimensionless gravity, initial displacement, and initial velocity. The graphs,
which contain exactly the same information, change their appearance to reflect these
differences.

Whereas the original problem, Eq. (5.5), involved five quantities, the dimensionless
presentations involve only three, having the form

S� � fcn(t�, �) � � �
g
V
S

0
2
0� (5.15)

The reduction 5 � 3 � 2 should equal the number of fundamental dimensions involved
in the problem {L, T}. This idea led to the pi theorem (Sec. 5.3).

The choice of scaling variables is left to the user, and the resulting dimensionless
parameters have differing interpretations. For example, in the dimensionless drag-force
formulation, Eq. (5.2), it is now clear that the scaling parameters were �, V, and L,
since they appear in both the drag coefficient and the Reynolds number. Equation (5.2)
can thus be interpreted as the variation of dimensionless force with dimensionless vis-
cosity, with the scaling-parameter effects mixed between CF and Re and therefore not
immediately evident.

Suppose that we wish to study drag force versus velocity. Then we would not use
V as a scaling parameter. We would use (�, �, L) instead, and the final dimensionless
function would become

CF� � �
�

�

F
2� � fcn(Re) Re � �

�

�

VL
� (5.16)

In plotting these data, we would not be able to discern the effect of � or �, since they
appear in both dimensionless groups. The grouping CF� again would mean dimension-
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Some Peculiar Engineering
Equations

less force, and Re is now interpreted as either dimensionless velocity or size.3 The plot
would be quite different compared to Eq. (5.2), although it contains exactly the same
information. The development of parameters such as CF� and Re from the initial vari-
ables is the subject of the pi theorem (Sec. 5.3).

The foundation of the dimensional-analysis method rests on two assumptions: (1) The
proposed physical relation is dimensionally homogeneous, and (2) all the relevant vari-
ables have been included in the proposed relation.

If a relevant variable is missing, dimensional analysis will fail, giving either alge-
braic difficulties or, worse, yielding a dimensionless formulation which does not re-
solve the process. A typical case is Manning’s open-channel formula, discussed in Ex-
ample 1.4:

V � �
1.

n
49
�R2/3S1/2 (1)

Since V is velocity, R is a radius, and n and S are dimensionless, the formula is not di-
mensionally homogeneous. This should be a warning that (1) the formula changes if the
units of V and R change and (2) if valid, it represents a very special case. Equation (1)
in Example 1.4 (see above) predates the dimensional-analysis technique and is valid
only for water in rough channels at moderate velocities and large radii in BG units.

Such dimensionally inhomogeneous formulas abound in the hydraulics literature.
Another example is the Hazen-Williams formula [30] for volume flow of water through
a straight smooth pipe

Q � 61.9D2.63��
d
d
p
x
��

0.54

(5.17)

where D is diameter and dp/dx is the pressure gradient. Some of these formulas arise
because numbers have been inserted for fluid properties and other physical data into
perfectly legitimate homogeneous formulas. We shall not give the units of Eq. (5.17)
to avoid encouraging its use.

On the other hand, some formulas are “constructs” which cannot be made dimen-
sionally homogeneous. The “variables” they relate cannot be analyzed by the dimen-
sional-analysis technique. Most of these formulas are raw empiricisms convenient to a
small group of specialists. Here are three examples:

B � �
1
2
0
5
0
,0
�

00
R

� (5.18)

S � �
130

1



40
API

� (5.19)

0.0147DE � �
3
D
.7

E

4
� � 0.26tR � �

1
t
7

R

2
� (5.20)

Equation (5.18) relates the Brinell hardness B of a metal to its Rockwell hardness R.
Equation (5.19) relates the specific gravity S of an oil to its density in degrees API.
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5.3 The Pi Theorem

Equation (5.20) relates the viscosity of a liquid in DE, or degrees Engler, to its vis-
cosity tR in Saybolt seconds. Such formulas have a certain usefulness when commu-
nicated between fellow specialists, but we cannot handle them here. Variables like
Brinell hardness and Saybolt viscosity are not suited to an MLT� dimensional system.

There are several methods of reducing a number of dimensional variables into a smaller
number of dimensionless groups. The scheme given here was proposed in 1914 by
Buckingham [29] and is now called the Buckingham pi theorem. The name pi comes
from the mathematical notation �, meaning a product of variables. The dimensionless
groups found from the theorem are power products denoted by �1, �2, �3, etc. The
method allows the pis to be found in sequential order without resorting to free expo-
nents.

The first part of the pi theorem explains what reduction in variables to expect:

If a physical process satisfies the PDH and involves n dimensional variables, it can
be reduced to a relation between only k dimensionless variables or �’s. The reduc-
tion j � n � k equals the maximum number of variables which do not form a pi
among themselves and is always less than or equal to the number of dimensions de-
scribing the variables.

Take the specific case of force on an immersed body: Eq. (5.1) contains five variables
F, L, U, �, and � described by three dimensions {MLT}. Thus n � 5 and j � 3. There-
fore it is a good guess that we can reduce the problem to k pis, with k � n � j � 5 �
3 � 2. And this is exactly what we obtained: two dimensionless variables �1 � CF and
�2 � Re. On rare occasions it may take more pis than this minimum (see Example
5.5).

The second part of the theorem shows how to find the pis one at a time:

Find the reduction j, then select j scaling variables which do not form a pi among
themselves.4 Each desired pi group will be a power product of these j variables plus
one additional variable which is assigned any convenient nonzero exponent. Each
pi group thus found is independent.

To be specific, suppose that the process involves five variables

�1 � f(�2, �3, �4, �5)

Suppose that there are three dimensions {MLT} and we search around and find that in-
deed j � 3. Then k � 5 � 3 � 2 and we expect, from the theorem, two and only two
pi groups. Pick out three convenient variables which do not form a pi, and suppose
these turn out to be �2, �3, and �4. Then the two pi groups are formed by power prod-
ucts of these three plus one additional variable, either �1 or �5:

�1 � (�2)a(�3)b(�4)c�1 � M0L0T0 �2 � (�2)a(�3)b(�4)c�5 � M0L0T0

Here we have arbitrarily chosen �1 and �5, the added variables, to have unit exponents.
Equating exponents of the various dimensions is guaranteed by the theorem to give
unique values of a, b, and c for each pi. And they are independent because only �1
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contains �1 and only �2 contains �5. It is a very neat system once you get used to the
procedure. We shall illustrate it with several examples.

Typically, six steps are involved:

1. List and count the n variables involved in the problem. If any important vari-
ables are missing, dimensional analysis will fail.

2. List the dimensions of each variable according to {MLT�} or {FLT�}. A list is
given in Table 5.1.

3. Find j. Initially guess j equal to the number of different dimensions present, and
look for j variables which do not form a pi product. If no luck, reduce j by 1
and look again. With practice, you will find j rapidly.

4. Select j scaling parameters which do not form a pi product. Make sure they
please you and have some generality if possible, because they will then appear
in every one of your pi groups. Pick density or velocity or length. Do not pick
surface tension, e.g., or you will form six different independent Weber-number
parameters and thoroughly annoy your colleagues.

5. Add one additional variable to your j repeating variables, and form a power
product. Algebraically find the exponents which make the product dimension-
less. Try to arrange for your output or dependent variables (force, pressure drop,
torque, power) to appear in the numerator, and your plots will look better. Do
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Table 5.1 Dimensions of Fluid-
Mechanics Properties Dimensions

Quantity Symbol MLT� FLT�

Length L L L
Area A L2 L2

Volume � L3 L3

Velocity V LT�1 LT�1

Acceleration dV/dt LT�2 LT�2

Speed of sound a LT�1 LT�1

Volume flow Q L3T�1 L3T�1

Mass flow ṁ MT�1 FTL�1

Pressure, stress p, � ML�1T�2 FL�2

Strain rate �̇ T�1 T�1

Angle � None None
Angular velocity � T�1 T�1

Viscosity � ML�1T�1 FTL�2

Kinematic viscosity � L2T�1 L2T�1

Surface tension � MT�2 FL�1

Force F MLT�2 F
Moment, torque M ML2T�2 FL
Power P ML2T–3 FLT�1

Work, energy W, E ML2T�2 FL
Density � ML–3 FT2L–4

Temperature T � �

Specific heat cp, c� L2T�2��1 L2T�2��1

Specific weight � ML–2T�2 FL�3

Thermal conductivity k MLT –3��1 FT�1��1

Expansion coefficient � ��1 ��1



Step 2

Step 1

Step 3

Step 4

Step 5

this sequentially, adding one new variable each time, and you will find all 
n � j � k desired pi products.

6. Write the final dimensionless function, and check your work to make sure all pi
groups are dimensionless.

EXAMPLE 5.2

Repeat the development of Eq. (5.2) from Eq. (5.1), using the pi theorem.

Solution

Write the function and count variables:

F � f(L, U, �, �) there are five variables (n � 5)

List dimensions of each variable. From Table 5.1
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F L U � �

{MLT�2} {L} {LT�1} {ML�3} {ML�1T�1}

Find j. No variable contains the dimension �, and so j is less than or equal to 3 (MLT). We in-
spect the list and see that L, U, and � cannot form a pi group because only � contains mass and
only U contains time. Therefore j does equal 3, and n � j � 5 � 3 � 2 � k. The pi theorem
guarantees for this problem that there will be exactly two independent dimensionless groups.

Select repeating j variables. The group L, U, � we found in step 3 will do fine.

Combine L, U, � with one additional variable, in sequence, to find the two pi products.
First add force to find �1. You may select any exponent on this additional term as you please,

to place it in the numerator or denominator to any power. Since F is the output, or dependent,
variable, we select it to appear to the first power in the numerator:

�1 � LaUb�cF � (L)a(LT�1)b(ML�3)c( MLT�2) � M0L0T0

Equate exponents:

Length: a 
 b � 3c 
 1 � 0

Mass: c 
 1 � 0

Time: �b �2 � 0

We can solve explicitly for

a � �2 b � �2 c � �1

Therefore

�1 � L�2U�2��1F � �
�U

F
2L2� � CF Ans.

This is exactly the right pi group as in Eq. (5.2). By varying the exponent on F, we could have
found other equivalent groups such as UL�1/2/F1/2.



Finally, add viscosity to L, U, and � to find �2. Select any power you like for viscosity. By
hindsight and custom, we select the power �1 to place it in the denominator:

�2 � LaUb�c��1 � La(LT�1)b(ML�3)c(ML�1T�1)�1 � M0L0T0

Equate exponents:

Length: a 
 b � 3c 
 1 � 0

Mass: c � 1 � 0

Time: �b 
 1 � 0

from which we find

a � b � c � 1

Therefore �2 � L1U1�1��1 � �
�U

�

L
� � Re Ans.

We know we are finished; this is the second and last pi group. The theorem guarantees that the
functional relationship must be of the equivalent form

�
�U

F
2L2� � g��

�U
�

L
�� Ans.

which is exactly Eq. (5.2).

EXAMPLE 5.3

Reduce the falling-body relationship, Eq. (5.5), to a function of dimensionless variables. Why
are there three different formulations?

Solution

Write the function and count variables

S � f(t, S0, V0, g) five variables (n � 5)

List the dimensions of each variable, from Table 5.1:
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S t S0 V0 g

{L} {T} {L} LT�1} {LT�2}

There are only two primary dimensions (L, T), so that j � 2. By inspection we can easily
find two variables which cannot be combined to form a pi, for example, V0 and g. Then j �
2, and we expect 5 � 2 � 3 pi products. Select j variables among the parameters S0, V0, and
g. Avoid S and t since they are the dependent variables, which should not be repeated in pi
groups.

There are three different options for repeating variables among the group (S0, V0, g). There-
fore we can obtain three different dimensionless formulations, just as we did informally with the
falling-body equation in Sec. 5.2. Take each option in turn:



1. Choose S0 and V0 as repeating variables. Combine them in turn with (S, t, g):

�1 � S1S0
aV0

b �2 � t1S0
cV0

d �3 � g1S0
eV0

f

Set each power product equal to L0T0, and solve for the exponents (a, b, c, d, e, f ). Please
allow us to give the results here, and you may check the algebra as an exercise:

a � �1 b � 0 c � �1 d � 1 e � 1 f � �2

Ans.
�1 � S* � �

S
S

0
� �2 � t* � �

V
S

0

0

t
� �3 � � � �

g
V
S

0
2
0�

Thus, for option 1, we know that S* � fcn(t*, �). We have found, by dimensional analy-
sis, the same variables as in Eq. (5.10). But here there is no formula for the functional re-
lation — we might have to experiment with falling bodies to establish Fig. 5.1a.

2. Choose V0 and g as repeating variables. Combine them in turn with (S, t, S0):

�1 � S1V0
agb �2 � t1V0

cgd �3 � S0
1V0

egf

Set each power product equal to L0T0, and solve for the exponents (a, b, c, d, e, f ). Once
more allow us to give the results here, and you may check the algebra as an exercise.

a � �2 b � 1 c � �1 d � 1 e � 1 f � �2

Ans.
�1 � S** � �

V
Sg

0
2� �2 � t** � �

V
tg

0
� �3 � � � �

g
V
S

0
2
0�

Thus, for option 2, we now know that S** � fcn(t**, �). We have found, by dimensional
analysis, the same groups as in Eq. (5.12). The data would plot as in Fig. 5.1b.

3. Finally choose S0 and g as repeating variables. Combine them in turn with (S, t, V0):

�1 � S1S0
agb �2 � t1S0

cgd �3 � V0
1S0

egf

Set each power product equal to L0T0, and solve for the exponents (a, b, c, d, e, f). One
more time allow us to give the results here, and you may check the algebra as an exercise:

a � �1 b � 0 c � ��12� d � �12� e � ��12� f � ��12�

Ans.

�1 � S*** � �
S
S

0
� �2 � t*** � t��

S

g	
0
�	 �3 � � � �

�
V
g�
0

S�0�
�

Thus, for option 3, we now know that S*** � fcn(t***, � � 1/���). We have found, by di-
mensional analysis, the same groups as in Eq. (5.14). The data would plot as in Fig. 5.1c.

Dimensional analysis here has yielded the same pi groups as the use of scaling parameters
with Eq. (5.5). Three different formulations appeared, because we could choose three different
pairs of repeating variables to complete the pi theorem.

EXAMPLE 5.4

At low velocities (laminar flow), the volume flow Q through a small-bore tube is a function only
of the tube radius R, the fluid viscosity �, and the pressure drop per unit tube length dp/dx. Us-
ing the pi theorem, find an appropriate dimensionless relationship.
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Solution

Write the given relation and count variables:

Q � f �R, �, �
d
d
p
x
� � four variables (n � 4)

Make a list of the dimensions of these variables from Table 5.1:
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� P L I E

{L} {MLT�2} {L} {L4} {ML�1T�2}

Q R � dp/dx

{L3T�1} {L} {ML�1T�1} {ML�2T�2}

There are three primary dimensions (M, L, T), hence j � 3. By trial and error we determine that
R, �, and dp/dx cannot be combined into a pi group. Then j � 3, and n � j � 4 � 3 � 1. There
is only one pi group, which we find by combining Q in a power product with the other three:

�1 � Ra�b��
d
d
p
x
��

c

Q1 � (L)a(ML�1T�1)b(ML�2T�2)c(L3T�1)

� M0L0T0

Equate exponents:

Mass: b 
 c � 0

Length: a � b � 2c 
 3 � 0

Time: �b � 2c � 1 � 0

Solving simultaneously, we obtain a � �4, b � 1, c � �1. Then

�1 � R�4�1��
d
d
p
x
��

�1

Q

or �1 � �
R4(

Q
dp

�

/dx)
� � const Ans.

Since there is only one pi group, it must equal a dimensionless constant. This is as far as dimensional
analysis can take us. The laminar-flow theory of Sec. 6.4 shows that the value of the constant is �/8.

EXAMPLE 5.5

Assume that the tip deflection � of a cantilever beam is a function of the tip load P, beam length
L, area moment of inertia I, and material modulus of elasticity E; that is, � � f(P, L, I, E). Rewrite
this function in dimensionless form, and comment on its complexity and the peculiar value of j.

Solution

List the variables and their dimensions:



5.4 Nondimensionalization of
the Basic Equations

There are five variables (n � 5) and three primary dimensions (M, L, T), hence j � 3. But try as
we may, we cannot find any combination of three variables which does not form a pi group.
This is because {M} and {T} occur only in P and E and only in the same form, {MT�2}. Thus
we have encountered a special case of j � 2, which is less than the number of dimensions (M,
L, T). To gain more insight into this peculiarity, you should rework the problem, using the (F,
L, T) system of dimensions.

With j � 2, we select L and E as two variables which cannot form a pi group and then add
other variables to form the three desired pis:

�1 � LaEbI1 � (L)a(ML�1T�2)b(L4) � M0L0T0

from which, after equating exponents, we find that a � �4, b � 0, or �1 � I/L4. Then

�2 � LaEbP1 � (L)a(ML�1T�2)b(MLT�2) � M0L0T0

from which we find a � �2, b � �1, or �2 � P/(EL2), and

�3 � LaEb�1 � (L)a(ML�1T�2)b(L) � M0L0T0

from which a � �1, b � 0, or �3 � �/L. The proper dimensionless function is �3 � f (�2, �1),
or

�
L
�

� � f��
E
P
L2�, �

L
I
4�� Ans. (1)

This is a complex three-variable function, but dimensional analysis alone can take us no further.
We can “improve” Eq. (1) by taking advantage of some physical reasoning, as Langhaar

points out [8, p. 91]. For small elastic deflections, � is proportional to load P and inversely
proportional to moment of inertia I. Since P and I occur separately in Eq. (1), this means
that �3 must be proportional to �2 and inversely proportional to �1. Thus, for these con-
ditions,

�
L
�

� � (const) �
E
P
L2� �

L
I

4

�

or � � (const) �
P
E
L
I

3

� (2)

This could not be predicted by a pure dimensional analysis. Strength-of-materials theory pre-
dicts that the value of the constant is �13�.

We could use the pi-theorem method of the previous section to analyze problem after
problem after problem, finding the dimensionless parameters which govern in each
case. Textbooks on dimensional analysis [for example, 7] do this. An alternate and very
powerful technique is to attack the basic equations of flow from Chap. 4. Even though
these equations cannot be solved in general, they will reveal basic dimensionless pa-
rameters, e.g., Reynolds number, in their proper form and proper position, giving clues
to when they are negligible. The boundary conditions must also be nondimensional-
ized.

Let us briefly apply this technique to the incompressible-flow continuity and mo-
mentum equations with constant viscosity:

Continuity: � � V � 0 (5.21a)
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Momentum: ��
d
d
V
t
� � �g � �p 
 ��2V (5.21b)

Typical boundary conditions for these two equations are

Fixed solid surface: V � 0

Inlet or outlet: Known V, p (5.22)

Free surface, z � �: w � �
d
d
�

t
� p � pa � �(Rx

�1 
 Ry
�1)

We omit the energy equation (4.75) and assign its dimensionless form in the problems
(Probs. 5.42 and 5.45).

Equations (5.21) and (5.22) contain the three basic dimensions M, L, and T. All vari-
ables p, V, x, y, z, and t can be nondimensionalized by using density and two refer-
ence constants which might be characteristic of the particular fluid flow:

Reference velocity � U Reference length � L

For example, U may be the inlet or upstream velocity and L the diameter of a body
immersed in the stream.

Now define all relevant dimensionless variables, denoting them by an asterisk:

V* � �
V
U

�

x* � �
L
x

� y* � �
L
y

� z* � �
L
z
� (5.23)

t* � �
t
L
U
� p* � �

p 


�U
�
2
gz

�

All these are fairly obvious except for p*, where we have slyly introduced the gravity
effect, assuming that z is up. This is a hindsight idea suggested by Bernoulli’s equa-
tion (3.77).

Since �, U, and L are all constants, the derivatives in Eqs. (5.21) can all be handled
in dimensionless form with dimensional coefficients. For example,

�
�

�

u
x
� � �

�

�

(
(
U
Lx

u
*
*
)
)

� � �
U
L

� �
�

�

u
x*
*

�

Substitute the variables from Eqs. (5.23) into Eqs. (5.21) and (5.22) and divide through
by the leading dimensional coefficient, in the same way as we handled Eq. (5.12). The
resulting dimensionless equations of motion are:

Continuity: �* � V* � 0 (5.24a)

Momentum: �
d
d
V
t*
*

� � ��*p* 
 �
�U

�

L
��*2(V*) (5.24b)

The dimensionless boundary conditions are:

Fixed solid surface: V* � 0

Inlet or outlet: Known V*, p*
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Dimensionless Parameters

Free surface, z* � �*: w* � �
d
d
�

t*
*

� (5.25)

p* � �
�

p
U
a
2� 
 �

U
gL

2� z* � �
�U

�
2L
� (Rx*

�1 
 Ry*
�1)

These equations reveal a total of four dimensionless parameters, one in the momentum
equation and three in the free-surface-pressure boundary condition.

In the continuity equation there are no parameters. The momentum equation contains
one, generally accepted as the most important parameter in fluid mechanics:

Reynolds number Re � �
�U

�

L
�

It is named after Osborne Reynolds (1842–1912), a British engineer who first proposed
it in 1883 (Ref. 4 of Chap. 6). The Reynolds number is always important, with or with-
out a free surface, and can be neglected only in flow regions away from high-velocity
gradients, e.g., away from solid surfaces, jets, or wakes.

The no-slip and inlet-exit boundary conditions contain no parameters. The free-
surface-pressure condition contains three:

Euler number (pressure coefficient) Eu � �
�

p
U
a
2�

This is named after Leonhard Euler (1707–1783) and is rarely important unless the
pressure drops low enough to cause vapor formation (cavitation) in a liquid. The Euler
number is often written in terms of pressure differences: Eu � �p/(�U2). If �p involves
vapor pressure p�, it is called the cavitation number Ca � (pa � p�)/(�U2).

The second pressure parameter is much more important:

Froude number Fr � �
U
gL

2

�

It is named after William Froude (1810–1879), a British naval architect who, with his
son Robert, developed the ship-model towing-tank concept and proposed similarity
rules for free-surface flows (ship resistance, surface waves, open channels). The Froude
number is the dominant effect in free-surface flows and is totally unimportant if there
is no free surface. Chapter 10 investigates Froude number effects in detail.

The final free-surface parameter is

Weber number We � �
�U

�

2L
�

It is named after Moritz Weber (1871–1951) of the Polytechnic Institute of Berlin, who
developed the laws of similitude in their modern form. It was Weber who named Re
and Fr after Reynolds and Froude. The Weber number is important only if it is of or-
der unity or less, which typically occurs when the surface curvature is comparable in
size to the liquid depth, e.g., in droplets, capillary flows, ripple waves, and very small
hydraulic models. If We is large, its effect may be neglected.
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Compressibility Parameters

Oscillating Flows

If there is no free surface, Fr, Eu, and We drop out entirely, except for the possi-
bility of cavitation of a liquid at very small Eu. Thus, in low-speed viscous flows with
no free surface, the Reynolds number is the only important dimensionless parameter.

In high-speed flow of a gas there are significant changes in pressure, density, and tem-
perature which must be related by an equation of state such as the perfect-gas law,
Eq. (1.10). These thermodynamic changes introduce two additional dimensionless pa-
rameters mentioned briefly in earlier chapters:

Mach number Ma � �
U
a

� Specific-heat ratio k � �
c

c
p

�

�

The Mach number is named after Ernst Mach (1838–1916), an Austrian physicist. The
effect of k is only slight to moderate, but Ma exerts a strong effect on compressible-
flow properties if it is greater than about 0.3. These effects are studied in Chap. 9.

If the flow pattern is oscillating, a seventh parameter enters through the inlet bound-
ary condition. For example, suppose that the inlet stream is of the form

u � U cos �t

Nondimensionalization of this relation results in

�
U
u

� � u* � cos��
�

U
L
�t*�

The argument of the cosine contains the new parameter

Strouhal number St � �
�

U
L
�

The dimensionless forces and moments, friction, and heat transfer, etc., of such an os-
cillating flow would be a function of both Reynolds and Strouhal numbers. This param-
eter is named after V. Strouhal, a German physicist who experimented in 1878 with
wires singing in the wind.

Some flows which you might guess to be perfectly steady actually have an oscilla-
tory pattern which is dependent on the Reynolds number. An example is the periodic
vortex shedding behind a blunt body immersed in a steady stream of velocity U. Fig-
ure 5.2a shows an array of alternating vortices shed from a circular cylinder immersed
in a steady crossflow. This regular, periodic shedding is called a Kármán vortex street,
after T. von Kármán, who explained it theoretically in 1912. The shedding occurs in
the range 102  Re  107, with an average Strouhal number �d/(2�U) 
 0.21. Figure
5.2b shows measured shedding frequencies.

Resonance can occur if a vortex shedding frequency is near a body’s structural-
vibration frequency. Electric transmission wires sing in the wind, undersea mooring
lines gallop at certain current speeds, and slender structures flutter at critical wind or
vehicle speeds. A striking example is the disastrous failure of the Tacoma Narrows sus-
pension bridge in 1940, when wind-excited vortex shedding caused resonance with the
natural torsional oscillations of the bridge.
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Fig. 5.2 Vortex shedding from a
circular cylinder: (a) vortex street
behind a circular cylinder (from
Ref. 33, courtesy of U.S. Naval Re-
search Laboratory); (b) experimen-
tal shedding frequencies  (data
from Refs. 31 and 32).

We have discussed seven important parameters in fluid mechanics, and there are oth-
ers. Four additional parameters arise from nondimensionalization of the energy equa-
tion (4.75) and its boundary conditions. These four (Prandtl number, Eckert number,
Grashof number, and wall-temperature ratio) are listed in Table 5.2 just in case you fail
to solve Prob. 5.42. Another important and rather sneaky parameter is the wall-
roughness ratio �/L (in Table 5.2).5 Slight changes in surface roughness have a strik-
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5 Roughness is easy to overlook because it is a slight geometric effect which does not appear in the
equations of motion.

Other Dimensionless Parameters



ing effect in the turbulent-flow or high-Reynolds-number range, as we shall see in Chap.
6 and in Fig. 5.3.

This book is primarily concerned with Reynolds-, Mach-, and Froude-number ef-
fects, which dominate most flows. Note that we discovered all these parameters (ex-
cept �/L) simply by nondimensionalizing the basic equations without actually solving
them.

If the reader is not satiated with the 15 parameters given in Table 5.2, Ref. 34 con-
tains a list of over 300 dimensionless parameters in use in engineering. See also 
Ref. 35.
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Table 5.2 Dimensionless Groups in
Fluid Mechanics Qualitative ratio

Parameter Definition of effects Importance

Reynolds number Re � �
�U

�

L
� �

V
I
i
n
sc
e
o
rt
s
i
i
a
ty

� Always

Mach number Ma � �
U
a

� �
S
F
o
l
u
o
n
w
d

s
s
p
p
e
e
e
e
d
d

� Compressible flow

Froude number Fr � �
U
gL

2

� �
G
In
ra
e
v
rt
i
i
t
a
y

� Free-surface flow

Weber number We � �
�U

�

2L
� �

Surfa
In
ce
er

t
t
e
ia
nsion

� Free-surface flow

Cavitation number Ca � �
p

�
�
U2

p�� �
P
I
r
n
e
e
s
r
s
t
u
ia
re

� Cavitation
(Euler number)

Prandtl number Pr � �
�

k
cp
� �

C
D

o
is
n
s
d
ip
u
a
c
t
t
i
i
o
o
n
n

� Heat convection

Eckert number Ec � �
c
U

pT

2

0
� �

Kin
E
e
n
ti
t
c
ha

e
l
n
p
e
y
rgy

� Dissipation

Specific-heat ratio k � �
c
c

p

�
� �

Inte
E
r
n
n
t
a
h
l
a
e
l
n
p
e
y
rgy

� Compressible flow

Strouhal number St � �
�

U
L
� �

M
O

e
s
a
c
n
ill

s
a
p
ti
e
o
e
n
d

� Oscillating flow

Roughness ratio �
L
�

� �
W

B
a
o
ll
d
r
y
ou

le
g
n
h
g
n
t
e
h
ss

� Turbulent, rough walls

Grashof number Gr � �
��T

�

g
2
L3�2

� �
B
V
u
is
o
c
y
o
a
s
n
i
c
ty
y

� Natural convection

Temperature ratio �
T
T

w

0
� Heat transfer

Pressure coefficient Cp � �
D

S
yn

ta
a
t
m
ic

ic
pr

p
e
r
s
e
s
s
u
s
r
u
e
re

� Aerodynamics, hydrodynamics

Lift coefficient CL � �
Dy

L
n
i
a
f
m
t f

ic
or

f
c
o
e
rce

� Aerodynamics, hydrodynamics

Drag coefficient CD � �
Dy

D
n
r
a
a
m
g

i
f
c
or

f
c
o
e
rce

� Aerodynamics, hydrodynamics
D

�
�12��U2A

L
�

�12��U2A

p � p!
�

�12��U2

Wall temperature
���
Stream temperature



Fig. 5.3 The proof of practical di-
mensional analysis: drag coeffi-
cients of a cylinder and sphere:
(a) drag coefficient of a smooth
cylinder and sphere (data from
many sources); (b) increased
roughness causes earlier transition
to a turbulent boundary layer.

Dimensional analysis is fun, but does it work? Yes; if all important variables are in-
cluded in the proposed function, the dimensionless function found by dimensional
analysis will collapse all the data onto a single curve or set of curves.

An example of the success of dimensional analysis is given in Fig. 5.3 for the mea-
sured drag on smooth cylinders and spheres. The flow is normal to the axis of the cylin-
der, which is extremely long, L/d → !. The data are from many sources, for both liq-
uids and gases, and include bodies from several meters in diameter down to fine wires
and balls less than 1 mm in size. Both curves in Fig. 5.3a are entirely experimental;
the analysis of immersed body drag is one of the weakest areas of modern fluid-
mechanics theory. Except for some isolated digital-computer calculations, there is no
theory for cylinder and sphere drag except creeping flow, Re  1.

The Reynolds number of both bodies is based upon diameter, hence the notation
Red. But the drag coefficients are defined differently:
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A Successful Application
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Part (a) Step 1

CD �� cylinder

(5.26)

sphere

They both have a factor �12� as a traditional tribute to Bernoulli and Euler, and both are
based on the projected area, i.e., the area one sees when looking toward the body from
upstream. The usual definition of CD is thus

CD � (5.27)

However, one should carefully check the definitions of CD, Re, etc., before using data
in the literature. Airfoils, e.g., use the planform area.

Figure 5.3a is for long, smooth cylinders. If wall roughness and cylinder length are
included as variables, we obtain from dimensional analysis a complex three-parameter
function

CD � f �Red, �
d
�

�, �
L
d

�� (5.28)

To describe this function completely would require 1000 or more experiments. Therefore
it is customary to explore the length and roughness effects separately to establish trends.

The table with Fig. 5.3a shows the length effect with zero wall roughness. As length
decreases, the drag decreases by up to 50 percent. Physically, the pressure is “relieved”
at the ends as the flow is allowed to skirt around the tips instead of deflecting over and
under the body.

Figure 5.3b shows the effect of wall roughness for an infinitely long cylinder. The
sharp drop in drag occurs at lower Red as roughness causes an earlier transition to a
turbulent boundary layer on the surface of the body. Roughness has the same effect on
sphere drag, a fact which is exploited in sports by deliberate dimpling of golf balls to
give them less drag at their flight Red � 105.

Figure 5.3 is a typical experimental study of a fluid-mechanics problem, aided by
dimensional analysis. As time and money and demand allow, the complete three-
parameter relation (5.28) could be filled out by further experiments.

EXAMPLE 5.6

The capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density �,
surface tension �, and the contact angle �. (a) Find a dimensionless statement of this relation.
(b) If h � 3 cm in a given experiment, what will h be in a similar case if the diameter and sur-
face tension are half as much, the density is twice as much, and the contact angle is the same?

Solution

Write down the function and count variables:

h � f(d, g, �, �, �) n � 6 variables

drag
���

�12��U2(projected area)

drag
��

�12��U2�14��d2

drag
�

�12��U2Ld
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Part (b)

List the dimensions {FLT} from Table 5.2:

h d g � � �

{L} {L} {LT �2} {FT2L�4} {FL�1} none

Find j. Several groups of three form no pi: �, �, and g or �, g, and d. Therefore j � 3, and we
expect n � j � 6 � 3 � 3 dimensionless groups. One of these is obviously �, which is already
dimensionless:

�3 � � Ans. (a)

If we had carelessly chosen to search for it by using steps 4 and 5, we would still find �3 � �.

Select j repeating variables which do not form a pi group: �, g, d.

Add one additional variable in sequence to form the pis:

Add h: �1 � �agbdch � (FT 2L�4)a(LT �2)b(L)c(L) � F0L0T 0

Solve for

a � b � 0 c � �1

Therefore �1 � �0g0d�1h � �
h
d

� Ans. (a)

Finally add �, again selecting its exponent to be 1:

�2 � �agbd c� � (FT 2L�4)a(LT �2)b(L)c(FL�1) � F0L0T0

Solve for

a � b � �1 c � �2

Therefore �2 � ��1g�1d�2� � �
�g

�

d2� Ans. (a)

The complete dimensionless relation for this problem is thus

�
h
d

� � F���g

�

d2�, �� Ans. (a) (1)

This is as far as dimensional analysis goes. Theory, however, establishes that h is proportional
to �. Since � occurs only in the second parameter, we can slip it outside

��
h
d

�� actual
� �

�g
�

d2� F1(�) or �
h�

�

gd
� � F1(�)

Example 1.9 showed theoretically that F1(�) � 4 cos �.

We are given h1 for certain conditions d1, �1, �1, and �1. If h1 � 3 cm, what is h2 for d2 � �12�d1, �2 �
�12��1, �2 � 2�1, and �2 � �1? We know the functional relation, Eq. (1), must still hold at condition 2

�
h
d

2

2
� � F���2

�

gd
2

2
2,

� �2�
But

�
�2

�

g
2

d2
2� � � �

�1

�

g
1

d1
2�

�
1
2��1��

2�1g(�12�d1)2
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Geometric Similarity

Therefore, functionally,

�
h
d

2

2
� � F���1

�

g
1

d1
2�, �1� � �

h
d

1

1
�

We are given a condition 2 which is exactly similar to condition 1, and therefore a scaling law
holds

h2 � h1�
d
d

2

1
� � (3 cm) � 1.5 cm Ans. (b)

If the pi groups had not been exactly the same for both conditions, we would have had to know
more about the functional relation F to calculate h2.

So far we have learned about dimensional homogeneity and the pi-theorem method,
using power products, for converting a homogeneous physical relation to dimension-
less form. This is straightforward mathematically, but there are certain engineering dif-
ficulties which need to be discussed.

First, we have more or less taken for granted that the variables which affect the
process can be listed and analyzed. Actually, selection of the important variables re-
quires considerable judgment and experience. The engineer must decide, e.g., whether
viscosity can be neglected. Are there significant temperature effects? Is surface tension
important? What about wall roughness? Each pi group which is retained increases the
expense and effort required. Judgment in selecting variables will come through prac-
tice and maturity; this book should provide some of the necessary experience.

Once the variables are selected and the dimensional analysis is performed, the ex-
perimenter seeks to achieve similarity between the model tested and the prototype to
be designed. With sufficient testing, the model data will reveal the desired dimension-
less function between variables

�1 � f(�2, �3, . . . �k) (5.29)

With Eq. (5.29) available in chart, graphical, or analytical form, we are in a position
to ensure complete similarity between model and prototype. A formal statement would
be as follows:

Flow conditions for a model test are completely similar if all relevant dimensionless
parameters have the same corresponding values for the model and the prototype.

This follows mathematically from Eq. (5.29). If �2m � �2p, �3m � �3p, etc., Eq. (5.29)
guarantees that the desired output �1m will equal �1p. But this is easier said than done,
as we now discuss.

Instead of complete similarity, the engineering literature speaks of particular types
of similarity, the most common being geometric, kinematic, dynamic, and thermal. Let
us consider each separately.

Geometric similarity concerns the length dimension {L} and must be ensured before
any sensible model testing can proceed. A formal definition is as follows:

�12�d1
�
d1
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Fig. 5.4 Geometric similarity in
model testing: (a) prototype;
(b) one-tenth-scale model.

A model and prototype are geometrically similar if and only if all body dimensions
in all three coordinates have the same linear-scale ratio.

Note that all length scales must be the same. It is as if you took a photograph of the pro-
totype and reduced it or enlarged it until it fitted the size of the model. If the model is
to be made one-tenth the prototype size, its length, width, and height must each be one-
tenth as large. Not only that, but also its entire shape must be one-tenth as large, and
technically we speak of homologous points, which are points that have the same relative
location. For example, the nose of the prototype is homologous to the nose of the model.
The left wingtip of the prototype is homologous to the left wingtip of the model. Then
geometric similarity requires that all homologous points be related by the same linear-
scale ratio. This applies to the fluid geometry as well as the model geometry.

All angles are preserved in geometric similarity. All flow directions are preserved.
The orientations of model and prototype with respect to the surroundings must be
identical.

Figure 5.4 illustrates a prototype wing and a one-tenth-scale model. The model
lengths are all one-tenth as large, but its angle of attack with respect to the free stream
is the same: 10° not 1°. All physical details on the model must be scaled, and some
are rather subtle and sometimes overlooked:

1. The model nose radius must be one-tenth as large.

2. The model surface roughness must be one-tenth as large.

3. If the prototype has a 5-mm boundary-layer trip wire 1.5 m from the leading
edge, the model should have a 0.5-mm trip wire 0.15 m from its leading edge.

4. If the prototype is constructed with protruding fasteners, the model should have
homologous protruding fasteners one-tenth as large.

And so on. Any departure from these details is a violation of geometric similarity and
must be justified by experimental comparison to show that the prototype behavior was
not significantly affected by the discrepancy.

Models which appear similar in shape but which clearly violate geometric similar-
ity should not be compared except at your own risk. Figure 5.5 illustrates this point.
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Fig. 5.5 Geometric similarity and
dissimilarity of flows: (a) similar;
(b) dissimilar.

The spheres in Fig. 5.5a are all geometrically similar and can be tested with a high ex-
pectation of success if the Reynolds number or Froude number, etc., is matched. But
the ellipsoids in Fig. 5.5b merely look similar. They actually have different linear-scale
ratios and therefore cannot be compared in a rational manner, even though they may
have identical Reynolds and Froude numbers, etc. The data will not be the same for
these ellipsoids, and any attempt to “compare” them is a matter of rough engineering
judgment.

Kinematic similarity requires that the model and prototype have the same length-scale
ratio and the same time-scale ratio. The result is that the velocity-scale ratio will be
the same for both. As Langhaar [8] states it:

The motions of two systems are kinematically similar if homologous particles lie at
homologous points at homologous times.

Length-scale equivalence simply implies geometric similarity, but time-scale equiva-
lence may require additional dynamic considerations such as equivalence of the
Reynolds and Mach numbers.

One special case is incompressible frictionless flow with no free surface, as sketched in
Fig. 5.6a. These perfect-fluid flows are kinematically similar with independent length and
time scales, and no additional parameters are necessary (see Chap. 8 for further details).

Frictionless flows with a free surface, as in Fig. 5.6b, are kinematically similar if
their Froude numbers are equal

Frm � �
g
V
L
m
2

m
� � �

g

V

L
p
2

p
� � Frp (5.30)

Note that the Froude number contains only length and time dimensions and hence is
a purely kinematic parameter which fixes the relation between length and time. From
Eq. (5.30), if the length scale is

Lm � �Lp (5.31)
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Fig. 5.6 Frictionless low-speed
flows are kinematically similar:
(a) Flows with no free surface are
kinematically similar with indepen-
dent length- and time-scale ratios;
(b) free-surface flows are kinemati-
cally similar with length and time
scales related by the Froude 
number.

where � is a dimensionless ratio, the velocity scale is

�
V
V

m

p
� � ��

L
L

m

p
��

1/ 2

� ��� (5.32)

and the time scale is
�
T
T

m

p
� � �

L
L

m

p

/
/
V
V

m

p
� � ��� (5.33)

These Froude-scaling kinematic relations are illustrated in Fig. 5.6b for wave-motion
modeling. If the waves are related by the length scale �, then the wave period, propa-
gation speed, and particle velocities are related by ���.

If viscosity, surface tension, or compressibility is important, kinematic similarity is
dependent upon the achievement of dynamic similarity.

Dynamic similarity exists when the model and the prototype have the same length-
scale ratio, time-scale ratio, and force-scale (or mass-scale) ratio. Again geometric sim-
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Fig. 5.7 Dynamic similarity in
sluice-gate flow. Model and proto-
type yield identical homologous
force polygons if the Reynolds and
Froude numbers are the same cor-
responding values: (a) prototype;
(b) model.

ilarity is a first requirement; without it, proceed no further. Then dynamic similarity
exists, simultaneous with kinematic similarity, if the model and prototype force and
pressure coefficients are identical. This is ensured if:

1. For compressible flow, the model and prototype Reynolds number and Mach
number and specific-heat ratio are correspondingly equal.

2. For incompressible flow

a. With no free surface: model and prototype Reynolds numbers are equal.

b. With a free surface: model and prototype Reynolds number, Froude number, and
(if necessary) Weber number and cavitation number are correspondingly equal.

Mathematically, Newton’s law for any fluid particle requires that the sum of the pres-
sure force, gravity force, and friction force equal the acceleration term, or inertia force,

Fp 
 Fg 
 Ff � Fi

The dynamic-similarity laws listed above ensure that each of these forces will be in the
same ratio and have equivalent directions between model and prototype. Figure 5.7 shows
an example for flow through a sluice gate. The force polygons at homologous points have
exactly the same shape if the Reynolds and Froude numbers are equal (neglecting surface
tension and cavitation, of course). Kinematic similarity is also ensured by these model laws.

The perfect dynamic similarity shown in Fig. 5.7 is more of a dream than a reality be-
cause true equivalence of Reynolds and Froude numbers can be achieved only by dra-
matic changes in fluid properties, whereas in fact most model testing is simply done
with water or air, the cheapest fluids available.

First consider hydraulic model testing with a free surface. Dynamic similarity re-
quires equivalent Froude numbers, Eq. (5.30), and equivalent Reynolds numbers

�
V

�
m

m

Lm� � �
V

�

pL

p

p
� (5.34)
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Fig. 5.8 Reynolds-number extrapo-
lation, or scaling, of hydraulic data
with equal Froude numbers.

But both velocity and length are constrained by the Froude number, Eqs. (5.31) and
(5.32). Therefore, for a given length-scale ratio �, Eq. (5.34) is true only if

�
�

�
m

p
� � �

L
L

m

p
� �

V
V

m

p
� � ���� � �3/2 (5.35)

For example, for a one-tenth-scale model, � � 0.1 and �3/2 � 0.032. Since �p is un-
doubtedly water, we need a fluid with only 0.032 times the kinematic viscosity of wa-
ter to achieve dynamic similarity. Referring to Table 1.4, we see that this is impossi-
ble: Even mercury has only one-ninth the kinematic viscosity of water, and a mercury
hydraulic model would be expensive and bad for your health. In practice, water is used
for both the model and the prototype, and the Reynolds-number similarity (5.34) is un-
avoidably violated. The Froude number is held constant since it is the dominant 
parameter in free-surface flows. Typically the Reynolds number of the model flow is
too small by a factor of 10 to 1000. As shown in Fig. 5.8, the low-Reynolds-number
model data are used to estimate by extrapolation the desired high-Reynolds-number
prototype data. As the figure indicates, there is obviously considerable uncertainty in
using such an extrapolation, but there is no other practical alternative in hydraulic model
testing.

Second, consider aerodynamic model testing in air with no free surface. The im-
portant parameters are the Reynolds number and the Mach number. Equation (5.34)
should be satisfied, plus the compressibility criterion

�
V
am

m� � �
V

ap

p
� (5.36)

Elimination of Vm/Vp between (5.34) and (5.36) gives

�
�

�
m

p
� � �

L
L

m

p
� �

a
a

m

p
� (5.37)

Since the prototype is no doubt an air operation, we need a wind-tunnel fluid of low
viscosity and high speed of sound. Hydrogen is the only practical example, but clearly
it is too expensive and dangerous. Therefore wind tunnels normally operate with air as
the working fluid. Cooling and pressurizing the air will bring Eq. (5.37) into better
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Fig. 5.9 Hydraulic model of a bar-
rier-beach inlet at Little River,
South Carolina. Such models of ne-
cessity violate geometric similarity
and do not model the Reynolds
number of the prototype inlet.
(Courtesy of U.S. Army Engineer
Waterways Experiment Station).

agreement but not enough to satisfy a length-scale reduction of, say, one-tenth. There-
fore Reynolds-number scaling is also commonly violated in aerodynamic testing, and
an extrapolation like that in Fig. 5.8 is required here also.

Finally, a serious discrepancy of another type occurs in hydraulic models of natural
flow systems such as rivers, harbors, estuaries, and embayments. Such flows have large
horizontal dimensions and small relative vertical dimensions. If we were to scale an es-
tuary model by a uniform linear length ratio of, say, 1�1000, the resulting model would
be only a few millimeters deep and dominated by entirely spurious surface-
tension or Weber-number effects. Therefore such hydraulic models commonly violate geo-
metric similarity by “distorting” the vertical scale by a factor of 10 or more. Figure 5.9
shows a hydraulic model of a barrier-beach inlet in South Carolina. The horizontal scale
reduction is 1�300, but the vertical scale is only 1�60. Since a deeper channel flows more
efficiently, the model channel bottom is deliberately roughened more than the natural chan-
nel to correct for the geometric discrepancy. Thus the friction effect of the discrepancy
can be corrected, but its effect on, say, dispersion of heat and mass is less well known.

EXAMPLE 5.7

The pressure drop due to friction for flow in a long smooth pipe is a function of average flow
velocity, density, viscosity, and pipe length and diameter: �p � fcn(V, �, �, L, D). We wish to
know how �p varies with V. (a) Use the pi theorem to rewrite this function in dimensionless
form. (b) Then plot this function, using the following data for three pipes and three fluids:
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D, cm L, m Q, m3/h �p, Pa �, kg/m3 �, kg/(m � s) V, m/s*

1.0 5.0 0.3 4,680 680† 2.92 E-4† 1.06
1.0 7.0 0.6 22,300 680† 2.92 E-4† 2.12
1.0 9.0 1.0 70,800 680† 2.92 E-4† 3.54
2.0 4.0 1.0 2,080 998‡ 0.0010‡ 0.88
2.0 6.0 2.0 10,500 998‡ 0.0010‡ 1.77
2.0 8.0 3.1 30,400 998‡ 0.0010‡ 2.74
3.0 3.0 0.5 540 13,550§ 1.56 E-3§ 0.20
3.0 4.0 1.0 2,480 13,550§ 1.56 E-3§ 0.39
3.0 5.0 1.7 9,600 13,550§ 1.56 E-3§ 0.67

*V � Q/A, A � �D2/4.

†Gasoline.

‡Water.

§Mercury.

(c) Suppose it is further known that �p is proportional to L (which is quite true for long pipes
with well-rounded entrances). Use this information to simplify and improve the pi-theorem for-
mulation. Plot the dimensionless data in this improved manner and comment upon the results.

Solution

There are six variables with three primary dimensions involved {MLT}. Therefore we expect that
j � 6 � 3 � 3 pi groups. We are correct, for we can find three variables which do not form a pi
product, for example, (�, V, L). Carefully select three ( j) repeating variables, but not including
�p or V, which we plan to plot versus each other. We select (�, �, D), and the pi theorem guar-
antees that three independent power-product groups will occur:

�1 � �a�bDc �p �2 � �d�eD fV �3 � �g�hDiL

or �1 � �
�D

�

2

2

� p
� �2 � �

�V
�

D
� �3 � �

D
L

�

We have omitted the algebra of finding (a, b, c, d, e, f, g, h, i) by setting all exponents to zero
M0, L0, T0. Therefore we wish to plot the dimensionless relation

�
�D

�

2

2

�p
� � fcn���V

�

D
�, �

D
L

�� Ans. (a)

We plot �1 versus �2 with �3 as a parameter. There will be nine data points. For example, the
first row in the data above yields

�
�D

�

2

2

�p
� ��

(680
(
)
2
(
.
0
9
.
2
01

E
)
-

2

4
(4
)2
680)

�� 3.73 E9

�
�V

�

D
� ��

(680
2
)(
.9
1
2
.06

E
)
-
(
4
0.01)

�� 24,700 �
D
L

� � 500

The nine data points are plotted as the open circles in Fig. 5.10. The values of L /D are listed
for each point, and we see a significant length effect. In fact, if we connect the only two points
which have the same L /D ( � 200), we could see (and cross-plot to verify) that �p increases
linearly with L, as stated in the last part of the problem. Since L occurs only in �3 � L /D, the
function �1 � fcn(�2, �3) must reduce to �1 � (L /D) fcn(�2), or simply a function involving
only two parameters:
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Fig. 5.10 Two different correlations
of the data in Example 5.7: Open
circles when plotting �D2 �p/�2

versus ReD, L/D is a parameter;
once it is known that �p is propor-
tional to L, a replot (solid circles)
of �D3 �p/(L�2) versus ReD col-
lapses into a single power-law
curve.

�
�D

L

3

�

�
2

p
� � fcn���V

�

D
�� flow in a long pipe Ans. (c)

We now modify each data point in Fig. 5.10 by dividing it by its L /D value. For example, for the
first row of data, �D3 �p/(L�2) � (3.73 E9)/500 � 7.46 E6. We replot these new data points as
solid circles in Fig. 5.10. They correlate almost perfectly into a straight-line power-law function:

�
�D

L

3

�

�
2

p
� 
 0.155��

�V
�

D
��

1.75

Ans. (c)

All newtonian smooth pipe flows should correlate in this manner. This example is a variation of
the first completely successful dimensional analysis, pipe-flow friction, performed by Prandtl’s
student Paul Blasius, who published a related plot in 1911. For this range of (turbulent-flow)
Reynolds numbers, the pressure drop increases approximately as V1.75.

EXAMPLE 5.8

The smooth-sphere data plotted in Fig. 5.3a represent dimensionless drag versus dimensionless
viscosity, since (�, V, d) were selected as scaling or repeating variables. (a) Replot these data to
display the effect of dimensionless velocity on the drag. (b) Use your new figure to predict the
terminal (zero-acceleration) velocity of a 1-cm-diameter steel ball (SG � 7.86) falling through
water at 20°C.

Solution

To display the effect of velocity, we must not use V as a repeating variable. Instead we choose
(�, �, d) as our j variables to nondimensionalize Eq. (5.1), F � fcn(d, V, �, �). (See Example
5.2 for an alternate approach to this problem.) The pi groups form as follows:

�1 � �a�bdcF � �
�

�

F
2� �2 � �e�fdgV � �

�

�

Vd
� Ans. (a)
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Fig. 5.11 Cross-plot of sphere-drag
data from Fig. 5.3a to isolate diam-
eter and velocity.

That is, a � 1, b � �2, c � 0, e � 1, f � �1, and g � 1, by using our power-product techniques
of Examples 5.2 to 5.6. Therefore a plot of �F/�2 versus Re will display the direct effect of ve-
locity on sphere drag. This replot is shown as Fig. 5.11. The drag increases rapidly with veloc-
ity up to transition, where there is a slight drop, after which it increases more quickly than ever.
If the force is known, we may predict the velocity from the figure.

For water at 20°C, take � � 998 kg/m3 and � � 0.001 kg/(m � s). For steel, �s �
7.86�water 
 7840 kg/m3. For terminal velocity, the drag equals the net weight of the sphere in
water. Thus

F � Wnet � (�s � �w)g �
�

6
�d3 � (7840 � 998)(9.81)��

�

6
��(0.01)3 � 0.0351 N

Therefore the ordinate of Fig. 5.11 is known:

Falling steel sphere: �
�

�

F
2� � 
 3.5 E7

From Fig. 5.11, at �F/�2 
 3.5 E7, a magnifying glass reveals that Red 
 2 E4. Then a crude
estimate of the terminal fall velocity is

�
�

�

Vd
� 
 20,000 or V 
 
 2.0 �

m
s
� Ans. (b)

20,000[0.001 kg/(m � s)]
���

(998 kg/m3)(0.01 m)

(998 kg/m3)(0.0351 N)
���

[0.001 kg/(m � s)]2
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Better accuracy could be obtained by expanding the scale of Fig. 5.11 in the region of the given
force coefficient. However, there is considerable uncertainty in published drag data for spheres,
so the predicted fall velocity is probably uncertain by at least "5 percent.

Note that we found the answer directly from Fig. 5.11. We could use Fig. 5.3a also but would
have to iterate between the ordinate and abscissa to obtain the final result, since V is contained
in both plotted variables.

Chapters 3 and 4 presented integral and differential methods of mathematical analysis
of fluid flow. This chapter introduces the third and final method: experimentation, as
supplemented by the technique of dimensional analysis. Tests and experiments are used
both to strengthen existing theories and to provide useful engineering results when the-
ory is inadequate.

The chapter begins with a discussion of some familiar physical relations and how
they can be recast in dimensionless form because they satisfy the principle of dimen-
sional homogeneity. A general technique, the pi theorem, is then presented for sys-
tematically finding a set of dimensionless parameters by grouping a list of variables
which govern any particular physical process. Alternately, direct application of di-
mensional analysis to the basic equations of fluid mechanics yields the fundamental
parameters governing flow patterns: Reynolds number, Froude number, Prandtl num-
ber, Mach number, and others.

It is shown that model testing in air and water often leads to scaling difficulties for
which compromises must be made. Many model tests do not achieve true dynamic sim-
ilarity. The chapter ends by pointing out that classic dimensionless charts and data can
be manipulated and recast to provide direct solutions to problems that would otherwise
be quite cumbersome and laboriously iterative.
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Problems

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon, for example, Prob. 5.61, will ben-
efit from the use of the Engineering Equation Solver (EES), while
problems labeled with a computer icon may require the use of a
computer. The standard end-of-chapter problems 5.1 to 5.91 (cat-
egorized in the problem list below) are followed by word problems
W5.1 to W5.10, fundamentals of engineering exam problems FE5.1
to FE5.10, comprehensive applied problems C5.1 to C5.4, and de-
sign projects D5.1 and D5.2.

Problem distribution

Section Topic Problems

5.1 Introduction 5.1–5.6
5.2 Choosing proper scaling parameters 5.7–5.9
5.2 The principle of dimensional homogeneity 5.10–5.17
5.3 The pi theorem 5.18–5.41

5.4 Nondimensionalizing the basic equations 5.42–5.47
5.4 Data for spheres and cylinders 5.48–5.57
5.5 Scaling of model data 5.58–5.74
5.5 Froude- and Mach-number scaling 5.75–5.84
5.5 Inventive rescaling of the data 5.85–5.91

P5.1 For axial flow through a circular tube, the Reynolds num-
ber for transition to turbulence is approximately 2300 [see
Eq. (6.2)], based upon the diameter and average velocity. If
d � 5 cm and the fluid is kerosine at 20°C, find the volume
flow rate in m3/h which causes transition.

P5.2 In flow past a thin flat body such as an airfoil, transition to
turbulence occurs at about Re � 1 E6, based on the distance
x from the leading edge of the wing. If an airplane flies at
450 mi/h at 8-km standard altitude and undergoes transition
at the 12 percent chord position, how long is its chord (wing
length from leading to trailing edge)?

Summary



All quantities have their standard meanings; for example, �
is density.

P5.11 For a particle moving in a circle, its centripetal acceleration
takes the form a � fcn(V, R), where V is its velocity and R
the radius of its path. By pure dimensional reasoning,
rewrite this function in algebraic form.

P5.12 The velocity of sound a of a gas varies with pressure p and
density �. Show by dimensional reasoning that the proper
form must be a � (const)(p/�)1/2.

P5.13 The speed of propagation C of a capillary wave in deep wa-
ter is known to be a function only of density �, wavelength
#, and surface tension �. Find the proper functional rela-
tionship, completing it with a dimensionless constant. For
a given density and wavelength, how does the propagation
speed change if the surface tension is doubled?

P5.14 Consider laminar flow over a flat plate. The boundary layer
thickness � grows with distance x down the plate and is also
a function of free-stream velocity U, fluid viscosity �, and
fluid density �. Find the dimensionless parameters for this
problem, being sure to rearrange if neessary to agree with
the standard dimensionless groups in fluid mechanics, as
given in Table 5.2.

P5.15 It is desired to measure the drag on an airplane whose ve-
locity is 300 mi/h. Is it feasible to test a one-twentieth-scale
model of the plane in a wind tunnel at the same pressure
and temperature to determine the prototype drag coefficient?

P5.16 Convection heat-transfer data are often reported as a heat-
transfer coefficient h, defined by

Q
.
� hA �T

where Q
.
� heat flow, J/s

A � surface area, m2

�T � temperature difference, K

The dimensionless form of h, called the Stanton number, is
a combination of h, fluid density �, specific heat cp, and
flow velocity V. Derive the Stanton number if it is propor-
tional to h.

P5.17 In some heat-transfer textbooks, e.g., J. P. Holman, Heat
Transfer, 5th ed., McGraw-Hill, 1981, p. 285, simplified for-
mulas are given for the heat-transfer coefficient from Prob.
5.16 for buoyant or natural convection over hot surfaces.
An example formula is

h � 1.42��
�

L
T
��

1/4

where L is the length of the hot surface. Comment on the
dimensional homogeneity of this formula. What might be
the SI units of constants 1.42 and �14�? What parameters might
be missing or hidden?

P5.18 Under laminar conditions, the volume flow Q through a
small triangular-section pore of side length b and length L

P5.3 An airplane has a chord length L � 1.2 m and flies at a
Mach number of 0.7 in the standard atmosphere. If its
Reynolds number, based on chord length, is 7 E6, how high
is it flying?

P5.4 When tested in water at 20°C flowing at 2 m/s, an 8-cm-di-
ameter sphere has a measured drag of 5 N. What will be the
velocity and drag force on a 1.5-m-diameter weather bal-
loon moored in sea-level standard air under dynamically
similar conditions?

P5.5 An automobile has a characteristic length and area of 8 ft
and 60 ft2, respectively. When tested in sea-level standard
air, it has the following measured drag force versus speed:

V, mi/h 20 40 60

Drag, lbf 31 115 249

The same car travels in Colorado at 65 mi/h at an altitude
of 3500 m. Using dimensional analysis, estimate (a) its
drag force and (b) the horsepower required to overcome air
drag.

*P5.6 SAE 10 oil at 20°C flows past an 8-cm-diameter sphere. At
flow velocities of 1, 2, and 3 m/s, the measured sphere drag
forces are 1.5, 5.3, and 11.2 N, respectively. Estimate the
drag force if the same sphere is tested at a velocity of 15
m/s in glycerin at 20°C.

P5.7 A body is dropped on the moon (g � 1.62 m/s2) with an
initial velocity of 12 m/s. By using option 2 variables,
Eq. (5.11), the ground impact occurs at t** � 0.34 and
S** � 0.84. Estimate (a) the initial displacement, (b) the fi-
nal displacement, and (c) the time of impact.

P5.8 The Bernoulli equation (5.6) can be written in the form

p � p0 � �12��V2 � �gz (1)

where p0 is the “stagnation” pressure at zero velocity and
elevation. (a) State how many scaling variables are needed
to nondimensionalize this equation. (b) Suppose that we
wish to nondimensionalize Eq. (1) in order to plot dimen-
sionless pressure versus velocity, with elevation as a para-
meter. Select the proper scaling variables and carry out and
plot the resulting dimensionless relation.

P5.9 Modify Prob. 5.8 as follows. Suppose that we wish to nondi-
mensionalize Eq. (1) in order to plot dimensionless pressure
versus gravity, with velocity as a parameter. Select the
proper scaling variables and carry out and plot the resulting
dimensionless relation.

P5.10 Determine the dimension {MLT�} of the following quan-
tities:

(a) �u �
�

�

u
x
� (b) �2

1
(p � p0) dA (c) �cp �

�

�

x

2

�

T
y

�

(d) ��� � �
�

�

u
t
� dx dy dz
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(See Prob. 5.21 for an explanation of this concept.) Rewrite
the function in terms of pi groups.

P5.25 When a viscous fluid is confined between two long con-
centric cylinders as in Fig. 4.17, the torque per unit length
T� required to turn the inner cylinder at angular velocity $
is a function of $, cylinder radii a and b, and viscosity �.
Find the equivalent dimensionless function. What happens
to the torque if both a and b are doubled?

P5.26 A pendulum has an oscillation period T which is assumed
to depend upon its length L, bob mass m, angle of swing �,
and the acceleration of gravity. A pendulum 1 m long, with
a bob mass of 200 g, is tested on earth and found to have a
period of 2.04 s when swinging at 20°. (a) What is its pe-
riod when it swings at 45°? A similarly constructed pendu-
lum, with L � 30 cm and m � 100 g, is to swing on the
moon (g � 1.62 m/s2) at � � 20°. (b) What will be its pe-
riod?

P5.27 In studying sand transport by ocean waves, A. Shields in
1936 postulated that the threshold wave-induced bottom
shear stress % required to move particles depends upon grav-
ity g, particle size d and density �p, and water density � and
viscosity �. Find suitable dimensionless groups of this prob-
lem, which resulted in 1936 in the celebrated Shields sand-
transport diagram.

P5.28 A simply supported beam of diameter D, length L, and mod-
ulus of elasticity E is subjected to a fluid crossflow of ve-
locity V, density �, and viscosity �. Its center deflection �
is assumed to be a function of all these variables. (a) Rewrite
this proposed function in dimensionless form. (b) Suppose
it is known that � is independent of �, inversely propor-
tional to E, and dependent only upon �V2, not � and V sep-
arately. Simplify the dimensionless function accordingly.
Hint: Take L, �, and V as repeating variables.

P5.29 When fluid in a pipe is accelerated linearly from rest, it be-
gins as laminar flow and then undergoes transition to tur-
bulence at a time ttr which depends upon the pipe diameter
D, fluid acceleration a, density �, and viscosity �. Arrange
this into a dimensionless relation between ttr and D.

P5.30 In forced convection, the heat-transfer coefficient h, as de-
fined in Prob. 5.16, is known to be a function of stream ve-
locity U, body size L, and fluid properties �, �, cp, and k.
Rewrite this function in dimensionless form, and note by
name any parameters you recognize. Hint: Take L, �, k, and
� as repeating variables.

P5.31 The heat-transfer rate per unit area q to a body from a fluid
in natural or gravitational convection is a function of the
temperature difference �T, gravity g, body length L, and
three fluid properties: kinematic viscosity �, conductivity k,
and thermal expansion coefficient �. Rewrite in dimen-
sionless form if it is known that g and � appear only as the
product g�.

is a function of viscosity �, pressure drop per unit length
�p/L, and b. Using the pi theorem, rewrite this relation in
dimensionless form. How does the volume flow change if
the pore size b is doubled?

P5.19 The period of oscillation T of a water surface wave is as-
sumed to be a function of density �, wavelength #, depth h,
gravity g, and surface tension �. Rewrite this relationship
in dimensionless form. What results if � is negligible? Hint:
Take #, �, and g as repeating variables.

P5.20 The power input P to a centrifugal pump is assumed to be
a function of the volume flow Q, impeller diameter D, ro-
tational rate $, and the density � and viscosity � of the
fluid. Rewrite this as a dimensionless relationship. Hint:
Take $, �, and D as repeating variables.

P5.21 In Example 5.1 we used the pi theorem to develop Eq. (5.2)
from Eq. (5.1). Instead of merely listing the primary di-
mensions of each variable, some workers list the powers of
each primary dimension for each variable in an array:

This array of exponents is called the dimensional matrix for
the given function. Show that the rank of this matrix (the
size of the largest nonzero determinant) is equal to j � n �
k, the desired reduction between original variables and the
pi groups. This is a general property of dimensional matri-
ces, as noted by Buckingham [29].

P5.22 When freewheeling, the angular velocity $ of a windmill
is found to be a function of the windmill diameter D, the
wind velocity V, the air density �, the windmill height H as
compared to the atmospheric boundary layer height L, and
the number of blades N:

$ � fcn�D, V, �, �
H
L

�, N�
Viscosity effects are negligible. Find appropriate pi groups
for this problem and rewrite the function above in dimen-
sionless form.

P5.23 The period T of vibration of a beam is a function of its length
L, area moment of inertia I, modulus of elasticity E, den-
sity �, and Poisson’s ratio �. Rewrite this relation in di-
mensionless form. What further reduction can we make if
E and I can occur only in the product form EI? Hint: Take
L, �, and E as repeating variables.

P5.24 The lift force F on a missile is a function of its length L,
velocity V, diameter D, angle of attack �, density �, vis-
cosity �, and speed of sound a of the air. Write out the di-
mensional matrix of this function and determine its rank.
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F L U � �
M �1 0 �0 �1 �1
L �1 1 �1 �3 �1
T �2 0 �1 �0 �1� 




Buckingham pi theorem, find an expression for rate of heat
loss as a function of the other three parameters in the prob-
lem. (b) If the temperature difference �T doubles, by what
factor does the rate of heat loss increase?

P5.37 The pressure difference �p across an explosion or blast wave
is a function of the distance r from the blast center, time t,
speed of sound a of the medium, and total energy E in the
blast. Rewrite this relation in dimensionless form (see Ref.
18, chap. 4, for further details of blast-wave scaling). How
does �p change if E is doubled?

P5.38 The size d of droplets produced by a liquid spray nozzle is
thought to depend upon the nozzle diameter D, jet velocity
U, and the properties of the liquid �, �, and �. Rewrite this
relation in dimensionless form. Hint: Take D, �, and U as
repeating variables.

P5.39 In turbulent flow past a flat surface, the velocity u near the
wall varies approximately logarithmically with distance y
from the wall and also depends upon viscosity �, density
�, and wall shear stress %w. For a certain airflow at 20°C
and 1 atm, %w � 0.8 Pa and u � 15 m/s at y � 3.6 mm. Use
this information to estimate the velocity u at y � 6 mm.

P5.40 Reconsider the slanted-plate surface tension problem (see
Fig. C1.1) as an exercise in dimensional analysis. Let the
capillary rise h be a function only of fluid properties, grav-
ity, bottom width, and the two angles in Fig. C1.1. That is,
h � fcn(�, �, g, L, �, �). (a) Use the pi theorem to rewrite
this function in terms of dimensionless parameters. (b) Ver-
ify that the exact solution from Prob. C1.1 is consistent with
your result in part (a).

P5.41 A certain axial-flow turbine has an output torque M which is
proportional to the volume flow rate Q and also depends upon
the density �, rotor diameter D, and rotation rate $. How does
the torque change due to a doubling of (a) D and (b) $?

P5.42 Nondimensionalize the energy equation (4.75) and its
boundary conditions (4.62), (4.63), and (4.70) by defining
T* � T/T0, where T0 is the inlet temperature, assumed con-
stant. Use other dimensionless variables as needed from Eqs.
(5.23). Isolate all dimensionless parameters you find, and
relate them to the list given in Table 5.2.

P5.43 The differential equation of salt conservation for flowing
seawater is
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where & is a (constant) coefficient of diffusion, with typi-
cal units of square meters per second, and S is the salinity
in parts per thousand. Nondimensionalize this equation and
discuss any parameters which appear.

P5.44 The differential energy equation for incompressible two-di-
mensional flow through a “Darcy-type” porous medium is
approximately

P5.32 A weir is an obstruction in a channel flow which can be cal-
ibrated to measure the flow rate, as in Fig. P5.32. The vol-
ume flow Q varies with gravity g, weir width b into the pa-
per, and upstream water height H above the weir crest. If it
is known that Q is proportional to b, use the pi theorem to
find a unique functional relationship Q(g, b, H).

314 Chapter 5 Dimensional Analysis and Similarity

H

Q

Weir

P5.32

P5.33 A spar buoy (see Prob. 2.113) has a period T of vertical (heave)
oscillation which depends upon the waterline cross-sectional
area A, buoy mass m, and fluid specific weight �. How does
the period change due to doubling of (a) the mass and (b) the
area? Instrument buoys should have long periods to avoid wave
resonance. Sketch a possible long-period buoy design.

P5.34 To good approximation, the thermal conductivity k of a gas
(see Ref. 8 of Chap. 1) depends only upon the density �,
mean free path �, gas constant R, and absolute temperature
T. For air at 20°C and 1 atm, k 
 0.026 W/(m � K) and � 

6.5 E-8 m. Use this information to determine k for hydro-
gen at 20°C and 1 atm if � 
 1.2 E-7 m.

P5.35 The torque M required to turn the cone-plate viscometer in
Fig. P5.35 depends upon the radius R, rotation rate $, fluid
viscosity �, and cone angle �. Rewrite this relation in di-
mensionless form. How does the relation simplify it if it is
known that M is proportional to �?

θ

Ω

θ

R

Fluid

P5.35

P5.36 The rate of heat loss, Q
.
loss through a window or wall is a

function of the temperature difference between inside and
outside �T, the window surface area A, and the R value of
the window which has units of (ft2 � h � °F)/Btu. (a) Using

EES



P5.50 When a micro-organism moves in a viscous fluid, it turns
out that fluid density has nearly negligible influence on the
drag force felt by the micro-organism. Such flows are called
creeping flows. The only important parameters in the prob-
lem are the velocity of motion U, the viscosity of the fluid
�, and the length scale of the body. Here assume the mi-
cro-organism’s body diameter d as the appropriate length
scale. (a) Using the Buckingham pi theorem, generate an
expression for the drag force D as a function of the other
parameters in the problem. (b) The drag coefficient dis-
cussed in this chapter CD � D/(�12��U2A) is not appropriate
for this kind of flow. Define instead a more appropriate drag
coefficient, and call it Cc (for creeping flow). (c) For a spher-
ically shaped micro-organism, the drag force can be calcu-
lated exactly from the equations of motion for creeping flow.
The result is D � 3��Ud. Write expressions for both forms
of the drag coefficient, Cc and CD, for a sphere under con-
ditions of creeping flow.

P5.51 A ship is towing a sonar array which approximates a sub-
merged cylinder 1 ft in diameter and 30 ft long with its axis
normal to the direction of tow. If the tow speed is 12 kn
(1 kn � 1.69 ft/s), estimate the horsepower required to tow
this cylinder. What will be the frequency of vortices shed
from the cylinder? Use Figs. 5.2 and 5.3.

P5.52 A 1-in-diameter telephone wire is mounted in air at 20°C
and has a natural vibration frequency of 12 Hz. What wind
velocity in ft/s will cause the wire to sing? At this con-
dition what will the average drag force per unit wire 
length be?

P5.53 Vortex shedding can be used to design a vortex flowmeter
(Fig. 6.32). A blunt rod stretched across the pipe sheds vor-
tices whose frequency is read by the sensor downstream.
Suppose the pipe diameter is 5 cm and the rod is a cylinder
of diameter 8 mm. If the sensor reads 5400 counts per
minute, estimate the volume flow rate of water in m3/h. How
might the meter react to other liquids?

P5.54 A fishnet is made of 1-mm-diameter strings knotted into
2 	 2 cm squares. Estimate the horsepower required to tow
300 ft2 of this netting at 3 kn in seawater at 20°C. The net
plane is normal to the flow direction.

P5.55 The radio antenna on a car begins to vibrate wildly at 500
Hz when the car is driven at 55 mi/h. Estimate the diame-
ter of the antenna.

P5.56 A wooden flagpole, of diameter 5 in and height 30 ft, frac-
tures at its base in hurricane winds at sea level. If the frac-
ture stress is 3500 lbf/in2, estimate the wind velocity in
mi/h.

P5.57 The simply supported 1040 carbon-steel rod of Fig. P5.57
is subjected to a crossflow stream of air at 20°C and 1 atm.
For what stream velocity U will the rod center deflection be
approximately 1 cm?
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where � is the permeability of the porous medium. All other
symbols have their usual meanings. (a) What are the ap-
propriate dimensions for �? (b) Nondimensionalize this
equation, using (L, U, �, T0) as scaling constants, and dis-
cuss any dimensionless parameters which arise.

P5.45 In natural-convection problems, the variation of density due
to the temperature difference �T creates an important buoy-
ancy term in the momentum equation (5.30). To first-order
accuracy, the density variation would be � 
 �0(1 � � �T),
where � is the thermal-expansion coefficient. The momen-
tum equation thus becomes

�0�
d
d
V
t
� � ��(p 
 �0gz) 
 �0� �T gk 
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where we have assumed that z is up. Nondimensionalize this
equation, using Eqs. (5.23), and relate the parameters you
find to the list in Table 5.2.

P5.46 The differential equation for compressible inviscid flow of
a gas in the xy plane is
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where ' is the velocity potential and a is the (variable) speed
of sound of the gas. Nondimensionalize this relation, using
a reference length L and the inlet speed of sound a0 as pa-
rameters for defining dimensionless variables.

P5.47 The differential equation for small-amplitude vibrations 
y(x, t) of a simple beam is given by
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where � � beam material density
A � cross-sectional area
I � area moment of inertia

E � Young’s modulus

Use only the quantities �, E, and A to nondimensionalize y,
x, and t, and rewrite the differential equation in dimension-
less form. Do any parameters remain? Could they be re-
moved by further manipulation of the variables?

P5.48 A smooth steel (SG � 7.86) sphere is immersed in a stream
of ethanol at 20°C moving at 1.5 m/s. Estimate its drag in
N from Fig. 5.3a. What stream velocity would quadruple its
drag? Take D � 2.5 cm.

P5.49 The sphere in Prob. 5.48 is dropped in gasoline at 20°C. Ig-
noring its acceleration phase, what will its terminal (con-
stant) fall velocity be, from Fig. 5.3a?
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tion speed for which the power will not exceed 300 W?
What will the pressure rise be for this condition?

*P5.63 The pressure drop per unit length �p/L in smooth pipe flow
is known to be a function only of the average velocity V,
diameter D, and fluid properties � and �. The following data
were obtained for flow of water at 20°C in an 8-cm-diam-
eter pipe 50 m long:

P5.58 For the steel rod of Prob. 5.57, at what airstream velocity
U will the rod begin to vibrate laterally in resonance in its
first mode (a half sine wave)? Hint: Consult a vibration text
under “lateral beam vibration.”

P5.59 We wish to know the drag of a blimp which will move in
20°C air at 6 m/s. If a one-thirtieth-scale model is tested in
water at 20°C, what should the water velocity be? At this
velocity, if the measured water drag on the model is 2700 N,
what is the drag on the prototype blimp and the power re-
quired to propel it?

P5.60 A prototype water pump has an impeller diameter of 2 ft
and is designed to pump 12 ft3/s at 750 r/min. A 1-ft-di-
ameter model pump is tested in 20°C air at 1800 r/min, and
Reynolds-number effects are found to be negligible. For
similar conditions, what will the volume flow of the model
be in ft3/s? If the model pump requires 0.082 hp to drive it,
what horsepower is required for the prototype?

P5.61 If viscosity is neglected, typical pump-flow results from
Prob. 5.20 are shown in Fig. P5.61 for a model pump tested
in water. The pressure rise decreases and the power required
increases with the dimensionless flow coefficient. Curve-fit
expressions are given for the data. Suppose a similar pump
of 12-cm diameter is built to move gasoline at 20°C and a
flow rate of 25 m3/h. If the pump rotation speed is 30 r/s,
find (a) the pressure rise and (b) the power required.
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Q, m3/s 0.005 0.01 0.015 0.020

�p, Pa 5800 20,300 42,100 70,800

U

D = 1 cm,  L = 60 cm

δ = 1 cm?

P5.57

y, in 0.021 0.035 0.055 0.080 0.12 0.16

u, ft/s 50.6 54.2 57.6 59.7 63.5 65.9

Pressure rise

Power

Pump data
(Ω in r/s)

 = flow coefficient 
0

P 
Ω3D5 ≈ 0.5 + 

 
Ω2D2 ≈ 6.0 – 120 ( (
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ρ
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ΩD3

Q

P5.61

ω

L Stiffness EI

M

P5.64

P5.65 In turbulent flow near a flat wall, the local velocity u varies
only with distance y from the wall, wall shear stress %w, and
fluid properties � and �. The following data were taken in
the University of Rhode Island wind tunnel for airflow, � �
0.0023 slug/ft3, � � 3.81 E-7 slug/(ft � s), and %w � 0.029
lbf/ft2:

(a) Plot these data in the form of dimensionless u versus di-
mensionless y, and suggest a suitable power-law curve fit.
(b) Suppose that the tunnel speed is increased until u � 90
ft/s at y � 0.11 in. Estimate the new wall shear stress, in
lbf/ft2.

EES

EES

Verify that these data are slightly outside the range of Fig.
5.10. What is a suitable power-law curve fit for the present
data? Use these data to estimate the pressure drop for flow
of kerosine at 20°C in a smooth pipe of diameter 5 cm and
length 200 m if the flow rate is 50 m3/h.

P5.64 The natural frequency � of vibration of a mass M attached
to a rod, as in Fig. P5.64, depends only upon M and the
stiffness EI and length L of the rod. Tests with a 2-kg mass
attached to a 1040 carbon-steel rod of diameter 12 mm and
length 40 cm reveal a natural frequency of 0.9 Hz. Use these
data to predict the natural frequency of a 1-kg mass attached
to a 2024 aluminum-alloy rod of the same size.

*P5.62 Modify Prob. 5.61 so that the rotation speed is unknown but
D � 12 cm and Q � 25 m3/h. What is the maximum rota-



Use these data to predict the drag force of a similar 15-in
diamond placed at similar orientation in 20°C water flow-
ing at 2.2 m/s.

P5.71 The pressure drop in a venturi meter (Fig. P3.165) varies
only with the fluid density, pipe approach velocity, and di-
ameter ratio of the meter. A model venturi meter tested in
water at 20°C shows a 5-kPa drop when the approach ve-
locity is 4 m/s. A geometrically similar prototype meter is
used to measure gasoline at 20°C and a flow rate of 
9 m3/min. If the prototype pressure gage is most accurate
at 15 kPa, what should the upstream pipe diameter be?

P5.72 A one-fifteenth-scale model of a parachute has a drag of
450 lbf when tested at 20 ft/s in a water tunnel. If Reynolds-
number effects are negligible, estimate the terminal fall ve-
locity at 5000-ft standard altitude of a parachutist using the
prototype if chute and chutist together weigh 160 lbf. Ne-
glect the drag coefficient of the woman.

P5.73 The yawing moment on a torpedo control surface is tested
on a one-eighth-scale model in a water tunnel at 20 m/s, us-
ing Reynolds scaling. If the model measured moment is 
14 N � m, what will the prototype moment be under similar
conditions?

P5.74 A one-tenth-scale model of a supersonic wing tested at 700
m/s in air at 20°C and 1 atm shows a pitching moment of
0.25 kN � m. If Reynolds-number effects are negligible, what
will the pitching moment of the prototype wing be if it is
flying at the same Mach number at 8-km standard altitude?

P5.75 A one-twelfth-scale model of an airplane is to be tested at
20°C in a pressurized wind tunnel. The prototype is to fly
at 240 m/s at 10-km standard altitude. What should the tun-
nel pressure be in atm to scale both the Mach number and
the Reynolds number accurately?

.*P5.76 A 2-ft-long model of a ship is tested in a freshwater tow
tank. The measured drag may be split into “friction” drag
(Reynolds scaling) and “wave” drag (Froude scaling). The
model data are as follows:

Tow speed, ft/s 0.8 1.6 2.4 3.2 4.0 4.8

Friction drag, lbf 0.016 0.057 0.122 0.208 0.315 0.441

Wave drag, lbf 0.002 0.021 0.083 0.253 0.509 0.697

The prototype ship is 150 ft long. Estimate its total drag
when cruising at 15 kn in seawater at 20°C.

P5.77 A dam spillway is to be tested by using Froude scaling with
a one-thirtieth-scale model. The model flow has an average
velocity of 0.6 m/s and a volume flow of 0.05 m3/s. What
will the velocity and flow of the prototype be? If the mea-
sured force on a certain part of the model is 1.5 N, what
will the corresponding force on the prototype be?

P5.78 A prototype spillway has a characteristic velocity of 3 m/s
and a characteristic length of 10 m. A small model is con-

P5.66 A torpedo 8 m below the surface in 20°C seawater cavitates
at a speed of 21 m/s when atmospheric pressure is 101 kPa.
If Reynolds-number and Froude-number effects are negli-
gible, at what speed will it cavitate when running at a depth
of 20 m? At what depth should it be to avoid cavitation at
30 m/s?

P5.67 A student needs to measure the drag on a prototype of char-
acteristic dimension dp moving at velocity Up in air at stan-
dard atmospheric conditions. He constructs a model of char-
acteristic dimension dm, such that the ratio dp/dm is some
factor f. He then measures the drag on the model at dy-
namically similar conditions (also with air at standard at-
mospheric conditions). The student claims that the drag
force on the prototype will be identical to that measured on
the model. Is this claim correct? Explain.

P5.68 Consider flow over a very small object in a viscous fluid.
Analysis of the equations of motion shows that the iner-
tial terms are much smaller than the viscous and pressure
terms. It turns out, then, that fluid density drops out of
the equations of motion. Such flows are called creeping
flows. The only important parameters in the problem are
the velocity of motion U, the viscosity of the fluid �, and
the length scale of the body. For three-dimensional bod-
ies, like spheres, creeping flow analysis yields very good
results. It is uncertain, however, if such analysis can be
applied to two-dimensional bodies such as a circular
cylinder, since even though the diameter may be very
small, the length of the cylinder is infinite for a two-di-
mensional flow. Let us see if dimensional analysis can
help. (a) Using the Buckingham pi theorem, generate an
expression for the two-dimensional drag D2-D as a func-
tion of the other parameters in the problem. Use cylinder
diameter d as the appropriate length scale. Be careful—
the two-dimensional drag has dimensions of force per unit
length rather than simply force. (b) Is your result physi-
cally plausible? If not, explain why not. (c) It turns out
that fluid density � cannot be neglected in analysis of
creeping flow over two-dimensional bodies. Repeat the
dimensional analysis, this time with � included as a pa-
rameter. Find the nondimensional relationship between
the parameters in this problem.

P5.69 A one-sixteenth-scale model of a weir (see Fig. P5.32) has
a measured flow rate Q � 2.1 ft3/s when the upstream wa-
ter height is H � 6.3 in. If Q is proportional to weir width
b, predict the prototype flow rate when Hproto � 3.2 ft.

P5.70 A diamond-shaped body, of characteristic length 9 in, has
the following measured drag forces when placed in a wind
tunnel at sea-level standard conditions:
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V, ft/s 30 38 48 56 61

F, lbf 1.25 1.95 3.02 4.05 4.81

EES



height. If a one-fifteenth-scale model is tested in a wave
channel, what current speed, wave period, and wave height
should be encountered by the model?

P5.85 Solve Prob. 5.49, using the modified sphere-drag plot of Fig.
5.11.

P5.86 Solve Prob. 5.49 for glycerin at 20°C, using the modified
sphere-drag plot of Fig. 5.11.

P5.87 In Prob. 5.62 it was difficult to solve for $ because it ap-
peared in both power and flow coefficients. Rescale the
problem, using the data of Fig. P5.61, to make a plot of di-
mensionless power versus dimensionless rotation speed. En-
ter this plot directly to solve Prob. 5.62 for $.

P5.88 Modify Prob. 5.62 as follows: Let $ � 32 r/s and Q � 24
m3/h for a geometrically similar pump. What is the maxi-
mum diameter if the power is not to exceed 340 W? Solve
this problem by rescaling the data of Fig. P5.61 to make a
plot of dimensionless power versus dimensionless diameter.
Enter this plot directly to find the desired diameter.

P5.89 Knowing that �p is proportional to L, rescale the data of
Example 5.7 to plot dimensionless �p versus dimensionless
diameter. Use this plot to find the diameter required in the
first row of data in Example 5.7 if the pressure drop is in-
creased to 10 kPa for the same flow rate, length, and fluid.

P5.90 Knowing that �p is proportional to L, rescale the data of
Example 5.7 to plot dimensionless �p versus dimension-
less viscosity. Use this plot to find the viscosity required
in the first row of data in Example 5.7 if the pressure drop
is increased to 10 kPa for the same flow rate, length, and
density.

P5.91 Develop a plot of dimensionless �p versus dimensionless
viscosity, as described in Prob. 5.90. Suppose that L � 200
m, Q � 60 m3/h, and the fluid is kerosine at 20°C. Use your
plot to determine the minimum pipe diameter for which the
pressure drop is no more than 220 kPa.

structed by using Froude scaling. What is the minimum scale
ratio of the model which will ensure that its minimum We-
ber number is 100? Both flows use water at 20°C.

P5.79 An East Coast estuary has a tidal period of 12.42 h (the
semidiurnal lunar tide) and tidal currents of approximately
80 cm/s. If a one-five-hundredth-scale model is constructed
with tides driven by a pump and storage apparatus, what
should the period of the model tides be and what model cur-
rent speeds are expected?

P5.80 A prototype ship is 35 m long and designed to cruise at 
11 m/s (about 21 kn). Its drag is to be simulated by a 1-m-
long model pulled in a tow tank. For Froude scaling find
(a) the tow speed, (b) the ratio of prototype to model drag,
and (c) the ratio of prototype to model power.

P5.81 An airplane, of overall length 55 ft, is designed to fly at 680
m/s at 8000-m standard altitude. A one-thirtieth-scale model
is to be tested in a pressurized helium wind tunnel at 20°C.
What is the appropriate tunnel pressure in atm? Even at this
(high) pressure, exact dynamic similarity is not achieved. Why?

P5.82 A prototype ship is 400 ft long and has a wetted area of
30,000 ft2. A one-eightieth-scale model is tested in a tow
tank according to Froude scaling at speeds of 1.3, 2.0, and
2.7 kn (1 kn � 1.689 ft/s). The measured friction drag of
the model at these speeds is 0.11, 0.24, and 0.41 lbf, re-
spectively. What are the three prototype speeds? What is the
estimated prototype friction drag at these speeds if we cor-
rect for Reynolds-number discrepancy by extrapolation?

P5.83 A one-fortieth-scale model of a ship’s propeller is tested in
a tow tank at 1200 r/min and exhibits a power output of 1.4
ft � lbf/s. According to Froude scaling laws, what should the
revolutions per minute and horsepower output of the proto-
type propeller be under dynamically similar conditions?

P5.84 A prototype ocean-platform piling is expected to encounter
currents of 150 cm/s and waves of 12-s period and 3-m
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Word Problems

W5.1 In 98 percent of data analysis cases, the “reducing factor”
j, which lowers the number n of dimensional variables to
n � j dimensionless groups, exactly equals the number of
relevant dimensions (M, L, T, �). In one case (Example
5.5) this was not so. Explain in words why this situation
happens.

W5.2 Consider the following equation: 1 dollar bill 
 6 in. Is
this relation dimensionally inconsistent? Does it satisfy
the PDH? Why?

W5.3 In making a dimensional analysis, what rules do you fol-
low for choosing your scaling variables?

W5.4 In an earlier edition, the writer asked the following ques-
tion about Fig. 5.1: “Which of the three graphs is a more
effective presentation?” Why was this a dumb question?

W5.5 This chapter discusses the difficulty of scaling Mach and
Reynolds numbers together (an airplane) and Froude and
Reynolds numbers together (a ship). Give an example of
a flow which would combine Mach and Froude numbers.
Would there be scaling problems for common fluids?

W5.6 What is different about a very small model of a weir or
dam (Fig. P5.32) which would make the test results dif-
ficult to relate to the prototype?

W5.7 What else are you studying this term? Give an example
of a popular equation or formula from another course
(thermodynamics, strength of materials, etc.) which does
not satisfy the principle of dimensional homogeneity. Ex-
plain what is wrong and whether it can be modified to be
homogeneous.



W5.8 Some colleges (e.g., Colorado State University) have en-
vironmental wind tunnels which can be used to study, e.g.,
wind flow over city buildings. What details of scaling
might be important in such studies?

W5.9 If the model scale ratio is � � Lm / Lp, as in Eq. (5.31),
and the Weber number is important, how must the model
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and prototype surface tension be related to � for dynamic
similarity?

W5.10 For a typical incompressible velocity potential analysis in
Chap. 4 we solve �2' � 0, subject to known values of
�'/�n on the boundaries. What dimensionless parameters
govern this type of motion?

FE5.6 A football, meant to be thrown at 60 mi/h in sea-level air
(� � 1.22 kg/m3, � � 1.78 E-5 N � m2), is to be tested us-
ing a one-quarter scale model in a water tunnel (� � 998
kg/m3, � � 0.0010 N � s/m2). For dynamic similarity,
what is the ratio of prototype force to model force?
(a) 3.86�1, (b) 16�1, (c) 32�1, (d ) 56�1, (e) 64�1

FE5.7 Consider liquid flow of density �, viscosity �, and veloc-
ity U over a very small model spillway of length scale L,
such that the liquid surface tension coefficient � is im-
portant. The quantity �U2L /� in this case is important and
is called the
(a) capillary rise, (b) Froude number, (c) Prandtl num-
ber, (d ) Weber number, (e) Bond number

FE5.8 If a stream flowing at velocity U past a body of length L
causes a force F on the body which depends only upon U,
L, and fluid viscosity �, then F must be proportional to
(a) �UL /�, (b) �U2L2, (c) �U/L, (d ) �UL, (e) UL/�

FE5.9 In supersonic wind tunnel testing, if different gases are
used, dynamic similarity requires that the model and pro-
totype have the same Mach number and the same
(a) Euler number, (b) speed of sound, (c) stagnation en-
thalpy, (d) Froude number, (e) specific heat ratio

FE5.10 The Reynolds number for a 1-ft-diameter sphere moving
at 2.3 mi/h through seawater (specific gravity 1.027, vis-
cosity 1.07 E-3 N � s/m2) is approximately
(a) 300, (b) 3000, (c) 30,000, (d) 300,000, (e) 3,000,000

Fundamentals of Engineering Exam Problems

FE5.1 Given the parameters (U, L, g, �, �) which affect a cer-
tain liquid flow problem, the ratio V2/(Lg) is usually
known as the
(a) velocity head, (b) Bernoulli head, (c) Froude number,
(d ) kinetic energy, (e) impact energy

FE5.2 A ship 150 m long, designed to cruise at 18 kn, is to be
tested in a tow tank with a model 3 m long. The appro-
priate tow velocity is
(a) 0.19 m/s, (b) 0.35 m/s, (c) 1.31 m/s,
(d ) 2.55 m/s, (e) 8.35 m/s

FE5.3 A ship 150 m long, designed to cruise at 18 kn, is to be
tested in a tow tank with a model 3 m long. If the model
wave drag is 2.2 N, the estimated full-size ship wave drag
is
(a) 5500 N, (b) 8700 N, (c) 38,900 N,
(d ) 61,800 N, (e) 275,000 N

FE5.4 A tidal estuary is dominated by the semidiurnal lunar tide,
with a period of 12.42 h. If a 1�500 model of the estuary
is tested, what should be the model tidal period?
(a) 4.0 s, (b) 1.5 min, (c) 17 min, (d ) 33 min, (e) 64 min

FE5.5 A football, meant to be thrown at 60 mi/h in sea-level air
(� � 1.22 kg/m3, � � 1.78 E-5 N � s/m2), is to be tested
using a one-quarter scale model in a water tunnel (� �
998 kg/m3, � � 0.0010 N � s/m2). For dynamic similar-
ity, what is the proper model water velocity?
(a) 7.5 mi/h, (b) 15.0 mi/h, (c) 15.6 mi/h,
(d ) 16.5 mi/h, (e) 30 mi/h

Comprehensive Problems

C5.1 Estimating pipe wall friction is one of the most common
tasks in fluids engineering. For long circular rough pipes in
turbulent flow, wall shear %w is a function of density �, vis-
cosity �, average velocity V, pipe diameter d, and wall
roughness height �. Thus, functionally, we can write %w �
fcn(�, �, V, d, �). (a) Using dimensional analysis, rewrite
this function in dimensionless form. (b) A certain pipe has
d � 5 cm and � � 0.25 mm. For flow of water at 20°C,

measurements show the following values of wall shear
stress:

Q, gal/min 1.5 3.0 6.0 9.0 12.0 14.0

%w, Pa 0.05 0.18 0.37 0.64 0.86 1.25

Plot these data using the dimensionless form obtained in
part (a) and suggest a curve-fit formula. Does your plot re-
veal the entire functional relation obtained in part (a)?



analysis. Let the vertical velocity be a function only of dis-
tance from the plate, fluid properties, gravity, and film
thickness. That is, w � fcn(x, �, �, g, �). (a) Use the pi the-
orem to rewrite this function in terms of dimensionless pa-
rameters. (b) Verify that the exact solution from Prob. 4.80
is consistent with your result in part (a).

C5.4 The Taco Inc. model 4013 centrifugal pump has an impeller
of diameter D � 12.95 in. When pumping 20°C water at
$ � 1160 r/min, the measured flow rate Q and pressure
rise �p are given by the manufacturer as follows:

Q, gal/min 200 300 400 500 600 700

�p, lb/in2 36 35 34 32 29 23

(a) Assuming that �p � fcn(�, Q, D, $), use the pi theo-
rem to rewrite this function in terms of dimensionless pa-
rameters and then plot the given data in dimensionless form.
(b) It is desired to use the same pump, running at 900 r/min,
to pump 20°C gasoline at 400 gal/min. According to your
dimensionless correlation, what pressure rise �p is ex-
pected, in lbf/in2?
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C5.2 When the fluid exiting a nozzle, as in Fig. P3.49, is a gas,
instead of water, compressibility may be important, espe-
cially if upstream pressure p1 is large and exit diameter d2

is small. In this case, the difference p1 � p2 is no longer
controlling, and the gas mass flow ṁ reaches a maximum
value which depends upon p1 and d2 and also upon the ab-
solute upstream temperature T1 and the gas constant R. Thus,
functionally, ṁ � fcn(p1, d2, T1, R). (a) Using dimensional
analysis, rewrite this function in dimensionless form. (b) A
certain pipe has d2 � 1 mm. For flow of air, measurements
show the following values of mass flow through the nozzle:

T1, K 300 300 300 500 800

p1, kPa 200 250 300 300 300

ṁ, kg/s 0.037 0.046 0.055 0.043 0.034

Plot these data in the dimensionless form obtained in part
(a). Does your plot reveal the entire functional relation ob-
tained in part (a)?

C5.3 Reconsider the fully developed draining vertical oil-film
problem (see Fig. P4.80) as an exercise in dimensional

Design Projects

D5.1 We are given laboratory data, taken by Prof. Robert Kirch-
hoff and his students at the University of Massachusetts,
for the spin rate of a 2-cup anemometer. The anemometer
was made of ping-pong balls (d � 1.5 in) split in half, fac-
ing in opposite directions, and glued to thin (�14�-in) rods
pegged to a center axle. (See Fig. P7.91 for a sketch.) There
were four rods, of lengths � � 0.212, 0.322, 0.458, and
0.574 ft. The experimental data, for wind tunnel velocity U
and rotation rate $, are as follows:

� � 0.212 � � 0.322 � � 0.458 � � 0 . 5 7 4

U, ft/s $, r/min U, ft/s $, r/min U, ft/s $, r/min U, ft/s $, r/min

18.95 435.00 18.95 225.00 20.10 140.00 23.21 115.00
22.20 545.00 23.19 290.00 26.77 215.00 27.60 145.00
25.90 650.00 29.15 370.00 31.37 260.00 32.07 175.00
29.94 760.00 32.79 425.00 36.05 295.00 36.05 195.00
38.45 970.00 38.45 495.00 39.03 327.00 39.60 215.00

Assume that the angular velocity $ of the device is a func-
tion of wind speed U, air density � and viscosity �, rod
length �, and cup diameter d. For all data, assume air is
at 1 atm and 20°C. Define appropriate pi groups for this
problem, and plot the data above in this dimensionless
manner. 

Comment on the possible uncertainty of the results.
As a design application, suppose we are to use this

anemometer geometry for a large-scale (d � 30 cm) airport
wind anemometer. If wind speeds vary up to 25 m/s and
we desire an average rotation rate $ � 120 r/min, what
should be the proper rod length? What are possible limita-
tions of your design? Predict the expected $ (in r/min) of
your design as affected by wind speeds from 0 to 25 m/s.

D5.2 By analogy with the cylinder-drag data in Fig. 5.3b, spheres
also show a strong roughness effect on drag, at least in the
Reynolds number range 4 E4  ReD  3 E5, which ac-
counts for the dimpling of golf balls to increase their dis-
tance traveled. Some experimental data for roughened
spheres [43] are given in Fig. D5.2. The figure also shows
typical golf-ball data. We see that some roughened spheres
are better than golf balls in some regions. For the present
study, let us neglect the ball’s spin, which causes the very
important side-force or Magnus effect (See Fig. 8.11) and
assume that the ball is hit without spin and follows the equa-
tions of motion for plane motion (x, z):

mẋ̇ � �F cos � mż̇ � �F sin � � W

where F � CD�
�

2
� �

�

4
�D2(ẋ 2 
 ż2) � � tan�1�x

ż
˙�



The ball has a particular CD(ReD) curve from Fig. D5.2 and
is struck with an initial velocity V0 and angle �0. Take the
ball’s average mass to be 46 g and its diameter to be 4.3 cm.
Assuming sea-level air and a modest but finite range of ini-
tial conditions, integrate the equations of motion to com-
pare the trajectory of “roughened spheres” to actual golf-
ball calculations. Can the rough sphere outdrive a normal
golf ball for any conditions? What roughness-effect differ-
ences occur between a low-impact duffer and, say, Tiger
Woods?
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Steam pipe bridge in a geothermal power plant. Pipe
flows are everywhere, often occurring in groups or
networks. They are designed using the principles
outlined in this chapter. (Courtesy of Dr. E. R. 
Degginger/Color-Pic Inc.)
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6.1 Reynolds-Number Regimes

Motivation. This chapter is completely devoted to an important practical fluids engi-
neering problem: flow in ducts with various velocities, various fluids, and various duct
shapes. Piping systems are encountered in almost every engineering design and thus
have been studied extensively. There is a small amount of theory plus a large amount
of experimentation.

The basic piping problem is this: Given the pipe geometry and its added compo-
nents (such as fittings, valves, bends, and diffusers) plus the desired flow rate and fluid
properties, what pressure drop is needed to drive the flow? Of course, it may be stated
in alternate form: Given the pressure drop available from a pump, what flow rate will
ensue? The correlations discussed in this chapter are adequate to solve most such pip-
ing problems.

Now that we have derived and studied the basic flow equations in Chap. 4, you would
think that we could just whip off myriad beautiful solutions illustrating the full range
of fluid behavior, of course expressing all these educational results in dimensionless
form, using our new tool from Chap. 5, dimensional analysis.

The fact of the matter is that no general analysis of fluid motion yet exists. There
are several dozen known particular solutions, there are some rather specific digital-
computer solutions, and there are a great many experimental data. There is a lot of the-
ory available if we neglect such important effects as viscosity and compressibility
(Chap. 8), but there is no general theory and there may never be. The reason is that a
profound and vexing change in fluid behavior occurs at moderate Reynolds numbers.
The flow ceases being smooth and steady (laminar) and becomes fluctuating and agi-
tated (turbulent). The changeover is called transition to turbulence. In Fig. 5.3a we saw
that transition on the cylinder and sphere occurred at about Re � 3 � 105, where the
sharp drop in the drag coefficient appeared. Transition depends upon many effects, e.g.,
wall roughness (Fig. 5.3b) or fluctuations in the inlet stream, but the primary parame-
ter is the Reynolds number. There are a great many data on transition but only a small
amount of theory [1 to 3].

Turbulence can be detected from a measurement by a small, sensitive instrument
such as a hot-wire anemometer (Fig. 6.29e) or a piezoelectric pressure transducer. The
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Fig. 6.1 The three regimes of vis-
cous flow: (a) laminar flow at low
Re; (b) transition at intermediate
Re; (c) turbulent flow at high Re.

flow will appear steady on average but will reveal rapid, random fluctuations if turbu-
lence is present, as sketched in Fig. 6.1. If the flow is laminar, there may be occasional
natural disturbances which damp out quickly (Fig. 6.1a). If transition is occurring, there
will be sharp bursts of turbulent fluctuation (Fig. 6.1b) as the increasing Reynolds num-
ber causes a breakdown or instability of laminar motion. At sufficiently large Re, the
flow will fluctuate continually (Fig. 6.1c) and is termed fully turbulent. The fluctua-
tions, typically ranging from 1 to 20 percent of the average velocity, are not strictly
periodic but are random and encompass a continuous range, or spectrum, of frequen-
cies. In a typical wind-tunnel flow at high Re, the turbulent frequency ranges from 1
to 10,000 Hz, and the wavelength ranges from about 0.01 to 400 cm.

EXAMPLE 6.1

The accepted transition Reynolds number for flow in a circular pipe is Red,crit � 2300. For flow
through a 5-cm-diameter pipe, at what velocity will this occur at 20°C for (a) airflow and (b) wa-
ter flow?

Solution

Almost all pipe-flow formulas are based on the average velocity V � Q/A, not centerline or any
other point velocity. Thus transition is specified at �Vd/� � 2300. With d known, we introduce
the appropriate fluid properties at 20°C from Tables A.3 and A.4:

(a) Air: � � 2300 or V � 0.7

(b) Water: � � 2300 or V � 0.046

These are very low velocities, so most engineering air and water pipe flows are turbulent, not
laminar. We might expect laminar duct flow with more viscous fluids such as lubricating oils or
glycerin.

In free surface flows, turbulence can be observed directly. Figure 6.2 shows liquid
flow issuing from the open end of a tube. The low-Reynolds-number jet (Fig. 6.2a) is
smooth and laminar, with the fast center motion and slower wall flow forming different
trajectories joined by a liquid sheet. The higher-Reynolds-number turbulent flow (Fig.
6.2b) is unsteady and irregular but, when averaged over time, is steady and predictable.

m
�
s

(998 kg/m3)V(0.05 m)
���

0.001 kg/(m � s)
�Vd
�

�

m
�
s

(1.205 kg/m3)V(0.05 m)
���

1.80 E-5 kg/(m � s)
�Vd
�

�
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Fig. 6.2 Flow issuing at constant
speed from a pipe: (a) high-
viscosity, low-Reynolds-number,
laminar flow; (b) low-viscosity,
high-Reynolds-number, turbulent
flow. [From Illustrated Experiments
in Fluid Mechanics (The NCFMF
Book of Film Notes), National
Committee for Fluid Mechanics
Films, Education Development
Center, Inc., copyright 1972.]

How did turbulence form inside the pipe? The laminar parabolic flow profile, which
is similar to Eq. (4.143), became unstable and, at Red � 2300, began to form “slugs”
or “puffs” of intense turbulence. A puff has a fast-moving front and a slow-moving rear
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Fig. 6.3 Formation of a turbulent
puff in pipe flow: (a) and (b) near
the entrance; (c) somewhat down-
stream; (d) far downstream.  (From
Ref. 45, courtesy of P. R. Bandy-
opadhyay.)

and may be visualized by experimenting with glass tube flow. Figure 6.3 shows a puff
as photographed by Bandyopadhyay [45]. Near the entrance (Fig. 6.3a and b) there is
an irregular laminar-turbulent interface, and vortex roll-up is visible. Further down-
stream (Fig. 6.3c) the puff becomes fully turbulent and very active, with helical mo-
tions visible. Far downstream (Fig. 6.3d), the puff is cone-shaped and less active, with
a fuzzy ill-defined interface, sometimes called the “relaminarization” region.

A complete description of the statistical aspects of turbulence is given in Ref. 1, while
theory and data on transition effects are given in Refs. 2 and 3. At this introductory level
we merely point out that the primary parameter affecting transition is the Reynolds num-
ber. If Re � UL/�, where U is the average stream velocity and L is the “width,” or trans-
verse thickness, of the shear layer, the following approximate ranges occur:

0 	 Re 	 1: highly viscous laminar “creeping” motion

1 	 Re 	 100: laminar, strong Reynolds-number dependence

100 	 Re 	 103: laminar, boundary-layer theory useful

103 	 Re 	 104: transition to turbulence

104 	 Re 	 106: turbulent, moderate Reynolds-number dependence

106 	 Re 	 
: turbulent, slight Reynolds-number dependence

These are representative ranges which vary somewhat with flow geometry, surface
roughness, and the level of fluctuations in the inlet stream. The great majority of our
analyses are concerned with laminar flow or with turbulent flow, and one should not
normally design a flow operation in the transition region.

Since turbulent flow is more prevalent than laminar flow, experimenters have observed
turbulence for centuries without being aware of the details. Before 1930 flow instru-
ments were too insensitive to record rapid fluctuations, and workers simply reported
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Fig. 6.4 Experimental evidence of
transition for water flow in a �14�-in
smooth pipe 10 ft long.

mean values of velocity, pressure, force, etc. But turbulence can change the mean val-
ues dramatically, e.g., the sharp drop in drag coefficient in Fig. 5.3. A German engineer
named G. H. L. Hagen first reported in 1839 that there might be two regimes of vis-
cous flow. He measured water flow in long brass pipes and deduced a pressure-drop law

�p � (const) � entrance effect (6.1)

This is exactly our laminar-flow scaling law from Example 5.4, but Hagen did not re-
alize that the constant was proportional to the fluid viscosity.

The formula broke down as Hagen increased Q beyond a certain limit, i.e., past the
critical Reynolds number, and he stated in his paper that there must be a second mode
of flow characterized by “strong movements of water for which �p varies as the sec-
ond power of the discharge. . . .” He admitted that he could not clarify the reasons for
the change.

A typical example of Hagen’s data is shown in Fig. 6.4. The pressure drop varies
linearly with V � Q/A up to about 1.1 ft/s, where there is a sharp change. Above about
V � 2.2 ft/s the pressure drop is nearly quadratic with V. The actual power �p 
 V1.75

seems impossible on dimensional grounds but is easily explained when the dimen-
sionless pipe-flow data (Fig. 5.10) are displayed.

In 1883 Osborne Reynolds, a British engineering professor, showed that the change
depended upon the parameter �Vd/�, now named in his honor. By introducing a dye

LQ
�
R4
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6.2 Internal versus External
Viscous Flows

Fig. 6.5 Reynolds’ sketches of
pipe-flow transition: (a) low-speed,
laminar flow; (b) high-speed, turbu-
lent flow; (c) spark photograph of
condition (b).  (From Ref. 4.)

streak into a pipe flow, Reynolds could observe transition and turbulence. His sketches
of the flow behavior are shown in Fig. 6.5.

If we examine Hagen’s data and compute the Reynolds number at V � 1.1 ft/s, we
obtain Red � 2100. The flow became fully turbulent, V � 2.2 ft/s, at Red � 4200. The
accepted design value for pipe-flow transition is now taken to be

Red,crit � 2300 (6.2)

This is accurate for commercial pipes (Fig. 6.13), although with special care in pro-
viding a rounded entrance, smooth walls, and a steady inlet stream, Red,crit can be de-
layed until much higher values.

Transition also occurs in external flows around bodies such as the sphere and cylin-
der in Fig. 5.3. Ludwig Prandtl, a German engineering professor, showed in 1914 that
the thin boundary layer surrounding the body was undergoing transition from laminar
to turbulent flow. Thereafter the force coefficient of a body was acknowledged to be a
function of the Reynolds number [Eq. (5.2)].

There are now extensive theories and experiments of laminar-flow instability which
explain why a flow changes to turbulence. Reference 5 is an advanced textbook on this
subject.

Laminar-flow theory is now well developed, and many solutions are known [2, 3],
but there are no analyses which can simulate the fine-scale random fluctuations of tur-
bulent flow.1 Therefore existing turbulent-flow theory is semiempirical, based upon di-
mensional analysis and physical reasoning; it is concerned with the mean flow prop-
erties only and the mean of the fluctuations, not their rapid variations. The
turbulent-flow “theory” presented here in Chaps. 6 and 7 is unbelievably crude yet sur-
prisingly effective. We shall attempt a rational approach which places turbulent-flow
analysis on a firm physical basis.

Both laminar and turbulent flow may be either internal, i.e., “bounded” by walls, or
external and unbounded. This chapter treats internal flows, and Chap. 7 studies exter-
nal flows.

An internal flow is constrained by the bounding walls, and the viscous effects will
grow and meet and permeate the entire flow. Figure 6.6 shows an internal flow in a
long duct. There is an entrance region where a nearly inviscid upstream flow converges
and enters the tube. Viscous boundary layers grow downstream, retarding the axial flow
u(r, x) at the wall and thereby accelerating the center-core flow to maintain the in-
compressible continuity requirement

Q � � u dA � const (6.3)

At a finite distance from the entrance, the boundary layers merge and the inviscid
core disappears. The tube flow is then entirely viscous, and the axial velocity adjusts
slightly further until at x � Le it no longer changes with x and is said to be fully de-
veloped, u � u(r) only. Downstream of x � Le the velocity profile is constant, the wall
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Fig. 6.6 Developing velocity pro-
files and pressure changes in the
entrance of a duct flow.

shear is constant, and the pressure drops linearly with x, for either laminar or turbu-
lent flow. All these details are shown in Fig. 6.6.

Dimensional analysis shows that the Reynolds number is the only parameter af-
fecting entrance length. If

Le � f(d, V, �, �) V �

then � g� � � g(Re) (6.4)

For laminar flow [2, 3], the accepted correlation is

� 0.06 Re laminar (6.5)

The maximum laminar entrance length, at Red,crit � 2300, is Le � 138d, which is the
longest development length possible.

In turbulent flow the boundary layers grow faster, and Le is relatively shorter, ac-
cording to the approximation for smooth walls

� 4.4 Red
1/6 turbulent (6.6)

Some computed turbulent entrance lengths are thus

Le�
d

Le�
d

�Vd
�

�

Le�
d

Q
�
A
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Red 4000 104 105 106 107 108

Le/d 18 20 30 44 65 95

Now 44 diameters may seem “long,” but typical pipe-flow applications involve an L/d
value of 1000 or more, in which case the entrance effect may be neglected and a sim-
ple analysis made for fully developed flow (Sec. 6.4). This is possible for both lami-
nar and turbulent flows, including rough walls and noncircular cross sections.

EXAMPLE 6.2

A �12�-in-diameter water pipe is 60 ft long and delivers water at 5 gal/min at 20°C. What fraction
of this pipe is taken up by the entrance region?

Solution

Convert

Q � (5 gal/min) � 0.0111 ft3/s

The average velocity is

V � �
Q
A

� � � 8.17 ft/s

From Table 1.4 read for water � � 1.01 � 10�6 m2/s � 1.09 � 10�5 ft2/s. Then the pipe
Reynolds number is

Red � �
V
�

d
� � � 31,300

This is greater than 4000; hence the flow is fully turbulent, and Eq. (6.6) applies for entrance
length

�
L
d
e� � 4.4 Re1/6

d � (4.4)(31,300)1/6 � 25

The actual pipe has L/d � (60 ft)/[(�12�/12) ft] � 1440. Hence the entrance region takes up the frac-
tion

� � 0.017 � 1.7% Ans.

This is a very small percentage, so that we can reasonably treat this pipe flow as essentially fully
developed.

Shortness can be a virtue in duct flow if one wishes to maintain the inviscid core.
For example, a “long” wind tunnel would be ridiculous, since the viscous core would
invalidate the purpose of simulating free-flight conditions. A typical laboratory low-
speed wind-tunnel test section is 1 m in diameter and 5 m long, with V � 30 m/s. If
we take �air � 1.51 � 10�5 m2/s from Table 1.4, then Red � 1.99 � 106 and, from
Eq. (6.6), Le/d � 49. The test section has L/d � 5, which is much shorter than the de-

25
�
1440

Le�
L

(8.17 ft/s)[(�12�/12) ft]
���

1.09 � 10�5 ft2/s

0.0111 ft3/s
��
(�/4)[(�12�/12) ft]2

0.00223 ft3/s
��

1 gal/min
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6.3 Semiempirical Turbulent
Shear Correlations

Reynolds’ Time-Averaging
Concept

velopment length. At the end of the section the wall boundary layers are only 10 cm
thick, leaving 80 cm of inviscid core suitable for model testing.

An external flow has no restraining walls and is free to expand no matter how thick
the viscous layers on the immersed body may become. Thus, far from the body the
flow is nearly inviscid, and our analytical technique, treated in Chap. 7, is to patch an
inviscid-flow solution onto a viscous boundary-layer solution computed for the wall
region. There is no external equivalent of fully developed internal flow.

Throughout this chapter we assume constant density and viscosity and no thermal in-
teraction, so that only the continuity and momentum equations are to be solved for ve-
locity and pressure

Continuity: � � � 0

Momentum: � � ��p � �g � � �2V

(6.7)

subject to no slip at the walls and known inlet and exit conditions. (We shall save our
free-surface solutions for Chap. 10.)

Both laminar and turbulent flows satisfy Eqs. (6.7). For laminar flow, where there
are no random fluctuations, we go right to the attack and solve them for a variety of
geometries [2, 3], leaving many more, of course, for the problems.

For turbulent flow, because of the fluctuations, every velocity and pressure term in Eqs.
(6.7) is a rapidly varying random function of time and space. At present our mathe-
matics cannot handle such instantaneous fluctuating variables. No single pair of ran-
dom functions V(x, y, z, t) and p(x, y, z, t) is known to be a solution to Eqs. (6.7).
Moreover, our attention as engineers is toward the average or mean values of velocity,
pressure, shear stress, etc., in a high-Reynolds-number (turbulent) flow. This approach
led Osborne Reynolds in 1895 to rewrite Eqs. (6.7) in terms of mean or time-averaged
turbulent variables.

The time mean u� of a turbulent function u(x, y, z, t) is defined by

u� � �T

0
u dt (6.8)

where T is an averaging period taken to be longer than any significant period of the
fluctuations themselves. The mean values of turbulent velocity and pressure are illus-
trated in Fig. 6.7. For turbulent gas and water flows, an averaging period T � 5 s is
usually quite adequate.

The fluctuation u� is defined as the deviation of u from its average value

u� � u � u� (6.9)

also shown in Fig. 6.7. It follows by definition that a fluctuation has zero mean value

u��� � �T

0
(u � u�) dt � u� � u� � 0 (6.10)

1
�
T

1
�
T

dV
�
dt

�w
�
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�y

�u
�
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Fig. 6.7 Definition of mean and
fluctuating turbulent variables:
(a) velocity; (b) pressure.

However, the mean square of a fluctuation is not zero and is a measure of the inten-
sity of the turbulence

u���2� � �T

0
u�2 dt � 0 (6.11)

Nor in general are the mean fluctuation products such as u������� and u���p��� zero in a typi-
cal turbulent flow.

Reynolds’ idea was to split each property into mean plus fluctuating variables

u � u� � u� � � �� � �� w � w� � w� p � p� � p� (6.12)

Substitute these into Eqs. (6.7), and take the time mean of each equation. The conti-
nuity relation reduces to

� � � 0 (6.13)

which is no different from a laminar continuity relation.
However, each component of the momentum equation (6.7b), after time averaging,

will contain mean values plus three mean products, or correlations, of fluctuating ve-
locities. The most important of these is the momentum relation in the mainstream, or
x, direction, which takes the form

� � � � �gx � �� � �u���2��
� �� � �u�������� � �� � �u���w����

(6.14)

The three correlation terms ��u���2�, ��u�������, and ��u���w��� are called turbulent stresses
because they have the same dimensions and occur right alongside the newtonian (lam-
inar) stress terms �(�u�/�x), etc. Actually, they are convective acceleration terms (which
is why the density appears), not stresses, but they have the mathematical effect of stress
and are so termed almost universally in the literature.

The turbulent stresses are unknown a priori and must be related by experiment to
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Fig. 6.8 Typical velocity and shear
distributions in turbulent flow near
a wall: (a) shear; (b) velocity.

geometry and flow conditions, as detailed in Refs. 1 to 3. Fortunately, in duct and
boundary-layer flow, the stress ��u������� associated with direction y normal to the wall
is dominant, and we can approximate with excellent accuracy a simpler streamwise
momentum equation

� � � � �gx � (6.15)

where � � � � �u������� � �lam � �turb (6.16)

Figure 6.8 shows the distribution of �lam and �turb from typical measurements across
a turbulent-shear layer near a wall. Laminar shear is dominant near the wall (the wall
layer), and turbulent shear dominates in the outer layer. There is an intermediate re-
gion, called the overlap layer, where both laminar and turbulent shear are important.
These three regions are labeled in Fig. 6.8.

In the outer layer �turb is two or three orders of magnitude greater than �lam, and
vice versa in the wall layer. These experimental facts enable us to use a crude but very
effective model for the velocity distribution u�(y) across a turbulent wall layer.

We have seen in Fig. 6.8 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.

2. Outer layer: Turbulent shear dominates.

3. Overlap layer: Both types of shear are important.

From now on let us agree to drop the overbar from velocity u�. Let �w be the wall shear
stress, and let � and U represent the thickness and velocity at the edge of the outer
layer, y � �.

For the wall layer, Prandtl deduced in 1930 that u must be independent of the shear-
layer thickness

u � f(�, �w, �, y) (6.17)

By dimensional analysis, this is equivalent to

�u��
�y

��
�
�y

�p��
�x

d u��
dt
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u� � � F� � u* � � �
1/2

(6.18)

Equation (6.18) is called the law of the wall, and the quantity u* is termed the friction
velocity because it has dimensions {LT�1}, although it is not actually a flow velocity.

Subsequently, Kármán in 1933 deduced that u in the outer layer is independent of
molecular viscosity, but its deviation from the stream velocity U must depend on the
layer thickness � and the other properties

(U � u)outer � g(�, �w, �, y) (6.19)

Again, by dimensional analysis we rewrite this as

� G� � (6.20)

where u* has the same meaning as in Eq. (6.18). Equation (6.20) is called the 
velocity-defect law for the outer layer.

Both the wall law (6.18) and the defect law (6.20) are found to be accurate for a
wide variety of experimental turbulent duct and boundary-layer flows [1 to 3]. They
are different in form, yet they must overlap smoothly in the intermediate layer. In 1937
C. B. Millikan showed that this can be true only if the overlap-layer velocity varies
logarithmically with y:

� ln � B overlap layer (6.21)

Over the full range of turbulent smooth wall flows, the dimensionless constants � and
B are found to have the approximate values � � 0.41 and B � 5.0. Equation (6.21) is
called the logarithmic-overlap layer.

Thus by dimensional reasoning and physical insight we infer that a plot of u versus
ln y in a turbulent-shear layer will show a curved wall region, a curved outer region,
and a straight-line logarithmic overlap. Figure 6.9 shows that this is exactly the case.
The four outer-law profiles shown all merge smoothly with the logarithmic-overlap law
but have different magnitudes because they vary in external pressure gradient. The wall
law is unique and follows the linear viscous relation

u� � � � y� (6.22)

from the wall to about y� � 5, thereafter curving over to merge with the logarithmic
law at about y� � 30.

Believe it or not, Fig. 6.9, which is nothing more than a shrewd correlation of ve-
locity profiles, is the basis for most existing “theory” of turbulent-shear flows. Notice
that we have not solved any equations at all but have merely expressed the streamwise
velocity in a neat form.

There is serendipity in Fig. 6.9: The logarithmic law (6.21), instead of just being a
short overlapping link, actually approximates nearly the entire velocity profile, except
for the outer law when the pressure is increasing strongly downstream (as in a dif-
fuser). The inner-wall law typically extends over less than 2 percent of the profile and
can be neglected. Thus we can use Eq. (6.21) as an excellent approximation to solve
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Fig. 6.9 Experimental verification
of the inner-, outer-, and overlap-
layer laws relating velocity profiles
in turbulent wall flow.

nearly every turbulent-flow problem presented in this and the next chapter. Many ad-
ditional applications are given in Refs. 2 and 3.

EXAMPLE 6.3

Air at 20°C flows through a 14-cm-diameter tube under fully developed conditions. The cen-
terline velocity is u0 � 5 m/s. Estimate from Fig. 6.9 (a) the friction velocity u*, (b) the wall
shear stress �w, and (c) the average velocity V � Q/A.

Solution

For pipe flow Fig. 6.9 shows that the logarithmic law, Eq. (6.21), is accurate all the way to the
center of the tube. From Fig. E6.3 y � R � r should go from the wall to the centerline as shown.
At the center u � u0, y � R, and Eq. (6.21) becomes

� ln � 5.0 (1)

Since we know that u0 � 5 m/s and R � 0.07 m, u* is the only unknown in Eq. (1). Find the
solution by trial and error or by EES

u* � 0.228 m/s � 22.8 cm/s Ans. (a)

where we have taken � � 1.51 � 10�5 m2/s for air from Table 1.4.

Ru*
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Part (a)



Part (b) Assuming a pressure of 1 atm, we have � � p/(RT) � 1.205 kg/m3. Since by definition u* �
(�w/�)1/2, we compute

�w � �u*2 � (1.205 kg/m3)(0.228 m/s)2 � 0.062 kg/(m � s2) � 0.062 Pa Ans. (b)

This is a very small shear stress, but it will cause a large pressure drop in a long pipe (170 Pa
for every 100 m of pipe).

The average velocity V is found by integrating the logarithmic-law velocity distribution

V � � �R

0
u 2�r dr (2)

Introducing u � u*[(1/�) ln (yu*/�) � B] from Eq. (6.21) and noting that y � R � r, we can
carry out the integration of Eq. (2), which is rather laborious. The final result is

V � 0.835u0 � 4.17 m/s Ans. (c)

We shall not bother showing the integration here because it is all worked out and a very neat
formula is given in Eqs. (6.49) and (6.59).

Notice that we started from almost nothing (the pipe diameter and the centerline velocity)
and found the answers without solving the differential equations of continuity and momen-
tum. We just used the logarithmic law, Eq. (6.21), which makes the differential equations un-
necessary for pipe flow. This is a powerful technique, but you should remember that all we
are doing is using an experimental velocity correlation to approximate the actual solution to
the problem.

We should check the Reynolds number to ensure turbulent flow

Red � � � 38,700

Since this is greater than 4000, the flow is definitely turbulent.

As our first example of a specific viscous-flow analysis, we take the classic problem
of flow in a full pipe, driven by pressure or gravity or both. Figure 6.10 shows the
geometry of the pipe of radius R. The x-axis is taken in the flow direction and is in-
clined to the horizontal at an angle �.

Before proceeding with a solution to the equations of motion, we can learn a lot by
making a control-volume analysis of the flow between sections 1 and 2 in Fig. 6.10.
The continuity relation, Eq. (3.23), reduces to

Q1 � Q2 � const

or V1 � � V2 � (6.23)

since the pipe is of constant area. The steady-flow energy equation (3.71) reduces to

� �1V1
2 � gz1 � � �2V2

2 � gz2 � ghf (6.24)

since there are no shaft-work or heat-transfer effects. Now assume that the flow is fully

1
�
2

p2�
�

1
�
2

p1�
�

Q2�
A2

Q1�
A1

(4.17 m/s)(0.14 m)
��
1.51 � 10�5 m2/s

Vd
�
�

1
�
�R2

Q
�
A
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Part (c)
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Fig. 6.10 Control volume of steady,
fully developed flow between two
sections in an inclined pipe.

developed (Fig. 6.6), and correct later for entrance effects. Then the kinetic-energy cor-
rection factor �1 � �2, and since V1 � V2 from (6.23), Eq. (6.24) now reduces to a
simple expression for the friction-head loss hf

hf � �z1 � � � �z2 � � � ��z � � � �z � (6.25)

The pipe-head loss equals the change in the sum of pressure and gravity head, i.e., the
change in height of the hydraulic grade line (HGL). Since the velocity head is constant
through the pipe, hf also equals the height change of the energy grade line (EGL). Re-
call that the EGL decreases downstream in a flow with losses unless it passes through
an energy source, e.g., as a pump or heat exchanger.

Finally apply the momentum relation (3.40) to the control volume in Fig. 6.10, ac-
counting for applied forces due to pressure, gravity, and shear

�p �R2 � �g(�R2) �L sin � � �w(2�R) �L � ṁ (V2 � V1) � 0 (6.26)

This equation relates hf to the wall shear stress

�z � � hf � (6.27)

where we have substituted �z � �L sin � from Fig. 6.10.
So far we have not assumed either laminar or turbulent flow. If we can correlate �w

with flow conditions, we have solved the problem of head loss in pipe flow. Func-
tionally, we can assume that

�w � F(�, V, �, d, �) (6.28)

where � is the wall-roughness height. Then dimensional analysis tells us that

�L
�
R

2�w�
�g

�p
�
�g

�p
�
�g

p
�
�g

p2�
�g

p1�
�g
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Equations of Motion

� f � F�Red, � (6.29)

The dimensionless parameter f is called the Darcy friction factor, after Henry Darcy
(1803–1858), a French engineer whose pipe-flow experiments in 1857 first established
the effect of roughness on pipe resistance.

Combining Eqs. (6.27) and (6.29), we obtain the desired expression for finding pipe-
head loss

hf � f (6.30)

This is the Darcy-Weisbach equation, valid for duct flows of any cross section and for
laminar and turbulent flow. It was proposed by Julius Weisbach, a German professor
who in 1850 published the first modern textbook on hydrodynamics.

Our only remaining problem is to find the form of the function F in Eq. (6.29) and
plot it in the Moody chart of Fig. 6.13.

For either laminar or turbulent flow, the continuity equation in cylindrical coordinates
is given by (App. D)

�
1
r

� �
�

�

r
� (r�r) � �

1
r

� �
�

�

�
� (��) � �

�

�

u
x
� � 0 (6.31)

We assume that there is no swirl or circumferential variation, �� � �/�� � 0, and fully
developed flow: u � u(r) only. Then Eq. (6.31) reduces to

�
1
r

� �
�

�

r
� (r�r) � 0

or r�r � const (6.32)

But at the wall, r � R, �r � 0 (no slip); therefore (6.32) implies that υr � 0 every-
where. Thus in fully developed flow there is only one velocity component, u � u(r).

The momentum differential equation in cylindrical coordinates now reduces to

�u �
�

�

u
x
� � ��

d
d
p
x
� � �gx � �

1
r

� �
�

�

r
� (r�) (6.33)

where � can represent either laminar or turbulent shear. But the left-hand side vanishes
because u � u(r) only. Rearrange, noting from Fig. 6.10 that gx � g sin �:

�
1
r

� �
�

�

r
� (r�) � �

d
d
x
� (p � �gx sin �) � �

d
d
x
� (p � �gz) (6.34)

Since the left-hand side varies only with r and the right-hand side varies only with x,
it follows that both sides must be equal to the same constant.2 Therefore we can inte-
grate Eq. (6.34) to find the shear distribution across the pipe, utilizing the fact that 
� � 0 at r � 0

� � �
1
2

� r �
d
d
x
� (p � �gz) � (const)(r) (6.35)

V2

�
2g

L
�
d

�
�
d

8�w�
�V2
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2Ask your instructor to explain this to you if necessary.



Laminar-Flow Solution

Thus the shear varies linearly from the centerline to the wall, for either laminar or tur-
bulent flow. This is also shown in Fig. 6.10. At r � R, we have the wall shear

�w � �
1
2

� R �
�p �

�L
�g �z
� (6.36)

which is identical with our momentum relation (6.27). We can now complete our study
of pipe flow by applying either laminar or turbulent assumptions to fill out Eq. (6.35).

Note in Eq. (6.35) that the HGL slope d( p � �gz)/dx is negative because both pres-
sure and height drop with x. For laminar flow, � �� du/dr, which we substitute in
Eq. (6.35)

� �
d
d
u
r
� � �

1
2

� rK K � �
d
d
x
� ( p � �gz) (6.37)

Integrate once

u � �
1
4

� r2 �
K
�

� � C1 (6.38)

The constant C1 is evaluated from the no-slip condition at the wall: u � 0 at r � R

0 � �
1
4

� R2 �
K
�

� � C1 (6.39)

or C1 � ��14�R2K/�. Introduce into Eq. (6.38) to obtain the exact solution for laminar
fully developed pipe flow

u � �
4
1
�
� ���

d
d
x
�( p � �gz)�(R2 � r2) (6.40)

The laminar-flow profile is thus a paraboloid falling to zero at the wall and reaching
a maximum at the axis

umax � �
4
R
�

2

� ���
d
d
x
�( p � �gz)� (6.41)

It resembles the sketch of u(r) given in Fig. 6.10.
The laminar distribution (6.40) is called Hagen-Poiseuille flow to commemorate the

experimental work of G. Hagen in 1839 and J. L. Poiseuille in 1940, both of whom
established the pressure-drop law, Eq. (6.1). The first theoretical derivation of Eq. (6.40)
was given independently by E. Hagenbach and by F. Neumann around 1859.

Other pipe-flow results follow immediately from Eq. (6.40). The volume flow is

Q � �R

0
u dA � �R

0
umax�1 � �

R
r2

2��2�r dr

� �
1
2

�umax�R2 � �
�

8
R
�

4

� ���
d
d
x
�( p � �gz)� (6.42)

Thus the average velocity in laminar flow is one-half the maximum velocity
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V � �
Q
A

� � �
�

Q
R2� � �

1
2

� umax (6.43)

For a horizontal tube (�z � 0), Eq. (6.42) is of the form predicted by Hagen’s exper-
iment, Eq. (6.1):

�p � �
8
�

�

R
L

4
Q

� (6.44)

The wall shear is computed from the wall velocity gradient

�w � 	� �
d
d
u
r
�	r�R

� �
2�u

R
max� � �

1
2

�R	�
d
d
x
�(p � �gz)	 (6.45)

This gives an exact theory for laminar Darcy friction factor

f � �
�

8
V
�w

2� � �
8(8

�

�

V
V
2
/d)

� � �
6
�

4
V
�

d
�

or flam � �
R
6
e
4

d
� (6.46)

This is plotted later in the Moody chart (Fig. 6.13). The fact that f drops off with in-
creasing Red should not mislead us into thinking that shear decreases with velocity:
Eq. (6.45) clearly shows that �w is proportional to umax; it is interesting to note that �w

is independent of density because the fluid acceleration is zero.
The laminar head loss follows from Eq. (6.30)

hf,lam � �
6
�

4
V
�

d
� �

L
d

� �
2
V
g

2

� � �
3
�

2
g
�

d
L
2
V

� � �
1
�

28
�

�

gd
L

4
Q

� (6.47)

We see that laminar head loss is proportional to V.

EXAMPLE 6.4

An oil with � � 900 kg/m3 and � � 0.0002 m2/s flows upward through an inclined pipe as shown
in Fig. E6.4. The pressure and elevation are known at sections 1 and 2, 10 m apart. Assuming
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10 m
Q,V

d = 6 cm

p2 = 250,000 Pa

p1 = 350,000 Pa, z1 = 0

1

2

40˚

steady laminar flow, (a) verify that the flow is up, (b) compute hf between 1 and 2, and compute
(c) Q, (d) V, and (e) Red. Is the flow really laminar?



E6.5

Solution

For later use, calculate

� � �� � (900 kg/m3)(0.0002 m2/s) � 0.18 kg/(m � s)

z2 � �L sin 40° � (10 m)(0.643) � 6.43 m

The flow goes in the direction of falling HGL; therefore compute the hydraulic grade-line height
at each section

HGL1 � z1 � �
�

p
g
1� � 0 � �

90
3
0
5
(
0
9
,0
.8
0
0
0
7)

� � 39.65 m

HGL2 � z2 � �
�

p
g
2� � 6.43 � �

90
2
0
5
(
0
9
,0
.8
0
0
0
7)

� � 34.75 m

The HGL is lower at section 2; hence the flow is from 1 to 2 as assumed. Ans. (a)

The head loss is the change in HGL:

hf � HGL1 � HGL2 � 39.65 m � 34.75 m � 4.9 m Ans. (b)

Half the length of the pipe is quite a large head loss.

We can compute Q from the various laminar-flow formulas, notably Eq. (6.47)

Q � �
�

1

�

2

g

8

d

�

4

L

hf
� � � 0.0076 m3/s Ans. (c)

Divide Q by the pipe area to get the average velocity

V � �
�

Q
R2� � �

�

0
(
.
0
0
.
0
0
7
3
6
)2� � 2.7 m/s Ans. (d)

With V known, the Reynolds number is

Red � �
V
�

d
� � �

2
0
.7
.0
(0
0
.
0
0
2
6)

� � 810 Ans. (e)

This is well below the transition value Red � 2300, and so we are fairly certain the flow is lam-
inar.

Notice that by sticking entirely to consistent SI units (meters, seconds, kilograms, newtons)
for all variables we avoid the need for any conversion factors in the calculations.

EXAMPLE 6.5

A liquid of specific weight �g � 58 lb/ft3 flows by gravity through a 1-ft tank and a 1-ft capil-
lary tube at a rate of 0.15 ft3/h, as shown in Fig. E6.5. Sections 1 and 2 are at atmospheric pres-
sure. Neglecting entrance effects, compute the viscosity of the liquid.

Solution

Apply the steady-flow energy equation (6.24), including the correction factor �:

�(900)(9.807)(0.06)4(4.9)
���

128(0.18)(10)
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1
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d = 0.004 ft

Q = 0.15 ft3/   h
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Part (a)

Part (b)

Part (c)
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Part (e)



Turbulent-Flow Solution

�
�

p
g
1� � �

�

2
1V
g

1
2

� � z1 � �
�

p
g
2� � �

�

2
2V
g

2
2

� � z2 � hf

The average exit velocity V2 can be found from the volume flow and the pipe size:

V2 � �
A
Q

2
� � �

�

Q
R2� ��

(0.
�

1
(
5
0
/3
.0
6
0
0
2
0)

ft
f
)
t
2

3/s
�� 3.32 ft/s

Meanwhile p1 � p2 � pa, and V1 � 0 in the large tank. Therefore, approximately,

hf � z1 � z2 � �2�
V
2g

2
2

� � 2.0 ft � 2.0 �
2
(
(
3
3
.3
2
2
.2

f
f
t
t
/
/
s
s
)
2

2

)
� � 1.66 ft

where we have introduced �2 � 2.0 for laminar pipe flow from Eq. (3.72). Note that hf includes
the entire 2-ft drop through the system and not just the 1-ft pipe length.

With the head loss known, the viscosity follows from our laminar-flow formula (6.47):

hf � 1.66 ft � �
3
�

2
g
�

d
L
2
V

� � � 114,500 �

or � � �
11

1
4
.6
,5
6
00

� � 1.45 E-5 slug/(ft � s) Ans.

Note that L in this formula is the pipe length of 1 ft. Finally, check the Reynolds number:

Red � �
�

�

Vd
� � � 1650 laminar

Since this is less than 2300, we conclude that the flow is indeed laminar. Actually, for this head
loss, there is a second (turbulent) solution, as we shall see in Example 6.8.

For turbulent pipe flow we need not solve a differential equation but instead proceed
with the logarithmic law, as in Example 6.3. Assume that Eq. (6.21) correlates the lo-
cal mean velocity u(r) all the way across the pipe

�
u
u
(
*
r)
� � �

�

1
� ln �

(R �

�

r)u*
� � B (6.48)

where we have replaced y by R � r. Compute the average velocity from this profile

V � �
Q
A

� � �
�

1
R2� �R

0
u*��

�

1
� ln �

(R �

�

r)u*
� � B�2�r dr

� �
1
2

�u*��
�

2
� ln �

R
�

u*
� � 2B � �

�

3
�� (6.49)

Introducing � � 0.41 and B � 5.0, we obtain, numerically,

�
u
V
*
� � 2.44 ln �

R
�

u*
� � 1.34 (6.50)

This looks only marginally interesting until we realize that V/u* is directly related to
the Darcy friction factor

(58/32.2 slug/ft3)(3.32 ft/s)(0.004 ft)
����

1.45 E-5 slug/(ft � s)

32�(1.0 ft)(3.32 ft/s)
���
(58 lbf/ft3)(0.004 ft)2
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�
u
V
*
� � ��

�

�

V

w

2

��
1/2

� ��
8
f
��

1/2

(6.51)

Moreover, the argument of the logarithm in (6.50) is equivalent to

�
R

�

u*
� � �

u
V
*
� � �

1
2

�Red��
8
f
��

1/2

(6.52)

Introducing (6.52) and (6.51) into Eq. (6.50), changing to a base-10 logarithm, and re-
arranging, we obtain

�
f 1
1
/2� � 1.99 log (Red f1/2) � 1.02 (6.53)

In other words, by simply computing the mean velocity from the logarithmic-law cor-
relation, we obtain a relation between the friction factor and Reynolds number for tur-
bulent pipe flow. Prandtl derived Eq. (6.53) in 1935 and then adjusted the constants
slightly to fit friction data better

�
f 1
1
/2� � 2.0 log (Red f1/2) � 0.8 (6.54)

This is the accepted formula for a smooth-walled pipe. Some numerical values may be
listed as follows:

Red 4000 104 105 106 107 108

f 0.0399 0.0309 0.0180 0.0116 0.0081 0.0059

Thus f drops by only a factor of 5 over a 10,000-fold increase in Reynolds number. Equa-
tion (6.54) is cumbersome to solve if Red is known and f is wanted. There are many al-
ternate approximations in the literature from which f can be computed explicitly from Red

0.316 Red
�1/4 4000 	 Red 	 105 H. Blasius (1911)

f � (6.55)

�1.8 log �
R
6.

e
9
d��

�2

Ref. 9

Blasius, a student of Prandtl, presented his formula in the first correlation ever made
of pipe friction versus Reynolds number. Although his formula has a limited range, it
illustrates what was happening to Hagen’s 1839 pressure-drop data. For a horizontal
pipe, from Eq. (6.55),

hf � �
�

�g
p
� � f �

L
d

� �
2
V
g

2

� � 0.316��
�

�

Vd
��

1/4

�
L
d

� �
2
V
g

2

�

or �p � 0.158 L�3/4�1/4d�5/4V7/4 (6.56)

at low turbulent Reynolds numbers. This explains why Hagen’s data for pressure drop
begin to increase as the 1.75 power of the velocity, in Fig. 6.4. Note that �p varies
only slightly with viscosity, which is characteristic of turbulent flow. Introducing Q �
�14��d2V into Eq. (6.56), we obtain the alternate form

�p � 0.241L�3/4�1/4d�4.75Q1.75 (6.57)

For a given flow rate Q, the turbulent pressure drop decreases with diameter even more
sharply than the laminar formula (6.47). Thus the quickest way to reduce required

�12�Vd
�

�
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Effect of Rough Walls

pumping pressure is to increase the pipe size, although, of course, the larger pipe is
more expensive. Doubling the pipe size decreases �p by a factor of about 27 for a
given Q. Compare Eq. (6.56) with Example 5.7 and Fig. 5.10.

The maximum velocity in turbulent pipe flow is given by Eq. (6.48), evaluated at
r � 0

�
u
u
m

*
ax� � �

�

1
� ln �

R
�

u*
� � B (6.58)

Combining this with Eq. (6.49), we obtain the formula relating mean velocity to max-
imum velocity

�
um

V

ax
� � (1 � 1.33
f�)�1 (6.59)

Some numerical values are

Red 4000 104 105 106 107 108

V/umax 0.790 0.811 0.849 0.875 0.893 0.907

The ratio varies with the Reynolds number and is much larger than the value of 0.5
predicted for all laminar pipe flow in Eq. (6.43). Thus a turbulent velocity profile, as
shown in Fig. 6.11, is very flat in the center and drops off sharply to zero at the wall.

It was not known until experiments in 1800 by Coulomb [6] that surface roughness has
an effect on friction resistance. It turns out that the effect is negligible for laminar pipe
flow, and all the laminar formulas derived in this section are valid for rough walls also.
But turbulent flow is strongly affected by roughness. In Fig. 6.9 the linear viscous sub-
layer only extends out to y� � yu*/� � 5. Thus, compared with the diameter, the sub-
layer thickness ys is only

�
y
d
s� � �

5�

d
/u*
� � �

R
1
ed

4.
f
1
1/2� (6.60)
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umax

V

(a)

(b)

V
umax

Parabolic
curve

Fig. 6.11 Comparison of laminar
and turbulent pipe-flow velocity
profiles for the same volume flow:
(a) laminar flow; (b) turbulent flow.



Fig. 6.12 Effect of wall roughness
on turbulent pipe flow. (a) The log-
arithmic overlap-velocity profile
shifts down and to the right; (b) ex-
periments with sand-grain rough-
ness by Nikuradse [7] show a sys-
tematic increase of the turbulent
friction factor with the roughness
ratio.

For example, at Red � 105, f � 0.0180, and ys /d � 0.001, a wall roughness of about
0.001d will break up the sublayer and profoundly change the wall law in Fig. 6.9.

Measurements of u(y) in turbulent rough-wall flow by Prandtl’s student Nikuradse
[7] show, as in Fig. 6.12a, that a roughness height � will force the logarithm-law pro-
file outward on the abscissa by an amount approximately equal to ln ��, where �� �
�u*/�. The slope of the logarithm law remains the same, 1/�, but the shift outward
causes the constant B to be less by an amount �B � (1/�) ln ��.

Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 6.12b. We see that laminar friction is
unaffected, but turbulent friction, after an onset point, increases monotonically with the
roughness ratio �/d. For any given �/d, the friction factor becomes constant (fully rough)
at high Reynolds numbers. These points of change are certain values of �� � �u*/�:

�
�u
�

*
� 	 5: hydraulically smooth walls, no effect of roughness on friction

5 � �
�u
�

*
� � 70: transitional roughness, moderate Reynolds-number effect

�
�u
�

*
� � 70: fully rough flow, sublayer totally broken up and friction

independent of Reynolds number

For fully rough flow, �� � 70, the log-law downshift �B in Fig. 6.12a is

�B � �
�

1
� ln �� � 3.5 (6.61)
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The Moody Chart

and the logarithm law modified for roughness becomes

u� � �
�

1
� ln y� � B � �B � �

�

1
� ln �

y
�

� � 8.5 (6.62)

The viscosity vanishes, and hence fully rough flow is independent of the Reynolds num-
ber. If we integrate Eq. (6.62) to obtain the average velocity in the pipe, we obtain

�
u
V
*
� � 2.44 ln �

d
�

� � 3.2

or �
f1
1
/2� � �2.0 log �

3
�/
.
d
7
� fully rough flow (6.63)

There is no Reynolds-number effect; hence the head loss varies exactly as the square
of the velocity in this case. Some numerical values of friction factor may be listed:

�/d 0.00001 0.0001 0.001 0.01 0.05

f 0.00806 0.0120 0.0196 0.0379 0.0716

The friction factor increases by 9 times as the roughness increases by a factor of 5000.
In the transitional-roughness region, sand grains behave somewhat differently from
commercially rough pipes, so Fig. 6.12b has now been replaced by the Moody chart.

In 1939 to cover the transitionally rough range, Colebrook [9] combined the smooth-
wall [Eq. (6.54)] and fully rough [Eq. (6.63)] relations into a clever interpolation for-
mula

�
f1
1
/2� � �2.0 log ��

3
�/
.
d
7
� � �

R
2
ed

.5
f
1
1/2�� (6.64)

This is the accepted design formula for turbulent friction. It was plotted in 1944 by
Moody [8] into what is now called the Moody chart for pipe friction (Fig. 6.13). The
Moody chart is probably the most famous and useful figure in fluid mechanics. It is
accurate to � 15 percent for design calculations over the full range shown in Fig. 6.13.
It can be used for circular and noncircular (Sec. 6.6) pipe flows and for open-channel
flows (Chap. 10). The data can even be adapted as an approximation to boundary-layer
flows (Chap. 7).

Equation (6.64) is cumbersome to evaluate for f if Red is known, although it easily yields
to the EES Equation Solver. An alternate explicit formula given by Haaland [33] as

�
f1
1
/2� � �1.8 log ��

R
6.

e
9

d
� � ��

3
�/
.
d
7
��

1.11

� (6.64a)

varies less than 2 percent from Eq. (6.64).
The shaded area in the Moody chart indicates the range where transition from lam-

inar to turbulent flow occurs. There are no reliable friction factors in this range, 2000 	
Red 	 4000. Notice that the roughness curves are nearly horizontal in the fully rough
regime to the right of the dashed line.

From tests with commercial pipes, recommended values for average pipe roughness
are listed in Table 6.1.
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Fig. 6.13 The Moody chart for pipe
friction with smooth and rough
walls. This chart is identical to Eq.
(6.64) for turbulent flow. (From
Ref. 8, by permission of the ASME.)
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Table 6.1 Recommended
Roughness Values for Commercial
Ducts

�

Material Condition ft mm Uncertainty, %

Steel Sheet metal, new 0.00016 0.05 � 60
Stainless, new 0.000007 0.002 � 50
Commercial, new 0.00015 0.046 � 30
Riveted 0.01 3.0 � 70
Rusted 0.007 2.0 � 50

Iron Cast, new 0.00085 0.26 � 50
Wrought, new 0.00015 0.046 � 20
Galvanized, new 0.0005 0.15 � 40
Asphalted cast 0.0004 0.12 � 50

Brass Drawn, new 0.000007 0.002 � 50
Plastic Drawn tubing 0.000005 0.0015 � 60
Glass — Smooth Smooth
Concrete Smoothed 0.00013 0.04 � 60

Rough 0.007 2.0 � 50
Rubber Smoothed 0.000033 0.01 � 60
Wood Stave 0.0016 0.5 � 40

Values of (Vd) for water at 60°F (velocity, ft/s × diameter, in)
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EXAMPLE 6.63

Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted cast-
iron pipe carrying water with a mean velocity of 6 ft/s.

Solution

One can estimate the Reynolds number of water and air from the Moody chart. Look across the
top of the chart to V (ft/s) � d (in) � 36, and then look directly down to the bottom abscissa to
find that Red(water) � 2.7 � 105. The roughness ratio for asphalted cast iron (� � 0.0004 ft) is

�
d
�

� � � 0.0008

Find the line on the right side for �/d � 0.0008, and follow it to the left until it intersects the
vertical line for Re � 2.7 � 105. Read, approximately, f � 0.02 [or compute f � 0.0197 from
Eq. (6.64a)]. Then the head loss is

hf � f �
L
d

� �
2
V
g

2

� � (0.02)�
2
0
0
.5
0

� �
2(3

(6
2.

f
2
t/

f
s
t
)
/

2

s2)
� � 4.5 ft Ans.

The pressure drop for a horizontal pipe (z1 � z2) is

�p � �ghf � (62.4 lbf/ft3)(4.5 ft) � 280 lbf/ft2 Ans.

Moody points out that this computation, even for clean new pipe, can be considered accurate
only to about � 10 percent.

EXAMPLE 6.7

Oil, with � � 900 kg/m3 and � � 0.00001 m2/s, flows at 0.2 m3/s through 500 m of 200-mm-
diameter cast-iron pipe. Determine (a) the head loss and (b) the pressure drop if the pipe slopes
down at 10° in the flow direction.

Solution

First compute the velocity from the known flow rate

V � �
�

Q
R2� � �

�

0
(
.
0
2
.1
m

m

3/s
)2� � 6.4 m/s

Then the Reynolds number is

Red � �
V
�

d
� ��

(6
0
.4
.0

m
00

/
0
s)
1
(0

m
.2

2/
m
s

)
�� 128,000

From Table 6.1, � � 0.26 mm for cast-iron pipe. Then

�
d
�

� � �
0
2
.
0
2
0
6

m
m

m
m

� � 0.0013

0.0004
�

�1
6
2�
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6.5 Three Types of Pipe-Flow
Problems

Enter the Moody chart on the right at �/d � 0.0013 (you will have to interpolate), and move to
the left to intersect with Re � 128,000. Read f � 0.0225 [from Eq. (6.64) for these values we
could compute f � 0.0227]. Then the head loss is

hf � f �
L
d

� �
2
V
g

2

� � (0.0225) �
5
0
0
.2
0

m
m

��
2
(
(
6
9
.
.
4
81

m
m
/s
/
)
s

2

2)
� � 117 m Ans. (a)

From Eq. (6.25) for the inclined pipe,

hf � �
�

�g
p
� � z1 � z2 � �

�

�g
p
� � L sin 10°

or �p � �g[hf � (500 m) sin 10°] � �g(117 m � 87 m)

� (900 kg/m3)(9.81 m/s2)(30 m) � 265,000 kg/(m � s2) � 265,000 Pa Ans. (b)

EXAMPLE 6.8

Repeat Example 6.5 to see whether there is any possible turbulent-flow solution for a smooth-
walled pipe.

Solution

In Example 6.5 we estimated a head loss hf � 1.66 ft, assuming laminar exit flow (� � 2.0). For
this condition the friction factor is

f � hf �
L
d

� �
2
V
g
2� � (1.66 ft) � 0.0388

For laminar flow, Red � 64/f � 64/0.0388 � 1650, as we showed in Example 6.5. However, from
the Moody chart (Fig. 6.13), we see that f � 0.0388 also corresponds to a turbulent smooth-wall
condition, at Red � 4500. If the flow actually were turbulent, we should change our kinetic-
energy factor to � � 1.06 [Eq. (3.73)], whence the corrected hf � 1.82 ft and f � 0.0425. With
f known, we can estimate the Reynolds number from our formulas:

Red � 3250 [Eq. (6.54)] or Red � 3400 [Eq. (6.55b)]

So the flow might have been turbulent, in which case the viscosity of the fluid would have been

� � �
�

R
V
e
d

d
� ��

1.80(3
3
.3
3
2
0
)
0
(0.004)
�� 7.2 � 10�6 slug/(ft � s) Ans.

This is about 55 percent less than our laminar estimate in Example 6.5. The moral is to keep the
capillary-flow Reynolds number below about 1000 to avoid such duplicate solutions.

The Moody chart (Fig. 6.13) can be used to solve almost any problem involving fric-
tion losses in long pipe flows. However, many such problems involve considerable it-
eration and repeated calculations using the chart because the standard Moody chart is
essentially a head-loss chart. One is supposed to know all other variables, compute

(0.004 ft)(2)(32.2 ft/s2)
���

(1.0 ft)(3.32 ft/s)2
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Type 2 Problem:
Find the Flow Rate

Red, enter the chart, find f, and hence compute hf. This is one of three fundamental
problems which are commonly encountered in pipe-flow calculations:

1. Given d, L, and V or Q, �, �, and g, compute the head loss hf (head-loss prob-
lem).

2. Given d, L, hf, �, �, and g, compute the velocity V or flow rate Q (flow-rate
problem).

3. Given Q, L, hf, �, �, and g, compute the diameter d of the pipe (sizing problem).

Only problem 1 is well suited to the Moody chart. We have to iterate to compute velocity
or diameter because both d and V are contained in the ordinate and the abscissa of the chart.

There are two alternatives to iteration for problems of type 2 and 3: (a) preparation
of a suitable new Moody-type chart (see Prob. 6.62 and 6.73); or (b) the use of solver
software, especially the Engineering Equation Solver, known as EES [47], which gives
the answer directly if the proper data are entered. Examples 6.9 and 6.11 include the
EES approach to these problems.

Even though velocity (or flow rate) appears in both the ordinate and the abscissa on
the Moody chart, iteration for turbulent flow is nevertheless quite fast, because f varies
so slowly with Red. Alternately, in the spirit of Example 5.7, we could change the scal-
ing variables to (�, �, d) and thus arrive at dimensionless head loss versus dimension-
less velocity. The result is4

� � fcn(Red) where � � �
g

L

d

�

3h
2

f
� � �

f R
2
ed

2

� (6.65)

Example 5.7 did this and offered the simple correlation � � 0.155 Red
1.75, which is valid

for turbulent flow with smooth walls and Red � 1 E5.
A formula valid for all turbulent pipe flows is found by simply rewriting the Cole-

brook interpolation, Eq. (6.64), in the form of Eq. (6.65):

Red � �(8�)1/2 log ��
3
�/
.
d
7
� � � � � �

g

L

d

�

3h
2

f
� (6.66)

Given �, we compute Red (and hence velocity) directly. Let us illustrate these two ap-
proaches with the following example.

EXAMPLE 6.9

Oil, with � � 950 kg/m3 and � � 2 E-5 m2/s, flows through a 30-cm-diameter pipe 100 m long with
a head loss of 8 m. The roughness ratio is �/d � 0.0002. Find the average velocity and flow rate.

Direct Solution

First calculate the dimensionless head-loss parameter:

� � �
g

L

d

�

3h
2

f
� � � 5.30 E7

(9.81 m/s2)(0.3 m)3(8.0 m)
���

(100 m)(2 E-5 m2/s)2

1.775
�


��
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Now enter Eq. (6.66) to find the Reynolds number:

Red � �[8(5.3 E7)]1/2 log ��0.0
3
0
.7
02
� � �



1
5�
.7
.3�
75

E�7�
�� � 72,600

The velocity and flow rate follow from the Reynolds number:

V � �
� R

d
ed� � � 4.84 m/s

Q � V�
�

4
�d2 � �4.84�

m
s
���

�

4
�(0.3 m)2 � 0.342 m3/s Ans.

No iteration is required, but this idea falters if additional losses are present.

Iterative Solution

By definition, the friction factor is known except for V:

f � hf �
L
d

� �
2
V
g
2� � (8 m)��1

0
0
.3
0

m
m

����2(9.8
V
1

2
m/s2)
�� or f V2 � 0.471 (SI units)

To get started, we only need to guess f, compute V � 
0�.4�7�1�/f�, then get Red, compute a better
f from the Moody chart, and repeat. The process converges fairly rapidly. A good first guess is
the “fully rough” value for �/d � 0.0002, or f � 0.014 from Fig. 6.13. The iteration would be as
follows:

Guess f � 0.014, then V � 
0�.4�7�1�/0�.0�1�4� � 5.80 m/s and Red � Vd/� � 87,000. At Red �
87,000 and �/d � 0.0002, compute fnew � 0.0195 [Eq. (6.64)].

New f � 0.0195, V � 
0�.4�8�1�/0�.0�1�9�5� � 4.91 m/s and Red � Vd/� � 73,700. At Red �
73,700 and �/d � 0.0002, compute fnew � 0.0201 [Eq. (6.64)].

Better f � 0.0201, V � 
0�.4�7�1�/0�.0�2�0�1� � 4.84 m/s and Red � 72,600. At Red � 72,600 and
�/d � 0.0002, compute fnew � 0.0201 [Eq. (6.64)].

We have converged to three significant figures. Thus our iterative solution is

V � 4.84 m/s

Q � V��
�

4
��d2 � (4.84)��

�

4
��(0.3)2 � 0.342 m3/s Ans.

The iterative approach is straightforward and not too onerous, so it is routinely used by engi-
neers. Obviously this repetitive procedure is ideal for a personal computer.

Engineering Equation Solver (EES) Solution

In EES, one simply enters the data and the appropriate equations, letting the software do the
rest. Correct units must of course be used. For the present example, the data could be entered
as SI:

rho=950 nu=2E-5 d=0.3 L=100 epsod=0.0002 hf=8.0 g=9.81

The appropriate equations are the Moody formula (6.64) plus the definitions of Reynolds num-

(2 E-5 m2/s)(72,600)
���

0.3 m
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ber, volume flow rate as determined from velocity, and the Darcy head-loss formula (6.30):

Re � V�d/nu

Q � V�pi�d^2/4

f � (�2.0�log10(epsod/3.7 � 2.51/Re/f^0.5))^(�2)

hf � f�L/d�V^2/2/g

EES understands that “pi” represents 3.141593. Then hit “SOLVE” from the menu. If errors have
been entered, EES will complain that the system cannot be solved and attempt to explain why.
Otherwise, the software will iterate, and in this case EES prints the correct solution:

Q=0.342 V=4.84 f=0.0201 Re=72585

The units are spelled out in a separate list as [m, kg, s, N]. This elegant approach to engi-
neering problem-solving has one drawback, namely, that the user fails to check the solution
for engineering viability. For example, are the data typed correctly? Is the Reynolds number
turbulent?

EXAMPLE 6.10

Work Moody’s problem (Example 6.6) backward, assuming that the head loss of 4.5 ft is known
and the velocity (6.0 ft/s) is unknown.

Direct Solution

Find the parameter �, and compute the Reynolds number from Eq. (6.66):

� � �
g

L

d

�

3h
2

f
� � � 7.48 E8

Eq. (6.66): Red � �[8(7.48 E8)]1/2 log ��0.0
3
0
.7
08
� � �



1
7�
.
.
7
4�
7
8�
5
E�8�

�� � 274,800

Then V � � �
R
d
ed� ��

(1.1 E-5
0
)
.
(
5
274,800)
�� 6.05 ft/s Ans.

We did not get 6.0 ft/s exactly because the 4.5-ft head loss was rounded off in Example 6.6.

Iterative Solution

As in Eq. (6.9) the friction factor is related to velocity:

f � hf �
L
d

� �
2
V
g
2� � (4.5 ft)��2

0
0
.5
0

f
f
t
t

����2(32.
V
2

2
ft/s2)
�� � �

0.7
V
2
2
45
�

or V � 
0�.7�2�4�5�/f�

Knowing �/d � 0.0008, we can guess f and iterate until the velocity converges. Begin with the
fully rough estimate f � 0.019 from Fig. 6.13. The resulting iterates are

f1 � 0.019: V1 � 
0�.7�2�4�5�/f�1� � 6.18 ft/s Red1
� �

V
�

d
� � 280,700

(32.2 ft/s2)(0.5 ft)3(4.5 ft)
���

(200 ft)(1.1 E-5 ft2/s)2
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Type 3 Problem: Find the Pipe
Diameter

f2 � 0.0198: V2 � 6.05 ft/s Red2
� 274,900

f3 � 0.01982: V3 � 6.046 ft/s Ans.

The calculation converges rather quickly to the same result as that obtained through direct com-
putation.

The Moody chart is especially awkward for finding the pipe size, since d occurs in all
three parameters f, Red, and �/d. Further, it depends upon whether we know the ve-
locity or the flow rate. We cannot know both, or else we could immediately compute
d � 
4�Q�/(���V�)�.

Let us assume that we know the flow rate Q. Note that this requires us to redefine
the Reynolds number in terms of Q:

Red � �
V
�

d
� � �

�

4
d
Q
�

� (6.67)

Then, if we choose (Q, �, �) as scaling parameters (to eliminate d), we obtain the func-
tional relationship

Red � �
�

4
d
Q
�

� � fcn��
L

g

�

h
5
f

�, �
�

Q
�
�� (6.68)

and can thus solve d when the right-hand side is known. Unfortunately, the writer knows
of no formula for this relation, nor is he able to rearrange Eq. (6.64) into the explicit
form of Eq. (6.68). One could recalculate and plot the relation, and indeed an inge-
nious “pipe-sizing” plot is given in Ref. 13. Here it seems reasonable to forgo a plot
or curve fitted formula and to simply set up the problem as an iteration in terms of the
Moody-chart variables. In this case we also have to set up the friction factor in terms
of the flow rate:

f � hf �
L
d

� �
V
2g

2� � �
�

8

2

� �
g

L

h

Q
f d

2

5

� (6.69)

The following two examples illustrate the iteration.

EXAMPLE 6.11

Work Example 6.9 backward, assuming that Q � 0.342 m3/s and � � 0.06 mm are known but
that d (30 cm) is unknown. Recall L � 100 m, � � 950 kg/m3, � � 2 E-5 m2/s, and hf � 8 m.

Iterative Solution

First write the diameter in terms of the friction factor:

f � �
�

8

2

� � 8.28d5 or d � 0.655f1/5 (1)

in SI units. Also write the Reynolds number and roughness ratio in terms of the diameter:

(9.81 m/s2)(8 m)d5

���
(100 m)(0.342 m3/s)2
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Red ��
�

4
(
(
2
0.

E
34

-5
2

m
m

2

3

/
/
s
s
)
)
d

�� �
21,

d
800
� (2)

�
d
�

� � �
6 E

d
-5 m
� (3)

Guess f, compute d from (1), then compute Red from (2) and �/d from (3), and compute a bet-
ter f from the Moody chart or Eq. (6.64). Repeat until (fairly rapid) convergence. Having no ini-
tial estimate for f, the writer guesses f � 0.03 (about in the middle of the turbulent portion of
the Moody chart). The following calculations result:

f � 0.03 d � 0.655(0.03)1/5 � 0.325 m

Red � �
2
0
1
.
,
3
8
2
0
5
0

� � 67,000 �
d
�

� � 1.85 E-4

Eq. (6.54): fnew � 0.0203 then dnew � 0.301 m

Red,new � 72,500 �
d
�

� � 2.0 E-4

Eq. (6.54): fbetter � 0.0201 and d � 0.300 m Ans.

The procedure has converged to the correct diameter of 30 cm given in Example 6.9.

EES Solution

For an EES solution, enter the data and the appropriate equations. The diameter is unknown.
Correct units must of course be used. For the present example, the data should use SI units:

rho=950 nu=2E-5 L=100 eps=6E-5 hf=8.0 g=9.81 Q=0.342

The appropriate equations are the Moody formula, the definition of Reynolds number, vol-
ume flow rate as determined from velocity, the Darcy head-loss formula, and the roughness
ratio:

Re � V�d/nu

Q � V�pi�d^2/4

f � (�2.0�log10(epsod/3.7 � 2.51/Re/f^0.5))^(�2)

hf � f�L/d�V^2/2/g

epsod � eps/d

Hit Solve from the menu. Unlike Example 6.9, this time EES complains that the system can-
not be solved and reports “logarithm of a negative number.” The reason is that we allowed
EES to assume that f could be a negative number. Bring down Variable Information from the
menu and change the limits of f so that it cannot be negative. EES agrees and iterates to the
solution:

d � 0.300 V � 4.84 f � 0.0201 Re � 72,585

The unit system is spelled out as (m, kg, s, N). As always when using software, the user should
check the solution for engineering viability. For example, is the Reynolds number turbulent?
(Yes)
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6.6 Flow in Noncircular Ducts5

The Hydraulic Diameter

EXAMPLE 6.12

Work Moody’s problem, Example 6.6, backward to find the unknown (6 in) diameter if the flow
rate Q � 1.18 ft3/s is known. Recall L � 200 ft, � � 0.0004 ft, and � � 1.1 E-5 ft2/s.

Solution

Write f, Red, and �/d in terms of the diameter:

f � �
�

8

2

� �
g

L

h

Q
fd

2

5

� � �
�

8

2

� � 0.642d5 or d � 1.093 f1/5 (1)

Red ��
�(1

4
.
(
1
1.

E
1
-
8
5

f
f
t3

t2
/s
/s
)
) d

�� �
136

d
,600
� (2)

�
d
�

� � �
0.00

d
04 ft
� (3)

with everything in BG units, of course. Guess f ; compute d from (1), Red from (2), and �/d from
(3); and then compute a better f from the Moody chart. Repeat until convergence. The writer tra-
ditionally guesses an initial f � 0.03:

f � 0.03 d � 1.093(0.03)1/5 � 0.542 ft

Red � �
13
0
6
.5
,6
4
0
2
0

� � 252,000 �
d
�

� � 7.38 E-4

fnew � 0.0196 dnew � 0.498 ft Red � 274,000 �
d
�

� � 8.03 E-4

fbetter � 0.0198 d � 0.499 ft Ans.

Convergence is rapid, and the predicted diameter is correct, about 6 in. The slight discrepancy
(0.499 rather than 0.500 ft) arises because hf was rounded to 4.5 ft.

In discussing pipe-sizing problems, we should remark that commercial pipes are
made only in certain sizes. Table 6.2 lists standard water-pipe sizes in the United States.
If the sizing calculation gives an intermediate diameter, the next largest pipe size should
be selected.

If the duct is noncircular, the analysis of fully developed flow follows that of the cir-
cular pipe but is more complicated algebraically. For laminar flow, one can solve the
exact equations of continuity and momentum. For turbulent flow, the logarithm-law ve-
locity profile can be used, or (better and simpler) the hydraulic diameter is an excel-
lent approximation.

For a noncircular duct, the control-volume concept of Fig. 6.10 is still valid, but the
cross-sectional area A does not equal �R2 and the cross-sectional perimeter wetted by
the shear stress � does not equal 2�R. The momentum equation (6.26) thus becomes

�p A � �gA �L sin � � ��w� �L � 0

(32.2 ft/s2)(4.5 ft)d5

���
(200 ft)(1.18 ft3/s)2
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Table 6.2 Nominal and Actual
Sizes of Schedule 40 Wrought-
Steel Pipe*

Nominal size, in Actual ID, in

1�18� 0.269
1�14� 0.364
1�38� 0.493
1�12� 0.622
1�34� 0.824
1�34� 1.049
1�12� 1.610
2�34� 2.067
2�12� 2.469
3�34� 3.068

*Nominal size within 1 percent for 4 in or
larger.

5This section may be omitted without loss of continuity.



or hf � �
�

�g
p
� � �z � �

�

�
�
g
w� �

A
�

/�
L
� (6.70)

This is identical to Eq. (6.27) except that (1) the shear stress is an average value inte-
grated around the perimeter and (2) the length scale A/� takes the place of the pipe
radius R. For this reason a noncircular duct is said to have a hydraulic radius Rh, de-
fined by

Rh � �
�
A

� � (6.71)

This concept receives constant use in open-channel flow (Chap. 10), where the chan-
nel cross section is almost never circular. If, by comparison to Eq. (6.29) for pipe flow,
we define the friction factor in terms of average shear

fNCD � �
8
�

�

V
�w

2� (6.72)

where NCD stands for noncircular duct and V � Q/A as usual, Eq. (6.70) becomes

hf � f �
4
L
Rh
� �

2
V
g

2

� (6.73)

This is equivalent to Eq. (6.30) for pipe flow except that d is replaced by 4Rh. There-
fore we customarily define the hydraulic diameter as

Dh � �
4
�
A
� ��

wett
4
ed

�

pe
a
r
r
i
e
m
a

eter
�� 4Rh (6.74)

We should stress that the wetted perimeter includes all surfaces acted upon by the shear
stress. For example, in a circular annulus, both the outer and the inner perimeter should
be added. The fact that Dh equals 4Rh is just one of those things: Chalk it up to an en-
gineer’s sense of humor. Note that for the degenerate case of a circular pipe, Dh �
4�R2/(2�R) � 2R, as expected.

We would therefore expect by dimensional analysis that this friction factor f, based
upon hydraulic diameter as in Eq. (6.72), would correlate with the Reynolds number
and roughness ratio based upon the hydraulic diameter

f � F��
V

�

Dh�, �
D
�

h
�� (6.75)

and this is the way the data are correlated. But we should not necessarily expect the
Moody chart (Fig. 6.13) to hold exactly in terms of this new length scale. And it does
not, but it is surprisingly accurate:

�
R
6
e
4

Dh

� �40% laminar flow
f � (6.76)

fMoody�ReDh
, �

D
�

h
�� �15% turbulent flow

Now let us look at some particular cases.

cross-sectional area
���

wetted perimeter
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Flow between Parallel Plates As shown in Fig. 6.14, flow between parallel plates a distance h apart is the limiting
case of flow through a very wide rectangular channel. For fully developed flow, u �
u(y) only, which satisfies continuity identically. The momentum equation in cartesian
coordinates reduces to

0 � ��
d
d
p
x
� � �gx � �

d
d
�

y
� �lam � ��

d
d
u
y
� (6.77)

subject to no-slip conditions: u � 0 at y � �h. The laminar-flow solution was given
as an example in Eq. (4.143). Here we also allow for the possibility of a sloping chan-
nel, with a pressure gradient due to gravity. The solution is

u � �
2
1
�
� ���

d
d
x
�( p � �gz)�(h2 � y2) (6.78)

If the channel has width b, the volume flow is

Q � ��h

�h
u(y)b dy � �

b
3
h
�

3

� ���
d
d
x
� ( p � �gz)�

or V � �
b
Q
h
� � �

3
h
�

2

� ���
d
d
x
�( p � �gz)� � �

2
3

� umax (6.79)

Note the difference between a parabola [Eq. (6.79)] and a paraboloid [Eq. (6.43)]: the
average is two-thirds of the maximum velocity in plane flow and one-half in axisym-
metric flow.

The wall shear stress in developed channel flow is a constant:

�w � �	�
d
d
u
y
�	

y��h

� h���
d
d
x
�(p � �gz)� (6.80)

This may be nondimensionalized as a friction factor:

f � �
�

8
V
�w

2� � �
2
�

4
V
�

h
� � �

R
2
e
4

h
� (6.81)

These are exact analytic laminar-flow results, so there is no reason to resort to the 
hydraulic-diameter concept. However, if we did use Dh, a discrepancy would arise. The
hydraulic diameter of a wide channel is
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u max

2 h

Y

y

y = +h

u ( y)

x

y = – h

b → ∞

Fig. 6.14 Fully developed flow be-
tween parallel plates.



Dh � �
4
�

A
� � lim

b→�
�
2
4
b
(2
�

bh
4
)
h

� � 4h (6.82)

or twice the distance between the plates. Substituting into Eq. (6.81), we obtain the in-
teresting result

Parallel plates: flam � �
�V

96
(4
�

h)
� � �

R
9
e
6

Dh

� (6.83)

Thus, if we could not work out the laminar theory and chose to use the approximation
f � 64/ReDh

, we would be 33 percent low. The hydraulic-diameter approximation is
relatively crude in laminar flow, as Eq. (6.76) states.

Just as in circular-pipe flow, the laminar solution above becomes unstable at about
ReDh

� 2000; transition occurs and turbulent flow results.
For turbulent flow between parallel plates, we can again use the logarithm law,

Eq. (6.21), as an approximation across the entire channel, using not y but a wall coor-
dinate Y, as shown in Fig. 6.14:

�
u
u
(Y
*

)
� � �

�

1
� ln �

Y
�

u*
� � B 0 	 Y 	 h (6.84)

This distribution looks very much like the flat turbulent profile for pipe flow in Fig.
6.11b, and the mean velocity is

V � �
1
h

� �h

0
u dY � u*��

�

1
� ln �

hu
�

*
� � B � �

�

1
�� (6.85)

Recalling that V/u* � (8/f)1/2, we see that Eq. (6.85) is equivalent to a parallel-plate
friction law. Rearranging and cleaning up the constant terms, we obtain

�
f
1
1/2� � 2.0 log (ReDh

f 1/2) � 1.19 (6.86)

where we have introduced the hydraulic diameter Dh � 4h. This is remarkably close
to the pipe-friction law, Eq. (6.54). Therefore we conclude that the use of the hydraulic
diameter in this turbulent case is quite successful. That turns out to be true for other
noncircular turbulent flows also.

Equation (6.86) can be brought into exact agreement with the pipe law by rewrit-
ing it in the form

�
f
1
1/2� � 2.0 log (0.64 ReDh

f 1/2) � 0.8 (6.87)

Thus the turbulent friction is predicted most accurately when we use an effective di-
ameter Deff equal to 0.64 times the hydraulic diameter. The effect on f itself is much
less, about 10 percent at most. We can compare with Eq. (6.83) for laminar flow, which
predicted

Parallel plates: Deff � �
6
9
4
6
�Dh � �

2
3

�Dh (6.88)

This close resemblance (0.64Dh versus 0.667Dh) occurs so often in noncircular duct
flow that we take it to be a general rule for computing turbulent friction in ducts:

Deff � Dh � �
4
�
A
� reasonable accuracy
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Part (a)

Deff(laminar theory) extreme accuracy (6.89)

Jones [10] shows that the effective-laminar-diameter idea collapses all data for rectan-
gular ducts of arbitrary height-to-width ratio onto the Moody chart for pipe flow. We
recommend this idea for all noncircular ducts.

EXAMPLE 6.13

Fluid flows at an average velocity of 6 ft/s between horizontal parallel plates a distance of 2.4
in apart. Find the head loss and pressure drop for each 100 ft of length for � � 1.9 slugs/ft3 and
(a) � � 0.00002 ft3/s and (b) � � 0.002 ft3/s. Assume smooth walls.

Solution

The viscosity � � �� � 3.8 � 10�5 slug/(ft � s). The spacing is 2h � 2.4 in � 0.2 ft, and Dh �
4h � 0.4 ft. The Reynolds number is

ReDh
� �

V
�

Dh� ��
(6

0
.
.
0
00

ft
0
/s
0
)
2
(0

f
.
t
4
2/s

ft)
�� 120,000

The flow is therefore turbulent. For reasonable accuracy, simply look on the Moody chart (Fig.
6.13) for smooth walls

f � 0.0173 hf � f �
D
L

h
� �

V
2g

2

� � 0.0173 �
1
0
0
.4
0

� �
2
(
(
6
3
.
2
0
.
)
2

2

)
� � 2.42 ft Ans. (a)

Since there is no change in elevation,

�p � �ghf � 1.9(32.2)(2.42) � 148 lbf/ft2 Ans. (a)

This is the head loss and pressure drop per 100 ft of channel. For more accuracy, take Deff �
�23�Dh from laminar theory; then

Reeff � �23�(120,000) � 80,000

and from the Moody chart read f � 0.0189 for smooth walls. Thus a better estimate is

hf � 0.0189 �
1
0
0
.4
0

� �
2
(
(
6
3
.
2
0
.
)
2

2

)
� � 2.64 ft

and �p � 1.9(32.2)(2.64) � 161 lbf/ft2 Better ans. (a)

The more accurate formula predicts friction about 9 percent higher.

Compute � � �� � 0.0038 slug/(ft � s). The Reynolds number is 6.0(0.4)/0.002 � 1200; there-
fore the flow is laminar, since Re is less than 2300.

You could use the laminar-flow friction factor, Eq. (6.83)

flam � � �
1
9
2
6
00
� � 0.08

from which hf � 0.08 �
1
0
0
.4
0

� �
2
(
(
6
3
.
2
0
.
)
2

2

)
� � 11.2 ft

and �p � 1.9(32.2)(11.2) � 684 lbf/ft2 Ans. (b)

96
�
ReDh
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Part (b)



Flow through a Concentric
Annulus

Alternately you can finesse the Reynolds number and go directly to the appropriate laminar-flow
formula, Eq. (6.79)

V � �
3
h
�

2

� �
�

L
p
�

or �p � � 684 slugs/(ft � s2) � 684 lbf/ft2

and hf � �
�

�g
p
� � �

1.9
6
(
8
3
4
2.2)
� � 11.2 ft

This is one of those—perhaps unexpected—problems where the laminar friction is greater than
the turbulent friction.

Consider steady axial laminar flow in the annular space between two concentric cylin-
ders, as in Fig. 6.15. There is no slip at the inner (r � b) and outer radius (r � a). For
u � u(r) only, the governing relation is Eq. (6.34)

�
d
d
r
��r��

d
d
u
r
�� � Kr K � �

d
d
x
�(p � �gz) (6.90)

Integrate this twice

u � �
1
4

� r2 �
K
�

� � C1 ln r � C2

The constants are found from the two no-slip conditions

u(r � a) � 0 � �
1
4

� a2 �
K
�

� � C1 ln a � C2

u(r � b) � 0 � �
1
4

� b2 �
K
�

� � C1 ln b � C2

The final solution for the velocity profile is

u � �
4
1
�
� ���

d
d
x
� (p � �gz)��a2 � r2 � �

a
ln

2

(
�

b/
b
a

2

)
� ln �

a
r

�� (6.91)

3(6.0 ft/s)[0.0038 slug/(ft � s)](100 ft)
����

(0.1 ft)2
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Fig. 6.15 Fully developed flow
through a concentric annulus.

u(r)

u(r)

r

r = b

r = a

x



The volume flow is given by

Q � �a

b
u2�r dr � �

8
�

�
� ���

d
d
x
� (p � �gz)��a4 � b4 � �

(a
ln

2 �

(a/
b
b

2

)
)2

�� (6.92)

The velocity profile u(r) resembles a parabola wrapped around in a circle to form a
split doughnut, as in Fig. 6.15. The maximum velocity occurs at the radius

r� � ��2
a
l

2

n
�

(a
b
/b

2

)
��

1/2

u � umax (6.93)

This maximum is closer to the inner radius but approaches the midpoint between cylin-
ders as the clearance a � b becomes small. Some numerical values are as follows:

�
b
a

� 0.01 0.1 0.2 0.5 0.8 0.9 0.99

�
r
a
�

�

�

b
b

� 0.323 0.404 0.433 0.471 0.491 0.496 0.499

Also, as the clearance becomes small, the profile approaches a parabolic distribution,
as if the flow were between two parallel plates [Eq. (4.143)].

It is confusing to base the friction factor on the wall shear because there are two
shear stresses, the inner stress being greater than the outer. It is better to define f with
respect to the head loss, as in Eq. (6.73),

f � hf �
D
L

h� �
2
V
g
2� where V � �

�(a2
Q
� b2)
� (6.94)

The hydraulic diameter for an annulus is

Dh � �
4
2
�

�

(a
(a

2 �

�

b
b

2

)
)

� � 2(a � b) (6.95)

It is twice the clearance, rather like the parallel-plate result of twice the distance be-
tween plates [Eq. (6.82)].

Substituting hf, Dh, and V into Eq. (6.94), we find that the friction factor for lami-
nar flow in a concentric annulus is of the form

f � � � (6.96)

The dimensionless term � is a sort of correction factor for the hydraulic diameter. We
could rewrite Eq. (6.96) as

Concentric annulus: f � �
R
6
e
4

eff
� Reeff � �

1
�

� ReDh
(6.97)

Some numerical values of f ReDh and Deff/Dh � 1/� are given in Table 6.3.
For turbulent flow through a concentric annulus, the analysis might proceed by patch-

ing together two logarithmic-law profiles, one going out from the inner wall to meet
the other coming in from the outer wall. We omit such a scheme here and proceed di-
rectly to the friction factor. According to the general rule proposed in Eq. (6.89), tur-
bulent friction is predicted with excellent accuracy by replacing d in the Moody chart

(a � b)2(a2 � b2)
����
a4 � b4 � (a2 � b2)2/ln (a/b)

64�
�
ReDh
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E6.14

by Deff � 2(a � b)/�, with values listed in Table 6.3.6 This idea includes roughness also
(replace �/d in the chart by �/Deff). For a quick design number with about 10 percent
accuracy, one can simply use the hydraulic diameter Dh � 2(a � b).

EXAMPLE 6.14

What should the reservoir level h be to maintain a flow of 0.01 m3/s through the commercial
steel annulus 30 m long shown in Fig. E6.14? Neglect entrance effects and take � � 1000 kg/m3

and � � 1.02 � 10�6 m2/s for water.
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Table 6.3 Laminar Friction Factors
for a Concentric Annulus

b/a f ReDh
Deff/Dh � 1/�

0.0 64.0 1.000
0.00001 70.09 0.913
0.0001 71.78 0.892
0.001 74.68 0.857
0.01 80.11 0.799
0.05 86.27 0.742
0.1 89.37 0.716
0.2 92.35 0.693
0.4 94.71 0.676
0.6 95.59 0.670
0.8 95.92 0.667
1.0 96.0 0.667

1

2

Water L = 30 m

Q, V

a = 5 cm
b = 3 cm

h = ?

Solution

Compute the average velocity and hydraulic diameter

V � �
Q
A

� � � 1.99 m/s

Dh � 2(a � b) � 2(0.05 � 0.03) m � 0.04 m

Apply the steady-flow energy equation between sections 1 and 2:

�
p
�
1� � �

1
2

�V1
2 � gz1 � ��

p
�
2� � �

1
2

�V2
2 � gz2� � ghf

But p1 � p2 � pa, V1 � 0, and V2 � V in the pipe. Therefore solve for

hf � f �
D
L

h
� �

2
V
g

2

� � z1 � z2 � �
2
V
g

2

�

But z1 � z2 � h, the desired reservoir height. Thus, finally,

h � �
2
V
g

2

� �1 � f �
D
L

h
�� (1)

Since V, L, and Dh are known, our only remaining problem is to compute the annulus friction
factor f. For a quick approximation, take Deff � Dh � 0.04 m. Then

ReDh
� �

V
�

Dh� � �
1
1
.0
.9
2
9
�

(0.
1
0
0
4
�

)
6� � 78,000

�
D
�

h
� � �

0.
4
0
0
46

m
m
m

m
� � 0.00115

0.01 m3/s
���
�[(0.05 m)2 � (0.03 m)2]

6Jones and Leung [44] show that data for annular flow also satisfy the effective-laminar-diameter idea.



Other Noncircular Cross Sections

where � � 0.046 mm has been read from Table 6.1 for commercial steel surfaces. From the
Moody chart, read f � 0.0232. Then, from Eq. (1) above,

h � �
2
(
(
1
9
.9
.8
9
1

m
m

/
/
s
s
)
2

2

)
� �1 � 0.0232 �

0
3
.0
0
4
m
m

�� � 3.71 m Crude ans.

For better accuracy, take Deff � Dh/� � 0.670Dh � 2.68 cm, where the correction factor 0.670
has been read from Table 6.3 for b/a � �35� � 0.6. Then the corrected Reynolds number and rough-
ness ratio are

Reeff � �
VD

�
eff� � 52,300 �

D
�

eff
� � 0.00172

From the Moody chart, read f � 0.0257. Then the improved computation for reservoir height is

h � �
2
(
(
1
9
.9
.8
9
1

m
m

/
/
s
s
)
2

2

)
� �1 � 0.0257 �

0
3
.0
0
4
m
m

�� � 4.09 m Better ans.

The uncorrected hydraulic-diameter estimate is about 9 percent low. Note that we do not replace
Dh by Deff in the ratio L/Dh in Eq. (1) since this is implicit in the definition of friction factor.

In principle, any duct cross section can be solved analytically for the laminar-flow ve-
locity distribution, volume flow, and friction factor. This is because any cross section
can be mapped onto a circle by the methods of complex variables, and other powerful
analytical techniques are also available. Many examples are given by White [3, pp.
119–122], Berker [11], and Olson and Wright [12, pp. 315–317]. Reference 34 is de-
voted entirely to laminar duct flow.

In general, however, most unusual duct sections have strictly academic and not com-
mercial value. We list here only the rectangular and isosceles-triangular sections, in
Table 6.4, leaving other cross sections for you to find in the references.

For turbulent flow in a duct of unusual cross section, one should replace d by Dh

on the Moody chart if no laminar theory is available. If laminar results are known,
such as Table 6.4, replace d by Deff � [64/(f Re)]Dh for the particular geometry of
the duct.

For laminar flow in rectangles and triangles, the wall friction varies greatly, be-
ing largest near the midpoints of the sides and zero in the corners. In turbulent flow
through the same sections, the shear is nearly constant along the sides, dropping off
sharply to zero in the corners. This is because of the phenomenon of turbulent sec-
ondary flow, in which there are nonzero mean velocities v and w in the plane of the
cross section. Some measurements of axial velocity and secondary-flow patterns are
shown in Fig. 6.16, as sketched by Nikuradse in his 1926 dissertation. The secondary-
flow “cells” drive the mean flow toward the corners, so that the axial-velocity con-
tours are similar to the cross section and the wall shear is nearly constant. This is
why the hydraulic-diameter concept is so successful for turbulent flow. Laminar flow
in a straight noncircular duct has no secondary flow. An accurate theoretical predic-
tion of turbulent secondary flow has yet to be achieved, although numerical models
are improving [36].
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Table 6.4 Laminar Friction
Constants f Re for Rectangular and
Triangular Ducts

Rectangular Isosceles triangle

b/a fReDh
�, deg fReDh

0.0 96.00 0 48.0
0.05 89.91 10 51.6
0.1 84.68 20 52.9
0.125 82.34 30 53.3
0.167 78.81 40 52.9
0.25 72.93 50 52.0
0.4 65.47 60 51.1
0.5 62.19 70 49.5
0.75 57.89 80 48.3
1.0 56.91 90 48.0

b
a

2�



Fig. 6.16 Illustration of secondary
turbulent flow in noncircular ducts:
(a) axial mean-velocity contours;
(b) secondary-flow cellular mo-
tions. (After J. Nikuradse, disserta-
tion, Göttingen, 1926.)

EXAMPLE 6.15

Air, with � � 0.00237 slug/ft3 and � � 0.000157 ft2/s, is forced through a horizontal square 
9-by 9-in duct 100 ft long at 25 ft3/s. Find the pressure drop if � � 0.0003 ft.

Solution

Compute the mean velocity and hydraulic diameter

V � �
(0
2
.
5
75

ft3

f
/
t
s
)2� � 44.4 ft/s

Dh � �
4
�
A
� � �

4(
3
8
6
1

i
i
n
n2)

� � 9 in � 0.75 ft

From Table 6.4, for b/a � 1.0, the effective diameter is

Deff � �
56

6
.
4
91
�Dh � 0.843 ft

whence Reeff � �
VD

�
eff� � �

4
0
4
.
.
0
4
0
(0
0
.
1
8
5
4
7
3)

� � 239,000

�
D

�

eff
� � �

0
0
.0
.8
0
4
0
3
3

� � 0.000356

From the Moody chart, read f � 0.0177. Then the pressure drop is

�p � �ghf � �g �f �
D
L

h
� �

2
V
g

2

�� � 0.00237(32.2)�0.0177�
0
1
.
0
7
0
5

� �
2
4
(3
4
2
.4
.2

2

)
��

or �p � 5.5 lbf/ft2 Ans.

Pressure drop in air ducts is usually small because of the low density.
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6.7 Minor Losses in Pipe
Systems7

For any pipe system, in addition to the Moody-type friction loss computed for the length
of pipe, there are additional so-called minor losses due to

1. Pipe entrance or exit

2. Sudden expansion or contraction

3. Bends, elbows, tees, and other fittings

4. Valves, open or partially closed

5. Gradual expansions or contractions

The losses may not be so minor; e.g., a partially closed valve can cause a greater pres-
sure drop than a long pipe.

Since the flow pattern in fittings and valves is quite complex, the theory is very
weak. The losses are commonly measured experimentally and correlated with the pipe-
flow parameters. The data, especially for valves, are somewhat dependent upon the par-
ticular manufacturer’s design, so that the values listed here must be taken as average
design estimates [15, 16, 35, 43, 46].

The measured minor loss is usually given as a ratio of the head loss hm � �p/(�g)
through the device to the velocity head V2/(2g) of the associated piping system

Loss coefficient K � �
V2

h
/(

m

2g)
� � (6.98)

Although K is dimensionless, it unfortunately is not correlated in the literature with the
Reynolds number and roughness ratio but rather simply with the raw size of the pipe
in, say, inches. Almost all data are reported for turbulent-flow conditions.

An alternate, and less desirable, procedure is to report the minor loss as if it were
an equivalent length Leq of pipe, satisfying the Darcy friction-factor relation

hm � f �
L

d
eq
� �

V
2g

2

� � K �
V
2g

2

�

or Leq � �
K
f
d
� (6.99)

Although the equivalent length should take some of the variability out of the loss data,
it is an artificial concept and will not be pursued here.

A single pipe system may have many minor losses. Since all are correlated with
V 2/(2g), they can be summed into a single total system loss if the pipe has constant
diameter

�htot � hf � �hm � �
2
V
g

2

� ��
f
d
L
� � �K� (6.100)

Note, however, that we must sum the losses separately if the pipe size changes so that
V2 changes. The length L in Eq. (6.100) is the total length of the pipe axis, including
any bends.

There are many different valve designs in commercial use. Figure 6.17 shows five
typical designs: (a) the gate, which slides down across the section; (b) the globe, which
closes a hole in a special insert; (c) the angle, similar to a globe but with a 90° turn;

�p
�

�12��V 2
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Fig. 6.17 Typical commercial valve
geometries: (a) gate valve;
(b) globe valve; (c) angle valve;
(d) swing-check valve; (e) disk-
type gate valve.

(d) the swing-check valve, which allows only one-way flow; and (e) the disk, which
closes the section with a circular gate. The globe, with its tortuous flow path, has the
highest losses when fully open. Many excellent details about these and other valves
are given in the handbook by Lyons [35].

Table 6.5 lists loss coefficients K for four types of valve, three angles of elbow fit-
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Table 6.5 Resistance Coefficients
K � hm/[V2/(2g)] for Open Valves,
Elbows, and Tees

Nominal diameter, in

Screwed Flanged

�12� 1 2 4 1 2 4 8 20

Valves (fully open):
Globe 14 8.2 6.9 5.7 13 8.5 6.0 5.8 5.5
Gate 0.30 0.24 0.16 0.11 0.80 0.35 0.16 0.07 0.03
Swing check 5.1 2.9 2.1 2.0 2.0 2.0 2.0 2.0 2.0
Angle 9.0 4.7 2.0 1.0 4.5 2.4 2.0 2.0 2.0

Elbows:
45° regular 0.39 0.32 0.30 0.29
45° long radius 0.21 0.20 0.19 0.16 0.14
90° regular 2.0 1.5 0.95 0.64 0.50 0.39 0.30 0.26 0.21
90° long radius 1.0 0.72 0.41 0.23 0.40 0.30 0.19 0.15 0.10
180° regular 2.0 1.5 0.95 0.64 0.41 0.35 0.30 0.25 0.20
180° long radius 0.40 0.30 0.21 0.15 0.10

Tees:
Line flow 0.90 0.90 0.90 0.90 0.24 0.19 0.14 0.10 0.07
Branch flow 2.4 1.8 1.4 1.1 1.0 0.80 0.64 0.58 0.41



Fig. 6.18a Recent measured loss
coefficients for 90° elbows. These
values are less than those reported
in Table 6.5. [From Ref. 48, cour-
tesy of R. D. Coffield.]

ting, and two tee connections. Fittings may be connected by either internal screws or
flanges, hence the two listings. We see that K generally decreases with pipe size, which
is consistent with the higher Reynolds number and decreased roughness ratio of large
pipes. We stress that Table 6.5 represents losses averaged among various manufactur-
ers, so there is an uncertainty as high as �50 percent.

In addition, most of the data in Table 6.5 are relatively old [15, 16] and therefore
based upon fittings manufactured in the 1950s. Modern forged and molded fittings may
yield somewhat different loss factors, often less than listed in Table 6.5. An example,
shown in Fig. 6.18a, gives very recent data [48] for fairly short (bend-radius/elbow-
diameter � 1.2) flanged 90° elbows. The elbow diameter was 1.69 in. Notice first that
K is plotted versus Reynolds number, rather than versus the raw (dimensional) pipe di-
ameters in Table 6.5, and therefore Fig. 6.18a has more generality. Then notice that
the K values of 0.23 � 0.05 are significantly less than the values for 90° elbows in
Table 6.5, indicating smoother walls and/or better design. One may conclude that
(1) Table 6.5 data are probably conservative and (2) loss factors are highly dependent
upon actual design and manufacturing factors, with Table 6.5 only serving as a rough
guide.

The valve losses in Table 6.5 are for the fully open condition. Losses can be much
higher for a partially open valve. Figure 6.18b gives average losses for three valves as
a function of “percentage open,” as defined by the opening-distance ratio h/D (see Fig.
6.17 for the geometries). Again we should warn of a possible uncertainty of �50 per-
cent. Of all minor losses, valves, because of their complex geometry, are most sensi-
tive to manufacturers’ design details. For more accuracy, the particular design and man-
ufacturer should be consulted [35].
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Fig. 6.18b Average-loss coefficients
for partially open valves (see
sketches in Fig. 6.17).

The butterfly valve of Fig. 6.19a is a stem-mounted disk which, when closed, seats
against an O-ring or compliant seal near the pipe surface. A single 90° turn opens the
valve completely, hence the design is ideal for controllable quick-opening and quick-
closing situations such as occur in fire protection and the electric power industry. How-
ever, considerable dynamic torque is needed to close these valves, and losses are high
when the valves are nearly closed.

Figure 6.19b shows butterfly-valve loss coefficients as a function of the opening an-
gle � for turbulent-flow conditions (� � 0 is closed). The losses are huge when the
opening is small, and K drops off nearly exponentially with the opening angle. There
is a factor of 2 spread among the various manufacturers. Note that K in Fig. 6.19b is,
as usual, based on the average pipe velocity V � Q/A, not on the increased velocity of
the flow as it passes through the narrow valve passage.
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Fig. 6.20 Resistance coefficients
for 90° bends.

A bend or curve in a pipe, as in Fig. 6.20, always induces a loss larger than the sim-
ple Moody friction loss, due to flow separation at the walls and a swirling secondary
flow arising from the centripetal acceleration. The loss coefficients K in Fig. 6.20 are
for this additional bend loss. The Moody loss due to the axial length of the bend must
be computed separately; i.e., the bend length should be added to the pipe length.

As shown in Fig. 6.21, entrance losses are highly dependent upon entrance geom-
etry, but exit losses are not. Sharp edges or protrusions in the entrance cause large zones
of flow separation and large losses. A little rounding goes a long way, and a well-
rounded entrance (r � 0.2d) has a nearly negligible loss K � 0.05. At a submerged exit,
on the other hand, the flow simply passes out of the pipe into the large downstream
reservoir and loses all its velocity head due to viscous dissipation. Therefore K � 1.0
for all submerged exits, no matter how well rounded.

If the entrance is from a finite reservoir, it is termed a sudden contraction (SC) be-
tween two sizes of pipe. If the exit is to finite-sized pipe, it is termed a sudden ex-
pansion (SE). The losses for both are graphed in Fig. 6.22. For the sudden expansion,
the shear stress in the corner separated flow, or deadwater region, is negligible, so that
a control-volume analysis between the expansion section and the end of the separation
zone gives a theoretical loss

KSE � �1 � �
D
d2

2��
2

� �
V2

h
/(

m

2g)
� (6.101)

Note that K is based on the velocity head in the small pipe. Equation (6.101) is in ex-
cellent agreement with experiment.

For the sudden contraction, however, flow separation in the downstream pipe causes
the main stream to contract through a minimum diameter dmin, called the vena con-
tracta, as sketched in Fig. 6.22. Because the theory of the vena contracta is not well
developed, the loss coefficient in the figure for sudden contraction is experimental. It
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Fig. 6.21 Entrance and exit loss co-
efficients: (a) reentrant inlets;
(b) rounded and beveled inlets. Exit
losses are K � 1.0 for all shapes of
exit (reentrant, sharp, beveled, or
rounded). (From Ref. 37.)
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Fig. 6.23 Flow losses in a gradual
conical expansion region.

fits the empirical formula

KSC � 0.42�1 � �
D
d2

2�� (6.102)

up to the value d/D � 0.76, above which it merges into the sudden-expansion predic-
tion, Eq. (6.101).

If the expansion or contraction is gradual, the losses are quite different. Figure 6.23
shows the loss through a gradual conical expansion, usually called a diffuser [14]. There
is a spread in the data, depending upon the boundary-layer conditions in the upstream
pipe. A thinner entrance boundary layer, like the entrance profile in Fig. 6.6, gives a
smaller loss. Since a diffuser is intendsed to raise the static pressure of the flow, dif-
fuser data list the pressure-recovery coefficient of the flow

Cp � (6.103)

The loss coefficient is related to this parameter by

K � �
V2

h
/(

m

2g)
� � 1 � � Cp (6.104)

For a given area ratio, the higher the pressure recovery, the lower the loss; hence large
Cp means a successful diffuser. From Fig. 6.23 the minimum loss (maximum recov-
ery) occurs for a cone angle 2� equal to about 5°. Angles smaller than this give a large
Moody-type loss because of their excessive length. For cone angles greater than 40 to
60°, the loss is so excessive that it would actually be better to use a sudden expansion.

d1
4

�
d2

4

p2 � p1�
�12��V1

2
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E6.16

This unexpected effect is due to gross flow separation in a wide-angle diffuser, as we
shall see soon when we study boundary layers. Reference 14 has extensive data on dif-
fusers.

For a gradual contraction, the loss is very small, as seen from the following exper-
imental values [15]:

Contraction cone angle 2�, deg 30 45 60

K for gradual contraction 0.02 0.04 0.07

References 15, 16, 43, and 46 contain additional data on minor losses.

EXAMPLE 6.16

Water, � � 1.94 slugs/ft3 and � � 0.000011 ft2/s, is pumped between two reservoirs at 0.2 ft3/s
through 400 ft of 2-in-diameter pipe and several minor losses, as shown in Fig. E6.16. The rough-
ness ratio is �/d � 0.001. Compute the pump horsepower required.
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Sharp
entrance

Open globe
valve

Pump

400 ft of pipe, d =        ft

12-in
bend radius

Half-open
gate valve

Sharp
exit

Screwed
regular

90° elbow

z2 = 120 ft

z1 = 20 ft

2

1

2
12

Solution

Write the steady-flow energy equation between sections 1 and 2, the two reservoir surfaces:

�
�

p
g
1� � �

V
2g

1
2

� � z1 � ��
�

p
g
2� � �

V
2g

2
2

� � z2� � hf � �hm � hp

where hp is the head increase across the pump. But since p1 � p2 and V1 � V2 � 0, solve for the
pump head

hp � z2 � z1 � hf � � hm � 120 ft � 20 ft � �
2
V
g

2

���
f
d
L
� � �K� (1)

Now with the flow rate known, calculate

V � �
Q
A

� � � 9.17 ft/s

Now list and sum the minor loss coefficients:

0.2 ft3/s
��

�14��(�1
2
2� ft)2



6.8 Multiple-Pipe Systems8

Loss K

Sharp entrance (Fig. 6.21) 0.5
Open globe valve (2 in, Table 6.5) 6.9
12-in bend (Fig. 6.20) 0.15
Regular 90° elbow (Table 6.5) 0.95
Half-closed gate valve (from Fig. 6.18b) 2.7
Sharp exit (Fig. 6.21) 1.0

 K � 12.2

Calculate the Reynolds number and pipe-friction factor

Red � �
V
�

d
� � � 139,000

For �/d � 0.001, from the Moody chart read f � 0.0216. Substitute into Eq. (1)

hp � 100 ft � �
2
(
(
9
3
.1
2
7
.2

f
f
t
t
/
/
s
s
)
2

2

)
� � � 12.2�

� 100 ft � 84 ft � 184 ft pump head

The pump must provide a power to the water of

P � �gQhp � [1.94(32.2) lbf/ft3](0.2 ft3/s)(184 ft) � 2300 ft � lbf/s

The conversion factor is 1 hp � 550 ft � lbf/s. Therefore

P � �
2
5
3
5
0
0
0

� � 4.2 hp Ans.

Allowing for an efficiency of 70 to 80 percent, a pump is needed with an input of about 6 hp.

If you can solve the equations for one-pipe systems, you can solve them all; but when
systems contain two or more pipes, certain basic rules make the calculations very
smooth. Any resemblance between these rules and the rules for handling electric cir-
cuits is not coincidental.

Figure 6.24 shows three examples of multiple-pipe systems. The first is a set of three
(or more) pipes in series. Rule 1 is that the flow rate is the same in all pipes

Q1 � Q2 � Q3 � const

or V1d 1
2 � V2d 2

2 � V3d3
2 (6.105)

Rule 2 is that the total head loss through the system equals the sum of the head loss
in each pipe

�hA→B � �h1 � �h2 � �h3 (6.106)

In terms of the friction and minor losses in each pipe, we could rewrite this as

0.0216(400)
��

�1
2
2�

9.17(�1
2
2�)

�
0.000011
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Fig. 6.24 Examples of multiple-
pipe systems: (a) pipes in series;
(b) pipes in parallel; (c) the three-
reservoir junction problem.

�hA→B � �
V
2g

1
2

� ��
f1
d
L

1

1� � �K1� � �
V
2g

2
2

� ��
f2
d
L

2

2� � �K2�
� �

V
2g

3
2

� ��
f3
d
L

3

3� � �K3� (6.107)

and so on for any number of pipes in the series. Since V2 and V3 are proportional to
V1 from Eq. (6.105), Eq. (6.107) is of the form

�hA→B � �
V
2g

1
2

� (�0 � �1 f1 � �2 f2 � �3 f3) (6.108)

where the �i are dimensionless constants. If the flow rate is given, we can evaluate the
right-hand side and hence the total head loss. If the head loss is given, a little iteration
is needed, since f1, f2, and f3 all depend upon V1 through the Reynolds number. Begin
by calculating f1, f2, and f3, assuming fully rough flow, and the solution for V1 will
converge with one or two iterations. EES is ideal for this purpose.

EXAMPLE 6.17

Given is a three-pipe series system, as in Fig. 6.24a. The total pressure drop is pA � pB � 150,000
Pa, and the elevation drop is zA � zB � 5 m. The pipe data are
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Pipe L, m d, cm �, mm �/d

1 100 8 0.24 0.003
2 150 6 0.12 0.002
3 80 4 0.20 0.005

The fluid is water, � � 1000 kg/m3 and � � 1.02 � 10�6 m2/s. Calculate the flow rate Q in m3/h
through the system.

Solution

The total head loss across the system is

�hA→B � �
pA

�

�

g
pB� � zA � zB � �

10
1
0
5
0
0
(
,0
9
0
.8
0
1)

� � 5 m � 20.3 m

From the continuity relation (6.105) the velocities are

V2 � �
d
d

1

2
2

2

� V1 � �
1
9
6
�V1 V3 � �

d
d

1

3
2

2

� V1 � 4V1

and Re2 � �
V
V

2

1

d
d

2

1
� Re1 � �

4
3

�Re1 Re3 � 2 Re1

Neglecting minor losses and substituting into Eq. (6.107), we obtain

�hA→B � �
V
2g

1
2

� �1250 f1 � 2500��
1
9
6
��

2 

f2 � 2000(4)2 f3�
or 20.3 m � �

V
2g

1
2

� (1250 f1 � 7900 f2 � 32,000 f3) (1)

This is the form which was hinted at in Eq. (6.108). It seems to be dominated by the third pipe
loss 32,000f3. Begin by estimating f1, f2, and f3 from the Moody-chart fully rough regime

f1 � 0.0262 f2 � 0.0234 f3 � 0.0304

Substitute in Eq. (1) to find V 1
2 � 2g(20.3)/(33 � 185 � 973). The first estimate thus is V1 �

0.58 m/s, from which

Re1 � 45,400 Re2 � 60,500 Re3 � 90,800

Hence, from the Moody chart,

f1 � 0.0288 f2 � 0.0260 f3 � 0.0314

Substitution into Eq. (1) gives the better estimate

V1 � 0.565 m/s Q � �14��d1
2V1 � 2.84 � 10�3 m3/s

or Q1 � 10.2 m3/h Ans.

A second iteration gives Q � 10.22 m3/h, a negligible change.

The second multiple-pipe system is the parallel-flow case shown in Fig. 6.24b. Here
the loss is the same in each pipe, and the total flow is the sum of the individual flows
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�hA→B � �h1 � �h2 � �h3 (6.109a)

Q � Q1 � Q2 � Q3 (6.109b)

If the total head loss is known, it is straightforward to solve for Qi in each pipe and
sum them, as will be seen in Example 6.18. The reverse problem, of determining  Qi

when hf is known, requires iteration. Each pipe is related to hf by the Moody relation
hf � f(L/d)(V2/2g) � fQ2/C, where C � �2gd5/8L. Thus each pipe has nearly quadratic
nonlinear parallel resistance, and head loss is related to total flow rate by

hf � where Ci � �
�2

8
g
L
d

i

i
5

� (6.109c)

Since the fi vary with Reynolds number and roughness ratio, one begins Eq. (6.109c)
by guessing values of fi (fully rough values are recommended) and calculating a first
estimate of hf. Then each pipe yields a flow-rate estimate Qi � (Cihf /fi)

1/2 and hence
a new Reynolds number and a better estimate of fi. Then repeat Eq. (6.109c) to con-
vergence.

It should be noted that both of these parallel-pipe cases—finding either  Q or hf —
are easily solved by EES if reasonable initial guesses are given.

EXAMPLE 6.18

Assume that the same three pipes in Example 6.17 are now in parallel with the same total head
loss of 20.3 m. Compute the total flow rate Q, neglecting minor losses.

Solution

From Eq. (6.109a) we can solve for each V separately

20.3 m � �
V
2g

1
2

� 1250f1 � �
V
2g

2
2

� 2500f2 � �
V
2g

3
2

� 2000f3 (1)

Guess fully rough flow in pipe 1: f1 � 0.0262, V1 � 3.49 m/s; hence Re1 � V1d1/� � 273,000.
From the Moody chart read f1 � 0.0267; recompute V1 � 3.46 m/s, Q1 � 62.5 m3/h. [This prob-
lem can also be solved from Eq. (6.66).]

Next guess for pipe 2: f2 � 0.0234, V2 � 2.61 m/s; then Re2 � 153,000, and hence f2 �
0.0246, V2 � 2.55 m/s, Q2 � 25.9 m3/h.

Finally guess for pipe 3: f3 � 0.0304, V3 � 2.56 m/s; then Re3 � 100,000, and hence f3 �
0.0313, V3 � 2.52 m/s, Q3 � 11.4 m3/h.

This is satisfactory convergence. The total flow rate is

Q � Q1 � Q2 � Q3 � 62.5 � 25.9 � 11.4 � 99.8 m3/h Ans.

These three pipes carry 10 times more flow in parallel than they do in series.
This example is ideal for EES. One enters the pipe data (Li,di,�i); the fluid properties

(�, �); the definitions Qi � (�/4)di
2Vi, Rei � �Vidi/�, and hf � fi(Li/di)(V i

2/2g);
plus the Colebrook formula (6.74) for each friction factor fi. There is no need to use resistance
ideas such as Eq. (6.109c). Specify that fi � 0 and Rei � 4000. Then, if one enters Q � ∑Qi �
(99.8/3600) m3/s, EES quickly solves for hf � 20.3 m. Conversely, if one enters hf �
20.3 m , EES solves for Q � 99.8 m3/h.

Q2

��

��
C�i/f�i��
2
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Consider the third example of a three-reservoir pipe junction, as in Fig. 6.24c. If all
flows are considered positive toward the junction, then

Q1 � Q2 � Q3 � 0 (6.110)

which obviously implies that one or two of the flows must be away from the junction.
The pressure must change through each pipe so as to give the same static pressure pJ

at the junction. In other words, let the HGL at the junction have the elevation

hJ � zJ � �
�

p
g
J�

where pJ is in gage pressure for simplicity. Then the head loss through each, assum-
ing p1 � p2 � p3 � 0 (gage) at each reservoir surface, must be such that

�h1 � �
V
2g

1
2

� �
f1
d
L

1

1� � z1 � hJ

�h2 � �
V
2g

2
2

� �
f2
d
L

2

2� � z2 � hJ (6.111)

�h3 � �
V
2g

3
2

� �
f3
d
L

3

3� � z3 � hJ

We guess the position hJ and solve Eqs. (6.111) for V1, V2, and V3 and hence Q1, Q2,
and Q3, iterating until the flow rates balance at the junction according to Eq. (6.110).
If we guess hJ too high, the sum Q1 � Q2 � Q3 will be negative and the remedy is to
reduce hJ, and vice versa.

EXAMPLE 6.19

Take the same three pipes as in Example 6.17, and assume that they connect three reservoirs at
these surface elevations

z1 � 20 m z2 � 100 m z3 � 40 m

Find the resulting flow rates in each pipe, neglecting minor losses.

Solution

As a first guess, take hJ equal to the middle reservoir height, z3 � hJ � 40 m. This saves one
calculation (Q3 � 0) and enables us to get the lay of the land:

Reservoir hJ, m zi � hJ, m fi Vi, m/s Qi, m3/h Li /di

1 40 �20 0.0267 �3.43 �62.1 1250
2 40 60 0.0241 4.42 45.0 2500
3 40 0 0 0 2000

�Q � �17.1

Since the sum of the flow rates toward the junction is negative, we guessed hJ too high. Reduce
hJ to 30 m and repeat:
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Fig. 6.25 Schematic of a piping
network.

Reservoir hJ, m zi � hJ, m fi Vi, m/s Qi, m3/h

1 30 �10 0.0269 �2.42 �43.7
2 30 �70 0.0241 �4.78 �48.6
3 30 �10 0.0317 �1.76 �08.0

�Q � 12.9

This is positive  Q, and so we can linearly interpolate to get an accurate guess: hJ � 34.3 m.
Make one final list:

Reservoir hJ, m zi � hJ, m fi Vi, m/s Qi, m3/h

1 34.3 �14.3 0.0268 �2.90 �52.4
2 34.3 �65.7 0.0241 �4.63 �47.1
3 34.3 �05.7 0.0321 �1.32 �06.0

�Q � 0.7

This is close enough; hence we calculate that the flow rate is 52.4 m3/h toward reservoir 3, bal-
anced by 47.1 m3/h away from reservoir 1 and 6.0 m3/h away from reservoir 3.

One further iteration with this problem would give hJ � 34.53 m, resulting in Q1 � �52.8,
Q2 � 47.0, and Q3 � 5.8 m3/h, so that  Q � 0 to three-place accuracy. Pedagogically speaking,
we would then be exhausted.

The ultimate case of a multipipe system is the piping network illustrated in Fig. 6.25.
This might represent a water supply system for an apartment or subdivision or even a
city. This network is quite complex algebraically but follows the same basic rules:
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6.9 Experimental Duct Flows:
Diffuser Performance

1. The net flow into any junction must be zero.

2. The net head loss around any closed loop must be zero. In other words, the HGL
at each junction must have one and only one elevation.

3. All head losses must satisfy the Moody and minor-loss friction correlations.

By supplying these rules to each junction and independent loop in the network, one
obtains a set of simultaneous equations for the flow rates in each pipe leg and the HGL
(or pressure) at each junction. Solution may then be obtained by numerical iteration,
as first developed in a hand-calculation technique by Prof. Hardy Cross in 1936 [17].
Computer solution of pipe-network problems is now quite common and covered in at
least one specialized text [18]. Solution on microcomputers is also a reality. Some ex-
plicit numerical algorithms have been developed by Ormsbee and Wood [19]. Network
analysis is quite useful for real water distribution systems if well calibrated with the
actual system head-loss data.

The Moody chart is such a great correlation for tubes of any cross section with any
roughness or flow rate that we may be deluded into thinking that the world of 
internal-flow prediction is at our feet. Not so. The theory is reliable only for ducts of
constant cross section. As soon as the section varies, we must rely principally upon ex-
periment to determine the flow properties. As mentioned many times before, experi-
ment is a vital part of fluid mechanics.

Literally thousands of papers in the literature report experimental data for specific
internal and external viscous flows. We have already seen several examples:

1. Vortex shedding from a cylinder (Fig. 5.2)

2. Drag of a sphere and a cylinder (Fig. 5.3)

3. Hydraulic model of an estuary (Fig. 5.9)

4. Rough-wall pipe flows (Fig. 6.12)

5. Secondary flow in ducts (Fig. 6.16)

6. Minor-duct-loss coefficients (Sec. 6.7)

Chapter 7 will treat a great many more external-flow experiments, especially in Sec.
7.5. Here we shall show data for one type of internal flow, the diffuser.

A diffuser, shown in Fig. 6.26a and b, is an expansion or area increase intended to re-
duce velocity in order to recover the pressure head of the flow. Rouse and Ince [6] re-
late that it may have been invented by customers of the early Roman (about 100 A.D.)
water supply system, where water flowed continuously and was billed according to
pipe size. The ingenious customers discovered that they could increase the flow rate at
no extra cost by flaring the outlet section of the pipe.

Engineers have always designed diffusers to increase pressure and reduce kinetic
energy of ducted flows, but until about 1950, diffuser design was a combination of art,
luck, and vast amounts of empiricism. Small changes in design parameters caused large
changes in performance. The Bernoulli equation seemed highly suspect as a useful tool.

Neglecting losses and gravity effects, the incompressible Bernoulli equation pre-
dicts that
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Fig. 6.26 Diffuser geometry and
typical flow regimes: (a) geometry
of a flat-walled diffuser; (b) geom-
etry of a conical diffuser; (c) flat-
diffuser stability map. (From Ref.
14, by permission of Creare, Inc.)

p � �12��V2 � p0 � const (6.112)

where p0 is the stagnation pressure which the fluid would achieve if the fluid were
slowed to rest (V � 0) without losses.

The basic output of a diffuser is the pressure-recovery coefficient Cp, defined as

Cp � �
p
p

0

e

t

�

�

p
p
t

t
� (6.113)

where subscripts e and t mean the exit and the throat (or inlet), respectively. Higher Cp

means better performance.
Consider the flat-walled diffuser in Fig. 6.26a, where section 1 is the inlet and sec-

tion 2 the exit. Application of Bernoulli’s equation (6.112) to this diffuser predicts that

p01 � p1 � �12��V1
2 � p2 � �12��V2

2 � p02

or Cp,frictionless � 1 � ��
V
V

2

1
��

2

(6.114)

Meanwhile, steady one-dimensional continuity would require that

Q � V1A1 � V2A2 (6.115)

Combining (6.114) and (6.115), we can write the performance in terms of the area ra-
tio AR � A2/A1, which is a basic parameter in diffuser design:

Cp,frictionless � 1 � (AR)�2 (6.116)

A typical design would have AR � 5�1, for which Eq. (6.116) predicts Cp � 0.96, or
nearly full recovery. But, in fact, measured values of Cp for this area ratio [14] are only
as high as 0.86 and can be as low as 0.24.
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Fig. 6.27 Diffuser performance:
(a) ideal pattern with good perfor-
mance; (b) actual measured pattern
with boundary-layer separation and
resultant poor performance.

The basic reason for the discrepancy is flow separation, as sketched in Fig. 6.27.
The increasing pressure in the diffuser is an unfavorable gradient (Sec. 7.4), which
causes the viscous boundary layers to break away from the walls and greatly reduces
the performance. Theories can now predict this behavior (see, e.g., Ref. 20).

As an added complication to boundary-layer separation, the flow patterns in a dif-
fuser are highly variable and were considered mysterious and erratic until 1955, when
Kline revealed the structure of these patterns with flow-visualization techniques in a
simple water channel.

A complete stability map of diffuser flow patterns was published in 1962 by Fox
and Kline [21], as shown in Fig. 6.26c. There are four basic regions. Below line aa
there is steady viscous flow, no separation, and moderately good performance. Note
that even a very short diffuser will separate, or stall, if its half-angle is greater than
10°.

Between lines aa and bb is a transitory stall pattern with strongly unsteady flow.
Best performance, i.e., highest Cp, occurs in this region. The third pattern, between bb
and cc, is steady bistable stall from one wall only. The stall pattern may flip-flop from
one wall to the other, and performance is poor.
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The fourth pattern, above line cc, is jet flow, where the wall separation is so gross
and pervasive that the mainstream ignores the walls and simply passes on through at
nearly constant area. Performance is extremely poor in this region.

Dimensional analysis of a flat-walled or conical diffuser shows that Cp should de-
pend upon the following parameters:

1. Any two of the following geometric parameters:
a. Area ratio AR � A2/A1 or (De/D)2

b. Divergence angle 2�
c. Slenderness L/W1 or L/D

2. Inlet Reynolds number Ret � V1W1/� or Ret � V1D/�

3. Inlet Mach number Mat � V1/a1

4. Inlet boundary-layer blockage factor Bt � ABL/A1, where ABL is the wall area
blocked, or displaced, by the retarded boundary-layer flow in the inlet (typically
Bt varies from 0.03 to 0.12)

A flat-walled diffuser would require an additional shape parameter to describe its
cross section:

5. Aspect ratio AS � b/W1

Even with this formidable list, we have omitted five possible important effects: inlet
turbulence, inlet swirl, inlet profile vorticity, superimposed pulsations, and downstream
obstruction, all of which occur in practical machinery applications.

The three most important parameters are AR, �, and B. Typical performance maps
for diffusers are shown in Fig. 6.28. For this case of 8 to 9 percent blockage, both the
flat-walled and conical types give about the same maximum performance, Cp � 0.70,
but at different divergence angles (9° flat versus 4.5° conical). Both types fall far short
of the Bernoulli estimates of Cp � 0.93 (flat) and 0.99 (conical), primarily because of
the blockage effect.

From the data of Ref. 14 we can determine that, in general, performance decreases
with blockage and is approximately the same for both flat-walled and conical diffusers,
as shown in Table 6.6. In all cases, the best conical diffuser is 10 to 80 percent longer
than the best flat-walled design. Therefore, if length is limited in the design, the flat-
walled design will give the better performance.

The experimental design of a diffuser is an excellent example of a successful at-
tempt to minimize the undesirable effects of adverse pressure gradient and flow sepa-
ration.
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Table 6.6 Maximum Diffuser-
Performance Data [14] Flat-walled Conical

Inlet blockage —————————— ———————————
Bt Cp,max L/W1 Cp,max L/d

0.02 0.86 18 0.83 20
0.04 0.80 18 0.78 22
0.06 0.75 19 0.74 24
0.08 0.70 20 0.71 26
0.10 0.66 18 0.68 28
0.12 0.63 16 0.65 30



Fig. 6.28a Typical performance
maps for flat-wall and conical dif-
fusers at similar operating condi-
tions: (a) flat wall. (From Ref. 14,
by permission of Creare, Inc.)

Almost all practical fluids engineering problems are associated with the need for an
accurate flow measurement. There is a need to measure local properties (velocity, pres-
sure, temperature, density, viscosity, turbulent intensity), integrated properties (mass
flow and volume flow), and global properties (visualization of the entire flow field).
We shall concentrate in this section on velocity and volume-flow measurements.

We have discussed pressure measurement in Sec. 2.10. Measurement of other ther-
modynamic properties, such as density, temperature, and viscosity, is beyond the scope
of this text and is treated in specialized books such as Refs. 22 and 23. Global visual-
ization techniques were discussed in Sec. 1.7 for low-speed flows, and the special op-
tical techniques used in high-speed flows are treated in Ref. 21 of Chap. 1. Flow-mea-
surement schemes suitable for open-channel and other free-surface flows are treated in
Chap. 10.

Velocity averaged over a small region, or point, can be measured by several different
physical principles, listed in order of increasing complexity and sophistication:
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Fig. 6.28b Typical performance
maps for flat-wall and conical dif-
fusers at similar operating condi-
tions: (b) conical wall. (From Ref.
14, by permission of Creare, Inc.)

1. Trajectory of floats or neutrally buoyant particles

2. Rotating mechanical devices
a. Cup anemometer
b. Savonius rotor
c. Propeller meter
d. Turbine meter

3. Pitot-static tube (Fig. 6.30)

4. Electromagnetic current meter

5. Hot wires and hot films

6. Laser-doppler anemometer (LDA)

Some of these meters are sketched in Fig. 6.29.

Floats or buoyant particles. A simple but effective estimate of flow velocity can be
found from visible particles entrained in the flow. Examples include flakes on the sur-
face of a channel flow, small neutrally buoyant spheres mixed with a liquid, or hydro-

386 Chapter 6 Viscous Flow in Ducts

Mt = 0.2
Bt = 0.09
Red = 120,000

Conical

AR

25

16

12

10

8

6

5

4

3

2.5

2

1.75

1.5
2 4 6 8 10 12 16 20 25

2   = 18°θ 16° 14° 12° 10° 8°

6°

5°

4°

0.70

3°
0.68

2°

30

(b)

Diffuser length–throat diameter ratio L
d

0.66

0.64
0.62

0.60
0.58

0.56

0.54

0.520.50

0.48

0.46

0.44

Cp



Fig. 6.29 Eight common velocity
meters: (a) three-cup anemometer;
(b) Savonius rotor; (c) turbine
mounted in a duct; (d) free-pro-
peller meter; (e) hot-wire
anemometer; (f) hot-film anemome-
ter; (g) pitot-static tube; (h) laser-
doppler anemometer.

gen bubbles. Sometimes gas flows can be estimated from the motion of entrained dust
particles. One must establish whether the particle motion truly simulates the fluid mo-
tion. Floats are commonly used to track the movement of ocean waters and can be de-
signed to move at the surface, along the bottom, or at any given depth [24]. Many of-
ficial tidal-current charts [25] were obtained by releasing and timing a floating spar
attached to a length of string. One can release whole groups of spars to determine a
flow pattern.

Rotating sensors. The rotating devices of Fig. 6.29a to d can be used in either gases
or liquids, and their rotation rate is approximately proportional to the flow velocity.
The cup anemometer (Fig. 6.29a) and Savonius rotor (Fig. 6.29b) always rotate the
same way, regardless of flow direction. They are popular in atmospheric and oceano-
graphic applications and can be fitted with a direction vane to align themselves with
the flow. The ducted-propeller (Fig. 6.29c) and free-propeller (Fig. 6.29d) meters must
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Fig. 6.30 Pitot-static tube for com-
bined measurement of static and
stagnation pressure in a moving
stream.

be aligned with the flow parallel to their axis of rotation. They can sense reverse flow
because they will then rotate in the opposite direction. All these rotating sensors can
be attached to counters or sensed by electromagnetic or slip-ring devices for either a
continuous or a digital reading of flow velocity. All have the disadvantage of being rel-
atively large and thus not representing a “point.”

Pitot-static tube. A slender tube aligned with the flow (Figs. 6.29g and 6.30) can mea-
sure local velocity by means of a pressure difference. It has sidewall holes to measure
the static pressure ps in the moving stream and a hole in the front to measure the stag-
nation pressure p0, where the stream is decelerated to zero velocity. Instead of mea-
suring p0 or ps separately, it is customary to measure their difference with, say, a trans-
ducer, as in Fig. 6.30.

If ReD � 1000, where D is the probe diameter, the flow around the probe is nearly
frictionless and Bernoulli’s relation, Eq. (3.77), applies with good accuracy. For in-
compressible flow

ps � �12��V2 � �gzs � p0 � �12��(0)2 � �gz0

Assuming that the elevation pressure difference �g(zs � z0) is negligible, this reduces
to

V � �2�
(p0 �

�

ps)��
1/2

(6.117)

This is the Pitot formula, named after the French engineer who designed the device in
1732.

The primary disadvantage of the pitot tube is that it must be aligned with the flow
direction, which may be unknown. For yaw angles greater than 5°, there are substan-
tial errors in both the p0 and ps measurements, as shown in Fig. 6.30. The pitot-static
tube is useful in liquids and gases; for gases a compressibility correction is necessary
if the stream Mach number is high (Chap. 9). Because of the slow response of the fluid-
filled tubes leading to the pressure sensors, it is not useful for unsteady-flow mea-
surements. It does resemble a point and can be made small enough to measure, e.g.,
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blood flow in arteries and veins. It is not suitable for low-velocity measurement in
gases because of the small pressure differences developed. For example, if V � 1 ft/s
in standard air, from Eq. (6.117) we compute p0 � p equal to only 0.001 lbf/ft2 (0.048
Pa). This is beyond the resolution of most pressure gages.

Electromagnetic meter. If a magnetic field is applied across a conducting fluid, the
fluid motion will induce a voltage across two electrodes placed in or near the flow. The
electrodes can be streamlined or built into the wall, and they cause little or no flow re-
sistance. The output is very strong for highly conducting fluids such as liquid metals.
Seawater also gives good output, and electromagnetic current meters are in common
use in oceanography. Even low-conductivity fresh water can be measured by amplify-
ing the output and insulating the electrodes. Commercial instruments are available for
most liquid flows but are relatively costly. Electromagnetic flowmeters are treated in
Ref. 26.

Hot-wire anemometer. A very fine wire (d � 0.01 mm or less) heated between two
small probes, as in Fig. 6.29e, is ideally suited to measure rapidly fluctuating flows
such as the turbulent boundary layer. The idea dates back to work by L. V. King in
1914 on heat loss from long thin cylinders. If electric power is supplied to heat the
cylinder, the loss varies with flow velocity across the cylinder according to King’s law

q � I2R � a � b(�V)n (6.118)

where n � �13� at very low Reynolds numbers and equals �12� at high Reynolds numbers.
The hot wire normally operates in the high-Reynolds-number range but should be cal-
ibrated in each situation to find the best-fit a, b, and n. The wire can be operated ei-
ther at constant current I, so that resistance R is a measure of V, or at constant resis-
tance R (constant temperature), with I a measure of velocity. In either case, the output
is a nonlinear function of V, and the equipment should contain a linearizer to produce
convenient velocity data. Many varieties of commercial hot-wire equipment are avail-
able, as are do-it-yourself designs [27]. Excellent detailed discussions of the hot wire
are given in Refs. 1 and 28.

Because of its frailty, the hot wire is not suited to liquid flows, whose high density
and entrained sediment will knock the wire right off. A more stable yet quite sensitive
alternative for liquid-flow measurement is the hot-film anemometer (Fig. 6.29f). A thin
metallic film, usually platinum, is plated onto a relatively thick support which can be
a wedge, a cone, or a cylinder. The operation is similar to the hot wire. The cone gives
best response but is liable to error when the flow is yawed to its axis.

Hot wires can easily be arranged in groups to measure two- and three-dimensional
velocity components.

Laser-doppler anemometer. In the LDA a laser beam provides highly focused, coher-
ent monochromatic light which is passed through the flow. When this light is scattered
from a moving particle in the flow, a stationary observer can detect a change, or doppler
shift, in the frequency of the scattered light. The shift �f is proportional to the veloc-
ity of the particle. There is essentially zero disturbance of the flow by the laser.

Figure 6.29h shows the popular dual-beam mode of the LDA. A focusing device
splits the laser into two beams, which cross the flow at an angle �. Their intersection,
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which is the measuring volume or resolution of the measurement, resembles an ellip-
soid about 0.5 mm wide and 0.1 mm in diameter. Particles passing through this mea-
suring volume scatter the beams; they then pass through receiving optics to a pho-
todetector which converts the light to an electric signal. A signal processor then converts
electric frequency to a voltage which can be either displayed or stored. If ! is the wave-
length of the laser light, the measured velocity is given by

V � �
2 si

!

n
�

(�
f
/2)

� (6.119)

Multiple components of velocity can be detected by using more than one photodetec-
tor and other operating modes. Either liquids or gases can be measured as long as scat-
tering particles are present. In liquids, normal impurities serve as scatterers, but gases
may have to be seeded. The particles may be as small as the wavelength of the light.
Although the measuring volume is not as small as with a hot wire, the LDA is capa-
ble of measuring turbulent fluctuations.

The advantages of the LDA are as follows:

1. No disturbance of the flow

2. High spatial resolution of the flow field

3. Velocity data that are independent of the fluid thermodynamic properties

4. An output voltage that is linear with velocity

5. No need for calibration

The disadvantages are that both the apparatus and the fluid must be transparent to light
and that the cost is high (a basic system shown in Fig. 6.29h begins at about $50,000).

Once installed, an LDA can map the entire flow field in minutest detail. To truly
appreciate the power of the LDA, one should examine, e.g., the amazingly detailed
three-dimensional flow profiles measured by Eckardt [29] in a high-speed centrifugal
compressor impeller. Extensive discussions of laser velocimetry are given in Refs. 38
and 39.

EXAMPLE 6.20

The pitot-static tube of Fig. 6.30 uses mercury as a manometer fluid. When it is placed in a wa-
ter flow, the manometer height reading is h � 8.4 in. Neglecting yaw and other errors, what is
the flow velocity V in ft/s?

Solution

From the two-fluid manometer relation (2.33), with zA � z2, the pressure difference is related to
h by

p0 � ps � ("M � "w)h

Taking the specific weights of mercury and water from Table 2.1, we have

p0 � ps � (846 � 62.4 lbf/ft3) �
8
1
.
2
4
� ft � 549 lbf/ft2

The density of water is 62.4/32.2 � 1.94 slugs/ft3. Introducing these values into the pitot-static
formula (6.117), we obtain
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Volume-Flow Measurements

V � ��1
2
.
(
9
5
4
49

sl
l
u
b
g
f
s
/f
/
t
f

2

t3
)

��
1/2

� 23.8 ft/s Ans.

Since this is a low-speed flow, no compressibility correction is needed.

It is often desirable to measure the integrated mass, or volume flow, passing through
a duct. Accurate measurement of flow is vital in billing customers for a given amount
of liquid or gas passing through a duct. The different devices available to make these
measurements are discussed in great detail in the ASME text on fluid meters [30]. These
devices split into two classes: mechanical instruments and head-loss instruments.

The mechanical instruments measure actual mass or volume of fluid by trapping it
and counting it. The various types of measurement are

1. Mass measurement
a. Weighing tanks
b. Tilting traps

2. Volume measurement
a. Volume tanks
b. Reciprocating pistons
c. Rotating slotted rings
d. Nutating disk
e. Sliding vanes
f. Gear or lobed impellers
g. Reciprocating bellows
h. Sealed-drum compartments

The last three of these are suitable for gas flow measurement.
The head-loss devices obstruct the flow and cause a pressure drop which is a mea-

sure of flux:

1. Bernoulli-type devices
a. Thin-plate orifice
b. Flow nozzle
c. Venturi tube

2. Friction-loss devices
a. Capillary tube
b. Porous plug

The friction-loss meters cause a large nonrecoverable head loss and obstruct the flow
too much to be generally useful.

Six other widely used meters operate on different physical principles:

1. Turbine meter

2. Vortex meter

3. Ultrasonic flowmeter

4. Rotameter

5. Coriolis mass flowmeter

6. Laminar flow element
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Fig. 6.31 The turbine meter widely
used in the oil, gas, and water sup-
ply industries: (a) basic design;
(b) typical calibration curve for a
range of crude oils. (Daniel Indus-
tries, Inc., Flow Products Division.)

Turbine meter. The turbine meter, sometimes called a propeller meter, is a freely ro-
tating propeller which can be installed in a pipeline. A typical design is shown in Fig.
6.31a. There are flow straighteners upstream of the rotor, and the rotation is measured
by electric or magnetic pickup of pulses caused by passage of a point on the rotor. The
rotor rotation is approximately proportional to the volume flow in the pipe.

A major advantage of the turbine meter is that each pulse corresponds to a finite 
incremental volume of fluid, and the pulses are digital and can be summed easily. 
Liquid-flow turbine meters have as few as two blades and produce a constant number
of pulses per unit fluid volume over a 5�1 flow-rate range with � 0.25 percent accu-
racy. Gas meters need many blades to produce sufficient torque and are accurate to �
1 percent.
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Fig. 6.32 A Commercial handheld
wind-velocity turbine meter. (Cour-
tesy of Nielsen-Kellerman Com-
pany.)

Since turbine meters are very individualistic, flow calibration is an absolute neces-
sity. A typical liquid-meter calibration curve is shown in Fig. 6.31b. Researchers at-
tempting to establish universal calibration curves have met with little practical success
as a result of manufacturing variabilities.

Turbine meters can also be used in unconfined flow situations, such as winds or
ocean currents. They can be compact, even microsize with two or three component di-
rections. Figure 6.32 illustrates a handheld wind velocity meter which uses a seven-
bladed turbine with a calibrated digital output. The accuracy of this device is quoted
at � 2 percent.

Vortex flowmeters. Recall from Fig. 5.2 that a bluff body placed in a uniform cross-
flow sheds alternating vortices at a nearly uniform Strouhal number St � fL/U, where
U is the approach velocity and L is a characteristic body width. Since L and St are con-
stant, this means that the shedding frequency is proportional to velocity

f � (const)(U) (6.120)

The vortex meter introduces a shedding element across a pipe flow and picks up the
shedding frequency downstream with a pressure, ultrasonic, or heat-transfer type of
sensor. A typical design is shown in Fig. 6.33.

The advantages of a vortex meter are as follows:

1. Absence of moving parts

2. Accuracy to � 1 percent over a wide flow-rate range (up to 100�1)

3. Ability to handle very hot or very cold fluids

4. Requirement of only a short pipe length

5. Calibration insensitive to fluid density or viscosity

For further details see Ref. 40.
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Fig. 6.34 Ultrasonic flowmeters: (a) pulse type; (b) doppler-shift type (from Ref. 41); (c) a
portable noninvasive installation (courtesy of Polysonics Inc., Houston, TX).
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Fig. 6.35 A commercial rotameter.
The float rises in the tapered tube
to an equilibrium position which is
a measure of the fluid-flow rate.
(Courtesy of Blue White Industries,
Westminster, CA.)

Ultrasonic flowmeters. The sound-wave analog of the laser velocimeter of Fig. 6.29h is
the ultrasonic flowmeter. Two examples are shown in Fig. 6.34. The pulse-type flowme-
ter is shown in Fig. 6.34a. Upstream piezoelectric transducer A is excited with a short
sonic pulse which propagates across the flow to downstream transducer B. The arrival
at B triggers another pulse to be created at A, resulting in a regular pulse frequency fA.
The same process is duplicated in the reverse direction from B to A, creating frequency
fB. The difference fA � fB is proportional to the flow rate. Figure 6.33b shows a doppler-
type arrangement, where sound waves from transmitter T are scattered by particles or
contaminants in the flow to receiver R. Comparison of the two signals reveals a doppler
frequency shift which is proportional to the flow rate. Ultrasonic meters are nonintru-
sive and can be directly attached to pipe flows in the field (Fig. 6.34c). Their quoted
uncertainty of � 1 to 2 percent can rise to � 5 percent or more due to irregularities in
velocity profile, fluid temperature, or Reynolds number. For further details see Ref. 41.

Rotameter. The variable-area transparent rotameter of Fig. 6.35 has a float which, un-
der the action of flow, rises in the vertical tapered tube and takes a certain equilibrium
position for any given flow rate. A student exercise for the forces on the float would
yield the approximate relation

Q � CdAa��Afl

2

o

W

at�
ne

fl

t

uid
��

1/2

(6.121)

where Wnet is the float’s net weight in the fluid, Aa � Atube � Afloat is the annular area
between the float and the tube, and Cd is a dimensionless discharge coefficient of or-
der unity, for the annular constricted flow. For slightly tapered tubes, Aa varies nearly
linearly with the float position, and the tube may be calibrated and marked with a flow-
rate scale, as in Fig. 6.35. The rotameter thus provides a readily visible measure of the
flow rate. Capacity may be changed by using different-sized floats. Obviously the tube
must be vertical, and the device does not give accurate readings for fluids containing
high concentrations of bubbles or particles.

Coriolis mass flowmeter. Most commercial meters measure volume flow, with mass
flow then computed by multiplying by the nominal fluid density. An attractive modern
alternative is a mass flowmeter which operates on the principle of the Coriolis accel-
eration associated with noninertial coordinates [recall Fig. 3.12 and the Coriolis term
2# � V in Eq. (3.48)]. The output of the meter is directly proportional to mass flow.

Figure 6.36 is a schematic of a Coriolis device, to be inserted into a piping system.
The flow enters a double-loop, double-tube arrangement which is electromagnetically vi-
brated at a high natural frequency (amplitude 	 1 mm and frequency � 100 Hz). The up
flow induces inward loop motion, while the down flow creates outward loop motion, both
due to the Coriolis effect. Sensors at both ends register a phase difference which is pro-
portional to mass flow. Quoted accuracy is approximately � 0.2 percent of full scale.

Laminar flow element. In many, perhaps most, commercial flowmeters, the flow
through the meter is turbulent and the variation of flow rate with pressure drop is non-
linear. In laminar duct flow, however, Q is linearly proportional to �p, as in Eq. (6.44):
Q � [�R4/(8�L)] �p. Thus a laminar flow sensing element is attractive, since its cal-
ibration will be linear. To ensure laminar flow for what otherwise would be a turbu-
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Fig. 6.37 A complete flowmeter
system using a laminar-flow ele-
ment (in this case a narrow annu-
lus). The flow rate is linearly pro-
portional to the pressure drop.
(Courtesy of Martin Girard, DH 
Instruments, Inc.)

lent condition, all or part of the fluid is directed into small passages, each of which
has a low (laminar) Reynolds number. A honeycomb is a popular design.

Figure 6.37 uses axial flow through a narrow annulus to effect laminar flow. The
theory again predicts Q
�p, as in Eq. (6.92). However, the flow is very sensitive to
passage size; for example, halving the annulus clearance increases �p more than eight
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Fig. 6.38 Velocity and pressure
change through a generalized
Bernoulli obstruction meter.

times. Careful calibration is thus necessary. In Fig. 6.37 the laminar-flow concept has
been synthesized into a complete mass-flow system, with temperature control, differ-
ential pressure measurement, and a microprocessor all self-contained. The accuracy of
this device is rated at � 0.2 percent.

Bernoulli obstruction theory. Consider the generalized flow obstruction shown in Fig.
6.38. The flow in the basic duct of diameter D is forced through an obstruction of 
diameter d; the $ ratio of the device is a key parameter

$ � �
D
d

� (6.122)

After leaving the obstruction, the flow may neck down even more through a vena con-
tracta of diameter D2 	 d, as shown. Apply the Bernoulli and continuity equations for
incompressible steady frictionless flow to estimate the pressure change:

Continuity: Q � �
�

4
� D2V1 � �

�

4
� D2

2V2

Bernoulli: p0 � p1 � �12��V1
2 � p2 � �12��V2

2
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Eliminating V1, we solve these for V2 or Q in terms of the pressure change p1 � p2:

�
A
Q

2
� � V2 � ���(

2
1
(p
�
1 �

D2
4
p
/D

2)
4)

��
1/2

(6.123)

But this is surely inaccurate because we have neglected friction in a duct flow, where
we know friction will be very important. Nor do we want to get into the business of
measuring vena contracta ratios D2/d for use in (6.123). Therefore we assume that
D2/D � $ and then calibrate the device to fit the relation

Q � AtVt � CdAt ��2(p
1
1

�

�

$

p2
4
)/�

��
1/2

(6.124)

where subscript t denotes the throat of the obstruction. The dimensionless discharge
coefficient Cd accounts for the discrepancies in the approximate analysis. By dimen-
sional analysis for a given design we expect

Cd � f($, ReD) where ReD � �
V

�
1D
� (6.125)

The geometric factor involving $ in (6.124) is called the velocity-of-approach factor

E � (1 � $4)�1/2 (6.126)

One can also group Cd and E in Eq. (6.124) to form the dimensionless flow coefficient �

� � CdE � �
(1 �

C
$
d

4)1/2� (6.127)

Thus Eq. (6.124) can be written in the equivalent form

Q � �At��2(p1

�

� p2)
��

1/2

(6.128)

Obviously the flow coefficient is correlated in the same manner:

� � f($, ReD) (6.129)

Occasionally one uses the throat Reynolds number instead of the approach Reynolds
number

Red � �
V
�
td� � �

R
$

eD� (6.130)

Since the design parameters are assumed known, the correlation of � from Eq. (6.129)
or of Cd from Eq. (6.125) is the desired solution to the fluid-metering problem.

The mass flow is related to Q by

ṁ� �Q (6.131)

and is thus correlated by exactly the same formulas.
Figure 6.39 shows the three basic devices recommended for use by the International

Organization for Standardization (ISO) [31]: the orifice, nozzle, and venturi tube.

Thin-plate orifice. The thin-plate orifice, Fig. 6.39b, can be made with $ in the range
of 0.2 to 0.8, except that the hole diameter d should not be less than 12.5 mm. To mea-
sure p1 and p2, three types of tappings are commonly used:
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Fig. 6.39 International standard
shapes for the three primary
Bernoulli obstruction-type meters:
(a) long radius nozzle; (b) thin-
plate orifice; (c) venturi nozzle.
(From Ref. 31 by permission of the
International Organization for
Standardization.)

1. Corner taps where the plate meets the pipe wall

2. D: �12�D taps: pipe-wall taps at D upstream and �12�D downstream

3. Flange taps: 1 in (25 mm) upstream and 1 in (25 mm) downstream of the plate,
regardless of the size D

Types 1 and 2 approximate geometric similarity, but since the flange taps 3 do not,
they must be correlated separately for every single size of pipe in which a flange-tap
plate is used [30, 31].

Figure 6.40 shows the discharge coefficient of an orifice with D: �12�D or type 2 taps
in the Reynolds-number range ReD � 104 to 107 of normal use. Although detailed charts
such as Fig. 6.37 are available for designers [30], the ASME recommends use of the
curve-fit formulas developed by the ISO [31]. The basic form of the curve fit is [42]

Cd � f($) � 91.71$2.5ReD
�0.75 � �

1
0.

�

09$

$

4

4� F1 � 0.0337$3F2 (6.132)

where f($) � 0.5959 � 0.0312$2.1 � 0.184$8

The correlation factors F1 and F2 vary with tap position:

Corner taps: F1 � 0 F2 � 0 (6.133a)
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Fig. 6.40 Discharge coefficient for
a thin-plate orifice with D: �12�D taps,
plotted from Eqs. (6.132) and
(6.133b).

D: �12�D taps: F1 � 0.4333 F2 � 0.47 (6.133b)

Flange taps: F2 � �
D

1
(in)
� F1 � (6.133c)

Note that the flange taps (6.133c), not being geometrically similar, use raw diameter
in inches in the formula. The constants will change if other diameter units are used.
We cautioned against such dimensional formulas in Example 1.4 and Eq. (5.17) and
give Eq. (6.133c) only because flange taps are widely used in the United States.

Flow nozzle. The flow nozzle comes in two types, a long-radius type shown in Fig.
6.39a and a short-radius type (not shown) called the ISA 1932 nozzle [30, 31]. The
flow nozzle, with its smooth rounded entrance convergence, practically eliminates the
vena contracta and gives discharge coefficients near unity. The nonrecoverable loss is
still large because there is no diffuser provided for gradual expansion.

The ISO recommended correlation for long-radius-nozzle discharge coefficient is

Cd � 0.9965 � 0.00653$1/2��
R
10

eD

6

��
1/2

� 0.9965 � 0.00653��
R
10

e

6

d
��

1/2

(6.134)

The second form is independent of the $ ratio and is plotted in Fig. 6.41. A similar
ISO correlation is recommended for the short-radius ISA 1932 flow nozzle

�
D

1
(in)
� D � 2.3 in

����
0.4333 2.0 � D � 2.3 in
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Fig. 6.41 Discharge coefficient for
long-radius nozzle and classical
Herschel-type venturi.

Cd � 0.9900 � 0.2262$4.1

� (0.000215 � 0.001125$ � 0.00249$4.7)��
R
10

eD

6

��
1.15

(6.135)

Flow nozzles may have $ values between 0.2 and 0.8.

Venturi meter. The third and final type of obstruction meter is the venturi, named in honor
of Giovanni Venturi (1746–1822), an Italian physicist who first tested conical expansions
and contractions. The original, or classical, venturi was invented by a U.S. engineer, Clemens
Herschel, in 1898. It consisted of a 21° conical contraction, a straight throat of diameter d
and length d, then a 7 to 15° conical expansion. The discharge coefficient is near unity, and
the nonrecoverable loss is very small. Herschel venturis are seldom used now.

The modern venturi nozzle, Fig. 6.39c, consists of an ISA 1932 nozzle entrance and
a conical expansion of half-angle no greater than 15°. It is intended to be operated in
a narrow Reynolds-number range of 1.5 � 105 to 2 � 106. Its discharge coefficient,
shown in Fig. 6.42, is given by the ISO correlation formula

Cd � 0.9858 � 0.196$4.5 (6.136)

It is independent of ReD within the given range. The Herschel venturi discharge varies
with ReD but not with $, as shown in Fig. 6.41. Both have very low net losses.

The choice of meter depends upon the loss and the cost and can be illustrated by
the following table:

Type of meter Net head loss Cost

Orifice Large Small
Nozzle Medium Medium
Venturi Small Large

As so often happens, the product of inefficiency and initial cost is approximately constant.
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Fig. 6.43 Nonrecoverable head loss
in Bernoulli obstruction meters.
(Adapted from Ref. 30.)
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The average nonrecoverable head losses for the three types of meters, expressed as
a fraction of the throat velocity head V t

2/(2g), are shown in Fig. 6.43. The orifice has
the greatest loss and the venturi the least, as discussed. The orifice and nozzle simu-
late partially closed valves as in Fig. 6.18b, while the venturi is a very minor loss.
When the loss is given as a fraction of the measured pressure drop, the orifice and noz-
zle have nearly equal losses, as Example 6.21 will illustrate.



Part (a)

Part (b)

Part (c)

The other types of instruments discussed earlier in this section can also serve as
flowmeters if properly constructed. For example, a hot wire mounted in a tube can be
calibrated to read volume flow rather than point velocity. Such hot-wire meters are
commercially available, as are other meters modified to use velocity instruments. For
further details see Ref. 30.

EXAMPLE 6.21

We want to meter the volume flow of water (� � 1000 kg/m3, � � 1.02 � 10�6 m2/s) moving
through a 200-mm-diameter pipe at an average velocity of 2.0 m/s. If the differential pressure
gage selected reads accurately at p1 � p2 � 50,000 Pa, what size meter should be selected for
installing (a) an orifice with D: �12�D taps, (b) a long-radius flow nozzle, or (c) a venturi nozzle?
What would be the nonrecoverable head loss for each design?

Solution

Here the unknown is the $ ratio of the meter. Since the discharge coefficient is a complicated
function of $, iteration will be necessary. We are given D � 0.2 m and V1 � 2.0 m/s. The pipe-
approach Reynolds number is thus

ReD � �
V

�
1D
� � �

1.
(
0
2
2
.0

�

)(0
1
.
0
2

�

)
6� � 392,000

For all three cases [(a) to (c)] the generalized formula (6.128) holds:

Vt � �
V
$

1
2� � ���2(p1

�

� p2)
��

1/2

� � �
(1 �

C
$
d

4)1/2� (1)

where the given data are V1 � 2.0 m/s, � � 1000 kg/m3, and �p � 50,000 Pa. Inserting these
known values into Eq. (1) gives a relation between $ and �:

�
2
$

.
2
0
� � ���2(5

1
0
0
,
0
0
0
00)

��
1/2

or $2 � �
0
�

.2
� (2)

The unknowns are $ (or �) and Cd. Parts (a) to (c) depend upon the particular chart or formula
needed for Cd � fcn(ReD, $). We can make an initial guess $ � 0.5 and iterate to convergence.

For the orifice with D: �12�D taps, use Eq. (6.132) or Fig. 6.40. The iterative sequence is

$1 � 0.5, Cd1 � 0.604, �1 � 0.624, $2 � 0.566, Cd2 � 0.606, �2 � 0.640, $3 � 0.559

We have converged to three figures. The proper orifice diameter is

d � $D � 112 mm Ans. (a)

For the long-radius flow nozzle, use Eq. (6.134) or Fig. 6.41. The iterative sequence is

$1 � 0.5, Cd1 � 0.9891, �1 � 1.022, $2 � 0.442, Cd2 � 0.9896, �2 � 1.009, $3 � 0.445

We have converged to three figures. The proper nozzle diameter is

d � $D � 89 mm Ans. (b)

For the venturi nozzle, use Eq. (6.136) or Fig. 6.42. The iterative sequence is

$1 � 0.5, Cd1 � 0.977, �1 � 1.009, $2 � 0.445, Cd2 � 0.9807, �2 � 1.0004, $3 � 0.447

We have converged to three figures. The proper venturi diameter is

d � $D � 89 mm Ans. (c)
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Summary

These meters are of similar size, but their head losses are not the same. From Fig. 6.43 for the
three different shapes we may read the three K factors and compute

hm,orifice � 3.5 m hm,nozzle � 3.6 m hm,venturi � 0.8 m

The venturi loss is only about 22 percent of the orifice and nozzle losses.

Solution

The iteration encountered in this example is ideal for the EES. Input the data in SI units:

Rho � 1000 Nu � 1.02E-6 D � 0.2 V � 2.0 DeltaP � 50000

Then write out the basic formulas for Reynolds number, throat velocity and flow coefficient:

Re � V�D/Nu

Vt � V/Beta�2

Alpha � Cd/(1-Beta�4)�0.5

Vt � Alpha�SQRT(2�DeltaP/Rho)

Finally, input the proper formula for the discharge coefficient. For example, for the flow nozzle,

Cd � 0.9965 � 0.00653�Beta�0.5�(1E6/Re)�0.5

When asked to Solve the equation, EES at first complains of dividing by zero. One must then
tighten up the Variable Information by not allowing $, �, or Cd to be negative and, in particu-
lar, by confining $ to its practical range 0.2 	 $ 	 0.9. EES then readily announces correct an-
swers for the flow nozzle:

Alpha � 1.0096 Cd � 0.9895 Beta � 0.4451

This chapter is concerned with internal pipe and duct flows, which are probably the
most common problems encountered in engineering fluid mechanics. Such flows are
very sensitive to the Reynolds number and change from laminar to transitional to tur-
bulent flow as the Reynolds number increases.

The various Reynolds-number regimes are outlined, and a semiempirical approach
to turbulent-flow modeling is presented. The chapter then makes a detailed analysis of
flow through a straight circular pipe, leading to the famous Moody chart (Fig. 6.13)
for the friction factor. Possible uses of the Moody chart are discussed for flow-rate and
sizing problems, as well as the application of the Moody chart to noncircular ducts us-
ing an equivalent duct “diameter.” The addition of minor losses due to valves, elbows,
fittings, and other devices is presented in the form of loss coefficients to be incorpo-
rated along with Moody-type friction losses. Multiple-pipe systems are discussed briefly
and are seen to be quite complex algebraically and appropriate for computer solution.

Diffusers are added to ducts to increase pressure recovery at the exit of a system.
Their behavior is presented as experimental data, since the theory of real diffusers is
still not well developed. The chapter ends with a discussion of flowmeters, especially
the pitot-static tube and the Bernoulli-obstruction type of meter. Flowmeters also re-
quire careful experimental calibration.
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Problems

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equation Solver (EES), while problems labeled with a
computer disk may require the use of a computer. The standard
end-of-chapter problems 6.1 to 6.160 (categorized in the problem
list below) are followed by word problems W6.1 to W6.5, funda-
mentals of engineering exam problems FE6.1 to FE6.15, compre-
hensive problems C6.1 to C6.5, and design projects D6.1 and D6.2.

Problem distribution

Section Topic Problems

6.1 Reynolds-number regimes 6.1–6.7
6.2 Internal and external flow 6.8–6.10
6.3 Turbulent-shear correlations 6.11–6.18
6.4 Laminar pipe flow 6.19–6.41
6.4 Turbulent pipe flow 6.42–6.77
6.5 Flow-rate and pipe-sizing problems 6.78–6.85
6.6 Noncircular ducts 6.86–6.99
6.7 Minor losses 6.100–6.110
6.8 Series and parallel pipe systems 6.111–6.120
6.8 Three-reservoir and pipe-network systems 6.121–6.130
6.9 Diffuser performance 6.131–6.134
6.10 The pitot-static tube 6.135–6.139
6.10 Flowmeters: The orifice plate 6.140–6.148
6.10 Flowmeters: The flow nozzle 6.149–6.153
6.10 Flowmeters: The venturi meter 6.154–6.160

P6.1 In flow past a sphere, the boundary layer becomes turbu-
lent at about ReD � 2.5 E5. To what air speed in mi/h does
this correspond for a golf ball whose diameter is 1.6 in?
Do the pressure, temperature, and humidity of the air make
any difference in your calculation?

P6.2 For a thin wing moving parallel to its chord line, transition
to a turbulent boundary layer normally occurs at Rex �
2.8 � 106, where x is the distance from the leading edge [2,
3]. If the wing is moving at 20 m/s, at what point on the
wing will transition occur at 20°C for (a) air and (b) water?

P6.3 If the wing of Prob. 6.2 is tested in a wind or water tun-
nel, it may undergo transition earlier than Rex � 2.8 � 106

if the test stream itself contains turbulent fluctuations. A
semiempirical correlation for this case [3, p. 383] is

Rexcrit

1/2 �

where � is the tunnel-turbulence intensity in percent. If V �
20 m/s in air at 20°C, use this formula to plot the transi-
tion position on the wing versus stream turbulence for �
between 0 and 2 percent. At what value of � is xcrit de-
creased 50 percent from its value at � � 0?

�1 � (1 � 13.25�2)1/2

���
0.00392�2

P6.4 For flow of SAE 10 oil through a 5-cm-diameter pipe, from
Fig. A.1, for what flow rate in m3/h would we expect tran-
sition to turbulence at (a) 20°C and (b) 100°C?

P6.5 In flow past a body or wall, early transition to turbulence
can be induced by placing a trip wire on the wall across the
flow, as in Fig. P6.5. If the trip wire in Fig. P6.5 is placed
where the local velocity is U, it will trigger turbulence if
Ud/� � 850, where d is the wire diameter [3, p. 386]. If the
sphere diameter is 20 cm and transition is observed at ReD �
90,000, what is the diameter of the trip wire in mm?
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D

Trip wire d

U

P6.5

P6.6 A fluid at 20°C flows at 850 cm3/s through an 8-cm-di-
ameter pipe. Determine whether the flow is laminar or tur-
bulent if the fluid is (a) hydrogen, (b) air, (c) gasoline,
(d) water, (e) mercury, or (f) glycerin.

P6.7 Cola, approximated as pure water at 20°C, is to fill an 8-
oz container (1 U.S. gal � 128 fl oz) through a 5-mm-di-
ameter tube. Estimate the minimum filling time if the tube
flow is to remain laminar. For what cola (water) tempera-
ture would this minimum time be 1 min?

P6.8 When water at 20°C is in steady turbulent flow through an
8-cm-diameter pipe, the wall shear stress is 72 Pa. What
is the axial pressure gradient (�p/�x) if the pipe is (a) hor-
izontal and (b) vertical with the flow up?

P6.9 A light liquid (� � 950 kg/m3) flows at an average veloc-
ity of 10 m/s through a horizontal smooth tube of diame-
ter 5 cm. The fluid pressure is measured at 1-m intervals
along the pipe, as follows:

x, m 0 1 2 3 4 5 6

p, kPa 304 273 255 240 226 213 200

Estimate (a) the average wall shear stress, in Pa, and (b) the
wall shear stress in the fully developed region of the pipe.

P6.10 Water at 20°C flows through an inclined 8-cm-diameter
pipe. At sections A and B the following data are taken:
pA � 186 kPa, VA � 3.2 m/s, zA � 24.5 m, and pB � 260
kPa, VB � 3.2 m/s, zB � 9.1 m. Which way is the flow go-
ing? What is the head loss in meters?

P6.11 Derive the time-averaged x-momentum equation (6.14) by
direct substitution of Eqs. (6.12) into the momentum equa-



tion (6.7). It is convenient to write the convective acceler-
ation as

�
d
d
u
t
� � �

�

�

x
�(u2) � �

�

�

y
�(u�) � �

�

�

z
�(uw)

which is valid because of the continuity relation, Eq. (6.7).
P6.12 By analogy with Eq. (6.14) write the turbulent mean-mo-

mentum differential equation for (a) the y direction and
(b) the z direction. How many turbulent stress terms ap-
pear in each equation? How many unique turbulent stresses
are there for the total of three directions?

P6.13 The following turbulent-flow velocity data u(y), for air at
75°F and 1 atm near a smooth flat wall, were taken in the
University of Rhode Island wind tunnel:

y, in 0.025 0.035 0.047 0.055 0.065

u, ft/s 51.2 54.2 56.8 57.6 59.1

Estimate (a) the wall shear stress and (b) the velocity u at
y � 0.22 in.

P6.14 Two infinite plates a distance h apart are parallel to the xz
plane with the upper plate moving at speed V, as in Fig.
P6.14. There is a fluid of viscosity � and constant pres-
sure between the plates. Neglecting gravity and assuming
incompressible turbulent flow u(y) between the plates, use
the logarithmic law and appropriate boundary conditions
to derive a formula for dimensionless wall shear stress ver-
sus dimensionless plate velocity. Sketch a typical shape of
the profile u(y).

constant [2, 3]. Assuming that �turb � �w near the wall,
show that this expression can be integrated to yield the log-
arithmic-overlap law, Eq. (6.21).

P6.18 Water at 20°C flows in a 9-cm-diameter pipe under fully de-
veloped conditions. The centerline velocity is 10 m/s. Com-
pute (a) Q, (b) V, (c) �w, and (d) �p for a 100-m pipe length.

In Probs. 6.19 to 6.99, neglect minor losses.

P6.19 A 5-mm-diameter capillary tube is used as a viscometer
for oils. When the flow rate is 0.071 m3/h, the measured
pressure drop per unit length is 375 kPa/m. Estimate the
viscosity of the fluid. Is the flow laminar? Can you also
estimate the density of the fluid?

P6.20 A soda straw is 20 cm long and 2 mm in diameter. It de-
livers cold cola, approximated as water at 10°C, at a rate
of 3 cm3/s. (a) What is the head loss through the straw?
What is the axial pressure gradient �p/�x if the flow is
(b) vertically up or (c) horizontal? Can the human lung de-
liver this much flow?

P6.21 Water at 20°C is to be siphoned through a tube 1 m long
and 2 mm in diameter, as in Fig. P6.21. Is there any height
H for which the flow might not be laminar? What is the
flow rate if H � 50 cm? Neglect the tube curvature.
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P6.15 Suppose in Fig. P6.14 that h � 3 cm, the fluid in water at
20°C, and the flow is turbulent, so that the logarithmic law
is valid. If the shear stress in the fluid is 15 Pa, what is V
in m/s?

P6.16 By analogy with laminar shear, � �� du/dy, T. V. Boussi-
nesq in 1877 postulated that turbulent shear could also be
related to the mean-velocity gradient �turb � � du/dy,
where � is called the eddy viscosity and is much larger than
�. If the logarithmic-overlap law, Eq. (6.21), is valid with
� � �w, show that � � ��u*y.

P6.17 Theodore von Kármán in 1930 theorized that turbulent
shear could be represented by �turb � � du/dy where � �
��2y2du/dy is called the mixing-length eddy viscosity
and � � 0.41 is Kármán’s dimensionless mixing-length

P6.21

P6.22 SAE 30W oil at 20°C flows through a long, horizontal, 12-
cm-diameter tube. At section 1, the fluid pressure is 186
kPa. At section 2, which is 6 m further downstream, the
pressure is 171 kPa. If the flow is laminar, estimate (a) the
mass flow in kg/s and (b) the Reynolds number.

P6.23 Glycerin at 20°C is to be pumped through a horizontal
smooth pipe at 3.1 m3/s. It is desired that (1) the flow be
laminar and (2) the pressure drop be no more than 100
Pa/m. What is the minimum pipe diameter allowable?

P6.24 The 6-cm-diameter pipe in Fig. P6.24 contains glycerin at
20°C flowing at a rate of 6 m3/h. Verify that the flow is
laminar. For the pressure measurements shown, is the flow
up or down? What is the indicated head loss for these pres-
sures?

P6.25 To determine the viscosity of a liquid of specific gravity
0.95, you fill, to a depth of 12 cm, a large container which
drains through a 30-cm-long vertical tube attached to the
bottom. The tube diameter is 2 mm, and the rate of drain-



ing is found to be 1.9 cm3/s. What is your estimate of the
fluid viscosity? Is the tube flow laminar?

P6.26 Water at 20°C is flowing through a 20-cm-square smooth
duct at a (turbulent) Reynolds number of 100,000. For a
“laminar flow element” measurement, it is desired to pack
the pipe with a honeycomb array of small square passages
(see Fig. P6.36 for an example). What passage width h will
ensure that the flow in each tube will be laminar (Reynonds
number less than 2000)?

P6.27 An oil (SG � 0.9) issues from the pipe in Fig. P6.27 at
Q � 35 ft3/h. What is the kinematic viscosity of the oil in
ft3/s? Is the flow laminar?

P6.32 SAE 30 oil at 20°C flows at 0.001 m3/s through 100 m of
1-cm-diameter pipe and then for another 100 m at an in-
creased d � 2 cm. The double-pipe system slopes upward
at 35° in the flow direction. Estimate (a) the total pressure
change and (b) the power required to drive the flow.

P6.33 For the configuration shown in Fig. P6.33, the fluid is ethyl
alcohol at 20°C, and the tanks are very wide. Find the flow
rate which occurs in m3/h. Is the flow laminar?
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P6.28 In Prob. 6.27 what will the flow rate be, in m3/h, if the
fluid is SAE 10 oil at 20°C?

P6.29 Oil, with � � 890 kg/m3 and � � 0.06 kg/(m � s), is to be
pumped through 1 km of straight horizontal pipe with a
power input of 1 kW. What is the maximum possible mass
flow rate, and corresponding pipe diameter, if laminar flow
is to be maintained?

P6.30 A steady push on the piston in Fig. P6.30 causes a flow
rate Q � 0.15 cm3/s through the needle. The fluid has � �
900 kg/m3 and � � 0.002 kg/(m � s). What force F is re-
quired to maintain the flow?

P6.31 SAE 10 oil at 20°C flows in a vertical pipe of diameter
2.5 cm. It is found that the pressure is constant through-
out the fluid. What is the oil flow rate in m3/h? Is the flow
up or down?

1.5 cm 3 cm

Q F
D1 = 0.25 mm

D2 = 1 cm

P6.33

2 mm

1 m

50 cm

40 cm

80 cm

P6.34 For the system in Fig. P6.33, if the fluid has density of 920
kg/m3 and the flow rate is unknown, for what value of vis-
cosity will the capillary Reynolds number exactly equal
the critical value of 2300?

*P6.35 Let us attack Prob. 6.33 in symbolic fashion, using Fig.
P6.35. All parameters are constant except the upper tank
depth Z(t). Find an expression for the flow rate Q(t) as a
function of Z(t). Set up a differential equation, and solve
for the time t0 to drain the upper tank completely. Assume
quasi-steady laminar flow.

P6.36 For straightening and smoothing an airflow in a 50-cm-di-
ameter duct, the duct is packed with a “honeycomb” of
thin straws of length 30 cm and diameter 4 mm, as in Fig.



P6.36. The inlet flow is air at 110 kPa and 20°C, moving
at an average velocity of 6 m/s. Estimate the pressure drop
across the honeycomb.

P6.37 Oil, with � � 880 kg/m3 and � � 0.08 kg/(m � s), flows
through a pipe with d � 2 cm and L � 12 m. The wall
shear stress is 30 Pa. Estimate (a) the Reynolds number,
(b) the total pressure drop, and (c) the power required to
drive the fluid.

P6.38 SAE 10 oil at 20°C flows through the 4-cm-diameter ver-
tical pipe of Fig. P6.38. For the mercury manometer read-
ing h � 42 cm shown, (a) calculate the volume flow rate
in m3/h and (b) state the direction of flow.

P6.39 Light oil, � � 880 kg/m3 and � � 0.015 kg/(m � s), flows
down a vertical 6-mm-diameter tube due to gravity only.
Estimate the volume flow rate in m3/h if (a) L � 1 m and
(b) L � 2 m. (c) Verify that the flow is laminar.

P6.40 SAE 30 oil at 20°C flows in the 3-cm-diameter pipe in
Fig. P6.40, which slopes at 37°. For the pressure mea-

surements shown, determine (a) whether the flow is up or
down and (b) the flow rate in m3/h.

P6.41 In Prob. 6.40 suppose it is desired to add a pump between
A and B to drive the oil upward from A to B at a rate of
3 kg/s. At 100 percent efficiency, what pump power is re-
quired?

*P6.42 It is clear by comparing Figs. 6.12b and 6.13 that the ef-
fects of sand roughness and commercial (manufactured)
roughness are not quite the same. Take the special case of
commercial roughness ratio �/d � 0.001 in Fig. 6.13, and
replot in the form of the wall-law shift �B (Fig. 6.12a)
versus the logarithm of �� � �u*/�. Compare your plot
with Eq. (6.61).

P6.43 Water at 20°C flows for 1 mi through a 3-in-diameter hor-
izontal wrought-iron pipe at 250 gal/min. Estimate the
head loss and the pressure drop in this length of pipe.

P6.44 Mercury at 20°C flows through 4 m of 7-mm-diameter
glass tubing at an average velocity of 5 m/s. Estimate the
head loss in m and the pressure drop in kPa.

P6.45 Oil, SG � 0.88 and � � 4 E-5 m2/s, flows at 400 gal/min
through a 6-in asphalted cast-iron pipe. The pipe is 0.5 mi
long and slopes upward at 8° in the flow direction. Com-
pute the head loss in ft and the pressure change.
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P6.46 Kerosine at 20°C is pumped at 0.15 m3/s through 20 km
of 16-cm-diameter cast-iron horizontal pipe. Compute the
input power in kW required if the pumps are 85 percent
efficient.

P6.47 Derive Eq. (6.59), showing all steps. The constant 1.33
dates back to Prandtl’s work in 1935 and may change
slightly to 1.29 in your analysis.

P6.48 Show that if Eq. (6.49) is accurate, the position in a tur-
bulent pipe flow where local velocity u equals average ve-
locity V occurs exactly at r � 0.777R, independent of the
Reynolds number.

P6.49 The tank-pipe system of Fig. P6.49 is to deliver at least 11
m3/h of water at 20°C to the reservoir. What is the maxi-
mum roughness height � allowable for the pipe? P6.54 In Fig. P6.52 suppose that the fluid is carbon tetrachloride

at 20°C and p1 � 1100 kPa gage. What pipe diameter, in
cm, is required to deliver a flow rate of 25 m3/h?

P6.55 The reservoirs in Fig. P6.55 contain water at 20°C. If the
pipe is smooth with L � 4500 m and d � 4 cm, what will
the flow rate in m3/h be for �z � 100 m?
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P6.50 Ethanol at 20°C flows at 125 U.S. gal/min through a hor-
izontal cast-iron pipe with L � 12 m and d � 5 cm. Ne-
glecting entrance effects, estimate (a) the pressure gradi-
ent dp/dx, (b) the wall shear stress �w, and (c) the percent
reduction in friction factor if the pipe walls are polished
to a smooth surface.

P6.51 The viscous sublayer (Fig. 6.9) is normally less than 1 per-
cent of the pipe diameter and therefore very difficult to
probe with a finite-sized instrument. In an effort to gener-
ate a thick sublayer for probing, Pennsylvania State Uni-
versity in 1964 built a pipe with a flow of glycerin. As-
sume a smooth 12-in-diameter pipe with V � 60 ft/s and
glycerin at 20°C. Compute the sublayer thickness in inches
and the pumping horsepower required at 75 percent effi-
ciency if L � 40 ft.

P6.52 The pipe flow in Fig. P6.52 is driven by pressurized air in
the tank. What gage pressure p1 is needed to provide a
20°C water flow rate Q � 60 m3/h?

*P6.53 In Fig. P6.52 suppose P1 � 700 kPa and the fluid specific
gravity is 0.68. If the flow rate is 27 m3/h, estimate the
viscosity of the fluid. What fluid in Table A.5 is the likely
suspect?
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L, D, 

∆ z

ε
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P6.56 Consider a horizontal 4-ft-diameter galvanized-iron pipe
simulating the Alaskan pipeline. The oil flow is 70 million
U.S. gallons per day, at a density of 910 kg/m3 and vis-
cosity of 0.01 kg/(m � s) (see Fig. A.1 for SAE 30 oil at
100°C). Each pump along the line raises the oil pressure
to 8 MPa, which then drops, due to head loss, to 400-kPa
at the entrance to the next pump. Estimate (a) the appro-
priate distance between pumping stations and (b) the power
required if the pumps are 88 percent efficient.

P6.57 John Laufer (NACA Tech. Rep. 1174, 1954) gave velocity
data for 20°C airflow in a smooth 24.7-cm-diameter pipe
at Re � 5 E5:

u/uCL 1.0 0.997 0.988 0.959 0.908 0.847 0.818 0.771 0.690

r/R 0.0 0.102 0.206 0.412 0.617 0.784 0.846 0.907 0.963

The centerline velocity uCL was 30.5 m/s. Determine
(a) the average velocity by numerical integration and
(b) the wall shear stress from the log-law approximation.
Compare with the Moody chart and with Eq. (6.59).

P6.58 In Fig. P6.55 assume that the pipe is cast iron with L � 550
m, d � 7 cm, and �Z � 100 m. If an 80 percent efficient
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pump is placed at point B, what input power is required to
deliver 160 m3/h of water upward from reservoir 2 to 1?

P6.59 The following data were obtained for flow of 20°C water
at 20 m3/h through a badly corroded 5-cm-diameter pipe
which slopes downward at an angle of 8°: p1 � 420 kPa,
z1 � 12 m, p2 � 250 kPa, z2 � 3 m. Estimate (a) the
roughness ratio of the pipe and (b) the percent change in
head loss if the pipe were smooth and the flow rate the
same.

P6.60 J. Nikuradse in 1932 suggested that smooth-wall turbulent
pipe flow could be approximated by a power-law profile

�
u
u

CL
� � ��

R
y

��
1/N

where y is distance from the wall and N � 6 to 9. Find the
best value of N which fits Laufer’s data in Prob. 6.57. Then
use your formula to estimate the pipe volume flow, and
compare with the measured value of 45 ft3/s.

P6.61 A straight 10-cm commercial-steel pipe is 1 km long and
is laid on a constant slope of 5°. Water at 20°C flows down-
ward, due to gravity only. Estimate the flow rate in m3/h.
What happens if the pipe length is 2 km?

P6.62 The Moody chart, Fig. 6.13, is best for finding head loss
(or �p) when Q, V, d, and L are known. It is awkward for
the second type of problem, finding Q when hf or �p is
known (see Example 6.9). Prepare a modified Moody chart
whose abscissa is independent of Q and V, using �/d as a
parameter, from which one can immediately read the or-
dinate to find (dimensionless) Q or V. Use your chart to
solve Example 6.9.

P6.63 A tank contains 1 m3 of water at 20°C and has a drawn-
capillary outlet tube at the bottom, as in Fig. P6.63. Find
the outlet volume flux Q in m3/h at this instant.

P6.64 For the system in Fig. P6.63, solve for the flow rate in
m3/h if the fluid is SAE 10 oil at 20°C. Is the flow lami-
nar or turbulent?

P6.65 In Prob. 6.63 the initial flow is turbulent. As the water
drains out of the tank, will the flow revert to laminar mo-
tion as the tank becomes nearly empty? If so, at what tank
depth? Estimate the time, in h, to drain the tank completely.

P6.66 Ethyl alcohol at 20°C flows through a 10-cm horizontal
drawn tube 100 m long. The fully developed wall shear
stress is 14 Pa. Estimate (a) the pressure drop, (b) the vol-
ume flow rate, and (c) the velocity u at r � 1 cm.

P6.67 What level h must be maintained in Fig. P6.67 to deliver
a flow rate of 0.015 ft3/s through the �12�-in commercial-steel
pipe?
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P6.68 Water at 20°C is to be pumped through 2000 ft of pipe
from reservoir 1 to 2 at a rate of 3 ft3/s, as shown in Fig.
P6.68. If the pipe is cast iron of diameter 6 in and the pump
is 75 percent efficient, what horsepower pump is needed?

Pump

L = 2000 ft

2

1

120 ft

P6.68

P6.69 For Prob. 6.68 suppose the only pump available can de-
liver 80 hp to the fluid. What is the proper pipe size in
inches to maintain the 3 ft3/s flow rate?

P6.70 In Fig. P6.68 suppose the pipe is 6-in-diameter cast iron
and the pump delivers 75 hp to the flow. What flow rate
Q ft3/s results?

P6.71 It is desired to solve Prob. 6.68 for the most economical
pump and cast-iron pipe system. If the pump costs $125
per horsepower delivered to the fluid and the pipe costs
$7000 per inch of diameter, what are the minimum cost
and the pipe and pump size to maintain the 3 ft3/s flow
rate? Make some simplifying assumptions.



P6.72 The 5-m-long pipe in Fig. P6.72 may be oriented at any
angle �. If entrance losses are negligible for any � (pure
Moody friction loss), what is the optimum value of � for
which the jet height loss �h is minimum?

cost of the piping is $75 per centimeter of diameter. The
power generated may be sold for $0.08 per kilowatthour.
Find the proper pipe diameter for minimum payback time,
i.e., minimum time for which the power sales will equal
the initial cost of the system.

P6.78 In Fig. P6.78 the connecting pipe is commercial steel 6 cm
in diameter. Estimate the flow rate, in m3/h, if the fluid is
water at 20°C. Which way is the flow?
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P6.73 The Moody chart, Fig. 6.13, is best for finding head loss
(or �p) when Q, V, d, and L are known. It is awkward for
the third type of problem, finding d when hf (or �p) and
Q are known (see Example 6.11). Prepare a modified
Moody chart whose abscissa is independent of d, using as
a parameter � nondimensionalized without d, from which
one can immediately read the (dimensionless) ordinate to
find d. Use your chart to solve Example 6.11.

P6.74 In Fig. P6.67 suppose the fluid is gasoline at 20°C and h �
90 ft. What commercial-steel pipe diameter is required for
the flow rate to be 0.015 ft3/s?

P6.75 You wish to water your garden with 100 ft of �58�-in-diame-
ter hose whose roughness is 0.011 in. What will be the de-
livery, in ft3/s, if the gage pressure at the faucet is 60
lbf/in2? If there is no nozzle (just an open hose exit), what
is the maximum horizontal distance the exit jet will carry?

P6.76 The small turbine in Fig. P6.76 extracts 400 W of power
from the water flow. Both pipes are wrought iron. Compute
the flow rate Q m3/h. Sketch the EGL and HGL accurately.

Q

Water
20˚ C

Turbine

30 m
D = 4 cm

10 m
D = 6 cm

20 m

P6.76

P6.77 Modify Prob. 6.76 into an economic analysis, as follows.
Let the 40 m of wrought-iron pipe have a uniform diam-
eter d. Let the steady water flow available be Q � 30 m3/h.
The cost of the turbine is $4 per watt developed, and the

P6.79 A garden hose is to be used as the return line in a water-
fall display at a mall. In order to select the proper pump,
you need to know the roughness height inside the garden
hose. Unfortunately, roughness information is not some-
thing supplied by the hose manufacturer. So you devise a
simple experiment to measure the roughness. The hose is
attached to the drain of an aboveground swimming pool,
the surface of which is 3.0 m above the hose outlet. You
estimate the minor loss coefficient of the entrance region
as 0.5, and the drain valve has a minor loss equivalent
length of 200 diameters when fully open. Using a bucket
and stopwatch, you open the valve and measure the flow
rate to be 2.0 � 10�4 m3/s for a hose that is 10.0 m long
and has an inside diameter of 1.50 cm. Estimate the rough-
ness height in mm inside the hose.

P6.80 The head-versus-flow-rate characteristics of a centrifugal
pump are shown in Fig. P6.80. If this pump drives water
at 20°C through 120 m of 30-cm-diameter cast-iron pipe,
what will be the resulting flow rate, in m3/s?

80 m

hp

0

Pump
performance

Parabola

Q 2m3/sP6.80

P6.81 The pump in Fig. P6.80 is used to deliver gasoline at 20°C
through 350 m of 30-cm-diameter galvanized iron pipe.



Estimate the resulting flow rate, in m3/s. (Note that the
pump head is now in meters of gasoline.)

P6.82 The pump in Fig. P6.80 has its maximum efficiency at a
head of 45 m. If it is used to pump ethanol at 20°C through
200 m of commercial-steel pipe, what is the proper pipe
diameter for maximum pump efficiency?

P6.83 For the system of Fig. P6.55, let �z � 80 m and L � 185 m
of cast-iron pipe. What is the pipe diameter for which the
flow rate will be 7 m3/h?

P6.84 It is desired to deliver 60 m3/h of water at 20°C through
a horizontal asphalted cast-iron pipe. Estimate the pipe di-
ameter which will cause the pressure drop to be exactly
40 kPa per 100 m of pipe length.

P6.85 The pump of Fig. P6.80 is used to deliver 0.7 m3/s of
methanol at 20°C through 95 m of cast-iron pipe. What is
the proper pipe diameter?

P6.86 SAE 10 oil at 20°C flows at an average velocity of 2 m/s
between two smooth parallel horizontal plates 3 cm apart.
Estimate (a) the centerline velocity, (b) the head loss per
meter, and (c) the pressure drop per meter.

P6.87 A commercial-steel annulus 40 ft long, with a � 1 in and
b � �12� in, connects two reservoirs which differ in surface
height by 20 ft. Compute the flow rate in ft3/s through the
annulus if the fluid is water at 20°C.

P6.88 Show that for laminar flow through an annulus of very
small clearance the flow rate Q is approximately propor-
tional to the cube of the clearance a � b.

P6.89 An annulus of narrow clearance causes a very large pres-
sure drop and is useful as an accurate measurement of vis-
cosity. If a smooth annulus 1 m long with a � 50 mm and
b � 49 mm carries an oil flow at 0.001 m3/s, what is the
oil viscosity if the pressure drop is 250 kPa?

P6.90 A 90-ft-long sheet-steel duct carries air at approximately
20°C and 1 atm. The duct cross section is an equilateral
triangle whose side measures 9 in. If a blower can supply
1 hp to the flow, what flow rate, in ft3/s, will result?

P6.91 Heat exchangers often consist of many triangular pas-
sages. Typical is Fig. P6.91, with L � 60 cm and an
isosceles-triangle cross section of side length a � 2 cm
and included angle $ � 80°. If the average velocity is V �
2 m/s and the fluid is SAE 10 oil at 20°C, estimate the
pressure drop.

P6.92 A large room uses a fan to draw in atmospheric air at 20°C
through a 30-cm by 30-cm commercial-steel duct 12 m
long, as in Fig. P6.92. Estimate (a) the air flow rate in m3/h
if the room pressure is 10 Pa vacuum and (b) the room
pressure if the flow rate is 1200 m3/h. Neglect minor losses.
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P6.93 Modify Prob. 6.91 so that the angle $ is unknown. For SAE
10 oil at 20°C, if the pressure drop is 120 kPa and the flow
rate is 4 m3/h, what is the proper value of the angle $, in
degrees?

P6.94 As shown in Fig. P6.94, a multiduct cross section consists
of seven 2-cm-diameter smooth thin tubes packed tightly
in a hexagonal “bundle” within a single 6-cm-diameter
tube. Air, at about 20°C and 1 atm, flows through this sys-
tem at 150 m3/h. Estimate the pressure drop per meter.

D = 6 cm

d = 2 cm

P6.94

P6.95 Modify Prob. 6.94 as follows. Let the seven 2-cm tubes be
solid rods, so that the air can only pass through the curved
triangular cusped passages. Compute the pressure drop per
meter of duct length.

P6.96 Hydrogen, at 20°C and approximately 1 atm, is to be
pumped through a smooth rectangular duct 85 m long of
aspect ratio 5:1. If the flow rate is 0.7 m3/s and the pres-
sure drop is 80 Pa, what should the width and height of
the duct cross section be?

P6.97 A wind tunnel has a wooden rectangular section 45 cm by
95 cm by 26 m long. It uses sea-level standard air at 31-
m/s average velocity. Estimate the pressure drop and the
power required if the fan efficiency is 75 percent.

P6.98 A rectangular heat exchanger is to be divided into smaller
sections using sheets of commercial steel 0.4 mm thick, as
sketched in Fig. P6.98. The flow rate is 20 kg/s of water
at 20°C. Basic dimensions are L � 1 m, W � 20 cm, and
H � 10 cm. What is the proper number of square sections
if the overall pressure drop is to be no more than 1600 Pa?

EES



P6.99 Air, approximately at sea-level standard conditions, is to
be delivered at 3 m3/s through a horizontal square com-
mercial-steel duct. What are the appropriate duct dimen-
sions if the pressure drop is not to exceed 90 Pa over a
100-m length?

*P6.100 Repeat Prob. 6.92 by including minor losses due to a sharp-
edged entrance, the exit into the room, and an open gate
valve. If the room pressure is 10 Pa vacuum, by what per-
centage is the air flow rate decreased from part (a) of Prob.
6.92?

P6.101 Repeat Prob. 6.67 by including losses due to a sharp en-
trance and a fully open screwed swing-check valve. By
what percentage is the required tank level h increased?

*P6.102 A 70 percent efficient pump delivers water at 20°C from
one reservoir to another 20 ft higher, as in Fig. P6.102.
The piping system consists of 60 ft of galvanized-iron 
2-in pipe, a reentrant entrance, two screwed 90° long-ra-
dius elbows, a screwed-open gate valve, and a sharp exit.
What is the input power required in horsepower with and
without a 6° well-designed conical expansion added to the
exit? The flow rate is 0.4 ft3/s.

if the surface of reservoir 1 is 45 ft higher than that of
reservoir 2.

*P6.104 Reconsider the air hockey table of Prob. 3.162 but with in-
clusion of minor losses. The table is 3.0 � 6.0 ft in area,
with �1

1
6�-in-diameter holes spaced every inch in a rectan-

gular grid pattern (2592 holes total). The required jet speed
from each hole is estimated to be Vjet � 50 ft/s. Your job
is to select an appropriate blower which will meet the re-
quirements. Hint: Assume that the air is stagnant in the
large volume of the manifold under the table surface, and
assume sharp edge inlets at each hole. (a) Estimate the
pressure rise (in lb/in2) required of the blower. (b) Com-
pare your answer to the previous calculation in which mi-
nor losses were ignored. Are minor losses significant in
this application?

P6.105 The system in Fig. P6.105 consists of 1200 m of 5 cm cast-
iron pipe, two 45° and four 90° flanged long-radius el-
bows, a fully open flanged globe valve, and a sharp exit
into a reservoir. If the elevation at point 1 is 400 m, what
gage pressure is required at point 1 to deliver 0.005 m3/s
of water at 20°C into the reservoir?
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H

W

L

P6.98

20 ft

6˚ cone

Pump

P6.102

P6.103 The reservoirs in Fig. P6.103 are connected by cast-iron
pipes joined abruptly, with sharp-edged entrance and exit.
Including minor losses, estimate the flow of water at 20°C

1 2

D = 2 in
L = 20 ft

D = 1 in
L = 20 ft

1 in 2 in

P6.103

1

Elevation
500 m

Sharp
exit

Open
globe

45˚

45˚

P6.105

P6.106 The water pipe in Fig. P6.106 slopes upward at 30°. The
pipe has a 1-in diameter and is smooth. The flanged globe
valve is fully open. If the mercury manometer shows a 
7-in deflection, what is the flow rate in ft3/s?

P6.107 In Fig. P6.107 the pipe is galvanized iron. Estimate the
percentage increase in the flow rate (a) if the pipe entrance



is cut off flush with the wall and (b) if the butterfly valve
is opened wide.

P6.108 Consider the flow system of Fig. P6.102, including the 6°
cone diffuser. Suppose the pump head versus flow rate is
approximated by

hp � 45 � 125Q2

with hp in ft and Q in ft3/s. Estimate the resulting flow
rate, in ft3/s.

P6.109 In Fig. P6.109 there are 125 ft of 2-in pipe, 75 ft of 6-in
pipe, and 150 ft of 3-in pipe, all cast iron. There are three
90° elbows and an open globe valve, all flanged. If the exit
elevation is zero, what horsepower is extracted by the tur-
bine when the flow rate is 0.16 ft3/s of water at 20°C?

P6.110 In Fig. P6.110 the pipe entrance is sharp-edged. If the flow
rate is 0.004 m3/s, what power, in W, is extracted by the
turbine?

414 Chapter 6 Viscous Flow in Ducts

7 in

10 ft

Mercury

Globe

Open jet

Water at
20˚C

5 m

6 cm

Butterfly valve
at 30˚

D = 5 cm, L = 2 m

P6.106
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P6.111 For the parallel-pipe system of Fig. P6.111, each pipe is
cast iron, and the pressure drop p1 � p2 � 3 lbf/in2. Com-
pute the total flow rate between 1 and 2 if the fluid is SAE
10 oil at 20°C.

L = 200 ft

1 2

D = 3 in

D = 2 in

L = 250 ft

P6.111

P6.112 If the two pipes in Fig. P6.111 are instead laid in series
with the same total pressure drop of 3 lbf/in2, what will
the flow rate be? The fluid is SAE 10 oil at 20°C.

P6.113 The parallel galvanized-iron pipe system of Fig. P6.113
delivers gasoline at 20°C with a total flow rate of 0.036
m3/s. If the pump is wide open and not running, with a
loss coefficient K � 1.5, determine (a) the flow rate in each
pipe and (b) the overall pressure drop.

L1 = 60 m, D1 = 5 cm 

Q = 0.036 m3/s

L2 = 55 m, D2 = 4 cm 

Pump

P6.113

P6.114 Modify Prob. 6.113 as follows. Let the pump be running
and delivering 45 kW to the flow in pipe 2. The fluid is
gasoline at 20°C. Determine (a) the flow rate in each pipe
and (b) the overall pressure drop.

P6.115 In Fig. P6.115 all pipes are 8-cm-diameter cast iron. De-
termine the flow rate from reservoir 1 if valve C is
(a) closed and (b) open, K � 0.5.
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P6.116 For the series-parallel system of Fig. P6.116, all pipes are
8-cm-diameter asphalted cast iron. If the total pressure
drop p1 � p2 � 750 kPa, find the resulting flow rate Q
m3/h for water at 20°C. Neglect minor losses.

Pipe Length, m Diameter, cm

1 800 12
2 600 8
3 900 10

The total flow rate is 200 m3/h of water at 20°C. Deter-
mine (a) the flow rate in each pipe and (b) the pressure
drop across the system.

P6.121 Consider the three-reservoir system of Fig. P6.121 with
the following data:

L1 � 95 m L2 � 125 m L3 � 160 m

z1 � 25 m z2 � 115 m z3 � 85 m

All pipes are 28-cm-diameter unfinished concrete (� � 1
mm). Compute the steady flow rate in all pipes for water
at 20°C.
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1
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B
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L = 70 m

Z = 0 m

10 m
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1 2

L = 250 m

150 m

100 m

P6.116

P6.117 Modify Prob. 6.116 as follows. Let the flow rate be 
45 m3/h of water at 20°C. Determine the overall pressure
drop p1 � p2 in kPa. Neglect minor losses.

P6.118 For the piping system of Fig. P6.118, all pipes are con-
crete with a roughness of 0.04 in. Neglecting minor losses,
compute the overall pressure drop p1 � p2 in lbf/in2 if
Q � 20 ft3/s. The fluid is water at 20°C.

D = 8 in
L = 1500 ft

21

L = 1000 ft

D = 12 in

D = 15 in
L = 1200 ft

D = 12 in

L = 800 ft

P6.118

P6.119 Modify Prob. 6.118 as follows. Let the pressure drop p1 �
p2 be 98 lbf/in2. Neglecting minor losses, determine the
flow rate in m3/h.

P6.120 Three cast-iron pipes are laid in parallel with these di-
mensions:

Z1

Z2

Z3

L1

L2

L3

P6.121

P6.122 Modify Prob. 6.121 as follows. Reduce the diameter to 
15 cm (with � � 1 mm), and compute the flow rates for
water at 20°C. These flow rates distribute in nearly the
same manner as in Prob. 6.121 but are about 5.2 times
lower. Can you explain this difference?

P6.123 Modify Prob. 6.121 as follows. All data are the same ex-
cept that z3 is unknown. Find the value of z3 for which the
flow rate in pipe 3 is 0.2 m3/s toward the junction. (This
problem requires iteration and is best suited to a digital
computer.)

P6.124 The three-reservoir system in Fig. P6.124 delivers water at
20°C. The system data are as follows:

D1 � 8 in D2 � 6 in D3 � 9 in

L1 � 1800 ft L2 � 1200 ft L3 � 1600 ft

All pipes are galvanized iron. Compute the flow rate in all
pipes.

P6.125 Modify Prob. 6.124 as follows. Let all data be the same
except z3, which is unknown. What value of z3 will cause
the flow rate through pipe 3 to be 1.0 ft3/s toward the junc-
tion?
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P6.126 Modify Prob. 6.124 as follows. Let all data be the same
except that pipe 1 is fitted with a butterfly valve (Fig.
6.19b). Estimate the proper valve opening angle (in de-
grees) for the flow rate through pipe 1 to be reduced to 
1.5 ft3/s toward reservoir 1. (This problem requires itera-
tion and is best suited to a digital computer.)

P6.127 In the five-pipe horizontal network of Fig. P6.127, assume
that all pipes have a friction factor f � 0.025. For the given
inlet and exit flow rate of 2 ft3/s of water at 20°C, deter-
mine the flow rate and direction in all pipes. If pA �
120 lbf/in2 gage, determine the pressures at points B, C,
and D.

P6.130 In Fig. P6.130 lengths AB and BD are 2000 and 1500 ft,
respectively. The friction factor is 0.022 everywhere, and
pA � 90 lbf/in2 gage. All pipes have a diameter of 6 in.
For water at 20°C, determine the flow rate in all pipes and
the pressures at points B, C, and D.
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P6.128 Modify Prob. 6.127 as follows. Let the inlet flow rate at A
and the exit flow at D be unknown. Let pA � pB � 100
lbf/in2. Compute the flow rate in all five pipes.

P6.129 In Fig. P6.129 all four horizontal cast-iron pipes are 45 m
long and 8 cm in diameter and meet at junction a, deliv-
ering water at 20°C. The pressures are known at four points
as shown:

p1 � 950 kPa p2 � 350 kPa

p3 � 675 kPa p4 � 100 kPa

Neglecting minor losses, determine the flow rate in each
pipe.

p1

L1

p2

L  2

L  3

a

L 4
p 4

p 3

P6.129

C

D

A B

0.5 ft3/s

2.0 ft3/s

0.5 ft3/s

1.0 ft3/s

P6.130

P6.131 A water-tunnel test section has a 1-m diameter and flow
properties V � 20 m/s, p � 100 kPa, and T � 20°C. The
boundary-layer blockage at the end of the section is 9 per-
cent. If a conical diffuser is to be added at the end of the
section to achieve maximum pressure recovery, what
should its angle, length, exit diameter, and exit pressure
be?

P6.132 For Prob. 6.131 suppose we are limited by space to a to-
tal diffuser length of 10 m. What should the diffuser an-
gle, exit diameter, and exit pressure be for maximum re-
covery?

P6.133 A wind-tunnel test section is 3 ft square with flow prop-
erties V � 150 ft/s, p � 15 lbf/in2 absolute, and T � 68°F.
Boundary-layer blockage at the end of the test section is
8 percent. Find the angle, length, exit height, and exit pres-
sure of a flat-walled diffuser added onto the section to
achieve maximum pressure recovery.

P6.134 For Prob. 6.133 suppose we are limited by space to a to-
tal diffuser length of 30 ft. What should the diffuser angle,
exit height, and exit pressure be for maximum recovery?



P6.135 A small airplane flying at 5000-m altitude uses a pitot stag-
nation probe without static holes. The measured stagna-
tion pressure is 56.5 kPa. Estimate the airplane’s speed in
mi/h and its uncertainty. Is a compressibility correction
needed?

P6.136 For the pitot-static pressure arrangement of Fig. P6.136,
the manometer fluid is (colored) water at 20°C. Estimate
(a) the centerline velocity, (b) the pipe volume flow, and
(c) the (smooth) wall shear stress.

head probe and a static pressure probe, as shown in Fig.
P6.139, a distance h1 apart from each other. Both probes
are in the main free stream of the water tunnel, unaffected
by the thin boundary layers on the sidewalls. The two
probes are connected as shown to a U-tube manometer.
The densities and vertical distances are shown in Fig.
P6.139. (a) Write an expression for velocity V in terms of
the parameters in the problem. (b) Is it critical that dis-
tance h1 be measured accurately? (c) How does the ex-
pression for velocity V differ from that which would be
obtained if a pitot-static probe had been available and used
with the same U-tube manometer?

P6.140 Kerosine at 20°C flows at 18 m3/h in a 5-cm-diameter pipe.
If a 2-cm-diameter thin-plate orifice with corner taps is in-
stalled, what will the measured pressure drop be, in Pa?

P6.141 Gasoline at 20°C flows at 105 m3/h in a 10-cm-diameter
pipe. We wish to meter the flow with a thin-plate orifice
and a differential pressure transducer which reads best at
about 55 kPa. What is the proper $ ratio for the orifice?

P6.142 The shower head in Fig. P6.142 delivers water at 50°C.
An orifice-type flow reducer is to be installed. The up-
stream pressure is constant at 400 kPa. What flow rate, in
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Air
8 cm

20°C

1 atm

40 mm

P6.136

P6.137 For the 20°C water flow of Fig. P6.137, use the pitot-sta-
tic arrangement to estimate (a) the centerline velocity and
(b) the volume flow in the 5-in-diameter smooth pipe.
(c) What error in flow rate is caused by neglecting the 
1-ft elevation difference?

2 in

Mercury

1 ft

P6.137

P6.138 An engineer who took college fluid mechanics on a pass-
fail basis has placed the static pressure hole far upstream
of the stagnation probe, as in Fig. P6.138, thus contami-
nating the pitot measurement ridiculously with pipe fric-
tion losses. If the pipe flow is air at 20°C and 1 atm and
the manometer fluid is Meriam red oil (SG � 0.827), es-
timate the air centerline velocity for the given manometer
reading of 16 cm. Assume a smooth-walled tube.

P6.139 Professor Walter Tunnel needs to measure the flow veloc-
ity in a water tunnel. Due to budgetary restrictions, he can-
not afford a pitot-static probe, but instead inserts a total

D = 6 cm
16 cm

10 m

Air

P6.138

h1

h2

h3

U-tube manometer

ptotal

pstatic

�w

�m

V

P6.139
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gal/min, results without the reducer? What reducer orifice
diameter would decrease the flow by 40 percent?

P6.143 A 10-cm-diameter smooth pipe contains an orifice plate
with D: �12�D taps and $ � 0.5. The measured orifice pres-
sure drop is 75 kPa for water flow at 20°C. Estimate the
flow rate, in m3/h. What is the nonrecoverable head loss?

P6.144 Accurate solution of Prob. 6.143, using Fig. 6.40, requires
iteration because both the ordinate and the abscissa of this
figure contain the unknown flow rate Q. In the spirit of
Example 5.8, rescale the variables and construct a new plot
in which Q may be read directly from the ordinate. Solve
Prob. 6.143 with your new chart.

P6.145 The 1-m-diameter tank in Fig. P6.145 is initially filled with
gasoline at 20°C. There is a 2-cm-diameter orifice in the
bottom. If the orifice is suddenly opened, estimate the time
for the fluid level h(t) to drop from 2.0 to 1.6 m.

proximated by thin-plate orifices. Hint: A momentum con-
trol volume may be very useful.

P6.148 A smooth pipe containing ethanol at 20°C flows at 7 m3/h
through a Bernoulli obstruction, as in Fig. P6.148. Three
piezometer tubes are installed, as shown. If the obstruc-
tion is a thin-plate orifice, estimate the piezometer levels
(a) h2 and (b) h3.
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Q (t )
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P6.145

P6.146 A pipe connecting two reservoirs, as in Fig. P6.146, con-
tains a thin-plate orifice. For water flow at 20°C, estimate
(a) the volume flow through the pipe and (b) the pressure
drop across the orifice plate.

P6.147 Air flows through a 6-cm-diameter smooth pipe which has
a 2-m-long perforated section containing 500 holes (di-
ameter 1 mm), as in Fig. P6.147. Pressure outside the pipe
is sea-level standard air. If p1 � 105 kPa and Q1 � 110
m3/h, estimate p2 and Q2, assuming that the holes are ap-

20 m

3-cm
orifice

L = 100 m
D = 5 cm

D = 6 cm2 m

500 holes (diameter 1 mm)

1 2

P6.146

P6.147

 D = 5 cm

 5 m

d = 3 cm

h3
h2

h1= 1 m

P6.148

P6.149 Repeat Prob. 6.148 if the obstruction is a long-radius flow
nozzle.

P6.150 Gasoline at 20°C flows at 0.06 m3/s through a 15-cm pipe
and is metered by a 9-cm long-radius flow nozzle (Fig.
6.39a). What is the expected pressure drop across the noz-
zle?

P6.151 Ethyl alcohol at 20°C flowing in a 6-cm-diameter pipe is
metered through a 3-cm long-radius flow nozzle. If the
measured pressure drop is 45 kPa, what is the estimated
volume flow, in m3/h?

P6.152 Kerosine at 20°C flows at 20 m3/h in an 8-cm-diameter
pipe. The flow is to be metered by an ISA 1932 flow noz-
zle so that the pressure drop is 7000 Pa. What is the proper
nozzle diameter?

P6.142



P6.153 Two water tanks, each with base area of 1 ft2, are con-
nected by a 0.5-in-diameter long-radius nozzle as in Fig.
P6.153. If h � 1 ft as shown for t � 0, estimate the time
for h(t) to drop to 0.25 ft.

venturi with a 4-cm throat. The venturi is connected to a
mercury manometer whose reading is h � 40 cm. Estimate
(a) the flow rate, in m3/h, and (b) the total pressure dif-
ference between points 50 cm upstream and 50 cm down-
stream of the venturi.

P6.159 A modern venturi nozzle is tested in a laboratory flow with
water at 20°C. The pipe diameter is 5.5 cm, and the ven-
turi throat diameter is 3.5 cm. The flow rate is measured
by a weigh tank and the pressure drop by a water-mercury
manometer. The mass flow rate and manometer readings
are as follows:

Use these data to plot a calibration curve of venturi dis-
charge coefficient versus Reynolds number. Compare with
the accepted correlation, Eq. (6.134).

*P6.160 The butterfly-valve losses in Fig. 6.19b may be viewed as
a type of Bernoulli obstruction device, as in Fig. 6.38. The
“throat area” At in Eq. (6.125) can be interpreted as the
two slivers of opening around the butterfly disk when
viewed from upstream. First fit the average loss Kmean ver-
sus the opening angle in Fig. 6.19b to an exponential curve.
Then use your curve fit to compute the “discharge coeffi-
cient” of a butterfly valve as a function of the opening an-
gle. Plot the results and compare them to those for a typ-
ical flowmeter.
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*P6.154 Water at 20°C flows through the orifice in Fig. P6.154,
which is monitored by a mercury manometer. If d � 3 cm,
(a) what is h when the flow rate is 20 m3/h and (b) what
is Q in m3/h when h � 58 cm?

P6.155 It is desired to meter a flow of 20°C gasoline in a 12-cm-
diameter pipe, using a modern venturi nozzle. In order for
international standards to be valid (Fig. 6.42), what is the
permissible range of (a) flow rates, (b) nozzle diameters,
and (c) pressure drops? (d) For the highest pressure-drop
condition, would compressibility be a problem?

P6.156 Ethanol at 20°C flows down through a modern venturi noz-
zle as in Fig. P6.156. If the mercury manometer reading
is 4 in, as shown, estimate the flow rate, in gal/min.

P6.157 Modify Prob. 6.156 if the fluid is air at 20°C, entering the
venturi at a pressure of 18 lbf/in2. Should a compressibil-
ity correction be used?

P6.158 Water at 20°C flows in a long horizontal commercial-steel
6-cm-diameter pipe which contains a classical Herschel

d = 3 in

4 in

D = 6 in

9 in

P6.156

ṁ, kg/s 0.95 1.98 2.99 5.06 8.15

h, mm 3.7 15.9 36.2 102.4 264.4



Word Problems

W6.1 In fully developed straight-duct flow, the velocity profiles
do not change (why?), but the pressure drops along the pipe
axis. Thus there is pressure work done on the fluid. If, say,
the pipe is insulated from heat loss, where does this energy
go? Make a thermodynamic analysis of the pipe flow.

W6.2 From the Moody chart (Fig. 6.13), rough surfaces, such as
sand grains or ragged machining, do not affect laminar flow.
Can you explain why? They do affect turbulent flow. Can
you develop, or suggest, an analytical-physical model of tur-
bulent flow near a rough surface which might be used to
predict the known increase in pressure drop?

W6.3 Differentiation of the laminar pipe-flow solution, Eq. (6.40),
shows that the fluid shear stress �(r) varies linearly from
zero at the axis to �w at the wall. It is claimed that this is
also true, at least in the time mean, for fully developed tur-
bulent flow. Can you verify this claim analytically?

W6.4 A porous medium consists of many tiny tortuous passages,
and Reynolds numbers based on pore size are usually very
low, of order unity. In 1856 H. Darcy proposed that the pres-
sure gradient in a porous medium was directly proportional
to the volume-averaged velocity V of the fluid:

�p � � �
�

K
� V

where K is termed the permeability of the medium. This is
now called Darcy’s law of porous flow. Can you make a
Poiseuille flow model of porous-media flow which verifies
Darcy’s law? Meanwhile, as the Reynolds number increases,
so that VK1/2/� � 1, the pressure drop becomes nonlinear,
as was shown experimentally by P. H. Forscheimer as early
as 1782. The flow is still decidedly laminar, yet the pres-
sure gradient is quadratic:

�p � � �
�

K
� V � CVV Darcy-Forscheimer law

where C is an empirical constant. Can you explain the rea-
son for this nonlinear behavior?

W6.5 One flowmeter device, in wide use in the water supply and
gasoline distribution industries, is the nutating disk. Look
this up in the library, and explain in a brief report how it
works and the advantages and disadvantages of typical de-
signs.
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Fundamentals of Engineering Exam Problems

FE6.1 In flow through a straight, smooth pipe, the diameter
Reynolds number for transition to turbulence is generally
taken to be
(a) 1500, (b) 2100, (c) 4000, (d) 250,000, (e) 500,000

FE6.2 For flow of water at 20°C through a straight, smooth pipe
at 0.06 m3/h, the pipe diameter for which transition to tur-
bulence occurs is approximately
(a) 1.0 cm, (b) 1.5 cm, (c) 2.0 cm, (d) 2.5 cm, (e) 3.0 cm

FE6.3 For flow of oil [� � 0.1 kg/(m � s), SG � 0.9] through a
long, straight, smooth 5-cm-diameter pipe at 14 m3/h, the
pressure drop per meter is approximately
(a) 2200 Pa, (b) 2500 Pa, (c) 10,000 Pa, (d) 160 Pa,
(e) 2800 Pa

FE6.4 For flow of water at a Reynolds number of 1.03 E6 through
a 5-cm-diameter pipe of roughness height 0.5 mm, the ap-
proximate Moody friction factor is
(a) 0.012, (b) 0.018, (c) 0.038, (d) 0.049, (e) 0.102

FE6.5 Minor losses through valves, fittings, bends, contractions,
etc., are commonly modeled as proportional to
(a) total head, (b) static head, (c) velocity head, (d) pres-
sure drop, (e) velocity

FE6.6 A smooth 8-cm-diameter pipe, 200 m long, connects two
reservoirs, containing water at 20°C, one of which has a
surface elevation of 700 m and the other with its surface

elevation at 560 m. If minor losses are neglected, the ex-
pected flow rate through the pipe is
(a) 0.048 m3/h, (b) 2.87 m3/h, (c) 134 m3/h, (d) 172 m3/h,
(e) 385 m3/h

FE6.7 If, in Prob. FE6.6 the pipe is rough and the actual flow
rate is 90 m3/h, then the expected average roughness height
of the pipe is approximately
(a) 1.0 mm, (b) 1.25 mm, (c) 1.5 mm, (d) 1.75 mm, (e) 2.0
mm

FE6.8 Suppose in Prob. FE6.6 the two reservoirs are connected,
not by a pipe, but by a sharp-edged orifice of diameter
8 cm. Then the expected flow rate is approximately
(a) 90 m3/h, (b) 579 m3/h, (c) 748 m3/h, (d) 949 m3/h,
(e) 1048 m3/h

FE6.9 Oil [� � 0.1 kg/(m � s), SG � 0.9] flows through a 50-m-
long smooth 8-cm-diameter pipe. The maximum pressure
drop for which laminar flow is expected is approximately
(a) 30 kPa, (b) 40 kPa, (c) 50 kPa, (d) 60 kPa, (e) 70 kPa

FE6.10 Air at 20°C and approximately 1 atm flows through a
smooth 30-cm-square duct at 1500 ft3/min. The expected
pressure drop per meter of duct length is
(a) 1.0 Pa, (b) 2.0 Pa, (c) 3.0 Pa, (d) 4.0 Pa, (e) 5.0 Pa

FE6.11 Water at 20°C flows at 3 m3/h through a sharp-edged 3-
cm-diameter orifice in a 6-cm-diameter pipe. Estimate the
expected pressure drop across the orifice.
(a) 440 Pa, (b) 680 Pa, (c) 875 Pa, (d) 1750 Pa, (e) 1870 Pa



FE6.12 Water flows through a straight 10-cm-diameter pipe at a
diameter Reynolds number of 250,000. If the pipe rough-
ness is 0.06 mm, what is the approximate Moody friction
factor?
(a) 0.015, (b) 0.017, (c) 0.019, (d) 0.026, (e) 0.032

FE6.13 What is the hydraulic diameter of a rectangular air-venti-
lation duct whose cross section is 1 m by 25 cm?
(a) 25 cm, (b) 40 cm, (c) 50 cm, (d) 75 cm, (e) 100 cm

FE6.14 Water at 20°C flows through a pipe at 300 gal/min with a
friction head loss of 45 ft. What is the power required to
drive this flow?
(a) 0.16 kW, (b) 1.88 kW, (c) 2.54 kW, (d) 3.41 kW,
(e) 4.24 kW

FE6.15 Water at 20°C flows at 200 gal/min through a pipe 150 m
long and 8 cm in diameter. If the friction head loss is 12 m,
what is the Moody friction factor?
(a) 0.010, (b) 0.015, (c) 0.020, (d) 0.025, (e) 0.030
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C6.2

Comprehensive Problems

C6.1 A pitot-static probe will be used to measure the velocity dis-
tribution in a water tunnel at 20°C. The two pressure lines
from the probe will be connected to a U-tube manometer
which uses a liquid of specific gravity 1.7. The maximum
velocity expected in the water tunnel is 2.3 m/s. Your job is
to select an appropriate U-tube from a manufacturer which
supplies manometers of heights 8, 12, 16, 24, and 36 in. The
cost increases significantly with manometer height. Which
of these should you purchase?

*C6.2 A pump delivers a steady flow of water (�, �) from a large
tank to two other higher-elevation tanks, as shown in Fig.
C6.2. The same pipe of diameter d and roughness � is used
throughout. All minor losses except through the valve are ne-
glected, and the partially closed valve has a loss coefficient
Kvalve. Turbulent flow may be assumed with all kinetic en-
ergy flux correction coefficients equal to 1.06. The pump net
head H is a known function of QA and hence also of VA �
QA/Apipe; for example, H � a � bVA

2, where a and b are con-
stants. Subscript J refers to the junction point at the tee where
branch A splits into B and C. Pipe length LC is much longer

than LB. It is desired to predict the pressure at J, the three
pipe velocities and friction factors, and the pump head. Thus
there are eight variables: H, VA, VB, VC, fA, fB, fC, pJ. Write
down the eight equations needed to resolve this problem, but
do not solve, since an elaborate iteration procedure, or an
equation solver such as EES, would be required.

C6.3 A small water slide is to be installed inside a swimming pool.
See Fig. C6.3. The slide manufacturer recommends a contin-
uous water flow rate Q of 1.39 � 10�3 m3/s (about 22 gal/min)
down the slide, to ensure that the customers do not burn their
bottoms. A pump is to be installed under the slide, with a 5.00-
m-long, 4.00-cm-diameter hose supplying swimming pool wa-
ter for the slide. The pump is 80 percent efficient and will rest
fully submerged 1.00 m below the water surface. The rough-
ness inside the hose is about 0.0080 cm. The hose discharges
the water at the top of the slide as a free jet open to the at-
mosphere. The hose outlet is 4.00 m above the water surface.
For fully developed turbulent pipe flow, the kinetic energy flux
correction factor is about 1.06. Ignore any minor losses here.
Assume that � � 998 kg/m3 and � � 1.00 � 10�6 m2/s for
this water. Find the brake horsepower (i.e., the actual shaft
power in watts) required to drive the pump.

Large tank

Large tank

Branch A, LA
Branch C, LC

Branch B, LB

Pump

VA

VB

VC

Large tank

Valve
1

2

3

J



*C6.4 Suppose you build a house out in the “boonies” where you
need to run a pipe to the nearest water supply, which is for-
tunately at an elevation of about 1000 m above that of your
house. The pipe will be 6.0 km long (the distance to the wa-
ter supply), and the gage pressure at the water supply is 1000
kPa. You require a minimum of 3.0 gal/min of water when
the end of your pipe is open to the atmosphere. To minimize
cost, you want to buy the smallest-diameter pipe possible. The
pipe you will use is extremely smooth. (a) Find the total head
loss from the pipe inlet to its exit. Neglect any minor losses
due to valves, elbows, entrance lengths, etc., since the length
is so long here and major losses dominate. Assume the out-
let of the pipe is open to the atmosphere. (b) Which is more
important in this problem, the head loss due to elevation dif-
ference or the head loss due to pressure drop in the pipe?
(c) Find the minimum required pipe diameter.

C6.5 Water at room temperature flows at the same volume flow
rate, Q � 9.4 � 10�4 m3/s, through two ducts, one a round
pipe and one an annulus. The cross-sectional area A of the
two ducts is identical, and all walls are made of commercial
steel. Both ducts are the same length. In the cross sections

shown in Fig. C6.5 R � 15.0 mm and a � 25.0 mm.
(a) What is the radius b such that the cross-sectional areas
of the two ducts are identical? (b) Compare the frictional
head loss hf per unit length of pipe for the two cases, as-
suming fully developed flow. For the annulus, do both a quick
estimate (using the hydraulic diameter) and a more accurate
estimate (using the effective diameter correction), and com-
pare. (c) If the losses are different for the two cases, explain
why. Which duct, if any, is more “efficient”?
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Q

Pump
Sliding board

Tube4.00 m
Weee!

Ladder

Water 1.00 m

C6.3

C6.5

Design Projects

D6.1 A hydroponic garden uses the 10-m-long perforated-pipe sys-
tem in Fig. D6.1 to deliver water at 20°C. The pipe is 5 cm
in diameter and contains a circular hole every 20 cm. A pump
delivers water at 75 kPa (gage) at the entrance, while the other
end of the pipe is closed. If you attempted, e.g., Prob. 3.125,
you know that the pressure near the closed end of a perforated

R

A

b a

“manifold’’ is surprisingly high, and there will be too much
flow through the holes near that end. One remedy is to vary
the hole size along the pipe axis. Make a design analysis, per-
haps using a personal computer, to pick the optimum hole-size
distribution that will make the discharge flow rate as uniform
as possible along the pipe axis. You are constrained to pick
hole sizes that correspond only to commercial (numbered) met-
ric drill-bit sizes available to the typical machine shop.



D6.2 It is desired to design a pump-piping system to keep a 1-mil-
lion-gallon capacity water tank filled. The plan is to use a
modified (in size and speed) version of the model 1206 cen-
trifugal pump manufactured by Taco Inc., Cranston, Rhode
Island. Test data have been provided to us by Taco Inc. for
a small model of this pump: D � 5.45 in, # � 1760 r/min,
tested with water at 20°C:

Q, gal/min 0 5 10 15 20 25 30 35 40 45 50 55 60

H, ft 28 28 29 29 28 28 27 26 25 23 21 18 15

Efficiency, % 0 13 25 35 44 48 51 53 54 55 53 50 45

The tank is to be filled daily with rather chilly (10°C) ground-
water from an aquifer, which is 0.8 mi from the tank and
150 ft lower than the tank. Estimated daily water use is 1.5
million gal/day. Filling time should not exceed 8 h per day.
The piping system should have four “butterfly” valves with
variable openings (see Fig. 6.19), 10 elbows of various an-
gles, and galvanized-iron pipe of a size to be selected in the

design. The design should be economical—both in capital
costs and operating expense. Taco Inc. has provided the fol-
lowing cost estimates for system components:

Pump and motor $3500 plus $1500 per inch of im-
peller size

Pump speed Between 900 and 1800 r/min

Valves $300 � $200 per inch of pipe size

Elbows $50 plus $50 per inch of pipe size

Pipes $1 per inch of diameter per foot of
length

Electricity cost 10¢ per kilowatthour

Your design task is to select an economical pipe size and
pump impeller size and speed for this task, using the pump-
test data in nondimensional form (see Prob. 5.61) as design
data. Write a brief report (5 to 6 pages) showing your cal-
culations and graphs.
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The turbulent wake behind a bluff body immersed in a stream flow is a subject of the present
chapter. This is a digitized video image showing the distribution of tracer-dye concentration in
the wake of the body. Compare with Fig. 5.2a of the text, which is a laminar wake. (Courtesy
of R. Balachandar, by permission of the American Society of Mechanical Engineers.)



7.1 Reynolds-Number
and Geometry Effects

Motivation. This chapter is devoted to “external” flows around bodies immersed in a
fluid stream. Such a flow will have viscous (shear and no-slip) effects near the body
surfaces and in its wake, but will typically be nearly inviscid far from the body. These
are unconfined boundary-layer flows.

Chapter 6 considered “internal” flows confined by the walls of a duct. In that case
the viscous boundary layers grow from the sidewalls, meet downstream, and fill the
entire duct. Viscous shear is the dominant effect. For example, the Moody chart of Fig.
6.13 is essentially a correlation of wall shear stress for long ducts of constant cross
section.

External flows are unconfined, free to expand no matter how thick the viscous lay-
ers grow. Although boundary-layer theory (Sec. 7.3) is helpful in understanding exter-
nal flows, complex body geometries usually require experimental data on the forces
and moments caused by the flow. Such immersed-body flows are commonly encoun-
tered in engineering studies: aerodynamics (airplanes, rockets, projectiles), hydrody-
namics (ships, submarines, torpedos), transportation (automobiles, trucks, cycles), wind
engineering (buildings, bridges, water towers, wind turbines), and ocean engineering
(buoys, breakwaters, pilings, cables, moored instruments). This chapter provides data
and analysis to assist in such studies.

The technique of boundary-layer (BL) analysis can be used to compute viscous effects
near solid walls and to “patch” these onto the outer inviscid motion. This patching is
more successful as the body Reynolds number becomes larger, as shown in Fig. 7.1.

In Fig. 7.1 a uniform stream U moves parallel to a sharp flat plate of length L. If
the Reynolds number UL/� is low (Fig. 7.1a), the viscous region is very broad and ex-
tends far ahead and to the sides of the plate. The plate retards the oncoming stream
greatly, and small changes in flow parameters cause large changes in the pressure dis-
tribution along the plate. Thus, although in principle it should be possible to patch the
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Fig. 7.1 Comparison of flow past a
sharp flat plate at low and high
Reynolds numbers: (a) laminar,
low-Re flow; (b) high-Re flow.

viscous and inviscid layers in a mathematical analysis, their interaction is strong and
nonlinear [1 to 3]. There is no existing simple theory for external-flow analysis at
Reynolds numbers from 1 to about 1000. Such thick-shear-layer flows are typically
studied by experiment or by numerical modeling of the flow field on a digital com-
puter [4].

A high-Reynolds-number flow (Fig. 7.1b) is much more amenable to boundary-layer
patching, as first pointed out by Prandtl in 1904. The viscous layers, either laminar or
turbulent, are very thin, thinner even than the drawing shows. We define the boundary-
layer thickness � as the locus of points where the velocity u parallel to the plate reaches
99 percent of the external velocity U. As we shall see in Sec. 7.4, the accepted for-
mulas for flat-plate flow are

�
�

x
� �

laminar (7.1a)

turbulent (7.1b)
0.16
�
Rex

1/7

5.0
�
Rex

1/2
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Fig. 7.2 Illustration of the strong
interaction between viscous and in-
viscid regions in the rear of blunt-
body flow: (a) idealized and defi-
nitely false picture of blunt-body
flow; (b) actual picture of blunt-
body flow.

where Rex � Ux/� is called the local Reynolds number of the flow along the plate sur-
face. The turbulent-flow formula applies for Rex greater than approximately 106.

Some computed values from Eq. (7.1) are

Rex 104 105 106 107 108

(�/x)lam 0.050 0.016 0.005

(�/x)turb 0.022 0.016 0.011

The blanks indicate that the formula is not applicable. In all cases these boundary lay-
ers are so thin that their displacement effect on the outer inviscid layer is negligible.
Thus the pressure distribution along the plate can be computed from inviscid theory as
if the boundary layer were not even there. This external pressure field then “drives”
the boundary-layer flow, acting as a forcing function in the momentum equation along
the surface. We shall explain this boundary-layer theory in Secs. 7.4 and 7.5.

For slender bodies, such as plates and airfoils parallel to the oncoming stream, we
conclude that this assumption of negligible interaction between the boundary layer and
the outer pressure distribution is an excellent approximation.

For a blunt-body flow, however, even at very high Reynolds numbers, there is a dis-
crepancy in the viscous-inviscid patching concept. Figure 7.2 shows two sketches of
flow past a two- or three-dimensional blunt body. In the idealized sketch (7.2a), there
is a thin film of boundary layer about the body and a narrow sheet of viscous wake in
the rear. The patching theory would be glorious for this picture, but it is false. In the
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actual flow (Fig. 7.2b), the boundary layer is thin on the front, or windward, side of
the body, where the pressure decreases along the surface (favorable pressure gradient).
But in the rear the boundary layer encounters increasing pressure (adverse pressure
gradient) and breaks off, or separates, into a broad, pulsating wake. (See Fig. 5.2a for
a photograph of a specific example.) The mainstream is deflected by this wake, so that
the external flow is quite different from the prediction from inviscid theory with the
addition of a thin boundary layer.

The theory of strong interaction between blunt-body viscous and inviscid layers is
not well developed. Flows like that of Fig. 7.2b are normally studied experimentally.
Reference 5 is an example of efforts to improve the theory of separated-boundary-layer
flows. Reference 6 is a textbook devoted to separated flow.

EXAMPLE 7.1

A long, thin flat plate is placed parallel to a 20-ft/s stream of water at 20°C. At what distance x
from the leading edge will the boundary-layer thickness be 1 in?

Solution

Since we do not know the Reynolds number, we must guess which of Eqs. (7.1) applies. From
Table 1.4 for water, � � 1.09 � 10�5 ft2/s; hence

�
U
�

� ��
1.09 �

20
1
f
0
t
�

/s
5 ft2/s

�� 1.84 � 106 ft�1

With � � 1 in � �
1
1
2
� ft, try Eq. (7.1a):

Laminar flow: �
�

x
� � �

(Ux/
5
�)1/2�

or x � �
�2(

5
U
2
/v)

� � � 511 ft

Now we can test the Reynolds number to see whether the formula applied:

Rex � �
U
�

x
� ��

1
(
.
2
0
0
9

f
�

t/s
1
)
0
(5

�

1
5
1
ft
f
2
t)
/s

�� 9.4 � 108

This is impossible since the maximum Rex for laminar flow past a flat plate is 3 � 106. So we
try again with Eq. (7.1b):

Turbulent flow: �
�

x
� � �

(U
0
x
.
/
1
�

6
)1/7�

or x � � �
7/6

� � �
7/6

� (4.09)7/6 � 5.17 ft Ans.

Test Rex ��
1
(
.
2
0
0
9

f
�

t/s
1
)(
0
5
�

.1
5
7
ft
f
2
t
/
)
s

�� 9.5 � 106

This is a perfectly proper turbulent-flow condition; hence we have found the correct position x
on our second try.

(�
1
1
2
� ft)(1.84 � 106 ft�1)1/7

���
0.16

�(U/v)1/ 7

�
0.16

(�
1
1
2
� ft)2(1.84 � 106 ft�1)
���

25
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7.2 Momentum-Integral
Estimates

Kármán’s Analysis of the 
Flat Plate

Fig. 7.3 Growth of a boundary
layer on a flat plate.

When we derived the momentum-integral relation, Eq. (3.37), and applied it to a flat-
plate boundary layer in Example 3.11, we promised to consider it further in Chap. 7.
Well, here we are! Let us review the problem, using Fig. 7.3.

A shear layer of unknown thickness grows along the sharp flat plate in Fig. 7.3. The
no-slip wall condition retards the flow, making it into a rounded profile u(y), which
merges into the external velocity U � constant at a “thickness” y � �(x). By utilizing
the control volume of Fig. 3.11, we found (without making any assumptions about lam-
inar versus turbulent flow) in Example 3.11 that the drag force on the plate is given by
the following momentum integral across the exit plane

D(x) � �b ��(x)

0
u(U � u) dy (7.2)

where b is the plate width into the paper and the integration is carried out along a ver-
tical plane x � constant. You should review the momentum-integral relation (3.37) and
its use in Example 3.11.

Equation (7.2) was derived in 1921 by Kármán [7], who wrote it in the convenient form
of the momentum thickness 	

D(x) � �bU2	 	 � ��

0
�
U
u

� �1 � �
U
u

�� dy (7.3)

Momentum thickness is thus a measure of total plate drag. Kármán then noted that the
drag also equals the integrated wall shear stress along the plate

D(x) � b �x

0

w(x) dx

or �
d
d
D
x
� � b
w (7.4)

Meanwhile, the derivative of Eq. (7.3), with U � constant, is

�
d
d
D
x
� � �bU2 �

d
d
	

x
�

By comparing this with Eq. (7.4) Kármán arrived at what is now called the momentum-
integral relation for flat-plate boundary-layer flow
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x

y

U

x = 0

p = pa

U

w (x)

x = L

u (x, y)

U

(x)δ

τ




w � �U2 �
d
d
	

x
� (7.5)

It is valid for either laminar or turbulent flat-plate flow.
To get a numerical result for laminar flow, Kármán assumed that the velocity pro-

files had an approximately parabolic shape

u(x, y) � U��
2
�

y
� � �

�

y2

2�� 0 � y � �(x) (7.6)

which makes it possible to estimate both momentum thickness and wall shear

	 � ��

0 ��
2
�

y
� � �

�

y2

2���1 � �
2
�

y
� � �

�

y2

2�� dy � �
1
2
5
��

(7.7)


w �
 �
�

�

u
y
�y�0

� �
2


�

U
�

By substituting (7.7) into (7.5) and rearranging we obtain

� d� � 15 �
U
�

� dx (7.8)

where � � 
/�. We can integrate from 0 to x, assuming that � � 0 at x � 0, the lead-
ing edge

�
1
2

� �2 � �
15

U
�x
�

or �
�

x
� � 5.5��

U
�

x
��

1/2

� (7.9)

This is the desired thickness estimate. It is all approximate, of course, part of Kár-
mán’s momentum-integral theory [7], but it is startlingly accurate, being only 10 per-
cent higher than the known exact solution for laminar flat-plate flow, which we gave
as Eq. (7.1a).

By combining Eqs. (7.9) and (7.7) we also obtain a shear-stress estimate along the
plate

cf � �
�

2
U

w

2� � � �
1/2

� (7.10)

Again this estimate, in spite of the crudeness of the profile assumption (7.6) is only 10
percent higher than the known exact laminar-plate-flow solution cf � 0.664/Rex

1/2,
treated in Sec. 7.4. The dimensionless quantity cf, called the skin-friction coefficient,
is analogous to the friction factor f in ducts.

A boundary layer can be judged as “thin” if, say, the ratio �/x is less than about 0.1.
This occurs at �/x � 0.1 � 5.0/Rex

1/2 or at Rex � 2500. For Rex less than 2500 we can
estimate that boundary-layer theory fails because the thick layer has a significant effect
on the outer inviscid flow. The upper limit on Rex for laminar flow is about 3 � 106,
where measurements on a smooth flat plate [8] show that the flow undergoes transition
to a turbulent boundary layer. From 3 � 106 upward the turbulent Reynolds number may
be arbitrarily large, and a practical limit at present is 5 � 109 for oil supertankers.

0.73
�
Rex

1/2

�
1
8
5
�

�
Rex

5.5
�
Rex

1/2
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Displacement Thickness

Fig. 7.4 Displacement effect of a
boundary layer.

Another interesting effect of a boundary layer is its small but finite displacement of
the outer streamlines. As shown in Fig. 7.4, outer streamlines must deflect outward a
distance �*(x) to satisfy conservation of mass between the inlet and outlet

�h

0
�Ub dy � ��

0
�ub dy � � h � �* (7.11)

The quantity �* is called the displacement thickness of the boundary layer. To relate it
to u(y), cancel � and b from Eq. (7.11), evaluate the left integral, and slyly add and
subtract U from the right integrand:

Uh � ��

0
(U � u � U) dy � U(h � �*) � ��

0
(u � U) dy

or �* � ��

0 �1 � �
U
u

�� dy (7.12)

Thus the ratio of �*/� varies only with the dimensionless velocity-profile shape u/U.
Introducing our profile approximation (7.6) into (7.12), we obtain by integration the

approximate result

�* � �
1
3

� � �
�

x
*
� � (7.13)

These estimates are only 6 percent away from the exact solutions for laminar flat-plate
flow given in Sec. 7.4: �* � 0.344� � 1.721x/Rex

1/2. Since �* is much smaller than x
for large Rex and the outer streamline slope V/U is proportional to �*, we conclude
that the velocity normal to the wall is much smaller than the velocity parallel to the
wall. This is a key assumption in boundary-layer theory (Sec. 7.3).

We also conclude from the success of these simple parabolic estimates that Kár-
mán’s momentum-integral theory is effective and useful. Many details of this theory
are given in Refs. 1 to 3.

EXAMPLE 7.2

Are low-speed, small-scale air and water boundary layers really thin? Consider flow at U � 1
ft/s past a flat plate 1 ft long. Compute the boundary-layer thickness at the trailing edge for (a)
air and (b) water at 20°C.

1.83
�
Rex

1/2
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Part (a)

Part (b)

7.3 The Boundary-Layer
Equations

Solution

From Table A.3, �air � 1.61 E-4 ft2/s. The trailing-edge Reynolds number thus is

ReL � �
U
�

L
� � �

1
(
.
1
61

ft
E
/s

-
)
4
(1

ft
f
2
t
/
)
s

� � 6200

Since this is less than 106, the flow is presumed laminar, and since it is greater than 2500, the
boundary layer is reasonably thin. From Eq. (7.1a), the predicted laminar thickness is

� � 0.0634

or, at x � 1 ft, � � 0.0634 ft � 0.76 in Ans. (a)

From Table A.2 �water � 1.08 E-5 ft2/s. The trailing-edge Reynolds number is

ReL � � 92,600

This again satisfies the laminar and thinness conditions. The boundary-layer thickness is

�
�

x
� � � 0.0164

or, at x � 1 ft, � � 0.0164 ft � 0.20 in Ans. (b)

Thus, even at such low velocities and short lengths, both airflows and water flows satisfy the
boundary-layer approximations.

In Chaps. 4 and 6 we learned that there are several dozen known analytical laminar-
flow solutions [1 to 3]. None are for external flow around immersed bodies, although
this is one of the primary applications of fluid mechanics. No exact solutions are known
for turbulent flow, whose analysis typically uses empirical modeling laws to relate time-
mean variables.

There are presently three techniques used to study external flows: (1) numerical
(digital-computer) solutions, (2) experimentation, and (3) boundary-layer theory.

Computational fluid dynamics (CFD) is now well developed and described in ad-
vanced texts such as that by Anderson et al. [4]. Thousands of computer solutions
and models have been published; execution times, mesh sizes, and graphical pre-
sentations are improving each year. Both laminar- and turbulent-flow solutions have
been published, and turbulence modeling is a current research topic [9]. Except for
a brief discussion of computer analysis in Chap. 8, the topic of CFD is beyond our
scope here.

Experimentation is the most common method of studying external flows. Chapter
5 outlined the technique of dimensional analysis, and we shall give many nondimen-
sional experimental data for external flows in Sec. 7.6.

The third tool is boundary-layer theory, first formulated by Ludwig Prandtl in 1904.
We shall follow Prandtl’s ideas here and make certain order-of-magnitude assumptions
to greatly simplify the Navier-Stokes equations (4.38) into boundary-layer equations
which are solved relatively easily and patched onto the outer inviscid-flow field.

5.0
�
�9	2	,6	0	0	

(1 ft/s)(1 ft)
��
1.08 E-5 ft2/s

5.0
�
�6	2	0	0	

�
�
x

434 Chapter 7 Flow Past Immersed Bodies



Derivation for Two-Dimensional
Flow

One of the great achievements of boundary-layer theory is its ability to predict the
flow separation illustrated in Fig. 7.2b. Before 1904 no one realized that such thin shear
layers could cause such a gross effect as flow separation. Unfortunately, even today the-
ory cannot accurately predict the behavior of the separated-flow region and its interac-
tion with the outer layer. This is the weakness of boundary-layer theory, which we hope
will be overcome by intensive research into the dynamics of separated flows [6].

We consider only steady two-dimensional incompressible viscous flow with the x di-
rection along the wall and y normal to the wall, as in Fig. 7.3.1 We neglect gravity,
which is important only in boundary layers where fluid buoyancy is dominant [2, sec.
4.13]. From Chap. 4, the complete equations of motion consist of continuity and the
x- and y-momentum relations

�
�

�

u
x
� � �

�

�

�

y
� � 0 (7.14a)

��u �
�

�

u
x
� � � �

�

�

u
y
�� � ��

�

�

p
x
� � 
��

�

�

2

x
u
2� � �

�

�

2

y
u
2�� (7.14b)

��u �
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�

�

x
� � � �

�

�

�

y
�� � ��

�

�

p
y
� � 
��

�

�

2

x
�
2� � �

�

�

2

y
�
2�� (7.14c)

These should be solved for u, �, and p subject to typical no-slip, inlet, and exit bound-
ary conditions, but in fact they are too difficult to handle for most external flows.

In 1904 Prandtl correctly deduced that a shear layer must be very thin if the Reynolds
number is large, so that the following approximations apply:

Velocities: � � u (7.15a)

Rates of change: �
�

�

u
x
� � �

�

�

u
y
� �

�

�

�

x
� � �

�

�

�

y
� (7.15b)

Our discussion of displacement thickness in the previous section was intended to jus-
tify these assumptions.

Applying these approximations to Eq. (7.14c) results in a powerful simplification

�
�

�

p
y
� � 0 or p � p(x) only (7.16)

In other words, the y-momentum equation can be neglected entirely, and the pressure
varies only along the boundary layer, not through it. The pressure-gradient term in Eq.
(7.14b) is assumed to be known in advance from Bernoulli’s equation applied to the
outer inviscid flow

�
�

�

p
x
� � �

d
d
p
x
� � ��U �

d
d
U
x
� (7.17)
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1For a curved wall, x can represent the arc length along the wall and y can be everywhere normal to x
with negligible change in the boundary-layer equations as long as the radius of curvature of the wall is
large compared with the boundary-layer thickness [1 to 3].



7.4 The Flat-Plate Boundary
Layer

Presumably we have already made the inviscid analysis and know the distribution of
U(x) along the wall (Chap. 8).

Meanwhile, one term in Eq. (7.14b) is negligible due to Eqs. (7.15)

�
�

�

2

x
u
2� � �

�

�

2

y
u
2� (7.18)

However, neither term in the continuity relation (7.14a) can be neglected—another
warning that continuity is always a vital part of any fluid-flow analysis.

The net result is that the three full equations of motion (7.14) are reduced to Prandtl’s
two boundary-layer equations

Continuity: �
�

�

u
x
� � �

�

�

�

y
� � 0 (7.19a)

Momentum along wall: u �
�

�

u
x
� � � �

�

�

u
y
� � U �

d
d
U
x
� � �

1
�

� �
�

�




y
� (7.19b)

where 
 � 


 �
�

�

u
y
� laminar flow


 � 
 �
�

�

u
y
� � �u	�	�	�	 turbulent flow

These are to be solved for u(x, y) and �(x, y), with U(x) assumed to be a known func-
tion from the outer inviscid-flow analysis. There are two boundary conditions on u and
one on �:

At y � 0 (wall): u � � � 0 (no slip) (7.20a)

At y � �(x) (outer stream): u � U(x) (patching) (7.20b)

Unlike the Navier-Stokes equations (7.14), which are mathematically elliptic and must
be solved simultaneously over the entire flow field, the boundary-layer equations (7.19)
are mathematically parabolic and are solved by beginning at the leading edge and
marching downstream as far as you like, stopping at the separation point or earlier if
you prefer.2

The boundary-layer equations have been solved for scores of interesting cases of
internal and external flow for both laminar and turbulent flow, utilizing the inviscid
distribution U(x) appropriate to each flow. Full details of boundary-layer theory and
results and comparison with experiment are given in Refs. 1 to 3. Here we shall con-
fine ourselves primarily to flat-plate solutions (Sec. 7.4).

The classic and most often used solution of boundary-layer theory is for flat-plate flow,
as in Fig. 7.3, which can represent either laminar or turbulent flow.
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2For further mathematical details, see Ref. 2, sec. 2.8.



Laminar Flow For laminar flow past the plate, the boundary-layer equations (7.19) can be solved ex-
actly for u and �, assuming that the free-stream velocity U is constant (dU/dx � 0).
The solution was given by Prandtl’s student Blasius, in his 1908 dissertation from Göt-
tingen. With an ingenious coordinate transformation, Blasius showed that the dimen-
sionless velocity profile u/U is a function only of the single composite dimensionless
variable (y)[U/(�x)]1/2:

�
U
u

� � f�(�) � � y��
v
U
x
��

1/2

(7.21)

where the prime denotes differentiation with respect to �. Substitution of (7.21) into
the boundary-layer equations (7.19) reduces the problem, after much algebra, to a sin-
gle third-order nonlinear ordinary differential equation for f

f � � �
1
2

� ff � � 0 (7.22)

The boundary conditions (7.20) become

At y � 0: f(0) � f�(0) � 0 (7.23a)

As y → �: f�(�) → 1.0 (7.23b)

This is the Blasius equation, for which accurate solutions have been obtained only by
numerical integration. Some tabulated values of the velocity-profile shape f�(�) � u/U
are given in Table 7.1.

Since u/U approaches 1.0 only as y → �, it is customary to select the boundary-
layer thickness � as that point where u/U � 0.99. From the table, this occurs at � �
5.0:

�99%��
�

U
x
��

1/2

� 5.0

or �
�

x
� � Blasius (1908) (7.24)

5.0
�
Rex

1/2
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y[U/(�x)]1/2 u/U y[U/(�x)]1/2 u/U

0.0 0.0 2.8 0.81152
0.2 0.06641 3.0 0.84605
0.4 0.13277 3.2 0.87609
0.6 0.19894 3.4 0.90177
0.8 0.26471 3.6 0.92333
1.0 0.32979 3.8 0.94112
1.2 0.39378 4.0 0.95552
1.4 0.45627 4.2 0.96696
1.6 0.51676 4.4 0.97587
1.8 0.57477 4.6 0.98269
2.0 0.62977 4.8 0.98779
2.2 0.68132 5.0 0.99155
2.4 0.72899 � 1.00000
2.6 0.77246

Table 7.1 The Blasius Velocity
Profile [1 to 3]



With the profile known, Blasius, of course, could also compute the wall shear and dis-
placement thickness

cf � �
�

x
*
� � (7.25)

Notice how close these are to our integral estimates, Eqs. (7.9), (7.10), and (7.13).
When cf is converted to dimensional form, we have


w(x) ��
0.332�1

x

/

1

2

/


2

1/2U1.5

�

The wall shear drops off with x1/2 because of boundary-layer growth and varies as ve-
locity to the 1.5 power. This is in contrast to laminar pipe flow, where 
w � U and is
independent of x.

If 
w(x) is substituted into Eq. (7.4), we compute the total drag force

D(x) � b �x

0

w(x) dx � 0.664b�1/2
1/2U1.5x1/2 (7.26)

The drag increases only as the square root of the plate length. The nondimensional
drag coefficient is defined as

CD � �
�

2
U
D

2
(
b
L
L
)

� � � 2cf (L) (7.27)

Thus, for laminar plate flow, CD equals twice the value of the skin-friction coefficient
at the trailing edge. This is the drag on one side of the plate.

Kármán pointed out that the drag could also be computed from the momentum re-
lation (7.2). In dimensionless form, Eq. (7.2) becomes

CD � �
L
2

� ��

0
�
U
u

� �1 � �
U
u

�� dy (7.28)

This can be rewritten in terms of the momentum thickness at the trailing edge

CD � �
2	

L
(L)
� (7.29)

Computation of 	 from the profile u/U or from CD gives

�
	

x
� � laminar flat plate (7.30)

Since � is so ill defined, the momentum thickness, being definite, is often used to cor-
relate data taken for a variety of boundary layers under differing conditions. The ratio
of displacement to momentum thickness, called the dimensionless-profile shape fac-
tor, is also useful in integral theories. For laminar flat-plate flow

H � � �
1
0
.
.
7
6
2
6
1
4

� � 2.59 (7.31)

A large shape factor then implies that boundary-layer separation is about to 
occur.

�*
�
	

0.664
�
Rex

1/2

1.328
�
ReL

1/2

1.721
�
Rex

1/2

0.664
�
Rex

1/2
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Fig. 7.5 Comparison of dimension-
less laminar and turbulent flat-plate
velocity profiles.

Transition to Turbulence

If we plot the Blasius velocity profile from Table 7.1 in the form of u/U versus y/�,
we can see why the simple integral-theory guess, Eq. (7.6), was such a great success.
This is done in Fig. 7.5. The simple parabolic approximation is not far from the true
Blasius profile; hence its momentum thickness is within 10 percent of the true value.
Also shown in Fig. 7.5 are three typical turbulent flat-plate velocity profiles. Notice how
strikingly different in shape they are from the laminar profiles. Instead of decreasing
monotonically to zero, the turbulent profiles are very flat and then drop off sharply at
the wall. As you might guess, they follow the logarithmic-law shape and thus can be
analyzed by momentum-integral theory if this shape is properly represented.

The laminar flat-plate boundary layer eventually becomes turbulent, but there is no
unique value for this change to occur. With care in polishing the wall and keeping the
free stream quiet, one can delay the transition Reynolds number to Rex,tr � 3 E6 [8].
However, for typical commercial surfaces and gusty free streams, a more realistic value
is Rex,tr � 5 E5.

EXAMPLE 7.3

A sharp flat plate with L � 1 m and b � 3 m is immersed parallel to a stream of velocity 2 m/s.
Find the drag on one side of the plate, and at the trailing edge find the thicknesses �, �*, and 	
for (a) air, � � 1.23 kg/m3 and � � 1.46 � 10�5 m2/s, and (b) water, � � 1000 kg/m3 and � �
1.02 � 10�6 m2/s.
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Part (b)

Part (a)

Solution

The airflow Reynolds number is

�
V
�

L
� ��

1
(
.
2
4
.
6
0

�

m/
1
s
0
)(

�

1
5
.0

m
m
2/
)
s

�� 137,000

Since this is less than 3 � 106, we assume that the boundary layer is laminar. From Eq. (7.27),
the drag coefficient is

CD � �
(13

1
7
.
,
3
0
2
0
8
0)1/2� � 0.00359

Thus the drag on one side in the airflow is

D � CD�
1
2

��U2bL � 0.00359(�
1
2

�)(1.23)(2.0)2(3.0)(1.0) � 0.0265 N Ans. (a)

The boundary-layer thickness at the end of the plate is

�
L
�

� � � �
(137

5
,0
.0
00)1/2� � 0.0135

or � � 0.0135(1.0) � 0.0135 m � 13.5 mm Ans. (a)

We find the other two thicknesses simply by ratios:

�* � �
1.
5
7
.
2
0
1

� � � 4.65 mm 	 � �
2
�

.5
*
9

� � 1.79 mm Ans. (a)

Notice that no conversion factors are needed with SI units.

The water Reynolds number is

ReL � �
1.0

2
2
.0

�

(1.
1
0
0
)
�6� � 1.96 � 106

This is rather close to the critical value of 3 � 106, so that a rough surface or noisy free stream
might trigger transition to turbulence; but let us assume that the flow is laminar. The water drag
coefficient is

CD ��
(1.96

1
�

.32
1
8
06)1/2�� 0.000949

and D � 0.000949(�
1
2

�)(1000)(2.0)2(3.0)(1.0) � 5.70 N Ans. (b)

The drag is 215 times more for water in spite of the higher Reynolds number and lower drag
coefficient because water is 57 times more viscous and 813 times denser than air. From Eq.
(7.26), in laminar flow, it should have (57)1/2(813)1/2 � 7.53(28.5) � 215 times more drag.

The boundary-layer thickness is given by

�
L
�

� ��
(1.96 �

5.0
106)1/2�� 0.00357

or � � 0.00357(1000 mm) � 3.57 mm Ans. (b)

By scaling down we have

5.0
�
ReL

1/2
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Turbulent Flow

�* � �
1.
5
7
.
2
0
1

� � � 1.23 mm 	 � �
2
�

.5
*
9

� � 0.48 mm Ans. (b)

The water layer is 3.8 times thinner than the air layer, which reflects the square root of the 14.3
ratio of air to water kinematic viscosity.

There is no exact theory for turbulent flat-plate flow, although there are many elegant
computer solutions of the boundary-layer equations using various empirical models for
the turbulent eddy viscosity [9]. The most widely accepted result is simply an integal
analysis similar to our study of the laminar-profile approximation (7.6).

We begin with Eq. (7.5), which is valid for laminar or turbulent flow. We write it
here for convenient reference:


w(x) � �U2 �
d
d
	

x
� (7.32)

From the definition of cf, Eq. (7.10), this can be rewritten as

cf � 2 �
d
d
	

x
� (7.33)

Now recall from Fig. 7.5 that the turbulent profiles are nowhere near parabolic. Going
back to Fig. 6.9, we see that flat-plate flow is very nearly logarithmic, with a slight
outer wake and a thin viscous sublayer. Therefore, just as in turbulent pipe flow, we
assume that the logarithmic law (6.21) holds all the way across the boundary layer

�
u
u
*
� � �

�

1
� ln �

yu
�

*
� � B u* � ��




�
w��

1/2

(7.34)

with, as usual, � � 0.41 and B � 5.0. At the outer edge of the boundary layer, y ��
and u � U, and Eq. (7.34) becomes

�
u
U
*
� � �

�

1
� ln �

�u
�

*
� � B (7.35)

But the definition of the skin-friction coefficient, Eq. (7.10), is such that the following
identities hold:

�
u
U
*
� 
 ��

c
2

f
��

1/2

�
�u
�

*
� 
 Re�� �

1/2

(7.36)

Therefore Eq. (7.35) is a skin-friction law for turbulent flat-plate flow

��
c
2

f
��

1/2

� 2.44 ln �Re�� �
1/2

� � 5.0 (7.37)

It is a complicated law, but we can at least solve for a few values and list them:

Re� 104 105 106 107

cf 0.00493 0.00315 0.00217 0.00158

cf
�
2

cf
�
2
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Following a suggestion of Prandtl, we can forget the complex log friction law (7.37)
and simply fit the numbers in the table to a power-law approximation

cf � 0.02 Re�
�1/6 (7.38)

This we shall use as the left-hand side of Eq. (7.33). For the right-hand side, we need
an estimate for 	(x) in terms of �(x). If we use the logarithmic-law profile (7.34), we
shall be up to our hips in logarithmic integrations for the momentum thickness. Instead
we follow another suggestion of Prandtl, who pointed out that the turbulent profiles in
Fig. 7.5 can be approximated by a one-seventh-power law

��
U
u

��turb
� ��

�

y
��

1/7

(7.39)

This is shown as a dashed line in Fig. 7.5. It is an excellent fit to the low-Reynolds-
number turbulent data, which were all that were available to Prandtl at the time. With
this simple approximation, the momentum thickness (7.28) can easily be evaluated:

	 � ��

0 ��
�

y
��

1/7

�1 � ��
�

y
��

1/7

� dy � �
7
7
2
� � (7.40)

We accept this result and substitute Eqs. (7.38) and (7.40) into Kármán’s momentum
law (7.33)

cf � 0.02 Re�
�1/6 � 2 �

d
d
x
� ��

7
7
2
� ��

or Re�
�1/6 � 9.72 �

d
d
�

x
� � 9.72 �

d
d
(
(
R
R

e
e
�

x)
)

� (7.41)

Separate the variables and integrate, assuming � � 0 at x � 0:

Re� � 0.16 Rex
6/7 or �

�

x
� � (7.42)

Thus the thickness of a turbulent boundary layer increases as x6/ 7, far more rapidly
than the laminar increase x1/2. Equation (7.42) is the solution to the problem, because
all other parameters are now available. For example, combining Eqs. (7.42) and (7.38),
we obtain the friction variation

cf � (7.43)

Writing this out in dimensional form, we have


w,turb � (7.44)

Turbulent plate friction drops slowly with x, increases nearly as � and U2, and is rather
insensitive to viscosity.

We can evaluate the drag coefficient from Eq. (7.29)

CD � � �
7
6

� cf (L) (7.45)
0.031
�
ReL

1/ 7

0.0135
1/ 7�6/ 7U13/ 7

���
x1/ 7

0.027
�
Rex

1/ 7

0.16
�
Rex

1/ 7
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Fig. 7.6 Drag coefficient of laminar
and turbulent boundary layers on
smooth and rough flat plates. This
chart is the flat-plate analog of the
Moody diagram of Fig. 6.13.

Then CD is only 16 percent greater than the trailing-edge skin friction [compare with
Eq. (7.27) for laminar flow].

The displacement thickness can be estimated from the one-seventh-power law and
Eq. (7.12):

�* � ��

0 �1 � ��
�

y
��

1/ 7

� dy � �
1
8

� � (7.46)

The turbulent flat-plate shape factor is approximately

H � �
�

	

*
� � � 1.3 (7.47)

These are the basic results of turbulent flat-plate theory.
Figure 7.6 shows flat-plate drag coefficients for both laminar-and turbulent-flow

conditions. The smooth-wall relations (7.27) and (7.45) are shown, along with the ef-
fect of wall roughness, which is quite strong. The proper roughness parameter here is
x/� or L/�, by analogy with the pipe parameter �/d. In the fully rough regime, CD is in-
dependent of the Reynolds number, so that the drag varies exactly as U2 and is inde-

�18�
�

�7
7
2�
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Part (b)

Part (a)

pendent of 
. Reference 2 presents a theory of rough flat-plate flow, and Ref. 1 gives
a curve fit for skin friction and drag in the fully rough regime:

cf � �2.87 � 1.58 log �
x
�

��
�2.5

(7.48a)

CD � �1.89 � 1.62 log �
L
�

��
�2.5

(7.48b)

Equation (7.48b) is plotted to the right of the dashed line in Fig. 7.6. The figure also
shows the behavior of the drag coefficient in the transition region 5 � 105 � ReL �
8 � 107, where the laminar drag at the leading edge is an appreciable fraction of the
total drag. Schlichting [1] suggests the following curve fits for these transition drag
curves depending upon the Reynolds number Retrans where transition begins:

CD �   

� �
1
R
4
e
4

L

0
� Retrans � 5 � 105 (7.49a)

CD �  � �
8
R
7
e
0

L

0
� Retrans � 3 � 106 (7.49b)

EXAMPLE 7.4

A hydrofoil 1.2 ft long and 6 ft wide is placed in a water flow of 40 ft/s, with � � 1.99
slugs/ft3 and � � 0.000011 ft2/s. (a) Estimate the boundary-layer thickness at the end of the
plate. Estimate the friction drag for (b) turbulent smooth-wall flow from the leading edge,
(c) laminar turbulent flow with Retrans � 5 � 105, and (d) turbulent rough-wall flow with � �
0.0004 ft.

Solution

The Reynolds number is

ReL � �
U
�

L
� ��

(
0
4
.
0
00

f
0
t/
0
s)
1
(
1
1.

f
2
t2

f
/
t
s
)

�� 4.36 � 106

Thus the trailing-edge flow is certainly turbulent. The maximum boundary-layer thickness would
occur for turbulent flow starting at the leading edge. From Eq. (7.42),

�
�(

L
L)
� ��

(4.36
0
�

.1
1
6
06)1/7�� 0.018

or � � 0.018(1.2 ft) � 0.0216 ft Ans. (a)

This is 7.5 times thicker than a fully laminar boundary layer at the same Reynolds number.

For fully turbulent smooth-wall flow, the drag coefficient on one side of the plate is, from Eq.
(7.45),

CD ��
(4.36

0
�

.03
1
1
06)1/7�� 0.00349

0.031
�
ReL

1/ 7

0.031
�
ReL

1/ 7
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Part (c)

Part (d)

Then the drag on both sides of the foil is approximately

D � 2CD(�
1
2

��U2)bL � 2(0.00349)(�
1
2

�)(1.99)(40)2(6.0)(1.2) � 80 lb Ans. (b)

With a laminar leading edge and Retrans � 5 � 105, Eq. (7.49a) applies:

CD � 0.00349 � �
4.3

1
6
4
�

40
106� � 0.00316

The drag can be recomputed for this lower drag coefficient:

D � 2CD(�
1
2

��U2)bL � 72 lbf Ans. (c)

Finally, for the rough wall, we calculate

�
L
�

� � �
0.

1
0
.
0
2
04

ft
ft

� � 3000

From Fig. 7.6 at ReL � 4.36 � 106, this condition is just inside the fully rough regime. Equa-
tion (7.48b) applies:

CD � (1.89 � 1.62 log 3000)�2.5 � 0.00644

and the drag estimate is

D � 2CD(�
1
2

��U2)bL � 148 lbf Ans. (d)

This small roughness nearly doubles the drag. It is probable that the total hydrofoil drag is still
another factor of 2 larger because of trailing-edge flow-separation effects.

The flat-plate analysis of the previous section should give us a good feeling for the be-
havior of both laminar and turbulent boundary layers, except for one important effect:
flow separation. Prandtl showed that separation like that in Fig. 7.2b is caused by ex-
cessive momentum loss near the wall in a boundary layer trying to move downstream
against increasing pressure, dp/dx � 0, which is called an adverse pressure gradient.
The opposite case of decreasing pressure, dp/dx � 0, is called a favorable gradient,
where flow separation can never occur. In a typical immersed-body flow, e.g., Fig. 7.2b,
the favorable gradient is on the front of the body and the adverse gradient is in the rear,
as discussed in detail in Chap. 8.

We can explain flow separation with a geometric argument about the second deriv-
ative of velocity u at the wall. From the momentum equation (7.19b) at the wall, where
u � � � 0, we obtain

�
�

�




y
�wall

�
 �
�

�

2

y
u
2�wall

� ��U �
d
d
U
x
� � �

d
d
p
x
�

or �
�

�

2

y
u
2�wall

� �



1
� �

d
d
p
x
� (7.50)
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3This section may be omitted without loss of continuity.
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Pressure Gradient3



Fig. 7.7 Effect of pressure gradient
on boundary-layer profiles; PI �
point of inflection.

for either laminar or turbulent flow. Thus in an adverse gradient the second derivative of
velocity is positive at the wall; yet it must be negative at the outer layer (y � �) to merge
smoothly with the mainstream flow U(x). It follows that the second derivative must pass
through zero somewhere in between, at a point of inflection, and any boundary-
layer profile in an adverse gradient must exhibit a characteristic S shape.

Figure 7.7 illustrates the general case. In a favorable gradient (Fig. 7.7a) the profile
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Fig. 7.8 Boundary-layer growth and
separation in a nozzle-diffuser con-
figuration.

is very rounded, there is no point of inflection, there can be no separation, and lami-
nar profiles of this type are very resistant to a transition to turbulence [1 to 3].

In a zero pressure gradient (Fig. 7.7b), e.g., flat-plate flow, the point of inflection
is at the wall itself. There can be no separation, and the flow will undergo transition
at Rex no greater than about 3 � 106, as discussed earlier.

In an adverse gradient (Fig. 7.7c to e), a point of inflection (PI) occurs in the bound-
ary layer, its distance from the wall increasing with the strength of the adverse gradi-
ent. For a weak gradient (Fig. 7.7c) the flow does not actually separate, but it is vul-
nerable to transition to turbulence at Rex as low as 105 [1, 2]. At a moderate gradient,
a critical condition (Fig. 7.7d) is reached where the wall shear is exactly zero (�u/�y �
0). This is defined as the separation point (
w � 0), because any stronger gradient will
actually cause backflow at the wall (Fig. 7.7e): the boundary layer thickens greatly,
and the main flow breaks away, or separates, from the wall (Fig. 7.2b).

The flow profiles of Fig. 7.7 usually occur in sequence as the boundary layer pro-
gresses along the wall of a body. For example, in Fig. 7.2a, a favorable gradient oc-
curs on the front of the body, zero pressure gradient occurs just upstream of the shoul-
der, and an adverse gradient occurs successively as we move around the rear of the
body.

A second practical example is the flow in a duct consisting of a nozzle, throat, and
diffuser, as in Fig. 7.8. The nozzle flow is a favorable gradient and never separates, nor
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Laminar Integral Theory

does the throat flow where the pressure gradient is approximately zero. But the ex-
panding-area diffuser produces low velocity and increasing pressure, an adverse gra-
dient. If the diffuser angle is too large, the adverse gradient is excessive, and the bound-
ary layer will separate at one or both walls, with backflow, increased losses, and poor
pressure recovery. In the diffuser literature [10] this condition is called diffuser stall, a
term used also in airfoil aerodynamics (Sec. 7.6) to denote airfoil boundary-layer sep-
aration. Thus the boundary-layer behavior explains why a large-angle diffuser has heavy
flow losses (Fig. 6.23) and poor performance (Fig. 6.28).

Presently boundary-layer theory can compute only up to the separation point, after
which it is invalid. New techniques are now developed for analyzing the strong inter-
action effects caused by separated flows [5, 6].

Both laminar and turbulent theories can be developed from Kármán’s general two-
dimensional boundary-layer integral relation [7], which extends Eq. (7.33) to variable
U(x)

� �
1
2

� cf � �
d
d
	

x
� � (2 � H) �

U
	

� �
d
d
U
x
� (7.51)

where 	(x) is the momentum thickness and H(x) � �*(x)/	(x) is the shape factor. From
Eq. (7.17) negative dU/dx is equivalent to positive dp/dx, that is, an adverse gradient.

We can integrate Eq. (7.51) to determine 	(x) for a given U(x) if we correlate cf and
H with the momentum thickness. This has been done by examining typical velocity
profiles of laminar and turbulent boundary-layer flows for various pressure gradients.
Some examples are given in Fig. 7.9, showing that the shape factor H is a good indi-
cator of the pressure gradient. The higher the H, the stronger the adverse gradient, and
separation occurs approximately at

H � � (7.52)

The laminar profiles (Fig. 7.9a) clearly exhibit the S shape and a point of inflection
with an adverse gradient. But in the turbulent profiles (Fig. 7.9b) the points of inflec-
tion are typically buried deep within the thin viscous sublayer, which can hardly be
seen on the scale of the figure.

There are scores of turbulent theories in the literature, but they are all complicated al-
gebraically and will be omitted here. The reader is referred to advanced texts [1, 2, 9].

For laminar flow, a simple and effective method was developed by Thwaites [11],
who found that Eq. (7.51) can be correlated by a single dimensionless momentum-
thickness variable �, defined as

� � �
d
d
U
x
� (7.53)

Using a straight-line fit to his correlation, Thwaites was able to integrate Eq. (7.51) in
closed form, with the result

	2 � 	2
0 ��

U
U

0��
6

� �
0.

U
45

6
�

� �x

0
U5 dx (7.54)

	2

�
v

laminar flow
turbulent flow

3.5
2.4


w
�
�U2
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where 	0 is the momentum thickness at x � 0 (usually taken to be zero). Separation
(cf � 0) was found to occur at a particular value of �

Separation: � � �0.09 (7.55)

Finally, Thwaites correlated values of the dimensionless shear stress S � 
w	/(
U) with
�, and his graphed result can be curve-fitted as follows:

S(�) � �





w

U
	

� � (� � 0.09)0.62 (7.56)

This parameter is related to the skin friction by the identity

S 
 �
1
2

�cf Re	 (7.57)

Equations (7.54) to (7.56) constitute a complete theory for the laminar boundary layer
with variable U(x), with an accuracy of �10 percent compared with exact digital-com-
puter solutions of the laminar-boundary-layer equations (7.19). Complete details of
Thwaites’ and other laminar theories are given in Refs. 2 and 3.

As a demonstration of Thwaites’ method, take a flat plate, where U � constant, � �
0, and 	0 � 0. Equation (7.54) integrates to

	2 � �
0.4

U
5�x
�
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Fig. 7.9 Velocity profiles with pressure gradient: (a) laminar flow; (b) turbulent flow with adverse gradients.



Part (a)

or �
	

x
� � (7.58)

This is within 1 percent of Blasius’ exact solution, Eq. (7.30).
With � � 0, Eq. (7.56) predicts the flat-plate shear to be

�





w

U
	

� � (0.09)0.62 � 0.225

or cf � �
�

2
U

w

2� � (7.59)

This is also within 1 percent of the Blasius result, Eq. (7.25). However, the general ac-
curacy of this method is poorer than 1 percent because Thwaites actually “tuned” his
correlation constants to make them agree with exact flat-plate theory.

We shall not compute any more boundary-layer details here, but as we go along,
investigating various immersed-body flows, especially in Chap. 8, we shall 
use Thwaites’ method to make qualitative assessments of the boundary-layer be-
havior.

EXAMPLE 7.5

In 1938 Howarth proposed a linearly decelerating external-velocity distribution

U(x) � U0�1 � �
L
x

�� (1)

as a theoretical model for laminar-boundary-layer study. (a) Use Thwaites’ method to compute
the separation point xsep for 	0 � 0, and compare with the exact digital-computer solution
xsep/L � 0.119863 given by H. Wipperman in 1966. (b) Also compute the value of cf � 2
w/(�U2)
at x/L � 0.1.

Solution

First note that dU/dx � �U0/L � constant: Velocity decreases, pressure increases, and the pres-
sure gradient is adverse throughout. Now integrate Eq. (7.54)

	2 � �x

0
U5

0�1 � �
L
x

��
5

dx � 0.075 �
U
�L

0
� ��1 � �

L
x

��
�6

� 1� (2)

Then the dimensionless factor � is given by

� � �
d
d
U
x
� � � �

	

�

2U
L

0� � �0.075��1 � �
L
x

��
�6

� 1� (3)

From Eq. (7.55) we set this equal to �0.09 for separation

�sep � �0.09 � �0.075��1 � �
�6

� 1�
or � 1 � (2.2)�1/6 � 0.123 Ans. (a)

xsep
�

L

xsep
�

L

	2

�
v

0.45v
��
U6

0(1 � x/L)6

0.671
�
Rex

1/2

0.671
�
Rex

1/2
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Part (b)

7.6 Experimental External
Flows

This is less than 3 percent higher than Wipperman’s exact solution, and the computational ef-
fort is very modest.

To compute cf at x/L � 0.1 (just before separation), we first compute � at this point, using Eq. (3)

�(x � 0.1L) � �0.075[(1 � 0.1)�6 � 1] � �0.0661

Then from Eq. (7.56) the shear parameter is

S(x � 0.1L) � (�0.0661 � 0.09)0.62 � 0.099 � �
1
2

�cf Re	 (4)

We can compute Re	 in terms of ReL from Eq. (2) or (3)

�
L
	2

2� � �
0
U
.0

L
6
/
6
�

1
� � �

0.
R
06

eL

61
�

or Re	 � 0.257 ReL
1/2 at �

L
x

� � 0.1

Substitute into Eq. (4):

0.099 � �
1
2

�cf(0.257 ReL
1/2)

or cf � ReL � �
U
�

L
� Ans. (b)

We cannot actually compute cf without the value of, say, U0L/�.

Boundary-layer theory is very interesting and illuminating and gives us a great quali-
tative grasp of viscous-flow behavior, but, because of flow separation, the theory does
not generally allow a quantitative computation of the complete flow field. In particu-
lar, there is at present no satisfactory theory for the forces on an arbitrary body im-
mersed in a stream flowing at an arbitrary Reynolds number. Therefore experimenta-
tion is the key to treating external flows.

Literally thousands of papers in the literature report experimental data on specific
external viscous flows. This section gives a brief description of the following external-
flow problems:

1. Drag of two-and three-dimensional bodies

a. Blunt bodies

b. Streamlined shapes

2. Performance of lifting bodies

a. Airfoils and aircraft

b. Projectiles and finned bodies

c. Birds and insects

For further reading see the goldmine of data compiled in Hoerner [12]. In later chap-
ters we shall study data on supersonic airfoils (Chap. 9), open-channel friction (Chap.
10), and turbomachinery performance (Chap. 11).

0.77
�
ReL

1/2
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Fig. 7.10 Definition of forces and
moments on a body immersed in a
uniform flow.

Drag of Immersed Bodies Any body of any shape when immersed in a fluid stream will experience forces and
moments from the flow. If the body has arbitrary shape and orientation, the flow will
exert forces and moments about all three coordinate axes, as shown in Fig. 7.10. It is
customary to choose one axis parallel to the free stream and positive downstream. The
force on the body along this axis is called drag, and the moment about that axis the
rolling moment. The drag is essentially a flow loss and must be overcome if the body
is to move against the stream.

A second and very important force is perpendicular to the drag and usually performs
a useful job, such as bearing the weight of the body. It is called the lift. The moment
about the lift axis is called yaw.

The third component, neither a loss nor a gain, is the side force, and about this axis
is the pitching moment. To deal with this three-dimensional force-moment situation is
more properly the role of a textbook on aerodynamics [for example, 13]. We shall limit
the discussion here to lift and drag.

When the body has symmetry about the lift-drag axis, e.g., airplanes, ships, and cars
moving directly into a stream, the side force, yaw, and roll vanish, and the problem re-
duces to a two-dimensional case: two forces, lift and drag, and one moment, pitch.

A final simplification often occurs when the body has two planes of symmetry, as
in Fig. 7.11. A wide variety of shapes such as cylinders, wings, and all bodies of rev-
olution satisfy this requirement. If the free stream is parallel to the intersection of these
two planes, called the principal chord line of the body, the body experiences drag only,
with no lift, side force, or moments.4 This type of degenerate one-force drag data is
what is most commonly reported in the literature, but if the free stream is not parallel
to the chord line, the body will have an unsymmetric orientation and all three forces
and three moments can arise in principle.

In low-speed flow past geometrically similar bodies with identical orientation and
relative roughness, the drag coefficient should be a function of the body Reynolds num-
ber

CD � f(Re) (7.60)
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and moments, but their mean value is zero.



Fig. 7.11 Only the drag force oc-
curs if the flow is parallel to both
planes of symmetry.

The Reynolds number is based upon the free-stream velocity V and a characteristic
length L of the body, usually the chord or body length parallel to the stream

Re � �
V
�

L
� (7.61)

For cylinders, spheres, and disks, the characteristic length is the diameter D.

Drag coefficients are defined by using a characteristic area A which may differ de-
pending upon the body shape:

CD � (7.62)

The factor �
1
2

� is our traditional tribute to Euler and Bernoulli. The area A is usually one
of three types:

1. Frontal area, the body as seen from the stream; suitable for thick, stubby bodies,
such as spheres, cylinders, cars, missiles, projectiles, and torpedoes.

2. Planform area, the body area as seen from above; suitable for wide, flat bodies
such as wings and hydrofoils.

3. Wetted area, customary for surface ships and barges.

In using drag or other fluid-force data, it is important to note what length and area are
being used to scale the measured coefficients.

As we have mentioned, the theory of drag is weak and inadequate, except for the flat
plate. This is because of flow separation. Boundary-layer theory can predict the sepa-
ration point but cannot accurately estimate the (usually low) pressure distribution in
the separated region. The difference between the high pressure in the front stagnation
region and the low pressure in the rear separated region causes a large drag contribu-
tion called pressure drag. This is added to the integrated shear stress or friction drag
of the body, which it often exceeds:

CD � CD,press � CD,fric (7.63)

drag
�

�
1
2

��V2A
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Fig. 7.12 Drag of a streamlined
two-dimensional cylinder at Rec �
106: (a) effect of thickness ratio on
percentage of friction drag; (b) total
drag versus thickness when based
upon two different areas.

The relative contribution of friction and pressure drag depends upon the body’s shape,
especially its thickness. Figure 7.12 shows drag data for a streamlined cylinder of very
large depth into the paper. At zero thickness the body is a flat plate and exhibits 100
percent friction drag. At thickness equal to the chord length, simulating a circular cylin-
der, the friction drag is only about 3 percent. Friction and pressure drag are about equal
at thickness t/c � 0.25. Note that CD in Fig. 7.12b looks quite different when based
upon frontal area instead of planform area, planform being the usual choice for this
body shape. The two curves in Fig. 7.12b represent exactly the same drag data.

Figure 7.13 illustrates the dramatic effect of separated flow and the subsequent fail-
ure of boundary-layer theory. The theoretical inviscid pressure distribution on a circu-
lar cylinder (Chap. 8) is shown as the dashed line in Fig. 7.13c:

Cp � � 1 � 4 sin2 	 (7.64)

where p� and V are the pressure and velocity, respectively, in the free stream. The ac-
tual laminar and turbulent boundary-layer pressure distributions in Fig. 7.13c are star-
tlingly different from those predicted by theory. Laminar flow is very vulnerable to the
adverse gradient on the rear of the cylinder, and separation occurs at 	 � 82°, which

p � p��
�
1
2

��V2
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Fig. 7.13 Flow past a circular
cylinder: (a) laminar separation; (b)
turbulent separation; (c) theoretical
and actual surface-pressure distri-
butions.

certainly could not have been predicted from inviscid theory. The broad wake and very
low pressure in the separated laminar region cause the large drag CD � 1.2.

The turbulent boundary layer in Fig. 7.13b is more resistant, and separation is de-
layed until 	 � 120°, with a resulting smaller wake, higher pressure on the rear, and
75 percent less drag, CD � 0.3. This explains the sharp drop in drag at transition in
Fig. 5.3.

The same sharp difference between vulnerable laminar separation and resistant tur-
bulent separation can be seen for a sphere in Fig. 7.14. The laminar flow (Fig. 7.14a)
separates at about 80°, CD � 0.5, while the turbulent flow (Fig. 7.14b) separates at
120°, CD � 0.2. Here the Reynolds numbers are exactly the same, and the turbulent
boundary layer is induced by a patch of sand roughness at the nose of the ball. Golf
balls fly in this range of Reynolds numbers, which is why they are deliberately dim-
pled � to induce a turbulent boundary layer and lower drag. Again we would find the
actual pressure distribution on the sphere to be quite different from that predicted by
inviscid theory.
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Fig. 7.14 Strong differences in lam-
inar and turbulent separation on an
8.5-in bowling ball entering water
at 25 ft/s: (a) smooth ball, laminar
boundary layer; (b) same entry, tur-
bulent flow induced by patch of
nose-sand roughness. (U.S. Navy
photograph, Ordnance Test Station,
Pasadena Annex.)

In general, we cannot overstress the importance of body streamlining to reduce
drag at Reynolds numbers above about 100. This is illustrated in Fig. 7.15. The rec-
tangular cylinder (Fig. 7.15a) has rampant separation at all sharp corners and very
high drag. Rounding its nose (Fig. 7.15b) reduces drag by about 45 percent, but CD

is still high. Streamlining its rear to a sharp trailing edge (Fig. 7.15c) reduces its drag
another 85 percent to a practical minimum for the given thickness. As a dramatic con-
trast, the circular cylinder (Fig. 7.15d) has one-eighth the thickness and one-three-
hundredth the cross section (c) (Fig. 7.15c), yet it has the same drag. For high-per-
formance vehicles and other moving bodies, the name of the game is drag reduction,
for which intense research continues for both aerodynamic and hydrodynamic appli-
cations [20, 39].

The drag of some representative wide-span (nearly two-dimensional) bodies is shown
versus the Reynolds number in Fig. 7.16a. All bodies have high CD at very low (creep-
ing flow) Re � 1.0, while they spread apart at high Reynolds numbers according to
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Fig. 7.15 The importance of
streamlining in reducing drag of a
body (CD based on frontal area):
(a) rectangular cylinder; (b)
rounded nose; (c) rounded nose and
streamlined sharp trailing edge; (d)
circular cylinder with the same
drag as case (c).



Fig. 7.16 Drag coefficients of
smooth bodies at low Mach num-
bers: (a) two-dimensional bodies;
(b) three-dimensional bodies. Note
the Reynolds-number independence
of blunt bodies at high Re.

their degree of streamlining. All values of CD are based on the planform area except
the plate normal to the flow. The birds and the sailplane are, of course, not very two-
dimensional, having only modest span length. Note that birds are not nearly as effi-
cient as modern sailplanes or airfoils [14, 15].

Table 7.2 gives a few data on drag, based on frontal area, of two-dimensional bod-
ies of various cross section, at Re � 104. The sharp-edged bodies, which tend to cause
flow separation regardless of the character of the boundary layer, are insensitive to the
Reynolds number. The elliptic cylinders, being smoothly rounded, have the laminar-
to-turbulent transition effect of Figs. 7.13 and 7.14 and are therefore quite sensitive to
whether the boundary layer is laminar or turbulent.
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Table 7.2 Drag of Two-
Dimensional Bodies at Re � 104

Square cylinder:

Half tube:

Half-cylinder:

Equilateral triangle:

2.1

1.6

1.2

2.3

1.2

1.7

1.6

2.0

2.0

1.4

1.0 0.7

Plate:

Thin plate 
normal to 
a wall:

Hexagon: 

L

H

Rounded nose section:

0.5
1.16

1.0
0.90

2.0
0.70

4.0
0.68

6.0
0.64

H

L

Rounded nose section:

L/H:
  

0.1
1.9

0.4
2.3

0.7
2.7

1.2
2.1

2.0
1.8

2.5
1.4

3.0
1.3

6.0
0.9

Elliptical cylinder: Laminar 

1.2

0.6

0.35

0.25

Turbulent

0.3

0.2

0.15

0.1

1:1

2:1

4:1

8:1

  CD:

L/H:
    CD:

CD based CD based CD based
on frontal on frontal on frontal 

Shape area Shape area Shape area

Shape CD based on frontal area

Flat nose section

L/H:

CD:

L/H:

CD:

Plate:



EXAMPLE 7.6

A square 6-in piling is acted on by a water flow of 5 ft/s that is 20 ft deep, as shown in Fig.
E7.6. Estimate the maximum bending exerted by the flow on the bottom of the piling.
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L = 20 ft5 ft/s

h = 6 in

E7.6 

Solution

Assume seawater with � � 1.99 slugs/ft3 and kinematic viscosity � � 0.000011 ft2/s. With a pil-
ing width of 0.5 ft, we have

Reh � �
0
(5
.0

f
0
t
0
/s
0
)
1
(0
1
.5
ft2

ft
/
)
s

� � 2.3 � 105

This is the range where Table 7.2 applies. The worst case occurs when the flow strikes the flat
side of the piling, CD � 2.1. The frontal area is A � Lh � (20 ft)(0.5 ft) � 10 ft2. The drag is
estimated by

F � CD(�
1
2

��V2A) � 2.1(�
1
2

�)(1.99 slugs/ft3)(5 ft/s)2(10 ft2) � 522 lbf

If the flow is uniform, the center of this force should be at approximately middepth. Therefore
the bottom bending moment is

M0 � �
F
2
L
� � 522(10) � 5220 ft � lbf Ans.

According to the flexure formula from strength of materials, the bending stress at the bottom
would be

S � �
M

I
0y
� � � 251,000 lbf/ft2 � 1740 lbf/in2

to be multiplied, of course, by the stress-concentration factor due to the built-in end conditions.

Some drag coefficients of three-dimensional bodies are listed in Table 7.3 and Fig.
7.16b. Again we can conclude that sharp edges always cause flow separation and high
drag which is insensitive to the Reynolds number. Rounded bodies like the ellipsoid
have drag which depends upon the point of separation, so that both the Reynolds num-

(5220 ft � lb)(0.25 ft)
���

�
1
1
2
�(0.5 ft)4



460 Chapter 7 Flow Past Immersed Bodies

Table 7.3 Drag of Three-Dimensional Bodies at Re � 104

CD based on
Body frontal area Body CD based on frontal area

Cube:

1.07

0.81

Cup:

1.4

0.4

1.17

Disk:

1.2

Parachute 
(Low porosity):

Rectangular plate:

h

b

h

b/h  1
5

10
20
∞

1.18
1.2
1.3
1.5
2.0

L/D:
CD:

1
0.64

2
0.68

3
0.72

5
0.74

10
0.82

20
0.91

40
0.98

∞
1.20 

L

D

Short cylinder, 
laminar flow:

Porous parabolic  
dish [23]: Porosity: 0

1.42
0.95

0.1
1.33
0.92

0.2
1.20
0.90

0.3
1.05
0.86

0.4
0.95
0.83

0.5
0.82
0.80

Flat-faced cylinder:

Ellipsoid:

L /d   0.5
1
2
4
8

1.15
0.90
0.85
0.87
0.99

L /d  0.75

Laminar 

0.5
0.47
0.27
0.25
0.2

Turbulent

0.2
0.2
0.13
0.1
0.08

1
2
4
8

d

L

CD  

A ≈ 9 ft2 C D 

A ≈ 1.2 ft2

Average person:

U, m/s:
CD:

10
1.2 ± 0.2

20
1.0 ± 0.2

30
0.7 ± 0.2

40
0.5 ± 0.2

Pine and spruce 
trees [24]:

L

d

Cone:
10˚
0.30

20˚
0.40

30˚
0.55

40˚
0.65

60˚
0.80

75˚
1.05

90˚
1.15

θθ :
CD:

CD:

CD:

CD based on CD based on
Body Ratio frontal area Body Ratio frontal area



Aerodynamic Forces on Road
Vehicles

Fig. 7.17 Aerodynamics of automo-
biles: (a) the historical trend for
drag coefficients [From Ref. 21];
(b) effect of bottom rear upsweep
angle on drag and downward lift
force [From Ref. 25].

ber and the character of the boundary layer are important. Body length will generally de-
crease pressure drag by making the body relatively more slender, but sooner or later the
friction drag will catch up. For the flat-faced cylinder in Table 7.3, pressure drag decreases
with L/d but friction increases, so that minimum drag occurs at about L/d � 2.

Automobiles and trucks are now the subject of much research on aerodynamic forces,
both lift and drag [21]. At least one textbook is devoted to the subject [22]. Consumer,
manufacturer, and government interest has cycled between high speed/high horsepower
and lower speed/lower drag. Better streamlining of car shapes has resulted over the
years in a large decrease in the automobile drag coefficient, as shown in Fig. 7.17a.
Modern cars have an average drag coefficient of about 0.35, based upon the frontal
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Fig. 7.18 Drag reduction of a trac-
tor-trailer truck: (a) horsepower re-
quired to overcome resistance; (b)
deflector added to cab reduces air
drag by 20 percent. (Uniroyal Inc.)

area. Since the frontal area has also decreased sharply, the actual raw drag force on
cars has dropped even more than indicated in Fig. 7.17a. The practical minimum, shown
tentatively for the year 2000, is CD � 0.15 for a tear-shaped vehicle, which can be
achieved any time the public is willing to purchase such a shape. Note that basing CD

on the frontal area is awkward, since one would need an accurate drawing of the au-
tomobile to estimate its frontal area. For this reason, some technical articles simply re-
port the raw drag in newtons or pound-force, or the product CDA.

Many companies and laboratories have automotive wind tunnels, some full-scale
and/or with moving floors to approximate actual kinematic similarity. The blunt shapes
of most automobiles, together with their proximity to the ground, cause a wide vari-
ety of flow and geometric effects. Simple changes in part of the shape can have a large
influence on aerodynamic forces. Figure 7.17b shows force data by Bearman et al. [25]
for an idealized smooth automobile shape with upsweep in the rear of the bottom sec-
tion. We see that by simply adding an upsweep angle of 25°, we can quadruple the
downward force, gaining tire traction at the expense of doubling the drag. For this
study, the effect of a moving floor was small—about a 10 percent increase in both drag
and lift compared to a fixed floor.

It is difficult to quantify the exact effect of geometric changes on automotive forces,
since, e.g., changes in a windshield shape might interact with downstream flow over
the roof and trunk. Nevertheless, based on correlation of many model and full-scale
tests, Ref. 26 proposes a formula for automobile drag which adds separate effects such
as front ends, cowls, fenders, windshield, roofs, and rear ends.

Figure 7.18 shows the horsepower required to drive a typical tractor-trailer truck
at speeds up to 80 mi/h (117 ft/s or 36 m/s). The rolling resistance increases linearly
and the air drag quadratically with speed (CD � 1.0). The two are about equally im-
portant at 55 mi/h, which is the nominal speed limit in the United States. As shown
in Fig. 7.18b, air drag can be reduced by attaching a deflector to the top of the trac-
tor. If the angle of the deflector is adjusted to carry the flow smoothly over the top
and around the sides of the trailer, the reduction in CD is about 20 percent. Thus, at
55 mi/h the total resistance is reduced 10 percent, with a corresponding reduction in
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E7.7 

fuel costs and/or trip time for the trucker. This type of applied fluids engineering can
be a large factor in many of the conservation-oriented transportation problems of the
future.

EXAMPLE 7.7

A high-speed car with m � 2000 kg, CD � 0.3, and A � 1 m2 deploys a 2-m parachute to slow
down from an initial velocity of 100 m/s (Fig. E7.7). Assuming constant CD, brakes free, and
no rolling resistance, calculate the distance and velocity of the car after 1, 10, 100, and 1000 s.
For air assume � � 1.2 kg/m3, and neglect interference between the wake of the car and the para-
chute.
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d p = 2 m V0 = 100 m/s

x

Solution

Newton’s law applied in the direction of motion gives

Fx � m �
d
d
V
t
� � �Fc � Fp � � �

1
2

� �V 2(CDcAc � CDpAp) 

where subscript c denotes the car and subscript p the parachute. This is of the form

�
d
d
V
t
� � ��

m
K

� V2 K � � CDA �
�

2
�

Separate the variables and integrate

�V

V0

�
d
V
V
2� � ��

m
K

� �t

0
dt

or V0
�1 � V�1 � ��

m
K

� t

Rearrange and solve for the velocity V:

V � �
1 � (K

V0

/m)V0t
� K � (1)

We can integrate this to find the distance traveled:

S � �
V
�

0� ln (1 � �t) � � �
m
K

� V0 (2)

Now work out some numbers. From Table 7.3, CDp � 1.2; hence

CDcAc � CDpAp � 0.3(1 m2) � 1.2 �
 

4
� (2 m)2 � 4.07 m2

(CDc Ac � CDpAp)�
���

2



Other Methods of Drag Reduction

Drag of Surface Ships

Then �
m
K

� V0 � � 0.122 s�1 � �

Now make a table of the results for V and S from Eqs. (1) and (2):

t, s 1 10 100 1000

V, m/s 89 45 7.6 0.8

S, m 94 654 2110 3940

Air resistance alone will not stop a body completely. If you don’t apply the brakes, you’ll be
halfway to the Yukon Territory and still going.

Sometimes drag is good, for example, when using a parachute. Do not jump out of an
airplane holding a flat plate parallel to your motion (see Prob. 7.81). Mostly, though,
drag is bad and should be reduced. The classical method of drag reduction is stream-
lining (Figs. 7.15 and 7.18). For example, nose fairings and body panels have produced
motorcycles which can travel over 200 mi/h. More recent research has uncovered other
methods which hold great promise, especially for turbulent flows.

1. Oil pipelines introduce an annular core of water to reduce the pumping power
[36]. The low-viscosity water rides the wall and reduces friction up to 60 per-
cent.

2. Turbulent friction in liquid flows is reduced up to 60 percent by dissolving small
amounts of a high-molecular-weight polymer additive [37]. Without changing
pumps, the Trans-Alaska Pipeline System (TAPS) increased oil flow 50 percent
by injecting small amounts of polymer dissolved in kerosene.

3. Stream-oriented surface vee-groove microriblets reduce turbulent friction up to 8
percent [38]. Riblet heights are of order 1 mm and were used on the Stars and
Stripes yacht hull in the Americas Cup races. Riblets are also effective on air-
craft skins.

4. Small, near-wall large-eddy breakup devices (LEBUs) reduce local turbulent
friction up to 10 percent [39]. However, one must add these small structures to
the surface.

5. Air microbubbles injected at the wall of a water flow create a low-shear bubble
blanket [40]. At high void fractions, drag reduction can be 80 percent.

6. Spanwise (transverse) wall oscillation may reduce turbulent friction up to 30
percent [41].

Drag reduction is presently an area of intense and fruitful research and applies to many
types of airflows and water flows for both vehicles and conduits.

The drag data above, such as Tables 7.2 and 7.3, are for bodies “fully immersed” in a
free stream, i.e., with no free surface. If, however, the body moves at or near a free liq-
uid surface, wave-making drag becomes important and is dependent upon both the
Reynolds number and the Froude number. To move through a water surface, a ship

�
1
2

�(4.07 m2)(1.2 kg/m3)(100 m/s)
����

2000 kg
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Body Drag at High Mach
Numbers

must create waves on both sides. This implies putting energy into the water surface
and requires a finite drag force to keep the ship moving, even in a frictionless fluid.
The total drag of a ship can then be approximated as the sum of friction drag and wave-
making drag:

F � Ffric � Fwave or CD � CD,fric � CD,wave

The friction drag can be estimated by the (turbulent) flat-plate formula, Eq. (7.45),
based on the below-water or wetted area of the ship.

Reference 27 is an interesting review of both theory and experiment for wake-
making surface ship drag. Generally speaking, the bow of the ship creates a wave sys-
tem whose wavelength is related to the ship speed but not necessarily to the ship length.
If the stern of the ship is a wave trough, the ship is essentially climbing uphill and has
high wave drag. If the stern is a wave crest, the ship is nearly level and has lower drag.
The criterion for these two conditions results in certain approximate Froude numbers
[27]:

high drag if N � 1, 3, 5, 7, . . . ;
Fr � � (7.65)

low drag if N � 2, 4, 6, 8, . . .

where V is the ship’s speed, L is the ship’s length along the centerline, and N is the
number of half-lengths, from bow to stern, of the drag-making wave system. The wave
drag will increase with the Froude number and oscillate between lower drag (Fr �
0.38, 0.27, 0.22, . . .) and higher drag (Fr � 0.53, 0.31, 0.24, . . .) with negligible vari-
ation for Fr � 0.2. Thus it is best to design a ship to cruise at N � 2, 4, 6, 8. Shaping
the bow and stern can further reduce wave-making drag.

Figure 7.19 shows the data of Inui [27] for a model ship. The main hull, curve A,
shows peaks and valleys in wave drag at the appropriate Froude numbers � 0.2. In-
troduction of a bulb protrusion on the bow, curve B, greatly reduces the drag. Adding
a second bulb to the stern, curve C, is still better, and Inui recommends that the design
speed of this two-bulb ship be at N � 4, Fr � 0.27, which is a nearly “waveless” con-
dition. In this figure CD,wave is defined as 2Fwave/(�V2L2) instead of using the wetted
area.

The solid curves in Fig. 7.19 are based on potential-flow theory for the below-
water hull shape. Chapter 8 is an introduction to potential-flow theory. Modern digital
computers can be programmed for numerical CFD solutions of potential flow over the
hulls of ships, submarines, yachts, and sailboats, including boundary-layer effects 
driven by the potential flow [28]. Thus theoretical prediction of flow past surface ships
is now at a fairly high level. See also Ref. 15.

All the data presented above are for nearly incompressible flows, with Mach numbers
assumed less than about 0.5. Beyond this value compressibility can be very important,
with CD � fcn(Re, Ma). As the stream Mach number increases, at some subsonic value
Mcrit � 1 which depends upon the body’s bluntness and thickness, the local velocity at
some point near the body surface will become sonic. If Ma increases beyond Macrit,
shock waves form, intensify, and spread, raising surface pressures near the front of the
body and therefore increasing the pressure drag. The effect can be dramatic with CD

0.53
�
�N	

V
�
�g	L	
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Fig. 7.19 Wave-making drag on a
ship model. (After Inui [27].) Note:
The drag coefficient is defined as
CDW � 2F/(�V2L2).

increasing tenfold, and 70 years ago this sharp increase was called the sonic barrier,
implying that it could not be surmounted. Of course, it can be—the rise in CD is fi-
nite, as supersonic bullets have proved for centuries.

Figure 7.20 shows the effect of the Mach number on the drag coefficient of various
body shapes tested in air.5 We see that compressibility affects blunt bodies earlier, with
Macrit equal to 0.4 for cylinders, 0.6 for spheres, and 0.7 for airfoils and pointed pro-
jectiles. Also the Reynolds number (laminar versus turbulent boundary-layer flow) has
a large effect below Macrit for spheres and cylinders but becomes unimportant above
Ma � 1. In contrast, the effect of the Reynolds number is small for airfoils and pro-
jectiles and is not shown in Fig. 7.20. A general statement might divide Reynolds- and
Mach-number effects as follows:

Ma � 0.4: Reynolds number important, Mach number unimportant

0.4 � Ma � 1: both Reynolds and Mach numbers important

Ma � 1.0: Reynolds number unimportant, Mach number important

At supersonic speeds, a broad bow shock wave forms in front of the body (see Figs.
9.10b and 9.19), and the drag is mainly due to high shock-induced pressures on the
front. Making the bow a sharp point can sharply reduce the drag (Fig. 9.28) but does
not eliminate the bow shock. Chapter 9 gives a brief treatment of compressibility.
References 30 and 31 are more advanced textbooks devoted entirely to compressible
flow.
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Fig. 7.20 Effect of the Mach num-
ber on the drag of various body
shapes. (Data from Refs. 23 and
29.)

Biological Drag Reduction A great deal of engineering effort goes into designing immersed bodies to reduce their
drag. Most such effort concentrates on rigid-body shapes. A different process occurs
in nature, as organisms adapt to survive high winds or currents, as reported in a series
of papers by S. Vogel [33, 34]. A good example is a tree, whose flexible structure al-
lows it to reconfigure in high winds and thus reduce drag and damage. Tree root sys-
tems have evolved in several ways to resist wind-induced bending moments, and trunk
cross sections have become resistant to bending but relatively easy to twist and recon-
figure. We saw this in Table 7.3, where tree drag coefficients [24] reduced by 60 per-
cent as wind velocity increased. The shape of the tree changes to offer less resistance.

The individual branches and leaves of a tree also curl and cluster to reduce drag.
Figure 7.21 shows the results of wind tunnel experiments by Vogel [33]. A tulip tree
leaf, Fig. 7.21(a), broad and open in low wind, curls into a conical low-drag shape as
wind increases. A compound black walnut leaf group, Fig. 7.21(b), clusters into a low-
drag shape at high wind speed. Although drag coefficients were  reduced up to 50 per-
cent by flexibility, Vogel points out that rigid structures are sometimes just as effec-
tive. An interesting recent symposium [35] was devoted entirely to the solid mechanics
and fluid mechanics of biological organisms.

Lifting bodies (airfoils, hydrofoils, or vanes) are intended to provide a large force nor-
mal to the free stream and as little drag as possible. Conventional design practice has
evolved a shape not unlike a bird’s wing, i.e., relatively thin (t/c � 0/18) with a rounded
leading edge and a sharp trailing edge. A typical shape is sketched in Fig. 7.22.

For our purposes we consider the body to be symmetric, as in Fig. 7.11, with the
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Fig. 7.22 Definition sketch for a
lifting vane.

Fig. 7.21 Biological adaptation to
wind forces: (a) a tulip tree leaf
curls into a conical shape at high
velocity; (b) black walnut leaves
cluster into a low-drag shape as
wind increases. (From Vogel, Ref.
33.)

free-stream velocity in the vertical plane. If the chord line between the leading and
trailing edge is not a line of symmetry, the airfoil is said to be cambered. The camber
line is the line midway between the upper and lower surfaces of the vane.

The angle between the free stream and the chord line is called the angle of attack
�. The lift L and the drag D vary with this angle. The dimensionless forces are defined
with respect to the planform area Ap � bc:

Lift coefficient: CL � (7.66a)

Drag coefficient: CD � (7.66b)
D

�
�
1
2

��V2Ap

L
�

�
1
2

��V2Ap
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Fig. 7.23 Transient stages in the
development of lift: (a) start-up:
rear stagnation point on the upper
surface: no lift; (b) sharp trailing
edge induces separation, and a
starting vortex forms: slight lift; (c)
starting vortex is shed, and stream-
lines flow smoothly from trailing
edge: lift is now 80 percent devel-
oped; (d) starting vortex now shed
far behind, trailing edge now very
smooth: lift fully developed.

If the chord length is not constant, as in the tapered wings of modern aircraft,
Ap � 
c db.

For low-speed flow with a given roughness ratio, CL and CD should vary with � and
the chord Reynolds number

CL � f(�, Rec) or CD � f(�, Rec)

where Rec � Vc/�. The Reynolds numbers are commonly in the turbulent-boundary-
layer range and have a modest effect.

The rounded leading edge prevents flow separation there, but the sharp trailing edge
causes a separation which generates the lift. Figure 7.23 shows what happens when a
flow starts up past a lifting vane or an airfoil.

Just after start-up in Fig. 7.23a the streamline motion is irrotational and inviscid.
The rear stagnation point, assuming a positive angle of attack, is on the upper surface,
and there is no lift; but the flow cannot long negotiate the sharp turn at the trailing
edge: it separates, and a starting vortex forms in Fig. 7.23b. This starting vortex is shed
downstream in Fig. 7.23c and d, and a smooth streamline flow develops over the wing,
leaving the foil in a direction approximately parallel to the chord line. Lift at this time
is fully developed, and the starting vortex is gone. Should the flow now cease, a stop-
ping vortex of opposite (clockwise) sense will form and be shed. During flight, in-
creases or decreases in lift will cause incremental starting or stopping vortices, always
with the effect of maintaining a smooth parallel flow at the trailing edge. We pursue
this idea mathematically in Chap. 8.

At a low angle of attack, the rear surfaces have an adverse pressure gradient but not
enough to cause significant boundary-layer separation. The flow pattern is smooth, as
in Fig. 7.23d, and drag is small and lift excellent. As the angle of attack is increased,
the upper-surface adverse gradient becomes stronger, and generally a separation bub-
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Fig. 7.24 At high angle of attack,
smoke-flow visualization shows
stalled flow on the upper surface of
a lifting vane. [From Ref. 19, Illus-
trated Experiments in Fluid Me-
chanics (The NCFMF Book of Film
Notes), National Committee for
Fluid Mechanics Films, Education
Development Center, Inc., copy-
right 1972.]

ble begins to creep forward on the upper surface.6 At a certain angle � � 15 to 20°,
the flow is separated completely from the upper surface, as in Fig. 7.24. The airfoil is
said to be stalled: Lift drops off markedly, drag increases markedly, and the foil is no
longer flyable.

Early airfoils were thin, modeled after birds’ wings. The German engineer Otto
Lilienthal (1848–1896) experimented with flat and cambered plates on a rotating arm.
He and his brother Gustav flew the world’s first glider in 1891. Horatio Frederick
Phillips (1845–1912) built the first wind tunnel in 1884 and measured the lift and drag
of cambered vanes. The first theory of lift was proposed by Frederick W. Lanchester
shortly afterward. Modern airfoil theory dates from 1905, when the Russian hydrody-
namicist N. E. Joukowsky (1847–1921) developed a circulation theorem (Chap. 8) for
computing airfoil lift for arbitrary camber and thickness. With this basic theory, as ex-
tended and developed by Prandtl and Kármán and their students, it is now possible to
design a low-speed airfoil to satisfy particular surface-pressure distributions and bound-
ary-layer characteristics. There are whole families of airfoil designs, notably those de-
veloped in the United States under the sponsorship of the NACA (now NASA). Ex-
tensive theory and data on these airfoils are contained in Ref. 16. We shall discuss this
further in Chap. 8.

Figure 7.25 shows the lift and drag on a symmetric airfoil denoted as the NACA
0009 foil, the last digit indicating the thickness of 9 percent. With no flap extended,
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6For some airfoils the bubble leaps, not creeps, forward, and stall occurs rapidly and dangerously.



Fig. 7.25 Lift and drag of a sym-
metric NACA 0009 airfoil of infi-
nite span, including effect of a
split-flap deflection. Note that
roughness can increase CD from
100 to 300 percent.

this airfoil, as expected, has zero lift at zero angle of attack. Up to about 12° the lift
coefficient increases linearly with a slope of 0.1 per degree, or 6.0 per radian. This is
in agreement with the theory outlined in Chap. 8:

CL,theory � 2 sin�� � �
2
c
h
�� (7.67)

where h/c is the maximum camber expressed as a fraction of the chord. The NACA
0009 has zero camber; hence CL � 2 sin � � 0.11�, where � is in degrees. This is
excellent agreement.

The drag coefficient of the smooth-model airfoils in Fig. 7.25 is as low as 0.005,
which is actually lower than both sides of a flat plate in turbulent flow. This is mis-
leading inasmuch as a commercial foil will have roughness effects; e.g., a paint job
will double the drag coefficient.

The effect of increasing Reynolds number in Fig. 7.25 is to increase the maximum
lift and stall angle (without changing the slope appreciably) and to reduce the drag co-
efficient. This is a salutary effect, since the prototype will probably be at a higher
Reynolds number than the model (107 or more).

For takeoff and landing, the lift is greatly increased by deflecting a split flap, as
shown in Fig. 7.25. This makes the airfoil unsymmetric (or effectively cambered) and
changes the zero-lift point to � � �12°. The drag is also greatly increased by the flap,
but the reduction in takeoff and landing distance is worth the extra power needed.

A lifting craft cruises at low angle of attack, where the lift is much larger than the
drag. Maximum lift-to-drag ratios for the common airfoils lie between 20 and 50.

Some airfoils, such as the NACA 6 series, are shaped to provide favorable gradi-
ents over much of the upper surface at low angles. Thus separation is small, and tran-
sition to turbulence is delayed; the airfoil retains a good length of laminar flow even
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Fig. 7.26 Lift-drag polar plot for
standard (0009) and a laminar-flow
(63-009) NACA airfoil.

at high Reynolds numbers. The lift-drag polar plot in Fig. 7.26 shows the NACA 0009
data from Fig. 7.25 and a laminar-flow airfoil, NACA 63–009, of the same thickness.
The laminar-flow airfoil has a low-drag bucket at small angles but also suffers lower
stall angle and lower maximum lift coefficient. The drag is 30 percent less in the bucket,
but the bucket disappears if there is significant surface roughness.

All the data in Figs. 7.25 and 7.26 are for infinite span, i.e., a two-dimensional flow
pattern about wings without tips. The effect of finite span can be correlated with the
dimensionless slenderness, or aspect ratio, denoted (AR),

AR � �
A
b2

p
� � �

b
c	

� (7.68)

where c	 is the average chord length. Finite-span effects are shown in Fig. 7.27. The
lift slope decreases, but the zero-lift angle is the same; and the drag increases, but the
zero-lift drag is the same. The theory of finite-span airfoils [16] predicts that the ef-
fective angle of attack increases, as in Fig. 7.27, by the amount

!� � �
 

C
A

L

R
� (7.69)

When applied to Eq. (7.67), the finite-span lift becomes

CL ��2 s
1
in

�

(�
2/

�

AR
2h/c)

� (7.70)

The associated drag increase is !CD � CL sin !� � CL !�, or

CD � CD� � (7.71)
CL

2

�
 AR
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Fig. 7.27 Effect of finite aspect ra-
tio on lift and drag of an airfoil: (a)
effective angle increase; (b) in-
duced drag increase.

where CD� is the drag of the infinite-span airfoil, as sketched in Fig. 7.25. These cor-
relations are in good agreement with experiments on finite-span wings [16].

The existence of a maximum lift coefficient implies the existence of a minimum
speed, or stall speed, for a craft whose lift supports its weight

L � W � CL,max(�
1
2

��Vs
2Ap)

or Vs � � �
1/2

(7.72)

The stall speed of typical aircraft varies between 60 and 200 ft/s, depending upon the
weight and value of CL,max. The pilot must hold the speed greater than about 1.2Vs to
avoid the instability associated with complete stall.

The split flap in Fig. 7.25 is only one of many devices used to secure high lift at
low speeds. Figure 7.28a shows six such devices whose lift performance is given in
7.28b along with a standard (A) and laminar-flow (B) airfoil. The double-slotted flap
achieves CL,max � 3.4, and a combination of this plus a leading-edge slat can achieve
CL,max � 4.0. These are not scientific curiosities; e.g., the Boeing 727 commercial jet
aircraft uses a triple-slotted flap plus a leading-edge slat during landing.

Also shown as C in Fig. 7.28b is the Kline-Fogleman airfoil [17], not yet a reality.
The designers are amateur model-plane enthusiasts who did not know that conventional
aerodynamic wisdom forbids a sharp leading edge and a step cutout from the trailing
edge. The Kline-Fogleman airfoil has relatively high drag but shows an amazing con-
tinual increase in lift out to � � 45°. In fact, we may fairly say that this airfoil does
not stall and provides smooth performance over a tremendous range of flight condi-
tions. No explanation for this behavior has yet been published by any aerodynamicist.
This airfoil is under study and may or may not have any commercial value.

Another violation of conventional aerodynamic wisdom is that military aircraft are
beginning to fly, briefly, above the stall point. Fighter pilots are learning to make quick
maneuvers in the stalled region as detailed in Ref. 32. Some planes can even fly con-
tinuously while stalled—the Grumman X-29 experimental aircraft recently set a record
by flying at � � 67°.

2W
��
CL,max�Ap

7.6 Experimental External Flows 473

CL
AR = ∞

AR =
A p

b 

2

(a)

CD

AR =
A p

b 

2

AR = ∞

α

∆ CD ≈
CL

π AR

2

(b)

CD ∞

 β–

CL

π AR
∆          ≈α

α



Fig. 7.29 New aircraft designs do
not necessarily look like your typi-
cal jetliner. (From Ref. 42.)

Fig. 7.28 Performance of airfoils
with and without high-lift devices:
A � NACA 0009; B � NACA 63-
009; C � Kline-Fogleman airfoil
(from Ref. 17); D to I shown in (a):
(a) types of high-lift devices; (b)
lift coefficients for various devices.

The Kline-Fogleman airfoil in Fig. 7.28 is a departure from conventional aerodynamics,
but there have been other striking departures, as detailed in a recent article [42]. These
new aircraft, conceived presently as small models, have a variety of configurations, as
shown in Fig. 7.29: ring-wing, cruciform, flying saucer, and flap-wing. A saucer config-
uration (Fig. 7.29c), with a diameter of 40 in, has been successfully flown by radio con-
trol, and its inventor, Jack M. Jones, plans for a 20-ft two-passenger version. Another 18-
in-span microplane called the Bat (not shown), made by MLB Co., flies for 20 min at
40 mi/h and contains a video camera for surveillance. New engines have been reduced
to a 10- by 3-mm size, producing 20 W of power. At the other end of the size spectrum,
Boeing and NASA engineers have proposed a jumbo flying-wing jetliner, similar in shape
to the stealth bomber, which would carry 800 passengers for a range of 7000 mi.

Further information on the performance of lifting craft can be found in Refs. 12,
13, and 16. We discuss this matter again briefly in Chap. 8.
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EXAMPLE 7.8

An aircraft weighs 75,000 lb, has a planform area of 2500 ft2, and can deliver a constant
thrust of 12,000 lb. It has an aspect ratio of 7, and CD� � 0.02. Neglecting rolling resistance,
estimate the takeoff distance at sea level if takeoff speed equals 1.2 times stall speed. Take
CL,max � 2.0.

Solution

The stall speed from Eq. (7.72), with sea-level density � � 0.00237 slug/ft3, is

Vs � � �
1/2

� � �
1/2

� 112.5 ft/s

Hence takeoff speed V0 � 1.2Vs � 135 ft/s. The drag is estimated from Eq. (7.71) for AR � 7 as

CD � 0.02 � � 0.02 � 0.0455CL
2

A force balance in the direction of takeoff gives

Fs � m �
d
d
V
t
� � thrust � drag � T � kV2 k � �

1
2

�CD�Ap (1)

Since we are looking for distance, not time, we introduce dV/dt � V dV/ds into Eq. (1), sepa-
rate variables, and integrate

�S0

0
dS � �

m
2

� �V0

0
k � const

or S0 � �
2
m
k
� ln � �

2
m
k
� ln (2)

where D0 � kV0
2 is the takeoff drag. Equation (2) is the desired theoretical relation for takeoff

distance. For the particular numerical values, take

m � �
75
3
,
2
0
.
0
2
0

� � 2329 slugs

CL0
� � � 1.39

CD0
� 0.02 � 0.0455(CL0

)2 � 0.108

k � �
1
2

�CD0
�Ap � (�

1
2

�)(0.108)(0.00237)(2500) � 0.319 slug/ft

D0 � kV0
2 � 5820 lb 

Then Eq. (2) predicts that

S0 ��
2(0

2
.
3
3
2
1
9
9

s
s
l
l
u
u
g
g
s
/ft)

� ln �
12,0

1
0
2
0
,0
�

00
5820

�� 3650 ln 1.94 � 2420 ft Ans.

A more exact analysis accounting for variable k [13] gives the same result to within 1 percent.

75,000
���

�
1
2

�(0.00237)(135)2(2500)
W

�
�
1
2

��V0
2 Ap

T
�
T � D0

T
�
T � kV0

2

d(V2)
�
T � kV2

CL
2

�
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2(75,000)
���
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2W
��
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Summary This chapter has dealt with viscous effects in external flow past bodies immersed in a
stream. When the Reynolds number is large, viscous forces are confined to a thin bound-
ary layer and wake in the vicinity of the body. Flow outside these “shear layers” is es-
sentially inviscid and can be predicted by potential theory and Bernoulli’s equation.

The chapter begins with a discussion of the flat-plate boundary layer and the use of
momentum-integral estimates to predict the wall shear, friction drag, and thickness of
such layers. These approximations suggest how to eliminate certain small terms in the
Navier-Stokes equations, resulting in Prandtl’s boundary-layer equations for laminar
and turbulent flow. Section 7.4 then solves the boundary-layer equations to give very
accurate formulas for flat-plate flow at high Reynolds numbers. Rough-wall effects are
included, and Sec. 7.5 gives a brief introduction to pressure-gradient effects. An ad-
verse (decelerating) gradient is seen to cause flow separation, where the boundary layer
breaks away from the surface and forms a broad, low-pressure wake.

Boundary-layer theory fails in separated flows, which are commonly studied by 
experiment. Section 7.6 gives data on drag coefficients of various two- and three-
dimensional body shapes. The chapter ends with a brief discussion of lift forces gen-
erated by lifting bodies such as airfoils and hydrofoils. Airfoils also suffer flow sepa-
ration or stall at high angles of incidence.
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Problems

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equation Solver (EES), while problems labeled with a
computer disk may require the use of a computer. The standard
end-of-chapter problems 7.1 to 7.124 (categorized in the problem
list below) are followed by word problems W7.1 to W7.12, fun-
damentals of engineering exam problems FE7.1 to FE7.10, com-
prehensive problems C7.1 to C7.4, and design project D7.1.

Problem Distribution

Section Topic Problems

7.1 Reynolds-number and geometry 7.1–7.5
7.2 Momentum-integral estimates 7.6–7.12
7.3 The boundary-layer equations 7.13–7.15
7.4 Laminar flat-plate flow 7.16–7.29
7.4 Turbulent flat-plate flow 7.30–7.46
7.5 Boundary layers with pressure gradient 7.47–7.52
7.6 Drag of two-dimensional bodies 7.53–7.63
7.6 Drag of three-dimensional bodies 7.64–7.114
7.6 Lifting bodies—airfoils 7.115–7.124

P7.1 For flow at 20 m/s past a thin flat plate, estimate the dis-
tances x from the leading edge at which the boundary-layer
thickness will be either 1 mm or 10 cm for (a) air and (b)
water at 20°C and 1 atm.

P7.2 Air, equivalent to that at a standard altitude of 4000 m,
flows at 450 mi/h past a wing which has a thickness of 18

cm, a chord length of 1.5 m, and a wingspan of 12 m. What
is the appropriate value of the Reynolds number for cor-
relating the lift and drag of this wing? Explain your se-
lection.

P7.3 Equation (7.1b) assumes that the boundary layer on the
plate is turbulent from the leading edge onward. Devise
a scheme for determining the boundary-layer thickness
more accurately when the flow is laminar up to a point
Rex,crit and turbulent thereafter. Apply this scheme to com-
putation of the boundary-layer thickness at x � 1.5 m in
40 m/s flow of air at 20°C and 1 atm past a flat plate.
Compare your result with Eq. (7.1b). Assume Rex,crit �
1.2 E6.

P7.4 Air at 20°C and 1 atm flows at 15 m/s past a flat plate
with Rex,crit � 1 E6. At what point x will the boundary-
layer thickness be 8 mm? Why do Eqs. (7.1) seem to fail?
Make a sketch illustrating the discrepancy; then use the
ideas in Prob. 7.3 to complete this problem correctly.

P7.5 SAE 30 oil at 20°C flows at 1.8 ft3/s from a reservoir into
a 6-in-diameter pipe. Use flat-plate theory to estimate the
position x where the pipe-wall boundary layers meet in the
center. Compare with Eq. (6.5), and give some explana-
tions for the discrepancy.

P7.6 For the laminar parabolic boundary-layer profile of Eq.
(7.6), compute the shape factor H and compare with the
exact Blasius result, Eq. (7.31).

P7.7 Air at 20°C and 1 atm enters a 40-cm-square duct as 
in Fig. P7.7. Using the “displacement thickness” con-
cept of Fig. 7.4, estimate (a) the mean velocity and (b) the
mean pressure in the core of the flow at the position x �



3 m. (c) What is the average gradient, in Pa/m, in this 
section?

Problems 477

for the parabolic flat-plate profile of Eq. (7.3). Yet when
this new profile is used in the integral analysis of Sec. 7.3,
we get the lousy result �/x � 9.2/Rex

1/2, which is 80 per-
cent high. What is the reason for the inaccuracy? [Hint:
The answer lies in evaluating the laminar boundary-layer
momentum equation (7.19b) at the wall, y � 0.]

P7.13 Derive modified forms of the laminar boundary-layer
equations (7.19) for the case of axisymmetric flow along
the outside of a circular cylinder of constant radius 
R, as in Fig. P7.13. Consider the two special cases (a)
� � R and (b) � � R. What are the proper boundary 
conditions?

2 m  /s

3 m

40 × 40 cm square duct

Boundary layers

Ucore

P7.7 

P7.8 Air, � � 1.2 kg/m3 and 
 � 1.8 E-5 kg/(m � s), flows at
10 m/s past a flat plate. At the trailing edge of the plate,
the following velocity profile data are measured:

y, mm 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0

u, m/s 0 1.75 3.47 6.58 8.70 9.68 10.0 10.0

If the upper surface has an area of 0.6 m2, estimate, using
momentum concepts, the friction drag, in N, on the upper
surface.

P7.9 Repeat the flat-plate momentum analysis of Sec. 7.2 by
replacing the parabolic profile, Eq. (7.6), with a more ac-
curate sinusoidal profile:

�
U
u

� � sin �
 

2�

y
�

Compute momentum-integral estimates of cf, 	/x, �*/x,
and H.

P7.10 Repeat Prob. 7.9, using the polynomial profile suggested
by K. Pohlhausen in 1921:

�
U
u

� � 2 �
�

y
� � 2 �

�

y3

3� � �
�

y4

4�

Does this profile satisfy the boundary conditions of lami-
nar flat-plate flow?

P7.11 Find the correct form for a cubic velocity-profile polyno-
mial

u � A � By � Cy2 � Dy3

to replace Eq. (7.6) in a flat-plate momentum analysis.
Find the value of 	/� for this profile, but do not pursue the
analysis further.

P7.12 The velocity profile shape u/U � 1 � exp (�4.605y/�) is
a smooth curve with u � 0 at y � 0 and u � 0.99U at
y � � and thus would seem to be a reasonable substitute

δ (x)

x

y

r

u
p ≈ constant

R

U

P7.13 

P7.14 Show that the two-dimensional laminar-flow pattern with
dp/dx � 0

u � U0(1 � eCy) � � �0 � 0

is an exact solution to the boundary-layer equations (7.19).
Find the value of the constant C in terms of the flow pa-
rameters. Are the boundary conditions satisfied? What
might this flow represent?

P7.15 Discuss whether fully developed laminar incompressible
flow between parallel plates, Eq. (4.143) and Fig. 4.16b,
represents an exact solution to the boundary-layer
equations (7.19) and the boundary conditions (7.20). In
what sense, if any, are duct flows also boundary-layer
flows?

P7.16 A thin flat plate 55 by 110 cm is immersed in a 6-m/s
stream of SAE 10 oil at 20°C. Compute the total friction
drag if the stream is parallel to (a) the long side and (b)
the short side.

P7.17 Helium at 20°C and low pressure flows past a thin flat
plate 1 m long and 2 m wide. It is desired that the 
total friction drag of the plate be 0.5 N. What is the
appropriate absolute pressure of the helium if U �
35 m/s?



P7.21 For the experimental setup of Fig. P7.20, suppose the
stream velocity is unknown and the pitot stagnation tube
is traversed across the boundary layer of air at 1 atm and
20°C. The manometer fluid is Meriam red oil, and the fol-
lowing readings are made:

y, mm 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

h, mm 1.2 4.6 9.8 15.8 21.2 25.3 27.8 29.0 29.7 29.7

Using these data only (not the Blasius theory) estimate
(a) the stream velocity, (b) the boundary-layer thickness,
(c) the wall shear stress, and (d) the total friction drag
between the leading edge and the position of the pitot
tube.

P7.22 For the Blasius flat-plate problem, Eqs. (7.21) to (7.23),
does a two-dimensional stream function " (x, y) exist? If

*P7.24 Air at 20°C and 1 atm flows past the flat plate in Fig. P7.24
under laminar conditions. There are two equally spaced
pitot stagnation tubes, each placed 2 mm from the wall.
The manometer fluid is water at 20°C. If U � 15 m/s and
L � 50 cm, determine the values of the manometer read-
ings h1 and h2, in mm.

P7.18 In Prob. 7.7, when the duct is perfectly square, the core
velocity speeds up. Suppose we wish to hold the core ve-
locity constant by slanting the upper and lower walls
while keeping the front and rear walls parallel. What an-
gle of slant will be the best approximation? For this con-
dition, what will be the total friction drag on the duct
walls?

P7.19 Program a method of numerical solution of the Blasius
flat-plate relation, Eq. (7.22), subject to the conditions
in (7.23). You will find that you cannot get started with-
out knowing the initial second derivative f �(0), which
lies between 0.2 and 0.5. Devise an iteration scheme
which starts at f �(0) � 0.2 and converges to the correct
value. Print out u/U � f�(�) and compare with Table
7.1.

P7.20 Air at 20°C and 1 atm flows at 20 m/s past the flat plate
in Fig. P7.20. A pitot stagnation tube, placed 2 mm from
the wall, develops a manometer head h � 16 mm of
Meriam red oil, SG � 0.827. Use this information to esti-
mate the downstream position x of the pitot tube. Assume
laminar flow.

so, determine the correct dimensionless form for ", as-
suming that " � 0 at the wall, y � 0.

P7.23 Suppose you buy a 4- by 8-ft sheet of plywood and put
it on your roof rack. (See Fig. P7.23.) You drive home
at 35 mi/h. (a) Assuming the board is perfectly aligned
with the airflow, how thick is the boundary layer at the
end of the board? (b) Estimate the drag on the sheet of
plywood if the boundary layer remains laminar. (c) Es-
timate the drag on the sheet of plywood if the bound-
ary-layer is turbulent (assume the wood is smooth), and
compare the result to that of the laminar boundary-layer
case.
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P7.25 Modify Prob. 7.24 to the following somewhat more diffi-
cult scenario. Let the known data be U � 15 m/s and h1 �
8 mm of water. Use this information to determine (a) L,
in cm, (b) h2, in mm.

P7.26 Consider laminar boundary-layer flow past the square-
plate arrangements in Fig. P7.26. Compared to the friction
drag of a single plate 1, how much larger is the drag of
four plates together as in configurations (a) and (b)?  Ex-
plain your results.



*P7.27 A thin smooth disk of diameter D is immersed parallel to
a uniform stream of velocity U. Assuming laminar flow
and using flat-plate theory as a guide, develop an approx-
imate formula for the drag of the disk.

P7.28 Flow straighteners are arrays of narrow ducts placed in
wind tunnels to remove swirl and other in-plane secondary
velocities. They can be idealized as square boxes con-
structed by vertical and horizontal plates, as in Fig. P7.28.
The cross section is a by a, and the box length is L. As-
suming laminar flat-plate flow and an array of N � N
boxes, derive a formula for (a) the total drag on the bun-
dle of boxes and (b) the effective pressure drop across the
bundle.
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P7.29 Let the flow straighteners in Fig. P7.28 form an array
of 20 � 20 boxes of size a � 4 cm and L � 25 cm. If
the approach velocity is U0 � 12 m/s and the fluid is
sea-level standard air, estimate (a) the total array drag
and (b) the pressure drop across the array. Compare with
Sec. 6.6.

P7.30 Repeat Prob. 7.16 if the fluid is water at 20°C and the plate
surface is smooth.

P7.31 Repeat Prob. 7.16 if the fluid is water at 20°C and the plate
has an average roughness height of 1.5 mm.

P7.32 A flat plate of length L and height � is placed at a wall
and is parallel to an approaching boundary layer, as in Fig.
P7.32. Assume that the flow over the plate is fully turbu-
lent and that the approaching flow is a one-seventh-power
law

u(y) � U0��
�

y
��

1/7

Using strip theory, derive a formula for the drag coeffi-
cient of this plate. Compare this result with the drag of the
same plate immersed in a uniform stream U0.

1 3

2 4

1

(a)P7.26 (b)

1 2 3 4

a

a

L

U0

P7.28 

P7.33 An alternate analysis of turbulent flat-plate flow was given
by Prandtl in 1927, using a wall shear-stress formula from
pipe flow


w � 0.0225�U2��
U
�

�
��

1/4

Show that this formula can be combined with Eqs. (7.33)
and (7.40) to derive the following relations for turbulent
flat-plate flow:

�
�

x
� � cf � CD �

These formulas are limited to Rex between 5 � 105 and
107.

*P7.34 A thin equilateral-triangle plate is immersed parallel to a
12 m/s stream of water at 20°C, as in Fig. P7.34. Assum-
ing Retr � 5 � 105, estimate the drag of this plate.

P7.35 The solutions to Prob. 7.26 are (a) F � 2.83F1-plate and (b)
F � 2.0F1-plate. Do not reveal these results to your friends.
Repeat Prob. 7.26 assuming the boundary-layer flow is tur-
bulent, and comment on the striking increase in numerical
values.

0.072
�
ReL

1/5
0.0577
�
Rex

1/5
0.37
�
Rex

1/5

y

x

U
L

δ

δy =

u( y)

P7.32 



wall turbulent-flow theory to estimate the position x of the
probe, in m.

*P7.42 A four-bladed helicopter rotor rotates at n r/min in air with
properties (�, 
). Each blade has chord length C and ex-
tends from the center of rotation out to radius R (the hub
size is neglected). Assuming turbulent flow from the lead-
ing edge, develop an analytical estimate for the power P
required to drive this rotor.

P7.43 In the flow of air at 20°C and 1 atm past a flat plate in Fig.
P7.43, the wall shear is to be determined at position x by a
floating element (a small area connected to a strain-gage
force measurement). At x � 2 m, the element indicates a
shear stress of 2.1 Pa. Assuming turbulent flow from the
leading edge, estimate (a) the stream velocity U, (b) the
boundary-layer thickness � at the element, and (c) the bound-
ary-layer velocity u, in m/s, at 5 mm above the element.

P7.36 A ship is 125 m long and has a wetted area of 3500 m2.
Its propellers can deliver a maximum power of 1.1 MW
to seawater at 20°C. If all drag is due to friction, estimate
the maximum ship speed, in kn.

P7.37 A wind tunnel has a test section 1 m square and 6 m long
with air at 20°C moving at an average velocity of 30 m/s.
It is planned to slant the walls outward slightly to account
for the growing boundary-layer displacement thickness on
the four walls, thus keeping the test-section velocity con-
stant. At what angle should they be slanted to keep V con-
stant between x � 2 m and x � 4 m?

P7.38 Atmospheric boundary layers are very thick but follow for-
mulas very similar to those of flat-plate theory. Consider
wind blowing at 10 m/s at a height of 80 m above a smooth
beach. Estimate the wind shear stress, in Pa, on the beach
if the air is standard sea-level conditions. What will the
wind velocity striking your nose be if (a) you are stand-
ing up and your nose is 170 cm off the ground and (b) you
are lying on the beach and your nose is 17 cm off the
ground?

P7.39 A hydrofoil 50 cm long and 4 m wide moves at 28 kn in
seawater at 20°C. Using flat-plate theory with Retr � 5 E5,
estimate its drag, in N, for (a) a smooth wall and (b) a
rough wall, � � 0.3 mm.

P7.40 Hoerner [12, p. 3.25] states that the drag coefficient of a
flag in winds, based on total wetted area 2bL, is approxi-
mated by  CD � 0.01 � 0.05L/b, where L is the flag length
in the flow direction. Test Reynolds numbers ReL were 1
E6 or greater. (a) Explain why, for L/b � 1, these drag val-
ues are much higher than for a flat plate. Assuming sea-
level standard air at 50 mi/h, with area bL � 4 m2, find (b)
the proper flag dimensions for which the total drag is ap-
proximately 400 N.

P7.41 Repeat Prob. 7.20 with the sole change that the pitot probe
is now 10 mm from the wall (5 times higher). Show that
the flow there cannot possibly be laminar, and use smooth-

480 Chapter 7 Flow Past Immersed Bodies

2 m

2 m

2 m

12 m/s

P7.34 

x

U
Floating element with
negligible gap

P7.43 

P7.44 Extensive measurements of wall shear stress and local ve-
locity for turbulent airflow on the flat surface of the Uni-
versity of Rhode Island wind tunnel have led to the fol-
lowing proposed correlation:

�
�y




2

2

w� � 0.0207 ��

u
�

y
��

1.77

Thus, if y and u(y) are known at a point in a flat-plate bound-
ary layer, the wall shear may be computed directly. If the
answer to part (c) of Prob. 7.43 is u � 27 m/s, determine
whether the correlation is accurate for this case.

P7.45 A thin sheet of fiberboard weighs 90 N and lies on a
rooftop, as shown in Fig. P7.45. Assume ambient air at
20°C and 1 atm. If the coefficient of solid friction between
board and roof is # � 0.12, what wind velocity will gen-
erate enough fluid friction to dislodge the board?

P7.46 A ship is 150 m long and has a wetted area of 5000 m2.
If it is encrusted with barnacles, the ship requires 7000 hp
to overcome friction drag when moving in seawater at 15
kn and 20°C. What is the average roughness of the barna-
cles? How fast would the ship move with the same power
if the surface were smooth? Neglect wave drag.

EES



thin, show that the core velocity U(x) in the diffuser is
given approximately by

U � �
1 � (2x

U
t
0

an 	)/W
�

where W is the inlet height. Use this velocity distribution
with Thwaites’ method to compute the wall angle 	 for
which laminar separation will occur in the exit plane when
diffuser length L � 2W. Note that the result is indepen-
dent of the Reynolds number.
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Fiberboard

Roof

2 m 3 m 1 m

1.5 m

2 mU

P7.47 As a case similar to Example 7.5, Howarth also proposed
the adverse-gradient velocity distribution U � U0(1 �
x2/L2) and computed separation at xsep/L � 0.271 by a se-
ries-expansion method. Compute separation by Thwaites’
method and compare.

P7.48 In 1957 H. Görtler proposed the adverse-gradient test cases

U � �
(1 �

U
x
0

/L)n�

and computed separation for laminar flow at n � 1 to be
xsep/L � 0.159. Compare with Thwaites’ method, assum-
ing 	0 � 0.

P7.49 Based strictly upon your understanding of flat-plate the-
ory plus adverse and favorable pressure gradients, explain
the direction (left or right) for which airflow past the slen-
der airfoil shape in Fig. P7.49 will have lower total (fric-
tion � pressure) drag.

P7.45

U ? U ?

P7.49

*P7.50 For flow past a cylinder of radius R as in Fig. P7.50, the
theoretical inviscid velocity distribution along the surface
is U � 2U0 sin (x/R), where U0 is the oncoming stream
velocity and x is the arc length measured from the nose
(Chap. 8). Compute the laminar separation point xsep and
	sep by Thwaites’ method, and compare with the digital-
computer solution xsep/R � 1.823 (	sep � 104.5°) given by
R. M. Terrill in 1960.

P7.51 Consider the flat-walled diffuser in Fig. P7.51, which is
similar to that of Fig. 6.26a with constant width b. If x is
measured from the inlet and the wall boundary layers are

R
U0

θ
x

xsep, θsep

P7.50 

L

U0 x U(x)

θ

θ

Constant width b

W

P7.51 

*P7.52 In Fig. P7.52 a slanted upper wall creates a favorable pres-
sure gradient on the upper surface of the flat plate. Use
Thwaites’ theory to estimate

CD � 
F

�
�
1
2

��U2
0bL

P7.52 

Flat plate

Slanted
wall

U0
h0 x L , b

U(x)
1
2 h0



on the upper plate surface if U0 L/� � 105. Compare with
Eq. (7.27).

P7.53 From Table 7.2, the drag coefficient of a wide plate nor-
mal to a stream is approximately 2.0. Let the stream con-
ditions be U� and p�. If the average pressure on the front
of the plate is approximately equal to the free-stream
stagnation pressure, what is the average pressure on the
rear?

P7.54 A chimney at sea level is 2 m in diameter and 40 m high.
When it is subjected to 50 mi/h storm winds, what is the
estimated wind-induced bending moment about the bot-
tom of the chimney?

P7.55 A ship tows a submerged cylinder, which is 1.5 m in di-
ameter and 22 m long, at 5 m/s in fresh water at 20°C. Es-
timate the towing power, in kW, required if the cylinder is
(a) parallel and (b) normal to the tow direction.

P7.56 A delivery vehicle carries a long sign on top, as in Fig.
P7.56. If the sign is very thin and the vehicle moves at 55
mi/h, estimate the force on the sign (a) with no crosswind
and (b) with a 10 mi/h crosswind.

how fast can Joe ride into the head wind? (c) Why is the
result not simply 10 � 5.0 � 5.0 m/s, as one might first
suspect?

P7.60 A fishnet consists of 1-mm-diameter strings overlapped
and knotted to form 1- by 1-cm squares. Estimate the drag
of 1 m2 of such a net when towed normal to its plane at 3
m/s in 20°C seawater. What horsepower is required to tow
400 ft2 of this net?

P7.61 A filter may be idealized as an array of cylindrical fibers
normal to the flow, as in Fig. P7.61. Assuming that the
fibers are uniformly distributed and have drag coeffi-
cients given by Fig. 7.16a, derive an approximate ex-
pression for the pressure drop !p through a filter of thick-
ness L.
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P7.57 The main cross-cable between towers of a coastal suspen-
sion bridge is 60 cm in diameter and 90 m long. Estimate
the total drag force on this cable in crosswinds of 50 mi/h.
Are these laminar-flow conditions?

P7.58 A long cylinder of rectangular cross section, 5 cm high
and 30 cm long, is immersed in water at 20°C flowing
at 12 m/s parallel to the long side of the rectangle. Es-
timate the drag force on the cylinder, per unit length, if
the rectangle (a) has a flat face or (b) has a rounded
nose.

P7.59 Joe can pedal his bike at 10 m/s on a straight level road
with no wind. The rolling resistance of his bike is 0.80
N � s/m, i.e., 0.80 N of force per m/s of speed. The drag
area (CDA) of Joe and his bike is 0.422 m2. Joe’s mass
is 80 kg and that of the bike is 15 kg. He now encoun-
ters a head wind of 5.0 m/s. (a) Develop an equation for
the speed at which Joe can pedal into the wind. [Hint: A
cubic equation for V will result.] (b) Solve for V, i.e.,

60 cm

8 m

Phil's Pizza: 555-5748

P7.56 
P7.62 A sea-level smokestack is 52 m high and has a square cross

section. Its supports can withstand a maximum side force
of 90 kN. If the stack is to survive 90-mi/h hurricane winds,
what is its maximum possible width?

P7.63 The cross section of a cylinder is shown in Fig. P7.63. As-
sume that on the front surface the velocity is given by po-
tential theory (Sec. 8.4), V � 2U� sin 	, from which the
surface pressure is computed by Bernoulli’s equation. In

R

Separated-flow wakeθ

V = 2 U∞ sin  θ

p∞ 
, U∞

P7.63 

Filter section

U

p + ∆ p
U
p

Array of
cylinders
(fibers)

P7.61 



the separated flow on the rear, the pressure is assumed
equal to its value at 	 � 90°. Compute the theoretical drag
coefficient and compare with Table 7.2.

P7.64 A parachutist jumps from a plane, using an 8.5-m-
diameter chute in the standard atmosphere. The total mass
of the chutist and the chute is 90 kg. Assuming an open
chute and quasi-steady motion, estimate the time to fall
from 2000- to 1000-m altitude.

P7.65 The drag of a sphere at very low Reynolds numbers 
ReD � 1 was given analytically by G. G. Stokes in 1851:
F � 3 
VD [2, pp. 175–178]. This formula is an exam-
ple of Stokes’ law of creeping motion, where inertia is neg-
ligible. Show that the drag coefficient in this region is
CD � 24/ReD. A 1-mm-diameter sphere falls in 20°C 
glycerin at 2.5 mm/s. Is this a creeping motion? Compute
(a) the Reynolds number, (b) the drag, and (c) the specific
gravity of the sphere.

P7.66 A sphere of density �s and diameter D is dropped from
rest in a fluid of density � and viscosity 
. Assuming a
constant drag coefficient Cd 0

, derive a differential equa-
tion for the fall velocity V(t) and show that the solution
is

V � � �
1/2

tanh Ct

C � � �
1/2

where S � �s /� is the specific gravity of the sphere mate-
rial.

P7.67 Apply the theory of Prob. 7.66 to a steel sphere of diam-
eter 2 cm, dropped from rest in water at 20°C. Estimate
the time required for the sphere to reach 99 percent of its
terminal (zero-acceleration) velocity.

P7.68 A baseball weighs 145 g and is 7.35 cm in diameter. It is
dropped from rest from a 35-m-high tower at approxi-
mately sea level. Assuming a laminar-flow drag coeffi-
cient, estimate (a) its terminal velocity and (b) whether it
will reach 99 percent of its terminal velocity before it hits
the ground.

P7.69 Two baseballs from Prob. 7.68 are connected to a rod 7
mm in diameter and 56 cm long, as in Fig. P7.69. What
power, in W, is required to keep the system spinning at
400 r/min? Include the drag of the rod, and assume sea-
level standard air.

P7.70 A baseball from Prob. 7.68 is batted upward during a game
at an angle of 45° and an initial velocity of 98 mi/h. Ne-
glect spin and lift. Estimate the horizontal distance trav-
eled, (a) neglecting drag and (b) accounting for drag in a
numerical (computer) solution with a transition Reynolds
number ReD,crit � 2.5 E5.

3gCd 0
(S � 1)

��
4S2D

4gD(S � 1)
��

3Cd 0
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P7.71 A football weighs 0.91 lbf and approximates an ellipsoid
6 in in diameter and 12 in long (Table 7.3). It is thrown
upward at a 45° angle with an initial velocity of 80 ft/s.
Neglect spin and lift. Assuming turbulent flow, estimate
the horizontal distance traveled, (a) neglecting drag and
(b) accounting for drag with a numerical (computer)
model.

P7.72 A settling tank for a municipal water supply is 2.5 m deep,
and 20°C water flows through continuously at 35 cm/s.
Estimate the minimum length of the tank which will 
ensure that all sediment (SG � 2.55) will fall to the bot-
tom for particle diameters greater than (a) 1 mm and 
(b) 100 
m.

P7.73 A balloon is 4 m in diameter and contains helium at 125
kPa and 15°C. Balloon material and payload weigh 200
N, not including the helium. Estimate (a) the terminal as-
cent velocity in sea-level standard air, (b) the final stan-
dard altitude (neglecting winds) at which the balloon will
come to rest, and (c) the minimum diameter (�4 m) for
which the balloon will just barely begin to rise in sea-level
standard air.

P7.74 If D � 4 m in Prob. 7.73 and the helium remains at
15°C and 125 kPa, estimate the time required for the
balloon to rise through the standard atmosphere from
sea level to its equilibrium altitude, which is approxi-
mately 4000 m.

P7.75 The helium-filled balloon in Fig. P7.75 is tethered at 20°C
and 1 atm with a string of negligible weight and drag. The
diameter is 50 cm, and the balloon material weighs 0.2 N,

28 cm

Ω

Baseball 28 cm

Baseball

P7.69 

D = 50 cm

θU

P7.75 
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not including the helium. The helium pressure is 120 kPa.
Estimate the tilt angle 	 if the airstream velocity U is (a)
5 m/s or (b) 20 m/s.

P7.76 Extend Prob. 7.75 to make a smooth plot of tilt angle 	
versus stream velocity U in the range  1 � U � 12 mi/h.
(A spreadsheet is recommended for this task.) Comment
on the effectiveness of this system as an air-velocity in-
strument.

P7.77 Modify Prob. 7.75 as follows: Let the fluid be water at
20°C, and let the 50-cm-diameter sphere be solid cork
(SG � 0.16). Estimate the tilt angle 	 if the water veloc-
ity U is 3 m/s.

P7.78 Apply Prob. 7.61 to a filter consisting of 300-
m-
diameter fibers packed 250 per square centimeter in the
plane of Fig. P7.61. For air at 20°C and 1 atm flowing at
1.5 m/s, estimate the pressure drop if the filter is 5 cm
thick.

P7.79 Assume that a radioactive dust particle approximates a
sphere of density 2400 kg/m3. How long, in days, will 
it take such a particle to settle to sea level from an alti-
tude of 12 km if the particle diameter is (a) 1 
m or 
(b) 20 
m?

P7.80 A heavy sphere attached to a string should hang at an
angle 	 when immersed in a stream of velocity U, as in
Fig. P7.80. Derive an expression for 	 as a function of
the sphere and flow properties. What is 	 if the sphere
is steel (SG � 7.86) of diameter 3 cm and the flow is
sea-level standard air at U � 40 m/s? Neglect the string
drag.

1.2 ft2 falling feet first [12, p. 313]. What are the mini-
mum and maximum terminal speeds that can be achieved
by a skydiver at 5000-ft standard altitude?

P7.83 A high-speed car has a drag coefficient of 0.3 and a frontal
area of 1 m2. A parachute is to be used to slow this car
from 80 to 40 m/s in 8 s. What should the chute diameter
be? What distance will be traveled during this decelera-
tion? Take m � 2000 kg.

P7.84 A Ping-Pong ball weighs 2.6 g and has a diameter of 3.8
cm. It can be supported by an air jet from a vacuum cleaner
outlet, as in Fig. P7.84. For sea-level standard air, what jet
velocity is required?
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P7.81 A typical U.S. Army parachute has a projected diame-
ter of 28 ft. For a payload mass of 80 kg, (a) what ter-
minal velocity will result at 1000-m standard altitude?
For the same velocity and net payload, what size drag-
producing “chute” is required if one uses a square flat
plate held (b) vertically and (c) horizontally? (Neglect
the fact that flat shapes are not dynamically stable in
free fall.)

P7.82 The average skydiver with parachute unopened weighs 175
lbf and has a drag area CD A � 9 ft2 spread-eagled and 

*P7.85 An aluminum cylinder (SG � 2.7) slides concentrically
down a taut 1-mm-diameter wire as shown in Fig. P7.85.
Its length L � 8 cm, and its radius R � 1 cm. A 2-mm-di-
ameter hole down the cylinder center is lubricated by SAE
30 oil at 20°C. Estimate the terminal fall velocity V of the
cylinder if ambient air drag is (a) neglected and (b) in-
cluded. Assume air at 1 atm and 20°C.

θ

D, ρ
s

U

P7.80 

P7.84

P7.85

Oil film

V

R

L



P7.86 Hoerner [Ref. 12, pp. 3–25] states that the drag coefficient
of a flag of 2�1 aspect ratio is 0.11 based on planform
area. The University of Rhode Island has an aluminum
flagpole 25 m high and 14 cm in diameter. It flies equal-
sized national and state flags together. If the fracture stress
of aluminum is 210 MPa, what is the maximum flag size
that can be used yet avoids breaking the flagpole in hur-
ricane (75 mi/h) winds?

P7.87 A tractor-trailer truck has a drag-area CD A � 8 m2 bare
and 6.7 m2 with an aerodynamic deflector (Fig. 7.18b). Its
rolling resistance is 50 N for each mile per hour of speed.
Calculate the total horsepower required at sea level with
and without the deflector if the truck moves at (a) 55 mi/h
and (b) 75 mi/h.

P7.88 A pickup truck has a clean drag-area CD A of 35 ft2. Es-
timate the horsepower required to drive the truck at 55
mi/h (a) clean and (b) with the 3- by 6-ft sign in Fig.
P7.88 installed if the rolling resistance is 150 lbf at sea
level.

torque of 0.004 N � m. Making simplifying assumptions
to average out the time-varying geometry, estimate and
plot the variation of anemometer rotation rate $ with wind
velocity U in the range 0 � U � 25 m/s for sea-level stan-
dard air.

Problems 485

P7.89 A water tower is approximated by a 15-m-diameter sphere
mounted on a 1-m-diameter rod 20 m long. Estimate the
bending moment at the root of the rod due to aerodynamic
forces during hurricane winds of 40 m/s.

P7.90 In the great hurricane of 1938, winds of 85 mi/h blew over
a boxcar in Providence, Rhode Island. The boxcar was 10
ft high, 40 ft long, and 6 ft wide, with a 3-ft clearance
above tracks 4.8 ft apart. What wind speed would topple
a boxcar weighing 40,000 lbf?

*P7.91 A cup anemometer uses two 5-cm-diameter hollow hemi-
spheres connected to 15-cm rods, as in Fig. P7.91. Rod
drag is negligible, and the central bearing has a retarding

P7.92 A 1500-kg automobile uses its drag area CD A � 0.4 m2,
plus brakes and a parachute, to slow down from 50 m/s.
Its brakes apply 5000 N of resistance. Assume sea-level
standard air. If the automobile must stop in 8 s, what di-
ameter parachute is appropriate?

P7.93 A hot-film probe is mounted on a cone-and-rod system in
a sea-level airstream of 45 m/s, as in Fig. P7.93. Estimate
the maximum cone vertex angle allowable if the flow-in-
duced bending moment at the root of the rod is not to ex-
ceed 30 N � cm.
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P7.94 A rotary mixer consists of two 1-m-long half-tubes rotat-
ing around a central arm, as in Fig. P7.94. Using the drag
from Table 7.2, derive an expression for the torque T re-
quired to drive the mixer at angular velocity $ in a fluid



of density �. Suppose that the fluid is water at 20°C and
the maximum driving power available is 20 kW. What is
the maximum rotation speed $ r/min?

mobile of mass 1500 kg and frontal area 2 m2, the fol-
lowing velocity-versus-time data are obtained during a
coastdown:

t, s 0 10 20 30 40

V, m/s 27.0 24.2 21.8 19.7 17.9

Estimate (a) the rolling resistance and (b) the drag coef-
ficient. This problem is well suited for digital-computer
analysis but can be done by hand also.

*P7.98 A buoyant ball of specific gravity SG � 1 dropped into
water at inlet velocity V0 will penetrate a distance h and
then pop out again, as in Fig. P7.98. Make a dynamic
analysis of this problem, assuming a constant drag coef-
ficient, and derive an expression for h as a function of
the system properties. How far will a 5-cm-diameter ball
with SG � 0.5 and CD � 0.47 penetrate if it enters at 
10 m/s?
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P7.99 Two steel balls (SG � 7.86) are connected by a thin hinged
rod of negligible weight and drag, as in Fig. P7.99. A stop
prevents the rod from rotating counterclockwise. Estimate
the sea-level air velocity U for which the rod will first be-
gin to rotate clockwise.
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P7.95 An airplane weighing 12 kN, with a drag-area CD A �
5 m2, lands at sea level at 55 m/s and deploys a drag para-
chute 3 m in diameter. No other brakes are applied. 
(a) How long will it take the plane to slow down to 
30 m/s? (b) How far will it have traveled in that time?

*P7.96 A Savonius rotor (Fig. 6.29b) can be approximated by
the two open half-tubes in Fig. P7.96 mounted on a cen-
tral axis. If the drag of each tube is similar to that in
Table 7.2, derive an approximate formula for the rota-
tion rate $ as a function of U, D, L, and the fluid prop-
erties (�, 
).

Axis

U

L

L

D

D

Ω
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P7.97 A simple measurement of automobile drag can be found
by an unpowered coastdown on a level road with no
wind. Assume constant rolling resistance. For an auto-



P7.100 In creeping motion or Stokes’ flow at velocity U past a
sphere of diameter D, density (fluid inertia) is unim-
portant and the drag force is  F � 3 
UD. This formula
is valid if ReD � 1.0 (see Fig. 7.16b). (a) Verify that
Stokes’ formula is equivalent to CD � 24/ReD. (b) De-
termine the largest diameter raindrop whose terminal fall
velocity follows Stokes’ formula in sea-level standard
air.

P7.101 Icebergs can be driven at substantial speeds by the wind.
Let the iceberg be idealized as a large, flat cylinder,
D % L, with one-eighth of its bulk exposed, as in Fig.
P7.101. Let the seawater be at rest. If the upper and
lower drag forces depend upon relative velocities be-
tween the iceberg and the fluid, derive an approximate
expression for the steady iceberg speed V when driven
by wind velocity U.
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P7.102 Sand particles (SG � 2.7), approximately spherical with
diameters from 100 to 250 
m, are introduced into an up-
ward-flowing stream of water at 20°C. What is the mini-
mum water velocity which will carry all the sand particles
upward?

P7.103 When immersed in a uniform stream V, a heavy rod
hinged at A will hang at Pode’s angle 	, after an analysis
by L. Pode in 1951 (Fig. P7.103). Assume that the cylin-
der has normal drag coefficient CDN and tangential coef-
ficient CDT which relate the drag forces to VN and VT, re-
spectively. Derive an expression for Pode’s angle as a
function of the flow and rod parameters. Find 	 for a steel
rod, L � 40 cm, D � 1 cm, hanging in sea-level air at
V � 35 m/s.

P7.104 Suppose that the body in Fig. P7.103 is a thin plate
weighing 0.6 N, of length L � 20 cm and width b � 4
cm into the paper. For sea-level standard air, plot Pode’s
angle 	 versus velocity V in the range 0 � V � 40 m/s.
Would this device make a good air-velocity meter
(anemometer)?

P7.105 A ship 50 m long, with a wetted area of 800 m2, has the
hull shape tested in Fig. 7.19. There are no bow or stern
bulbs. The total propulsive power available is 1 MW. For
seawater at 20°C, plot the ship’s velocity V kn versus
power P for 0 � P � 1 MW. What is the most efficient
setting?

P7.106 A smooth steel 1-cm-diameter sphere (W � 0.04 N) is
fired vertically at sea level at the initial supersonic veloc-
ity V0 � 1000 m/s. Its drag coefficient is given by Fig.
7.20. Assuming that the speed of sound is constant at a �
343 m/s, compute the maximum altitude of the projectile
(a) by a simple analytical estimate and (b) by a digital-
computer program.

P7.107 Repeat Prob. 7.106 if the body is a 9-mm steel bullet (W �
0.07 N) which approximates the “pointed body of revolu-
tion” in Fig. 7.20.

P7.108 The data in Fig. P7.108 are for the lift and drag of a spin-
ning sphere from Ref. 12, pp. 7–20. Suppose that a tennis
ball (W � 0.56 N, D � 6.35 cm) is struck at sea level with
initial velocity V0 � 30 m/s and “topspin” (front of the ball
rotating downward) of 120 r/s. If the initial height of the
ball is 1.5 m, estimate the horizontal distance traveled be-
fore it strikes the ground.

P7.109 Repeat Prob. 7.108 if the ball is struck with “underspin”
(front of the ball rotating upward).

P7.110 A baseball pitcher throws a curveball with an initial ve-
locity of 65 mi/h and a spin of 6500 r/min about a verti-
cal axis. A baseball weighs 0.32 lbf and has a diameter of
2.9 in. Using the data of Fig. P7.108 for turbulent flow,
estimate how far such a curveball will have deviated from
its straight-line path when it reaches home plate 60.5 ft
away.

*P7.111 A table tennis ball has a mass of 2.6 g and a diameter
of 3.81 cm. It is struck horizontally at an initial veloc-
ity of 20 m/s while it is 50 cm above the table, as in
Fig. P7.111. For sea-level air, what spin, in r/min, will
cause the ball to strike the opposite edge of the table,
4 m away? Make an analytical estimate, using Fig.
P7.108, and account for the fact that the ball deceler-
ates during flight.
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P7.112 Repeat Prob. 7.111 by making a detailed digital-computer
solution for the flight path of the ball. Use Fig. P7.108 for
lift and drag.

P7.113 An automobile has a mass of 1000 kg and a drag-area
CDA � 0.7 m2. The rolling resistance of 70 N is approxi-
mately constant. The car is coasting without brakes at 90
km/h as it begins to climb a hill of 10 percent grade
(slope � tan�1 0.1 � 5.71°). How far up the hill will the
car come to a stop?

*P7.114 Suppose that the car in Prob. 7.113 is placed at the top of
the 10 percent grade hill and released from rest to coast
down without brakes. What will be its speed, in km/h, af-
ter dropping a vertical distance of 20 m?

P7.115 An airplane weighs 180 kN and has a wing area of 160
m2 and a mean chord of 4 m. The airfoil properties are
given by Fig. 7.25. If the airplane cruises at 250 mi/h at
3000-m standard altitude, what propulsive power is re-
quired to overcome wing drag?

P7.116 The airplane of Prob. 7.115 is designed to land at V0 �
1.2Vstall, using a split flap set at 60°. What is the proper
landing speed in mi/h? What power is required for takeoff
at the same speed?

P7.117 Suppose that the airplane of Prob. 7.115 takes off at sea
level without benefit of flaps, with CL constant so that the
takeoff speed is 100 mi/h. Estimate the takeoff distance if
the thrust is 10 kN. How much thrust is needed to make
the takeoff distance 1250 m?

*P7.118 Suppose that the airplane of Prob. 7.115 is fitted with all
the best high-lift devices of Fig. 7.28. What is its mini-
mum stall speed in mi/h? Estimate the stopping distance
if the plane lands at V0 � 1.25Vstall with constant CL � 3.0
and CD � 0.2 and the braking force is 20 percent of the
weight on the wheels.

P7.119 An airplane has a mass of 5000 kg, a maximum thrust of
7000 N, and a rectangular wing with aspect ratio 6.0. It
takes off at sea level with a 60° split flap whose two-
dimensional properties are shown in Fig. 7.25. Assume 
all lift and all drag are due to the wing. What is the 
proper wing size if the takeoff distance is to be 1 km?

P7.120 Show that if Eqs. (7.70) and (7.71) are valid, the maxi-
mum lift-to-drag ratio occurs when CD � 2CD�. What are
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(L/D)max and � for a symmetric wing when AR � 5 and
CD� � 0.009?

P7.121 In gliding (unpowered) flight, the lift and drag are in equi-
librium with the weight. Show that if there is no wind, the
aircraft sinks at an angle

tan 	 � �
d
l
r
i
a
ft
g

�

For a sailplane of mass 200 kg, wing area 12 m2, and as-
pect ratio 11, with an NACA 0009 airfoil, estimate (a) the
stall speed, (b) the minimum gliding angle, and (c) the
maximum distance it can glide in still air when it is 1200
m above level ground.

P7.122 A boat of mass 2500 kg has two hydrofoils, each of chord
30 cm and span 1.5 m, with CL,max � 1.2 and CD� � 0.08.
Its engine can deliver 130 kW to the water. For seawater
at 20°C, estimate (a) the minimum speed for which the

foils support the boat and (b) the maximum speed attain-
able.

P7.123 In prewar days there was a controversy, perhaps apocryphal,
about whether the bumblebee has a legitimate aerodynamic
right to fly. The average bumblebee (Bombus terrestris)
weighs 0.88 g, with a wing span of 1.73 cm and a wing area
of 1.26 cm2. It can indeed fly at 10 m/s. Using fixed-wing
theory, what is the lift coefficient of the bee at this speed? Is
this reasonable for typical airfoils?

*P7.124 The bumblebee can hover at zero speed by flapping its
wings. Using the data of Prob. 7.123, devise a theory for
flapping wings where the downstroke approximates a short
flat plate normal to the flow (Table 7.3) and the upstroke
is feathered at nearly zero drag. How many flaps per sec-
ond of such a model wing are needed to support the bee’s
weight? (Actual measurements of bees show a flapping
rate of 194 Hz.)
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Word Problems

W7.1 How do you recognize a boundary layer? Cite some phys-
ical properties and some measurements which reveal ap-
propriate characteristics.

W7.2 In Chap. 6 the Reynolds number for transition to turbu-
lence in pipe flow was about Retr � 2300, whereas in flat-
plate flow Retr � 1 E6, nearly three orders of magnitude
higher. What accounts for the difference?

W7.3 Without writing any equations, give a verbal description of
boundary-layer displacement thickness.

W7.4 Describe, in words only, the basic ideas behind the “bound-
ary-layer approximations.”

W7.5 What is an adverse pressure gradient? Give three examples
of flow regimes where such gradients occur.

W7.6 What is a favorable pressure gradient? Give three exam-
ples of flow regimes where such gradients occur.

W7.7 The drag of an airfoil (Fig. 7.12) increases considerably if
you turn the sharp edge around 180° to face the stream.
Can you explain this?

W7.8 In Table 7.3, the drag coefficient of a spruce tree decreases
sharply with wind velocity. Can you explain this?

W7.9 Thrust is required to propel an airplane at a finite forward
velocity. Does this imply an energy loss to the system? Ex-
plain the concepts of thrust and drag in terms of the first
law of thermodynamics.

W7.10 How does the concept of drafting, in automobile and bi-
cycle racing, apply to the material studied in this chapter?

W7.11 The circular cylinder of Fig. 7.13 is doubly symmetric and
therefore should have no lift. Yet a lift sensor would defi-
nitely reveal a finite root-mean-square value of lift. Can
you explain this behavior?

W7.12 Explain in words why a thrown spinning ball moves in a
curved trajectory. Give some physical reasons why a side
force is developed in addition to the drag.

Fundamentals of Engineering Exam Problems

FE7.1 A smooth 12-cm-diameter sphere is immersed in a stream
of 20°C water moving at 6 m/s. The appropriate Reynolds
number of this sphere is approximately
(a) 2.3 E5, (b) 7.2 E5, (c) 2.3 E6, (d) 7.2 E6, (e) 7.2 E7

FE7.2 If, in Prob. FE7.1, the drag coefficient based upon frontal
area is 0.5, what is the drag force on the sphere?
(a) 17 N, (b) 51 N, (c) 102 N, (d) 130 N, (e) 203 N

FE7.3 If, in Prob. FE7.1, the drag coefficient based upon frontal
area is 0.5, at what terminal velocity will an aluminum
sphere (SG � 2.7) fall in still water?
(a) 2.3 m/s, (b) 2.9 m/s, (c) 4.6 m/s, (d) 6.5 m/s, (e) 8.2 m/s

FE7.4 For flow of sea-level standard air at 4 m/s parallel to a thin
flat plate, estimate the boundary-layer thickness at x � 60
cm from the leading edge:
(a) 1.0 mm, (b) 2.6 mm, (c) 5.3 mm, (d) 7.5 mm,
(e) 20.2 mm

FE7.5 In Prob. FE7.4, for the same flow conditions, what is the
wall shear stress at x � 60 cm from the leading edge?
(a) 0.053 Pa, (b) 0.11 Pa, (c) 0.16 Pa, (d) 0.32 Pa,
(e) 0.64 Pa

FE7.6 Wind at 20°C and 1 atm blows at 75 km/h past a flagpole
18 m high and 20 cm in diameter. The drag coefficient,



based upon frontal area, is 1.15. Estimate the wind-
induced bending moment at the base of the pole.
(a) 9.7 kN � m, (b) 15.2 kN � m, (c) 19.4 kN � m,
(d) 30.5 kN � m, (e) 61.0 kN � m

FE7.7 Consider wind at 20°C and 1 atm blowing past a chimney 30
m high and 80 cm in diameter. If the chimney may fracture
at a base bending moment of  486 kN � m, and its drag coef-
ficient based upon frontal area is 0.5, what is the approximate
maximum allowable wind velocity to avoid fracture?
(a) 50 mi/h, (b) 75 mi/h, (c) 100 mi/h, (d) 125 mi/h,
(e) 150 mi/h

FE7.8 A dust particle of density 2600 kg/m3, small enough to
satisfy Stokes’ drag law, settles at 1.5 mm/s in air at 20°C
and 1 atm. What is its approximate diameter?
(a) 1.8 
m, (b) 2.9 
m, (c) 4.4 
m, (d) 16.8 
m,
(e) 234 
m

FE7.9 An airplane has a mass of 19,550 kg, a wing span of 20
m, and an average wing chord of 3 m. When flying in air
of density 0.5 kg/m3, its engines provide a thrust of 12 kN
against an overall drag coefficient of 0.025. What is its
approximate velocity?
(a) 250 mi/h, (b) 300 mi/h, (c) 350 mi/h, (d) 400 mi/h,
(e) 450 mi/h

FE7.10 For the flight conditions of the airplane in Prob. FE7.9
above, what is its approximate lift coefficient?
(a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5
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Comprehensive Problems

C7.1 Jane wants to estimate the drag coefficient of herself on her
bicycle. She measures the projected frontal area to be 0.40
m2 and the rolling resistance to be 0.80 N � s/m. The mass
of the bike is 15 kg, while the mass of Jane is 80 kg. Jane
coasts down a long hill which has a constant 4° slope. (See
Fig. C7.1.) She reaches a terminal (steady state) speed of
14 m/s down the hill. Estimate the aerodynamic drag coef-
ficient CD of the rider and bicycle combination.

C7.2 Air at 20°C and 1 atm flows at Vavg � 5 m/s between long,
smooth parallel heat-exchanger plates 10 cm apart, as in Fig.
C7.2. It is proposed to add a number of widely spaced 1-cm-
long interrupter plates to increase the heat transfer, as shown.
Although the flow in the channel is turbulent, the boundary
layers over the interrupter plates are essentially laminar. As-
sume all plates are 1 m wide into the paper. Find (a) the pres-
sure drop in Pa/m without the small plates present. Then find
(b) the number of small plates per meter of channel length
which will cause the pressure drop to rise to 10.0 Pa/m.

C7.3 A new pizza store is planning to open. They will, of course,
offer free delivery, and therefore need a small delivery car
with a large sign attached. The sign (a flat plate) is 1.5 ft

&

V

C7.1

high and 5 ft long. The boss (having no feel for fluid me-
chanics) mounts the sign bluntly facing the wind. One of his
drivers is taking fluid mechanics and tells his boss he can
save lots of money by mounting the sign parallel to the wind.
(See Fig. C7.3.) (a) Calculate the drag (in lbf) on the sign
alone at 40 mi/h (58.7 ft/s) in both orientations. (b) Suppose
the car without any sign has a drag coefficient of 0.4 and a
frontal area of 40 ft2. For V � 40 mi/h, calculate the total
drag of the car-sign combination for both orientations. (c) If
the car has a rolling resistance of 40 lbf at 40 mi/h, calcu-
late the horsepower required by the engine to drive the car
at 40 mi/h in both orientations. (d) Finally, if the engine can
deliver 10 hp for 1 h on a gallon of gasoline, calculate the
fuel efficiency in mi/gal for both orientations at 40 mi/h.

C7.2

Interrupter plates
L � 1 cmU � 5 m/s



Design Project

D7.1 It is desired to design a cup anemometer for wind speed,
similar to Fig. P7.91, with a more sophisticated approach
than the “average-torque” method of Prob. 7.91. The design
should achieve an approximately linear relation between
wind velocity and rotation rate in the range 20 � U � 40
mi/h, and the anemometer should rotate at about 6 r/s at
U � 30 mi/h. All specifications—cup diameter D, rod
length L, rod diameter d, the bearing type, and all materi-

als—are to be selected through your analysis. Make suit-
able assumptions about the instantaneous drag of the cups
and rods at any given angle 	(t) of the system. Compute
the instantaneous torque T(t), and find and integrate the in-
stantaneous angular acceleration of the device. Develop a
complete theory for rotation rate versus wind speed in the
range 0 � U � 50 mi/h. Try to include actual commercial
bearing-friction properties.
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C7.3

Air

Cup shape

L
	

m

C7.4

C7.4 Consider a pendulum with an unusual bob shape: a hemi-
spherical cup of diameter D whose axis is in the plane of
oscillation, as in Fig. C7.4. Neglect the mass and drag of
the rod L. (a) Set up the differential equation for the os-
cillation  	(t), including different cup drag (air density �)
in each direction, and  (b) nondimensionalize this equation.
(c) Determine the natural frequency of oscillation for small
	 � 1 rad. (d) For the special case L � 1 m, D � 10 cm,
m � 50 g, and air at 20°C and 1 atm, with 	(0) � 30°, find
(numerically) the time required for the oscillation ampli-
tude to drop to 1°.
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Cylindrical wave pattern produced in a ripple tank. When not modified by the no-slip condi-
tion at solid surfaces, waves are nearly inviscid and well represented by the potential theory of
this chapter. (Courtesy of Dr. E. R. Degginger/Color-Pic Inc.)
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8.1 Introduction and Review

Motivation. The basic partial differential equations of mass, momentum, and energy
were discussed in Chap. 4. A few solutions were then given for incompressible poten-
tial flow in Sec. 4.10 and for incompressible viscous flow in Sec. 4.11. The viscous so-
lutions were limited to simple geometries and unidirectional flows, where the difficult
nonlinear convective terms were neglected. The potential flows were not limited by such
nonlinear terms. Then, in Chap. 7, we found an approximation: patching boundary-layer
flows onto an outer inviscid flow pattern. For more complicated viscous flows, we found
no theory or solutions, just experimental data.

The purposes of the present chapter are (1) to explore more examples of potential
theory and (2) to indicate some flows which can be approximated by computational
fluid dynamics (CFD). The combination of these two gives us a good picture of in-
compressible-flow theory and its relation to experiment. One of the most important ap-
plications of potential-flow theory is to aerodynamics and marine hydrodynamics. First,
however, we will review and extend the concepts of Sec. 4.10.

Figure 8.1 reminds us of the problems to be faced. A free stream approaches two closely
spaced bodies, creating an “internal’’ flow between them and “external’’ flows above
and below them. The fronts of the bodies are regions of favorable gradient (decreas-
ing pressure along the surface), and the boundary layers will be attached and thin: In-
viscid theory will give excellent results for the outer flow if Re � 104. For the inter-
nal flow between bodies, the boundary layers will grow and eventually meet, and the
inviscid core vanishes. Inviscid theory works well in a “short’’ duct L/D � 10, such as
the nozzle of a wind tunnel. For longer ducts we must estimate boundary-layer growth
and be cautious about using inviscid theory.
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For the external flows above and below the bodies in Fig. 8.1, inviscid theory should
work well for the outer flows, until the surface pressure gradient becomes adverse (in-
creasing pressure) and the boundary layer separates or stalls. After the separation point,
boundary-layer theory becomes inaccurate, and the outer flow streamlines are deflected
and have a strong interaction with the viscous near-wall regions. The theoretical analy-
sis of separated-flow regions is an active research area at present.

Recall from Sec. 4.9 that if viscous effects are neglected, low-speed flows are irrota-
tional, � � V � 0, and the velocity potential � exists, such that

V � �� or u � � � w � (8.1)

The continuity equation (4.73), � � V � 0, reduces to Laplace’s equation for �:

�2� � � � � 0 (8.2)

and the momentum equation (4.74) reduces to Bernoulli’s equation:

� � V2 � gz � const where V � ���� (8.3)

Typical boundary conditions are known free-stream conditions

Outer boundaries: Known , , (8.4)

and no velocity normal to the boundary at the body surface:

Solid surfaces: � 0 where n is perpendicular to body (8.5) 

Unlike the no-slip condition in viscous flow, here there is no condition on the tangen-
tial surface velocity Vs � ∂�/∂s, where s is the coordinate along the surface. This ve-
locity is determined as part of the solution to the problem.
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Fig. 8.1 Patching viscous- and in-
viscid-flow regions. Potential the-
ory in this chapter does not apply
to the boundary-layer regions

496 Chapter 8 Potential Flow and Computational Fluid Dynamics

Freestream Inviscid internal core

Inviscid external flow

Inviscid external flow

Boundary layer

Boundary layer

Boundary layer

Boundary layer
Fully

viscous
flow

Separation

Separation

Review of Velocity-Potential
Concepts



Review of Stream Function
Concepts

Occasionally the problem involves a free surface, for which the boundary pressure
is known and equal to pa, usually a constant. The Bernoulli equation (8.3) then sup-
plies a relation at the surface between V and the elevation z of the surface. For steady
flow, e.g.,

Free surface: V2 � ����2 � const � 2gzsurf (8.6) 

It should be clear to the reader that this use of Laplace’s equation, with known values
of the derivative of � along the boundaries, is much easier than a direct attack using
the fully viscous Navier-Stokes equations. The analysis of Laplace’s equation is very
well developed and is termed potential theory, with whole books written about the gen-
eral theory [1] and its application to fluid mechanics [2 to 4]. There are many analyt-
ical techniques, including superposition of elementary functions, conformal mapping,
numerical finite differences [5], numerical finite elements [6], numerical boundary el-
ements [7], and electric or mechanical analogs [8] now outdated. Having found 
�(x, y, z, t) from such an analysis, we then compute V by direct differentiation in Eq.
(8.1), after which we compute p from Eq. (8.3). The procedure is quite straightforward,
and many interesting albeit idealized results can be obtained.

Recall from Sec. 4.7 that if a flow is described by only two coordinates, the stream
function � also exists as an alternate approach. For plane incompressible flow in xy
coordinates, the correct form is

u � 	
∂
∂
�
y
	 � � � 	

∂
∂
�
x
	 (8.7) 

The condition of irrotationality reduces to Laplace’s equation for � also:

2
z � 0 � 	
∂
∂
�
x
	 � 	

∂
∂
u
y
	 � 	∂

∂
x
	 ��	

∂
∂
�
x
	� � 	∂

∂
y
	 �	

∂
∂
�
y
	�

or 	
∂
∂

2

x
�
2	 � 	

∂
∂

2

y
�
2	 � 0 (8.8) 

The boundary conditions again are known velocity in the stream and no flow through
any solid surface:

Free stream: Known 	
∂
∂
�
x
	, 	

∂
∂
�
y
	 (8.9a)

Solid surface: �body � const (8.9b)

Equation (8.9b) is particularly interesting because any line of constant � in a flow
can therefore be interpreted as a body shape and may lead to interesting applica-
tions.

For the applications in this chapter, we may compute either � or � or both, and the
solution will be an orthogonal flow net as in Fig. 8.2. Once found, either set of lines
may be considered the � lines, and the other set will be the � lines. Both sets of lines
are laplacian and could be useful.
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Fig. 8.2 Streamlines and potential
lines are orthogonal and may re-
verse roles if results are useful: (a)
typical inviscid-flow pattern; (b)
same as (a) with roles reversed.

Many solutions in this chapter are conveniently expressed in polar coordinates (r, �).
Both the velocity components and the differential relations for � and � are then changed,
as follows:

�r � � �� � � �
(8.10)

Laplace’s equation takes the form

	∂
∂
r
	 �r 	

∂
∂
�
r
	� � 	

∂
∂

2

�
�
2	 � 0 (8.11) 

Exactly the same equation holds for the polar-coordinate form of �(r, �).
An intriguing facet of potential flow with no free surface is that the governing equa-

tions (8.2) and (8.8) contain no parameters, nor do the boundary conditions. Therefore
the solutions are purely geometric, depending only upon the body shape, the free-stream
orientation, and—surprisingly—the position of the rear stagnation point.1 There is no
Reynolds, Froude, or Mach number to complicate the dynamic similarity. Inviscid flows
are kinematically similar without additional parameters—recall Fig. 5.6a.

Recall from Sec. 4.10 that we defined three elementary potential flows which are quite
useful: (1) uniform stream in the x direction, (2) line source or sink at the origin, and
(3) line vortex at the origin. (Recall Fig. 4.12 for these geometries.) Let us review these
special cases here:

Uniform stream iU: � � Uy � � Ux (8.12a)

Line source or sink: � � m� � � m ln r (8.12b)

Line vortex: � � �K ln r � � K� (8.12c) 
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1 The rear stagnation condition establishes the net amount of “circulation’’ about the body, giving rise
to a lift force. Otherwise the solution could not be unique. See Sec. 8.4.
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Circulation

The source “strength’’ m and the vortex “strength’’ K have the same dimensions, namely,
velocity times length, or {L2/T}.

If the uniform stream is written in plane polar coordinates, it becomes

Uniform stream iU: � � Ur sin � � � Ur cos � (8.13) 

This makes it easier to superimpose, say, a stream and a source or vortex by using the
same coordinates. If the uniform stream is moving at angle � with respect to the x-
axis, i.e.,

u � U cos � � 	
∂
∂
�
y
	 � 	

∂
∂
�
x
	 � � U sin � � �	

∂
∂
�
x
	 � 	

∂
∂
�
y
	

then by integration we obtain the correct functions for flow at an angle:

� � U(y cos � � x sin �) � � U(x cos � � y sin �) (8.14) 

These expressions are useful in airfoil angle-of-attack problems (Sec. 8.7).

The line-vortex flow is irrotational everywhere except at the origin, where the vortic-
ity � � V is infinite. This means that a certain line integral called the fluid circulation
� does not vanish when taken around a vortex center.

With reference to Fig. 8.3, the circulation is defined as the counterclockwise line
integral, around a closed curve C, of arc length ds times the velocity component tan-
gent to the curve

� � �
C

V cos � ds � �0

C
V � ds � �0

C
(u dx � � dy � w dz) (8.15)

From the definition of �, V � ds � �� � ds � d� for an irrotational flow; hence nor-
mally � in an irrotational flow would equal the final value of � minus the initial value
of �. Since we start and end at the same point, we compute � � 0, but not for vortex
flow: With � � K� from Eq. (8.12c) there is a change in � of amount 2�K as we make
one complete circle:

Path enclosing a vortex: � � 2�K (8.16)
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Fig. 8.3 Definition of the fluid cir-
culation �.



Fig. 8.4 Intersections of elementary
streamlines can be joined to form a
combined streamline.

8.3 Superposition of Plane-
Flow Solutions

Graphical Method of
Superposition

Alternately the calculation can be made by defining a circular path of radius r around
the vortex center, from Eq. (8.15)

� � �0

C
�� ds � �2�

0
	
K
r
	 r d� � 2�K (8.17) 

In general, � denotes the net algebraic strength of all the vortex filaments contained
within the closed curve. In the next section we shall see that a region of finite circu-
lation within a flowing stream will be subjected to a lift force proportional to both U�

and �.
It is easy to show, by using Eq. (8.15), that a source or sink creates no circulation.

If there are no vortices present, the circulation will be zero for any path enclosing any
number of sources and sinks.

We can now form a variety of interesting potential flows by summing the velocity-
potential and stream functions of a uniform stream, source or sink, and vortex. Most
of the results are classic, of course, needing only a brief treatment here.

A simple means of accomplishing �tot � � �i graphically is to plot the individual
stream functions separately and then look at their intersections. The value of �tot at
each intersection is the sum of the individual values �i which cross there. Connecting
intersections with the same value of �tot creates the desired superimposed flow stream-
lines.

A simple example is shown in Fig. 8.4, summing two families of streamlines �a and
�b. The individual components are plotted separately, and four typical intersections are
shown. Dashed lines are then drawn through intersections representing the same sum
of �a � �b. These dashed lines are the desired solution. Often this graphical method
is a quick means of evaluating the proposed superposition before a full-blown numer-
ical plot routine is executed.
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Some Examples from Chap. 4 In Sec. 4.10 we discussed a number of superposition examples.

1. Source m at ( � a, 0) plus an equal sink at (�a, 0), Eq. (4.133), and Fig. 4.13:

� � �m tan�1 � � m ln (4.133)

The streamlines and potential lines are two families of orthogonal circles as
plotted in Fig. 4.13. They resemble a magnet with poles at (x, y) � (�a, 0).

2. Sink m plus a vortex K, both at the origin, Eq. (4.134), and Fig. 4.14:

� � m� � K ln r � � m ln r � K� (4.134) 

The streamlines are logarithmic spirals swirling into the origin, as in Fig. 4.14.
They resemble a tornado or a bathtub vortex.

3. Uniform stream iU� plus a source m at the origin, Eq. (4.135) and Fig. 4.15, the
Rankine half-body:

� � U�r sin � � m� � � U�r cos � � m ln r (4.135) 

If the origin contains a source, a plane half-body is formed with its nose to 
the left, as in Fig. 8.5a. If the origin is a sink, m � 0, the half-body nose is to
the right, as in Fig. 8.5c. In either case the stagnation point is at a position 
a � m/U� away from the origin.

(x � a)2 � y2

		
(x � a)2 � y2

1
	
2

2ay
		
x2 � y2 � a2
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Fig. 8.5 The Rankine half-body;
pattern (c) is not found in a real
fluid because of boundary-layer
separation: (a) uniform stream plus
a source equals a half-body; stagna-
tion point at x � �a � �m/U�; (b)
slight adverse gradient for s/a
greater than 3.0: no separation; (c)
uniform stream plus a sink equals
the rear of a half-body; stagnation
point at x � a � m/U�; (d ) strong
adverse gradient for s/a � �3.0:
separation.



Flow Past a Vortex

Although the inviscid-flow patterns, Fig. 8.5a and c, are mirror images, their viscous
(boundary-layer) behavior is different. The body shape and the velocity along the sur-
face are repeated here from Sec. 4.10:

V2 � U2
��1 � � cos �� along r � (8.18)

The computed surface velocities are plotted along the half-body contours in Fig. 8.5b
and d as a function of arc length s/a measured from the stagnation point. These plots
are also mirror images. However, if the nose is in front, Fig. 8.5b, the pressure gradi-
ent there is favorable (decreasing pressure along the surface). In contrast, the pressure
gradient is adverse (increasing pressure along the surface) when the nose is in the rear,
Fig. 8.5d, and boundary-layer separation may occur.

Application to Fig. 8.5b of Thwaites’ laminar-boundary method from Eqs. (7.54)
and (7.56) reveals that separation does not occur on the front nose of the half-body.
Therefore Fig. 8.5a is a very realistic picture of streamlines past a half-body nose. In
contrast, when applied to the tail, Fig. 8.5c, Thwaites’ method predicts separation at
about s/a � � 2.2, or � � 110°. Thus, if a half-body is a solid surface, Fig. 8.5c is not
realistic and a broad separated wake will form. However, if the half-body tail is a fluid
line separating the sink-directed flow from the outer stream, as in Example 8.1, then
Fig. 8.5c is quite realistic and useful. Computations for turbulent boundary-layer the-
ory would be similar: separation on the tail, no separation on the nose.

EXAMPLE 8.1

An offshore power plant cooling-water intake sucks in 1500 ft3/s in water 30 ft deep, as in Fig.
E8.1. If the tidal velocity approaching the intake is 0.7 ft/s, (a) how far downstream does the in-
take effect extend and (b) how much width L of tidal flow is entrained into the intake?

Solution

Recall from Eq. (4.131) that the sink strength m is related to the volume flow Q and the depth
b into the paper

m � � � 7.96 ft2/s

Therefore from Fig. 8.5 the desired lengths a and L are

a � � � 11.4 ft Ans. (a)

L � 2�a � 2� (11.4 ft) � 71 ft Ans. (b)

Consider a uniform stream U� in the x direction flowing past a vortex of strength K
with center at the origin. By superposition the combined stream function is

� � �stream � �vortex � U�r sin � � K ln r (8.19)
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Fig. 8.6 Flow of a uniform stream
past a vortex constructed by the
graphical method.

An Infinite Row of Vortices

The velocity components are given by

�r � � U� cos � �� � � � �U� sin � � (8.20)

The streamlines are plotted in Fig. 8.6 by the graphical method, intersecting the cir-
cular streamlines of the vortex with the horizontal lines of the uniform stream.

By setting �r � �� � 0 from (8.20) we find a stagnation point at � � 90°, r � a �
K/U�, or (x, y) � (0, a). This is where the counterclockwise vortex velocity K/r ex-
actly cancels the stream velocity U�.

Probably the most interesting thing about this example is that there is a nonzero lift
force normal to the stream on the surface of any region enclosing the vortex, but we
postpone this discussion until the next section.

Consider an infinite row of vortices of equal strength K and equal spacing a, as in Fig.
8.7a. This case is included here to illustrate the interesting concept of a vortex sheet.

From Eq. (8.12c), the ith vortex in Fig. 8.7a has a stream function �i � �K ln ri,
so that the total infinite row has a combined stream function

� � �K �
�

i�1
ln ri (8.21) 

It can be shown [2, sec. 4.51] that this infinite sum of logarithms is equivalent to a
closed-form function

� � �	
1
2

	K ln 	 �cosh � cos �
 (8.22) 

Since the proof uses the complex variable z � x � iy, i �(�1)1/2, we are not going to
show the details here.
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The Vortex Sheet

Fig. 8.7 Superposition of vortices:
(a) an infinite row of equal
strength; (b) streamline pattern for
part (a); (c) vortex sheet: part (b)
viewed from afar.

The streamlines from Eq. (8.22) are plotted in Fig. 8.7b, showing what is called a
cat’s-eye pattern of enclosed flow cells surrounding the individual vortices. Above the
cat’s eyes the flow is entirely to the left, and below the cat’s eyes the flow is to the
right. Moreover, these left and right flows are uniform if �y� � a, which follows by dif-
ferentiating Eq. (8.22)

u � � �y��a
� � (8.23) 

where the plus sign applies below the row and the minus sign above the row. This uni-
form left and right streaming is sketched in Fig. 8.7c. We stress that this effect is in-
duced by the row of vortices: There is no uniform stream approaching the row in this
example.

When Fig. 8.7b is viewed from afar, the streaming motion is uniform left above and
uniform right below, as in Fig. 8.7c, and the vortices are packed so closely together

�K
	

a
��
	
�y
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Fig. 8.8 A doublet, or source-sink
pair, is the limiting case of Fig.
4.13 viewed from afar. Streamlines
are circles tangent to the x-axis at
the origin. This figure was prepared
using the contour feature of MAT-
LAB [34, 35].

The Doublet

that they are smudged into a continuous vortex sheet. The strength of the sheet is de-
fined as 

� � (8.24)

and in the general case � can vary with x. The circulation about any closed curve which
encloses a short length dx of the sheet would be, from Eqs. (8.15) and (8.23),

d� � ul dx � uu dx � (ul � uu) dx � dx � � dx (8.25)

where the subscripts l and u stand for lower and upper, respectively. Thus the sheet
strength � � d�/dx is the circulation per unit length of the sheet. Thus when a vortex
sheet is immersed in a uniform stream, � is proportional to the lift per unit length of
any surface enclosing the sheet.

Note that there is no velocity normal to the sheet at the sheet surface. Therefore a
vortex sheet can simulate a thin-body shape, e.g., plate or thin airfoil. This is the ba-
sis of the thin-airfoil theory mentioned in Sec. 8.7.

As we move far away from the source-sink pair of Fig. 4.13, the flow pattern begins
to resemble a family of circles tangent to the origin, as in Fig. 8.8. This limit of van-
ishingly small distance a is called a doublet. To keep the flow strength large enough
to exhibit decent velocities as a becomes small, we specify that the product 2am re-
main constant. Let us call this constant �. Then the stream function of a doublet is

� � lim
a→0 ��m tan�1 � � � � � (8.26)

2am��

�y
	
x2 � y2

2amy
	
x2 � y2
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We have used the fact that tan�1 � � � as � becomes small. The quantity � is called
the strength of the doublet.

Equation (8.26) can be rearranged to yield

x2 � �y � �
2

� � �
2

so that, as advertised, the streamlines are circles tangent to the origin with centers on
the y-axis. This pattern is sketched in Fig. 8.8.

Although the author has in the past laboriously sketched streamlines by hand,
this is no longer necessary. Figure 8.8 was computer-drawn, using the contour
feature of the student version of MATLAB [35]. Simply set up a grid of points, spell
out the stream function, and call for a contour. For Fig. 8.8, the actual statements
were

[X,Y] � meshgrid(�1:.02:1);

PSI � �Y./(X.^2 � Y.^2);

contour(X,Y,PSI,100)

This would produce 100 contour lines of � from Eq. (8.26), with � � 1 for conve-
nience. The plot would include grid lines, scale markings, and a surrounding box, and
the circles might look a bit elliptical. These blemishes can be eliminated with three
statements of cosmetic improvement:

axis square

grid off

axis off

The final plot, Fig. 8.8, has no markings but the streamlines themselves. MATLAB is
thus a recommended tool and, in addition, has scores of other uses. All this chapter’s
problem assignments which call for “sketch the streamlines/potential lines” can be com-
pleted using this contour feature. For further details, consult Ref. 34.

In a similar manner the velocity potential of a doublet is found by taking the limit
of Eq. (4.133) as a → 0 and 2am � �

�doublet �

or

�x � �
2

� y2 � � �
2

(8.27) 

The potential lines are circles tangent to the origin with centers on the x-axis. Simply
turn Fig. 8.8 clockwise 90° to visualize the � lines, which are everywhere normal to
the streamlines.

The doublet functions can also be written in polar coordinates

� � � � � (8.28)

These forms are convenient for the cylinder flows of the next section.
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Fig. 8.9 Flow past a Rankine oval:
(a) uniform stream plus a source-
sink pair; (b) oval shape and
streamlines for m/(U�a) � 1.0.

8.4 Plane Flow Past Closed-
Body Shapes

The Rankine Oval

A variety of closed-body external flows can be constructed by superimposing a uni-
form stream with sources, sinks, and vortices. The body shape will be closed only if
the net source outflow equals the net sink inflow.

A cylindrical shape called a Rankine oval, which is long compared with its height, is
formed by a source-sink pair aligned parallel to a uniform stream, as in Fig. 8.9a.

From Eqs. (8.12a) and (4.133) the combined stream function is

� � U�y � m tan�1 � U�r sin � � m(�1 � �2) (8.29)

When streamlines of constant � are plotted from Eq. (8.29), an oval body shape ap-
pears, as in Fig. (8.9b). The half-length L and half-height h of the oval depend upon
the relative strength of source and stream, i.e., the ratio m/(U�a), which equals 1.0 in
Fig. 8.9b. The circulating streamlines inside the oval are uninteresting and not usually
shown. The oval is the line � � 0.

2ay
		
x2 � y2 � a2
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Flow Past a Circular Cylinder
with Circulation

There are stagnation points at the front and rear, x � �L, and points of maximum
velocity and minimum pressure at the shoulders, y � �h, of the oval. All these pa-
rameters are a function of the basic dimensionless parameter m/(U�a), which we can
determine from Eq. (8.29):

� cot � �1 � �
1/2

(8.30)

� 1 �

As we increase m/(U�a) from zero to large values, the oval shape increases in size and
thickness from a flat plate of length 2a to a huge, nearly circular cylinder. This is shown
in Table 8.1. In the limit as m/(U�a) → �, L/h → 1.0 and umax/U� → 2.0, which is
equivalent to flow past a circular cylinder.

All the Rankine ovals except very thin ones have a large adverse pressure gradient
on their leeward surface. Thus boundary-layer separation will occur in the rear with a
broad wake flow, and the inviscid pattern is unrealistic in that region.

From Table 8.1 at large source strength the Rankine oval becomes a large circle, much
greater in diameter than the source-sink spacing 2a. Viewed on the scale of the cylin-
der, this is equivalent to a uniform stream plus a doublet. We also throw in a vortex at
the doublet center, which does not change the shape of the cylinder.

Thus the stream function for flow past a circular cylinder with circulation, centered
at the origin, is a uniform stream plus a doublet plus a vortex

� � U�r sin � � � K ln r � const (8.31)

The doublet strength � has units of velocity times length squared. For convenience, let
� � U�a2, where a is a length, and let the arbitrary constant in Eq. (8.31) equal 
K ln a. Then the stream function becomes

� � U� sin ��r � � � K ln (8.32)

The streamlines are plotted in Fig. 8.10 for four different values of the dimension-
less vortex strength K/(U�a). For all cases the line � � 0 corresponds to the circle r �

r
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m/(U�a) h/a L/a L/h umax/U�

0.0 0.0 1.0 � 1.0 
0.01 0.031 1.010 32.79 1.020
0.1 0.263 1.095 4.169 1.187
1.0 1.307 1.732 1.326 1.739

10.0 4.435 4.583 1.033 1.968
100.0 14.130 14.177 1.003 1.997

� � � 1.000 2.000

Table 8.1 Rankine-Oval Parameters
from Eq. (8.30)



Fig. 8.10 Flow past a circular
cylinder with circulation for values
of K/(U�a) of (a) 0, (b) 1.0, (c)
2.0, and (d) 3.0.

a, that is, the shape of the cylindrical body. As circulation � � 2�K increases, the ve-
locity becomes faster and faster below the cylinder and slower and slower above it.
The velocity components in the flow are given by

�r � � U� cos ��1 � 	
a
r2

2

	�
�� � � � �U� sin ��1 � 	

a
r2

2

	� �

(8.33)

The velocity at the cylinder surface r � a is purely tangential, as expected

�r(r � a) � 0 ��(r � a) � �2U� sin � � (8.34)

For small K, two stagnation points appear on the surface at angles �s where �� � 0, or,
from Eq. (8.34),

sin �s � (8.35)

Figure 8.10a is for K � 0, �s � 0 and 180°, or doubly symmetric inviscid flow past a
cylinder with no circulation. Figure 8.10b is for K/(U�a) � 1, �s � 30 and 150°, and
Fig. 8.10c is the limiting case where the two stagnation points meet at the top,
K/(U�a) � 2, �s � 90°.
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The Kutta-Joukowski Lift
Theorem

For K � 2U�a, Eq. (8.35) is invalid, and the single stagnation point is above the
cylinder, as in Fig. 8.10d, at a point y � h given by

� [� � (�2 � 4)1/2] � � � 2 (8.36)

In Fig. 8.10d, K/(U�a) � 3.0, and h/a � 2.6.

For the cylinder flows of Fig. 8.10b to d there is a downward force, or negative lift,
called the Magnus effect, which is proportional to stream velocity and vortex strength.
We can see from the streamline pattern that the velocity on the top of the cylinder is
less and therefore the pressure higher from Bernoulli’s equation; this explains the force.
There is no viscous force, of course, because our theory is inviscid.

The surface velocity is given by Eq. (8.34). From Bernoulli’s equation (8.4), ne-
glecting gravity, the surface pressure ps is given by

p� � 
U2
� � ps � 
��2U� sin � � �

2

or ps � p� � 	
1
2

	
U2
�(1 � 4 sin2 � � 4� sin � � �2) (8.37)

where � � K/(U�a) and p� is the free-stream pressure. If b is the cylinder depth into
the paper, the drag D is the integral over the surface of the horizontal component of
pressure force

D � ��2�

0
(ps � p�) cos � ba d�

where ps � p� is substituted from Eq. (8.37). But the integral of cos � times any power
of sin � over a full cycle 2� is identically zero. Thus we obtain the (perhaps surpris-
ing) result

D(cylinder with circulation) � 0 (8.38)

This is a special case of d’Alembert’s paradox, mentioned in Sec. 1.10:

According to inviscid theory, the drag of any body of any shape immersed in a uni-
form stream is identically zero.

D’Alembert published this result in 1752 and pointed out himself that it did not square
with the facts for real fluid flows. This unfortunate paradox caused everyone to over-
react and reject all inviscid theory until 1904, when Prandtl first pointed out the pro-
found effect of the thin viscous boundary layer on the flow pattern in the rear, as in
Fig. 7.2b, for example.

The lift force L normal to the stream, taken positive upward, is given by summa-
tion of vertical pressure forces

L � ��2�

0
(ps � p�) sin � ba d�

Since the integral over 2� of any odd power of sin � is zero, only the third term in the
parentheses in Eq. (8.37) contributes to the lift:

L � � 
U2
� ba �2�

0
sin2 � d� � �
U�(2�K)b
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Experimental Lift and Drag of
Rotating Cylinders

or � �
U�� (8.39)

Notice that the lift is independent of the radius a of the cylinder. Actually, though, as
we shall see in Sec. 8.7, the circulation � depends upon the body size and orientation
through a physical requirement.

Equation (8.39) was generalized by W. M. Kutta in 1902 and independently by N.
Joukowski in 1906 as follows:

According to inviscid theory, the lift per unit depth of any cylinder of any shape im-
mersed in a uniform stream equals 
u��, where � is the total net circulation con-
tained within the body shape. The direction of the lift is 90° from the stream di-
rection, rotating opposite to the circulation.

The problem in airfoil analysis, Sec. 8.7, is thus to determine the circulation � as a
function of airfoil shape and orientation.

It is nearly impossible to test Fig. 8.10 by constructing a doublet and vortex with the
same center and then letting a stream flow past them. But one physical realization
would be a rotating cylinder in a stream. The viscous no-slip condition would cause
the fluid in contact with the cylinder to move tangentially at the cylinder peripheral
speed �� � a
. A net circulation � would be set up by this no-slip mechanism, but it
turns out to be less than 50 percent of the value expected from inviscid theory, pri-
marily because of flow separation behind the cylinder.

Figure 8.11 shows experimental lift and drag coefficients, based on planform area
2ba, of rotating cylinders. From Eq. (8.38) the theoretical drag is zero, but the actual
CD is quite large, more even than the stationary cylinder of Fig. 5.3. The theoretical
lift follows from Eq. (8.39)

CL � � � (8.40)

where ��s � K/a is the peripheral speed of the cylinder.
Figure 8.11 shows that the theoretical lift from Eq. (8.40) is much too high, but the

measured lift is quite respectable, much larger in fact than a typical airfoil of the same
chord length, e.g., Fig. 7.25. Thus rotating cylinders have practical possibilities. The
Flettner rotor ship built in Germany in 1924 employed rotating vertical cylinders which
developed a thrust due to any winds blowing past the ship. The Flettner design did not
gain any popularity, but such inventions may be more attractive in this era of high en-
ergy costs.

EXAMPLE 8.2

The experimental Flettner rotor sailboat at the University of Rhode Island is shown in Fig. E8.2.
The rotor is 2.5 ft in diameter and 10 ft long and rotates at 220 r/min. It is driven by a small
lawnmower engine. If the wind is a steady 10 kn and boat relative motion is neglected, what is
the maximum thrust expected for the rotor? Assume standard air and water density.

2���s	
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2�
U�Kb
		


U2
�ba

L
		

	
1
2

	
U2
�(2ba)

L
	
b
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Fig. 8.11 Theoretical and experi-
mental lift and drag of a rotating
cylinder. (From Ref. 22.)
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The Kelvin Oval

Potential-Flow Analogs

Solution

Convert the rotation rate to 
 � 2�(220)/60 � 23.04 rad/s. The wind velocity is 10 kn � 16.88
ft/s, so the velocity ratio is

� � 1.71

Entering Fig. 8.11, we read CL � 3.3 and CD � 1.2. From Table A.6, standard air density is
0.002377 slug/ft3. Then the estimated rotor lift and drag are

L � CL	
1
2

	
U2
�2ba � 3.3(	

1
2

	)(0.002377)(16.88)2(2)(10)(1.25) 

� 27.9 lbf 

D � CD	
1
2

	
U2
�2ba � L � 27.9� � � 10.2 lbf 

The maximum thrust available is the resultant of these two

F � [(27.9)2 � (10.2)2]1/2 � 29 lbf Ans. 

If aligned along the boat’s keel, this thrust will drive the boat at a speed of about 5 kn through
the water.

A family of body shapes taller than they are wide can be formed by letting a uniform
stream flow normal to a vortex pair. If U� is to the right, the negative vortex � K is
placed at y � �a and the counterclockwise vortex � K placed at y � �a, as in Fig.
8.12. The combined stream function is

� � U�y � K ln (8.41)

The body shape is the line � � 0, and some of these shapes are shown in Fig. 8.12.
For K/(U�a) � 10 the shape is within 1 percent of a Rankine oval (Fig. 8.9) turned
90°, but for small K/(U�a) the waist becomes pinched in, and a figure-eight shape oc-
curs at 0.5. For K/(U�a) � 0.5 the stream blasts right between the vortices and iso-
lates two more or less circular body shapes, one surrounding each vortex.

A closed body of practically any shape can be constructed by proper superposition
of sources, sinks, and vortices. See the advanced work in Refs. 2 to 4 for further de-
tails. A summary of elementary potential flows is given in Table 8.2.

For complicated potential-flow geometries, one can resort to other methods than su-
perposition of sources, sinks, and vortices. There are a variety of devices which simu-
late solutions to Laplace’s equation.

From 1897 to 1900 Hele-Shaw [9] developed a technique whereby laminar flow be-
tween very closely spaced parallel plates simulated potential flow when viewed from
above the plates. Obstructions simulate body shapes, and dye streaks represent the
streamlines. The Hele-Shaw apparatus makes an excellent laboratory demonstration of
potential flow [10, pp. 8–10]. Figure 8.13a illustrates Hele-Shaw (potential) flow

x2 � (y � a)2

		
x2 � (y � a)2

1
	
2

1.2
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Fig. 8.12 Kelvin-oval body shapes
as a function of the vortex-strength
parameter K/(U�a); outer stream-
lines not shown.

through an array of cylinders, a flow pattern that would be difficult to analyze just us-
ing Laplace’s equation. However beautiful this array pattern may be, it is not a good
approximation to real (laminar viscous) array flow. Figure 8.13b shows experimental
streakline patterns for a similar staggered-array flow at Re � 6400. We see that the in-
teracting wakes of the real flow (Fig. 8.13b) cause intensive mixing and transverse mo-
tion, not the smooth streaming passage of the potential-flow model (Fig. 8.13a). The
moral is that this is an internal flow with multiple bodies and, therefore, not a good
candidate for a realistic potential-flow model.

Other flow-mapping techniques are discussed in Ref. 8. Electromagnetic fields also
satisfy Laplace’s equation, with voltage analogous to velocity potential and current
lines analogous to streamlines. At one time commercial analog field plotters were avail-
able, using thin conducting paper cut to the shape of the flow geometry. Potential lines
(voltage contours) were plotted by probing the paper with a potentiometer pointer.
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Type of flow Potential functions Remarks

Stream iU � � Uy � � Ux See Fig. 4.12a
Line source (m � 0) or sink (m � 0) � � m� � � m ln r See Fig. 4.12b
Line vortex � � �K ln r � � K� See Fig. 4.12c
Half-body � � Ur sin � � m�

� � Ur cos � � m ln r See Fig. 8.5

Doublet � � � � See Fig. 8.8

Rankine oval � � Ur sin � � m(�1 � �2) See Fig. 8.9

Cylinder with circulation � � U sin ��r � � � K ln See Fig. 8.10
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Table 8.2 Summary of Plane
Incompressible Potential Flows



Fig. 8.13 Flow past a staggered ar-
ray of cylinders: (a) potential-flow
model using the Hele-Shaw appara-
tus (Tecquipment Ltd., Nottingham,
England); (b) experimental streak-
lines for actual staggered-array
flow at ReD � 6400. (From Ref. 36,
courtesy of Jack Hoyt, with the per-
mission of the American Society of
Mechanical Engineers.)

Hand-sketching “curvilinear square’’ techniques were also popular. The availability and
the simplicity of digital-computer potential-flow methods [5 to 7] have made analog
models obsolete.

EXAMPLE 8.3

A Kelvin oval from Fig. 8.12 has K/(U�a) � 1.0. Compute the velocity at the top shoulder of
the oval in terms of U�.
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8.5 Other Plane Potential
Flows2

Solution

We must locate the shoulder y � h from Eq. (8.41) for � � 0 and then compute the velocity by
differentiation. At � � 0 and y � h and x � 0, Eq. (8.41) becomes

� ln 

With K/(U�a) � 1.0 and the initial guess h/a � 1.5 from Fig. 8.12, we iterate and find the lo-
cation h/a � 1.5434.

By inspection � � 0 at the shoulder because the streamline is horizontal. Therefore the shoul-
der velocity is, from Eq. (8.41),

u�y�h
� �y�h

� U� � �

Introducing K � U�a and h � 1.5434a, we obtain

ushoulder � U�(1.0 � 1.84 � 0.39) � 2.45U� Ans.

Because they are short-waisted compared with a circular cylinder, all the Kelvin ovals have shoul-
der velocity greater than the cylinder result 2.0U� from Eq. (8.34).

References 2 to 4 treat many other potential flows of interest in addition to the cases
presented in Secs. 8.3 and 8.4. In principle, any plane potential flow can be solved by
the method of conformal mapping, by using the complex variable

z � x � iy i � (�1)1/2

It turns out that any arbitrary analytic function of this complex variable z has the re-
markable property that both its real and its imaginary parts are solutions of Laplace’s
equation. If

f(z) � f(x � iy) � f1(x, y) � i f2(x, y) 

then 	
∂
∂

2

x
f
2
1	 � 	

∂
∂

2

y
f
2
1	 � 0 � 	

∂
∂

2

x
f
2
2	 � 	

∂
∂

2

y
f
2
2	 (8.42)

We shall assign the proof of this as a problem. Even more remarkable if you have never
seen it before is that lines of constant f1 will be everywhere perpendicular to lines of
constant f2:

� �f1�C
� � (8.43)

We also leave this proof as a problem exercise. This is true for totally arbitrary f(z) as
long as this function is analytic; i.e., it must have a unique derivative df/dz at every
point in the region.

The net result of Eqs. (8.42) and (8.43) is that the functions f1 and f2 can be inter-
preted to be the potential lines and streamlines of an inviscid flow. By long custom we
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2 This section may be omitted without loss of continuity.



Uniform Stream at an Angle 
of Attack

Line Source at a Point z0

let the real part of f(z) be the velocity potential and the imaginary part be the stream
function

f(z) � �(x, y) � i�(x, y) (8.44)

We try various functions f(z) and see whether any interesting flow pattern results. Of
course, most of them have already been found, and we simply report on them here.

We shall not go into the details, but there are excellent treatments of this complex-
variable technique on both an introductory [4, chap. 5; 10, chap. 5] and a more ad-
vanced [2, 3,] level. The method is less important now because of the popularity of
digital-computer techniques.

As a simple example, consider the linear function

f(z) � U�z � U�x � iU�y

It follows from Eq. (8.44) that � � U�x and � � U�y, which, we recall from Eq.
(8.12a), represents a uniform stream in the x direction. Once you get used to the com-
plex variable, the solution practically falls in your lap.

To find the velocities, you may either separate � and � from f(z) and differentiate
or differentiate f directly

� � i � �i � � u � i� (8.45)

Thus the real part of df/dz equals u(x, y), and the imaginary part equals � �(x, y). To
get a practical result, the derivative df/dz must exist and be unique, hence the require-
ment that f be an analytic function. For Eq. (8.45), df/dz � U� � u, since it is real, and
� � 0, as expected.

Sometimes it is convenient to use the polar-coordinate form of the complex variable

z � x � iy � rei� � r cos � � ir sin �

where r � (x2 � y2)1/2 � � tan�1

This form is especially convenient when powers of z occur.

All the elementary plane flows of Sec. 8.2 have a complex-variable formulation. The
uniform stream U� at an angle of attack � has the complex potential

f(z) � U�ze�i� (8.46) 

Compare this form with Eq. (8.14).

Consider a line source of strength m placed off the origin at a point z0 � x0 � iy0. Its
complex potential is

f(z) � m ln (z � z0) (8.47)

This can be compared with Eq. (8.12b), which is valid only for the source at the ori-
gin. For a line sink, the strength m is negative.
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Flow around a Corner of
Arbitrary Angle

Line Vortex at a Point z0

Fig. 8.14 Streamlines for corner
flow, Eq. (8.49) for corner angle �
of (a) 60°, (b) 90°, (c) 120°, (d)
270°, and (e) 360°.

If a line vortex of strength K is placed at point z0, its complex potential is

f(z) � �iK ln (z � z0) (8.48)

to be compared with Eq. (8.12c). Also compare to Eq. (8.47) to see that we reverse the
meaning of � and � simply by multiplying the complex potential by �i.

Corner flow is an example of a pattern that cannot be conveniently produced by su-
perimposing sources, sinks, and vortices. It has a strikingly simple complex represen-
tation

f(z) � Azn � Arnein� � Arn cos n� � iArn sin n�

where A and n are constants.
It follows from Eq. (8.44) that for this pattern

� � Arn cos n� � � Arn sin n� (8.49)

Streamlines from Eq. (8.49) are plotted in Fig. 8.14 for five different values of n.
The flow is seen to represent a stream turning through an angle � � �/n. Patterns in
Fig. 8.14d and e are not realistic on the downstream side of the corner, where separa-
tion will occur due to the adverse pressure gradient and sudden change of direction. In
general, separation always occurs downstream of salient, or protruding corners, except
in creeping flows at low Reynolds number Re � 1.

Since 360° � 2� is the largest possible corner, the patterns for n � 	
1
2

	 do not repre-
sent corner flow. They are peculiar-looking, and we ask you to plot one as a problem.

If we expand the plot of Fig. 8.14a to c to double size, we can represent stagnation
flow toward a corner of angle 2� � 2�/n. This is done in Fig. 8.15 for n � 3, 2, and
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Fig. 8.15 Streamlines for stagnation flow from Eq. (8.49) for corner angle 2� of (a) 120°, (b) 180°, and (c) 240°.

1.5. These are very realistic flows; although they slip at the wall, they can be patched
to boundary-layer theories very successfully. We took a brief look at corner flows be-
fore, in Examples 4.5 and 4.9 and in Probs. 4.49 to 4.51.

We treat this case separately because the Kelvin ovals of Fig. 8.12 failed to degener-
ate into a flat plate as K became small. The flat plate normal to a uniform stream is an
extreme case worthy of our attention.

Although the result is quite simple, the derivation is very complicated and is given,
e.g., in Ref. 2, sec. 9.3. There are three changes of complex variable, or mappings, be-
ginning with the basic cylinder-flow solution of Fig. 8.10a. First the uniform stream is
rotated to be vertical upward, then the cylinder is squeezed down into a plate shape,
and finally the free stream is rotated back to the horizontal. The final result for com-
plex potential is

f(z) � � � i� � U�(z2 � a2)1/2 (8.50)

where 2a is the height of the plate. To isolate � or �, square both sides and separate
real and imaginary parts

�2 � �2 � U2
�(x2 � y2 � a2) �� � U2

�xy
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Plate



Fig. 8.16 Streamlines in upper half-
plane for flow normal to a flat plate
of height 2a: (a) continuous poten-
tial-flow theory, Eq. (8.51); (b) ac-
tual measured flow pattern; (c) dis-
continuous potential theory with
k � 1.5.

We can solve for � to determine the streamlines

�4 � �2U2
�(x2 � y2 � a2) � U4

�x2y2 (8.51)

Equation (8.51) is plotted in Fig. 8.16a, revealing a doubly symmetric pattern of stream-
lines which approach very closely to the plate and then deflect up and over, with very
high velocities and low pressures near the plate tips.

The velocity �s along the plate surface is found by computing df/dz from Eq. (8.50)
and isolating the imaginary part

�
plate surface

� (8.52)

Some values of surface velocity can be tabulated as follows:

y/a 0.0 0.2 0.4 0.6 0.71 0.8 0.9 1.0

�s/U� 0.0 0.204 0.436 0.750 1.00 1.33 2.07 �

y/a
		
(1 � y2/a2)1/2

�s	
U�
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8.6 Images3

The origin is a stagnation point; then the velocity grows linearly at first and very rapidly
near the tip, with both velocity and acceleration being infinite at the tip.

As you might guess, Fig. 8.16a is not realistic. In a real flow the sharp salient edge
causes separation, and a broad, low-pressure wake forms in the lee, as in Fig. 8.16b.
Instead of being zero, the drag coefficient is very large, CD � 2.0 from Table 7.2.

A discontinuous-potential-flow theory which accounts for flow separation was de-
vised by Helmholtz in 1868 and Kirchhoff in 1869. This free-streamline solution is
shown in Fig. 8.16c, with the streamline which breaks away from the tip having a con-
stant velocity V � kU�. From Bernoulli’s equation the pressure in the dead-water re-
gion behind the plate will equal pr � p� � 	

1
2

	
U2
�(1 � k2) to match the pressure along

the free streamline. For k � 1.5 this Helmholtz-Kirchoff theory predicts pr � p� �
0.625
U2

� and an average pressure on the front pf � p� � 0.375
U2
�, giving an over-

all drag coefficient of 2.0, in agreement with experiment. However, the coefficient k is
a priori unknown and must be tuned to experimental data, so free-streamline theory
can be considered only a qualified success. For further details see Ref. 2, sec. 11.2.

The previous solutions have all been for unbounded flows, such as a circular cylinder
immersed in a broad expanse of uniformly streaming fluid, Fig. 8.10a. However, many
practical problems involve a nearby rigid boundary constraining the flow, e.g., (1)
groundwater flow near the bottom of a dam, (2) an airfoil near the ground, simulating
landing or takeoff, or (3) a cylinder mounted in a wind tunnel with narrow walls. In
such cases the basic unbounded-potential-flow solutions can be modified for wall ef-
fects by the method of images.

Consider a line source placed a distance a from a wall, as in Fig. 8.17a. To create
the desired wall, an image source of identical strength is placed the same distance be-
low the wall. By symmetry the two sources create a plane-surface streamline between
them, which is taken to be the wall.

In Fig. 8.17b a vortex near a wall requires an image vortex the same distance be-
low but of opposite rotation. We have shaded in the wall, but of course the pattern could
also be interpreted as the flow near a vortex pair in an unbounded fluid.

In Fig. 8.17c an airfoil in a uniform stream near the ground is created by an image
airfoil below the ground of opposite circulation and lift. This looks easy, but actually
it is not because the airfoils are so close together that they interact and distort each
other’s shapes. A rule of thumb is that nonnegligible shape distortion occurs if the body
shape is within two chord lengths of the wall. To eliminate distortion, a whole series
of “corrective’’ images must be added to the flow to recapture the shape of the origi-
nal isolated airfoil. Reference 2, sec. 7.75, has a good discussion of this procedure,
which usually requires digital-computer summation of the multiple images needed.

Figure 8.17d shows a source constrained between two walls. One wall required only
one image in Fig. 8.17a, but two walls require an infinite array of image sources above
and below the desired pattern, as shown. Usually computer summation is necessary,
but sometimes a closed-form summation can be achieved, as in the infinite vortex row
of Eq. (8.22).
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Fig. 8.17 Constraining walls can be
created by image flows: (a) source
near a wall with identical image
source; (b) vortex near a wall with
image vortex of opposite sense; (c)
airfoil in ground effect with image
airfoil of opposite circulation; (d)
source between two walls requiring
an infinite row of images.

EXAMPLE 8.4

For the source near a wall as in Fig. 8.17a, the wall velocity is zero between the sources, rises
to a maximum moving out along the wall, and then drops to zero far from the sources. If the
source strength is 8 m2/s, how far from the wall should the source be to ensure that the maxi-
mum velocity along the wall will be 5 m/s?

Solution

At any point x along the wall, as in Fig. E8.4, each source induces a radial outward velocity
�r � m/r, which has a component �r cos � along the wall. The total wall velocity is thus

522 Chapter 8 Potential Flow and Computational Fluid Dynamics

a

a

(a) (b)

(c) (d )



E8.4 

uwall � 2�r cos �

From the geometry of Fig. E8.4, r � (x2 � a2)1/2 and cos � � x/r. Then the total wall velocity
can be expressed as

u �

This is zero at x � 0 and at x → �. To find the maximum velocity, differentiate and set equal
to zero

� 0 at x � a and umax �

We have omitted a bit of algebra in giving these results. For the given source strength and max-
imum velocity, the proper distance a is

a � � � 1.625 m Ans. 

For x � a, there is an adverse pressure gradient along the wall, and boundary-layer theory should
be used to predict separation.

As mentioned in conjunction with the Kutta-Joukowski lift theorem, Eq. (8.39), the
problem in airfoil theory is to determine the net circulation � as a function of airfoil
shape and free-stream angle of attack �.

Even if the airfoil shape and free-stream angle of attack are specified, the potential-
flow-theory solution is nonunique: An infinite family of solutions can be found corre-
sponding to different values of circulation �. Four examples of this nonuniqueness were
shown for the cylinder flows in Fig. 8.10. The same is true of the airfoil, and Fig. 8.18
shows three mathematically acceptable “solutions’’ to a given airfoil flow for small
(Fig. 8.18a), large (Fig. 8.18b), and medium (Fig. 8.18c) net circulation. You can guess

8 m2/s
	
5 m/s

m
	
umax

m
	
a

du
	
dx

2mx
	
x2 � a2
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  = m
rr�

4 This section may be omitted without loss of continuity.
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The Kutta Condition



Fig. 8.18 The Kutta condition prop-
erly simulates the flow about an
airfoil; (a) too little circulation,
stagnation point on rear upper sur-
face; (b) too much, stagnation point
on rear lower surface; (c) just right,
Kutta condition requires smooth
flow at trailing edge.

which case best simulates a real airfoil from the earlier discussion of transient-lift de-
velopment in Fig. 7.23. It is the case (Fig. 8.18c) where the upper and lower flows
meet and leave the trailing edge smoothly. If the trailing edge is rounded slightly, there
will be a stagnation point there. If the trailing edge is sharp, approximating most air-
foil designs, the upper- and lower-surface flow velocities will be equal as they meet
and leave the airfoil.

This statement of the physically proper value of � is generally attributed to W. M.
Kutta, hence the name Kutta condition, although some texts give credit to Joukowski
and/or Chaplygin. All airfoil theories use the Kutta condition, which is in good agree-
ment with experiment. It turns out that the correct circulation �Kutta depends upon flow
velocity, angle of attack, and airfoil shape.

The flat plate is the simplest airfoil, having no thickness or “shape,’’ but even its the-
ory is not so simple. The problem can be solved by a complex-variable mapping [2,
p. 480], but here we shall use a vortex-sheet approach. Figure 8.19a shows a flat plate
of length C simulated by a vortex sheet of variable strength �(x). The free stream U�

is at an angle of attack � with respect to the plate chord line.
To make the lift “up’’ with flow from left to right as shown, we specify here that

the circulation is positive clockwise. Recall from Fig. 8.7c that there is a jump in tan-
gential velocity across a sheet equal to the local strength

uu � ul � �(x) (8.53) 
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Fig. 8.19 Vortex-sheet solution for
the flat-plate airfoil; (a) sheet
geometry; (b) theoretical pressure
coefficient on upper and lower sur-
faces; (c) upper-surface velocity
with laminar separation points S.

If we omit the free stream, the sheet should cause a rightward flow �u � � 	
1
2

	� on the
upper surface and an equal and opposite leftward flow on the lower surface, as shown
in Fig. 8.19a. The Kutta condition for this sharp trailing edge requires that this veloc-
ity difference vanish at the trailing edge to keep the exit flow smooth and parallel

�(C) � 0 (8.54) 

The proper solution must satisfy this condition, after which the total lift can be com-
puted by summing the sheet strength over the whole airfoil. From Eq. (8.39) for a foil
of depth b

L � 
U�b� � � �C

0
�(x) dx (8.55) 
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An alternate way to compute lift is from the dimensionless pressure coefficient Cp

on the upper and lower surfaces

Cpu,l
� � 1 � (8.56) 

where the last expression follows from Bernoulli’s equation. The surface velocity
squared is given by combining the uniform stream and the vortex-sheet velocity com-
ponents from Fig. 8.19a:

U2
u,l � (U� cos � � �u)2 � (U� sin �)2

U2
u,l � U2

� � 2U� �u cos � � �u2 � U2
��1 � � (8.57) 

where we have made the approximations �u � U� and cos in the last expres-
sion, assuming a small angle of attack. Equations (8.56) and (8.57) combine to the first-
order approximation

Cpu,l
� 	 � 	 (8.58) 

The lift force is the integral of the pressure difference over the length of the airfoil, as-
suming depth b

L � �C

0
(pl � pu)b dx

or CL � � �1

0
(Cpl

� Cpu
) � 2 �1

0
d� � (8.59) 

Equations (8.55) and (8.59) are entirely equivalent within the small-angle approxima-
tions.

The sheet strength 
(x) is computed from the requirement that the net normal ve-
locity �(x) be zero at the sheet (y � 0), since the sheet represents a solid plate or
stream surface. Consider a small piece of sheet 
 dx located at position x0. The ve-
locity � at point x on the sheet is that of an infinitesimal line vortex of strength d� �
� 
 dx

d� �x � �

The total normal velocity induced by the entire sheet at point x is thus

�sheet � ��C

0

(8.60)

Meanwhile, from Fig. 8.19a, the uniform stream induces a constant normal veloc-
ity at every point on the sheet given by

�stream � U� sin �

Setting the sum of �sheet and �stream equal to zero gives the integral equation

�C

0
� 2
U� sin � (8.61) 

to be solved for 
(x) subject to the Kutta condition 
(C) � 0 from Eq. (8.54).


 dx
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�
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Although Eq. (8.61) is quite formidable (and not only for beginners), in fact it was
solved long ago by using integral formulas developed by Poisson in the nineteenth cen-
tury. The sheet strength which satisfies Eq. (8.61) is

�(x) � 2U� sin �� � 1�
1/2

(8.62) 

From Eq. (8.58) the surface-pressure coefficients are thus

Cpu,l
� �2 sin �� � 1�

1/2

(8.63) 

Details of the calculations are given in advanced texts [for example, 11, chap. 5].
The pressure coefficients from Eq. (8.63) are plotted in Fig. 8.19b, showing that the

upper surface has pressure continually increasing with x, that is, an adverse gradient.
The upper-surface velocity Uu � U� � �u � U� � 	

1
2

	� is plotted in Fig. 8.19c for var-
ious angles of attack. Above � � 5° the sheet contribution �u is about 20 percent of
U� so that the small-disturbance assumption is violated. Figure 8.19c also shows sep-
aration points computed by Thwaites’ laminar-boundary-layer method, Eqs. (7.54) and
(7.55). The prediction is that a flat plate would be extensively stalled on the upper sur-
face for � � 6°, which is approximately correct.

The lift coefficient of the airfoil is proportional to the area between cpl
and cpu

in
Fig. 8.19b, from Eq. (8.59):

CL � 2 �1

0
d � � � 4 sin � �1

0 � � 1�
1/2

d � � � 2� sin � � 2�� (8.64) 

This is a classic result which was alluded to earlier in Eq. (7.70) without proof.
Also of interest is the moment coefficient about the leading edge (LE) of the air-

foil, taken as positive counterclockwise

CMLE
� � �1

0
(Cpl

� Cpu
) d� � � sin � � CL (8.65) 

Thus the center of pressure (CP), or position of the resultant lift force, is at the one-
quarter-chord point

� �CP
� (8.66) 

This theoretical result is independent of the angle of attack.
These results can be compared with experimental results for NACA airfoils in Fig.

8.20). The thinnest NACA airfoil is t/C � 0.06, and the thickest is 24 percent, or
t/C � 0.24. The lift-curve slope dCL /d� is within 9 percent of the theoretical value
of 2� for all the various airfoil families at all thicknesses. Increasing thickness tends
to increase both CL,max and the stall angle. The stall angle at t/C � 0.06 is about 8°
and would be even less for a flat plate, verifying the boundary-layer separation esti-
mates in Fig. 8.19c. Best performance is usually at about the 12 percent thickness
point for any airfoil.
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Fig. 8.20 Lift characteristics of
smooth NACA airfoils as a func-
tion of thickness ratio, for infinite
aspect ratio. (From Ref. 12.)

The theory of thick cambered airfoils is covered in advanced texts [for example, 2 to
4]; Ref. 13 has a thorough and comprehensive review of both inviscid and viscous as-
pects of airfoil behavior.

Basically the theory uses a complex-variable mapping which transforms the flow
about a cylinder with circulation in Fig. 8.10 into flow about a foil shape with circu-
lation. The circulation is then adjusted to match the Kutta condition of smooth exit
flow from the trailing edge.

Regardless of the exact airfoil shape, the inviscid mapping theory predicts that the
correct circulation for any thick cambered airfoil is
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Fig. 8.21 Characteristics of NACA
airfoils: (a) typical thick cambered
airfoil; (b) center-of-pressure data;
and (c) minimum drag coefficient.

�Kutta � �bCU��1 � 0.77 � sin (� � �) (8.67)

where � � tan�1 (2h/C) and h is the maximum camber, or maximum deviation of the
airfoil midline from its chord line, as in Fig. 8.21a.

The lift coefficient of the infinite-span airfoil is thus

CL � � 2��1 � 0.77 � sin (� � �) (8.68) 
t
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Wings of Finite Span

This reduces to Eq. (8.64) when the thickness and camber are zero. Figure 8.20 shows
that the thickness effect 1 � 0.77t/C is not verified by experiment. Some airfoils in-
crease lift with thickness, others decrease, and none approach the theory very closely,
the primary reason being the boundary-layer growth on the upper surface affecting the
airfoil “shape.’’ Thus it is customary to drop the thickness effect from the theory

CL � 2� sin (� � �) (8.69) 

The theory correctly predicts that a cambered airfoil will have finite lift at zero angle
of attack and zero lift (ZL) at an angle

�ZL � �� � �tan�1 (8.70) 

Equation (8.70) overpredicts the measured zero-lift angle by 1° or so, as shown in Table
8.3. The measured values are essentially independent of thickness. The designation XX
in the NACA series indicates the thickness in percent, and the other digits refer to cam-
ber and other details. For example, the 2415 airfoil has 2 percent maximum camber
(the first digit) occurring at 40 percent chord (the second digit) with 15 percent max-
imum thickness (the last two digits). The maximum thickness need not occur at the
same position as the maximum camber.

Figure 8.21b shows the measured position of the center of pressure of the various
NACA airfoils, both symmetric and cambered. In all cases xCP is within 0.02 chord
length of the theoretical quarter-chord point predicted by Eq. (8.66). The standard cam-
bered airfoils (24, 44, and 230 series) lie slightly forward of x/C � 0.25 and the low-
drag (60 series) foils slightly aft. The symmetric airfoils are at 0.25.

Figure 8.21c shows the minimum drag coefficient of NACA airfoils as a function
of thickness. As mentioned earlier in conjunction with Fig. 7.25, these foils when
smooth actually have less drag than turbulent flow parallel to a flat plate, especially
the low-drag 60 series. However, for standard surface roughness all foils have about
the same minimum drag, roughly 30 percent greater than that for a smooth flat plate.

The results of airfoil theory and experiment in the previous subsection were for two-
dimensional, or infinite-span, wings. But all real wings have tips and are therefore of
finite span or finite aspect ratio AR, defined by

AR � � (8.71) 
b
	
C�

b2

	
Ap

2h
	
C
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Airfoil series Camber h/C, % Measured �ZL, deg Theory 	 
, deg

24XX 2.0 �2.1 �2.3
44XX 4.0 �4.0 �4.6

230XX 1.8 �1.3 �2.1
63-2XX 2.2 �1.8 �2.5
63-4XX 4.4 �3.1 �5.0
64-1XX 1.1 �0.8 �1.2

Table 8.3 Zero-Lift Angle of
NACA Airfoils



Fig. 8.22 Lifting-line theory for a
finite wing: (a) actual trailing-vor-
tex system behind a wing; (b) sim-
ulation by vortex system “bound’’
to the wing; (c) downwash on the
wing due to an element of the trail-
ing-vortex system.

where b is the span length from tip to tip and Ap is the planform area of the wing as
seen from above. The lift and drag coefficients of a finite-aspect-ratio wing depend
strongly upon the aspect ratio and slightly upon the planform shape of the wing.

Vortices cannot end in a fluid; they must either extend to the boundary or form a
closed loop. Figure 8.22a shows how the vortices which provide the wing circulation
bend downstream at finite wing tips and extend far behind the wing to join the start-
ing vortex (Fig. 7.23) downstream. The strongest vortices are shed from the tips, but
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some are shed from the body of the wing, as sketched schematically in Fig. 8.22b. The
effective circulation �(y) of these trailing shed vortices is zero at the tips and usually
a maximum at the center plane, or root, of the wing. In 1918 Prandtl successfully mod-
eled this flow by replacing the wing by a single lifting line and a continuous sheet of
semi-infinite trailing vortices of strength �(y) � d�/dy, as in Fig. 8.22c. Each elemen-
tal piece of trailing sheet �(�) d� induces a downwash, or downward velocity, dw(y),
given by

dw(y) �

at position y on the lifting line. Note the denominator term 4� rather than 2� because
the trailing vortex extends only from 0 to � rather than from �� to ��.

The total downwash w(y) induced by the entire trailing vortex system is thus

w(y) � �(1/2)b

�(1/2)b
(8.72) 

When the downwash is vectorially added to the approaching free stream U�, the ef-
fective angle of attack at this section of the wing is reduced to

�eff � � � �i �i � tan�1 � (8.73) 

where we have used a small-amplitude approximation w � U�.
The final step is to assume that the local circulation �(y) is equal to that of a two-

dimensional wing of the same shape and same effective angle of attack. From thin-air-
foil theory, Eqs. (8.55) and (8.64), we have the estimate

CL � � 2��eff

or � � �CU�� eff (8.74) 

Combining Eqs. (8.72) and (8.74), we obtain Prandtl’s lifting-line theory for a finite-
span wing

�(y) � �C(y)U�	�(y) � �(1/2)b

�(1/2)b 
 (8.75) 

This is an integrodifferential equation to be solved for �(y) subject to the conditions
�(	

1
2

	b) � �(�	
1
2

	b) � 0. It is similar to the thin-airfoil integral equation (8.61) and 
even more formidable. Once it is solved, the total wing lift and induced drag are
given by

L � 
U� �(1/2)b

�(1/2)b
�(y) dy Di � 
U� �(1/2)b

�(1/2)b
�(y)�i(y) dy (8.76)

Here is a case where the drag is not zero in a frictionless theory because the down-
wash causes the lift to slant backward by angle �i so that it has a drag component par-
allel to the free-stream direction, dDi � dL sin �i � dL�i.

The complete solution to Eq. (8.75) for arbitrary wing planform C(y) and arbitrary

(d�/d�) d�
		

y � �
1

	
4�U�


U��b
	

	
1
2

	
U2
�bC
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U�

w
	
U�

�(�) d�
	

y � �
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4�

�(�) d�
		
4�(y � �)
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twist �(y) is treated in advanced texts [for example, 11]. It turns out that there is a sim-
ple representative solution for an untwisted wing of elliptical planform

C(y) � C0	1 � � �
2



1/2

(8.77) 

The area and aspect ratio of this wing are

Ap � �(1/2)b

�(1/2)b
C dy � �bC0 AR � (8.78) 

The solution to Eq. (8.75) for this C(y) is an elliptical circulation distribution of ex-
actly similar shape

�(y) � �0	1 � � �
2



1/2

(8.79) 

Substituting into Eq. (8.75) and integrating give a relation between �0 and C0

�0 � (8.80) 

where � is assumed constant across the untwisted wing.
Substitution into Eq. (8.76) gives the elliptical-wing lift

L � 	
1
4

	� 2bC0
U2
��/(1 � 2/AR)

or CL � (8.81) 

If we generalize this to a thick cambered finite wing of approximately elliptical plan-
form, we obtain

CL � (8.82) 

This result was given without proof as Eq. (7.70). From Eq. (8.72) the computed down-
wash for the elliptical wing is constant

w(y) � � const (8.83) 

Finally, the induced drag coefficient from Eq. (8.76) is

CDi � CL � (8.84) 

This was given without proof as Eq. (7.71).
Figure 8.23 shows the effectiveness of this theory when tested against a nonellipti-

cal cambered wing by Prandtl in 1921 [14]. Figure 8.23a and b shows the measured
lift curves and drag polars for five different aspect ratios. Note the increase in stall an-
gle and drag and the decrease in lift slope as the aspect ratio decreases.

Figure 8.23c shows the lift data replotted against effective angle of attack �eff �
(� � �)/(1 � 2/AR), as predicted by Eq. (8.82). These curves should be equivalent to

C2
L	

� AR
w

	
U�

2U��
	
2 � AR

2� sin (� � �)
		

1 � 2/AR

2��
		
1 � 2/AR

�C0U��
		
1 � 2/AR

2y
	
b

4b
	
�C0

1
	
4

2y
	
b

8.7 Airfoil Theory 533



Fig. 8.23 Comparison of theory and
experiment for a finite wing: (a)
measured lift [14]; (b) measured
drag polar [14]; (c) lift reduced to
infinite aspect ratio; (d) drag polar
reduced to infinite aspect ratio.

an infinite-aspect-ratio wing, and they do collapse together except near stall. Their com-
mon slope dCL/d� is about 10 percent less than the theoretical value 2�, but this is
consistent with the thickness and shape effects noted in Fig. 8.20.

Figure 8.23d shows the drag data replotted with the theoretical induced drag CDi �
C2

L /(�AR) subtracted out. Again, except near stall, the data collapse onto a single line
of nearly constant infinite-aspect-ratio drag CD0 � 0.01. We conclude that the finite-
wing theory is very effective and may be used for design calculations.

The same superposition technique which worked so well for plane flow in Sec. 8.3 is
also successful for axisymmetric potential flow. We give some brief examples here.

Most of the basic results carry over from plane to axisymmetric flow with only slight
changes owing to the geometric differences. Consider the following related flows:
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5 This section may be omitted without loss of continuity.



Fig. 8.24 Spherical polar coordi-
nates for axisymmetric flow.

Spherical Polar Coordinates

Basic plane flow Counterpart axisymmetric flow

Uniform stream Uniform stream
Line source or sink Point source or sink
Line doublet Point doublet
Line vortex No counterpart
Rankine half-body cylinder Rankine half-body of revolution
Rankine-oval cylinder Rankine oval of revolution
Circular cylinder Sphere
Symmetric airfoil Tear-shaped body

Since there is no such thing as a point vortex, we must forgo the pleasure of studying
circulation effects in axisymmetric flow. However, as any smoker knows, there is an
axisymmetric ring vortex, and there are also ring sources and ring sinks, which we
leave to advanced texts [for example, 3].

Axisymmetric potential flows are conveniently treated in the spherical polar coordi-
nates of Fig. 8.24. There are only two coordinates (r, �), and flow properties are con-
stant on a circle of radius r sin � about the x-axis.

The equation of continuity for incompressible flow in these coordinates is

	∂
∂
r
	 (r2�r sin �) � 	∂

∂
�
	 (r�� sin �) � 0 (8.85) 

where �r and �� are radial and tangential velocity as shown. Thus a spherical polar
stream function6 exists such that

�r � � �� � (8.86) 

In like manner a velocity potential �(r, �) exists such that

�r � 	
∂
∂
�
r
	 �� � (8.87) 

∂�
	
∂�
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θ
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Properties do not vary on a
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x

6 It is often called Stokes’ stream function, having been used in a paper Stokes wrote in 1851 on vis-
cous sphere flow.



Uniform Stream plus a 
Point Source

Uniform Stream in the x Direction

Point Source or Sink

Point Doublet

These formulas serve to deduce the � and � functions for various elementary-
axisymmetric potential flows.

A stream U� in the x direction has components

�r � U� cos � �� � �U� sin �

Substitution into Eqs. (8.86) and (8.87) and integrating give

Uniform stream: � � �	
1
2

	U�r2 sin2 � � � U�r cos � (8.88) 

As usual, arbitrary constants of integration have been neglected.

Consider a volume flux Q issuing from a point source. The flow will spread out radi-
ally and at radius r will equal Q divided by the area 4�r2 of a sphere. Thus

�r � � �� � 0 (8.89) 

with m � Q/(4�) for convenience. Integrating (8.86) and (8.87) gives

Point source � � m cos � � � � (8.90) 

For a point sink, change m to � m in Eq. (8.90).

Exactly as in Fig. 8.8, place a source at (x, y) � ( � a, 0) and an equal sink at ( � a,
0), taking the limit as a becomes small with the product 2am � � held constant

�doublet � lim
a→0

(m cos �source � m cos �sink) � (8.91) 

We leave the proof of this limit as a problem. The point-doublet velocity potential

�doublet � lim
a→0 �� � � � (8.92) 

The streamlines and potential lines are shown in Fig. 8.25. Unlike the plane doublet
flow of Fig. 8.8, neither set of lines represents perfect circles.

By combining Eqs. (8.88) and (8.90) we obtain the stream function for a uniform stream
plus a point source at the origin

� � �	
1
2

	U�r2 sin2 � � m cos � (8.93) 

From Eq. (8.86) the velocity components are, by differentiation,

�r � U� cos � � �� � �U� sin � (8.94) 
m
	
r2

� cos �
	

r2
m

	
rsink

m
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Fig. 8.25 Streamlines and potential
lines due to a point doublet at the
origin, from Eqs. (8.91) and (8.92).

Setting these equal to zero reveals a stagnation point at � � 180° and r � a �
(m/U�)1/2, as shown in Fig. 8.26. If we let m � U�a2, the stream function can be rewrit-
ten as

� cos � � � �
2

sin2 � (8.95) 

The stream surface which passes through the stagnation point (r, �) � (a, �) has the
value � � �U�a2 and forms a half-body of revolution enclosing the point source, as
shown in Fig. 8.26. This half-body can be used to simulate a pitot tube. Far down-
stream the half-body approaches the constant radius R � 2a about the x-axis. The max-
imum velocity and minimum pressure along the half-body surface occur at � � 70.5°,

r
	
a

1
	
2

�
	
U�a2
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Fig. 8.26 Streamlines for a Rankine
half-body of revolution.



Fig. 8.27 Streamlines and potential
lines for inviscid flow past a
sphere.

r � a�3�, Vs � 1.155U�. Downstream of this point there is an adverse gradient as Vs

slowly decelerates to U�, but boundary-layer theory indicates no flow separation. Thus
Eq. (8.95) is a very realistic simulation of a real half-body flow. But when the uniform
stream is added to a sink to form a half-body rear surface, e.g., similar to Fig. 8.5c,
separation is predicted and the inviscid pattern is not realistic.

From Eqs. (8.88) and (8.91), combination of a uniform stream and a point doublet at
the origin gives

� � � U�r2 sin2 � � sin2 � (8.96) 

Examination of this relation reveals that the stream surface � � 0 corresponds to the
sphere of radius

r � a � � �
1/3

(8.97) 

This is exactly analogous to the cylinder flow of Fig. 8.10a formed by combining a
uniform stream and a line doublet.

Letting � � 	
1
2

	U�a3 for convenience, we rewrite Eq. (8.96) as

� �sin2 �� � � (8.98) 

The streamlines for this sphere flow are plotted in Fig. 8.27. By differentiation from
Eq. (8.86) the velocity components are

�r � U� cos ��1 � � �� � � U� sin ��2 � � (8.99) 

We see that the radial velocity vanishes at the sphere surface r � a, as expected. There
is a stagnation point at the front (a, �) and the rear (a, 0) of the sphere. The maximum
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The Concept of Hydrodynamic
Mass

velocity occurs at the shoulder (a, �	
1
2

	�), where �r � 0 and �� � �1.5U�. The 
surface-velocity distribution is

Vs � ����r�a � 	
3
2

	U� sin � (8.100) 

Note the similarity to the cylinder surface velocity equal to 2U� sin � from Eq. (8.34)
with zero circulation.

Equation (8.100) predicts, as expected, an adverse pressure gradient on the rear (� �
90°) of the sphere. If we use this distribution with laminar-boundary-layer theory [for
example, 15, p. 298], separation is computed to occur at about � � 76°, so that in the
actual flow pattern of Fig. 7.14 a broad wake forms in the rear. This wake interacts
with the free stream and causes Eq. (8.100) to be inaccurate even in the front of the
sphere. The measured maximum surface velocity is equal only to about 1.3U� and oc-
curs at about � � 107° (see Ref. 15, sec. 4.10.4, for further details).

When a body moves through a fluid, it must push a finite mass of fluid out of the way.
If the body is accelerated, the surrounding fluid must also be accelerated. The body
behaves as if it were heavier by an amount called the hydrodynamic mass (also called
the added or virtual mass) of the fluid. If the instantaneous body velocity is U(t), the
summation of forces must include this effect

� F � (m � mh) (8.101) 

where mh, the hydrodynamic mass, is a function of body shape, the direction of mo-
tion, and (to a lesser extent) flow parameters such as the Reynolds number.

According to potential theory [2, sec. 6.4; 3, sec. 9.22], mh depends only on the
shape and direction of motion and can be computed by summing the total kinetic en-
ergy of the fluid relative to the body and setting this equal to an equivalent body en-
ergy

KEfluid � � 	
1
2

	dm V2
rel � 	

1
2

	mhU2 (8.102) 

The integration of fluid kinetic energy can also be accomplished by a body-surface in-
tegral involving the velocity potential [16, sec. 11].

Consider the previous example of a sphere immersed in a uniform stream. By sub-
tracting out the stream velocity we can replot the flow as in Fig. 8.28, showing the
streamlines relative to the moving sphere. Note the similarity to the doublet flow in
Fig. 8.25. The relative-velocity components are found by subtracting U from Eqs. (8.99)

�r � � �� � �

The element of fluid mass, in spherical polar coordinates, is

dm � 
(2�r sin �)r dr d�

When dm and V2
rel � �2

r � �2
� are substituted into Eq. (8.102), the integral can be eval-

uated

KEfluid � 	
1
3

	
�a3U2

Ua3 sin �
		

2r3

Ua3 cos �
		

r3

dU
	
dt
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Fig. 8.28 Potential-flow streamlines
relative to a moving sphere. Com-
pare with Figs. 8.25 and 8.27.

8.9 Numerical Analysis

or mh(sphere) � 	
2
3

	
�a3 (8.103)

Thus, according to potential theory, the hydrodynamic mass of a sphere equals one-
half of its displaced mass, independent of the direction of motion.

A similar result for a cylinder moving normal to its axis can be computed from Eqs.
(8.33) after subtracting out the stream velocity. The result is

mh(cylinder) � 
�a2L (8.104) 

for a cylinder of length L, assuming two-dimensional motion. The cylinder’s hydro-
dynamic mass equals its displaced mass.

Tables of hydrodynamic mass for various body shapes and directions of motion are
given by Patton [17]. See also Ref. 21.

When potential flow involves complicated geometries or unusual stream conditions,
the classical superposition scheme of Secs. 8.3 and 8.4 becomes less attractive. Con-
formal mapping of body shapes, by using the complex-variable technique of Sec. 8.5,
is no longer popular. Numerical analysis is the appropriate modern approach, and at
least three different approaches are in use:

1. The finite-element method (FEM) [6, 19]

2. The finite-difference method (FDM) [5, 20]

3. a. Integral methods with distributed singularities [18]

b. The boundary-element method [7]
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The Finite-Element Method

The Finite-Difference Method

Methods 3a and 3b are closely related, having first been developed on an ad hoc ba-
sis by aerodynamicists in the 1960s [18] and then generalized into a multipurpose ap-
plied-mechanics technique in the 1970s [7].

Methods 1 (or FEM) and 2 (or FDM), though strikingly different in concept, are
comparable in scope, mesh size, and general accuracy. We concentrate here on the lat-
ter method for illustration purposes.

The finite-element method [19] is applicable to all types of linear and nonlinear par-
tial differential equations in physics and engineering. The computational domain is di-
vided into small regions, usually triangular or quadrilateral. These regions are delin-
eated with a finite number of nodes where the field variables—temperature, velocity,
pressure, stream function, etc.—are to be calculated. The solution in each region is ap-
proximated by an algebraic combination of local nodal values. Then the approximate
functions are integrated over the region, and their error is minimized, often by using a
weighting function. This process yields a set of N algebraic equations for the N un-
known nodal values. The nodal equations are solved simultaneously, by matrix inver-
sion or iteration. For further details see Ref. 6 or 19.

Although textbooks on numerical analysis [5, 20] apply finite-difference techniques to
many different problems, here we concentrate on potential flow. The idea of FDM is
to approximate the partial derivatives in a physical equation by “differences’’ between
nodel values spaced a finite distance apart—a sort of numerical calculus. The basic
partial differential equation is thus replaced by a set of algebraic equations for the nodal
values. For potential (inviscid) flow, these algebraic equations are linear, but they are
generally nonlinear for viscous flows. The solution for nodal values is obtained by it-
eration or matrix inversion. Nodal spacings need not be equal.

Here we illustrate the two-dimensional Laplace equation, choosing for convenience
the stream-function form

� � 0 (8.105) 

subject to known values of � along any body surface and known values of ∂�/∂x and
∂�/∂y in the free stream.

Our finite-difference technique divides the flow field into equally spaced nodes, as
shown in Fig. 8.29. To economize on the use of parentheses or functional notation, sub-
scripts i and j denote the position of an arbitrary, equally spaced node, and �i,j denotes
the value of the stream function at that node

�i,j � �(x0 � i �x, y0 � j �y)

Thus, �i�1,j is just to the right of �i,j, and �i,j�1 is just above.
An algebraic approximation for the derivative ∂�/∂x is

�
�(x � �x, y) � �(x, y)
			

�x

∂�
	
∂x

∂2�
	
∂y2

∂2�
	
∂x2
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Fig. 8.29 Definition sketch for a
two-dimensional rectangular finite-
difference grid.

A similar approximation for the second derivative is

� 	 � 

The subscript notation makes these expressions more compact

� (�i�1,j � �i,j)

(8.106) 

� (�i�1, j � 2�i, j � �i�1, j)

These formulas are exact in the calculus limit as �x → 0, but in numerical analysis we
keep �x and �y finite, hence the term finite differences.

In an exactly similar manner we can derive the equivalent difference expressions for
the y direction

� (�i, j�1 � �i, j)

� (�i, j�1 � 2�i, j � �i, j�1) (8.107)

The use of subscript notation allows these expressions to be programmed directly into
a scientific computer language such as BASIC or FORTRAN.

When (8.106) and (8.107) are substituted into Laplace’s equation (8.105), the result
is the algebraic formula

2(1 � �)�i, j � �i�1, j � �i�1, j � �(�i, j�1 � �i, j�1) (8.108) 

1
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∂2�
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�(x, y) � �(x � �x, y)
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where � � (�x/�y)2 depends upon the mesh size selected. This finite-difference model
of Laplace’s equation states that every nodal stream-function value �i, j is a linear com-
bination of its four nearest neighbors.

The most commonly programmed case is a square mesh (� � 1), for which Eq.
(8.108) reduces to

�i, j � 	
1
4

	(�i, j�1 � �i, j�1 � �i�1, j � �i�1, j) (8.109) 

Thus, for a square mesh, each nodal value equals the arithmetic average of the four
neighbors shown in Fig. 8.29. The formula is easily remembered and easily pro-
grammed. If P(I, J) is a subscripted variable stream function, the BASIC or FORTRAN
statement of (8.109) is

P(I, J) � 0.25 * (P(I, J � 1) � P(I, J � 1) � P(I � 1, J) � P(I � 1, J)) (8.110) 

This is applied in iterative fashion sweeping over each of the internal nodes (I, J), with
known values of P specified at each of the surrounding boundary nodes. Any initial
guesses can be specified for the internal nodes P(I, J), and the iteration process will
converge to the final algebraic solution in a finite number of sweeps. The numerical
error, compared with the exact solution of Laplace’s equation, is proportional to the
square of the mesh size.

Convergence can be speeded up by the successive overrelaxation (SOR) method,
discussed by Patankar [5]. The modified SOR form of the iteration is

P(I, J) � P(I, J) � 0.25 * A * (P(I, J � 1) � P(I, J � 1) 

� P(I � 1, J) � P(I � 1, J) � 4 * P(I, J)) (8.111) 

The recommended value of the SOR convergence factor A is about 1.7. Note that the
value A � 1.0 reduces Eq. (8.111) to (8.110).

Let us illustrate the finite-difference method with an example.

EXAMPLE 8.5

Make a numerical analysis, using �x � �y � 0.2 m, of potential flow in the duct expansion
shown in Fig. 8.30. The flow enters at a uniform 10 m/s, where the duct width is 1 m, and is
assumed to leave at a uniform velocity of 5 m/s, where the duct width is 2 m. There is a straight
section 1 m long, a 45° expansion section, and a final straight section 1 m long.

Solution

Using the mesh shown in Fig. 8.30 results in 45 boundary nodes and 91 internal nodes, with i
varying from 1 to 16 and j varying from 1 to 11. The internal points are modeled by Eq. (8.110).
For convenience, let the stream function be zero along the lower wall. Then since the volume
flow is (10 m/s)(1 m) � 10 m2/s per unit depth, the stream function must equal 10 m2/s along
the upper wall. Over the entrance and exit planes, the stream function must vary linearly to give
uniform velocities:

Inlet: �(1, J) � 2 * (J � 6) for J � 7 to 10

Exit: �(16, J) � J � 1 for J � 2 to 10
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Fig. 8.30 Numerical model of po-
tential flow through a two-dimen-
sional 45° expansion. The nodal
points shown are 20 cm apart.
There are 45 boundary nodes and
91 internal nodes.

All these boundary values must be input to the program and are shown printed in Fig. 8.31.
Initial guesses are stored for the internal points, say, zero or an average value of 5.0 m2/s.

The program then starts at any convenient point, such as the upper left (2, 10), and evaluates Eq.
(8.110) at every internal point, repeating this sweep iteratively until there are no further changes
(within some selected maximum change) in the nodal values. The results are the finite-differ-
ence simulation of this potential flow for this mesh size; they are shown printed in Fig. 8.31 to
three-digit accuracy. The reader should test a few nodes in Fig. 8.31 to verify that Eq. (8.110)
is satisfied everywhere. The numerical accuracy of these printed values is difficult to estimate,
since there is no known exact solution to this problem. In practice, one would keep decreasing
the mesh size to see whether there were any significant changes in nodal values.

This problem is well within the capability of a small personal computer. The values shown
in Fig. 8.31 were obtained after 100 iterations, or 6 min of execution time, on a Macintosh SE
personal computer, using BASIC.
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(1, 11) y = 2 m (16, 11)

(i, j)

10
m /s

5
m /s

i

j

(11, 1) y = 0 m (16, 1)

1 m 1 m 1 m

(1, 6) y = 1 m (6, 6)

45°

ψ = 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

 8.00 8.02 8.04 8.07 8.12 8.20 8.30 8.41 8.52 8.62 8.71 8.79 8.85 8.91 8.95

10.00

9.00

 6.00 6.03 6.06 6.12 6.22 6.37 6.58 6.82 7.05 7.26 7.44 7.59 7.71 7.82 7.91 8.00

 4.00 4.03 4.07 4.13 4.26 4.48 4.84 5.24 5.61 5.93 6.19 6.41 6.59 6.74 6.88 7.00

 2.00 2.02 2.05 2.09 2.20 2.44 3.08 3.69 4.22 4.65 5.00 5.28 5.50 5.69 5.85 6.00

0.00 0.00 0.00 0.00 0.00 1.33 2.22 2.92 3.45 3.87 4.19 4.45 4.66 4.84 5.00ψ = 0.00

0.00 1.00 1.77 2.37 2.83 3.18 3.45 3.66 3.84 4.00

0.00 0.80 1.42 1.90 2.24 2.50 2.70 2.86 3.00

0.00 0.63 1.09 1.40 1.61 1.77 1.89 2.00

0.00 0.44 0.66 0.79 0.87 0.94 1.00

0.00 0.00 0.00 0.00 0.00 0.00

Fig. 8.31 Stream-function nodal val-
ues for the potential flow of Fig.
8.30. Boundary values are known in-
puts. Internal nodes are solutions to
Eq. (8.110).



Although Fig. 8.31 is the computer solution to the problem, these numbers must be manip-
ulated to yield practical engineering results. For example, one can interpolate these numbers to
sketch various streamlines of the flow. This is done in Fig. 8.32a. We see that the streamlines
are curved both upstream and downstream of the corner regions, especially near the lower wall.
This indicates that the flow is not one-dimensional.

The velocities at any point in the flow can be computed from finite-difference formulas such
as Eqs. (8.106) and (8.107). For example, at the point (I, J) � (3, 6), from Eq. (8.107), the hor-
izontal velocity is approximately

u(3, 6) � � � 10.45 m/s

and the vertical velocity is zero from Eq. (8.106). Directly above this on the upper wall, we es-
timate

u(3, 11) � � � 9.65 m/s
10.00 � 8.07
		

0.2
�(3, 11) � �(3,10)
		

�y

2.09 � 0.00
		

0.2

�(3, 7) � �(3, 6)
		

�y
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Fig. 8.32 Useful results computed
from Fig. 8.31: (a) streamlines of
the flow; (b) pressure-coefficient
distribution along each wall.



The Boundary-Element Method

The flow is not truly one-dimensional in the entrance duct. The lower wall, which contains 
the diverging section, accelerates the fluid, while the flat upper wall is actually decelerating the fluid.

Another output function, useful in making boundary-layer analyses of the wall regions, is the
pressure distribution along the walls. If p1 and V1 are the pressure and velocity at the entrance (I �
1), conditions at any other point are computed from Bernoulli’s equation (8.3), neglecting gravity

p � 	
1
2

	
V2 � p1 � 	
1
2

	
V2
1

which can be rewritten as a dimensionless pressure coefficient

Cp � � 1 � � �
2

This determines p after V is computed from the stream-function differences in Fig. 8.31.
Figure 8.32b shows the computed wall-pressure distributions as compared with the one-

dimensional continuity approximation V1A1 � V(x)A(x), or

Cp(one-dim) � 1 � � �
2

(1) 

The one-dimensional approximation, which is rather crude for this large (45°) expansion, lies
between the upper and lower wall pressures. One-dimensional theory would be much more ac-
curate for a 10° expansion.

Analyzing Fig. 8.32b, we predict that boundary-layer separation will probably occur on the
lower wall between the corners, where pressure is strongly rising (highly adverse gradient). There-
fore potential theory is probably not too realistic for this flow, where viscous effects are strong.
(Recall Figs. 6.27 and 7.8.)

Potential theory is reversible; i.e., when we reverse the flow arrows in Fig. 8.32a, then Fig.
8.32b is still valid and would represent a 45° contraction flow. The pressure would fall on both
walls (no separation) from x � 3 m to x � 1 m. Between x � 1 m and x � 0, the pressure rises
on the lower surface, indicating possible separation, probably just downstream of the corner.

This example should give the reader an idea of the usefulness and generality of numerical
analysis of fluid flows.

A relatively new technique for numerical solution of partial differential equations is
the boundary-element method (BEM). Reference 7 is an introductory textbook outlin-
ing the concepts of BEM, including FORTRAN programs for potential theory and elas-
tostatics. There are no interior elements. Rather, all nodes are placed on the boundary
of the domain, as in Fig. 8.33. The “element’’ is a small piece of the boundary sur-
rounding the node. The “strength’’ of the element can be either constant or variable.

For plane potential flow, the method takes advantage of the particular solution

�* � ln (8.112) 

which satisfies Laplace’s equation, �2� � 0. Each element i is assumed to have a dif-
ferent strength �i. Then r represents the distance from that element to any other point
in the flow field. Summing all these elemental effects, with proper boundary condi-
tions, will give the total solution to the potential-flow problem.

At each element of the boundary, we typically know either the value of � or the
value of ∂�/∂n, where n is normal to the boundary. (Mixed combinations of � and

1
	
r

1
	
2�

A1	
A

V
	
V1

p � p1	
	
1
2

	
V2
1
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∂�/∂n are also possible but are not discussed here.) The correct strengths �i are such
that these boundary conditions are satisfied at every element. Summing these effects
over N elements requires integration by parts plus a careful evaluation of the (singu-
lar) effect of element i upon itself. The mathematical details are given in Ref. 7. The
result is a set of N algebraic equations for the unknown boundary values. In the case
of elements of constant strength, the final expression is

�i � �
N

j�1
�j ��

0

j
ds� � �

N

j�1
� �j ��

0

j
�* ds� i � 1 to N (8.113) 

The integrals, which involve the logarithmic particular solution �* from Eq. (8.112),
are evaluated numerically for each element. Reference 7 recommends � and gives a
program for � gaussian quadrature formulas.

Equations (8.113) contain 2N element values, �i and (∂�/∂n)i, of which N are known
from the given boundary conditions. The remaining N are solved simultaneously from
Eqs. (8.113). Generally this completes the analysis � only the boundary solution is
computed, and interior points are not studied. In most cases, the boundary velocity and
pressure are all that is needed.

We illustrated the method with stream function �. Naturally the entire technique
also applies to velocity potential �, if we are given proper conditions on � or ∂�/∂n
at each boundary element. The method is readily extended to three dimensions [7].

Reference 7 gives a complete FORTRAN listing for solving Eqs. (8.113) numeri-
cally for constant, linear, and quadratic element strength variations. We now use their
constant-element-strength program, POCONBE [7], to take an alternate look at Ex-
ample 8.5, which used the finite-difference method.

EXAMPLE 8.6

Solve the duct expansion problem, Example 8.5, using boundary elements. Use the same grid
spacing �x � �y � 0.2 m for the element sizes.

Solution

The boundary nodes are equally spaced, as shown in Fig. 8.34. There are only 45 nodes, whereas
there were 91 interior points for the FDM solution of Example 8.5. We expect the same accu-
racy for 50 percent fewer nodes. (Had we reduced the grid size to 0.1 m, there would be 90

∂�
	
∂n

∂�*
	
∂n

1
	
2
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dsFig. 8.33 Boundary elements of
constant strength in plane potential
flow.



One-Dimensional Unsteady Flow

Fig. 8.34 Boundary elements corre-
sponding to the same grid size as
Fig. 8.31. Nodal values of stream
function and computed surface ve-
locity are shown.

nodes as opposed to 406 interior points � a savings of 78 percent.) The program POCONBE [7]
asks you to input the location of these 45 nodes. The stream-function values are known all around
the boundary: � equals 0 on the bottom and 10.0 on the top and is linearly increasing from 0 to
10.0 at entrance and exit. These values of �, shown on the outside in Fig. 8.34, are inputted into
the program.

Once the input of nodes and element values is complete, the program immediately computes
and displays or stores the 45 unknowns, which in this case are the values of ∂�/∂n all around
the boundary. These values are shown on the inside of the top and bottom surfaces in Fig. 8.34
and represent the local surface velocity near each element, in m/s. The values of ∂�/∂n at en-
trance and exit, which are small fractions representing vertical velocity components, are not
shown here.
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The reader may verify that use of the surface velocities in Fig. 8.34 to compute surface pres-
sure coefficients, as in Example 8.5, leads to curves very similar to those shown in Fig. 8.32.
The BEM approach, using the same boundary nodes, has accuracy comparable to that for an
FDM computation. For further details see Ref. 7.

Our previous finite-difference model of Laplace’s equation, e.g., Eq. (8.109), was very
well behaved and converged nicely with or without overrelaxation. Much more care is
needed to model the full Navier-Stokes equations. The challenges are quite different,
and they have been met to a large extent, so there are now many textbooks [20, 23 to
27] on (fully viscous) computational fluid dynamics (CFD). This is not a textbook on
CFD, but we will address some of the issues in this section.

We begin with a simplified problem, showing that even a single viscous term intro-
duces new effects and possible instabilities. Recall (or review) Prob. 4.85, where a wall
moves and drives a viscous fluid parallel to itself. Gravity is neglected. Let the wall be
the plane y � 0, moving at a speed U0(t), as in Fig. 8.35. A uniform vertical grid, of
spacing �y, has nodes n at which the local velocity un

j is to be calculated, where su-

Viscous-Flow Computer Models



Fig. 8.35 An equally spaced finite-
difference mesh for one-dimen-
sional viscous flow [Eq. (8.114)].

perscript j denotes the time-step j�t. The wall is n � 1. If u � u(y, t) only and � �
w � 0, continuity, � � V � 0, is satisfied and we need only solve the x-momentum
Navier-Stokes equation:

� v (8.114)

where  � !/
. Utilizing the same finite-difference approximations as in Eq. (8.106),
we may model Eq. (8.114) algebraically as a forward time difference and a central spa-
tial difference:

�  

Rearrange and find that we can solve explicitly for un at the next time-step j � 1:

un
j�1 � (1 � 2") un

j � " (un�1
j    � un�1

j   ) " � (8.115)

Thus u at node n at the next time-step j � 1 is a weighted average of three previous
values, similar to the “four-nearest-neighbors” average in the laplacian model of Eq.
(8.109). Since the new velocity is calculated immediately, Eq. (8.115) is called an ex-
plicit model. It differs from the well-behaved laplacian model, however, because it may
be unstable. The weighting coefficients in Eq. (8.115) must all be positive to avoid di-
vergence. Now " is positive, but (1 � 2") may not be. Therefore, our explicit viscous
flow model has a stability requirement:

" � # (8.116)

Normally one would first set up the mesh size �y in Fig. 8.35, after which Eq. (8.116)
would limit the time-step �t. The solutions for nodal values would then be stable, but
not necessarily that accurate. The mesh sizes �y and �t could be reduced to increase
accuracy, similar to the case of the potential-flow laplacian model (8.109).

For example, to solve Prob. 4.85 numerically, one sets up a mesh with plenty of
nodes (30 or more �y within the expected viscous layer); selects �t according to Eq.

1
	
2

 �t
	
�y2

 �t
	
�y2

u n�1
j    � 2un

j � u n�1
j

			
�y2

un
j�1 � un

j

		
�t

∂2u
	
∂y2

∂u
	
∂t
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An Alternate Implicit Approach

(8.116); and sets two boundary conditions for all j: u1 � U0 sin 
t† and uN � 0, where
N is the outermost node. For initial conditions, perhaps assume the fluid initially at
rest: un

1 � 0 for 2 # n # N � 1. Sweeping the nodes 2 # n # N �1 using Eq. (8.115)
(an Excel spreadsheet is excellent for this), one generates numerical values of un

j for
as long as one desires. After an initial transient, the final “steady” fluid oscillation will
approach the classical solution in viscous-flow textbooks [15]. Try Prob. 8.115 to
demonstrate this. 

In many finite-difference problems, a stability limitation such as Eq. (8.116) requires
an extremely small time-step. To allow larger steps, one can recast the model in an im-
plicit fashion by evaluating the second-derivative model in Eq. (8.114) at the next time-
step:

	
un

j�1

�

�

t

un
j

	 �   

This rearrangement is unconditionally stable for any ", but now we have three un-
knowns:

�"un�1
j�1 � (1 � 2")un

j�1 � " un�1
j�1 � un

j (8.117)

This is an implicit model, meaning that one must solve a large system of algebraic
equations for the new nodal values at time j � 1. Fortunately, the system is narrowly
banded, with the unknowns confined to the principal diagonal and its two nearest di-
agonals. In other words, the coefficient matrix of Eq. (8.117) is tridiagonal, a happy
event. A direct method, called the tridiagonal matrix algorithm (TDMA), is available
and explained in most CFD texts [20, 23 to 27]. Appendix A of Ref. 20 includes a
complete program for solving the TDMA. If you have not learned the TDMA yet, Eq.
(8.117) converges satisfactorily by rearrangement and iteration:

un
j�1 � (8.118)

At each time-step j � 1, sweep the nodes 2 # n # N � 1 over and over, using Eq.
(8.118), until the nodal values have converged. This implicit method is stable for any
", however large. To ensure accuracy, though, one should keep �t and �y small com-
pared to the basic time and length scales of the problem. This author’s habit is to keep
�t and �y small enough that nodal values change no more than 10 percent from one
(n, j) to the next.

EXAMPLE 8.7

SAE 30 oil at 20°C is at rest near a wall when the wall suddenly begins moving at a constant 1
m/s. Using the explicit model of Eq. (8.114), estimate the oil velocity at y � 3 cm after 1 sec-
ond of wall motion.

un
j � " (un�1

j�1 � un�1
j�1)

			
1 � 2"

un�1
j�1 � 2un

j�1 � un�1
j�1

			
�y2
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†Finite differences are not analytical; one must set U0 and 
 equal to numerical values.



Steady Two-Dimensional 
Laminar Flow

Solution

For SAE 30 oil, from Table A-3,  � 0.29/891 � 3.25 E-4 m2/s. For convenience in putting a
node exactly at y � 3 cm, choose �y � 0.01 m. The stability limit (8.116) is  �t/�y2 � 0.5, or
�t � 0.154 s. Again for convenience, to hit t � 1 s on the nose, choose �t � 0.1 s, or " � 0.3255
and (1 � 2") � 0.3491. Then our explicit algebraic model (8.115) for this problem is

un
j�1 � 0.3491 un

j � 0.3255(un�1
j    � un�1

j ) (1)

We apply this relation from n � 2 out to at least n � N � 15, to make sure that the desired value
of u at n � 3 is accurate. The wall no-slip boundary requires u1

j � 1.0 m/s � constant for all j.
The outer boundary condition is uN � 0. The initial conditions are un

1 � 0 for n $ 2. We then
apply Eq. (1) repeatedly for n $ 2 until we reach j � 11, which corresponds to t � 1 s. This is
easily programmed on a spreadsheet such as Excel. Here we print out only j � 1, 6, and 11 as
follows:

j t u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

1 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.500 1.000 0.601 0.290 0.107 0.027 0.004 0.000 0.000 0.000 0.000 0.000
11 1.000 1.000 0.704 0.446 0.250 0.123 0.052 0.018 0.005 0.001 0.000 0.000

Note: Units for t and u’s are s and m/s, respectively.

Our numerical estimate is u4
11 � u(3 cm, 1 s) � 0.250 m/s, which is about 4 percent high—

this problem has a known exact solution, u � 0.241 m/s [15]. We could improve the accuracy
indefinitely by decreasing �y and �t.

The previous example, unsteady one-dimensional flow, had only one viscous term and
no convective accelerations. Let us look briefly at incompressible two-dimensional
steady flow, which has four of each type of term, plus a nontrivial continuity equation:

Continuity: � � 0 (8.119a)

x momentum: u � � � � �  � � � (8.119b)

y momentum u � � � � �  � � � (8.119c)

These equations, to be solved for (u, �, p) as functions of (x, y), are familiar to us from
analytical solutions in Chaps. 4 and 6. However, to a numerical analyst, they are odd,
because there is no pressure equation, that is, a differential equation for which the dom-
inant derivatives involve p. This situation has led to several different “pressure-adjust-
ment” schemes in the literature [20, 23 to 27], most of which manipulate the continu-
ity equation to insert a pressure correction.

A second difficulty in Eq. (8.119b and c) is the presence of nonlinear convective
accelerations such as u(∂u/∂x), which create asymmetry in viscous flows. Early at-
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Commercial CFD Codes

tempts, which modeled such terms with a central difference, led to numerical instabil-
ity. The remedy is to relate convection finite differences solely to the upwind flow en-
tering the cell, ignoring the downwind cell. For example, the derivative ∂u/∂x could be
modeled, for a given cell, as (uupwind � ucell)/�x. Such improvements have made fully
viscous CFD an effective tool, with various commercial user-friendly codes available.
For details beyond our scope, see Refs. 20 and 23 to 27.

Mesh generation and gridding have also become quite refined in modern CFD. Fig-
ure 8.36 illustrates a CFD solution of two-dimensional flow past an NACA 66(MOD)
hydrofoil [28]. The gridding in Fig. 8.36a is of the C type, which wraps around the
leading edge and trails off behind the foil, thus capturing the important near-wall and
wake details without wasting nodes in front or to the sides. The grid size is 262 by 91.

The CFD model for this hydrofoil flow is also quite sophisticated: a full Navier-
Stokes solver with turbulence modeling [29] and allowance for cavitation bubble for-
mation when surface pressures drop below the local vapor pressure. Figure 8.36b com-
pares computed and experimental surface pressure coefficients for an angle of attack of
1°. The dimensionless pressure coefficient is defined as Cp � (psurface � p�)/(
V�

2 /2).
The agreement is excellent, as indeed it is also for cases where the hydrofoil cavitates
[28]. Clearly, when properly implemented for the proper flow cases, CFD can be an ex-
tremely effective tool for engineers.

The coming of the third millennium has seen an enormous emphasis on computer ap-
plications in nearly every field, fluid mechanics being a prime example. It is now pos-
sible, at least for moderately complex geometries and flow patterns, to model on a dig-
ital computer, approximately, the equations of motion of fluid flow, with dedicated CFD
textbooks available [20, 23 to 27]. The flow region is broken into a fine grid of elements
and nodes, which algebraically simulate the basic partial differential equations of flow.
While simple two-dimensional flow simulations have long been reported and can be
programmed as student exercises, three-dimensional flows, involving thousands or even
millions of grid points, are now solvable with the modern supercomputer.

Although elementary computer modeling was treated briefly here, the general topic
of CFD is essentially for advanced study or professional practice. The big change over
the past decade is that engineers, rather than laboriously programming CFD problems
themselves, can now take advantage of any of several commercial CFD codes. These
are extensive software packages which allow engineers to construct a geometry and
boundary conditions to simulate a given viscous-flow problem. The software then grids
the flow region and attempts to compute flow properties at each grid element. The con-
venience is great; the danger is also great. That is, computations are not merely auto-
matic, like when using a hand calculator, but rather require care and concern from the
user. Convergence and accuracy are real problems for the modeler. Use of the codes
requires some art and experience. In particular, when the flow Reynolds number, Re �

VL/!, goes from moderate (laminar flow) to high (turbulent flow), the accuracy of
the simulation is no longer assured in any real sense. The reason is that turbulent flows
are not completely resolved by the full equations of motion, and one resorts to using
approximate turbulence models.

Turbulence models [29] are developed for particular geometries and flow conditions
and may be inaccurate or unrealistic for others. This is discussed by Freitas [30], who
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Fig. 8.36 CFD results for water
flow past an NASA 66(MOD) hy-
drofoil [from Ref 28, with permis-
sion of the American Society of
Mechanical Engineers]: (a) C grid-
ding, 262 by 91 nodes; (b) surface
pressures at � � 1°.

compared eight different commercial-code calculations (FLOW-3D, FLOTRAN, STAR-
CD, N3S, CFD-ACE, FLUENT, CFDS-FLOW3D, and NISA/3D-FLUID) with exper-
imental results for five benchmark flow experiments. Calculations were made by the
vendors themselves. Freitas concludes that commercial codes, though promising in gen-
eral, can be inaccurate for certain laminar- and turbulent-flow situations. Further re-
search is recommended before engineers can truly rely upon such software to give gen-
erally accurate fluid-flow predictions.

In spite of the above warning to treat CFD codes with care, one should also realize
that the results of a given CFD simulation can be spectacular. Figure 8.37 illustrates
turbulent flow past a cube mounted on the floor of a channel whose clearance is twice
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Fig. 8.37 Flow over a surface-
mounted cube creates a complex
and perhaps unexpected pattern: (a)
experimental oil-streak visualiza-
tion of surface flow at Re � 40,000
(based on cube height) ( from Ref.
31, courtesy of Robert Martinuzzi,
with the permission of the Ameri-
can Society of Mechanical Engi-
neers); (b) computational large-
eddy simulation of the surface flow
in (a) ( from Ref. 32, courtesy of
Kishan Shah, Stanford University);
and (c) a side view of the flow in
(a) visualized by smoke generation
and a laser light sheet ( from Ref.
31, courtesy of Robert Martinuzzi,
with the permission of the Ameri-
can Society of Mechanical Engi-
neers).
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the cube height. Compare Fig. 8.37a, a top view of the experimental surface flow [31]
as visualized by oil streaks, with Fig. 8.37b, a CFD supercomputer result using the
method of large-eddy simulation [32, 33]. The agreement is remarkable. The C-shaped
flow pattern in front of the cube is caused by formation of a horseshoe vortex, as seen
in a side view of the experiment [31] in Fig. 8.37c. Horseshoe vortices commonly re-
sult when surface shear flows meet an obstacle. We conclude that CFD has a tremen-
dous potential for flow prediction.

This chapter has analyzed a highly idealized but very useful type of flow: inviscid, in-
compressible, irrotational flow, for which Laplace’s equation holds for the velocity po-
tential (8.1) and for the plane stream function (8.7). The mathematics is well devel-
oped, and solutions of potential flows can be obtained for practically any body shape.

Some solution techniques outlined here are (1) superposition of elementary line or
point solutions in both plane and axisymmetric flow, (2) the analytic functions of a
complex variable, (3) use of variable-strength vortex sheets, and (4) numerical analy-
sis on a digital computer. Potential theory is especially useful and accurate for thin
bodies such as airfoils. The only requirement is that the boundary layer be thin, i.e.,
that the Reynolds number be large.

For blunt bodies or highly divergent flows, potential theory serves as a first approxi-
mation, to be used as input to a boundary-layer analysis. The reader should consult the
advanced texts [for example, 2 to 4, 10 to 13] for further applications of potential the-
ory. Section 8.9 discusses computational methods for viscous (nonpotential) flows.
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Problems

Most of the problems herein are fairly straightforward. More diffi-
cult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equation Solver (EES), while problems labeled with a
computer disk may require the use of a computer. The standard end-
of-chapter problems 8.1 to 8.115 (categorized in the problem list
below) are followed by word problems W8.1 to W8.7, comprehen-
sive problems C8.1 to C8.3, and design projects D8.1 to D8.3.

Problem Distribution

Section Topic Problems

8.1 Introduction and review 8.1–8.7
8.2 Elementary plane-flow solutions 8.8–8.17
8.3 Superposition of plane flows 8.18–8.34
8.4 Plane flow past closed-body shapes 8.35–8.59
8.5 The complex potential 8.60–8.71
8.6 Images 8.72–8.79
8.7 Airfoil theory: Two-dimensional 8.80–8.84
8.7 Airfoil theory: Finite-span wings 8.85–8.90
8.8 Axisymmetric potential flow 8.91–8.103
8.8 Hydrodynamic mass 8.104–8.105
8.9 Numerical methods 8.106–8.115

P8.1 Prove that the streamlines �(r, �) in polar coordinates from
Eqs. (8.10) are orthogonal to the potential lines �(r, �).

P8.2 The steady plane flow in Fig. P8.2 has the polar velocity
components �� � %r and �r � 0. Determine the circula-
tion � around the path shown.

R2

R1

P8.2

P8.3 Using cartesian coordinates, show that each velocity com-
ponent (u, �, w) of a potential flow satisfies Laplace’s equa-
tion separately.

P8.4 Is the function 1/r a legitimate velocity potential in plane
polar coordinates? If so, what is the associated stream func-
tion �(r, �)?

P8.5 Consider the two-dimensional velocity distribution u �
�By, � � Bx, where B is a constant. If this flow possesses a

Summary



stream function, find its form. If it has a velocity potential,
find that also. Compute the local angular velocity of the flow,
if any, and describe what the flow might represent.

P8.6 An incompressible flow has the velocity potential � � 2Bxy,
where B is a constant. Find the stream function of this flow,
sketch a few streamlines, and interpret the pattern.

P8.7 Consider a flow with constant density and viscosity. If the
flow possesses a velocity potential as defined by Eq. (8.1),
show that it exactly satisfies the full Navier-Stokes equa-
tions (4.38). If this is so, why for inviscid theory do we
back away from the full Navier-Stokes equations?

P8.8 For the velocity distribution of Prob. 8.5, evaluate the cir-
culation � around the rectangular closed curve defined by
(x, y) � (1, 1), (3, 1), (3, 2), and (1, 2). Interpret your re-
sult, especially vis-à-vis the velocity potential.

P8.9 Consider the two-dimensional flow u � �Ax, � � Ay,
where A is a constant. Evaluate the circulation � around
the rectangular closed curve defined by (x, y) � (1, 1),
(4, 1), (4, 3), and (1, 3). Interpret your result, especially
vis-à-vis the velocity potential.

P8.10 A mathematical relation sometimes used in fluid mechan-
ics is the theorem of Stokes [1]

�
C

V � ds � �
A
� (� & V) � n dA

where A is any surface and C is the curve enclosing that sur-
face. The vector ds is the differential arc length along C,
and n is the unit outward normal vector to A. How does this
relation simplify for irrotational flow, and how does the re-
sulting line integral relate to velocity potential?

P8.11 A power plant discharges cooling water through the man-
ifold in Fig. P8.11, which is 55 cm in diameter and 8 m
high and is perforated with 25,000 holes 1 cm in diame-
ter. Does this manifold simulate a line source? If so, what
is the equivalent source strength m?

P8.12 Consider the flow due to a vortex of strength K at the ori-
gin. Evaluate the circulation from Eq. (8.15) about the
clockwise path from (r, �) � (a, 0) to (2a, 0) to (2a, 3�/2)
to (a, 3�/2) and back to (a, 0). Interpret the result.

P8.13 A well-known exact solution to the Navier-Stokes equa-
tions (4.38) is the unsteady circulating motion [15]

�� � 	1 � exp�� �
 �r � �z � 0

where K is a constant and  is the kinematic viscosity. Does
this flow have a polar-coordinate stream function and/or ve-
locity potential? Explain. Evaluate the circulation � for this
motion, plot it versus r for a given finite time, and interpret
compared to ordinary line vortex motion.

P8.14 A tornado may be modeled as the circulating flow shown
in Fig. P8.14, with �r � �z � 0 and ��(r) such that

��
� 


r r # R

v� � r � R

Determine whether this flow pattern is irrotational in ei-
ther the inner or outer region. Using the r-momentum
equation (D.5) of App. D, determine the pressure distri-
bution p(r) in the tornado, assuming p � p� as r → �.
Find the location and magnitude of the lowest pressure.


R2

	
r

r2

	
4 t

K
	
2�r
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Inlet

P8.11

P8.15 Evaluate Prob. 8.14 for the particular case of a small-scale
tornado, R � 100 m, ��,max � 65 m/s, with sea-level con-
ditions at r � �. Plot p(r) out to r � 400 m.

P8.16 Consider inviscid stagnation flow, � � Kxy (see Fig.
8.15b) superimposed with a source at the origin of strength
m. Plot the resulting streamlines in the upper half plane,
using the length scale a � (m/K)1/2. Give a physical inter-
pretation of the flow pattern.

P8.17 Examine the flow of Fig. 8.30 as an analytical (not a nu-
merical) problem. Give the appropriate differential equa-
tion and the complete boundary conditions for both the
stream function and the velocity potential. Is a Fourier-
series solution possible?



R

�θ (r)

r

P8.14



P8.18 Plot the streamlines and potential lines of the flow due
to a line source of strength m at (a, 0) plus a source
3m at (�a, 0). What is the flow pattern viewed from
afar?

P8.19 Plot the streamlines and potential lines of the flow due to
a line source of strength 3m at (a, 0) plus a sink �m at
(�a, 0). What is the pattern viewed from afar?

P8.20 Plot the streamlines of the flow due to a line vortex �K at
(0, � a) and a vortex �K at (0,�a). What is the pattern
viewed from afar?

P8.21 Plot the streamlines of the flow due to a line vortex �K at
(�a, 0) and a vortex �2K at (�a, 0). What is the pattern
viewed from afar?

P8.22 Plot the streamlines of a uniform stream V � iU plus a
clockwise line vortex �K located at the origin. Are there
any stagnation points?

P8.23 Find the resultant velocity vector induced at point A
in Fig. P8.23 by the uniform stream, vortex, and line
source.

P8.26 Find the resultant velocity vector induced at point A in Fig.
P8.26 by the uniform stream, line source, line sink, and
vortex.

Problems 557

P8.24 Line sources of equal strength m � Ua, where U is a ref-
erence velocity, are placed at (x, y) � (0, a) and (0,�a).
Sketch the stream and potential lines in the upper half
plane. Is y � 0 a “wall’’? If so, sketch the pressure coef-
ficient

Cp �

along the wall, where p0 is the pressure at (0, 0). Find the
minimum pressure point and indicate where flow separa-
tion might occur in the boundary layer.

P8.25 Let the vortex/sink flow of Eq. (4.134) simulate a tor-
nado as in Fig. P8.25. Suppose that the circulation
about the tornado is � � 8500 m2/s and that the pres-
sure at r � 40 m is 2200 Pa less than the far-field pres-
sure. Assuming inviscid flow at sea-level density, es-
timate (a) the appropriate sink strength �m, (b) the
pressure at r � 15 m, and (c) the angle � at which the
streamlines cross the circle at r � 40 m (see Fig.
P8.25).

p � p0	
	
1
2

	
U2

U = 8 m /s

K = 25 m2 /s

m = 15 m2 /s

1.5 m

2 m

1 m

A

P8.23

40 m

β

P8.25

P8.27 A counterclockwise line vortex of strength 3K at 
(x, y) � (0, a) is combined with a clockwise vortex K at
(0, �a). Plot the streamline and potential-line pattern,
and find the point of minimum velocity between the two
vortices.

P8.28 Sources of equal strength m are placed at the four sym-
metric positions (x, y) � (a, a), (�a, a), (�a, �a), and 
(a, �a). Sketch the streamline and potential-line patterns.
Do any plane “walls’’ appear?

P8.29 A uniform water stream, U� � 20 m/s and 
 � 998 kg/m3,
combines with a source at the origin to form a half-body.
At (x, y) � (0, 1.2 m), the pressure is 12.5 kPa less than
p�. (a) Is this point outside the body? Estimate (b) the ap-
propriate source strength m and (c) the pressure at the nose
of the body.

P8.30 Suppose that the total discharge from the manifold in Fig.
P8.11 is 450 m3/s and that there is a uniform ocean cur-
rent of 60 cm/s to the right. Sketch the flow pattern from
above, showing the dimensions and the region where the
cooling-water discharge is confined.

P8.31 A Rankine half-body is formed as shown in Fig. P8.31.
For the stream velocity and body dimension shown, com-
pute (a) the source strength m in m2/s, (b) the distance
a, (c) the distance h, and (d) the total velocity at point A.

U = 6 m /s

m = 12 m2 /s

m = – 10 m2 /s

K = 9 m2 /s
20°

2 m

1 m

A

2 m

1 m

P8.26

EES



P8.32 Sketch the streamlines, especially the body shape, due to
equal line sources � m at (�a, 0) and (�a, 0) plus a uni-
form stream U� � ma.

P8.33 Sketch the streamlines, especially the body shape, due to
equal line sources � m at (0, � a) and (0, �a) plus a uni-
form stream U� � ma.

P8.34 Consider three equally spaced sources of strength m placed
at (x, y) � (0, �a), (0, 0), and (0, �a). Sketch the result-
ing streamlines, noting the position of any stagnation
points. What would the pattern look like from afar?

P8.35 Consider three equal sources m in a triangular configura-
tion: one at (a/2, 0), one at (�a/2, 0), and one at (0, a).
Plot the streamlines for this flow. Are there any stagnation
points? Hint: Try the MATLAB contour command [34].

P8.36 When a line source-sink pair with m � 2 m2/s is combined
with a uniform stream, it forms a Rankine oval whose min-
imum dimension is 40 cm. If a � 15 cm, what are the
stream velocity and the velocity at the shoulder? What is
the maximum dimension?

P8.37 A Rankine oval 2 m long and 1 m high is immersed in a
stream U� � 10 m/s, as in Fig. P8.37. Estimate (a) the ve-
locity at point A and (b) the location of point B where a
particle approaching the stagnation point achieves its max-
imum deceleration.

P8.40 Consider a uniform stream U� plus line sources �m at (x,
y) � (�a, 0) and (�a, 0) and a single line sink �2m at
the origin. Does a closed-body shape appear? If so, plot
its shape for m/(U�a) equal to (a) 1.0 and (b) 5.0.

P8.41 A Kelvin oval is formed by a line-vortex pair with K � 9
m2/s, a � 1 m, and U � 10 m/s. What are the height,
width, and shoulder velocity of this oval?

P8.42 For what value of K/(U�a) does the velocity at the shoul-
der of a Kelvin oval equal 4U�? What is the height h/a of
this oval?

P8.43 Consider water at 20°C flowing at 6 m/s past a 1-m-di-
ameter circular cylinder. What doublet strength � in m3/s
is required to simulate this flow? If the stream pressure is
200 kPa, use inviscid theory to estimate the surface pres-
sure at � equal to (a) 180°, (b) 135°, and (c) 90°.

P8.44 Suppose that circulation is added to the cylinder flow of
Prob. 8.43 sufficient to place the stagnation points at �
equal to 50° and 130°. What is the required vortex strength
K in m2/s? Compute the resulting pressure and surface ve-
locity at (a) the stagnation points and (b) the upper and
lower shoulders. What will the lift per meter of cylinder
width be?

P8.45 What circulation K must be added to the cylinder flow in
Prob. 8.43 to place the stagnation point exactly at the up-
per shoulder? What will the velocity and pressure at the
lower shoulder be then? What value of K causes the lower
shoulder pressure to be 10 kPa?

P8.46 A cylinder is formed by bolting two semicylindrical chan-
nels together on the inside, as shown in Fig. P8.46. There
are 10 bolts per meter of width on each side, and the in-
side pressure is 50 kPa (gage). Using potential theory for
the outside pressure, compute the tension force in each bolt
if the fluid outside is sea-level air.
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(0, 3 m)

7 m /s (4m , 0)

A

x

y h

+ m
Source

a

P8.31

P8.38 A uniform stream U in the x direction combines with a
source m at (a, 0) and a sink �m at (�a, 0). Plot the re-
sulting streamlines and note any stagnation points.

P8.39 Sketch the streamlines of a uniform stream U� past a line
source-sink pair aligned vertically with the source at �a
and the sink at �a on the y-axis. Does a closed-body shape
form?

A

B?

2 m

1 m
10 m/s

P8.37
P8.47 A circular cylinder is fitted with two surface-mounted pres-

sure sensors, to measure pa at � � 180° and pb at � � 105°.
The intention is to use the cylinder as a stream velocime-
ter. Using inviscid theory, derive a formula for estimating
U� in terms of pa, pb, 
, and the cylinder radius a.

*P8.48 Wind at U� and p� flows past a Quonset hut which is a
half-cylinder of radius a and length L (Fig. P8.48). The in-
ternal pressure is pi. Using inviscid theory, derive an ex-

U = 25 m /s

D = 2 m

p =
50 k Pa
(gage)

P8.46

EES



pression for the upward force on the hut due to the dif-
ference between pi and ps.

ft2. As sketched in Fig. P8.54, it had two rotors 50 ft high
and 9 ft in diameter rotating at 750 r/min, which is far out-
side the range of Fig. 8.11. The measured lift and drag co-
efficients for each rotor were about 10 and 4, respectively.
If the ship is moored and subjected to a crosswind of 25
ft/s, as in Fig. P8.54, what will the wind force parallel and
normal to the ship centerline be? Estimate the power re-
quired to drive the rotors.
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P8.49 In strong winds the force in Prob. 8.48 can be quite large.
Suppose that a hole is introduced in the hut roof at point
A to make pi equal to the surface pressure there. At what
angle � should hole A be placed to make the net wind force
zero?

P8.50 It is desired to simulate flow past a two-dimensional ridge
or bump by using a streamline which passes above the flow
over a cylinder, as in Fig. P8.50. The bump is to be a/2
high, where a is the cylinder radius. What is the elevation
h of this streamline? What is Umax on the bump compared
with stream velocity U?

U∞ 
, p∞ A

a
θ

pi

ps 
(  )θ

P8.48

U a/2
Umax? Bump

a

U

h?

P8.50

P8.55 Assume that the Flettner rotorship of Fig. P8.54 has a wa-
ter resistance coefficient of 0.005. How fast will the ship
sail in seawater at 20°C in a 20-ft/s wind if the keel aligns
itself with the resultant force on the rotors? Hint: This is
a problem in relative velocities.

P8.56 The measured drag coefficient of a cylinder in crossflow,
based on frontal area DL, is approximately 1.0 for the lam-
inar-boundary-layer range (see Fig. 7.16a). Boundary-
layer separation occurs near the shoulder (see Fig. 7.13a).
This suggests an analytical model: the standard inviscid-
flow solution on the front of the cylinder and constant pres-
sure (equal to the shoulder value) on the rear. Use this
model to predict the drag coefficient and comment on the
results with reference to Fig. 7.13c.

P8.57 In principle, it is possible to use rotating cylinders as air-
craft wings. Consider a cylinder 30 cm in diameter, rotat-
ing at 2400 r/min. It is to lift a 55-kN airplane cruising at
100 m/s. What should the cylinder length be? How much
power is required to maintain this speed? Neglect end ef-
fects on the rotating wing.

P8.58 Plot the streamlines due to the combined flow of a line
sink �m at the origin plus line sources �m at (a, 0) and
(4a, 0). Hint: A cylinder of radius 2a will appear.

P8.59 By analogy with Prob. 8.58 plot the streamlines due to
counterclockwise line vortices � K at (0, 0) and (4a, 0)
plus a clockwise vortex �K at (a, 0). Again a cylinder ap-
pears.

P8.51 Modify Prob. 8.50 as follows. Let the bump be such that
Umax � 1.5U. Find (a) the upstream elevation h and (b)
the height of the bump.

P8.52 The Flettner rotor sailboat in Fig. E8.2 has a water 
drag coefficient of 0.006 based on a wetted area of 45
ft2. If the rotor spins at 220 r/min, find the maximum
boat velocity that can be achieved in a 15-mi/h wind.
What is the optimum angle between the boat and the
wind?

P8.53 Modify Prob. 8.52 as follows. For the same sailboat data,
find the wind velocity, in mi/h, which will drive the boat
at an optimum speed of 10 kn parallel to its keel.

P8.54 The original Flettner rotor ship was approximately 100 ft
long, displaced 800 tons, and had a wetted area of 3500

U∞ 

ω ω

P8.54



P8.60 One of the corner-flow patterns of Fig. 8.15 is given by
the cartesian stream function � � A(3yx2 � y3). Which
one? Can the correspondence be proved from Eq. (8.49)?

P8.61 Plot the streamlines of Eq. (8.49) in the upper right quad-
rant for n � 4. How does the velocity increase with x out-
ward along the x-axis from the origin? For what corner an-
gle and value of n would this increase be linear in x? For
what corner angle and n would the increase be as x5?

P8.62 Combine stagnation flow, Fig. 8.14b, with a source at the
origin:

f(z) � Az2 � m ln z

Plot the streamlines for m � AL2, where L is a length scale.
Interpret.

P8.63 The superposition in Prob. 8.62 leads to stagnation flow
near a curved bump, in contrast to the flat wall of Fig.
8.14b. Determine the maximum height H of the bump as
a function of the constants A and m.

P8.64 Determine qualitatively from boundary-layer theory (Chap.
7) whether any of the three stagnation-flow patterns of Fig.
8.15 can suffer flow separation along the walls.

P8.65 Potential flow past a wedge of half-angle � leads to an 
important application of laminar-boundary-layer theory
called the Falkner-Skan flows [15, pp. 242–247]. Let x de-
note distance along the wedge wall, as in Fig. P8.65, and
let � � 10°. Use Eq. (8.49) to find the variation of surface
velocity U(x) along the wall. Is the pressure gradient ad-
verse or favorable?

P8.69. What hyphenated word (originally French) might
describe such a flow pattern?
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x

θ
θ

U (x)

P8.65

P8.70 Show that the complex potential f � U�{z � 	
1
4

	a coth
[�(z/a)]} represents flow past an oval shape placed mid-
way between two parallel walls y � �	

1
2

	a. What is a prac-
tical application?

P8.71 Figure P8.71 shows the streamlines and potential lines of
flow over a thin-plate weir as computed by the complex po-
tential method. Compare qualitatively with Fig. 10.16a.
State the proper boundary conditions at all boundaries. The
velocity potential has equally spaced values. Why do the
flow-net “squares’’ become smaller in the overflow jet?

y

x

y = a (    = 0)ψ

Plot the streamlines
inside this region

P8.69

P8.71

Weir

0

a
a

y

x

+ m

P8.72

*P8.66 The inviscid velocity along the wedge in Prob. 8.65 has
the analytic form U(x) � Cxm, where m � n � 1 and n is
the exponent in Eq. (8.49). Show that, for any C and n,
computation of the boundary layer by Thwaites’ method,
Eqs. (7.53) and (7.54), leads to a unique value of the
Thwaites parameter �. Thus wedge flows are called simi-
lar [15, p. 244].

P8.67 Investigate the complex potential function f(z) �
U�(z � a2/z) and interpret the flow pattern.

P8.68 Investigate the complex potential function f(z) � U�z �
m ln [(z � a)/(z�a)] and interpret the flow pattern.

P8.69 Investigate the complex potential f(z) � A cosh [�(z/a)],
and plot the streamlines inside the region shown in Fig.

P8.72 Use the method of images to construct the flow pattern for
a source � m near two walls, as shown in Fig. P8.72.
Sketch the velocity distribution along the lower wall (y �
0). Is there any danger of flow separation along this wall?

P8.73 Set up an image system to compute the flow of a source at
unequal distances from two walls, as in Fig. P8.73. Find the
point of maximum velocity on the y-axis.



P8.74 A positive line vortex K is trapped in a corner, as in Fig.
P8.74. Compute the total induced velocity vector at point
B, (x, y) � (2a, a), and compare with the induced veloc-
ity when no walls are present. P8.77 Discuss how the flow pattern of Prob. 8.58 might be in-

terpreted to be an image-system construction for circular
walls. Why are there two images instead of one?

*P8.78 Indicate the system of images needed to construct the flow
of a uniform stream past a Rankine half-body constrained
between two parallel walls, as in Fig. P8.78. For the par-
ticular dimensions shown in this figure, estimate the posi-
tion of the nose of the resulting half-body.
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P8.75 The flow past a cylinder very near a wall might be simu-
lated by doublet images, as in Fig. P8.75. Explain why the
result is not very successful and the cylinder shape be-
comes badly distorted.

P8.73

a

x

y

+ m

2 a

P8.76 Use the method of images to approximate the flow pattern
past a cylinder a distance 4a from a single wall, as in Fig.
P8.76. To illustrate the effect of the wall, compute the ve-
locities at corresponding points A, B and C, D, comparing
with a cylinder flow in an infinite expanse of fluid.

B

2a

a

0
a 2a

x

y

K

V?

P8.74

P8.75

P8.79 Explain the system of images needed to simulate the flow
of a line source placed unsymmetrically between two par-
allel walls as in Fig. P8.79. Compute the velocity on the
lower wall at x � a. How many images are needed to es-
timate this velocity within 1 percent?

2a

D

U∞

4a

4a

B

A

C
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a

y
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*P8.80 The beautiful expression for lift of a two-dimensional air-
foil, Eq. (8.69), arose from applying the Joukowski trans-
formation, ' � z � a2/z, where z �x � iy and ' � � � i�.
The constant a is a length scale. The theory transforms a
certain circle in the z plane into an airfoil in the ' plane.
Taking a � 1 unit for convenience, show that (a) a circle
with center at the origin and radius � 1 will become an
ellipse in the ' plane and (b) a circle with center at x �
�( �� 1, y � 0, and radius (1 � () will become an air-
foil shape in the ' plane. Hint: The Excel spreadsheet is
excellent for solving this problem.

P8.81 A two-dimensional airfoil has 2 percent camber and 10 per-
cent thickness. If C � 1.75 m, estimate its lift per meter
when immersed in 20°C water at � � 6° and U � 18 m/s.

P8.82 The ultralight plane Gossamer Condor in 1977 was the first
to complete the Kremer Prize figure-eight course under hu-
man power. Its wingspan was 29 m, with Cav � 2.3 m and
a total mass of 95 kg. The drag coefficient was approximately
0.05. The pilot was able to deliver 	

1
4

	 hp to propel the plane.
Assuming two-dimensional flow at sea level, estimate (a) the
cruise speed attained, (b) the lift coefficient, and (c) the horse-
power required to achieve a speed of 15 kn.

P8.83 Two-dimensional lift-drag data for the NACA 2412 airfoil
with 2 percent camber (from Ref. 12) may be curve-fitted
accurately as follows:

CL � 0.178 � 0.109� � 0.00109�2

CD � 0.0089 � 1.97 E-4 � � 8.45 E-5 �2

� 1.35 E-5 �3 � 9.92 E-7 �4

with � in degrees in the range �4° � � � � 10°. Com-
pare (a) the lift-curve slope and (b) the angle of zero lift
with theory, Eq. (8.69). (c) Prepare a polar lift-drag plot
and compare with Fig. 7.26.

P8.84 Reference 12 contains inviscid-theory calculations for the
upper and lower surface velocity distributions V(x) over an
airfoil, where x is the chordwise coordinate. A typical re-
sult for small angle of attack is as follows:

x/c V/U�(upper) V/U�(lower)

0.0 0.00 0.00
0.025 0.97 0.82
0.05 1.23 0.98
0.1 1.28 1.05
0.2 1.29 1.13
0.3 1.29 1.16
0.4 1.24 1.16
0.6 1.14 1.08
0.8 0.99 0.95
1.0 0.82 0.82

Use these data, plus Bernoulli’s equation, to estimate (a)
the lift coefficient and (b) the angle of attack if the airfoil
is symmetric.

P8.85 A wing of 2 percent camber, 5-in chord, and 30-in span is
tested at a certain angle of attack in a wind tunnel with
sea-level standard air at 200 ft/s and is found to have lift
of 30 lbf and drag of 1.5 lbf. Estimate from wing theory
(a) the angle of attack, (b) the minimum drag of the wing
and the angle of attack at which it occurs, and (c) the max-
imum lift-to-drag ratio.

P8.86 An airplane has a mass of 20,000 kg and flies at 175 m/s
at 5000-m standard altitude. Its rectangular wing has a 3-
m chord and a symmetric airfoil at 2.5° angle of attack.
Estimate (a) the wing span, (b) the aspect ratio, and (c)
the induced drag.

P8.87 A freshwater boat of mass 400 kg is supported by a rec-
tangular hydrofoil of aspect ratio 8, 2 percent camber, and
12 percent thickness. If the boat travels at 8 m/s and � �
3.5°, estimate (a) the chord length, (b) the power required
if CD�

� 0.01, and (c) the top speed if the boat is refitted
with an engine which delivers 50 hp to the water.

P8.88 The Boeing 727 airplane has a gross weight of 125,000
lbf, a wing area of 1200 ft2, and an aspect ratio of 6. It is
fitted with two turbofan engines and cruises at 532 mi/h
at 30,000-ft standard altitude. Assume for this problem that
its airfoil is the NACA 2412 section described in Prob.
8.83. If we neglect all drag except the wing, what thrust
is required from each engine for these conditions?

P8.89 The Beechcraft T-34C aircraft has a gross weight of 5500
lbf and a wing area of 60 ft2 and flies at 322 mi/h at 10,000-
ft standard altitude. It is driven by a propeller which de-
livers 300 hp to the air. Assume for this problem that its
airfoil is the NACA 2412 section described in Prob. 8.83,
and neglect all drag except the wing. What is the appro-
priate aspect ratio for the wing?

P8.90 When moving at 15 m/s in seawater at its maximum lift-
to-drag ratio of 18:1, a symmetric hydrofoil, of plan area
3 m2, develops a lift of 120 kN. Estimate from wing the-
ory (a) the aspect ratio and (b) the angle of attack in de-
grees.

P8.91 If �(r, �) in axisymmetric flow is defined by Eq. (8.85)
and the coordinates are given in Fig. 8.24, determine what
partial differential equation is satisfied by �.

P8.92 A point source with volume flow Q � 30 m3/s is im-
mersed in a uniform stream of speed 4 m/s. A Rankine
half-body of revolution results. Compute (a) the distance
from source to the stagnation point and (b) the two points
(r, �) on the body surface where the local velocity equals
4.5 m/s.

P8.93 The Rankine half-body of revolution (Fig. 8.26) could
simulate the shape of a pitot-static tube (Fig. 6.30). Ac-
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cording to inviscid theory, how far downstream from the
nose should the static pressure holes be placed so that the
local velocity is within �0.5 percent of U�? Compare
your answer with the recommendation x � 8D in Fig.
6.30.

P8.94 Determine whether the Stokes streamlines from Eq. (8.86)
are everywhere orthogonal to the Stokes potential lines
from Eq. (8.87), as is the case for cartesian and plane po-
lar coordinates.

P8.95 Show that the-axisymmetric potential flow formed by su-
perposition of a point source �m at (x, y) � (�a, 0), a
point sink �m at (�a, 0), and a stream U� in the x di-
rection forms a Rankine body of revolution as in Fig.
P8.95. Find analytic expressions for determining the length
2L and maximum diameter 2R of the body in terms of m,
U�, and a.

P8.98 We have studied the point source (sink) and the line source
(sink) of infinite depth into the paper. Does it make any
sense to define a finite-length line sink (source) as in Fig.
P8.98? If so, how would you establish the mathematical
properties of such a finite line sink? When combined with
a uniform stream and a point source of equivalent strength
as in Fig. P8.98, should a closed-body shape be formed?
Make a guess and sketch some of these possible shapes for
various values of the dimensionless parameter m/(U�L2).
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θU∞

P8.95

*P8.99 Consider air flowing past a hemisphere resting on a flat
surface, as in Fig. P8.99. If the internal pressure is pi, find
an expression for the pressure force on the hemisphere. By
analogy with Prob. 8.49, at what point A on the hemisphere
should a hole be cut so that the pressure force will be zero
according to inviscid theory?

U

 p
a
 = 40 kPa

Water at 20˚ C

A 80 cm

Rankine ovoid

P8.97

P8.96 Suppose that a sphere with a single stagnation hole is to
be used as a velocimeter. The pressure at this hole is used
to compute the stream velocity, but there are errors if the
hole is not perfectly aligned with the oncoming stream.
Using inviscid incompressible theory, plot the percent er-
ror in stream velocity estimate as a function of misalign-
ment angle �. At what angle is the error 10 percent? 

P8.97 The Rankine body of revolution in Fig. P8.97 is 60 cm
long and 30 cm in diameter. When it is immersed in the
low-pressure water tunnel as shown, cavitation may ap-
pear at point A. Compute the stream velocity U, ne-
glecting surface wave formation, for which cavitation oc-
curs.

P8.98
U∞

+ m

– m

y

x
0

Point
source

Line sink of
total strength

L

P8.99

U∞ 
, p∞

pi

2 a

P8.100 A 1-m-diameter sphere is being towed at speed V in fresh
water at 20°C as shown in Fig. P8.100. Assuming invis-
cid theory with an undistorted free surface, estimate the
speed V in m/s at which cavitation will first appear on the
sphere surface. Where will cavitation appear? For this con-
dition, what will be the pressure at point A on the sphere
which is 45° up from the direction of travel?

pa = 101.35 k Pa

D = 1 m

A

V

3 m

P8.100
P8.101 Normally by its very nature inviscid theory is incapable of

predicting body drag, but by analogy with Fig. 8.16c we
can analyze flow approaching a hemisphere, as in Fig.



P8.101. Assume that the flow on the front follows invis-
cid sphere theory, Eq. (8.96), and the pressure in the rear
equals the shoulder pressure. Compute the drag coefficient
and compare with experiment (Table 7.3). What are the
defects and limitations of this analysis?

imum thickness. Use these results to derive a formula from
the time history U(t) of the cylinder if it is accelerated from
rest in a still fluid by the sudden application of a constant
force F.

P8.106 Laplace’s equation in plane polar coordinates, Eq. (8.11),
is complicated by the variable radius. Consider the finite-
difference mesh in Fig. P8.106, with nodes (i, j) equally
spaced �� and �r apart. Derive a finite-difference model
for Eq. (8.11) similar to the cartesian expression (8.109).
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P8.102 A golf ball weighs 0.102 lbf and has a diameter of 1.7 in.
A professional golfer strikes the ball at an initial velocity
of 250 ft/s, an upward angle of 20°, and a backspin (front
of the ball rotating upward). Assume that the lift coeffi-
cient on the ball (based on frontal area) follows Fig.
P7.108. If the ground is level and drag is neglected, make
a simple analysis to predict the impact point (a) without
spin and (b) with backspin of 7500 r/min.

P8.103 Modify Prob. 8.102 as follows. Golf balls are dimpled, not
smooth, and have higher lift and lower drag (CL � 0.2 and
CD � 0.3 for typical backspin). Using these values, make
a computer analysis of the ball trajectory for the initial con-
ditions of Prob. 8.102. If time permits, investigate the ef-
fect of initial angle for the range 10° � �0 � 50°.

P8.104 Consider a cylinder of radius a moving at speed U�

through a still fluid, as in Fig. P8.104. Plot the streamlines
relative to the cylinder by modifying Eq. (8.32) to give the
relative flow with K � 0. Integrate to find the total rela-
tive kinetic energy, and verify the hydrodynamic mass of
a cylinder from Eq. (8.104).

*P8.105 In Table 7.2 the drag coefficient of a 4:1 elliptical cylin-
der in laminar-boundary-layer flow is 0.35. According to
Patton [17], the hydrodynamic mass of this cylinder is
�
hb/4, where b is width into the paper and h is the max-

U∞ 
, p∞

Hemisphere

Rear pressure
assumed equal

to shoulder
pressure

a

P8.101

P8.107 Set up the numerical problem of Fig. 8.30 for an expan-
sion of 30°. A new grid system and a nonsquare mesh may
be needed. Give the proper nodal equation and boundary
conditions. If possible, program this 30° expansion and
solve on a digital computer.

P8.108 Consider two-dimensional potential flow into a step con-
traction as in Fig. P8.108. The inlet velocity U1 � 7 m/s,
and the outlet velocity U2 is uniform. The nodes (i, j) are
labeled in the figure. Set up the complete finite-difference
algebraic relations for all nodes. Solve, if possible, on a
digital computer and plot the streamlines in the flow.

Still
fluid

U∞
a

P8.104

∆ r

∆ r

∆θ ∆θ

i – 1, j i + 1, j

i, j + 1

i, j – 1

rj + 1

rj – 1

νθ

i, j

νr

rj 

P8.106

P8.108

i = 1
 j = 1

2

3

4

5

6

7

8

U1

U2

2 3 4 5 6 7 8 9 10



P8.109 Consider inviscid flow through a two-dimensional 90°
bend with a contraction, as in Fig. P8.109. Assume uni-
form flow at the entrance and exit. Make a finite-differ-
ence computer analysis for small grid size (at least 150
nodes), determine the dimensionless pressure distribution
along the walls, and sketch the streamlines. (You may use
either square or rectangular grids.)

P8.112 In his CFD textbook, Patankar [5] replaces the left-hand
sides of Eq. (8.119b and c) with the following two ex-
pressions, respectively:

	∂
∂
x
	(u2) � 	∂

∂
y
	(�u) and 	∂

∂
x
	(u�) � 	∂

∂
y
	(�2)

Are these equivalent expressions, or are they merely sim-
plified approximations? Either way, why might these forms
be better for finite-difference purposes?

P8.113 Repeat Example 8.7 using the implicit method of Eq.
(8.118). Take �t � 0.2 s and �y � 0.01 m, which ensures
that an explicit model would diverge. Compare your ac-
curacy with Example 8.7.

P8.114 If your institution has an online potential-flow boundary-
element computer code, consider flow past a symmetric
airfoil, as in Fig. P8.114. The basic shape of an NACA
symmetric airfoil is defined by the function [12]

� 1.4845'1/2�0.63' � 1.758'2

� 1.4215'3 � 0.5075'4

where ' � x/C and the maximum thickness tmax occurs at
' � 0.3. Use this shape as part of the lower boundary for
zero angle of attack. Let the thickness be fairly large, say,
tmax � 0.12, 0.15, or 0.18. Choose a generous number of
nodes ($60), and calculate and plot the velocity distribu-
tion V/U� along the airfoil surface. Compare with the the-
oretical results in Ref. 12 for NACA 0012, 0015, or 0018
airfoils. If time permits, investigate the effect of the bound-
ary lengths L1, L2, and L3, which can initially be set equal
to the chord length C.

2y
	
tmax
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P8.110 For fully developed laminar incompressible flow through
a straight noncircular duct, as in Sec. 6.6, the Navier-
Stokes equations (4.38) reduce to

	
∂
∂

2

y
u
2	 � 	

∂
∂

2

z
u
2	 � � const � 0 

where (y, z) is the plane of the duct cross section and x is
along the duct-axis. Gravity is neglected. Using a non-
square rectangular grid (�x, �y), develop a finite-differ-
ence model for this equation, and indicate how it may be
applied to solve for flow in a rectangular duct of side
lengths a and b.

P8.111 Solve Prob. 8.110 numerically for a rectangular duct of
side length b by 2b, using at least 100 nodal points. Eval-
uate the volume flow rate and the friction factor, and com-
pare with the results in Table 6.4:

Q � 0.1143 �� � f ReDh
� 62.19 

where Dh � 4A/P � 4b/3 for this case. Comment on the
possible truncation errors of your model.

dp
	
dx

b4

	
!

dp
	
dx

1
	
!

V1 = 10 m/s

V2

5 m

6 m

10 m

10 m

15 m

16 m

P8.109

y
U∞

L1 x = 0 x = C L2

L3

Airfoil half-contour

x

P8.114

P8.115 Use the explicit method of Eq. (8.115) to solve Prob. 4.85
numerically for SAE 30 oil at 20°C with U0 � 1 m/s and

 � M rad/s, where M is the number of letters in your sur-
name. (This author will solve the problem for M � 5.)
When steady oscillation is reached, plot the oil velocity
versus time at y � 2 cm.



Word Problems

W8.1 What simplifications have been made, in the potential-flow
theory of this chapter, which result in the elimination of the
Reynolds number, Froude number, and Mach number as im-
portant parameters?

W8.2 In this chapter we superimpose many basic solutions, a con-
cept associated with linear equations. Yet Bernoulli’s equa-
tion (8.3) is nonlinear, being proportional to the square of
the velocity. How, then, do we justify the use of superposi-
tion in inviscid-flow analysis?

W8.3 Give a physical explanation of circulation � as it relates to
the lift force on an immersed body. If the line integral de-
fined by Eq. (8.15) is zero, it means that the integrand is a
perfect differential—but of what variable?

W8.4 Give a simple proof of Eq. (8.42), namely, that both the real
and imaginary parts of a function f(z) are laplacian if z �
x � iy. What is the secret of this remarkable behavior?

W8.5 Figure 8.14 contains five body corners. Without carrying out
any calculations, explain physically what the value of the
inviscid fluid velocity must be at each of these five corners.
Is any flow separation expected?

W8.6 Explain the Kutta condition physically. Why is it necessary?
W8.7 We have briefly outlined finite-difference and boundary-

element methods for potential flow but have neglected the
finite-element technique. Do some reading and write a brief
essay on the use of the finite-element method for potential-
flow problems.
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Comprehensive Problems

C8.1 Did you know that you can solve simple fluid mechanics
problems with Microsoft Excel? The successive relaxation
technique for solving the Laplace equation for potential-
flow problems is easily set up on a spreadsheet, since the
stream function at each interior cell is simply the average
of its four neighbors. As an example, solve for the irrota-
tional potential flow through a contraction, as given in Fig.
C8.1. Note: To avoid the “circular reference” error, you must
turn on the iteration option. Use the help index for more in-
formation. For full credit, attach a printout of your spread-
sheet, with stream function converged and the value of the
stream function at each node displayed to four digits of ac-
curacy.

cm and (b) the instantaneous boundary-layer thickness
(where u � 0.99 u�). Hint: There is a nonzero pressure
gradient in the outer (nearly shear-free) stream, n � N,
which must be included in Eq. (8.114) and your explicit
model.

C8.3 Consider plane inviscid flow through a symmetric diffuser,
as in Fig. C8.3. Only the upper half is shown. The flow is to
expand from inlet half-width h to exit half-width 2h, as
shown. The expansion angle � is 18.5° (L � 3h). Set up a
nonsquare potential-flow mesh for this problem, and calcu-
late and plot (a) the velocity distribution and (b) the pres-
sure coefficient along the centerline. Assume uniform inlet
and exit flows. 

Inlet

Outlet

� � 5
� � 3.333

� � 1.667

� � 4

� � 3

� � 2

� � 1

� � 0

Wall, � � 0

Wall, � � 0

Wall, � � 5

C8.1

2h

2h L

V
h

�




C8.3

C8.2 Use an explicit method, similar to but not identical to Eq.
(8.115), to solve the case of SAE 30 oil at 20°C starting
from rest near a fixed wall. Far from the wall, the oil ac-
celerates linearly, that is, u� � uN � at, where a � 9
m/s2. At t � 1 s, determine (a) the oil velocity at y � 1

C8.4 Use potential flow to approximate the flow of air being
sucked up into a vacuum cleaner through a two-dimensional
slit attachment, as in Fig. C8.4. In the x-y plane through the
centerline of the attachment, model the flow as a line sink of
strength (�m), with its axis in the z-direction at height a
above the floor. (a) Sketch the streamlines and locate any



stagnation points in the flow. (b) Find the magnitude of ve-
locity V(x) along the floor in terms of the parameters a and
m. (c) Let the pressure far away be p�, where velocity is
zero. Define a velocity scale U � m/a. Determine the varia-
tion of dimensionless pressure coefficient, Cp � (p �
p�)/(
U2/2), along the floor. (d) The vacuum cleaner is most
effective where Cp is a minimum, that is, where velocity is
maximum. Find the locations of minimum pressure coeffi-
cient along the x-axis. (e) At which points along the x-axis
do you expect the vacuum cleaner to work most effectively?
Is it best at x � 0 directly beneath the slit, or at some other
x location along the floor? Conduct a scientific experiment
at home with a vacuum cleaner and some small pieces of
dust or dirt to test your prediction. Report your results and
discuss the agreement with prediction. Give reasons for any
disagreements.
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C8.4

Design Projects

D8.1 In 1927, Theodore von Kármán developed a scheme to use a
uniform stream, plus a row of sources and sinks, to generate an
arbitrary closed-body shape. A schematic of the idea is sketched
in Fig. D8.1. The body is symmetric and at zero angle of at-
tack. A total of N sources and sinks are distributed along the
axis within the body, with strengths mi at positions xi, for i �
1 to N. The object is to find the correct distribution of strengths
which approximates a given body shape y(x) at a finite num-
ber of surface locations and then to compute the approximate
surface velocity and pressure. The technique should work for
either two-dimensional bodies (distributed line sources) or bod-
ies of revolution (distributed point sources).

For our body shape let us select the NACA 0018 airfoil,
given by the formula in Prob. 8.114 with tmax � 0.18. De-
velop the ideas stated above into N simultaneous algebraic
equations which can be used to solve for the N unknown line
source/sink strengths. Then program your equations for a
computer, with N $ 20; solve for mi; compute the surface
velocities; and compare with the theoretical velocities for this
shape in Ref. 12. Your goal should be to achieve accuracy
within �1 percent of the classical results. If necessary, you
should adjust N and the locations of the sources.

D8.2 Modify Prob. D8.1 to solve for the point-source distribution
which approximates an “0018’’ body-of-revolution shape.
Since no theoretical results are published, simply make sure
that your results converge to �1 percent.

D8.3 Consider water at 20°C flowing at 12 m/s in a water chan-
nel. A Rankine oval cylinder, 40 cm long, is to be placed
parallel to the flow, where the water static pressure is 120
kPa. The oval’s thickness is a design parameter. Prepare a
plot of the minimum pressure on the oval’s surface as a func-
tion of body thickness. Especially note the thicknesses where
(a) the local pressure is 50 kPa and (b) cavitation first oc-
curs on the surface.

C8.5 Consider a three-dimensional, incompressible, irrotational flow.
Use the following two methods to prove that the viscous term
in the Navier-Stokes equation is identically zero: (a) using vec-
tor notation; and (b) expanding out the scalar terms and substi-
tuting terms from the definition of irrotationality.
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The Concorde 264 supersonic airliner. Flying more than twice as fast as the speed of sound, as
discussed in the present chapter, the Concorde is a milestone in commercial aviation. However,
this great technical achievement is accompanied by high expense for the traveller. (Courtesy of
Don Riepe/Peter Arnold, Inc.)



9.1 Introduction

Motivation. All eight of our previous chapters have been concerned with “low-speed’’
or “incompressible’’ flow, i.e., where the fluid velocity is much less than its speed of
sound. In fact, we did not even develop an expression for the speed of sound of a fluid.
That is done in this chapter.

When a fluid moves at speeds comparable to its speed of sound, density changes be-
come significant and the flow is termed compressible. Such flows are difficult to obtain
in liquids, since high pressures of order 1000 atm are needed to generate sonic veloci-
ties. In gases, however, a pressure ratio of only 2�1 will likely cause sonic flow. Thus
compressible gas flow is quite common, and this subject is often called gas dynamics.

Probably the two most important and distinctive effects of compressibility on flow
are (1) choking, wherein the duct flow rate is sharply limited by the sonic condition,
and (2) shock waves, which are nearly discontinuous property changes in a supersonic
flow. The purpose of this chapter is to explain such striking phenomena and to famil-
iarize the reader with engineering calculations of compressible flow.

Speaking of calculations, the present chapter is made to order for the Engineering
Equation Solver (EES) in App. E. Compressible-flow analysis is filled with scores of
complicated algebraic equations, most of which are very difficult to manipulate or in-
vert. Consequently, for nearly a century, compressible-flow textbooks have relied upon
extensive tables of Mach number relations (see App. B) for numerical work. With EES,
however, any set of equations in this chapter can be typed out and solved for any vari-
able—see part (b) of Example 9.13 for an especially intricate example. With such a
tool, App. B serves only as a backup and indeed may soon vanish from textbooks.

We took a brief look in Chap. 4 [Eqs. (4.13) to (4.17)] to see when we might safely
neglect the compressibility inherent in every real fluid. We found that the proper cri-
terion for a nearly incompressible flow was a small Mach number

Ma � �
V
a

� � 1

where V is the flow velocity and a is the speed of sound of the fluid. Under small-Mach-
number conditions, changes in fluid density are everywhere small in the flow field. The
energy equation becomes uncoupled, and temperature effects can be either ignored or
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put aside for later study. The equation of state degenerates into the simple statement that
density is nearly constant. This means that an incompressible flow requires only a mo-
mentum and continuity analysis, as we showed with many examples in Chaps. 7 and 8.

This chapter treats compressible flows, which have Mach numbers greater than about
0.3 and thus exhibit nonnegligible density changes. If the density change is significant,
it follows from the equation of state that the temperature and pressure changes are also
substantial. Large temperature changes imply that the energy equation can no longer
be neglected. Therefore the work is doubled from two basic equations to four

1. Continuity equation

2. Momentum equation

3. Energy equation

4. Equation of state

to be solved simultaneously for four unknowns: pressure, density, temperature, and
flow velocity (p, �, T, V). Thus the general theory of compressible flow is quite com-
plicated, and we try here to make further simplifications, especially by assuming a re-
versible adiabatic or isentropic flow.

The Mach number is the dominant parameter in compressible-flow analysis, with dif-
ferent effects depending upon its magnitude. Aerodynamicists especially make a dis-
tinction between the various ranges of Mach number, and the following rough classi-
fications are commonly used:

Ma � 0.3: incompressible flow, where density effects are negligible.

0.3 � Ma � 0.8: subsonic flow, where density effects are important but no
shock waves appear.

0.8 � Ma � 1.2: transonic flow, where shock waves first appear, dividing sub-
sonic and supersonic regions of the flow. Powered flight in the
transonic region is difficult because of the mixed character of
the flow field.

1.2 � Ma � 3.0: supersonic flow, where shock waves are present but there are
no subsonic regions.

3.0 � Ma: hypersonic flow [13], where shock waves and other flow
changes are especially strong.

The numerical values listed above are only rough guides. These five categories of flow
are appropriate to external high-speed aerodynamics. For internal (duct) flows, the most
important question is simply whether the flow is subsonic (Ma � 1) or supersonic (Ma �
1), because the effect of area changes reverses, as we show in Sec. 9.4. Since super-
sonic-flow effects may go against intuition, you should study these differences carefully.

In addition to geometry and Mach number, compressible-flow calculations also depend
upon a second dimensionless parameter, the specific-heat ratio of the gas:

k � �
c

c
p

�

� (9.1) 
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Earlier, in Chaps. 1 and 4, we used the same symbol k to denote the thermal conduc-
tivity of a fluid. We apologize for the duplication; thermal conductivity does not ap-
pear in these later chapters of the text.

Recall from Fig. 1.3 that k for the common gases decreases slowly with temperature and
lies between 1.0 and 1.7. Variations in k have only a slight effect upon compressible-
flow computations, and air, k � 1.40, is the dominant fluid of interest. Therefore, although
we assign some problems involving, e.g., steam and CO2 and helium, the compressible-
flow tables in App. B are based solely upon the single value k � 1.40 for air.

This text contains only a single chapter on compressible flow, but, as usual, whole
books have been written on the subject. References 1 to 6, 26, 29, and 33 are intro-
ductory, fairly elementary treatments, while Refs. 7 to 14, 27 to 28, 31 to 32, and 35
are advanced. From time to time we shall defer some specialized topic to these texts.

We note in passing that there are at least two flow patterns which depend strongly upon
very small density differences, acoustics, and natural convection. Acoustics [9, 14] is the
study of sound-wave propagation, which is accompanied by extremely small changes in
density, pressure, and temperature. Natural convection is the gentle circulating pattern set
up by buoyancy forces in a fluid stratified by uneven heating or uneven concentration of
dissolved materials. Here we are concerned only with steady compressible flow where the
fluid velocity is of magnitude comparable to that of the speed of sound.

In principle, compressible-flow calculations can be made for any fluid equation of state,
and we shall assign problems involving the steam tables [15], the gas tables [16], and
liquids [Eq. (1.19)]. But in fact most elementary treatments are confined to the perfect
gas with constant specific heats

p � �RT R � cp 	 c� � const k � �
c

c
p

�

� � const (9.2) 

For all real gases, cp, c� , and k vary with temperature but only moderately; for exam-
ple, cp of air increases 30 percent as temperature increases from 0 to 5000°F. Since we
rarely deal with such large temperature changes, it is quite reasonable to assume con-
stant specific heats.

Recall from Sec. 1.6 that the gas constant is related to a universal constant 
 di-
vided by the gas molecular weight

Rgas � �
M




gas
� (9.3) 

where 
 � 49,720 ft2/(s2 � °R) � 8314 m2/(s2 � K) 

For air, M � 28.97, and we shall adopt the following property values for air through-
out this chapter:

R � 1717 ft2/(s2 � °R) � 287 m2/(s2 � K) k � 1.400 

c� � �
k 	

R
1

� � 4293 ft2/(s2 � °R) � 718 m2/(s2 � K) (9.4) 

cp � �
k

k
	

R
1

� � 6010 ft2/(s2 � °R) � 1005 m2/(s2 � K)
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Isentropic Process

Experimental values of k for eight common gases were shown in Fig. 1.3. From this
figure and the molecular weight, the other properties can be computed, as in Eqs. (9.4).

The changes in the internal energy û and enthalpy h of a perfect gas are computed
for constant specific heats as

û2 	 û1 � c�(T2 	 T1) h2 	 h1 � cp(T2 	 T1) (9.5) 

For variable specific heats one must integrate û � � c� dT and h � � cp dT or use the
gas tables [16]. Most modern thermodynamics texts now contain software for evaluat-
ing properties of nonideal gases [17].

The isentropic approximation is common in compressible-flow theory. We compute the
entropy change from the first and second laws of thermodynamics for a pure substance
[17 or 18]

T ds � dh 	 �
d
�
p
� (9.6) 

Introducing dh � cp dT for a perfect gas and solving for ds, we substitute �T � p/R
from the perfect-gas law and obtain

�2

1
ds � �2

1
cp �

d
T
T
� 	 R �2

1
�
d
p
p
� (9.7) 

If cp is variable, the gas tables will be needed, but for constant cp we obtain the ana-
lytic results

s2 	 s1 � cp ln �
T
T

2

1
� 	 R ln �

p
p

2

1
� � c� ln �

T
T

2

1
� 	 R ln �

�
�

2

1
� (9.8) 

Equations (9.8) are used to compute the entropy change across a shock wave (Sec. 9.5),
which is an irreversible process.

For isentropic flow, we set s2 � s1 and obtain the interesting power-law relations
for an isentropic perfect gas

�
p
p

2

1
� � ��

T
T

2

1
��

k/(k	1) 

� ��
�
�

2

1
��

k

(9.9) 

These relations are used in Sec. 9.3.

EXAMPLE 9.1

Argon flows through a tube such that its initial condition is p1 � 1.7 MPa and �1 � 18 kg/m3

and its final condition is p2 � 248 kPa and T2 � 400 K. Estimate (a) the initial temperature, (b)
the final density, (c) the change in enthalpy, and (d) the change in entropy of the gas.

Solution

From Table A.4 for argon, R � 208 m2/(s2 � K) and k � 1.67. Therefore estimate its specific heat
at constant pressure from Eq. (9.4):
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cp � �
k

k
	

R
1

� � �
1
1
.
.
6
6
7
7
(2
	

08
1
)

� � 519 m2/(s2 � K)

The initial temperature and final density are estimated from the ideal gas law, Eq. (9.2):

T1 � �
�
p

1

1

R
� � � 454 K Ans. (a) 

�2 � �
T
p

2

2

R
� � � 2.98 kg/m3 Ans. (b) 

From Eq. (9.5) the enthalpy change is

h2 	 h1 � cp(T2 	 T1) � 519(400 	 454) � 	 28,000 J/kg (or m2/s2) Ans. (c) 

The argon temperature and enthalpy decrease as we move down the tube. Actually, there may
not be any external cooling; i.e., the fluid enthalpy may be converted by friction to increased ki-
netic energy (Sec. 9.7).

Finally, the entropy change is computed from Eq. (9.8):

s2 	 s1 � cp ln �
T
T

2

1
� 	 R ln �

p
p

2

1
�

� 519 ln �
4
4
0
5
0
4

� 	 208 ln �
0.
1
2
.
4
7
8
E
E
6
6

�

� 	66 � 400 � 334 m2/(s2 � K) Ans. (d) 

The fluid entropy has increased. If there is no heat transfer, this indicates an irreversible process.
Note that entropy has the same units as the gas constant and specific heat.

This problem is not just arbitrary numbers. It correctly simulates the behavior of argon mov-
ing subsonically through a tube with large frictional effects (Sec. 9.7).

The so-called speed of sound is the rate of propagation of a pressure pulse of infini-
tesimal strength through a still fluid. It is a thermodynamic property of a fluid. Let us
analyze it by first considering a pulse of finite strength, as in Fig. 9.1. In Fig. 9.1a the
pulse, or pressure wave, moves at speed C toward the still fluid (p, �, T, V � 0) at the
left, leaving behind at the right a fluid of increased properties (p � 
p, � � 
�, T �

T) and a fluid velocity 
V toward the left following the wave but much slower. We
can determine these effects by making a control-volume analysis across the wave. To
avoid the unsteady terms which would be necessary in Fig. 9.1a, we adopt instead the
control volume of Fig. 9.1b, which moves at wave speed C to the left. The wave ap-
pears fixed from this viewpoint, and the fluid appears to have velocity C on the left
and C 	 
V on the right. The thermodynamic properties p, �, and T are not affected
by this change of viewpoint.

The flow in Fig. 9.1b is steady and one-dimensional across the wave. The continu-
ity equation is thus, from Eq. (3.24),

�AC � (� � 
�)(A)(C 	 
V) 

or 
V � C �
� �


�

�
� (9.10) 

248 E3 N/m2

���
(400 K)[208 m2/(s2 � K)]

1.7 E6 N/m2

���
(18 kg/m3)[208 m2/(s2 � K)]
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Fig. 9.1 Control-volume analysis of
a finite-strength pressure wave:
(a) control volume fixed to still
fluid at left; (b) control volume
moving left at wave speed C.

This proves our contention that the induced fluid velocity on the right is much smaller
than the wave speed C. In the limit of infinitesimal wave strength (sound wave) this
speed is itself infinitesimal.

Notice that there are no velocity gradients on either side of the wave. Therefore,
even if fluid viscosity is large, frictional effects are confined to the interior of the wave.
Advanced texts [for example, 14] show that the thickness of pressure waves in gases
is of order 10	6 ft at atmospheric pressure. Thus we can safely neglect friction and ap-
ply the one-dimensional momentum equation (3.40) across the wave

� Fright � ṁ(Vout 	 Vin) 

or pA 	 (p � 
p)A � (�AC)(C 	 
V 	 C ) (9.11) 

Again the area cancels, and we can solve for the pressure change


p � �C 
V (9.12)

If the wave strength is very small, the pressure change is small.
Finally combine Eqs. (9.10) and (9.12) to give an expression for the wave speed

C2 � �






p
�
� �1 � �




�
�
�� (9.13) 

The larger the strength 
�/� of the wave, the faster the wave speed; i.e., powerful ex-
plosion waves move much more quickly than sound waves. In the limit of infinitesi-
mal strength 
� → 0, we have what is defined to be the speed of sound a of a fluid:

a2 � �
�
�
p
�
� (9.14) 
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But the evaluation of the derivative requires knowledge of the thermodynamic process
undergone by the fluid as the wave passes. Sir Isaac Newton in 1686 made a famous
error by deriving a formula for sound speed which was equivalent to assuming an
isothermal process, the result being 20 percent low for air, for example. He rational-
ized the discrepancy as being due to the “crassitude’’ (dust particles, etc.) in the air;
the error is certainly understandable when we reflect that it was made 180 years be-
fore the proper basis was laid for the second law of thermodynamics.

We now see that the correct process must be adiabatic because there are no tem-
perature gradients except inside the wave itself. For vanishing-strength sound waves
we therefore have an infinitesimal adiabatic or isentropic process. The correct expres-
sion for the sound speed is

a � ��
�

�

p
�
�s�

1/2

� �k �
�

�

p
�
�T�

1/2

(9.15) 

for any fluid, gas or liquid. Even a solid has a sound speed.
For a perfect gas, From Eq. (9.2) or (9.9), we deduce that the speed of sound is

a � ��
k
�
p
��

1/2

� (kRT)1/2 (9.16) 

The speed of sound increases as the square root of the absolute temperature. For air,
with k � 1.4 and R � 1717, an easily memorized dimensional formula is

a (ft/s) � 49[T (°R)]1/2

a (m/s) � 20[T (K)]1/2
(9.17)

At sea-level standard temperature, 60°F � 520°R, a � 1117 ft/s. This decreases in the
upper atmosphere, which is cooler; at 50,000-ft standard altitude, T � 	69.7°F �
389.9°R and a � 49(389.9)1/2 � 968 ft/s, or 13 percent less.

Some representative values of sound speed in various materials are given in Table
9.1. For liquids and solids it is common to define the bulk modulus K of the material

K � 	� �
�

�

�
p
�s

� � �
�

�

p
�
�s

(9.18) 

For example, at standard conditions, the bulk modulus of carbon tetrachloride is
163,000 lbf/in2 absolute, and its density is 3.09 slugs/ft3. Its speed of sound is there-
fore [163,000(144)/3.09]1/2 � 2756 ft/s, or 840 m/s. Steel has a bulk modulus of
about 29 � 106 lbf/in2 absolute and water about 320 � 103 lbf/in2 absolute, or 90
times less.

For solids, it is sometimes assumed that the bulk modulus is approximately equiv-
alent to Young’s modulus of elasticity E, but in fact their ratio depends upon Poisson’s
ratio �

�
K
E

� � 3(1 	 2�) (9.19) 

The two are equal for � � �13�, which is approximately the case for many common met-
als such as steel and aluminum.
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Table 9.1 Sound Speed of Various
Materials at 60°F (15.5°C) and 1 atm

Material a, ft/s a, m/s

Gases:
H2 4,246 1,294
He 3,281 1,000
Air 1,117 340
Ar 1,040 317
CO2 873 266
CH4 607 185
238UF6 297 91

Liquids:
Glycerin 6,100 1,860
Water 4,890 1,490
Mercury 4,760 1,450
Ethyl alcohol 3,940 1,200

Solids:*
Aluminum 16,900 5,150
Steel 16,600 5,060
Hickory 13,200 4,020
Ice 10,500 3,200

*Plane waves. Solids also have a shear-wave
speed.



9.3 Adiabatic and Isentropic
Steady Flow

EXAMPLE 9.2

Estimate the speed of sound of carbon monoxide at 200-kPa pressure and 300°C in m/s.

Solution

From Table A.4, for CO, the molecular weight is 28.01 and k � 1.40. Thus from Eq. (9.3) RCO �
8314/28.01 � 297 m2/(s2 � K), and the given temperature is 300°C � 273 � 573 K. Thus from
Eq. (9.16) we estimate

aCO � (kRT)1/2 � [1.40(297)(573)]1/2 � 488 m/s Ans. 

As mentioned in Sec. 9.1, the isentropic approximation greatly simplifies a compress-
ible-flow calculation. So does the assumption of adiabatic flow, even if nonisentropic.

Consider high-speed flow of a gas past an insulated wall, as in Fig. 9.2. There is no
shaft work delivered to any part of the fluid. Therefore every streamtube in the flow
satisfies the steady-flow energy equation in the form of Eq. (3.66)

h1 � �12�V2
1 � gz1 � h2 � �12�V2

2 � gz2 	 q � w� (9.20) 

where point 1 is upstream of point 2. You may wish to review the details of Eq. (3.66)
and its development. We saw in Example 3.16 that potential-energy changes of a gas
are extremely small compared with kinetic-energy and enthalpy terms. We shall ne-
glect the terms gz1 and gz2 in all gas-dynamic analyses.

Inside the thermal and velocity boundary layers in Fig. 9.2 the heat-transfer and 
viscous-work terms q and w� are not zero. But outside the boundary layer q and w� are
zero by definition, so that the outer flow satisfies the simple relation

h1 � �12�V2
1 � h2 � �12�V2

2 � const (9.21) 

The constant in Eq. (9.21) is equal to the maximum enthalpy which the fluid would
achieve if brought to rest adiabatically. We call this value h0, the stagnation enthalpy
of the flow. Thus we rewrite Eq. (9.21) in the form

h � �12�V2 � h0 � const (9.22) 
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Mach-Number Relations

Isentropic Pressure and Density
Relations

This should hold for steady adiabatic flow of any compressible fluid outside the bound-
ary layer. The wall in Fig. 9.2 could be either the surface of an immersed body or the
wall of a duct. We have shown the details of Fig. 9.2; typically the thermal-layer thick-
ness �T is greater than the velocity-layer thickness �V because most gases have a di-
mensionless Prandtl number Pr less than unity (see, e.g., Ref. 19, sec. 4-3.2). Note that
the stagnation enthalpy varies inside the thermal boundary layer, but its average value
is the same as that at the outer layer due to the insulated wall.

For nonperfect gases we may have to use the steam tables [15] or the gas tables [16]
to implement Eq. (9.22). But for a perfect gas h � cpT, and Eq. (9.22) becomes

cpT � �12�V2 � cpT0 (9.23) 

This establishes the stagnation temperature T0 of an adiabatic perfect-gas flow, i.e., the
temperature it achieves when decelerated to rest adiabatically.

An alternate interpretation of Eq. (9.22) occurs when the enthalpy and temperature
drop to (absolute) zero, so that the velocity achieves a maximum value

Vmax � (2h0)1/2 � (2cpT0)1/2 (9.24) 

No higher flow velocity can occur unless additional energy is added to the fluid through
shaft work or heat transfer (Sec. 9.8).

The dimensionless form of Eq. (9.23) brings in the Mach number Ma as a parameter,
by using Eq. (9.16) for the speed of sound of a perfect gas. Divide through by cpT to
obtain

1 � �
2
V
cp

2

T
� � �

T
T
0� (9.25) 

But, from the perfect-gas law, cpT � [kR/(k 	 1)]T � a2/(k 	 1), so that Eq. (9.25) be-
comes

1 � �
(k 	

2a
1
2
)V2

� � �
T
T
0�

or �
T
T
0� � 1 � �

k 	

2
1

� Ma2 Ma � �
V
a

� (9.26) 

This relation is plotted in Fig. 9.3 versus the Mach number for k � 1.4. At Ma � 5 the
temperature has dropped to �16�T0.

Since a � T1/2, the ratio a0 /a is the square root of (9.26)

�
a
a
0� � ��

T
T
0��

1/2

� �1 � �
1
2

� (k 	 1)Ma2	
1/2

(9.27)

Equation (9.27) is also plotted in Fig. 9.3. At Ma � 5 the speed of sound has dropped
to 41 percent of the stagnation value.

Note that Eqs. (9.26) and (9.27) require only adiabatic flow and hold even in the pres-
ence of irreversibilities such as friction losses or shock waves.
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Fig. 9.3 Adiabatic (T/T0 and a/a0)
and isentropic (p/p0 and �/�0) prop-
erties versus Mach number for 
k � 1.4.

If the flow is also isentropic, then for a perfect gas the pressure and density ratios
can be computed from Eq. (9.9) as a power of the temperature ratio

�
p
p
0� � ��

T
T
0��

k/(k	1)

� �1 � �
1
2

� (k 	 1) Ma2	
k/(k	1)

(9.28a) 

�
�
�
0� � ��

T
T
0��

1/(k	1)

� �1 � �
1
2

� (k 	 1) Ma2	
1/(k	1)

(9.28b) 

These relations are also plotted in Fig. 9.3; at Ma � 5 the density is 1.13 percent of
its stagnation value, and the pressure is only 0.19 percent of stagnation pressure.

The quantities p0 and �0 are the isentropic stagnation pressure and density, respec-
tively, i.e., the pressure and density which the flow would achieve if brought isentrop-
ically to rest. In an adiabatic nonisentropic flow p0 and �0 retain their local meaning,
but they vary throughout the flow as the entropy changes due to friction or shock waves.
The quantities h0, T0, and a0 are constant in an adiabatic nonisentropic flow (see Sec.
9.7 for further details).

The isentropic assumptions (9.28) are effective, but are they realistic? Yes. To see why,
differentiate Eq. (9.22)

Adiabatic: dh � V dV � 0 (9.29) 

Meanwhile, from Eq. (9.6), if ds � 0 (isentropic process),

dh � �
d
�
p
� (9.30) 

Combining (9.29) and (9.30), we find that an isentropic streamtube flow must be

�
d
�
p
� � V dV � 0 (9.31) 
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Critical Values at the Sonic Point

But this is exactly the Bernoulli relation, Eq. (3.75), for steady frictionless flow with
negligible gravity terms. Thus we see that the isentropic-flow assumption is equivalent
to use of the Bernoulli or streamline form of the frictionless momentum equation.

The stagnation values (a0, T0, p0, �0) are useful reference conditions in a compressible
flow, but of comparable usefulness are the conditions where the flow is sonic, Ma �
1.0. These sonic, or critical, properties are denoted by asterisks: p*, �*, a*, and T*.
They are certain ratios of the stagnation properties as given by Eqs. (9.26) to (9.28)
when Ma � 1.0; for k � 1.4

�
p
p
*

0
� � ��k �

2
1

��
k/(k	1)

� 0.5283 �
�
�
*

0
� � ��k �

2
1

��
1/(k	1)

� 0.6339

(9.32) 

�
T
T
*

0
� � �

k �

2
1

� � 0.8333 �
a
a
*

0
� � ��k �

2
1

��
1/2

� 0.9129

In all isentropic flow, all critical properties are constant; in adiabatic nonisentropic flow,
a* and T* are constant, but p* and �* may vary.

The critical velocity V* equals the sonic sound speed a* by definition and is often
used as a reference velocity in isentropic or adiabatic flow

V* � a* � (kRT*)1/2 � ��k 2
�

k
1

� RT0�
1/2

(9.33) 

The usefulness of these critical values will become clearer as we study compressible
duct flow with friction or heat transfer later in this chapter.

Since the great bulk of our practical calculations are for air, k � 1.4, the stagnation-
property ratios p/p0, etc., from Eqs. (9.26) to (9.28), are tabulated for this value in Table
B.1. The increments in Mach number are rather coarse in this table because the values
are only meant as a guide; these equations are now a trivial matter to manipulate on a
hand calculator. Thirty years ago every text had extensive compressible-flow tables with
Mach-number spacings of about 0.01, so that accurate values could be interpolated.

For k � 1.4, the following numerical versions of the isentropic and adiabatic flow
formulas are obtained:

�
T
T
0� � 1 � 0.2 Ma2 �

�
�
0� � (1 � 0.2 Ma2)2.5

�
p
p
0� � (1 � 0.2 Ma2)3.5

(9.34)

Or, if we are given the properties, it is equally easy to solve for the Mach number
(again with k � 1.4)

Ma2 � 5��
T
T
0� 	 1� � 5���

�
�
0��

2/5

	 1	 � 5���
p
p
0��

2/7

	 1	 (9.35)

Note that these isentropic-flow formulas serve as the equivalent of the frictionless adi-
abatic momentum and energy equations. They relate velocity to physical properties for
a perfect gas, but they are not the “solution’’ to a gas-dynamics problem. The complete
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solution is not obtained until the continuity equation has also been satisfied, for either
one-dimensional (Sec. 9.4) or multidimensional (Sec. 9.9) flow.

One final note: These isentropic-ratio–versus–Mach-number formulas are seduc-
tive, tempting one to solve all problems by jumping right into the tables. Actually, many
problems involving (dimensional) velocity and temperature can be solved more easily
from the original raw dimensional energy equation (9.23) plus the perfect-gas law (9.2),
as the next example will illustrate.

EXAMPLE 9.3

Air flows adiabatically through a duct. At point 1 the velocity is 240 m/s, with T1 � 320 K and
p1 � 170 kPa. Compute (a) T0, (b) p01, (c) �0, (d) Ma, (e) Vmax, and (f ) V*. At point 2 further
downstream V2 � 290 m/s and p2 � 135 kPa. (g) What is the stagnation pressure p02?

Solution

For air take k � 1.4, cp � 1005 m2/(s2 � K), and R � 287 m2/(s2 � K). With V1 and T1 known,
we can compute T01 from Eq. (9.23) without using the Mach number:

T01 � T1 � �
2
V
c

2
1

p
� � 320 � � 320 � 29 � 349 K Ans. (a) 

Then compute Ma1 from the known temperature ratio, using Eq. (9.35):

Ma2
1 � 5��

3
3
4
2
9
0

� 	 1� � 0.453 Ma1 � 0.67 Ans. (d) 

Alternately compute a1 � 
kR�T�1� � 359 m/s, whence Ma1 � V1/a1 � 240/359 � 0.67. The
stagnation pressure at section 1 follows from Eq. (9.34):

p01 � p1(1 � 0.2 Ma2
1)3.5 � (170 kPa)[1 � 0.2(0.67)2]3.5 � 230 kPa Ans. (b) 

We need the density from the perfect-gas law before we can compute the stagnation density:

�1 � �
R
p
T
1

1
� � �

(2
1
8
7
7
0
)
,
(
0
3
0
2
0
0)

� � 1.85 kg/m3

whence �01 � �1(1 � 0.2 Ma2
1)2.5 � (1.85)[1 � 0.2(0.67)2]2.5 � 2.29 kg/m3 Ans. (c)

Alternately, we could have gone directly to �0 � p0/(RT0) � (230 E3)/[(287)(349)] � 2.29 kg/m3.
Meanwhile, the maximum velocity follows from Eq. (9.24):

Vmax � (2cpT0)1/2 � [2(1005)(349)]1/2 � 838 m/s Ans. (e)

and the sonic velocity from Eq. (9.33) is

V* � ��k 2
�

k
1

� RT0�
1/2

� ��12.4(1�.4)
1

� (287)(349)	
1/2

� 342 m/s Ans. (f)

At point 2, the temperature is not given, but since we know the flow is adiabatic, the stagnation
temperature is constant: T02 � T01 � 349 K. Thus, from Eq. (9.23),

T2 � T02 	 �
2
V
c

2
2

p
� � 349 	 �

2
(
(
2
1
9
0
0
0
)
5

2

)
� � 307 K

Then, although the flow itself is not isentropic, the local stagnation pressure is computed by the
local isentropic condition

(240 m/s)2

���
2[1005 m2/(s2 � K)]
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9.4 Isentropic Flow with Area
Changes

p02 � p2��
T
T
0

2

2��
k/(k	1)

� (135)��
3
3
4
0
9
7

��
3.5

� 211 kPa Ans. (g)

This is 8 percent less than the upstream stagnation pressure p01. Notice that, in this last part, we
took advantage of the given information (T02, p2, V2) to obtain p02 in an efficient manner. You
may verify by comparison that approaching this part through the (unknown) Mach number Ma2

is more laborious.

By combining the isentropic- and/or adiabatic-flow relations with the equation of con-
tinuity we can study practical compressible-flow problems. This section treats the one-
dimensional flow approximation.

Figure 9.4 illustrates the one-dimensional flow assumption. A real flow, Fig. 9.4a,
has no slip at the walls and a velocity profile V(x, y) which varies across the duct sec-
tion (compare with Fig. 7.8). If, however, the area change is small and the wall radius
of curvature large

�
d
d
h
x
� � 1 h(x) � R(x) (9.36) 

then the flow is approximately one-dimensional, as in Fig. 9.4b, with V � V(x) react-
ing to area change A(x). Compressible-flow nozzles and diffusers do not always sat-
isfy conditions (9.36), but we use the one-dimensional theory anyway because of its
simplicity.

For steady one-dimensional flow the equation of continuity is, from Eq. (3.24),

�(x)V(x)A(x) � ṁ� const (9.37) 

Before applying this to duct theory, we can learn a lot from the differential form of
Eq. (9.37)

�
d
�
�
� � �

d
V
V
� � �

d
A
A
� � 0 (9.38) 

The differential forms of the frictionless momentum equation (9.31) and the sound-
speed relation (9.15) are recalled here for convenience:
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curvature R(x)
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A(x)y

xh(x)
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Fig. 9.4 Compressible flow through
a duct: (a) real-fluid velocity pro-
file; (b) one-dimensional approxi-
mation.



Fig. 9.5 Effect of Mach number on
property changes with area change
in duct flow.

Momentum �
d
�
p
� � V dV � 0

Sound speed: dp � a2 d�

(9.39)

Now eliminate dp and d� between Eqs. (9.38) and (9.39) to obtain the following rela-
tion between velocity change and area change in isentropic duct flow:

�
d
V
V
� � �

d
A
A
� �

Ma2
1
	 1
� � 	�

�
d
V
p
2� (9.40) 

Inspection of this equation, without actually solving it, reveals a fascinating aspect of
compressible flow: Property changes are of opposite sign for subsonic and supersonic
flow because of the term Ma2 	 1. There are four combinations of area change and
Mach number, summarized in Fig. 9.5.

From earlier chapters we are used to subsonic behavior (Ma � 1): When area in-
creases, velocity decreases and pressure increases, which is denoted a subsonic dif-
fuser. But in supersonic flow (Ma � 1), the velocity actually increases when the area
increases, a supersonic nozzle. The same opposing behavior occurs for an area de-
crease, which speeds up a subsonic flow and slows down a supersonic flow.

What about the sonic point Ma � 1? Since infinite acceleration is physically im-
possible, Eq. (9.40) indicates that dV can be finite only when dA � 0, that is, a mini-
mum area (throat) or a maximum area (bulge). In Fig. 9.6 we patch together a throat
section and a bulge section, using the rules from Fig. 9.5. The throat or converging-
diverging section can smoothly accelerate a subsonic flow through sonic to supersonic
flow, as in Fig. 9.6a. This is the only way a supersonic flow can be created by ex-
panding the gas from a stagnant reservoir. The bulge section fails; the bulge Mach num-
ber moves away from a sonic condition rather than toward it.

Although supersonic flow downstream of a nozzle requires a sonic throat, the op-
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d V > 0
d p < 0

Subsonic nozzle

d V < 0
d p > 0

Supersonic diffuser



posite is not true: A compressible gas can pass through a throat section without be-
coming sonic.

We can use the perfect-gas and isentropic-flow relations to convert the continuity re-
lation (9.37) into an algebraic expression involving only area and Mach number, as fol-
lows. Equate the mass flow at any section to the mass flow under sonic conditions
(which may not actually occur in the duct)

�VA � �*V*A*

or �
A
A
*
� � �

�
�
*
� �

V
V
*
� (9.41) 

Both the terms on the right are functions only of Mach number for isentropic flow.
From Eqs. (9.28) and (9.32)

�
�
�
*
� � �

�
�
*

0
� �

�
�
0� � ��k �

2
1

� �1 � �
1
2

� (k 	 1) Ma2	

1/(k	1)

(9.42) 

From Eqs. (9.26) and (9.32) we obtain

�
V
V
*
� � �

(kRT
V
*)1/2

� � �
(kR

V
T)1/2

� ��
T
T
*

0
��

1/2

��
T
T
0��

1/2

� �
M
1
a

� ��k �

2
1

� �1 � �
1
2

� (k 	 1) Ma2	

1/2

(9.43) 

Combining Eqs. (9.41) to (9.43), we get the desired result

�
A
A
*
� � �

M
1
a

� � 	
(1/2)(k�1)/(k	1)

(9.44) 

For k � 1.4, Eq. (9.44) takes the numerical form

�
A
A
*
� � �

M
1
a

� �
(1 �

1
0
.
.
7
2
28

Ma2)3

� (9.45) 

which is plotted in Fig. 9.7. Equations (9.45) and (9.34) enable us to solve any one-
dimensional isentropic-airflow problem given, say, the shape of the duct A(x) and the
stagnation conditions and assuming that there are no shock waves in the duct.

1 � �12�(k 	 1) Ma2

��
�12�(k � 1)
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(Supersonic:
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Fig. 9.6 From Eq. (9.40), in flow
through a throat (a) the fluid can
accelerate smoothly through sonic
and supersonic flow. In flow
through the bulge (b) the flow at
the bulge cannot be sonic on physi-
cal grounds.

Perfect-Gas Relations



Fig. 9.7 Area ratio versus Mach
number for isentropic flow of a
perfect gas with k � 1.4.

Figure 9.7 shows that the minimum area which can occur in a given isentropic duct
flow is the sonic, or critical, throat area. All other duct sections must have A greater
than A*. In many flows a critical sonic throat is not actually present, and the flow in
the duct is either entirely subsonic or, more rarely, entirely supersonic.

From Eq. (9.41) the inverse ratio A*/A equals �V/(�*V*), the mass flow per unit area
at any section compared with the critical mass flow per unit area. From Fig. 9.7 this
inverse ratio rises from zero at Ma � 0 to unity at Ma � 1 and back down to zero at
large Ma. Thus, for given stagnation conditions, the maximum possible mass flow
passes through a duct when its throat is at the critical or sonic condition. The duct is
then said to be choked and can carry no additional mass flow unless the throat is
widened. If the throat is constricted further, the mass flow through the duct must de-
crease.

From Eqs. (9.32) and (9.33) the maximum mass flow is

ṁmax � �*A*V* � �0��k �

2
1

��
1/(k	1)

A*��k 2
�

k
1

� RT0�
1/2

� k1/2��k �

2
1

��
(1/2)(k�1)/(k	1)

A*�0(RT0)1/2 (9.46a) 

For k � 1.4 this reduces to

ṁmax � 0.6847A*�0(RT0)1/2 � �
0.6

(R
8
T
47

0)
p
1
0
/2
A*

� (9.46b) 

For isentropic flow through a duct, the maximum mass flow possible is proportional
to the throat area and stagnation pressure and inversely proportional to the square root
of the stagnation temperature. These are somewhat abstract facts, so let us illustrate
with some examples.

Equation (9.46) gives the maximum mass flow, which occurs at the choking condition
(sonic exit). It can be modified to predict the actual (nonmaximum) mass flow at any
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Part (a)

section where local area A and pressure p are known.1 The algebra is convoluted, so
here we give only the final result, expressed in dimensionless form:

Mass-flow function � �
A
ṁ

� �



p
R�
0

T�0�� � ��
k� 2

	�k�1
�� ���

p
p�0
���

2/

�
k

��1� 	� ���
p
p�0
���(k�	�1)�/k�	� (9.47)

We stress that p and A in this relation are the local values at position x. As p/p0 falls,
this function rises rapidly and then levels out at the maximum of Eq. (9.46). A few val-
ues may be tabulated here for k � 1.4:

p/p0 1.0 0.98 0.95 0.9 0.8 0.7 0.6 �0.5283

Function 0.0 0.1978 0.3076 0.4226 0.5607 0.6383 0.6769 0.6847

Equation (9.47) is handy if stagnation conditions are known and the flow is not choked.
The only cumbersome algebra in these problems is the inversion of Eq. (9.45) to

compute the Mach number when A/A* is known. If available, EES is ideal for this sit-
uation and will yield Ma in a flash. In the absence of EES, the following curve-fitted
formulas are suggested; given A/A*, they estimate the Mach number within �2 per-
cent for k � 1.4 if you stay within the ranges listed for each formula:

�
1 �

1
0
.7
.2
2
7
8
(
A
A
/
/
A
A
*
*)	2

�    1.34 � �
A
A
*
� � � (9.48a)

1 	 0.88�ln �
A
A
*
��

0.45                   

1.0 � �
A
A
*
� � 1.34

subsonic flow

(9.48b)

Ma �
1 � 1.2��

A
A
*
� 	 1�

1/2                   

1.0 � �
A
A
*
� � 2.9 (9.48c)

�216 �
A
A
*
� 	 254��

A
A
*
��

2/3

	
1/5

2.9 � �
A
A
*
� � �

supersonic flow

(9.48d)

Formulas (9.48a) and (9.48d) are asymptotically correct as A/A* → �, while (9.48b)
and (9.48c) are just curve fits. However, formulas (9.48b) and (9.48c) are seen in Fig.
9.7 to be accurate within their recommended ranges.

Note that two solutions are possible for a given A/A*, one subsonic and one super-
sonic. The proper solution cannot be selected without further information, e.g., known
pressure or temperature at the given duct section.

EXAMPLE 9.4

Air flows isentropically through a duct. At section 1 the area is 0.05 m2 and V1 � 180 m/s, p1 � 500
kPa, and T1 � 470 K. Compute (a) T0, (b) Ma1, (c) p0, and (d) both A* and ṁ. If at section 2 the
area is 0.036 m2, compute Ma2 and p2 if the flow is (e) subsonic or (f) supersonic. Assume k � 1.4.

Solution

A general sketch of the problem is shown in Fig. E9.4. With V1 and T1 known, the energy equa-
tion (9.23) gives
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1The author is indebted to Georges Aigret, of Chimay, Belgium, for suggesting this useful function.
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E9.4 

T0 � T1 � �
2
V
c

2
1

p
� � 470 � �

2
(
(
1
1
8
0
0
0
)
5

2

)
� � 486 K Ans. (a)

The local sound speed a1 � 
kR�T�1� � [(1.4)(287)(470)]1/2 � 435 m/s. Hence

Ma1 � �
V
a1

1� � �
1
4
8
3
0
5

� � 0.414 Ans. (b)

With Ma1 known, the stagnation pressure follows from Eq. (9.34):

p0 � p1(1 � 0.2 Ma2
1)3.5 � (500 kPa)[1 � 0.2(0.414)2]3.5 � 563 kPa Ans. (c)

Similarly, from Eq. (9.45), the critical sonic-throat area is

�
A
A

*
1� ��

(1
1
�

.7
0
2
.
8
2

M
M

a
a

1

2
1)3

���
[1 �

1.7
0
2
.
8
2
(
(
0
0
.
.
4
4
1
1
4
4
)
)2]3

�� 1.547 

or A* � �
1.

A
5

1

47
� � �

0
1
.0
.5
5
4
m
7

2

� � 0.0323 m2 Ans. (d)

This throat must actually be present in the duct if the flow is to become supersonic.
We now know A*. So to compute the mass flow we can use Eq. (9.46), which remains valid,

based on the numerical value of A*, whether or not a throat actually exists:

ṁ � 0.6847 �


p0

R�
A

T�
*

0�
� � 0.6847 � 33.4 kg/s Ans. (d)

Or we could fare equally well with our new “local mass flow” formula, Eq. (9.47), using, say,
the pressure and area at section 1. Given p1/p0 � 500/563 � 0.889, Eq. (9.47) yields

ṁ � ��
2�(

0
1�.
.
4�4�)
��(0�.8�8�9�)2�/1�.4�[1� 	� (�0�.8�8�9�)0�.4�/1�.4�]� � 0.447 ṁ � 33.4 �

k
s
g
� Ans. (d)

Assume subsonic flow corresponds to section 2E in Fig. E9.4. The duct contracts to an area ra-
tio A2/A* � 0.036/0.0323 � 1.115, which we find on the left side of Fig. 9.7 or the subsonic
part of Table B.1. Neither the figure nor the table is that accurate. There are two accurate op-
tions. First, Eq. (9.48b) gives the estimate Ma2 � 1 	 0.88 ln (1.115)0.45 � 0.676 (error less than
0.5 percent). Second, EES (App. E) will give an arbitrarily accurate solution with only three
statements (in SI units):

A2 � 0.036

Astar � 0.0323

A2/Astar � (1+0.2*Ma2^2)^3/1.2^3/Ma2


2�8�7�(4�8�6�)�
��
563,000(0.05)

(563,000)(0.0323)
��


(2�8�7�)(�4�8�6�)�
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Part (f)

Specify that you want a subsonic solution (e.g., limit Ma2 � 1), and EES reports 

Ma2 � 0.6758 Ans. (e)

[Ask for a supersonic solution and you receive Ma2 � 1.4001, which is the answer to part (f).]
The pressure is given by the isentropic relation 

p2 � � �
56

1
3
.35

k
8
Pa

� � 415 kPa Ans. (e)

Part (e) does not require a throat, sonic or otherwise; the flow could simply be contracting sub-
sonically from A1 to A2. 

This time assume supersonic flow, corresponding to section 2F in Fig. E9.4. Again the area ra-
tio is A2/A* � 0.036/0.0323 � 1.115, and we look on the right side of Fig. 9.7 or the supersonic
part of Table B.1—the latter can be read quite accurately as Ma2 � 1.40. Again there are two
other accurate options. First, Eq. (9.48c) gives the curve-fit estimate Ma2 � 1 � 1.2(1.115 	
1)11/2 � 1.407, only 0.5 percent high. Second, EES will give a very accurate solution with the
same three statements from part (e). Specify that you want a supersonic solution (e.g., limit
Ma2 � 1), and EES reports 

Ma2 � 1.4001 Ans. (f)

Again the pressure is given by the isentropic relation at the new Mach number:

p2 � � �
56

3
3
.18

k
3
Pa

� � 177 kPa Ans. (f)

Note that the supersonic-flow pressure level is much less than p2 in part (e), and a sonic throat
must have occurred between sections 1 and 2F.

EXAMPLE 9.5

It is desired to expand air from p0 � 200 kPa and T0 � 500 K through a throat to an exit Mach
number of 2.5. If the desired mass flow is 3 kg/s, compute (a) the throat area and the exit (b)
pressure, (c) temperature, (d) velocity, and (e) area, assuming isentropic flow, with k � 1.4.

Solution

The throat area follows from Eq. (9.47), because the throat flow must be sonic to produce a su-
personic exit:

A* � � � 0.00830 m2 � �D*2

or Dthroat � 10.3 cm Ans. (a)

With the exit Mach number known, the isentropic-flow relations give the pressure and temper-
ature:

pe � � � 11,700 Pa Ans. (b)

Te � � � 222 K Ans. (c)
500
�
2.25

T0��
1 � 0.2(2.5)2

200,000
�

17.08
p0��

[1 � 0.2(2.5)2]3.5

1
�
4

3.0[287(500)]1/2

��
0.6847(200,000)

ṁ(RT0)1/2

��
0.6847p0

p0���
[1 � 0.2(1.4001)2]3.5

p0���
[1 � 0.2(0.676)2]3.5
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9.5 The Normal-Shock Wave

The exit velocity follows from the known Mach number and temperature

Ve � Mae (kRTe)
1/2 � 2.5[1.4(287)(222)]1/2 � 2.5(299 m/s) � 747 m/s Ans. (d)

The exit area follows from the known throat area and exit Mach number and Eq. (9.45):

� � 2.64 

or Ae � 2.64A* � 2.64(0.0083 m2) � 0.0219 m2 � �14��D2
e

or De � 16.7 cm Ans. (e)

One point might be noted: The computation of the throat area A* did not depend in any way on
the numerical value of the exit Mach number. The exit was supersonic; therefore the throat is
sonic and choked, and no further information is needed.

A common irreversibility occurring in supersonic internal or external flows is the 
normal-shock wave sketched in Fig. 9.8. Except at near-vacuum pressures such shock waves
are very thin (a few micrometers thick) and approximate a discontinuous change in flow
properties. We select a control volume just before and after the wave, as in Fig. 9.8.

The analysis is identical to that of Fig. 9.1; i.e., a shock wave is a fixed strong pres-
sure wave. To compute all property changes rather than just the wave speed, we use
all our basic one-dimensional steady-flow relations, letting section 1 be upstream and
section 2 be downstream:

�1V1 � �2V2 � G � const (9.49a) 

p1 	 p2 � �2V2
2 	 �1V2

1 (9.49b) 

Energy: h1 � �12�V2
1 � h2 � �12�V2

2 � h0 � const (9.49c) 

Perfect gas: � (9.49d) 

Constant cp: h � cpT k � const (9.49e) 

Note that we have canceled out the areas A1 � A2, which is justified even in a variable
duct section because of the thinness of the wave. The first successful analyses of these
normal-shock relations are credited to W. J. M. Rankine (1870) and A. Hugoniot (1887),
hence the modern term Rankine-Hugoniot relations. If we assume that the upstream
conditions (p1, V1, �1, h1, T1) are known, Eqs. (9.49) are five algebraic relations in the
five unknowns (p2, V2, �2, h2, T2). Because of the velocity-squared term, two solutions
are found, and the correct one is determined from the second law of thermodynamics,
which requires that s2 � s1.

The velocities V1 and V2 can be eliminated from Eqs. (9.49a) to (9.49c) to obtain
the Rankine-Hugoniot relation

h2 	 h1 � (p2 	 p1)� � � (9.50) 
1

�
�1

1
�
�2

1
�
2

p2�
�2T2

p1�
�1T1

[1 � 0.2(2.5)2]3

��
1.728(2.5)

Ae�
A*
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Fig. 9.8 Flow through a fixed 
normal-shock wave.

This contains only thermodynamic properties and is independent of the equation 
of state. Introducing the perfect-gas law h � cpT � kp/[(k 	 1)�], we can rewrite 
this as

� � � (9.51) 

We can compare this with the isentropic-flow relation for a very weak pressure wave
in a perfect gas

� � �
1/k

(9.52) 

Also, the actual change in entropy across the shock can be computed from the perfect-
gas relation

� ln � � �
k

	 (9.53) 

Assuming a given wave strength p2/p1, we can compute the density ratio and the en-
tropy change and list them as follows for k � 1.4:

�1�
�2

p2�
p1

s2 	 s1�
c�

p2�
p1

�2�
�1

k � 1
�
k 	 1

1 � �p2/p1��
� � p2/p1

�2�
�1
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Fixed
normal
shock

Isoenergetic
T01 = T02

1 2

Isentropic
upstream

s = s1 Isentropic
downstream
s = s2 > s1

p02 < p01

Ma 1 > 1 Ma 2 < 1

Thin
control
volume
A1≈ A2

A* > A*2 1

�2/�1

Eq. (9.51) Isentropic

0.5 0.6154 0.6095 	0.0134
0.9 0.9275 0.9275 	0.00005
1.0 1.0 1.0 	0.0
1.1 1.00704 1.00705 	0.00004
1.5 1.3333 1.3359 	0.0027
2.0 1.6250 1.6407 	0.0134

s2 	 s1�
c�

p2�
p1



We see that the entropy change is negative if the pressure decreases across the shock,
which violates the second law. Thus a rarefaction shock is impossible in a perfect gas.2

We see also that weak-shock waves (p2/p1 � 2.0) are very nearly isentropic.

For a perfect gas all the property ratios across the normal shock are unique functions
of k and the upstream Mach number Ma1. For example, if we eliminate �2 and V2 from
Eqs. (9.49a) to (9.49c) and introduce h � kp/[(k 	 1)�], we obtain

� � 	 (k 	 1)	 (9.54)

But for a perfect gas �1V2
1/p1 � kV2

1/(kRT1) � k Ma2
1, so that Eq. (9.54) is equivalent to

� [2k Ma2
1 	 (k 	 1)] (9.55) 

From this equation we see that, for any k, p2 � p1 only if Ma1 � 1.0. Thus for flow
through a normal-shock wave, the upstream Mach number must be supersonic to sat-
isfy the second law of thermodynamics.

What about the downstream Mach number? From the perfect-gas identity �V2 �
kp Ma2, we can rewrite Eq. (9.49b) as

� �
1
1

�

�

k
k

M
M

a
a

2

2
1

2
� (9.56) 

which relates the pressure ratio to both Mach numbers. By equating Eqs. (9.55) and
(9.56) we can solve for

Ma2
2 ��

2
(
k
k 	

Ma
1
2
1

)
	

M
(
a
k

2
1

	

�

1
2
)

� (9.57)

Since Ma1 must be supersonic, this equation predicts for all k � 1 that Ma2 must be
subsonic. Thus a normal-shock wave decelerates a flow almost discontinuously from
supersonic to subsonic conditions.

Further manipulation of the basic relations (9.49) for a perfect gas gives additional
equations relating the change in properties across a normal-shock wave in a perfect gas

� �

� [2 � (k 	 1) Ma2
1] (9.58) 

T02 � T01

� � � 	
k/(k	1)

� 	
1/(k	1)

Of additional interest is the fact that the critical, or sonic, throat area A* in a duct in-
creases across a normal shock

k � 1
��
2k Ma2

1 	 (k 	 1)
(k � 1) Ma2

1��
2 � (k 	 1) Ma2

1

�02�
�01

p02�
p01

2k Ma2
1 	 (k 	 1)

��
(k � 1)2 Ma2

1

T2�
T1

V1�
V2

(k � 1) Ma2
1��

(k 	 1) Ma2
1 � 2

�2�
�1

p2�
p1

1
�
k � 1

p2�
p1

2�1V2
1�

p1

1
�
k � 1

p2�
p1
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2 This is true also for most real gases; see Ref. 14, sec. 7.3.



Fig. 9.9 Change in flow properties
across a normal-shock wave for
k � 1.4.

� � 	
(1/2)(k�1)/(k	1)

(9.59) 

All these relations are given in Table B.2 and plotted versus upstream Mach number
Ma1 in Fig. 9.9 for k � 1.4. We see that pressure increases greatly while temperature
and density increase moderately. The effective throat area A* increases slowly at first
and then rapidly. The failure of students to account for this change in A* is a common
source of error in shock calculations.

The stagnation temperature remains the same, but the stagnation pressure and den-
sity decrease in the same ratio; i.e., the flow across the shock is adiabatic but non-
isentropic. Other basic principles governing the behavior of shock waves can be sum-
marized as follows:

1. The upstream flow is supersonic, and the downstream flow is subsonic.

2. For perfect gases (and also for real fluids except under bizarre thermodynamic
conditions) rarefaction shocks are impossible, and only a compression shock can
exist.

3. The entropy increases across a shock with consequent decreases in stagnation
pressure and stagnation density and an increase in the effective sonic-throat area.

4. Weak shock waves are very nearly isentropic.

Normal-shock waves form in ducts under transient conditions, e.g., shock tubes, and
in steady flow for certain ranges of the downstream pressure. Figure 9.10a shows a
normal shock in a supersonic nozzle. Flow is from left to right. The oblique wave pat-
tern to the left is formed by roughness elements on the nozzle walls and indicates that
the upstream flow is supersonic. Note the absence of these Mach waves (see Sec. 9.10)
in the subsonic flow downstream.

2 � (k 	 1) Ma2
1��

2 � (k 	 1) Ma2
2
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Ma1

A*2�
A*1
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Fig. 9.10 Normal shocks form in
both internal and external flows:
(a) Normal shock in a duct; note
the Mach-wave pattern to the left
(upstream), indicating supersonic
flow. (Courtesy of U.S. Air Force
Arnold Engineering Development
Center.) (b) Supersonic flow past a
blunt body creates a normal shock
at the nose; the apparent shock
thickness and body-corner curva-
ture are optical distortions. (Cour-
tesy of U.S. Army Ballistic Re-
search Laboratory, Aberdeen
Proving Ground.)

Normal-shock waves occur not only in supersonic duct flows but also in a variety
of supersonic external flows. An example is the supersonic flow past a blunt body
shown in Fig. 9.10b. The bow shock is curved, with a portion in front of the body
which is essentially normal to the oncoming flow. This normal portion of the bow shock
satisfies the property-change conditions just as outlined in this section. The flow in-
side the shock near the body nose is thus subsonic and at relatively high temperature
T2 � T1, and convective heat transfer is especially high in this region.

Each nonnormal portion of the bow shock in Fig. 9.10b satisfies the oblique-shock
relations to be outlined in Sec. 9.9. Note also the oblique recompression shock on the
sides of the body. What has happened is that the subsonic nose flow has accelerated
around the corners back to supersonic flow at low pressure, which must then pass
through the second shock to match the higher downstream pressure conditions.
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Moving Normal Shocks

Note the fine-grained turbulent wake structure in the rear of the body in Fig. 9.10b.
The turbulent boundary layer along the sides of the body is also clearly visible.

The analysis of a complex multidimensional supersonic flow such as in Fig. 9.10 is
beyond the scope of this book. For further information see, e.g., Ref. 14, chap. 9, or
Ref. 8, chap. 16.

The preceding analysis of the fixed shock applies equally well to the moving shock if
we reverse the transformation used in Fig. 9.1. To make the upstream conditions sim-
ulate a still fluid, we move the shock of Fig. 9.8 to the left at speed V1; that is, we fix
our coordinates to a control volume moving with the shock. The downstream flow then
appears to move to the left at a slower speed V1 	 V2 following the shock. The ther-
modynamic properties are not changed by this transformation, so that all our Eqs. (9.50)
to (9.59) are still valid.

EXAMPLE 9.6

Air flows from a reservoir where p � 300 kPa and T � 500 K through a throat to section 1 in
Fig. E9.6, where there is a normal-shock wave. Compute (a) p1, (b) p2, (c) p02, (d ) A*2, (e) p03,
(f) A*3, (g) p3, (h) T03, and (i) T3.

Solution

The reservoir conditions are the stagnation properties, which, for assumed one-dimensional adi-
abatic frictionless flow, hold through the throat up to section 1

p01 � 300 kPa T01 � 500 K

A shock wave cannot exist unless Ma1 is supersonic; therefore the flow must have accelerated
through a throat which is sonic

At � A*1 � 1 m2

We can now find the Mach number Ma1 from the known isentropic area ratio

�
A
A

*
1

1
� � � 2.0

From Eq. (9.48c)

Ma1 � 1 � 1.2(2.0 	 1)1/2 � 2.20

Further iteration with Eq. (9.45) would give Ma1 � 2.1972, showing that Eq. (9.48c) gives sat-
isfactory accuracy. The pressure p1 follows from the isentropic relation (9.28) (or Table B.1)

� [1 � 0.2(2.20)2]3.5 � 10.7 

or p1 � � 28.06 kPa Ans. (a)
300 kPa
�

10.7

p01�
p1

2 m2

�
1 m2
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1 2 3

1 m2

2 m2

3 m2
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The pressure p2 is now obtained from Ma1 and the normal-shock relation (9.55) or Table B.2

� [2.8(2.20)2 	 0.4] � 5.48 

or p2 � 5.48(28.06) � 154 kPa Ans. (b)

In similar manner, for Ma1 � 2.20, p02/p01 � 0.628 from Eq. (9.58) and A*2/A*1 � 1.592 from
Eq. (9.59), or we can read Table B.2 for these values. Thus

p02 � 0.628(300 kPa) � 188 kPa Ans. (c)

A*2 � 1.592(1 m2) � 1.592 m2 Ans. (d)

The flow from section 2 to 3 is isentropic (but at higher entropy than the flow upstream of the
shock). Thus

p03 � p02 � 188 kPa Ans. (e)

A*3 � A*2 � 1.592 m2 Ans. (f)

Knowing A*3, we can now compute p3 by finding Ma3 and without bothering to find Ma2 (which
happens to equal 0.547). The area ratio at section 3 is

�
A
A

*
3

3
� � � 1.884

Then, since Ma3 is known to be subsonic because it is downstream of a normal shock, we use
Eq. (9.48a) to estimate

Ma3 � � 0.330

The pressure p3 then follows from the isentropic relation (9.28) or Table B.1

� [1 � 0.2(0.330)2]3.5 � 1.078 

or p3 � � 174 kPa Ans. (g)

Meanwhile, the flow is adiabatic throughout the duct; thus

T01 � T02 � T03 � 500 K Ans. (h)

Therefore, finally, from the adiabatic relation (9.26)

� 1 � 0.2(0.330)2 � 1.022 

or T3 � � 489 K Ans. (i)

Notice that this type of duct-flow problem, with or without a shock wave, requires straightfor-
ward application of algebraic perfect-gas relations coupled with a little thought given to which
formula is appropriate for the particular situation.

500 K
�
1.022

T03�
T3

188 kPa
�

1.078

p03�
p3

1 � 0.27/(1.884)2

��
1.728(1.884)

3 m2

�
1.592 m2

1
�
2.4

p2�
p1
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E9.7 

Part (a)

Part (b)

EXAMPLE 9.7

An explosion in air, k � 1.4, creates a spherical shock wave propagating radially into still air at
standard conditions. At the instant shown in Fig. E9.7, the pressure just inside the shock is 200
lbf/in2 absolute. Estimate (a) the shock speed C and (b) the air velocity V just inside the shock.

9.5 The Normal-Shock Wave 597

C

V
POW!

p = 14.7 1bf / in2 abs
T = 520° R

200 1bf / in2 abs

Solution

In spite of the spherical geometry the flow across the shock moves normal to the spherical wave-
front; hence the normal-shock relations (9.50) to (9.59) apply. Fixing our control volume to the
moving shock, we find that the proper conditions to use in Fig. 9.8 are

C � V1 p1 � 14.7 lbf/in2 absolute T1 � 520°R 

V � V1 	 V2 p2 � 200 lbf/in2 absolute

The speed of sound outside the shock is a1 � 49T1
1/2 � 1117 ft/s. We can find Ma1 from the

known pressure ratio across the shock

� � 13.61 

From Eq. (9.55) or Table B.2

13.61 � (2.8 Ma2
1 	 0.4) or Ma1 � 3.436 

Then, by definition of the Mach number,

C � V1 � Ma1 a1 � 3.436(1117 ft/s) � 3840 ft/s Ans. (a)

To find V2, we need the temperature or sound speed inside the shock. Since Ma1 is known, from
Eq. (9.58) or Table B.2 for Ma1 � 3.436 we compute T2/T1 � 3.228. Then

T2 � 3.228T1 � 3.228(520°R) � 1679°R

At such a high temperature we should account for non-perfect-gas effects or at least use the gas
tables [16], but we won’t. Here just estimate from the perfect-gas energy equation (9.23) that

V2
2 � 2cp(T1 	 T2) � V2

1 � 2(6010)(520 	 1679) � (3840)2 � 815,000 

or V2 � 903 ft/s 

Notice that we did this without bothering to compute Ma2, which equals 0.454, or a2 � 49T2
1/2 �

2000 ft/s.

1
�
2.4

200 lbf/in2 absolute
���
14.7 lbf/in2 absolute

p2�
p1



9.6 Operation of Converging
and Diverging Nozzles

Converging Nozzle

Finally, the air velocity behind the shock is

V � V1 	 V2 � 3840 	 903 � 2940 ft/s Ans. (b)

Thus a powerful explosion creates a brief but intense blast wind as it passes.3

By combining the isentropic-flow and normal-shock relations plus the concept of sonic
throat choking, we can outline the characteristics of converging and diverging nozzles.

First consider the converging nozzle sketched in Fig. 9.11a. There is an upstream reser-
voir at stagnation pressure p0. The flow is induced by lowering the downstream out-
side, or back, pressure pb below p0, resulting in the sequence of states a to e shown in
Fig. 9.11b and c.

For a moderate drop in pb to states a and b, the throat pressure is higher than the
critical value p* which would make the throat sonic. The flow in the nozzle is sub-
sonic throughout, and the jet exit pressure pe equals the back pressure pb. The mass
flow is predicted by subsonic isentropic theory and is less than the critical value ṁmax,
as shown in Fig. 9.11c.

For condition c, the back pressure exactly equals the critical pressure p* of the throat.
The throat becomes sonic, the jet exit flow is sonic, pe � pb, and the mass flow equals
its maximum value from Eq. (9.46). The flow upstream of the throat is subsonic every-
where and predicted by isentropic theory based on the local area ratio A(x)/A* and
Table B.1.

Finally, if pb is lowered further to conditions d or e below p*, the nozzle cannot re-
spond further because it is choked at its maximum throat mass flow. The throat re-
mains sonic with pe � p*, and the nozzle-pressure distribution is the same as in state
c, as sketched in Fig. 9.11b. The exit jet expands supersonically so that the jet pres-
sure can be reduced from p* down to pb. The jet structure is complex and multidi-
mensional and is not shown here. Being supersonic, the jet cannot send any signal up-
stream to influence the choked flow conditions in the nozzle.

If the stagnation plenum chamber is large or supplemented by a compressor, and if
the discharge chamber is larger or supplemented by a vacuum pump, the converging-
nozzle flow will be steady or nearly so. Otherwise the nozzle will be blowing down,
with p0 decreasing and pb increasing, and the flow states will be changing from, say,
state e backward to state a. Blowdown calculations are usually made by a quasi-steady
analysis based on isentropic steady-flow theory for the instantaneous pressures p0(t)
and pb(t).

EXAMPLE 9.8

A converging nozzle has a throat area of 6 cm2 and stagnation air conditions of 120 kPa and
400 K. Compute the exit pressure and mass flow if the back pressure is (a) 90 kPa and (b) 45
kPa. Assume k � 1.4.
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3 This is the principle of the shock-tube wind tunnel, in which a controlled explosion creates a brief
flow at very high Mach number, with data taken by fast-response instruments. See, e.g., Ref. 5, sec. 4.5.



Fig. 9.11 Operation of a converging
nozzle: (a) nozzle geometry show-
ing characteristic pressures; 
(b) pressure distribution caused 
by various back pressures; 
(c) mass flow versus back pressure.

Solution

From Eq. (9.32) for k � 1.4 the critical (sonic) throat pressure is

� 0.5283 or p* � (0.5283)(120 kPa) � 63.4 kPa

If the back pressure is less than this amount, the nozzle flow is choked.

For pb � 90 kPa � p*, the flow is subsonic, not choked. The exit pressure is pe � pb. The throat
Mach number is found from the isentropic relation (9.35) or Table B.1:

Ma2
e � 5�� �

2/7

	 1	 � 5�� �
2/7

	 1	 � 0.4283 Mae � 0.654

To find the mass flow, we could proceed with a serial attack on Mae, Te, ae, Ve, and �e, hence

120
�
90

p0�
pe

p*
�
p0
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Converging-Diverging Nozzle

to compute �eAeVe. However, since the local pressure is known, this part is ideally suited for the
dimensionless mass-flow function in Eq. (9.47). With pe/p0 � 90/120 � 0.75, compute

�
ṁ 


Ap
R�
0

T�0�� � ��(0�.7�5�)2�/1�.4�[1� 	� (�0�.7�5�)0�.4�/1�.4�]� � 0.6052

hence ṁ � 0.6052 � 0.129 kg/s Ans. (a)

for pe � pb � 90 kPa Ans. (a) 

For pb � 45 kPa � p*, the flow is choked, similar to condition d in Fig. 9.11b. The exit pres-
sure is sonic:

pe � p* � 63.4 kPa Ans. (b)

The (choked) mass flow is a maximum from Eq. (9.46b):

ṁ � ṁmax � � � 0.145 kg/s Ans. (b)

Any back pressure less than 63.4 kPa would cause this same choked mass flow. Note that the
50 percent increase in exit Mach number, from 0.654 to 1.0, has increased the mass flow only
12 percent, from 0.128 to 0.145 kg/s.

Now consider the converging-diverging nozzle sketched in Fig. 9.12a. If the back pres-
sure pb is low enough, there will be supersonic flow in the diverging portion and a va-
riety of shock-wave conditions may occur, which are sketched in Fig. 9.12b. Let the
back pressure be gradually decreased.

For curves A and B in Fig. 9.12b the back pressure is not low enough to induce
sonic flow in the throat, and the flow in the nozzle is subsonic throughout. The pres-
sure distribution is computed from subsonic isentropic area-change relations, e.g., Table
B.1. The exit pressure pe � pb, and the jet is subsonic.

For curve C the area ratio Ae/At exactly equals the critical ratio Ae/A* for a subsonic
Mae in Table B.1. The throat becomes sonic, and the mass flux reaches a maximum in Fig.
9.12c. The remainder of the nozzle flow is subsonic, including the exit jet, and pe � pb.

Now jump for a moment to curve H. Here pb is such that pb/p0 exactly corresponds
to the critical-area ratio Ae /A* for a supersonic Mae in Table B.1. The diverging flow
is entirely supersonic, including the jet flow, and pe � pb. This is called the design
pressure ratio of the nozzle and is the back pressure suitable for operating a supersonic
wind tunnel or an efficient rocket exhaust.

Now back up and suppose that pb lies between curves C and H, which is impossi-
ble according to purely isentropic-flow calculations. Then back pressures D to F oc-
cur in Fig. 9.12b. The throat remains choked at the sonic value, and we can match pe �
pb by placing a normal shock at just the right place in the diverging section to cause a
subsonic-diffuser flow back to the back-pressure condition. The mass flow remains at
maximum in Fig. 9.12c. At back pressure F the required normal shock stands in the
duct exit. At back pressure G no single normal shock can do the job, and so the flow
compresses outside the exit in a complex series of oblique shocks until it matches pb.

0.6847(120,000)(0.0006)
���

[287(400)]1/2
0.6847p0Ae��

(RT0)1/2

(0.0006)(120,000)
��


2�8�7�(4�0�0�)�

2(1.4)
�

0.4
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Fig. 9.12 Operation of a converg-
ing-diverging nozzle: (a) nozzle
geometry with possible flow con-
figurations; (b) pressure distribution
caused by various back pressures;
(c) mass flow versus back pressure.

Finally, at back pressure I, pb is lower than the design pressure H, but the nozzle is
choked and cannot respond. The exit flow expands in a complex series of supersonic
wave motions until it matches the low back pressure. See, e.g., Ref. 9, sec. 5.4, for fur-
ther details of these off-design jet-flow configurations.

Note that for pb less than back pressure C, there is supersonic flow in the nozzle
and the throat can receive no signal from the exit behavior. The flow remains choked,
and the throat has no idea what the exit conditions are.

Note also that the normal shock-patching idea is idealized. Downstream of the shock
the nozzle flow has an adverse pressure gradient, usually leading to wall boundary-
layer separation. Blockage by the greatly thickened separated layer interacts strongly
with the core flow (recall Fig. 6.27) and usually induces a series of weak two-
dimensional compression shocks rather than a single one-dimensional normal shock
(see, e.g., Ref. 14, pp. 292 and 293, for further details).
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Part (a)

Part (b)

Part (c)

EXAMPLE 9.9

A converging-diverging nozzle (Fig. 9.12a) has a throat area of 0.002 m2 and an exit area 
of 0.008 m2. Air stagnation conditions are p0 � 1000 kPa and T0 � 500 K. Compute the exit
pressure and mass flow for (a) design condition and the exit pressure and mass flow if (b) pb �
300 kPa and (c) pb � 900 kPa. Assume k � 1.4.

Solution

The design condition corresponds to supersonic isentropic flow at the given area ratio Ae/At �
0.008/0.002 � 4.0. We can find the design Mach number either by iteration of the area-ratio for-
mula (9.45), using EES, or by the curve fit (9.48d)

Mae,design � [216(4.0) 	 254(4.0)2/3]1/5 � 2.95 (exact � 2.9402)

The accuracy of the curve fit is seen to be satisfactory. The design pressure ratio follows from
Eq. (9.34)

� [1 � 0.2(2.95)2]3.5 � 34.1 

or pe,design � �
100

3
0
4.1

kPa
� � 29.3 kPa Ans. (a)

Since the throat is clearly sonic at design conditions, Eq. (9.46b) applies

ṁdesign � ṁmax � � Ans. (a)

� 3.61 kg/s

For pb � 300 kPa we are definitely far below the subsonic isentropic condition C in Fig. 9.12b,
but we may even be below condition F with a normal shock in the exit, i.e., in condition G,
where oblique shocks occur outside the exit plane. If it is condition G, then pe � pe,design � 29.3
kPa because no shock has yet occurred. To find out, compute condition F by assuming an exit
normal shock with Ma1 � 2.95, that is, the design Mach number just upstream of the shock.
From Eq. (9.55)

� [2.8(2.95)2 	 0.4] � 9.99 

or p2 � 9.99p1 � 9.99pe,design � 293 kPa

Since this is less than the given pb � 300 kPa, there is a normal shock just upstream of the exit
plane (condition E). The exit flow is subsonic and equals the back pressure

pe � pb � 300 kPa Ans. (b)

Also ṁ � ṁmax � 3.61 kg/s Ans. (b)

The throat is still sonic and choked at its maximum mass flow.

Finally, for pb � 900 kPa, which is up near condition C, we compute Mae and pe for condition
C as a comparison. Again Ae/At � 4.0 for this condition, with a subsonic Mae estimated from
the curve-fitted Eq. (9.48a):

Mae(C) � � 0.147 (exact � 0.14655)
1 � 0.27/(4.0)2

��
1.728(4.0)

1
�
2.4

p2�
p1

0.6847(106 Pa)(0.002 m2)
���

[287(500)]1/2
0.6847p0At��

(RT0)1/2

p0�
pe
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9.7 Compressible Duct Flow
with Friction4

Then the isentropic exit-pressure ratio for this condition is

� [1 � 0.2(0.147)2]3.5 � 1.0152

or pe � � 985 kPa

The given back pressure of 900 kPa is less than this value, corresponding roughly to condition
D in Fig. 9.12b. Thus for this case there is a normal shock just downstream of the throat, and
the throat is choked

pe � pb � 900 kPa ṁ � ṁmax � 3.61 kg/s Ans. (c)

For this large exit-area ratio, the exit pressure would have to be larger than 985 kPa to cause a
subsonic flow in the throat and a mass flow less than maximum.

Section 9.4 showed the effect of area change on a compressible flow while neglecting
friction and heat transfer. We could now add friction and heat transfer to the area change
and consider coupled effects, which is done in advanced texts [for example, 8, chap.
8]. Instead, as an elementary introduction, this section treats only the effect of friction,
neglecting area change and heat transfer. The basic assumptions are

1. Steady one-dimensional adiabatic flow

2. Perfect gas with constant specific heats

3. Constant-area straight duct

4. Negligible shaft-work and potential-energy changes

5. Wall shear stress correlated by a Darcy friction factor

In effect, we are studying a Moody-type pipe-friction problem but with large changes
in kinetic energy, enthalpy, and pressure in the flow.

Consider the elemental duct control volume of area A and length dx in Fig. 9.13.
The area is constant, but other flow properties ( p, �, T, h, V ) may vary with x. Appli-

1000
�
1.0152

p0�
pe
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4 This section may be omitted without loss of continuity.

Control volume τ w 
π D d x

V

x x + d x

V + d V

p p + d p

T T + d T

h h + d h

Area A
Diameter D

ρ    + dρ ρ

d x

Fig. 9.13 Elemental control volume
for flow in a constant-area duct
with friction.



Adiabatic Flow

cation of the three conservation laws to this control volume gives three differential
equations

Continuity: �V � �
A
ṁ

� � G � const 

or � � 0 (9.60a)

x momentum: pA 	 (p � dp)A 	 �w�D dx � ṁ(V � dV 	 V) 

or dp � � �V dV � 0 (9.60b)

Energy: h � �12�V2 � h0 � cpT0 � cpT � �12�V2

or cp dT � V dV � 0 (9.60c)

Since these three equations have five unknowns—p, �, T, V, and �w—we need two ad-
ditional relations. One is the perfect-gas law

p � �RT or � � (9.61) 

To eliminate �w as an unknown, it is assumed that wall shear is correlated by a local
Darcy friction factor f

�w � �18� f�V2 � �18� fkp Ma2 (9.62) 

where the last form follows from the perfect-gas speed-of-sound expression a2 � kp/�.
In practice, f can be related to the local Reynolds number and wall roughness from,
say, the Moody chart, Fig. 6.13.

Equations (9.60) and (9.61) are first-order differential equations and can be inte-
grated, by using friction-factor data, from any inlet section 1, where p1, T1, V1, etc.,
are known, to determine p(x), T(x), etc., along the duct. It is practically impossible to
eliminate all but one variable to give, say, a single differential equation for p(x), but
all equations can be written in terms of the Mach number Ma(x) and the friction fac-
tor, by using the definition of Mach number

V2 � Ma2 kRT

or � � (9.63) 

By eliminating variables between Eqs. (9.60) to (9.63), we obtain the working 
relations

� 	k Ma2 f (9.64a)

� 	 f � 	 (9.64b)
dV
�
V

dx
�
D

k Ma2

��
2(1 	 Ma2)

d�
�
�

dx
�
D

1 � (k 	 1) Ma2

��
2(1 	 Ma2)

dp
�
p

dT
�
T

2 d Ma
�

Ma
2 dV
�

V

dT
�
T

d�
�
�

dp
�
p

4�wdx
�

D

dV
�
V

d�
�
�
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� � 	 k Ma2 f (9.64c)

� 	 f (9.64d)

� k Ma2 f (9.64e)

All these except dp0/p0 have the factor 1 	 Ma2 in the denominator, so that, like the
area-change formulas in Fig. 9.5, subsonic and supersonic flow have opposite effects:

dx
�
D

1 � �12�(k 	 1) Ma2

��
1 	 Ma2

d Ma2

�
Ma2

dx
�
D

k(k 	 1) Ma4

��
2(1 	 Ma2)

dT
�
T

dx
�
D

1
�
2

d�0�
�0

dp0�
p0
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Property Subsonic Supersonic

p Decreases Increases
� Decreases Increases
V Increases Decreases

p0, �0 Decreases Decreases
T Decreases Increases

Ma Increases Decreases
Entropy Increases Increases

We have added to the list above that entropy must increase along the duct for either
subsonic or supersonic flow as a consequence of the second law for adiabatic flow. For
the same reason, stagnation pressure and density must both decrease.

The key parameter above is the Mach number. Whether the inlet flow is subsonic
or supersonic, the duct Mach number always tends downstream toward Ma � 1 be-
cause this is the path along which the entropy increases. If the pressure and density are
computed from Eqs. (9.64a) and (9.64b) and the entropy from Eq. (9.53), the result can
be plotted in Fig. 9.14 versus Mach number for k � 1.4. The maximum entropy occurs
at Ma � 1, so that the second law requires that the duct-flow properties continually ap-
proach the sonic point. Since p0 and �0 continually decrease along the duct due to the
frictional (nonisentropic) losses, they are not useful as reference properties. Instead, the
sonic properties p*, �*, T*, p*0, and �*0 are the appropriate constant reference quanti-
ties in adiabatic duct flow. The theory then computes the ratios p/p*, T/T*, etc., as a
function of local Mach number and the integrated friction effect.

To derive working formulas, we first attack Eq. (9.64e), which relates the Mach num-
ber to friction. Separate the variables and integrate:

�L*

0
f � �1.0

Ma2
d Ma2 (9.65) 

The upper limit is the sonic point, whether or not it is actually reached in the duct flow.
The lower limit is arbitrarily placed at the position x � 0, where the Mach number is
Ma. The result of the integration is

� � ln (9.66)

where f


is the average friction factor between 0 and L*. In practice, an average f is al-
ways assumed, and no attempt is made to account for the slight changes in Reynolds

(k � 1) Ma2

��
2 � (k 	 1) Ma2

k � 1
�

2k
1 	 Ma2

�
k Ma2

f

L*

�
D

1 	 Ma2

���
k Ma4[1 � �12�(k 	 1) Ma2]

dx
�
D



Fig. 9.14 Adiabatic frictional flow
in a constant-area duct always ap-
proaches Ma � 1 to satisfy the sec-
ond law of thermodynamics. The
computed curve is independent of
the value of the friction factor.

number along the duct. For noncircular ducts, D is replaced by the hydraulic diameter
Dh � (4 � area)/perimeter as in Eq. (6.74).

Equation (9.66) is tabulated versus Mach number in Table B.3. The length L* is the
length of duct required to develop a duct flow from Mach number Ma to the sonic
point. Many problems involve short ducts which never become sonic, for which the so-
lution uses the differences in the tabulated “maximum,’’ or sonic, length. For example,
the length 
L required to develop from Ma1 to Ma2 is given by

f


� ��
f



D
L*
��1

	 ��
f



D
L*
��2

(9.67) 

This avoids the need for separate tabulations for short ducts.
It is recommended that the friction factor f


be estimated from the Moody chart (Fig.

6.13) for the average Reynolds number and wall-roughness ratio of the duct. Available
data [20] on duct friction for compressible flow show good agreement with the Moody
chart for subsonic flow, but the measured data in supersonic duct flow are up to 50
percent less than the equivalent Moody friction factor.

EXAMPLE 9.10

Air flows subsonically in an adiabatic 2-cm-diameter duct. The average friction factor is 0.024.
What length of duct is necessary to accelerate the flow from Ma1 � 0.1 to Ma2 � 0.5? What ad-
ditional length will accelerate it to Ma3 � 1.0? Assume k � 1.4.


L
�
D
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Solution

Equation (9.67) applies, with values of f

L*/D computed from Eq. (9.66) or read from Table B.3:

f


� � � �Ma�0.1
	 � �Ma�0.5

� 66.9216 	 1.0691 � 65.8525 

Thus 
L � � 55 m Ans. (a)

The additional length 
L� to go from Ma � 0.5 to Ma � 1.0 is taken directly from Table B.2

f � � �Ma�0.5
� 1.0691 

or 
L� � L *Ma�0.5 � � 0.9 m Ans. (b)

This is typical of these calculations: It takes 55 m to accelerate up to Ma � 0.5 and then only
0.9 m more to get all the way up to the sonic point.

Formulas for other flow properties along the duct can be derived from Eqs. (9.64).
Equation (9.64e) can be used to eliminate f dx/D from each of the other relations, giv-
ing, for example, dp/p as a function only of Ma and d Ma2/Ma2. For convenience in
tabulating the results, each expression is then integrated all the way from (p, Ma) to
the sonic point ( p*, 1.0). The integrated results are

�
p
p
*
� � �

M
1
a

� ��2 � (k
k

	

�

1
1
) Ma2�	

1/2

(9.68a)

�
�
�
*
� � �

V
V
*
� � �

M
1
a

� ��2 � (k
k

	

�

1
1
) Ma2

�	
1/2

(9.68b)

�
T
T
*
� � �

a
a
*

2

2� ��
2 � (k

k
	

�

1
1
) Ma2� (9.68c)

�
p
p
*
0

0
� � �

�
�
*
0

0
� � �

M
1
a

� ��2 � (k
k

	

�

1
1
) Ma2

�	
(1/2)(k�1)/(k	1)

(9.68d )

All these ratios are also tabulated in Table B.3. For finding changes between points
Ma1 and Ma2 which are not sonic, products of these ratios are used. For example,

�
p
p

2

1
� � �

p
p
*
2� �

p
p
*

1
� (9.69) 

since p* is a constant reference value for the flow.

EXAMPLE 9.11

For the duct flow of Example 9.10 assume that, at Ma1 � 0.1, we have p1 � 600 kPa and T1 �
450 K. At section 2 farther downstream, Ma2 � 0.5. Compute (a) p2, (b) T2, (c) V2, and (d) p02.

1.0691(0.02 m)
��

0.024

fL*
�
D


L�
�
D

65.8525(0.02 m)
��

0.024

f

L*

�
D

f

L*

�
D

0.024 
L
�

0.02 m

L
�
D
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Choking due to Friction

Solution

As preliminary information we can compute V1 and p01 from the given data:

V1 � Ma1 a1 � 0.1[(1.4)(287)(450)]1/2 � 0.1(425 m/s) � 42.5 m/s 

p01 � p1(1 � 0.2 Ma2
1)3.5 � (600 kPa)[1 � 0.2(0.1)2]3.5 � 604 kPa

Now enter Table B.3 or Eqs. (9.68) to find the following property ratios:

608 Chapter 9 Compressible Flow

Use these ratios to compute all properties downstream:

p2 � p1 � (600 kPa) � 117 kPa Ans. (a)

T2 � T1 � (450 K) � 429 K Ans. (b)

V2 � V1 � (42.5 m/s) � 208 Ans. (c) 

p02 � p01 � (604 kPa) � 139 kPa Ans. (d)

Note the 77 percent reduction in stagnation pressure due to friction. The formulas are seductive,
so check your work by other means. For example, check p02 � p2(1 � 0.2 Ma2

2)3.5.

The theory here predicts that for adiabatic frictional flow in a constant-area duct, no
matter what the inlet Mach number Ma1 is, the flow downstream tends toward the sonic
point. There is a certain duct length L*(Ma1) for which the exit Mach number will be
exactly unity. The duct is then choked.

But what if the actual length L is greater than the predicted “maximum’’ length L*?
Then the flow conditions must change, and there are two classifications.
Subsonic inlet. If L � L*(Ma1), the flow slows down until an inlet Mach number Ma2

is reached such that L � L*(Ma2). The exit flow is sonic, and the mass flow has been
reduced by frictional choking. Further increases in duct length will continue to decrease
the inlet Ma and mass flow.
Supersonic inlet. From Table B.3 we see that friction has a very large effect on su-
personic duct flow. Even an infinite inlet Mach number will be reduced to sonic con-
ditions in only 41 diameters for f


� 0.02. Some typical numerical values are shown in

Fig. 9.15, assuming an inlet Ma � 3.0 and f


� 0.02. For this condition L* � 26 di-
ameters. If L is increased beyond 26D, the flow will not choke but a normal shock will
form at just the right place for the subsequent subsonic frictional flow to become sonic
exactly at the exit. Figure 9.15 shows two examples, for L/D � 40 and 53. As the length
increases, the required normal shock moves upstream until, for Fig. 9.15, the shock is
at the inlet for L/D � 63. Further increase in L causes the shock to move upstream of

1.3399
�
5.8218

p02/p*0�
p01/p*0

m
�
s

0.5345
�
0.1094

V2/V*
�
V1/V*

1.1429
�
1.1976

T2/T*
�
T1/T*

2.1381
�
10.9435

p2/p*
�
p1/p*

Section Ma p/p* T/T* V/V* p0/p*0

1 0.1 10.9435 1.1976 0.1094 5.8218
2 0.5 2.1381 1.1429 0.5345 1.3399



Fig. 9.15 Behavior of duct flow
with a nominal supersonic inlet
condition Ma � 3.0: (a) L/D � 26,
flow is supersonic throughout duct;
(b) L/D � 40 � L*/D, normal
shock at Ma � 2.0 with subsonic
flow then accelerating to sonic exit
point; (c) L/D � 53, shock must
now occur at Ma � 2.5; (d) L/D �
63, flow must be entirely subsonic
and choked at exit.

the inlet into the supersonic nozzle feeding the duct. Yet the mass flow is still the same
as for the very short duct, because presumably the feed nozzle still has a sonic throat.
Eventually, a very long duct will cause the feed-nozzle throat to become choked, thus
reducing the duct mass flow. Thus supersonic friction changes the flow pattern if L �
L* but does not choke the flow until L is much larger than L*.

EXAMPLE 9.12

Air enters a 3-cm-diameter duct at p0 � 200 kPa, T0 � 500 K, and V1 � 100 m/s. The friction
factor is 0.02. Compute (a) the maximum duct length for these conditions, (b) the mass flow if
the duct length is 15 m, and (c) the reduced mass flow if L � 30 m.

Solution

First compute

T1 � T0 	 � 500 	 � 500 	 5 � 495 K

a1 � (kRT1)1/2 � 20(495)1/2 � 445 m/s 

Thus Ma1 � � � 0.225

For this Ma1, from Eq. (9.66) or interpolation in Table B.3,

� 11.0 
f

L*

�
D

100
�
445

V1�
a1

�12�(100 m/s)2

��
1005 m2/(s2 � K)

�12�V2
1�

cp
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Part (b)

Part (c)

The maximum duct length possible for these inlet conditions is

L* � � � 16.5 m Ans. (a)

The given L � 15 m is less than L*, and so the duct is not choked and the mass flow follows
from inlet conditions

�01 � �
R
p
T
01

0
� � � 1.394 kg/m3

�1 � � � 1.359 kg/m3

whence ṁ � �1AV1 � (1.359 kg/m3)� (0.03 m)2	(100 m/s) 

� 0.0961 kg/s Ans. (b)

Since L � 30 m is greater than L*, the duct must choke back until L � L*, corresponding to a
lower inlet Ma1:

L* � L � 30 m 

� � 20.0

It is difficult to interpolate for fL/D � 20 in Table B.3 and impossible to invert Eq. (9.66) for
the Mach number without laborious iteration. But it is a breeze for EES to solve Eq. (9.66) for
the Mach number, using the following three statements:

k � 1.4

fLD � 20

fLD� (1	 Ma^2)/k/Ma^2� (k� 1)/2/k*LN((k� 1)*Ma^2/(2� (k	 1)*Ma^2))

Simply specify Ma � 1 in the Variable Information menu and EES cheerfully reports 

Machoked � 0.174 (23 percent less)

T1,new � � 497 K

a1,new � 20(497 K)1/2 � 446 m/s

V1,new � Ma1 a1 � 0.174(446) � 77.6 m/s

�1,new � � 1.373 kg/m3

ṁnew � �1AV1 � 1.373��
4
π

� (0.03)2	(77.6)
� 0.0753 kg/s (22 percent less) Ans. (c)

The adiabatic frictional-flow assumption is appropriate to high-speed flow in short
ducts. For flow in long ducts, e.g., natural-gas pipelines, the gas state more closely ap-

�01���
[1 � 0.2(0.174)2]2.5

T0���
1 � 0.2(0.174)2

0.02(30 m)
��

0.03 m
f

L*

�
D

�
�
4

1.394
�
1.0255

�01���
[1 � 0.2(0.225)2]2.5

200,000 Pa
��
287(500 K)

11.0(0.03 m)
��

0.02
(fL*/D)D
��

f

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Mass Flow for a Given 
Pressure Drop

proximates an isothermal flow. The analysis is the same except that the isoenergetic
energy equation (9.60c) is replaced by the simple relation

T � const dT � 0 (9.70) 

Again it is possible to write all property changes in terms of the Mach number. Inte-
gration of the Mach-number–friction relation yields

� � ln (k Ma2) (9.71) 

which is the isothermal analog of Eq. (9.66) for adiabatic flow.
This friction relation has the interesting result that Lmax becomes zero not at the

sonic point but at Macrit � 1/k1/2 � 0.845 if k � 1.4. The inlet flow, whether subsonic
or supersonic, tends downstream toward this limiting Mach number 1/k1/2. If the tube
length L is greater than Lmax from Eq. (9.71), a subsonic flow will choke back to a
smaller Ma1 and mass flow and a supersonic flow will experience a normal-shock ad-
justment similar to Fig. 9.15.

The exit isothermal choked flow is not sonic, and so the use of the asterisk is in-
appropriate. Let p�, ��, and V� represent properties at the choking point L � Lmax. Then
the isothermal analysis leads to the following Mach-number relations for the flow prop-
erties:

�
p
p
�
� � � �

�
�
�
� � Ma k1/2 (9.72) 

The complete analysis and some examples are given in advanced texts [for example,
8, sec. 6.4].

An interesting by-product of the isothermal analysis is an explicit relation between the
pressure drop and duct mass flow. This is a common problem which requires numeri-
cal iteration for adiabatic flow, as outlined below. In isothermal flow, we may substi-
tute dV/V � 	dp/p and V2 � G2/[p/(RT)]2 in Eq. (9.63) to obtain

� f 	 � 0

Since G2RT is constant for isothermal flow, this may be integrated in closed form be-
tween (x, p) � (0, p1) and (L, p2):

G2 � � �
2

� (9.73) 

Thus mass flow follows directly from the known end pressures, without any use of
Mach numbers or tables.

The writer does not know of any direct analogy to Eq. (9.73) for adiabatic flow.
However, a useful adiabatic relation, involving velocities instead of pressures, is de-
rived in several textbooks [5, p. 212; 34, p. 418]:

V2
1 � (9.74)

a2
0[1 	 (V1/V2)2]

���
kfL/D � (k � 1) ln (V2/V1)

p2
1 	 p2

2���
RT[ fL/D � 2 ln (p1/p2)]

ṁ
�
A

2 dp
�

p
dx
�
D

2p dp
�
G2RT

V
�
V�

1
�
Ma k1/2

1 	 k Ma2

��
k Ma2

f

Lmax�
D
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Part (a)

Part (b)

where a0 � (kRT0)1/2 is the stagnation speed of sound, constant for adiabatic flow. We
assign the proof of this as a problem exercise. This may be combined with continuity
for constant duct area V1/V2 � �2/�1, plus the following combination of adiabatic en-
ergy and the perfect-gas relation:

� � � 	 (9.75)

If we are given the end pressures, neither V1 nor V2 will likely be known in advance.
Here, if EES is not available, we suggest only the following simple procedure. Begin
with a0 � a1 and the bracketed term in Eq. (9.75) approximately equal to 1.0. Solve
Eq. (9.75) for a first estimate of V1/V2, and use this value in Eq. (9.74) to get a better
estimate of V1. Use V1 to improve your estimate of a0, and repeat the procedure. The
process should converge in a few iterations.

Equations (9.73) and (9.74) have one flaw: With the Mach number eliminated, the
frictional choking phenomenon is not directly evident. Therefore, assuming a subsonic
inlet flow, one should check the exit Mach number Ma2 to ensure that it is not greater
than 1/k1/2 for isothermal flow or greater than 1.0 for adiabatic flow. We illustrate both
adiabatic and isothermal flow with the following example.

EXAMPLE 9.13

Air enters a pipe of 1-cm diameter and 1.2-m length at p1 � 220 kPa and T1 � 300 K. If f


�
0.025 and the exit pressure is p2 � 140 kPa, estimate the mass flow for (a) isothermal flow and
(b) adiabatic flow.

Solution

For isothermal flow Eq. (9.73) applies without iteration:

� 2 ln � � 2 ln � 3.904 

G2 � � 85,700 or G � 293 kg/(s � m2)

Since A � (�/4)(0.01 m)2 � 7.85 E-5 m2, the isothermal mass flow estimate is

ṁ � GA � (293)(7.85 E-5) � 0.0230 kg/s Ans. (a)

Check that the exit Mach number is not choked:

�2 � � � 1.626 kg/m3 V2 � � � 180 m/s 

or Ma2 � � � � 0.52

This is well below choking, and the isothermal solution is accurate.

For adiabatic flow, we can iterate by hand, in the time-honored fashion, using Eqs. (9.74) and
(9.75) plus the definition of stagnation speed of sound. A few years ago the author would have
done just that, laboriously. However, EES makes handwork and manipulation of equations un-

180
�
347

180
��
[1.4(287)(300)]1/2

V2�

kR�T�

293
�
1.626

G
�
�2

140,000
��
(287)(300)

p2�
RT

(220,000 Pa)2 	 (140,000 Pa)2

����
[287 m2/(s2 � K)](300 K)(3.904)

220
�
140

(0.025)(1.2 m)
��

0.01 m
p1�
p2

f

L

�
D

2a2
0 	 (k 	 1)V2

1��
2a2

0 	 (k 	 1)V2
2

p2�
p1

T1�
T2

p2�
p1

V1�
V2
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9.8 Frictionless Duct Flow with
Heat Transfer5

necessary, although careful programming and good guesses are required. If we ignore superflu-
ous output such as T2 and V2, 13 statements are appropriate. First, spell out the given physical
properties (in SI units):

k � 1.4

P1 � 220000

P2 � 140000

T1 � 300

Next, apply the adiabatic friction relations, Eqs. (9.66) and (9.67), to both points 1 and 2:

fLD1�(1	Ma1^2)/k/Ma1^2�(k�1)/2/k*LN((k�1)*Ma1^2/(2�(k-1)*Ma1^2))

fLD2�(1	Ma2^2)/k/Ma2^2�(k�1)/2/k*LN((k�1)*Ma2^2/(2�(k-1)*Ma2^2))

DeltafLD � 0.025*1.2/0.01

fLD1 � fLD2 � DeltafLD

Then apply the pressure-ratio formula (9.68a) to both points 1 and 2:

P1/Pstar � ((k�1)/(2�(k-1)*Ma1^2))^0.5/Ma1

P2/Pstar � ((k�1)/(2�(k-1)*Ma2^2))^0.5/Ma2

These are adiabatic relations, so we need not further spell out quantities such as T0 or a0 unless
we want them as additional output.

The above 10 statements are a closed algebraic system, and EES will solve them for Ma1 and
Ma2. However, the problem asks for mass flow, so we complete the system:

V1 � Ma1*sqrt(1.4*287*T1)

Rho1 � P1/287/T1

Mdot � Rho1*(pi/4*0.01^2)*V1

If we apply no constraints, EES reports “cannot solve”, because its default allows all variables
to lie between 	� and ��. So we enter Variable Information and constrain Ma1 and Ma2 to
lie between 0 and 1 (subsonic flow). EES still complains that it “cannot solve” but hints that
“better guesses are needed”. Indeed, the default guesses for EES variables are normally 1.0, too
large for the Mach numbers. Guess the Mach numbers equal to 0.8 or even 0.5, and EES still
complains, for a subtle reason: Since f
L/D � 0.025(1.2/0.01) � 3.0, Ma1 can be no larger than
0.36 (see Table B.3). Finally, then, we guess Ma1 and Ma2 � 0.3 or 0.4, and EES happily re-
ports the solution:

Ma1 � 0.3343 Ma2 � 0.5175 �
f
D
L

1
� � 3.935 �

f
D
L

2
� � 0.9348

p* � 67,892 Pa ṁ � 0.0233 kg/s Ans. (b)

Though the programming is complicated, the EES approach is superior to hand iteration and, of
course, we can save this program for use again with new data.

Heat addition or removal has an interesting effect on a compressible flow. Advanced
texts [for example, 8, chap. 8] consider the combined effect of heat transfer coupled
with friction and area change in a duct. Here we confine the analysis to heat transfer
with no friction in a constant-area duct.
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Fig. 9.16 Elemental control volume
for frictionless flow in a constant-
area duct with heat transfer. The
length of the element is indetermi-
nate in this simplified theory.

Consider the elemental duct control volume in Fig. 9.16. Between sections 1 and 2
an amount of heat �Q is added (or removed) to each incremental mass �m passing
through. With no friction or area change, the control-volume conservation relations are
quite simple:

Continuity: �1V1 � �2V2 � G � const (9.76a)

x momentum: p1 	 p2 � G(V2 	 V1) (9.76b)

Energy: Q̇ � ṁ(h2 � �12�V2
2 	 h1 	 �12�V2

1) 

or q � � � h02 	 h01 (9.76c)

The heat transfer results in a change in stagnation enthalpy of the flow. We shall not spec-
ify exactly how the heat is transferred—combustion, nuclear reaction, evaporation, con-
densation, or wall heat exchange—but simply that it happened in amount q between 1
and 2. We remark, however, that wall heat exchange is not a good candidate for the the-
ory because wall convection is inevitably coupled with wall friction, which we neglected.

To complete the analysis, we use the perfect-gas and Mach-number relations

� h02 	 h01 � cp(T02 	 T01)

� � � �
1/2

(9.77)

For a given heat transfer q � �Q/�m or, equivalently, a given change h02 	 h01, Eqs.
(9.76) and (9.77) can be solved algebraically for the property ratios p2/p1, Ma2/Ma1,
etc., between inlet and outlet. Note that because the heat transfer allows the entropy to
either increase or decrease, the second law imposes no restrictions on these solutions.

Before writing down these property-ratio functions, we illustrate the effect of heat
transfer in Fig. 9.17, which shows T0 and T versus Mach number in the duct. Heating
increases T0, and cooling decreases it. The maximum possible T0 occurs at Ma � 1.0,
and we see that heating, whether the inlet is subsonic or supersonic, drives the duct
Mach number toward unity. This is analogous to the effect of friction in the previous
section. The temperature of a perfect gas increases from Ma � 0 up to Ma � 1/k1/2 and
then decreases. Thus there is a peculiar—or at least unexpected—region where heat-

T2�
T1

Ma2�
Ma1

Ma2 a2�
Ma1 a1

V2�
V1

p1�
�1T1

p2�
�2T2

�Q
�
�m

Q̇
�
ṁ
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Fig. 9.17 Effect of heat transfer on
Mach number.

ing (increasing T0) actually decreases the gas temperature, the difference being reflected
in a large increase of the gas kinetic energy. For k � 1.4 this peculiar area lies between
Ma � 0.845 and Ma � 1.0 (interesting but not very useful information).

The complete list of the effects of simple T0 change on duct-flow properties is as
follows:

Heating Cooling

Subsonic Supersonic Subsonic Supersonic

T0 Increases Increases Decreases Decreases
Ma Increases Decreases Decreases Increases
p Decreases Increases Increases Decreases
� Decreases Increases Increases Decreases
V Increases Decreases Decreases Increases
p0 Decreases Decreases Increases Increases
s Increases Increases Decreases Decreases
T * Increases † Decreases

*Increases up to Ma � 1/k1/2 and decreases thereafter.
†Decreases up to Ma � 1/k1/2 and increases thereafter.

Probably the most significant item on this list is the stagnation pressure p0, which always
decreases during heating whether the flow is subsonic or supersonic. Thus heating does
increase the Mach number of a flow but entails a loss in effective pressure recovery.

Equations (9.76) and (9.77) can be rearranged in terms of the Mach number and the
results tabulated. For convenience, we specify that the outlet section is sonic, Ma � 1,
with reference properties T*0, T*, p*, �*, V*, and p*0. The inlet is assumed to be at ar-
bitrary Mach number Ma. Equations (9.76) and (9.77) then take the following form:

�
T
T

*
0

0
� � (9.78a)

(k � 1) Ma2 [2 � (k 	 1) Ma2]
����

(1 � k Ma2)2
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Part (a)

� (9.78b)

� (9.78c)

� � (9.78d)

�
p
p
*
0

0
� � � 	

k/(k	1)

(9.78e)

These formulas are all tabulated versus Mach number in Table B.4. The tables are
very convenient if inlet properties Ma1, V1, etc., are given but are somewhat cum-
bersome if the given information centers on T01 and T02. Let us illustrate with an
example.

EXAMPLE 9.14

A fuel-air mixture, approximated as air with k � 1.4, enters a duct combustion chamber at V1 �
75 m/s, p1 � 150 kPa, and T1 � 300 K. The heat addition by combustion is 900 kJ/kg of mix-
ture. Compute (a) the exit properties V2, p2, and T2 and (b) the total heat addition which would
have caused a sonic exit flow.

Solution

First compute T01 � T1 � V2
1/(2cp) � 300 � (75)2/[2(1005)] � 303 K. Then compute the change

in stagnation temperature of the gas:

q � cp(T02 	 T01)

or T02 � T01 � � 303 K � � 1199 K

We have enough information to compute the initial Mach number:

a1 � 
kR�T�1� � [1.4(287)(300)]1/2 � 347 m/s Ma1 � � � 0.216

For this Mach number, use Eq. (9.78a) or Table B.4 to find the sonic value T*0:

At Ma1 � 0.216: � 0.1992 or T*0 � � 1521 K

Then the stagnation temperature ratio at section 2 is T02/T*0 � 1199/1521 � 0.788, which cor-
responds in Table B.4 to a Mach number Ma2 � 0.573.

Now use Table B.4 at Ma1 and Ma2 to tabulate the desired property ratios.

303 K
�
0.1992

T01�
T*0

75
�
347

V1�
a1

900,000 J/kg
��
1005 J/(kg � K)

q
�
cp

2 � (k 	 1) Ma2

��
k � 1

k � 1
��
1 � k Ma2

(k � 1) Ma2

��
1 � k Ma2

�*
�
�

V
�
V*

k � 1
��
1 � k Ma2

p
�
p*

(k � 1)2 Ma2

��
(1 � k Ma2)2

T
�
T*
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Section Ma V/V* p/p* T/T*

1 0.216 0.1051 2.2528 0.2368
2 0.573 0.5398 1.6442 0.8876



Choking Effects due 
to Simple Heating 

The exit properties are computed by using these ratios to find state 2 from state 1:

V2 � V1 � (75 m/s) � 385 m/s Ans. (a)

p2 � p1 � (150 kPa) � 109 kPa Ans. (a)

T2 � T1 � (300 K) � 1124 K Ans. (a)

The maximum allowable heat addition would drive the exit Mach number to unity:

T02 � T*0 � 1521 K 

qmax � cp(T*0 	 T01) � [1005 J/(kg � K)](1521 	 303 K) � 1.22 E6 J/kg Ans. (b)

Equation (9.78a) and Table B.4 indicate that the maximum possible stagnation tem-
perature in simple heating corresponds to T*0, or the sonic exit Mach number. Thus,
for given inlet conditions, only a certain maximum amount of heat can be added to the
flow, for example, 1.22 MJ/kg in Example 9.14. For a subsonic inlet there is no theo-
retical limit on heat addition: The flow chokes more and more as we add more heat,
with the inlet velocity approaching zero. For supersonic flow, even if Ma1 is infinite,
there is a finite ratio T01/ T*0 � 0.4898 for k � 1.4. Thus if heat is added without limit
to a supersonic flow, a normal-shock-wave adjustment is required to accommodate the
required property changes.

In subsonic flow there is no theoretical limit to the amount of cooling allowed: The
exit flow just becomes slower and slower, and the temperature approaches zero. In su-
personic flow only a finite amount of cooling can be allowed before the exit flow ap-
proaches infinite Mach number, with T02/T*0 � 0.4898 and the exit temperature equal
to zero. There are very few practical applications for supersonic cooling.

EXAMPLE 9.15

What happens to the inlet flow in Example 9.14 if the heat addition is increased to 1400 kJ/kg
and the inlet pressure and stagnation temperature are fixed? What will be the subsequent de-
crease in mass flow?

Solution

For q � 1400 kJ/kg, the exit will be choked at the stagnation temperature

T*0 � T01 � � 303 � � 1696 K

This is higher than the value T*0 � 1521 K in Example 9.14, so we know that condition 1 will
have to choke down to a lower Mach number. The proper value is found from the ratio 
T01/ T*0 � 303/1696 � 0.1787. From Table B.4 or Eq. (9.78a) for this condition, we read the

1.4 E6 J/kg
��
1005 J/(kg � K)

q
�
cp

0.8876
�
0.2368

T2/T*
�
T1/T*

1.6442
�
2.2528

p2/p*
�
p1/p*

0.5398
�
0.1051

V2/V*
�
V1/V*

9.8 Frictionless Duct Flow with Heat Transfer 617

Part (b)



Relationship to the 
Normal-Shock Wave

new, lowered entrance Mach number: Ma1,new � 0.203. With T01 and p1 known, the other inlet
properties follow from this Mach number:

T1 � � � 301 K

a1 � 
kR�T�1� � [1.4(287)(301)] 1/2 � 348 m/s

V1 � Ma1 a1 � (0.202)(348 m/s) � 70 m/s

�1 � � � 1.74 kg/m3

Finally, the new lowered mass flow per unit area is

� �1V1 � (1.74 kg/m3)(70 m/s) � 122 kg/(s � m2)

This is 7 percent less than in Example 9.14, due to choking by excess heat addition.

The normal-shock-wave relations of Sec. 9.5 actually lurk within the simple heating rela-
tions as a special case. From Table B.4 or Fig. 9.17 we see that for a given stagnation tem-
perature less than T*0 there are two flow states which satisfy the simple heating relations,
one subsonic and the other supersonic. These two states have (1) the same value of T0,
(2) the same mass flow per unit area, and (3) the same value of p � �V2. Therefore these
two states are exactly equivalent to the conditions on each side of a normal-shock wave.
The second law would again require that the upstream flow Ma1 be supersonic.

To illustrate this point, take Ma1 � 3.0 and from Table B.4 read T01/T*0 � 0.6540 and
p1/p* � 0.1765. Now, for the same value T02/T*0 � 0.6540, use Table B.4 or Eq. (9.78a)
to compute Ma2 � 0.4752 and p2/p* � 1.8235. The value of Ma2 is exactly what we
read in the shock table, Table B.2, as the downstream Mach number when Ma1 � 3.0.
The pressure ratio for these two states is p2/p1 � (p2/p*)/(p1/p*) � 1.8235/0.1765 �
10.33, which again is just what we read in Table B.2 for Ma1 � 3.0. This illustration is
meant only to show the physical background of the simple heating relations; it would
be silly to make a practice of computing normal-shock waves in this manner.

Up to this point we have considered only one-dimensional compressible-flow theories.
This illustrated many important effects, but a one-dimensional world completely loses
sight of the wave motions which are so characteristic of supersonic flow. The only
“wave motion’’ we could muster in a one-dimensional theory was the normal-shock
wave, which amounted only to a flow discontinuity in the duct.

When we add a second dimension to the flow, wave motions immediately become ap-
parent if the flow is supersonic. Figure 9.18 shows a celebrated graphical construction
which appears in every fluid-mechanics textbook and was first presented by Ernst Mach
in 1887. The figure shows the pattern of pressure disturbances (sound waves) sent out
by a small particle moving at speed U through a still fluid whose sound velocity is a.

ṁnew�
A

150,000
��
(287)(301)

p1�
RT1

303
��
1 � 0.2(0.203)2

T01��
1 � 0.2 Ma2

1
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Fig. 9.18 Wave patterns set up by a
particle moving at speed U into
still fluid of sound velocity a:
(a) subsonic, (b) sonic, and 
(c) supersonic motion.

As the particle moves, it continually crashes against fluid particles and sends out
spherical sound waves emanating from every point along its path. A few of these spher-
ical disturbance fronts are shown in Fig. 9.18. The behavior of these fronts is quite dif-
ferent according to whether the particle speed is subsonic or supersonic.

In Fig. 9.18a, the particle moves subsonically, U � a, Ma � U/a � 1. The spherical dis-
turbances move out in all directions and do not catch up with one another. They move well
out in front of the particle also, because they travel a distance a �t during the time interval
�t in which the particle has moved only U �t. Therefore a subsonic body motion makes its
presence felt everywhere in the flow field: You can “hear’’ or “feel’’ the pressure rise of an
oncoming body before it reaches you. This is apparently why that pigeon in the road, with-
out turning around to look at you, takes to the air and avoids being hit by your car.

At sonic speed, U � a, Fig. 9.18b, the pressure disturbances move at exactly the
speed of the particle and thus pile up on the left at the position of the particle into a
sort of “front locus,’’ which is now called a Mach wave, after Ernst Mach. No distur-
bance reaches beyond the particle. If you are stationed to the left of the particle, you
cannot “hear’’ the oncoming motion. If the particle blew its horn, you couldn’t hear
that either: A sonic car can sneak up on a pigeon.

In supersonic motion, U � a, the lack of advance warning is even more pronounced.
The disturbance spheres cannot catch up with the fast-moving particle which created
them. They all trail behind the particle and are tangent to a conical locus called the
Mach cone. From the geometry of Fig. 9.18c the angle of the Mach cone is seen to be
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Fig. 9.19 Supersonic wave pattern
emanating from a projectile moving
at Ma � 2.0. The heavy lines are
oblique-shock waves and the light
lines Mach waves (Courtesy of U.S.
Army Ballistic Research Labora-
tory, Aberdeen Proving Ground.)

� � sin�1 �
U
a

� �
�
�
t
t
� � sin�1 �

U
a

� � sin�1 �
M
1
a

� (9.79)

The higher the particle Mach number, the more slender the Mach cone; for example,
� is 30° at Ma � 2.0 and 11.5° at Ma � 5.0. For the limiting case of sonic flow, Ma �
1, � � 90°; the Mach cone becomes a plane front moving with the particle, in agree-
ment with Fig. 9.18b.

You cannot “hear’’ the disturbance caused by the supersonic particle in Fig. 9.18c
until you are in the zone of action inside the Mach cone. No warning can reach your
ears if you are in the zone of silence outside the cone. Thus an observer on the ground
beneath a supersonic airplane does not hear the sonic boom of the passing cone until
the plane is well past.

The Mach wave need not be a cone: Similar waves are formed by a small distur-
bance of any shape moving supersonically with respect to the ambient fluid. For ex-
ample, the “particle’’ in Fig. 9.18c could be the leading edge of a sharp flat plate, which
would form a Mach wedge of exactly the same angle �. Mach waves are formed by
small roughnesses or boundary-layer irregularities in a supersonic wind tunnel or at
the surface of a supersonic body. Look again at Fig. 9.10: Mach waves are clearly vis-
ible along the body surface downstream of the recompression shock, especially at the
rear corner. Their angle is about 30°, indicating a Mach number of about 2.0 along this
surface. A more complicated system of Mach waves emanates from the supersonic pro-
jectile in Fig. 9.19. The Mach angles change, indicating a variable supersonic Mach
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E9.16 

number along the body surface. There are also several stronger oblique-shock waves
formed along the surface.

EXAMPLE 9.16

An observer on the ground does not hear the sonic boom caused by an airplane moving at 5-km
altitude until it is 9 km past her. What is the approximate Mach number of the plane? Assume
a small disturbance and neglect the variation of sound speed with altitude.

Solution

A finite disturbance like an airplane will create a finite-strength oblique-shock wave whose an-
gle will be somewhat larger than the Mach-wave angle � and will curve downward due to the
variation in atmospheric sound speed. If we neglect these effects, the altitude and distance are a
measure of �, as seen in Fig. E9.16. Thus
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µ

BOOM!

Bow wave

Ma = ?

5 km

9 km

tan � � � 0.5556 or � � 29.05°

Hence, from Eq. (9.79),
Ma � csc � � 2.06 Ans. 

Figures 9.10 and 9.19 and our earlier discussion all indicate that a shock wave can form
at an oblique angle to the oncoming supersonic stream. Such a wave will deflect the
stream through an angle �, unlike the normal-shock wave, for which the downstream
flow is in the same direction. In essence, an oblique shock is caused by the necessity
for a supersonic stream to turn through such an angle. Examples could be a finite wedge
at the leading edge of a body and a ramp in the wall of a supersonic wind tunnel.

The flow geometry of an oblique shock is shown in Fig. 9.20. As for the normal
shock of Fig. 9.8, state 1 denotes the upstream conditions and state 2 is downstream.
The shock angle has an arbitrary value �, and the downstream flow V2 turns at an an-
gle � which is a function of � and state 1 conditions. The upstream flow is always su-
personic, but the downstream Mach number Ma2 � V2/a2 may be subsonic, sonic, or
supersonic, depending upon the conditions.

It is convenient to analyze the flow by breaking it up into normal and tangential
components with respect to the wave, as shown in Fig. 9.20. For a thin control volume

5 km
�
9 km

The Oblique-Shock Wave



Fig. 9.20 Geometry of flow
through an oblique-shock wave.

just encompassing the wave, we can then derive the following integral relations, can-
celing out A1 � A2 on each side of the wave:

Continuity: �1Vn1 � �2Vn2 (9.80a)

Normal momentum: p1 	 p2 � �2V2
n2 	 �1V2

n1 (9.80b)

Tangential momentum: 0 � �1Vn1(Vt2 	 Vt1) (9.80c)

Energy: h1 � �12�V2
n1 � �12�V2

t1 � h2 � �12�V2
n2 � �12�V2

t2 � h0 (9.80d)

We see from Eq. (9.80c) that there is no change in tangential velocity across an oblique
shock

Vt2 � Vt1 � Vt � const (9.81) 

Thus tangential velocity has as its only effect the addition of a constant kinetic energy
�12�V2

t to each side of the energy equation (9.80d). We conclude that Eqs. (9.80) are iden-
tical to the normal-shock relations (9.49), with V1 and V2 replaced by the normal com-
ponents Vn1 and Vn2. All the various relations from Sec. 9.5 can be used to compute
properties of an oblique-shock wave. The trick is to use the “normal’’ Mach numbers
in place of Ma1 and Ma2:

Man1 � � Ma1 sin �

Man2 � � Ma2 sin (� 	 �)

(9.82)

Then, for a perfect gas with constant specific heats, the property ratios across the oblique
shock are the analogs of Eqs. (9.55) to (9.58) with Ma1 replaced by Man1:

�
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�
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2

1
� � [2 � (k 	 1) Ma2

1 sin2 �] (9.83c)

T02 � T01 (9.83d)
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(9.83e)

Ma2
n2 � (9.83f )

All these are tabulated in the normal-shock Table B.2. If you wondered why that table
listed the Mach numbers as Man1 and Man2, it should be clear now that the table is
also valid for the oblique-shock wave.

Thinking all this over, we realize by hindsight that an oblique-shock wave is the flow
pattern one would observe by running along a normal-shock wave (Fig. 9.8) at a con-
stant tangential speed Vt. Thus the normal and oblique shocks are related by a galilean,
or inertial, velocity transformation and therefore satisfy the same basic equations.

If we continue with this run-along-the-shock analogy, we find that the deflection
angle � increases with speed Vt up to a maximum and then decreases. From the geom-
etry of Fig. 9.20 the deflection angle is given by

� � tan	1 �
V
V

n

t

2
� 	 tan	1 �

V
V

n

t

1
� (9.84)

If we differentiate � with respect to Vt and set the result equal to zero, we find that the
maximum deflection occurs when Vt /Vn1 � (Vn2/Vn1)1/2. We can substitute this back
into Eq. (9.84) to compute

�max � tan	1 r1/2 	 tan	1 r	1/2 r � (9.85)

For example, if Man1 � 3.0, from Table B.2 we find that Vn1/Vn2 � 3.8571, the square
root of which is 1.9640. Then Eq. (9.85) predicts a maximum deflection of tan	1 1.9640 	
tan	1 (1/1.9640) � 36.03°. The deflection is quite limited even for infinite Man1: From
Table B.2 for this case Vn1/Vn2 � 6.0, and we compute from Eq. (9.85) that �max � 45.58°.

This limited-deflection idea and other facts become more evident if we plot some
of the solutions of Eqs. (9.83). For given values of V1 and a1, assuming as usual that
k � 1.4, we can plot all possible solutions for V2 downstream of the shock. Figure 9.21
does this in velocity-component coordinates Vx and Vy, with x parallel to V1. Such a
plot is called a hodograph. The heavy dark line which looks like a fat airfoil is the lo-
cus, or shock polar, of all physically possible solutions for the given Ma1. The two
dashed-line fishtails are solutions which increase V2; they are physically impossible
because they violate the second law.

Examining the shock polar in Fig. 9.21, we see that a given deflection line of small
angle � crosses the polar at two possible solutions: the strong shock, which greatly de-
celerates the flow, and the weak shock, which causes a much milder deceleration. The
flow downstream of the strong shock is always subsonic, while that of the weak shock
is usually supersonic but occasionally subsonic if the deflection is large. Both types of
shock occur in practice. The weak shock is more prevalent, but the strong shock will
occur if there is a blockage or high-pressure condition downstream.

Since the shock polar is only of finite size, there is a maximum deflection �max,
shown in Fig. 9.21, which just grazes the upper edge of the polar curve. This verifies
the kinematic discussion which led to Eq. (9.85). What happens if a supersonic flow
is forced to deflect through an angle greater than �max? The answer is illustrated in Fig.
9.22 for flow past a wedge-shaped body.

Vn1�
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n1 	 (k 	 1)

k � 1
���
2k Ma2

1 sin2 � 	 (k 	 1)
(k � 1) Ma2

1 sin2 �
���
2 � (k 	 1) Ma2

1 sin2 �
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Fig. 9.21 The oblique-shock polar
hodograph, showing double solu-
tions (strong and weak) for small
deflection angle and no solutions at
all for large deflection.

In Fig. 9.22a the wedge half-angle � is less than �max, and thus an oblique shock
forms at the nose of wave angle � just sufficient to cause the oncoming supersonic
stream to deflect through the wedge angle �. Except for the usually small effect of
boundary-layer growth (see, e.g., Ref. 19, sec. 7–5.2), the Mach number Ma2 is con-
stant along the wedge surface and is given by the solution of Eqs. (9.83). The pres-
sure, density, and temperature along the surface are also nearly constant, as predicted
by Eqs. (9.83). When the flow reaches the corner of the wedge, it expands to higher
Mach number and forms a wake (not shown) similar to that in Fig. 9.10.
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Fig. 9.22 Supersonic flow past a
wedge: (a) small wedge angle, at-
tached oblique shock forms; (b)
large wedge angle, attached shock
not possible, broad curved detached
shock forms.

In Fig. 9.22b the wedge half-angle is greater than �max, and an attached oblique
shock is impossible. The flow cannot deflect at once through the entire angle �max, yet
somehow the flow must get around the wedge. A detached curve shock wave forms in
front of the body, discontinuously deflecting the flow through angles smaller than �max.



Fig. 9.23 Oblique-shock deflection
versus wave angle for various up-
stream Mach numbers, k � 1.4:
dash-dot curve, locus of �max, di-
vides strong (right) from weak
(left) shocks; dashed curve, locus
of sonic points, divides subsonic
Ma2 (right) from supersonic Ma2

(left).

The flow then curves, expands, and deflects subsonically around the wedge, becoming
sonic and then supersonic as it passes the corner region. The flow just inside each point
on the curved shock exactly satisfies the oblique-shock relations (9.83) for that partic-
ular value of � and the given Ma1. Every condition along the curved shock is a point
on the shock polar of Fig. 9.21. Points near the front of the wedge are in the strong-
shock family, and points aft of the sonic line are in the weak-shock family. The analy-
sis of detached shock waves is extremely complex, and experimentation is usually
needed, e.g., the shadowgraph optical technique of Fig. 9.10.

The complete family of oblique-shock solutions can be plotted or computed from
Eqs. (9.83). For a given k, the wave angle � varies with Ma1 and �, from Eq. (9.83b).
By using a trigonometric identity for tan (� 	 �) this can be rewritten in the more con-
venient form

tan � � (9.86) 

All possible solutions of Eq. (9.86) for k � 1.4 are shown in Fig. 9.23. For deflections
� � �max there are two solutions: a weak shock (small �) and a strong shock (large �),
as expected. All points along the dash-dot line for �max satisfy Eq. (9.85). A dashed
line has been added to show where Ma2 is exactly sonic. We see that there is a narrow
region near maximum deflection where the weak-shock downstream flow is subsonic.

For zero deflections (� � 0) the weak-shock family satisfies the wave-angle relation

� � � � sin	1 �
M

1
a1
� (9.87)

2 cot � (Ma2
1 sin2 � 	 1)

���
Ma2

1 (k � cos 2�) � 2
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Very Weak Shock Waves

Thus weak shocks of vanishing deflection are equivalent to Mach waves. Meanwhile
the strong shocks all converge at zero deflection to the normal-shock condition � � 90°.

Two additional oblique-shock charts are given in App. B, where Fig. B.1 gives the
downstream Mach number Ma2 and Fig. B.2 the pressure ratio p2/p1, each plotted as
a function of Ma1 and �. Additional graphs, tables, and computer programs are given
in Refs. 24 and 25.

For any finite � the wave angle � for a weak shock is greater than the Mach angle �.
For small � Eq. (9.86) can be expanded in a power series in tan � with the following
linearized result for the wave angle:

sin � � sin � � �
4
k
c
�

os
1
�

� tan � � ��� � �(tan2 �) � ��� (9.88)

For Ma1 between 1.4 and 20.0 and deflections less than 6° this relation predicts � to
within 1° for a weak shock. For larger deflections it can be used as a useful initial
guess for iterative solution of Eq. (9.86).

Other property changes across the oblique shock can also be expanded in a power
series for small deflection angles. Of particular interest is the pressure change from Eq.
(9.83a), for which the linearized result for a weak shock is

�
p2

p
	

1

p1� � tan � � ��� � �(tan2 �) � ��� (9.89)
k Ma2

1��
(Ma2

1 	 1)1/2
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(9.83a) for k � 1.4. For very small
deflections Eq. (9.89) applies.



E9.17

The differential form of this relation is used in the next section to develop a theory for
supersonic expansion turns. Figure 9.24 shows the exact weak-shock pressure jump
computed from Eq. (9.83a). At very small deflections the curves are linear with slopes
given by Eq. (9.89).

Finally, it is educational to examine the entropy change across a very weak shock.
Using the same power-series expansion technique, we can obtain the following result
for small flow deflections:

�
s2 	

cp

s1� � tan3 � � ��� � �(tan4 �) � ��� (9.90)

The entropy change is cubic in the deflection angle �. Thus weak shock waves are very
nearly isentropic, a fact which is also used in the next section.

EXAMPLE 9.17

Air at Ma � 2.0 and p � 10 lbf/in2 absolute is forced to turn through 10° by a ramp at the body
surface. A weak oblique shock forms as in Fig. E9.17. For k � 1.4 compute from exact oblique-
shock theory (a) the wave angle �, (b) Ma2, and (c) p2. Also use the linearized theory to esti-
mate (d) � and (e) p2.

Solution

With Ma1 � 2.0 and � � 10° known, we can estimate � � 40° � 2° from Fig. 9.23. For more
(hand calculated) accuracy, we have to solve Eq. (9.86) by iteration. Or we can program Eq.
(9.86) in EES with six statements (in SI units, with angles in degrees):

Ma � 2.0

k � 1.4

Theta � 10

Num � 2*(Ma^2*SIN(Beta)^2 	 1)/TAN(Beta)

Denom � Ma^2*(k � COS(2*Beta)) � 2

Theta � ARCTAN(Num/Denom)

Specify that Beta � 0 and EES promptly reports an accurate result:

� � 39.32° Ans. (a)

The normal Mach number upstream is thus

Man1 � Ma1 sin � � 2.0 sin 39.32° � 1.267

With Man1 we can use the normal-shock relations (Table B.2) or Fig. 9.9 or Eqs. (9.56) to (9.58)
to compute

Man2 � 0.8031 � 1.707 

Thus the downstream Mach number and pressure are

Ma2 � � � 1.64 Ans. (b)

p2 � (10 lbf/in2 absolute)(1.707) � 17.07 lbf/in2 absolute Ans. (c)

Notice that the computed pressure ratio agrees with Figs. 9.24 and B.2.

0.8031
��
sin (39.32° 	 10°)

Man2��
sin (� 	 �)

p2�
p1

(k2 	 1)Ma6
1��

12(Ma2
1 	 1)3/2
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9.10 Prandtl-Meyer Expansion
Waves

For the linearized theory the Mach angle is � � sin	1 (1/2.0) � 30°. Equation (9.88) then
estimates that

sin � � sin 30° � � 0.622 

or � � 38.5° Ans. (d)

Equation (9.89) estimates that

� 1 � � 1.57 

or p2 � 1.57(10 lbf/in2 absolute) � 15.7 lbf/in2 absolute Ans. (e)

These are reasonable estimates in spite of the fact that 10° is really not a “small’’ flow deflection.

The oblique-shock solution of Sec. 9.9 is for a finite compressive deflection � which
obstructs a supersonic flow and thus decreases its Mach number and velocity. The pre-
sent section treats gradual changes in flow angle which are primarily expansive; i.e.,
they widen the flow area and increase the Mach number and velocity. The property
changes accumulate in infinitesimal increments, and the linearized relations (9.88) and
(9.89) are used. The local flow deflections are infinitesimal, so that the flow is nearly
isentropic according to Eq. (9.90).

Figure 9.25 shows four examples, one of which (Fig. 9.25c) fails the test for grad-
ual changes. The gradual compression of Fig. 9.25a is essentially isentropic, with a

1.4(2)2 tan 10°
��

(22 	 1)1/2
p2�
p1

2.4 tan 10°
��
4 cos 30°
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smooth increase in pressure along the surface, but the Mach angle decreases along the
surface and the waves tend to coalesce farther out into an oblique-shock wave. The
gradual expansion of Fig. 9.25b causes a smooth isentropic increase of Mach number
and velocity along the surface, with diverging Mach waves formed.

The sudden compression of Fig. 9.25c cannot be accomplished by Mach waves: An
oblique shock forms, and the flow is nonisentropic. This could be what you would see
if you looked at Fig. 9.25a from far away. Finally, the sudden expansion of Fig. 9.25d
is isentropic and forms a fan of centered Mach waves emanating from the corner. Note
that the flow on any streamline passing through the fan changes smoothly to higher
Mach number and velocity. In the limit as we near the corner the flow expands almost
discontinuously at the surface. The cases in Fig. 9.25a, b, and d can all be handled by
the Prandtl-Meyer supersonic-wave theory of this section, first formulated by Ludwig
Prandtl and his student Theodor Meyer in 1907 to 1908.

Note that none of this discussion makes sense if the upstream Mach number is sub-
sonic, since Mach wave and shock wave patterns cannot exist in subsonic flow.

Consider a small, nearly infinitesimal flow deflection d� such as occurs between the
first two Mach waves in Fig. 9.25a. From Eqs. (9.88) and (9.89) we have, in the limit,

� � � � sin	1 �
M
1
a

� (9.91a)

�
d
p
p
� � �

(Ma
k
2
M
	

a
1

2

)1/2� d� (9.91b)

Since the flow is nearly isentropic, we have the frictionless differential momentum
equation for a perfect gas

dp � 	�V dV � 	kp Ma2 �
d
V
V
� (9.92)

Combining Eqs. (9.91a) and (9.92) to eliminate dp, we obtain a relation between turn-
ing angle and velocity change

d� � 	(Ma2 	 1)1/2 �
d
V
V
� (9.93) 

This can be integrated into a functional relation for finite turning angles if we can re-
late V to Ma. We do this from the definition of Mach number

V � Ma a

or �
d
V
V
� � �

d
M
M
a
a

� � �
d
a
a
� (9.94) 

Finally, we can eliminate da/a because the flow is isentropic and hence a0 is constant
for a perfect gas

a � a0[1 � �12�(k 	 1) Ma2]	1/2

or �
d
a
a
� � (9.95)

	�12�(k 	 1) Ma d Ma
���

1 � �12�(k 	 1) Ma2
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Fig,. 9.26 The Prandtl-Meyer su-
personic expansion from Eq. (9.99)
for k � 1.4.

Eliminating dV/V and da/a from Eqs. (9.93) to (9.95), we obtain a relation solely be-
tween turning angle and Mach number

d� � 	 �
d
M
M
a
a

� (9.96) 

Before integrating this expression, we note that the primary application is to ex-
pansions, i.e., increasing Ma and decreasing �. Therefore, for convenience, we define
the Prandtl-Meyer angle �(Ma) which increases when � decreases and is zero at the
sonic point

d� � 	d� � � 0 at Ma � 1 (9.97)

Thus we integrate Eq. (9.96) from the sonic point to any value of Ma

��

0
d� � �Ma

1
�
d
M
M
a
a

� (9.98) 

The integrals are evaluated in closed form, with the result, in radians,

�(Ma) � K1/2 tan	1 ��Ma2

K
	 1
��

1/2

	 tan	1 (Ma2 	 1)1/2 (9.99) 

where K � �
k
k

�

	

1
1

�

This is the Prandtl-Meyer supersonic expansion function, which is plotted in Fig. 9.26

(Ma2 	 1)1/2

��
1 � �12�(k 	 1) Ma2

(Ma2 	 1)1/2

��
1 � �12�(k 	 1) Ma2
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Part (a)

and tabulated in Table B.5 for k � 1.4, K � 6. The angle � changes rapidly at first and
then levels off at high Mach number to a limiting value as Ma → �:

�max � �
�
2

� (K1/2 	 1) � 130.45° if k � 1.4 (9.100)

Thus a supersonic flow can expand only through a finite turning angle before it reaches
infinite Mach number, maximum velocity, and zero temperature.

Gradual expansion or compression between finite Mach numbers Ma1 and Ma2, nei-
ther of which is unity, is computed by relating the turning angle 
� to the difference
in Prandtl-Meyer angles for the two conditions


�1→2 � �(Ma2) 	 �(Ma1) (9.101)

The change 
� may be either positive (expansion) or negative (compression) as long
as the end conditions lie in the supersonic range. Let us illustrate with an example.

EXAMPLE 9.18

Air (k � 1.4) flows at Ma1 � 3.0 and p1 � 200 kPa. Compute the final downstream Mach num-
ber and pressure for (a) an expansion turn of 20° and (b) a gradual compression turn of 20°.

Solution

The isentropic stagnation pressure is

p0 � p1[1 � 0.2(3.0)2]3.5 � 7347 kPa

and this will be the same at the downstream point. For Ma1 � 3.0 we find from Table B.5 or
Eq. (9.99) that �1 � 49.757°. The flow expands to a new condition such that

�2 � �1 � 
� � 49.757° � 20° � 69.757°

Linear interpolation in Table B.5 is quite accurate, yielding Ma2 � 4.32. Inversion of Eq. (9.99),
to find Ma when � is given, is impossible without iteration. Once again, our friend EES easily
handles Eq. (9.99) with four statements (angles specified in degrees):

k � 1.4

C � ((k�1)/(k 	 1))^0.5

Omega � 69.757

Omega � C*ARCTAN((Ma^2–1)^0.5/C) – ARCTAN((Ma^2–1)^0.5)

Specify that Ma � 1, and EES readily reports an accurate result:6

Ma2 � 4.32 Ans. (a) 

The isentropic pressure at this new condition is

p2 � � � 31.9 kPa Ans. (a)
7347
�
230.1

p0��
[1 � 0.2(4.32)2]3.5
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EES

EES



Application to Supersonic Airfoils

The flow compresses to a lower Prandtl-Meyer angle

�2 � 49.757° 	 20° � 29.757°

Again from Eq. (9.99), Table B.5, or EES we compute that

Ma2 � 2.125 Ans. (b)

p2 � � � 773 kPa Ans. (b)

Similarly, density and temperature changes are computed by noticing that T0 and �0 are constant
for isentropic flow.

The oblique-shock and Prandtl-Meyer expansion theories can be used to patch together
a number of interesting and practical supersonic flow fields. This marriage, called shock
expansion theory, is limited by two conditions: (1) Except in rare instances the flow
must be supersonic throughout, and (2) the wave pattern must not suffer interference
from waves formed in other parts of the flow field.

A very successful application of shock expansion theory is to supersonic airfoils.
Figure 9.27 shows two examples, a flat plate and a diamond-shaped foil. In contrast to
subsonic-flow designs (Fig. 8.21), these airfoils must have sharp leading edges, which
form attached oblique shocks or expansion fans. Rounded supersonic leading edges
would cause detached bow shocks, as in Fig. 9.19 or 9.22b, greatly increasing the drag
and lowering the lift.

In applying shock expansion theory, one examines each surface turning angle to see
whether it is an expansion (“opening up’’) or compression (obstruction) to the surface
flow. Figure 9.27a shows a flat-plate foil at an angle of attack. There is a leading-edge
shock on the lower edge with flow deflection � � �, while the upper edge has an ex-
pansion fan with increasing Prandtl-Meyer angle 
� � �. We compute p3 with ex-
pansion theory and p2 with oblique-shock theory. The force on the plate is thus F �
(p2 	 p3)Cb, where C is the chord length and b the span width (assuming no wingtip
effects). This force is normal to the plate, and thus the lift force normal to the stream
is L � F cos �, and the drag parallel to the stream is D � F sin �. The dimensionless
coefficients CL and CD have the same definitions as in low-speed flow, Eq. (7.66), ex-
cept that the perfect-gas-law identity �12��V2 � �12�kp Ma2 is very useful here

CL � CD � (9.102) 

The typical supersonic lift
coefficient is much smaller than the subsonic value CL � 2��, but the lift can be very
large because of the large value of �12��V2 at supersonic speeds.

At the trailing edge in Fig. 9.27a, a shock and fan appear in reversed positions and
bend the two flows back so that they are parallel in the wake and have the same pres-
sure. They do not have quite the same velocity because of the unequal shock strengths
on the upper and lower surfaces; hence a vortex sheet trails behind the wing. This is
very interesting, but in the theory you ignore the trailing-edge pattern entirely, since it

D
��
�12�kp� Ma2

� bC

L
��
�12�kp� Ma2

� bC

7347
�
9.51

p0���
[1 � 0.2(2.125)2]3.5
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Fig. 9.27 Supersonic airfoils:
(a) flat plate, higher pressure on
lower surface, drag due to small
downstream component of net pres-
sure force; (b) diamond foil, higher
pressures on both lower surfaces,
additional drag due to body thick-
ness.

does not affect the surface pressures: The supersonic surface flow cannot “hear’’ the
wake disturbances.

The diamond foil in Fig. 9.27b adds two more wave patterns to the flow. At this
particular � less than the diamond half-angle, there are leading-edge shocks on both
surfaces, the upper shock being much weaker. Then there are expansion fans on each
shoulder of the diamond: The Prandtl-Meyer angle change 
� equals the sum of the
leading-edge and trailing-edge diamond half-angles. Finally, the trailing-edge pattern
is similar to that of the flat plate (9.27a) and can be ignored in the calculation. Both
lower-surface pressures p2 and p4 are greater than their upper counterparts, and the lift
is nearly that of the flat plate. There is an additional drag due to thickness, because p4

and p5 on the trailing surfaces are lower than their counterparts p2 and p3. The dia-
mond drag is greater than the flat-plate drag, but this must be endured in practice to
achieve a wing structure strong enough to hold these forces.

The theory sketched in Fig. 9.27 is in good agreement with measured supersonic
lift and drag as long as the Reynolds number is not too small (thick boundary layers)
and the Mach number not too large (hypersonic flow). It turns out that for large ReC

and moderate supersonic Ma� the boundary layers are thin and separation seldom oc-
curs, so that the shock expansion theory, although frictionless, is quite successful. Let
us look now at an example.
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E9.19 

EXAMPLE 9.19

A flat-plate airfoil with C � 2 m is immersed at � � 8° in a stream with Ma� � 2.5 and p� �
100 kPa. Compute (a) CL and (b) CD, and compare with low-speed airfoils. Compute (c) lift and
(d) drag in newtons per unit span width.

Solution

Instead of using a lot of space outlining the detailed oblique-shock and Prandtl-Meyer expan-
sion computations, we list all pertinent results in Fig. E9.19 on the upper and lower surfaces.
Using the theories of Secs. 9.9 and 9.10, you should verify every single one of the calculations
in Fig. E9.19 to make sure that all details of shock expansion theory are well understood.
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The important final results are p2 and p3, from which the total force per unit width on the
plate is

F � (p2 	 p3)bC � (165.7 	 56.85)(kPa)(1 m)(2 m) � 218 kN 

The lift and drag per meter width are thus

L � F cos 8° � 216 kN Ans. (c)

D � F sin 8° � 30 kN Ans. (d)

These are very large forces for only 2 m2 of wing area.
From Eq. (9.102) the lift coefficient is

CL � � 0.246 Ans. (a)

The comparable low-speed coefficient from Eq. (8.64) is CL � 2� sin 8° � 0.874, which is 3.5
times larger.

From Eq. (9.102) the drag coefficient is

CD � � 0.035 Ans. (b)

From Fig. 7.25 for the NACA 0009 airfoil CD at � � 8° is about 0.009, or about 4 times smaller.

30 kN
���
�12�(1.4)(100 kPa)(2.5)2(2 m2)

216 kN
���
�12�(1.4)(100 kPa)(2.5)2(2 m2)



Thin-Airfoil Theory

Notice that this supersonic theory predicts a finite drag in spite of assuming frictionless flow
with infinite wing aspect ratio. This is called wave drag, and we see that the d’Alembert para-
dox of zero body drag does not occur in supersonic flow.

In spite of the simplicity of the flat-plate geometry, the calculations in Example 9.19
were laborious. In 1925 Ackeret [21] developed simple yet effective expressions for
the lift, drag, and center of pressure of supersonic airfoils, assuming small thickness
and angle of attack.

The theory is based on the linearized expression (9.89), where tan � � surface de-
flection relative to the free stream and condition 1 is the free stream, Ma1 � Ma�. For
the flat-plate airfoil, the total force F is based on

�
p2

p
	

�

p3� � �
p2

p
	

�

p�� 	 �
p3

p
	

�

p��

� �
(Ma

k
2
�

M
	

a2
�

1)1/2� [� 	 (	�)] (9.103) 

Substitution into Eq. (9.102) gives the linearized lift coefficient for a supersonic flat-
plate airfoil

CL � � �
(Ma2

�

4
	

�
1)1/2� (9.104)

Computations for diamond and other finite-thickness airfoils show no first-order effect
of thickness on lift. Therefore Eq. (9.104) is valid for any sharp-edged supersonic thin
airfoil at a small angle of attack.

The flat-plate drag coefficient is

CD � CL tan � � CL� � (9.105) 

However, the thicker airfoils have additional thickness drag. Let the chord line of the
airfoil be the x-axis, and let the upper-surface shape be denoted by yu(x) and the lower
profile by yl(x). Then the complete Ackeret drag theory (see, e.g., Ref. 8, sec. 14.6, for
details) shows that the additional drag depends on the mean square of the slopes of the
upper and lower surfaces, defined by

y���2� � �
C
1

� �C

0 ��
d
d
y
x
��

2

dx (9.106) 

The final expression for drag [8, p. 442] is

CD � ��2 � �
1
2

� ( y���u�2� � y���l�2�)	 (9.107) 

These are all in reasonable agreement with more exact computations, and their extreme
simplicity makes them attractive alternatives to the laborious but accurate shock ex-
pansion theory. Consider the following example.

4
��
(Ma2

� 	 1)1/2

4�2

��
(Ma2

� 	 1)1/2

(p2 	 p3)bC
��
�12�kp� Ma2

� bC
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Part (a)

EXAMPLE 9.20

Repeat parts (a) and (b) of Example 9.19, using the linearized Ackeret theory.

Solution

From Eqs. (9.104) and (9.105) we have, for Ma� � 2.5 and � � 8° � 0.1396 rad,

CL � � 0.244 CD � � 0.034 Ans. 

These are less than 3 percent lower than the more exact computations of Example 9.19.

A further result of the Ackeret linearized theory is an expression for the position
xCP of the center of pressure (CP) of the force distribution on the wing:

�
x
C
CP� � 0.5 � �

S
2
u

�
	

C2
Sl� (9.108)

where Su is the cross-sectional area between the upper surface and the chord and Sl is
the area between the chord and the lower surface. For a symmetric airfoil (Sl � Su) we
obtain xCP at the half-chord point, in contrast with the low-speed airfoil result of Eq.
(8.66), where xCP is at the quarter-chord.

The difference in difficulty between the simple Ackeret theory and shock expansion
theory is even greater for a thick airfoil, as the following example shows.

EXAMPLE 9.21

By analogy with Example 9.19 analyze a diamond, or double-wedge, airfoil of 2° half-angle and
C � 2 m at � � 8° and Ma� � 2.5. Compute CL and CD by (a) shock expansion theory and (b)
Ackeret theory. Pinpoint the difference from Example 9.19.

Solution

Again we omit the details of shock expansion theory and simply list the properties computed on
each of the four airfoil surfaces in Fig. E9.21. Assume p� � 100 kPa. There are both a force F
normal to the chord line and a force P parallel to the chord. For the normal force the pressure
difference on the front half is p2 	 p3 � 186.4 	 65.9 � 120.5 kPa, and on the rear half it is
p4 	 p5 � 146.9 	 48.1 � 98.1 kPa. The average pressure difference is �12�(120.5 � 98.1) � 109.3
kPa, so that the normal force is

F � (109.3 kPa)(2 m2) � 218.6 kN

For the chordwise force P the pressure difference on the top half is p3 	 p5 � 65.9 	 48.8 �
17.1 kPa, and on the bottom half it is p2 	 p4 � 186.4 	 146.9 � 39.5 kPa. The average dif-
ference is �12�(17.1 � 39.5) � 28.3 kPa, which when multiplied by the frontal area (maximum
thickness times 1-m width) gives

P � (28.3 kPa)(0.07 m)(1 m) � 2.0 kN

4(0.1396)2

��
(2.52 	 1)1/2

4(0.1396)
��
(2.52 	 1)1/2
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E9.21 

Both F and P have components in the lift and drag directions. The lift force normal to the free
stream is

L � F cos 8° 	 P sin 8° � 216.2 kN 

and D � F sin 8° � P cos 8° � 32.4 kN

For computing the coefficients, the denominator of Eq. (9.102) is the same as in Example 9.19:
�12�kp� Ma2

� bC � �12�(1.4)(100 kPa)(2.5)2(2 m2) � 875 kN. Thus, finally, shock expansion theory
predicts

CL � � 0.247 CD � � 0.0370 Ans. (a)

Meanwhile, by Ackeret theory, CL is the same as in Example 9.20:

CL � � 0.244 Ans. (b)

This is 1 percent less than the shock expansion result above. For the drag we need the mean-
square slopes from Eq. (9.106)

y���u�2� � y���l�2� � tan2 2° � 0.00122 

Then Eq. (9.107) predicts the linearized result

CD � [(0.1396)2 � �12� (0.00122 � 0.00122)] � 0.0362 Ans. (b)

This is 2 percent lower than shock expansion theory predicts. We could judge Ackeret theory to
be “satisfactory.’’ Ackeret theory predicts p2 � 167 kPa (	11 percent), p3 � 60 kPa (	9 per-
cent), p4 � 140 kPa (	5 percent), and p5 � 33 kPa (	6 percent).

We have gone about as far as we can go in an introductory treatment of compressible
flow. Of course, there is much more, and you are invited to study further in the refer-
ences at the end of the chapter.

4
��
(2.52 	 1)1/2

4(0.1396)
��
(2.52 	 1)1/2

32.4 kN
�
875 kN

216.2 kN
�
875 kN
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Ma ∞ = 2.5
p∞ = 100 k Pa

p0∞ = 1709 k Pa

8°

p 3 = 65.9 kPa
Ma 3 = 2.770

p
 5 = 48.8 kPa

Ma 5 = 2.967

p 4 = 146.9 k Pa
Ma 4 = 2.238

Chord length = 2 m

ω = 4° ∆
5 = 49.124°ω

ω = 4°∆
4 = 32.721°ω

∞ = 39.124°ω
Ma 2 = 2.086

p 02 = 1668 k Pa

p 2 = 186.4 k Pa

2 = 28.721°ω

 = 10°θ
  = 31.85°β

ω = 6°∆
3 = 45.124°ω

0.07 m

4˚

Part (b)

Three-Dimensional Supersonic
Flow



Fig. 9.28 Shadowgraph of flow past
an 8° half-angle cone at Ma� �
2.0. The turbulent boundary layer is
clearly visible. The Mach lines
curve slightly, and the Mach num-
ber varies from 1.98 just inside the
shock to 1.90 at the surface. (Cour-
tesy of U.S. Army Ballistic Re-
search Center, Aberdeen Proving
Ground.)

Three-dimensional supersonic flows are highly complex, especially if they con-
cern blunt bodies, which therefore contain embedded regions of subsonic and tran-
sonic flow, e.g., Fig. 9.10. Some flows, however, yield to accurate theoretical treat-
ment such as flow past a cone at zero incidence, as shown in Fig. 9.28. The exact
theory of cone flow is discussed in advanced texts [for example, 8, chap. 17], and
extensive tables of such solutions have been published [22, 23]. There are similar-
ities between cone flow and the wedge flows illustrated in Fig. 9.22: an attached
oblique shock, a thin turbulent boundary layer, and an expansion fan at the rear cor-
ner. However, the conical shock deflects the flow through an angle less than the
cone half-angle, unlike the wedge shock. As in the wedge flow, there is a maximum
cone angle above which the shock must detach, as in Fig. 9.22b. For k � 1.4 and
Ma� � �, the maximum cone half-angle for an attached shock is about 57°, com-
pared with the maximum wedge angle of 45.6° (see Ref. 23).

For more complicated body shapes one usually resorts to experimentation in a
supersonic wind tunnel. Figure 9.29 shows a wind-tunnel study of supersonic flow
past a model of an interceptor aircraft. The many junctions and wingtips and shape
changes make theoretical analysis very difficult. Here the surface-flow patterns,
which indicate boundary-layer development and regions of flow separation, have
been visualized by the smearing of oil drops placed on the model surface before the
test.
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Reusable Hypersonic Launch
Vehicles

As we shall see in the next chapter, there is an interesting analogy between gas-
dynamic shock waves and the surface water waves which form in an open-channel
flow. Chapter 11 of Ref. 14 explains how a water channel can be used in an inex-
pensive simulation of supersonic-flow experiments.

Having achieved reliable supersonic flight with both military and commercial air-
craft, the next step is probably to develop a hypersonic vehicle that can achieve or-
bit, yet be retrieved. Presently the United States employs the Space Shuttle, where
only the manned vehicle is retrieved, the very expensive giant rocket boosters be-
ing lost. In 1996, NASA selected Lockheed-Martin to develop the X-33, the first
smaller-scale step toward a retrievable single-stage-to-orbit (SSTO) vehicle, to be
called the VentureStar [36].

The X-33, shown in an artist’s rendering in Fig. 9.30, will be 20 m long, about
half the size of the VentureStar, and it will be suborbital. It will take off vertically,
rise to a height of 73 km, and coast back to earth at a steep (stressful) angle. Such
a flight will test many new plans for the VentureStar [37], such as metallic tiles, ti-
tanium components, graphite composite fuel tanks, high-voltage control actuators,
and Rocketdyne’s novel “aerospike” rocket nozzles. If successful, the VentureStar
is planned as a standard reusable, low-cost orbital vehicle. VentureStar will be 
39 m long and weigh 9.7 MN, of which 88 percent (965 tons!) will be propellant

9.10 Prandtl-Meyer Expansion Waves 639

Fig. 9.29 Wind-tunnel test of the
Cobra P-530 supersonic interceptor.
The surface flow patterns are visu-
alized by the smearing of oil
droplets. (Courtesy of Northrop
Corp.)



Fig. 9.30 The X-33 is a half-size
suborbital test version of the Ven-
tureStar, which is planned as an or-
bital, low-cost retrievable space ve-
hicle. It takes off vertically but then
uses its lifting shape to glide back
to earth and land horizontally [36,
37]. (Courtesy of Lockheed Martin
Corp.)

and only 2.7 percent (260 kN) will be payload. The dream is that the X-33 and Ven-
tureStar and their progeny will lead to an era of routine, low-cost space travel ap-
propriate to the new millennium. 

This chapter is a brief introduction to a very broad subject, compressible flow, some-
times called gas dynamics. The primary parameter is the Mach number Ma � V/a,
which is large and causes the fluid density to vary significantly. This means that the
continuity and momentum equations must be coupled to the energy relation and the
equation of state to solve for the four unknowns (p, �, T, V).

The chapter reviews the thermodynamic properties of an ideal gas and derives a 
formula for the speed of sound of a fluid. The analysis is then simplified to one-
dimensional steady adiabatic flow without shaft work, for which the stagnation en-
thalpy of the gas is constant. A further simplification to isentropic flow enables for-
mulas to be derived for high-speed gas flow in a variable-area duct. This reveals the
phenomenon of sonic-flow choking (maximum mass flow) in the throat of a nozzle. At
supersonic velocities there is the possibility of a normal-shock wave, where the gas
discontinuously reverts to subsonic conditions. The normal shock explains the effect
of back pressure on the performance of converging-diverging nozzles.

To illustrate nonisentropic flow conditions, there is a brief study of constant-area
duct flow with friction and with heat transfer, both of which lead to choking of the exit
flow.

The chapter ends with a discussion of two-dimensional supersonic flow, where
oblique-shock waves and Prandtl-Meyer (isentropic) expansion waves appear. With
a proper combination of shocks and expansions one can analyze supersonic air-
foils.
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Problems
Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equations Solver (EES), while problems labeled with a
computer icon may require the use of a computer. The standard
end-of-chapter problems 9.1 to 9.157 (categorized in the problem
list below) are followed by word problems W9.1 to W9.8, funda-
mentals of engineering exam problems FE9.1 to FE9.10, compre-
hensive problems C9.1 to C9.3, and design projects D9.1 and D9.2.

Problem distribution

Section Topic Problems

9.1 Introduction 9.1–9.9
9.2 The speed of sound 9.10–9.18
9.3 Adiabatic and isentropic flow 9.19–9.33
9.4 Isentropic flow with area changes 9.34–9.53
9.5 The normal-shock wave 9.54–9.62
9.6 Converging and diverging nozzles 9.63–9.85
9.7 Duct flow with friction 9.86–9.107
9.8 Frictionless duct flow with heat transfer 9.108–9.115
9.9 Mach waves 9.116–9.121
9.9 The oblique-shock wave 9.122–9.139
9.10 Prandtl-Meyer expansion waves 9.140–9.147
9.10 Supersonic airfoils 9.148–9.157

P9.1 An ideal gas flows adiabatically through a duct. At section
1, p1 � 140 kPa, T1 � 260°C, and V1 � 75 m/s. Farther
downstream, p2 � 30 kPa and T2 � 207°C. Calculate V2

in m/s and s2 	 s1 in J/(kg � K) if the gas is (a) air, k �
1.4, and (b) argon, k � 1.67.

P9.2 Solve Prob. 9.1 if the gas is steam. Use two approaches:
(a) an ideal gas from Table A.4 and (b) real gas data from
the steam tables [15].

P9.3 If 8 kg of oxygen in a closed tank at 200°C and 300 kPa
is heated until the pressure rises to 400 kPa, calculate (a)
the new temperature, (b) the total heat transfer, and (c) the
change in entropy.

P9.4 Compressibility effects become important when the Mach
number exceeds approximately 0.3. How fast can a two-
dimensional cylinder travel in sea-level standard air be-
fore compressibility becomes important somewhere in its
vicinity?

P9.5 Steam enters a nozzle at 377°C, 1.6 MPa, and a steady
speed of 200 m/s and accelerates isentropically until it ex-
its at saturation conditions. Estimate the exit velocity and
temperature.

P9.6 Is it possible for the steam in Prob. 9.5 to continue ac-
celerating until it exits with a moisture content of 12
percent? If so, estimate the new exit velocity and tem-
perature.

P9.7 Carbon dioxide (k � 1.28) enters a constant-area duct at
400°F, 100 lbf/in2 absolute, and 500 ft/s. Farther down-
stream the properties are V2 � 1000 ft/s and T2 � 900°F.
Compute (a) p2, (b) the heat added between sections, (c)
the entropy change between sections, and (d) the mass flow
per unit area. Hint: This problem requires the continuity
equation.

P9.8 Atmospheric air at 20°C enters and fills an insulated tank
which is initially evacuated. Using a control-volume analy-
sis from Eq. (3.63), compute the tank air temperature when
it is full.

P9.9 Liquid hydrogen and oxygen are burned in a combustion
chamber and fed through a rocket nozzle which exhausts
at Vexit �1600 m/s to an ambient pressure of 54 kPa. The
nozzle exit diameter is 45 cm, and the jet exit density is
0.15 kg/m3. If the exhaust gas has a molecular weight of
18, estimate (a) the exit gas temperature, (b) the mass flow,
and (c) the thrust developed by the rocket. 

P9.10 A certain aircraft flies at the same Mach number regard-
less of its altitude. Compared to its speed at 12,000-m stan-
dard altitude, it flies 127 km/h faster at sea level. Deter-
mine its Mach number.

P9.11 At 300°C and 1 atm, estimate the speed of sound of (a)
nitrogen, (b) hydrogen, (c) helium, (d) steam, and (e)
238UF6 (k � 1.06).

P9.12 Assume that water follows Eq. (1.19) with n � 7 and B �
3000. Compute the bulk modulus (in kPa) and the speed
of sound (in m/s) at (a) 1 atm and (b) 1100 atm (the deep-
est part of the ocean). (c) Compute the speed of sound at
20°C and 9000 atm and compare with the measured value
of 2650 m/s (A. H. Smith and A. W. Lawson, J. Chem.
Phys., vol. 22, 1954, p. 351).

P9.13 From Prob. 1.33, mercury data fit Eq. (1.19) with n � 6
and B � 41,000. Estimate (a) the bulk modulus and (b) the
speed of sound of mercury at 2500 atm and compare with
Table 9.1.

P9.14 Assume steady adiabatic flow of a perfect gas. Show that
the energy equation (9.21), when plotted as speed of sound
versus velocity, forms an ellipse. Sketch this ellipse; label
the intercepts and the regions of subsonic, sonic, and su-
personic flow; and determine the ratio of the major and
minor axes.

P9.15 A weak pressure wave (sound wave) with a pressure
change 
p � 40 Pa propagates through air at 20°C and 1
atm. Estimate (a) the density change, (b) the temperature
change, and (c) the velocity change across the wave.

P9.16 A weak pressure pulse 
p propagates through still air. Dis-
cuss the type of reflected pulse which occurs and the
boundary conditions which must be satisfied when the
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wave strikes normal to, and is reflected from, (a) a solid
wall and (b) a free liquid surface.

P9.17 A submarine at a depth of 800 m sends a sonar signal and
receives the reflected wave back from a similar submerged
object in 15 s. Using Prob. 9.12 as a guide, estimate the
distance to the other object.

*P9.18 The properties of a dense gas (high pressure and low tem-
perature) are often approximated by van der Waals’ equa-
tion of state [17, 18]:

p � 	 a1�2

where constants a1 and b1 can be found from the critical
temperature and pressure

a1 � � 9.0 � 105 lbf � ft4/slug2

for air, and

b1 � � 0.65 ft3/slug

for air. Find an analytic expression for the speed of sound
of a van der Waals gas. Assuming k � 1.4, compute the
speed of sound of air in ft/s at 	100°F and 20 atm for (a)
a perfect gas and (b) a van der Waals gas. What percent-
age higher density does the van der Waals relation predict?

P9.19 The Concorde aircraft flies at Ma � 2.3 at 11-km standard
altitude. Estimate the temperature in °C at the front stag-
nation point. At what Mach number would it have a front
stagnation-point temperature of 450°C?

P9.20 A gas flows at V � 200 m/s, p � 125 kPa, and T � 200°C.
For (a) air and (b) helium, compute the maximum pres-
sure and the maximum velocity attainable by expansion or
compression.

P9.21 Air expands isentropically through a duct from p1 � 125
kPa and T1 � 100°C to p2 � 80 kPa and V2 � 325 m/s.
Compute (a) T2, (b) Ma2, (c) T0, (d) p0, (e) V1, and ( f) Ma1.

P9.22 Given the pitot stagnation temperature and pressure and
the static-pressure measurements in Fig. P9.22, estimate

RTc�
8pc

27R2T2
c�

64pc

�RT
�
1 	 b1�

the air velocity V, assuming (a) incompressible flow and
(b) compressible flow.

P9.23 A large rocket engine delivers hydrogen at 1500°C and 3
MPa, k � 1.41, R � 4124 J/(kg�K), to a nozzle which ex-
its with gas pressure equal to the ambient pressure of 54
kPa. Assuming isentropic flow, if the rocket thrust is 2 MN,
what is (a) the exit velocity and (b) the mass flow of hy-
drogen? 

P9.24 For low-speed (nearly incompressible) gas flow, the stag-
nation pressure can be computed from Bernoulli’s equa-
tion

p0 � p � �V2

(a) For higher subsonic speeds, show that the isentropic
relation (9.28a) can be expanded in a power series as fol-
lows:

p0 � p � �V2�1 � Ma2 � Ma4 � ����
(b) Suppose that a pitot-static tube in air measures the pres-
sure difference p0 	 p and uses the Bernoulli relation, with
stagnation density, to estimate the gas velocity. At what
Mach number will the error be 4 percent?

P9.25 If it is known that the air velocity in the duct is 750 ft/s,
use the mercury-manometer measurement in Fig. P9.25
to estimate the static pressure in the duct in lbf/in2 ab-
solute.

2 	 k
�

24
1
�
4

1
�
2

1
�
2
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P9.22

Air at 100°F
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P9.25

P9.26 Show that for isentropic flow of a perfect gas if a pitot-
static probe measures p0, p, and T0, the gas velocity can
be calculated from

V2 � 2cpT0�1 	 � �
(k	1)/k

	
What would be a source of error if a shock wave were
formed in front of the probe?

P9.27 In many problems the sonic (*) properties are more use-
ful reference values than the stagnation properties. For
isentropic flow of a perfect gas, derive relations for p/p*,

p
�
p0



T/T*, and �/�* as functions of the Mach number. Let us
help by giving the density-ratio formula:

� � 	
1/(k	1)

P9.28 A large vacuum tank, held at 60 kPa absolute, sucks sea-
level standard air through a converging nozzle whose
throat diameter is 3 cm. Estimate (a) the mass-flow rate
through the nozzle and (b) the Mach number at the throat.

P9.29 Steam from a large tank, where T � 400°C and p � 1 MPa,
expands isentropically through a nozzle until, at a section
of 2-cm diameter, the pressure is 500 kPa. Using the steam
tables [15], estimate (a) the temperature, (b) the velocity,
and (c) the mass flow at this section. Is the flow subsonic?

P9.30 Air flows in a duct of diameter 5 cm. At one section, T0 �
300°C, p � 120 kPa, and ṁ � 0.4 kg/s. Estimate, at this
section, (a) V, (b) Ma, and (c) �0.

P9.31 Air flows adiabatically through a duct. At one section V1 �
400 ft/s, T1 � 200°F, and p1 � 35 lbf/in2 absolute, while
farther downstream V2 � 1100 ft/s and p2 � 18 lbf/in2 ab-
solute. Compute (a) Ma2, (b) Umax, and (c) p02/p01.

P9.32 The large compressed-air tank in Fig. P9.32 exhausts from
a nozzle at an exit velocity of 235 m/s. The mercury
manometer reads h � 30 cm. Assuming isentropic flow,
compute the pressure (a) in the tank and (b) in the atmos-
phere. (c) What is the exit Mach number?

k � 1
��
2 � (k 	 1) Ma.2

�
�
�*

P9.36 An air tank of volume 1.5 m3 is initially at 800 kPa and
20°C. At t � 0, it begins exhausting through a converging
nozzle to sea-level conditions. The throat area is 0.75 cm2.
Estimate (a) the initial mass flow in kg/s, (b) the time re-
quired to blow down to 500 kPa, and (c) the time at which
the nozzle ceases being choked.

P9.37 Make an exact control-volume analysis of the blowdown
process in Fig. P9.37, assuming an insulated tank with neg-
ligible kinetic and potential energy within. Assume criti-
cal flow at the exit, and show that both p0 and T0 decrease
during blowdown. Set up first-order differential equations
for p0(t) and T0(t), and reduce and solve as far as you can.
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P9.37

P9.33 Air flows isentropically from a reservoir, where p � 300
kPa and T � 500 K, to section 1 in a duct, where A1 � 0.2
m2 and V1 � 550 m/s. Compute (a) Ma1, (b) T1, (c) p1, (d)
ṁ, and (e) A*. Is the flow choked?

P9.34 Steam in a tank at 450°F and 100 lbf/in2 absolute exhausts
through a converging nozzle of 0.1-in2 throat area to a 1-
atm environment. Compute the initial mass flow (a) for an
ideal gas and (b) from the steam tables [15].

P9.35 Helium, at T0 � 400 K, enters a nozzle isentropically. At
section 1, where A1 � 0.1 m2, a pitot-static arrangement
(see Fig. P9.25) measures stagnation pressure of 150 kPa
and static pressure of 123 kPa. Estimate (a) Ma1, (b) mass
flow ṁ, (c) T1, and (d) A*.

P9.38 Prob. 9.37 makes an ideal senior project or combined lab-
oratory and computer problem, as described in Ref. 30,
sec. 8.6. In Bober and Kenyon’s lab experiment, the tank
had a volume of 0.0352 ft3 and was initially filled with air
at 50 lb/in2 gage and 72°F. Atmospheric pressure was 14.5
lb/in2 absolute, and the nozzle exit diameter was 0.05 in.
After 2 s of blowdown, the measured tank pressure was 20
lb/in2 gage and the tank temperature was 	5°F. Compare
these values with the theoretical analysis of Prob. 9.37.

P9.39 Consider isentropic flow in a channel of varying area, from
section 1 to section 2. We know that Ma1 � 2.0 and desire
that the velocity ratio V2/V1 be 1.2. Estimate (a) Ma2 and
(b) A2/A1. (c) Sketch what this channel looks like. For ex-
ample, does it converge or diverge? Is there a throat? 

P9.40 Air, with stagnation conditions of 800 kPa and 100°C, ex-
pands isentropically to a section of a duct where A1 � 20
cm2 and p1 � 47 kPa. Compute (a) Ma1, (b) the throat area,
and (c) ṁ. At section 2 between the throat and section 1,
the area is 9 cm2. (d) Estimate the Mach number at sec-
tion 2.

P9.41 Air, with a stagnation pressure of 100 kPa, flows through
the nozzle in Fig. P9.41, which is 2 m long and has an area
variation approximated by



A � 20 	 20x � 10x2

with A in cm2 and x in m. It is desired to plot the com-
plete family of isentropic pressures p(x) in this nozzle, for
the range of inlet pressures 1 � p(0) � 100 kPa. Indicate
those inlet pressures which are not physically possible and
discuss briefly. If your computer has an online graphics
routine, plot at least 15 pressure profiles; otherwise just
hit the highlights and explain.

P9.42 A bicycle tire is filled with air at an absolute pressure of
169.12 kPa, and the temperature inside is 30.0°C. Suppose
the valve breaks, and air starts to exhaust out of the tire
into the atmosphere (pa � 100 kPa absolute and Ta �
20.0°C). The valve exit is 2.00 mm in diameter and is the
smallest cross-sectional area of the entire system. Fric-
tional losses can be ignored here, i.e., one-dimensional
isentropic flow is a reasonable assumption. (a) Find the
Mach number, velocity, and temperature at the exit plane
of the valve (initially). (b) Find the initial mass-flow rate
out of the tire. (c) Estimate the velocity at the exit plane
using the incompressible Bernoulli equation. How well
does this estimate agree with the “exact” answer of part
(a)? Explain.

P9.43 Air flows isentropically through a duct with T0 � 300°C.
At two sections with identical areas of 25 cm2, the pres-
sures are p1 � 120 kPa and p2 � 60 kPa. Determine (a)
the mass flow, (b) the throat area, and (c) Ma2.

P9.44 In Prob. 3.34 we knew nothing about compressible flow
at the time, so we merely assumed exit conditions p2 and
T2 and computed V2 as an application of the continuity
equation. Suppose that the throat diameter is 3 in. For the
given stagnation conditions in the rocket chamber in Fig.
P3.34 and assuming k � 1.4 and a molecular weight of 26,

compute the actual exit velocity, pressure, and temperature
according to one-dimensional theory. If pa � 14.7 lbf/in2

absolute, compute the thrust from the analysis of Prob.
3.68. This thrust is entirely independent of the stagnation
temperature (check this by changing T0 to 2000°R if you
like). Why?

P9.45 At a point upstream of the throat of a converging-diverg-
ing nozzle the properties are V1 � 200 m/s, T1 � 300 K,
and p1 � 125 kPa. If the exit flow is supersonic, compute,
from isentropic theory, (a) ṁ and (b) A1. The throat area
is 35 cm2.

P9.46 If the author did not falter, the results of Prob. 9.43 are (a)
0.671 kg/s, (b) 23.3 cm2, and (c) 1.32. Do not tell your
friends who are still working on Prob. 9.43. Consider a
control volume which encloses the nozzle between these
two 25-cm2 sections. If the pressure outside the duct is 
1 atm, determine the total force acting on this section of
nozzle.

P9.47 In wind-tunnel testing near Mach 1, a small area decrease
caused by model blockage can be important. Suppose the
test section area is 1 m2, with unblocked test conditions
Ma � 1.10 and T � 20°C. What model area will first cause
the test section to choke? If the model cross section is
0.004 m2 (0.4 percent blockage), what percentage change
in test-section velocity results?

P9.48 A force F � 1100 N pushes a piston of diameter 12 cm
through an insulated cylinder containing air at 20°C, as in
Fig. P9.48. The exit diameter is 3 mm, and pa � 1 atm.
Estimate (a) Ve, (b) Vp, and (c) ṁe.
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P9.49 Air expands through a nozzle and exits supersonically. The
throat area is 10 cm2, and the throat pressure is 100 kPa.
Find the pressure on either side of the throat where the
duct area is 24 cm2.

P9.50 Argon expands isentropically in a converging nozzle whose
entrance conditions are D1 � 10 cm, p1 � 150 kPa, T1 �
100°C, and ṁ � 1 kg/s. The flow discharges smoothly to
an ambient pressure of 101 kPa. (a) What is the exit di-
ameter of the nozzle? (b) How much further can the am-
bient pressure be reduced before it affects the inlet mass
flow?

P9.51 Air, at stagnation conditions of 500 K and 200 kPa, flows
through a nozzle. At section 1, where the area is 12 cm2,
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the density is 0.32 kg/m3. Assuming isentropic flow, (a)
find the mass flow. (b) Is the flow choked? If so, estimate
A*. Also estimate (c) p1 and (d) Ma1.

P9.52 A converging-diverging nozzle exits smoothly to sea-level
standard atmosphere. It is supplied by a 40-m3 tank ini-
tially at 800 kPa and 100°C. Assuming isentropic flow in
the nozzle, estimate (a) the throat area and (b) the tank
pressure after 10 s of operation. The exit area is 10 cm2. 

P9.53 Air flows steadily from a reservoir at 20°C through a noz-
zle of exit area 20 cm2 and strikes a vertical plate as in
Fig. P9.53. The flow is subsonic throughout. A force of
135 N is required to hold the plate stationary. Compute (a)
Ve, (b) Mae, and (c) p0 if pa � 101 kPa.

P9.58 Argon (Table A.4) approaches a normal shock with V1 �
700 m/s, p1 � 125 kPa, and T1 � 350 K. Estimate (a) V2

and (b) p2. (c) What pressure p2 would result if the same
velocity change V1 to V2 were accomplished isentropi-
cally?

P9.59 Air, at stagnation conditions of 450 K and 250 kPa, flows
through a nozzle. At section 1, where the area is 15 cm2,
there is a normal shock wave. If the mass flow is 0.4 kg/s,
estimate (a) the Mach number and (b) the stagnation pres-
sure just downstream of the shock.

P9.60 When a pitot tube such as in Fig. 6.30 is placed in a su-
personic flow, a normal shock will stand in front of the
probe. Suppose the probe reads p0 � 190 kPa and p � 150
kPa. If the stagnation temperature is 400 K, estimate the
(supersonic) Mach number and velocity upstream of the
shock.

P9.61 Repeat Prob. 9.56 except this time let the odd coincidence
be that the static pressure downstream of the shock exactly
equals the throat pressure. What is the area where the shock
stands?

P9.62 An atomic explosion propagates into still air at 14.7 lbf/in2

absolute and 520°R. The pressure just inside the shock is
5000 lbf/in2 absolute. Assuming k � 1.4, what are the speed
C of the shock and the velocity V just inside the shock?

P9.63 Sea-level standard air is sucked into a vacuum tank through
a nozzle, as in Fig. P9.63. A normal shock stands where
the nozzle area is 2 cm2, as shown. Estimate (a) the pres-
sure in the tank and (b) the mass flow.
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P9.54 For flow of air through a normal shock the upstream con-
ditions are V1 � 600 m/s, T01 � 500 K, and p01 � 700
kPa. Compute the downstream conditions Ma2, V2, T2, p2,
and p02.

P9.55 Air, supplied by a reservoir at 450 kPa, flows through a con-
verging-diverging nozzle whose throat area is 12 cm2. A nor-
mal shock stands where A1 � 20 cm2. (a) Compute the pres-
sure just downstream of this shock. Still farther downstream,
at A3 � 30 cm2, estimate (b) p3, (c) A*3, and (d) Ma3.

P9.56 Air from a reservoir at 20°C and 500 kPa flows through a
duct and forms a normal shock downstream of a throat of
area 10 cm2. By an odd coincidence it is found that the
stagnation pressure downstream of this shock exactly
equals the throat pressure. What is the area where the shock
wave stands?

P9.57 Air flows from a tank through a nozzle into the standard
atmosphere, as in Fig. P9.57. A normal shock stands in the
exit of the nozzle, as shown. Estimate (a) the pressure in
the tank and (b) the mass flow.

P9.64 Air in a large tank at 100°C and 150 kPa exhausts to the
atmosphere through a converging nozzle with a 5-cm2

throat area. Compute the exit mass flow if the atmospheric
pressure is (a) 100 kPa, (b) 60 kPa, and (c) 30 kPa.

P9.65 Air flows through a converging-diverging nozzle between
two large reservoirs, as shown in Fig. P9.65. A mercury
manometer between the throat and the downstream reser-
voir reads h � 15 cm. Estimate the downstream reservoir
pressure. Is there a normal shock in the flow? If so, does
it stand in the exit plane or farther upstream?

P9.66 In Prob. 9.65 what would be the mercury-manometer read-
ing h if the nozzle were operating exactly at supersonic de-
sign conditions?



P9.67 In Prob. 9.65 estimate the complete range of manometer
readings h for which the flow through the nozzle is en-
tirely isentropic, except possibly in the exit plane.

P9.68 Air in a tank at 120 kPa and 300 K exhausts to the at-
mosphere through a 5-cm2-throat converging nozzle at a
rate of 0.12 kg/s. What is the atmospheric pressure? What
is the maximum mass flow possible at low atmospheric
pressure?

P9.69 With reference to Prob. 3.68, show that the thrust of a
rocket engine exhausting into a vacuum is given by

F �

where Ae � exit area
Mae � exit Mach number
p0 � stagnation pressure in combustion chamber

Note that stagnation temperature does not enter into the thrust.
P9.70 Air, at stagnation temperature 100°C, expands isentropi-

cally through a nozzle of 6-cm2 throat area and 18-cm2

exit area. The mass flow is at its maximum value of 0.5
kg/s. Estimate the exit pressure for (a) subsonic and (b)
supersonic exit flow.

P9.71 For the nozzle of Prob. 9.70, allowing for nonisentropic
flow, what is the range of exit tank pressures pb for which
(a) the diverging nozzle flow is fully supersonic, (b) the
exit flow is subsonic, (c) the mass flow is independent of
pb, (d) the exit plane pressure pe is independent of pb, and
(e) pe � pb?

P9.72 Suppose the nozzle flow of Prob. 9.70 is not isentropic but
instead has a normal shock at the position where area is
15 cm2. Compute the resulting mass flow, exit pressure,
and exit Mach number.

P9.73 Air flows isentropically in a converging-diverging nozzle
with a throat area of 3 cm2. At section 1, the pressure is
101 kPa, the temperature is 300 K, and the velocity is 868
m/s. (a) Is the nozzle choked? Determine (b) A1 and (c)
the mass flow. Suppose, without changing stagnation con-
ditions or A1, the (flexible) throat is reduced to 2 cm2. As-

p0 Ae(1 � k Ma2
e)

��
�1 � �

k 	

2
1

� Ma2
e�

k/(k	1)

suming shock-free flow, will there be any change in the
gas properties at section 1? If so, compute new p1, V1, and
T1 and explain.

P9.74 The perfect-gas assumption leads smoothly to Mach-num-
ber relations which are very convenient (and tabulated).
This is not so for a real gas such as steam. To illustrate,
let steam at T0 � 500°C and p0 � 2 MPa expand isen-
tropically through a converging nozzle whose exit area is
10 cm2. Using the steam tables, find (a) the exit pressure
and (b) the mass flow when the flow is sonic, or choked.
What complicates the analysis?

*P9.75 A double-tank system in Fig. P9.75 has two identical con-
verging nozzles of 1-in2 throat area. Tank 1 is very large,
and tank 2 is small enough to be in steady-flow equilib-
rium with the jet from tank 1. Nozzle flow is isentropic,
but entropy changes between 1 and 3 due to jet dissipa-
tion in tank 2. Compute the mass flow. (If you give up,
Ref. 14, pp. 288–290, has a good discussion.)
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P9.76 A large reservoir at 20°C and 800 kPa is used to fill a small
insulated tank through a converging-diverging nozzle with
1-cm2 throat area and 1.66-cm2 exit area. The small tank
has a volume of 1 m3 and is initially at 20°C and 100 kPa.
Estimate the elapsed time when (a) shock waves begin to
appear inside the nozzle and (b) the mass flow begins to
drop below its maximum value.

P9.77 A perfect gas (not air) expands isentropically through a su-
personic nozzle with an exit area 5 times its throat area.
The exit Mach number is 3.8. What is the specific-heat ra-
tio of the gas? What might this gas be? If p0 � 300 kPa,
what is the exit pressure of the gas?

P9.78 The orientation of a hole can make a difference. Consider
holes A and B in Fig. P9.78, which are identical but re-
versed. For the given air properties on either side, compute
the mass flow through each hole and explain why they are
different.
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P9.79 Air with p0 � 300 kPa and T0 � 500 K flows through a
converging-diverging nozzle with throat area of 1 cm2 and
exit area of 3 cm2 into a receiver tank. The mass flow is
195.2 kg/h. For what range of receiver pressure is this mass
flow possible?

P9.80 A sea-level automobile tire is initially at 32 lbf/in2 gage
pressure and 75°F. When it is punctured with a hole which
resembles a converging nozzle, its pressure drops to 15
lbf/in2 gage in 12 min. Estimate the size of the hole, in
thousandths of an inch. The tire volume is 2.5 ft2.

P9.81 Helium, in a large tank at 100°C and 400 kPa, discharges
to a receiver through a converging-diverging nozzle de-
signed to exit at Ma � 2.5 with exit area 1.2 cm2. Com-
pute (a) the receiver pressure and (b) the mass flow at de-
sign conditions. (c) Also estimate the range of receiver
pressures for which mass flow will be a maximum.

P9.82 Air at 500 K flows through a converging-diverging nozzle
with throat area of 1 cm2 and exit area of 2.7 cm2. When
the mass flow is 182.2 kg/h, a pitot-static probe placed in
the exit plane reads p0 � 250.6 kPa and p � 240.1 kPa.
Estimate the exit velocity. Is there a normal shock wave
in the duct? If so, compute the Mach number just down-
stream of this shock.

P9.83 When operating at design conditions (smooth exit to sea-
level pressure), a rocket engine has a thrust of 1 million
lbf. The chamber pressure and temperature are 600 lbf/in2

absolute and 4000°R, respectively. The exhaust gases ap-
proximate k � 1.38 with a molecular weight of 26. Esti-
mate (a) the exit Mach number and (b) the throat diame-
ter.

P9.84 Air flows through a duct as in Fig. P9.84, where A1 � 24
cm2, A2 � 18 cm2, and A3 � 32 cm2. A normal shock
stands at section 2. Compute (a) the mass flow, (b) the
Mach number, and (c) the stagnation pressure at section 3.

(a) the throat pressure and (b) the stagnation pressure in
the upstream supply tank.

P9.86 Air enters a 3-cm-diameter pipe 15 m long at V1 � 73 m/s,
p1 � 550 kPa, and T1 � 60°C. The friction factor is 0.018.
Compute V2, p2, T2, and p02 at the end of the pipe. How
much additional pipe length would cause the exit flow to
be sonic?

P9.87 Air enters a duct of L/D � 40 at V1 � 170 m/s and T1 �
300 K. The flow at the exit is choked. What is the aver-
age friction factor in the duct for adiabatic flow?

P9.88 Air enters a 5- by 5-cm square duct at V1 � 900 m/s and
T1 � 300 K. The friction factor is 0.02. For what length
duct will the flow exactly decelerate to Ma � 1.0? If the
duct length is 2 m, will there be a normal shock in the
duct? If so, at what Mach number will it occur?

P9.89 Air flows adiabatically in a 5-cm-diameter tube with f �
0.025. At section 1, V1 � 75 m/s, T1 � 350 K, and p1 �
300 kPa. How much further down the tube will (a) the
pressure be 156 kPa, (b) the temperature be 343 K, and
(c) the flow reach the choking point?

P9.90 Air, supplied at p0 � 700 kPa and T0 � 330 K, flows
through a converging nozzle into a pipe of 2.5-cm diame-
ter which exits to a near vacuum. If f


� 0.022, what will

be the mass flow through the pipe if its length is (a) 0 m,
(b) 1 m, and (c) 10 m?

P9.91 Air flows steadily from a tank through the pipe in Fig.
P9.91. There is a converging nozzle on the end. If the mass
flow is 3 kg/s and the nozzle is choked, estimate (a) the
Mach number at section 1 and (b) the pressure inside the
tank.
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P9.85 A large tank delivers air through a nozzle of 1-cm2 throat
area and 2.7-cm2 exit area. When the receiver pressure is
125 kPa, a normal shock stands in the exit plane. Estimate

P9.92 Modify Prob. 9.91 as follows. Let the pressure in the tank
be 700 kPa, and let the nozzle be choked. Determine (a)
Ma2 and (b) the mass flow.

P9.93 Air flows adiabatically in a 3-cm-diameter duct. The av-
erage friction factor is 0.015. If, at the entrance, V � 950
m/s and T � 250 K, how far down the tube will (a) the
Mach number be 1.8 or (b) the flow be choked?

P9.94 Compressible pipe flow with friction, Sec. 9.7, assumes
constant stagnation enthalpy and mass flow but variable



momentum. Such a flow is often called Fanno flow, and a
line representing all possible property changes on a tem-
perature-entropy chart is called a Fanno line. Assuming a
perfect gas with k � 1.4 and the data of Prob. 9.86, draw
a Fanno curve of the flow for a range of velocities from
very low (Ma � 1) to very high (Ma � 1). Comment on
the meaning of the maximum-entropy point on this curve.

P9.95 Helium (Table A.4) enters a 5-cm-diameter pipe at p1 �
550 kPa, V1 � 312 m/s, and T1 � 40°C. The friction fac-
tor is 0.025. If the flow is choked, determine (a) the length
of the duct and (b) the exit pressure.

P9.96 Derive and verify the adiabatic-pipe-flow velocity relation
of Eq. (9.74), which is usually written in the form

� ln � � 	 �
P9.97 By making a few algebraic substitutions, show that Eq.

(9.74), or the relation in Prob. 9.96, may be written in the
density form

�2
1 � �2

2 � �*2� � 2 ln �
Why is this formula awkward if one is trying to solve for
the mass flow when the pressures are given at sections 1
and 2?

P9.98 Compressible laminar flow, f � 64/Re, may occur in cap-
illary tubes. Consider air, at stagnation conditions of 100°C
and 200 kPa, entering a tube 3 cm long and 0.1 mm in di-
ameter. If the receiver pressure is near vacuum, estimate
(a) the average Reynolds number, (b) the Mach number at
the entrance, and (c) the mass flow in kg/h.

P9.99 A compressor forces air through a smooth pipe 20 m long
and 4 cm in diameter, as in Fig. P9.99. The air leaves at
101 kPa and 200°C. The compressor data for pressure rise
versus mass flow are shown in the figure. Using the Moody
chart to estimate f


, compute the resulting mass flow.

�1�
�2

f

L

�
D

2k
�
k � 1

1
�
V2

2

1
�
V2

1

a2
0�

k
V2�
V1

k � 1
�

k
f

L

�
D

P9.101 How do the compressible-pipe-flow formulas behave for
small pressure drops? Let air at 20°C enter a tube of di-
ameter 1 cm and length 3 m. If f


� 0.028 with p1 � 102

kPa and p2 � 100 kPa, estimate the mass flow in kg/h for
(a) isothermal flow, (b) adiabatic flow, and (c) incom-
pressible flow (Chap. 6) at the entrance density.

P9.102 Air at 550 kPa and 100°C enters a smooth 1-m-long pipe
and then passes through a second smooth pipe to a 30-kPa
reservoir, as in Fig. P9.102. Using the Moody chart to com-
pute f


, estimate the mass flow through this system. Is the

flow choked?
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P9.100 Modify Prob. 9.99 as follows. Find the length of 4-cm-di-
ameter pipe for which the pump pressure rise will be ex-
actly 200 kPa.

P9.103 Natural gas, with k � 1.3 and a molecular weight of 16, is
to be pumped through 100 km of 81-cm-diameter pipeline.
The downstream pressure is 150 kPa. If the gas enters at
60°C, the mass flow is 20 kg/s, and f


� 0.024, estimate

the required entrance pressure for (a) isothermal flow and
(b) adiabatic flow.

P9.104 A tank of oxygen (Table A.4) at 20°C is to supply an as-
tronaut through an umbilical tube 12 m long and 2 cm in
diameter. The exit pressure in the tube is 40 kPa. If the de-
sired mass flow is 90 kg/h and f


� 0.025, what should be

the pressure in the tank?
P9.105 Air enters a 5-cm-diameter pipe at p1 � 200 kPa and T1 �

350 K. The downstream receiver pressure is 74 kPa. The
friction factor is 0.02. If the exit is choked, what is (a) the
length of the pipe and (b) the mass flow? (c) If p1, T1, and
preceiver stay the same, what pipe length will cause the mass
flow to increase by 50 percent over (b)? Hint: In part (c)
the exit pressure does not equal the receiver pressure.

P9.106 Air at 300 K flows through a duct 50 m long with f


�
0.019. What is the minimum duct diameter which can carry
the flow without choking if the entrance velocity is (a) 50
m/s, (b) 150 m/s, and (c) 420 m/s?

P9.107 A fuel-air mixture, assumed equivalent to air, enters a duct
combustion chamber at V1 � 104 m/s and T1 � 300 K.
What amount of heat addition in kJ/kg will cause the exit
flow to be choked? What will be the exit Mach number
and temperature if 504 kJ/kg is added during combustion?
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P9.108 What happens to the inlet flow of Prob. 9.107 if the com-
bustion yields 1500 kJ/kg heat addition and p01 and T01

remain the same? How much is the mass flow reduced?
P9.109 A jet engine at 7000-m altitude takes in 45 kg/s of air and

adds 550 kJ/kg in the combustion chamber. The chamber
cross section is 0.5 m2, and the air enters the chamber at
80 kPa and 5°C. After combustion the air expands through
an isentropic converging nozzle to exit at atmospheric pres-
sure. Estimate (a) the nozzle throat diameter, (b) the noz-
zle exit velocity, and (c) the thrust produced by the engine.

P9.110 Compressible pipe flow with heat addition, Sec. 9.8, as-
sumes constant momentum (p � �V2) and constant mass
flow but variable stagnation enthalpy. Such a flow is of-
ten called Rayleigh flow, and a line representing all pos-
sible property changes on a temperature-entropy chart is
called a Rayleigh line. Assuming air passing through the
flow state p1 � 548 kPa, T1 � 588 K, V1 � 266 m/s, and
A � 1 m2, draw a Rayleigh curve of the flow for a range
of velocities from very low (Ma � 1) to very high (Ma �
1). Comment on the meaning of the maximum-entropy
point on this curve.

P9.111 Add to your Rayleigh line of Prob. 9.110 a Fanno line (see
Prob. 9.94) for stagnation enthalpy equal to the value as-
sociated with state 1 in Prob. 9.110. The two curves will
intersect at state 1, which is subsonic, and at a certain state
2, which is supersonic. Interpret these two states vis-à-vis
Table B.2.

P9.112 Air enters a duct subsonically at section 1 at 1.2 kg/s. When
650 kW of heat is added, the flow chokes at the exit at
p2 � 95 kPa and T2 � 700 K. Assuming frictionless heat
addition, estimate (a) the velocity and (b) the stagnation
pressure at section 1.

P9.113 Air enters a constant-area duct at p1 � 90 kPa, V1 � 520
m/s, and T1 � 558°C. It is then cooled with negligible fric-
tion until it exits at p2 � 160 kPa. Estimate (a) V2, (b) T2,
and (c) the total amount of cooling in kJ/kg.

P9.114 We have simplified things here by separating friction (Sec.
9.7) from heat addition (Sec. 9.8). Actually, they often oc-
cur together, and their effects must be evaluated simulta-
neously. Show that, for flow with friction and heat trans-
fer in a constant-diameter pipe, the continuity, momentum,
and energy equations may be combined into the following
differential equation for Mach-number changes:

�

�

where dQ is the heat added. A complete derivation, in-
cluding many additional combined effects such as area
change and mass addition, is given in chap. 8 of Ref. 8.

f dx
�

D
k Ma2 [2 � (k 	 1) Ma2]
���

2(1 	 Ma2)

dQ
�
cpT
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��
1 	 Ma2
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�
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P9.115 Air flows subsonically in a duct with negligible friction.
When heat is added in the amount of 948 kJ/kg, the pres-
sure drops from p1 � 200 to p2 � 106 kPa. Estimate
(a) Ma1, (b) T1, and (c) V1, assuming T01 � 305 K.

P9.116 An observer at sea level does not hear an aircraft flying at
12,000-ft standard altitude until it is 5 (statute) mi past her.
Estimate the aircraft speed in ft/s.

P9.117 An observer at sea level does not hear an aircraft flying at
6000-m standard altitude until 15 s after it has passed over-
head. Estimate the aircraft speed in m/s.

P9.118 A particle moving at uniform velocity in sea-level stan-
dard air creates the two disturbance spheres shown in Fig.
P9.118. Compute the particle velocity and Mach number.
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P9.119 The particle in Fig. P9.119 is moving supersonically in
sea-level standard air. From the two given disturbance
spheres, compute the particle Mach number, velocity, and
Mach angle.

P9.120 The particle in Fig. P9.120 is moving in sea-level standard
air. From the two disturbance spheres shown, estimate (a)
the position of the particle at this instant and (b) the tem-
perature in °C at the front stagnation point of the particle.

P9.121 A thermistor probe, in the shape of a needle parallel to the
flow, reads a static temperature of 	25°C when inserted
into a supersonic airstream. A conical disturbance cone of
half-angle 17° is created. Estimate (a) the Mach number,



(b) the velocity, and (c) the stagnation temperature of the
stream.

P9.122 Supersonic air takes a 5° compression turn, as in Fig.
P9.122. Compute the downstream pressure and Mach num-
ber and the wave angle, and compare with small-distur-
bance theory.

P9.129 Air flows at supersonic speed toward a compression ramp,
as in Fig. P9.129. A scratch on the wall at point a creates
a wave of 30° angle, while the oblique shock created has
a 50° angle. What is (a) the ramp angle � and (b) the wave
angle � caused by a scratch at b?
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Ma 1 = 3
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a

b

Ma > 1  
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θ
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Ma = 3
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A

B

16°

16°

P9.132

Ma = 3.0
p = 100 k Pa δ

12 cm

P9.128

P9.123 Modify Prob. 9.122 as follows. Let the 5° total turn be in
the form of five separate compression turns of 1° each.
Compute the final Mach number and pressure, and com-
pare the pressure with an isentropic expansion to the same
final Mach number.

P9.124 Determine the validity of the following alternate relation
for the pressure ratio across an oblique shock wave:

�

If necessary, your proof (or disproof) may be somewhat
tentative and heuristic.

P9.125 Show that, as the upstream Mach number approaches in-
finity, the Mach number downstream of an attached
oblique-shock wave will have the value

Ma2 � ��
P9.126 Consider airflow at Ma1 � 2.2. Calculate, to two decimal

places, (a) the deflection angle for which the downstream
flow is sonic and (b) the maximum deflection angle.

P9.127 Do the Mach waves upstream of an oblique-shock wave
intersect with the shock? Assuming supersonic down-
stream flow, do the downstream Mach waves intersect the
shock? Show that for small deflections the shock-wave an-
gle � lies halfway between �1 and �2 � � for any Mach
number.

P9.128 Air flows past a two-dimensional wedge-nosed body as in
Fig. P9.128. Determine the wedge half-angle � for which
the horizontal component of the total pressure force on the
nose is 35 kN/m of depth into the paper.

k 	 1
��
2k sin2 (� 	 �)

cot � sin 2� 	 cos 2� � k
���
cot � sin 2� 	 cos 2� 	 k

p2�
p1

P9.130 Modify Prob. 9.129 as follows. If the wave angle � is 42°,
determine (a) the shock-wave angle and (b) the deflection
angle.

P9.131 In Fig. P9.128, assume that the approach stream tempera-
ture is 20°C. For what wedge half-angle � will the stream
temperature along the wedge surface be 200°C?

P9.132 Air flows at Ma � 3 and p � 10 lbf/in2 absolute toward a
wedge of 16° angle at zero incidence in Fig. P9.132. If the
pointed edge is forward, what will be the pressure at point
A? If the blunt edge is forward, what will be the pressure
at point B?

P9.133 Air flows supersonically toward the double-wedge system
in Fig. P9.133. The (x, y) coordinates of the tips are given.



The shock wave of the forward wedge strikes the tip of
the aft wedge. Both wedges have 15° deflection angles.
What is the free-stream Mach number?

P9.134 When an oblique shock strikes a solid wall, it reflects as
a shock of sufficient strength to cause the exit flow Ma3

to be parallel to the wall, as in Fig. P9.134. For airflow
with Ma1 � 2.5 and p1 � 100 kPa, compute Ma3, p3, and
the angle �.

P9.137 Generalize Prob. 9.136 into a computer study as follows.
Assuming weak shocks, find and plot all combinations of
� and h in Fig. P9.136 for which the canceled or “swal-
lowed’’ reflected shock is possible.

P9.138 The supersonic nozzle of Fig. P9.138 is overexpanded
(case G of Fig. 9.12) with Ae/At � 3.0 and a stagnation
pressure of 350 kPa. If the jet edge makes a 4° angle with
the nozzle centerline, what is the back pressure pr in kPa?
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φ

h

P9.136
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4°

Jet
edge

p
r?

P9.138

P9.135 A bend in the bottom of a supersonic duct flow induces
a shock wave which reflects from the upper wall, as in
Fig. P9.135. Compute the Mach number and pressure in
region 3.

P9.136 Figure P9.136 is a special application of Prob. 9.135. With
careful design, one can orient the bend on the lower wall
so that the reflected wave is exactly canceled by the return
bend, as shown. This is a method of reducing the Mach
number in a channel (a supersonic diffuser). If the bend
angle is � � 10°, find (a) the downstream width h and (b)
the downstream Mach number. Assume a weak shock
wave.

P9.139 Airflow at Ma � 2.2 takes a compression turn of 12° and
then another turn of angle � in Fig. P9.139. What is the
maximum value of � for the second shock to be attached?
Will the two shocks intersect for any � less than �max?

P9.140 The solution to Prob. 9.122 is Ma2 � 2.750, and p2 �
145.5 kPa. Compare these results with an isentropic com-
pression turn of 5°, using Prandtl-Meyer theory.

P9.141 Supersonic airflow takes a 5° expansion turn, as in Fig.
P9.141. Compute the downstream Mach number and pres-
sure, and compare with small-disturbance theory.

EES



P9.142 A supersonic airflow at Ma1 � 3.2 and p1 � 50 kPa un-
dergoes a compression shock followed by an isentropic ex-
pansion turn. The flow deflection is 30° for each turn.
Compute Ma2 and p2 if (a) the shock is followed by the
expansion and (b) the expansion is followed by the shock.

P9.143 Airflow at Ma1 � 3.2 passes through a 25° oblique-shock
deflection. What isentropic expansion turn is required to
bring the flow back to (a) Ma1 and (b) p1?

P9.144 Consider a smooth isentropic compression turn of 20°, as
shown in Fig. P9.144. The Mach waves thus generated will
form a converging fan. Sketch this fan as accurately as pos-
sible, using at least five equally spaced waves, and demon-
strate how the fan indicates the probable formation of an
oblique-shock wave.

� 8°? Why does the drag coefficient not have the simple
parabolic form CD � K�2 in this range?

P9.150 A flat-plate airfoil with C � 1.2 m is to have a lift of 30
kN/m when flying at 5000-m standard altitude with U� �
641 m/s. Using Ackeret theory, estimate (a) the angle of
attack and (b) the drag force in N/m.

P9.151 Air flows at Ma � 2.5 past a half-wedge airfoil whose an-
gles are 4°, as in Fig. P9.151. Compute the lift and drag
coefficient at � equal to (a) 0° and (b) 6°.
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φ
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Ma 2
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P9.145 Air at Ma1 � 2.0 and p1 � 100 kPa undergoes an isen-
tropic expansion to a downstream pressure of 50 kPa. What
is the desired turn angle in degrees?

P9.146 Helium, at 20°C and V1 � 2010 m/s, undergoes a Prandtl-
Meyer expansion until the temperature is 	50°C. Estimate
the turn angle in degrees.

P9.147 A converging-diverging nozzle with a 4:1 exit-area ratio
and p0 � 500 kPa operates in an underexpanded condition
(case I of Fig. 9.12b) as in Fig. P9.147. The receiver pres-
sure is pa � 10 kPa, which is less than the exit pressure,
so that expansion waves form outside the exit. For the
given conditions, what will the Mach number Ma2 and the
angle � of the edge of the jet be? Assume k � 1.4 as usual.

P9.148 Repeat Example 9.19 for an angle of attack of 6°. Is the
lift coefficient linear with angle � in this range of 0° � �
� 8°? Is the drag coefficient parabolic with � in this range?

P9.149 Repeat Example 9.21 for an angle of attack of 2°. Is the
lift coefficient linear with angle � in this range of 0° � �

P9.152 A supersonic airfoil has a parabolic symmetric shape for
upper and lower surfaces

yu,l � �2t � 	 �
such that the maximum thickness is t at x � �12�C. Compute
the drag coefficient at zero incidence by Ackeret theory,
and compare with a symmetric double wedge of the same
thickness.

P9.153 A supersonic transport has a mass of 65 Mg and cruises at
11-km standard altitude at a Mach number of 2.25. If the
angle of attack is 2° and its wings can be approximated by
flat plates, estimate (a) the required wing area in m2 and
(b) the thrust required in N.

P9.154 A symmetric supersonic airfoil has its upper and lower sur-
faces defined by a sine-wave shape:

y � sin 

where t is the maximum thickness, which occurs at x �
C/2. Use Ackeret theory to derive an expression for the
drag coefficient at zero angle of attack. Compare your re-
sult with Ackeret theory for a symmetric double-wedge air-
foil of the same thickness.

P9.155 For the sine-wave airfoil shape of Prob. 9.154, with Ma� �
2.5, k � 1.4, t/C � 0.1, and � � 0°, plot (without com-

�x
�
C

t
�
2

x2

�
C2

x
�
C
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puting the overall forces) the pressure distribution p(x)/p�

along the upper surface for (a) Ackeret theory and (b) an
oblique shock plus a continuous Prandtl-Meyer expansion.

P9.156 A thin circular-arc airfoil is shown in Fig. P9.156. The
leading edge is parallel to the free stream. Using linearized
(small-turning-angle) supersonic-flow theory, derive a for-
mula for the lift and drag coefficient for this orientation,
and compare with Ackeret-theory results for an angle of
attack � � tan	1 (h/L).

Word Problems

W9.1 Notice from Table 9.1 that (a) water and mercury and (b)
aluminum and steel have nearly the same speeds of sound,
yet the second of the two materials is much denser. Can you
account for this oddity? Can molecular theory explain it?

W9.2 When an object approaches you at Ma � 0.8, you can hear
it, according to Fig. 9.18a. But would there be a Doppler
shift? For example, would a musical tone seem to you to
have a higher or a lower pitch?

W9.3 The subject of this chapter is commonly called gas dynam-
ics. But can liquids not perform in this manner? Using wa-
ter as an example, make a rule-of-thumb estimate of the
pressure level needed to drive a water flow at velocities
comparable to the sound speed.

W9.4 Suppose a gas is driven at compressible subsonic speeds by
a large pressure drop, p1 to p2. Describe its behavior on an
appropriately labeled Mollier chart for (a) frictionless flow
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Circular-arc foil

TEL

h

LEMa > 1

P9.156

P9.157 Prove from Ackeret theory that for a given supersonic air-
foil shape with sharp leading and trailing edges and a given
thickness, the minimum-thickness drag occurs for a sym-
metric double-wedge shape.

in a converging nozzle and (b) flow with friction in a long
duct.

W9.5 Describe physically what the “speed of sound’’ represents.
What kind of pressure changes occur in air sound waves dur-
ing ordinary conversation?

W9.6 Give a physical description of the phenomenon of choking
in a converging-nozzle gas flow. Could choking happen even
if wall friction were not negligible?

W9.7 Shock waves are treated as discontinuities here, but they ac-
tually have a very small finite thickness. After giving it some
thought, sketch your idea of the distribution of gas velocity,
pressure, temperature, and entropy through the inside of a
shock wave.

W9.8 Describe how an observer, running along a normal-shock
wave at finite speed V, will see what appears to be an
oblique-shock wave. Is there any limit to the running speed?

Fundamentals of Engineering Exam Problems

One-dimensional compressible-flow problems have become quite
popular on the FE Exam, especially in the afternoon sessions. In
the following problems, assume one-dimensional flow of ideal air,
R � 287 J/(kg�K) and k � 1.4.

FE9.1 For steady isentropic flow, if the absolute temperature in-
creases 50 percent, by what ratio does the static pressure
increase?
(a) 1.12, (b) 1.22, (c) 2.25, (d) 2.76, (e) 4.13

FE9.2 For steady isentropic flow, if the density doubles, by what
ratio does the static pressure increase?
(a) 1.22, (b) 1.32, (c) 1.44, (d) 2.64, (e) 5.66

FE9.3 A large tank, at 500 K and 200 kPa, supplies isentropic
airflow to a nozzle. At section 1, the pressure is only 120
kPa. What is the Mach number at this section? 
(a) 0.63, (b) 0.78, (c) 0.89, (d) 1.00, (e) 1.83

FE9.4 In Prob. FE9.3 what is the temperature at section 1?
(a) 300 K, (b) 408 K, (c) 417 K, (d) 432 K, (e) 500 K

FE9.5 In Prob. FE9.3, if the area at section 1 is 0.15 m2, what is
the mass flow?
(a) 38.1 kg/s, (b) 53.6 kg/s, (c) 57.8 kg/s, (d) 67.8 kg/s,
(e) 77.2 kg/s

FE9.6 For steady isentropic flow, what is the maximum possible
mass flow through the duct in Fig. FE9.6?
(a) 9.5 kg/s, (b) 15.1 kg/s, (c) 26.2 kg/s, (d) 30.3 kg/s,
(e) 52.4 kg/s

FE9.6

Throat area � 0.05 m2

Exit

Tank:
400 K, 300 kPa



FE9.7 If the exit Mach number in Fig. FE9.6 is 2.2, what is the
exit area? 
(a) 0.10 m2, (b) 0.12 m2, (c) 0.15 m2 , (d) 0.18 m2,
(e) 0.22 m2

FE9.8 If there are no shock waves and the pressure at one duct
section in Fig. FE9.6 is 55.5 kPa, what is the velocity at
that section? 
(a) 166 m/s, (b) 232 m/s, (c) 554 m/s, (d) 706 m/s,
(e) 774 m/s

FE9.9 If, in Fig. FE9.6, there is a normal shock wave at a sec-
tion where the area is 0.07 m2, what is the air density just
upstream of that shock? 
(a) 0.48 kg/m3, (b) 0.78 kg/m3, (c) 1.35 kg/m3,
(d) 1.61 kg/m3, (e) 2.61 kg/m3

FE9.10 In Prob. FE9.9, what is the Mach number just downstream
of the shock wave? 
(a) 0.42, (b) 0.55, (c) 0.63, (d) 1.00, (e) 1.76
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Comprehensive Problems

C9.1 The converging-diverging nozzle sketched in Fig. C9.1 is
designed to have a Mach number of 2.00 at the exit plane
(assuming the flow remains nearly isentropic). The flow
travels from tank a to tank b, where tank a is much larger
than tank b. (a) Find the area at the exit Ae and the back
pressure pb which will allow the system to operate at de-
sign conditions. (b) As time goes on, the back pressure will
grow, since the second tank slowly fills up with more air.
Since tank a is huge, the flow in the nozzle will remain the
same, however, until a normal shock wave appears at the
exit plane. At what back pressure will this occur? (c) If tank
b is held at constant temperature, T � 20°C, estimate how
long it will take for the flow to go from design conditions

to the condition of part (b), i.e., with a shock wave at the
exit plane.

C9.2 Two large air tanks, one at 400 K and 300 kPa and the other
at 300 K and 100 kPa, are connected by a straight tube 6 m
long and 5 cm in diameter. The average friction factor is
0.0225. Assuming adiabatic flow, estimate the mass flow
through the tube. 

*C9.3 Figure C9.3 shows the exit of a converging-diverging noz-
zle, where an oblique-shock pattern is formed. In the exit
plane, which has an area of 15 cm2, the air pressure is 16
kPa and the temperature is 250 K. Just outside the exit shock,
which makes an angle of 50° with the exit plane, the tem-
perature is 430 K. Estimate (a) the mass flow, (b) the throat
area, (c) the turning angle of the exit flow, and, in the tank
supplying the air, (d) the pressure and (e) the temperature. 

Throat area � 0.07 m2
Tank a

Tank b

T � 500 K
p � 1.00 MPa
Air (k � 1.4)
Volume � huge

Volume � 100,000 L
T � 20.0  C

Ae, Ve, Mae

Shock waves

430 K

50 

C9.1 C9.3

Design Projects

D9.1 It is desired to select a rectangular wing for a fighter air-
craft. The plane must be able (a) to take off and land on a
4500-ft-long sea-level runway and (b) to cruise supersoni-
cally at Ma � 2.3 at 28,000-ft altitude. For simplicity, as-
sume a wing with zero sweepback. Let the aircraft maxi-
mum weight equal (30 � n)(1000) lbf, where n is the
number of letters in your surname. Let the available sea-
level maximum thrust be one-third of the maximum weight,
decreasing at altitude proportional to ambient density. Mak-

ing suitable assumptions about the effect of finite aspect ra-
tio on wing lift and drag for both subsonic and supersonic
flight, select a wing of minimum area sufficient to perform
these takeoff/landing and cruise requirements. Some
thought should be given to analyzing the wingtips and wing
roots in supersonic flight, where Mach cones form and the
flow is not two-dimensional. If no satisfactory solution is
possible, gradually increase the available thrust to converge
to an acceptable design.



D9.2 Consider supersonic flow of air at sea-level conditions past
a wedge of half-angle �, as shown in Fig. D9.2. Assume
that the pressure on the back of the wedge equals the fluid
pressure as it exits the Prandtl-Meyer fan. (a) Suppose
Ma� � 3.0. For what angle � will the supersonic wave-drag
coefficient CD, based on frontal area, be exactly 0.5? (b)
Suppose that � � 20°. Is there a free-stream Mach number
for which the wave-drag coefficient CD, based on frontal
area, will be exactly 0.5? (c) Investigate the percent increase
in CD from (a) and (b) due to including boundary-layer fric-
tion drag in the calculation.
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The Lehigh River, White Haven, Pennsylvania.
Open channel flows are everywhere, often rough
and turbulent, as in this photo. They are analyzed
by the methods of the present chapter. (Courtesy of
Dr. E. R. Degginger/Color-Pic Inc.)



10.1 Introduction

Motivation. The duct flows of Chap. 6 were driven by a pressure difference between
the ends of the duct. Such channels are closed and full of fluid, either gas or liquid.
By contrast, an open-channel flow is liquid only and is not full; i.e., there is always a
free surface exposed to ambient pressure. The basic balance of forces is between grav-
ity (fluid weight) and friction.

Practical open-channel problems almost always concern water as the relevant fluid.
The flow is generally turbulent, due to its large scale and small kinematic viscosity,
and is three-dimensional, sometimes unsteady, and often surprisingly complex due to
geometric effects. This chapter presents some simple engineering theories and corre-
lations for steady flow in straight channels of simple geometry. Many of the concepts
from steady duct flow—hydraulic diameter, friction factor, head losses—apply also to
open channels.

Simply stated, open-channel flow is the flow of a liquid in a conduit with a free sur-
face. There are many practical examples, both artificial (flumes, spillways, canals, weirs,
drainage ditches, culverts) and natural (streams, rivers, estuaries, floodplains). This
chapter introduces the elementary analysis of such flows, which are dominated by the
effects of gravity.

The presence of the free surface, which is essentially at atmospheric pressure, both
helps and hurts the analysis. It helps because the pressure can be taken constant along
the free surface, which therefore is equivalent to the hydraulic grade line (HGL) of the
flow. Unlike flow in closed ducts, the pressure gradient is not a direct factor in open-
channel flow, where the balance of forces is confined to gravity and friction.1 But the
free surface complicates the analysis because its shape is a priori unknown: The depth
profile changes with conditions and must be computed as part of the problem, espe-
cially in unsteady problems involving wave motion.

Before proceeding, we remark, as usual, that whole books have been written on
open-channel hydraulics [1 to 4]. There are also specialized texts devoted to wave mo-
tion [5 to 7] and to engineering aspects of coastal free-surface flows [8, 9]. This chap-
ter is only an introduction to broader and more detailed treatments.

Chapter 10
Open-Channel Flow

1Surface tension is rarely important because open channels are normally quite large and have a very
large Weber number.
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The One-Dimensional
Approximation

An open channel always has two sides and a bottom, where the flow satisfies the no-
slip condition. Therefore even a straight channel has a three-dimensional velocity dis-
tribution. Some measurements of straight-channel velocity contours are shown in Fig.
10.1. The profiles are quite complex, with maximum velocity typically occurring in the
midplane about 20 percent below the surface. In very broad shallow channels the max-
imum velocity is near the surface, and the velocity profile is nearly logarithmic from
the bottom to the free surface, as in Eq. (6.84). In noncircular channels there are also
secondary motions similar to Fig. 6.16 for closed-duct flows. If the channel curves or
meanders, the secondary motion intensifies due to centrifugal effects, with high ve-
locity occurring near the outer radius of the bend. Curved natural channels are subject
to strong bottom erosion and deposition effects.
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Fig. 10.1 Measured isovelocity
contours in typical straight open-
channel flows. (From Ref. 3.)



Fig. 10.2 Geometry and notation
for open-channel flow: (a) side
view; (b) cross section. All these
parameters are constant in uniform
flow.

With the advent of the supercomputer, it is possible to make numerical simulations
of complex flow patterns such as in Fig. 10.1 [23]. However, the practical engineering
approach, used here, is to make a one-dimensional-flow approximation, as in Fig. 10.2.
Since the liquid density is nearly constant, the steady-flow continuity equation reduces
to constant-volume flow Q along the channel

Q � V(x)A(x) � const (10.1)

where V is average velocity and A the local cross-sectional area, as sketched in Fig. 10.2.
A second one-dimensional relation between velocity and channel geometry is the

energy equation, including friction losses. If points 1 (upstream) and 2 (downstream)
are on the free surface, p1 � p2 � pa, and we have, for steady flow,

�
V
2g

2
1� � z1 � �

V
2g

2
2� � z2 � hf (10.2)

where z denotes the total elevation of the free surface, which includes the water depth
y (see Fig. 10.2a) plus the height of the (sloping) bottom. The friction head loss hf is
analogous to head loss in duct flow from Eq. (6.30):

hf � f �
x2

D
�

h

x1� �
V
2

2
a

g
v� Dh � hydraulic diameter � �

4
P
A
� (10.3)

where f is the average friction factor (Fig. 6.13) between sections 1 and 2. Since chan-
nels are irregular in shape, their “size” is taken to be the hydraulic diameter, with P
the wetted perimeter—see Fig. 10.2b. Actually, open-channel formulas typically use
the hydraulic radius

Rh � �
1
4

� Dh � �
A
P

� (10.4)

The local Reynolds number of the channel would be Re � VDh/�, which is usually
highly turbulent (�1 E5). The only commonly occurring laminar channel flows are the
thin sheets which form as rainwater drains from crowned streets and airport runways.

The wetted perimeter P (see Fig. 10.2b) includes the sides and bottom of the chan-
nel but not the free surface and, of course, not the parts of the sides above the water
level. For example, if a rectangular channel is b wide and h high and contains water
to depth y, its wetted perimeter is

P � b � 2y (10.5)

not 2b � 2h.
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Flow Classification 
by Depth Variation

Although the Moody chart (Fig. 6.13) would give a good estimate of the friction
factor in channel flow, in practice it is seldom used. An alternate correlation due to
Robert Manning, discussed in Sec. 10.2, is the formula of choice in open-channel
hydraulics.

The most common method of classifying open-channel flows is by the rate of change
of the free-surface depth. The simplest and most widely analyzed case is uniform flow,
where the depth (hence the velocity in steady flow) remains constant. Uniform-flow
conditions are approximated by long straight runs of constant-slope and constant-area
channel. A channel in uniform flow is said to be moving at its normal depth yn, which
is an important design parameter.

If the channel slope or cross section changes or there is an obstruction in the flow,
then the depth changes and the flow is said to be varied. The flow is gradually vary-
ing if the one-dimensional approximation is valid and rapidly varying if not. Some ex-
amples of this method of classification are shown in Fig. 10.3. The classes can be sum-
marized as follows:

1. Uniform flow (constant depth and slope)

2. Varied flow

a. Gradually varied (one-dimensional)

b. Rapidly varied (multidimensional)

Typically uniform flow is separated from rapidly varying flow by a region of gradu-
ally varied flow. Gradually varied flow can be analyzed by a first-order differential
equation (Sec. 10.6), but rapidly varying flow usually requires experimentation or three-
dimensional potential theory.

A second and very interesting classification is by dimensionless Froude number, which
for a rectangular or very wide channel takes the form Fr � V/(gy)1/2, where y is the
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Flow Classification by Froude
Number: Surface Wave Speed
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Uniform
flow GVF
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Fig. 10.3 Open-channel flow classi-
fied by regions of rapidly varying
flow (RVF), gradually varying flow
(GVF), and uniform-flow depth
profiles.



Fig. 10.4 Analysis of a small sur-
face wave propagating into still
shallow water; (a) moving wave,
nonsteady frame; (b) fixed wave,
inertial frame of reference.

water depth. The three flow regimes are

Fr � 1.0 subcritical flow

Fr � 1.0 critical flow (10.6)

Fr � 1.0 supercritical flow

The Froude number for irregular channels is defined in Sec. 10.4. As mentioned in Sec.
9.10, there is a strong analogy here with the three compressible-flow regimes of the
Mach number: subsonic (Ma � 1), sonic (Ma � 1), and supersonic (Ma � 1). We shall
pursue the analogy in Sec. 10.4.

The Froude-number denominator (gy)1/2 is the speed of an infinitesimal shallow-
water surface wave. We can derive this with reference to Fig. 10.4a, which shows a
wave of height 	y propagating at speed c into still liquid. To achieve a steady-flow in-
ertial frame of reference, we fix the coordinates on the wave as in Fig. 10.4b, so that
the still water moves to the right at velocity c. Figure 10.4 is exactly analogous to Fig.
9.1, which analyzed the speed of sound in a fluid.

For the control volume of Fig. 10.4b, the one-dimensional continuity relation is, for
channel width b,


cyb � 
(c � 	V)(y � 	y)b

or 	V � c �
y �

	y
	y

� (10.7)

This is analogous to Eq. (9.10); the velocity change 	V induced by a surface wave is
small if the wave is “weak,” 	y � y. If we neglect bottom friction in the short distance
across the wave in Fig. 10.4b, the momentum relation is a balance between the net hy-
drostatic pressure force and momentum

��12�
gb[(y � 	y)2 � y2] � 
cby(c � 	V � c)

or g�1 � � 	y � c 	V (10.8)
�12� 	y
�

y
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Fig. 10.5 Flow under a sluice gate
accelerates from subcritical to criti-
cal to supercritical flow and then
jumps back to subcritical flow.

10.2 Uniform Flow; 
the Chézy Formula

This is analogous to Eq. (9.12). By eliminating 	V between Eqs. (10.7) and (10.8) we
obtain the desired expression for wave propagation speed

c2 � gy�1 � �
	

y
y
���1 � � (10.9)

The “stronger” the wave height 	y, the faster the wave speed c, by analogy with Eq.
(9.13). In the limit of an infinitesimal wave height 	y → 0, the speed becomes

c2
0 � gy (10.10)

This is the surface-wave equivalent of fluid sound speed a, and thus the Froude num-
ber in channel flow Fr � V/c0 is the analog of the Mach number.

As in gas dynamics, a channel flow can accelerate from subcritical to critical to su-
percritical flow and then return to subcritical flow through a sort of normal shock called
a hydraulic jump (Sec. 10.5). This is illustrated in Fig. 10.5. The flow upstream of the
sluice gate is subcritical. It then accelerates to critical and supercritical flow as it passes
under the gate, which serves as a sort of “nozzle.” Further downstream the flow “shocks”
back to subcritical flow because the downstream “receiver” height is too high to main-
tain supercritical flow. Note the similarity with the nozzle gas flows of Fig. 9.12.

The critical depth yc � [Q2/(b2g)]1/3 is sketched as a dashed line in Fig. 10.5 for ref-
erence. Like the normal depth yn, yc is an important parameter in characterizing open-
channel flow (see Sec. 10.4).

An excellent discussion of the various regimes of open-channel flow is given in 
Ref. 10.

Uniform flow can occur in long straight runs of constant slope and constant channel cross
section. The water depth is constant at y � yn, and the velocity is constant at V � V0. Let
the slope be S0 � tan �, where � is the angle the bottom makes with the horizontal, con-
sidered positive for downhill flow. Then Eq. (10.2), with V1 � V2 � V0, becomes

hf � z1 � z2 � S0L (10.11)

where L is the horizontal distance between sections 1 and 2. The head loss thus bal-
ances the loss in height of the channel. The flow is essentially fully developed, so that
the Darcy-Weisbach relation, Eq. (6.30), holds

hf � f �
D
L

h
� �

V
2g

2
0� Dh � 4Rh (10.12)

�12� 	y
�

y
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The Manning Roughness
Correlation

with Dh � 4A/P used to accommodate noncircular channels. The geometry and nota-
tion for open-channel flow analysis are shown in Fig. 10.2.

By combining Eqs. (10.11) and (10.12) we obtain an expression for flow velocity
in uniform channel flow

V0 � ��
8
f
g
��

1/2

Rh
1/2S0

1/2 (10.13)

For a given channel shape and bottom roughness, the quantity (8g/f)1/2 is constant and
can be denoted by C. Equation (10.13) becomes

V0 � C(RhS0)1/2 Q � CA(RhS0)1/2 (10.14)

These are called the Chézy formulas, first developed by the French engineer Antoine
Chézy in conjunction with his experiments on the Seine River and the Courpalet Canal
in 1769. The quantity C, called the Chézy coefficient, varies from about 60 ft1/2/s for
small rough channels to 160 ft1/2/s for large smooth channels (30 to 90 m1/2/s in SI units).

Over the past century a great deal of hydraulics research [11] has been devoted to
the correlation of the Chézy coefficient with the roughness, shape, and slope of vari-
ous open channels. Correlations are due to Ganguillet and Kutter in 1869, Manning in
1889, Bazin in 1897, and Powell in 1950 [11]. All these formulations are discussed in
delicious detail in Ref. 3, chap. 5. Here we confine our treatment to Manning’s corre-
lation, the most popular.

The most fundamentally sound approach to the Chézy formula is to use Eq. (10.13)
with f estimated from the Moody friction-factor chart, Fig. 6.13. Indeed, the open chan-
nel research establishment [17] strongly recommends use of the friction factor in all
calculations. Since typical channels are large and rough, we would generally use the
fully rough turbulent-flow limit of Eq. (6.64):

f � �2.0 log �
14.




8Rh��
�2

(10.15a)

A special case, for rocky channel beds, is recommended in Ref. 2:

f � �1.2 � 2.03 log ��d
R

84

h

%
���

�2

(10.15b)

where d84% is the size for which 84 percent of the rocks are smaller (the largest rocks
dominate the friction in the channel). Note that d84% and 
 are not equal, 
 being an
overall average size. In spite of the attractiveness of this friction-factor approach, most
engineers prefer to use a simple (dimensional) correlation published in 1891 by Robert
Manning [12], an Irish engineer. In tests with real channels, Manning found that the
Chézy coefficient C increased approximately as the sixth root of the channel size. He
proposed the simple formula

C � ��
8
f
g
��

1/2

� � �
R

n
h
1/6

� (10.16)

where n is a roughness parameter. Since the formula is clearly not dimensionally con-
sistent, it requires a conversion factor � which changes with the system of units used:
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Part (a)

� � 1.0 SI units � � 1.486 BG units (10.17)

Recall that we warned about this awkwardness in Example 1.4. You may verify that �
is the cube root of the conversion factor between the meter and your chosen length
scale: In BG units, � � (3.2808 ft/m)1/3 � 1.486.*

The Manning formula for uniform-flow velocity is thus

V0 (m/s) � �
1
n
.0
� [Rh (m)]2/3S0

1/2

(10.18)

V0 (ft/s) � �
1.4

n
86
� [Rh (ft)]2/3S0

1/2

The channel slope S0 is dimensionless, and n is taken to be the same in both systems.
The volume flow rate simply multiplies this result by the area:

Uniform flow: Q � V0A � �
�

n
� ARh

2/3S0
1/2 (10.19)

Experimental values of n (and the corresponding roughness height) are listed in Table
10.1 for various channel surfaces. There is a factor-of-15 variation from a smooth glass
surface (n � 0.01) to a tree-lined floodplain (n � 0.15). Due to the irregularity of typical
channel shapes and roughness, the scatter bands in Table 10.1 should be taken seriously.

Since Manning’s sixth-root size variation is not exact, real channels can have a vari-
able n depending upon the water depth. The Mississippi River near Memphis, Ten-
nessee, has n � 0.032 at 40-ft flood depth, 0.030 at normal 20-ft depth, and 0.040 at
5-ft low-stage depth. Seasonal vegetative growth and factors such as bottom erosion
can also affect the value of n.

EXAMPLE 10.1

A finished-concrete 8-ft-wide rectangular channel has a bed slope of 0.5° and a water depth of
4 ft. Predict the uniform flow rate in ft3/s.

Solution

From Table 10.1, for finished concrete, n � 0.012. The slope S0 � tan 0.5° � 0.00873. For depth
y � 4 ft and width b � 8 ft, the geometric properties are

A � by � (8 ft)(4 ft) � 32 ft2 P � b � 2y � 8 � 2(4) � 16 ft

Rh � �
A
P

� � �
3
1
2
6

f
f
t
t

2

� � 2.0 ft Dh � 4Rh � 8.0 ft

From Manning’s formula (10.19) in BG units, the estimated flow rate is

Q � �
1.4

n
86
� ARh

2/3S0
1/2 � �

1
0
.
.
4
0
8
1
6
2

� (32 ft2)(2.0 ft)2/3(0.00873)1/2 � 590 ft3/s Ans.
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*An interesting discussion of the history and “dimensionality” of Manning’s formula is given in Ref. 3,
pp. 98–99.



Normal-Depth Estimates

Considering the uncertainty in n ( �17 percent), it would be more realistic to report this esti-
mate as Q � 600 � 100 ft3/s. An alternate estimate, using the Moody formula (10.15) with 
 �
0.0032 ft from Table 10.1, would give Q � 540 ft3/s.

With water depth y known, the computation of Q in Example 10.1 was quite straight-
forward. However, if Q is given, the computation of the normal depth yn may require
iteration or trial and error. Since the normal depth is a characteristic flow parameter,
this is an important type of problem.

EXAMPLE 10.2

The asphalt-lined trapezoidal channel in Fig. E10.2 carries 300 ft3/s of water under uniform-flow
conditions when S � 0.0015. What is the normal depth yn?
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Table 10.1 Experimental Values of
Manning’s n Factor* Average roughness

height 


n ft mm

Artificial lined channels:
Glass 0.010 � 0.002 0.0011 0.3
Brass 0.011 � 0.002 0.0019 0.6
Steel, smooth 0.012 � 0.002 0.0032 1.0

Painted 0.014 � 0.003 0.0080 2.4
Riveted 0.015 � 0.002 0.012 3.7

Cast iron 0.013 � 0.003 0.0051 1.6
Cement, finished 0.012 � 0.002 0.0032 1.0

Unfinished 0.014 � 0.002 0.0080 2.4
Planed wood 0.012 � 0.002 0.0032 1.0
Clay tile 0.014 � 0.003 0.0080 2.4
Brickwork 0.015 � 0.002 0.012 3.7
Asphalt 0.016 � 0.003 0.018 5.4
Corrugated metal 0.022 � 0.005 0.12 37
Rubble masonry 0.025 � 0.005 0.26 80

Excavated earth channels:
Clean 0.022 � 0.004 0.12 37
Gravelly 0.025 � 0.005 0.26 80
Weedy 0.030 � 0.005 0.8 240
Stony, cobbles 0.035 � 0.010 1.5 500

Natural channels:
Clean and straight 0.030 � 0.005 0.8 240
Sluggish, deep pools 0.040 � 0.010 3 900
Major rivers 0.035 � 0.010 1.5 500

Floodplains:
Pasture, farmland 0.035 � 0.010 1.5 500
Light brush 0.05 � 0.02 6 2000
Heavy brush 0.075 � 0.025 15 5000
Trees 0.15 � 0.05 ? ?

*A more complete list is given in Ref. 3, pp. 110–113.



Uniform Flow in a Partly Full
Circular Pipe

Solution

From Table 10.1, for asphalt, n � 0.016. The area and hydraulic radius are functions of yn, which
is unknown

b0 � 6 ft � 2yn cot 50° A � �12�(6 � b0)yn � 6yn � y2
n cot 50°

P � 6 � 2W � 6 � 2yn csc 50°

From Manning’s formula (10.19) with a known Q � 300 ft3/s, we have

300 � �
0
1
.
.
0
4
1
9
6

� (6yn � y2
n cot 50°)� �

2/3

(0.0015)1/2

or (6yn � y2
n cot 50°)5/3 � 83.2(6 � 2yn csc 50°)2/3

One can iterate this formula laboriously and eventually find yn � 4.6 ft. However, it is a perfect
candidate for EES. Instead of manipulating and programming the final formula, one might sim-
ply evaluate each separate part of the Chézy equation (in English units, with angles in degrees):

P � 6 � 2*yn/sin(50)
A � 6*yn � yn^2/tan(50)
Rh � A/P
300 � 1.49/0.016*A*Rh

^(2/3)*0.0015
^0.5

Hit Solve from the menu bar and EES complains of “negative numbers to a power”. Go back to
Variable Information on the menu bar and make sure that yn is positive. EES then immediately
solves for

P � 17.95 A � 45.04 Rh � 2.509 yn � 4.577 ft Ans.

Generally, EES is ideal for open-channel-flow problems where the depth is unknown.

Consider the partially full pipe of Fig. 10.6a in uniform flow. The maximum velocity
and flow rate actually occur before the pipe is completely full. In terms of the pipe ra-
dius R and the angle � up to the free surface, the geometric properties are

A � R2�� � �
sin

2
2�
�� P � 2R� Rh � �

R
2

� �1 � �
sin

2�

2�
��

6yn � y2
n cot 50°

��
6 � 2yn csc 50°
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Fig. 10.6 Uniform flow in a partly
full circular channel: (a) geometry;
(b) velocity and flow rate versus
depth.

10.3 Efficient Uniform-Flow
Channels

The Manning formulas (10.19) predict a uniform flow as follows:

V0 � �
�

n
���

R
2

� �1 � �
sin

2�

2�
���

2/3

S0
1/2 Q � V0R2�� � �

sin
2
2�
�� (10.20)

For a given n and slope S0, we may plot these two relations versus � in Fig. 10.6b.
There are two different maxima, as follows:

Vmax � 0.718 �
�

n
� R2/3S0

1/2 at � � 128.73° and y � 0.813D

(10.21)

Qmax � 2.129 �
�

n
� R8/3S0

1/2 at � � 151.21° and y � 0.938D

As shown in Fig. 10.6b, the maximum velocity is 14 percent more than the velocity
when running full, and similarly the maximum discharge is 8 percent more. Since real
pipes running nearly full tend to have somewhat unstable flow, these differences are
not that significant.

The simplicity of Manning’s formulation (10.19) enables us to analyze channel flows
to determine the most efficient low-resistance sections for given conditions. The most
common problem is that of maximizing Rh for a given flow area and discharge. Since
Rh � A/P, maximizing Rh for given A is the same as minimizing the wetted perimeter
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Fig. 10.7 Geometry of a trapezoidal
channel section.

Best Trapezoid Angle

P. There is no general solution for arbitrary cross sections, but an analysis of the trape-
zoid section will show the basic results.

Consider the generalized trapezoid of angle � in Fig. 10.7. For a given side angle
�, the flow area is

A � by � �y2 � � cot � (10.22)

The wetted perimeter is

P � b � 2W � b � 2y(1 � �2)1/2 (10.23)

Eliminating b between (10.22) and (10.23) gives

P � �
A
y

� � �y � 2y(1 � �2)1/2 (10.24)

To minimize P, evaluate dP/dy for constant A and � and set equal to zero. The result is

A � y2[2(1 � �2)1/2 � �] P � 4y(1 � �2)1/2 � 2�y Rh � �12�y (10.25)

The last result is very interesting: For any angle �, the most efficient cross section for
uniform flow occurs when the hydraulic radius is half the depth.

Since a rectangle is a trapezoid with � � 0, the most efficient rectangular section
is such that

A � 2y2 P � 4y Rh � �12�y b � 2y (10.26)

To find the correct depth y, these relations must be solved in conjunction with Man-
ning’s flow-rate formula (10.19) for the given discharge Q.

Equations (10.25) are valid for any value of �. What is the best value of � for a given
depth and area? To answer this question, evaluate dP/d� from Eq. (10.24) with A and
y held constant. The result is

2� � (1 � �2)1/2 � � cot � � �
3
1
1/2�

or � � 60° (10.27)

Thus the very best trapezoid section is half a hexagon.
Similar calculations with a circular channel section running partially full show best

efficiency for a semicircle, y � �12�D. In fact, the semicircle is the best of all possible
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10.4 Specific Energy; 
Critical Depth

channel sections (minimum wetted perimeter for a given flow area). The percentage
improvement over, say, half a hexagon is very slight, however.

EXAMPLE 10.3

What are the best dimensions for a rectangular brick channel designed to carry 5 m3/s of water
in uniform flow with S0 � 0.001?

Solution

From Eq. (10.26), A � 2y2 and Rh � �12�y. Manning’s formula (10.19) in SI units gives, with n �
0.015 from Table 10.1,

Q � �
1
n
.0
� ARh

2/3S0
1/2 or 5 m3/s � �

0
1
.0
.0
15
� (2y2)��

1
2

� y�
2/3

(0.001)1/2

which can be solved for

y8/3 � 1.882 m8/3

y � 1.27 m Ans.

The proper area and width are

A � 2y2 � 3.21 m2 b � �
A
y

� � 2.53 m Ans.

It is constructive to see what flow rate a half-hexagon and semicircle would carry for the same
area of 3.214 m2.

For the half-hexagon (HH), with � � 1/31/2 � 0.577, Eq. (10.25) predicts

A � y2
HH[2(1 � 0.5772)1/2 � 0.577] � 1.732y2

HH � 3.214

or yHH � 1.362 m, whence Rh � �12�y � 0.681 m. The half-hexagon flow rate is thus

Q � �
0
1
.0
.0
15
� (3.214)(0.681)2/3(0.001)1/2 � 5.25 m3/s

or about 5 percent more than that for the rectangle.
For a semicircle, A � 3.214 m2 � �D2/8, or D � 2.861 m, whence P � �12��D � 4.494 m and

Rh � A/P � 3.214/4.484 � 0.715 m. The semicircle flow rate will thus be

Q � �
0
1
.0
.0
15
� (3.214)(0.715)2/3(0.001)1/2 � 5.42 m3/s

or about 8 percent more than that of the rectangle and 3 percent more than that of the half-
hexagon.

As suggested by Bakhmeteff [13] in 1911, the specific energy E is a useful parameter
in channel flow

E � y � �
2
V
g

2

� (10.28)
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Fig. 10.8 Specific-energy consider-
ations: (a) illustration sketch; 
(b) depth versus E from Eq.
(10.29), showing minimum specific
energy occurring at critical depth.

where y is the water depth. It is seen from Fig. 10.8a that E is the height of the energy
grade line (EGL) above the channel bottom. For a given flow rate, there are usually
two states possible for the same specific energy.

Consider the possible states at a given location. Let q � Q/b � Vy be the discharge per
unit width of a rectangular channel. Then, with q constant, Eq. (10.28) becomes

E � y � �
2
q
g

2

y2� q � �
Q
b

� (10.29)

Figure 10.8b is a plot of y versus E for constant q from Eq. (10.29). There is a mini-
mum value of E at a certain value of y called the critical depth. By setting dE/dy � 0
at constant q, we find that Emin occurs at

y � yc � ��
q
g

2

��
1/3

� ��
b
Q
2

2

g
��

1/3

(10.30)

The associated minimum energy is

Emin � E(yc) � �32�yc (10.31)

The depth yc corresponds to channel velocity equal to the shallow-water wave prop-
agation speed C0 from Eq. (10.10). To see this, rewrite Eq. (10.30) as

q2 � gyc
3 � (gyc)yc

2 � Vc
2yc

2 (10.32)

By comparison it follows that the critical channel velocity is

Vc � (gyc)
1/2 � C0 Fr � 1 (10.33)

For E � Emin no solution exists in Fig. 10.8b, and thus such a flow is impossible phys-
ically. For E � Emin two solutions are possible: (1) large depth with V � Vc, called sub-
critical, and (2) small depth with V � Vc, called supercritical. In subcritical flow, dis-
turbances can propagate upstream because wave speed C0 � V. In supercritical flow,
waves are swept downstream: Upstream is a zone of silence, and a small obstruction
in the flow will create a wedge-shaped wave exactly analogous to the Mach waves in
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Part (a)

Part (b)

Nonrectangular Channels

Fig. 9.18c.2 The angle of these waves must be

� � sin�1 �
c
V
0� � sin�1 �

(gy
V
)1/2

� (10.34)

The wave angle and the depth can thus be used as a simple measurement of supercrit-
ical-flow velocity.

Note from Fig. 10.8b that small changes in E near Emin cause a large change in the
depth y, by analogy with small changes in duct area near the sonic point in Fig. 9.7.
Thus critical flow is neutrally stable and is often accompanied by waves and undula-
tions in the free surface. Channel designers should avoid long runs of near-critical flow.

EXAMPLE 10.4

A wide rectangular clean-earth channel has a flow rate q � 50 ft3/(s � ft). (a) What is the criti-
cal depth? (b) What type of flow exists if y � 3 ft?

Solution

From Table 10.1, n � 0.022 and 
 � 0.12 ft. The critical depth follows from Eq. (10.30):

yc � ��
q
g

2

��
1/3

� ��
3
5
2
0
.

2

2
��

1/3

� 4.27 ft Ans. (a)

If the actual depth is 3 ft, which is less than yc, the flow must be supercritical. Ans. (b)

If the channel width varies with y, the specific energy must be written in the form

E � y � �
2
Q
gA

2

2� (10.35)

The critical point of minimum energy occurs where dE/dy � 0 at constant Q. Since
A � A(y), Eq. (10.35) yields, for E � Emin,

�
d
d
A
y
� � �

g
Q
A

2

3

� (10.36)

But dA � b0 dy, where b0 is the channel width at the free surface. Therefore Eq. (10.36)
is equivalent to

Ac � ��b0

g
Q2

��
1/3

(10.37a)

Vc � �
A
Q

c
� � ��

g
b
A

0

c��
1/2

(10.37b)

For a given channel shape A(y) and b0(y) and a given Q, Eq. (10.37) has to be solved by
trial and error or by EES to find the critical area Ac, from which Vc can be computed.

10.4 Specific Energy; Critical Depth 673

2This is the basis of the water-channel analogy for supersonic gas-dynamics experimentation [14, chap. 11].



Critical Uniform Flow:
The Critical Slope

Part (a)

Part (b)

By comparing the actual depth and velocity with the critical values, we can deter-
mine the local flow condition

y � yc, V � Vc: subcritical flow (Fr � 1)

y � yc, V � Vc: supercritical flow (Fr � 1)

If a critical channel flow is also moving uniformly (at constant depth), it must corre-
spond to a critical slope Sc, with yn � yc. This condition is analyzed by equating Eq.
(10.37a) to the Chézy (or Manning) formula:

Q2 � �
g
b
A

0

c
3

� � C2Ac
2RhSc � �

�

n2

2

� Ac
2Rh

4/3Sc

or Sc � �
�

n
2b

2g

0R
A

h

c

c
4/3� � �

b
P

0
� � �

8
f
� �

b
P

0
� (10.38)

where �2 equals 1.0 for SI units and 2.208 for BG units. Equation (10.38) is valid for
any channel shape. For a wide rectangular channel, b0 � yc, the formula reduces to

Wide rectangular channel: Sc � �
�

n
2y

2g

c
1/3� � �

8
f
�

This is a special case, a reference point. In most channel flows yn � yc. For fully rough
turbulent flow, the critical slope varies between 0.002 and 0.008.

EXAMPLE 10.5

The 50° triangular channel in Fig. E10.5 has a flow rate Q � 16 m3/s. Compute (a) yc, (b) Vc,
and (c) Sc if n � 0.018.

Solution

This is an easy cross section because all geometric quantities can be written directly in terms of
depth y

P � 2y csc 50° A � y2 cot 50°
(1)

Rh � �12�y cos 50° b0 � 2y cot 50°

The critical-flow condition satisfies Eq. (10.37a)

gAc
3 � b0Q2

or g(yc
2 cot 50°)3 � (2yc cot 50°)Q2

yc � ��g co
2
t
Q
2

2

50°
��

1/5

� ��9.8
2
1
(
(
1
0
6
.8
)
3

2

9)2��
1/5

� 2.37 m Ans. (a)

With yc known, from Eqs. (1) we compute Pc � 6.18 m, Rhc � 0.760 m, Ac � 4.70 m2, and b0c �
3.97 m. The critical velocity from Eq. (10.37b) is

Vc � �
Q
A

� � �
4
1
.
6
70

m
m

3/s
2� � 3.41 m/s Ans. (b)

n2g
�
�2Rhc

1/3
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Frictionless Flow over a Bump

With n � 0.018, we compute from Eq. (10.38) a critical slope

Sc � �
�2

g
R
n

h
1

2

/
P
3b0

� ��
1
9
.
.
0
8
(
1
0
(
.
0
7
.
6
0
0
1
)
8
1
)
/

2

3
(
(
6
3
.
.
1
9
8
7
)
)

�� 0.00542 Ans. (c)

A rough analogy to compressible gas flow in a nozzle (Fig. 9.12) is open-channel flow
over a bump, as in Fig. 10.9a. The behavior of the free surface is sharply different ac-
cording to whether the approach flow is subcritical or supercritical. The height of the
bump also can change the character of the results. For frictionless two-dimensional
flow, sections 1 and 2 in Fig. 10.9a are related by continuity and momentum:

V1y1 � V2y2 �
V
2g

2
1� � y1 � �

V
2g

2
2� � y2 � �h

Eliminating V2 between these two gives a cubic polynomial equation for the water
depth y2 over the bump:

y3
2 � E2y2

2 � �
V
2

2
1

g
y2

1� � 0 where E2 � �
V
2g

2
1� � y1 � �h (10.39)

This equation has one negative and two positive solutions if �h is not too large. Its be-
havior is illustrated in Fig. 10.9b and depends upon whether condition 1 is on the up-
per or lower leg of the energy curve. The specific energy E2 is exactly �h less than the
approach energy E1, and point 2 will lie on the same leg of the curve as E1. A sub-
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Fig. 10.9 Frictionless two-dimen-
sional flow over a bump: (a) defini-
tion sketch showing Froude-number
dependence; (b) specific-energy
plot showing bump size and water
depths.



critical approach, Fr1 � 1, will cause the water level to decrease at the bump. Super-
critical approach flow, Fr1 � 1, causes a water-level increase over the bump.

If the bump height reaches �hmax � E1 � Ec, as illustrated in Fig. 10.9b, the flow
at the crest will be exactly critical (Fr � 1). If �h � �hmax, there are no physically
correct solutions to Eq. (10.39). That is, a bump too large will “choke” the channel and
cause frictional effects, typically a hydraulic jump (Sec. 10.5).

These bump arguments are reversed if the channel has a depression (�h � 0): Sub-
critical approach flow will cause a water-level rise and supercritical flow a fall in depth.
Point 2 will be �h to the right of point 1, and critical flow cannot occur.

EXAMPLE 10.6

Water flow in a wide channel approaches a 10-cm-high bump at 1.5 m/s and a depth of 1 m. Es-
timate (a) the water depth y2 over the bump and (b) the bump height which will cause the crest
flow to be critical.

Solution

First check the approach Froude number, assuming C0 � �g�y�:

Fr1 � � � 0.479 (subcritical)

For subcritical approach flow, if �h is not too large, we expect a depression in the water level
over the bump and a higher subcritical Froude number at the crest. With �h � 0.1 m, the spe-
cific-energy levels must be

E1 � �
V
2g

2
1� � y1 � �

2
(
(
1
9
.
.
5
8
)
1

2

)
� � 1.0 � 1.115 E2 � E1 � �h � 1.015 m

This physical situation is shown on a specific-energy plot in Fig. E10.6. With y1 in meters, Eq.
(10.39) takes on the numerical values

y3
2 � 1.015y2

2 � 0.115 � 0

There are three real roots: y2 � �0.859 m, �0.451 m, and �0.296 m. The third (negative) so-
lution is physically impossible. The second (smaller) solution is the supercritical condition for

1.5 m/s
���
�(9�.8�1� m�/s�2)�(1�.0� m�)�

V1�
�g�y1�
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Flow under a Sluice Gate

E2 and is not possible for this subcritical bump. The first solution is correct:

y2(subcritical) � 0.859 m Ans. (a)

The surface level has dropped by y1 � y2 � �h � 1.0 � 0.859 � 0.1 � 0.041 m. The crest ve-
locity is V2 � V1y1/y2 � 1.745 m/s. The Froude number at the crest is Fr2 � 0.601. Flow down-
stream of the bump is subcritical. These flow conditions are shown in Fig. E10.6.

For critical flow in a wide channel, with q � Vy � 1.5 m2/s, from Eq. (10.31),

E2,min � Ec � �
3
2

� yc � �
3
2

� ��
q
g

2

��
1/3

� �
3
2

� ��(9
1
.
.
8
5
1
m
m

2/
/
s
s
)
2

2

��
1/3

� 0.918 m

Therefore the maximum height for frictionless flow over this particular bump is

�hmax � E1 � E2,min � 1.115 � 0.918 � 0.197 m Ans. (b)

For this bump, the solution of Eq. (10.39) is y2 � yc � 0.612 m, and the Froude number is unity
at the crest. At critical flow the surface level has dropped by y1 � y2 � �h � 0.191 m.

A sluice gate is a bottom opening in a wall, as sketched in Fig. 10.10a, commonly used
in control of rivers and channel flows. If the flow is allowed free discharge through the
gap, as in Fig. 10.10a, the flow smoothly accelerates from subcritical (upstream) to
critical (near the gap) to supercritical (downstream). The gate is then analogous to a
converging-diverging nozzle in gas dynamics, as in Fig. 9.12, operating at its design
condition (similar to point H in Fig. 9.12b).

For free discharge, friction may be neglected, and since there is no bump (�h � 0),
Eq. (10.39) applies with E1 � E2:

y3
2 � ��

V
2g

2
1� � y1� y2

2 � �
V
2

2
1

g
y2

1� � 0 (10.40)

Given subcritical upstream flow (V1, y1), this cubic equation has only one positive real
solution: supercritical flow at the same specific energy, as in Fig. 10.10b. The flow rate
varies with the ratio y2/y1; we ask, as a problem exercise, to show that the flow rate is
a maximum when y2/y1 � �23�.

The free discharge, Fig. 10.10a, contracts to a depth y2 about 40 percent less than
the gate’s gap height, as shown. This is similar to a free orifice discharge, as in Fig.
6.38. If H is the height of the gate gap and b is the gap width into the paper, we can
approximate the flow rate by orifice theory:

Q � CdHb �2�g�y1� where Cd � (10.41)

in the range H/y1 � 0.5. Thus a continuous variation in flow rate is accomplished by
raising the gate.

If the tailwater is high, as in Fig. 10.10c, free discharge is not possible. The sluice
gate is said to be drowned or partially drowned. There will be energy dissipation in
the exit flow, probably in the form of a drowned hydraulic jump, and the downstream
flow will return to subcritical. Equations (10.40) and (10.41) do not apply to this sit-
uation, and experimental discharge correlations are necessary [2, 15]. See Prob. 10.77.

0.61
��
�1� �� 0�.6�1�H�/y�1�
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Fig. 10.10 Flow under a sluice gate passes through critical flow: (a) free discharge with vena contracta; (b) spe-
cific energy for free discharge; (c) dissipative flow under a drowned gate.

In open-channel flow a supercritical flow can change quickly back to a subcritical flow
by passing through a hydraulic jump, as in Fig. 10.5. The upstream flow is fast and
shallow, and the downstream flow is slow and deep, analogous to the normal-shock
wave of Fig. 9.8. Unlike the infinitesimally thin normal shock, the hydraulic jump is
quite thick, ranging in length from 4 to 6 times the downstream depth y2 [16].

Being extremely turbulent and agitated, the hydraulic jump is a very effective en-
ergy dissipator and is a feature of stilling-basin and spillway applications [16]. Figure
10.11 shows the jump formed at the bottom of a dam spillway in a model test. It is
very important that such jumps be located on specially designed aprons; otherwise the
channel bottom will be badly scoured by the agitation. Jumps also mix fluids very ef-
fectively and have application to sewage and water treatment designs.
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10.5 The Hydraulic Jump

Fig. 10.11 Hydraulic jump formed
on a spillway model for the Karna-
fuli Dam in East Pakistan. (Cour-
tesy of the St. Anthony Falls Hy-
draulic Laboratory, University of
Minnesota.)



Classification The principal parameter affecting hydraulic-jump performance is the upstream Froude
number Fr1 � V1/(gy1)1/2. The Reynolds number and channel geometry have only a
secondary effect. As detailed in Ref. 16, the following ranges of operation can be out-
lined, as illustrated in Fig. 10.12:

Fr1 � 1.0: Jump impossible, violates second law of thermodynamics.

Fr1 � 1.0 to 1.7: Standing-wave, or undular, jump about 4y2 long; low dissipa-
tion, less than 5 percent.

Fr1 � 1.7 to 2.5: Smooth surface rise with small rollers, known as a weak jump;
dissipation 5 to 15 percent.
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(a)

21

(b)

V1
y1

V2

(c)

(d )

(e)

y2

Fig. 10.12 Classification of hy-
draulic jumps: (a) Fr � 1.0 to 1.7:
undular jumps; (b) Fr � 1.7 to 2.5:
weak jump; (c) Fr � 2.5 to 4.5: os-
cillating jump; (d) Fr � 4.5 to 9.0:
steady jump; (e) Fr � 9.0: strong
jump. (Adapted from Ref. 16.)



Fr1 � 2.5 to 4.5: Unstable, oscillating jump; each irregular pulsation creates a
large wave which can travel downstream for miles, damaging
earth banks and other structures. Not recommended for design
conditions. Dissipation 15 to 45 percent.

Fr1 � 4.5 to 9.0: Stable, well-balanced, steady jump; best performance and ac-
tion, insensitive to downstream conditions. Best design range.
Dissipation 45 to 70 percent.

Fr1 � 9.0: Rough, somewhat intermittent strong jump, but good perfor-
mance. Dissipation 70 to 85 percent.

Further details can be found in Ref. 16 and Ref. 3, chap. 15.

A jump which occurs on a steep channel slope can be affected by the difference in 
water-weight components along the flow. The effect is small, however, so that the clas-
sic theory assumes that the jump occurs on a horizontal bottom.

You will be pleased to know that we have already analyzed this problem in Sec.
10.1. A hydraulic jump is exactly equivalent to the strong fixed wave in Fig. 10.4b,
where the change in depth 	y is not neglected. If V1 and y1 upstream are known, V2

and y2 are computed by applying continuity and momentum across the wave, as in Eqs.
(10.7) and (10.8). Equation (10.9) is therefore the correct solution for a jump if we in-
terpret C and y in Fig. 10.4b as upstream conditions V1 and y1, with C � 	V and y �
	y being the downstream conditions V2 and y2, as in Fig. 10.12b. Equation (10.9) be-
comes

V2
1 � �12�gy1�(� � 1) (10.42)

where � � y2/y1. Introducing the Froude number Fr1 � V1/(gy1)1/2 and solving this qua-
dratic equation for �, we obtain

�
2
y
y

1

2� � �1 � (1 � 8 Fr2
1)1/2 (10.43)

With y2 thus known, V2 follows from the wide-channel continuity relation

V2 � �
V
y
1

2

y1� (10.44)

Finally, we can evaluate the dissipation head loss across the jump from the steady-flow
energy equation

hf � E1 � E2 � �y1 � �
V
2g

2
1�� � �y2 � �

V
2g

2
2��

Introducing y2 and V2 from Eqs. (10.43) and (10.44), we find after considerable alge-
braic manipulation that

hf � �
(y2

4
�

y1y
y

2

1)3

� (10.45)

Equation (10.45) shows that the dissipation loss is positive only if y2 � y1, which is a
requirement of the second law of thermodynamics. Equation (10.43) then requires that
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Part (a)

Part (b)

Part (c)

Part (e)

Part (d)

Fr1 � 1.0; that is, the upstream flow must be supercritical. Finally, Eq. (10.44) shows
that V2 � V1 and the downstream flow is subcritical. All these results agree with our
previous experience analyzing the normal-shock wave.

The present theory is for hydraulic jumps in wide horizontal channels. For the
theory of prismatic or sloping channels see advanced texts [for example, 3, chaps.
15 and 16].

EXAMPLE 10.7

Water flows in a wide channel at q � 10 m3/(s � m) and y1 � 1.25 m. If the flow undergoes a
hydraulic jump, compute (a) y2, (b) V2, (c) Fr2, (d) hf, (e) the percentage dissipation, (f) the power
dissipated per unit width, and (g) the temperature rise due to dissipation if cp � 4200 J/(kg � K).

Solution

The upstream velocity is

V1 � �
y
q

1
� � �

10
1
m
.2

3/
5
(s

m
� m)

� � 8.0 m/s

The upstream Froude number is therefore

Fr1 � �
(gy

V

1

1

)1/2� ��
[9.81(

8
1
.
.
0
25)]1/2�� 2.285

From Fig. 10.12 this is a weak jump. The depth y2 is obtained from Eq. (10.43):

�
2
y
y

1

2� � �1 � [1 � 8(2.285)2]1/2 � 5.54

or y2 � �12�y1(5.54) � �12�(1.25)(5.54) � 3.46 m Ans. (a)

From Eq. (10.44) the downstream velocity is

V2 � �
V
y
1

2

y1� � �
8.0

3
(
.
1
4
.
6
25)

� � 2.89 m/s Ans. (b)

The downstream Froude number is

Fr2 � �
(gy

V

2

2

)1/2� ��
[9.81

2
(3
.8
.4
9
6)]1/2�� 0.496 Ans. (c)

As expected, Fr2 is subcritical. From Eq. (10.45) the dissipation loss is

hf ��
(
4
3
(
.4
3
6
.4

�

6)(
1
1
.
.
2
2
5
5
)
)

3

�� 0.625 m Ans. (d)

The percentage dissipation relates hf to upstream energy

E1 � y1 � �
V
2g

2
1� � 1.25 � �

2
(
(
8
9
.
.
0
8
)
1

2

)
� � 4.51 m

Hence Percentage loss � (100) �
E
h

1

f� � �
100

4
(0
.5
.6
1
25)

� � 14 percent Ans. (e)
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Part (f)

Part (g)

10.6 Gradually Varied Flow3

Basic Differential Equation

The power dissipated per unit width is

Power � 
gqhf � (9800 N/m3)[10 m3/(s � m)](0.625 m)

� 61.3 kW/m Ans. (f)

Finally the mass flow rate is ṁ � 
q � (1000 kg/m3)[10 m3/(s � m)] � 10,000 kg/(s � m), and
the temperature rise from the steady-flow energy equation is

Power dissipated � ṁcp �T

or 61,300 W/m � [10,000 kg/(s � m)][4200 J/(kg � K)] �T

from which

�T � 0.0015 K Ans. (g)

The dissipation is large, but the temperature rise is negligible.

In practical channel flows both the bottom slope and the water depth change with po-
sition, as in Fig. 10.3. An approximate analysis is possible if the flow is gradually var-
ied, e.g., if the slopes are small and changes not too sudden. The basic assumptions
are

1. Slowly changing bottom slope

2. Slowly changing water depth (no hydraulic jumps)

3. Slowly changing cross section

4. One-dimensional velocity distribution

5. Pressure distribution approximately hydrostatic

The flow then satisfies the continuity relation (10.1) plus the energy equation with bot-
tom friction losses included. The two unknowns for steady flow are velocity V(x) and
water depth y(x), where x is distance along the channel.

Consider the length of channel dx illustrated in Fig. 10.13. All the terms which enter
the steady-flow energy equation are shown, and the balance between x and x � dx is

�
2
V
g

2

� � y � S0 dx � S dx � �
2
V
g

2

� � d � �
2
V
g

2

�� � y � dy

or �
d
d
y
x
� � �

d
d
x
� ��

2
V
g

2

�� � S0 � S (10.46)

where S0 is the slope of the channel bottom (positive as shown in Fig. 10.13) and S is
the slope of the EGL (which drops due to wall friction losses).

To eliminate the velocity derivative, differentiate the continuity relation

�
d
d
Q
x
� � 0 � A �

d
d
V
x
� � V �

d
d
A
x
� (10.47)
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Fig. 10.13 Energy balance between
two sections in a gradually varied
open-channel flow.

Classification of Solutions

But dA � b0 dy, where b0 is the channel width at the surface. Eliminating dV/dx be-
tween Eqs. (10.46) and (10.47), we obtain

�
d
d
y
x
� �1 � �

V
g

2

A
b0�� � S0 � S (10.48)

Finally, recall from Eq. (10.37) that V2b0/(gA) is the square of the Froude number of
the local channel flow. The final desired form of the gradually varied flow equation is

�
d
d
y
x
� � �

1
S0

�

�

Fr
S
2� (10.49)

This equation changes sign according as the Froude number is subcritical or super-
critical and is analogous to the one-dimensional gas-dynamic area-change formula
(9.40).

The numerator of Eq. (10.49) changes sign according as S0 is greater or less than
S, which is the slope equivalent to uniform flow at the same discharge Q

S � S0n � �
D
f

h
� �

2
V
g

2

� � �
R

V

hC

2

2� � �
�

n
2

2

R
V

h
4

2

/3� (10.50)

where C is the Chézy coefficient. The behavior of Eq. (10.49) thus depends upon the
relative magnitude of the local bottom slope S0(x), compared with (1) uniform flow,
y � yn, and (2) critical flow, y � yc. As in Eq. (10.38), the dimensional parameter �2

equals 1.0 for SI units and 2.208 for BG units.

It is customary to compare the actual channel slope S0 with the critical slope Sc for the
same Q from Eq. (10.38). There are five classes for S0, giving rise to twelve distinct
types of solution curves, all of which are illustrated in Fig. 10.14:
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Fig. 10.14 Gradually varied flow
for five classes of channel slope,
showing the twelve basic solution
curves.

Slope class Slope notation Depth class Solution curves

S0 � Sc Steep yc � yn S-1, S-2, S-3
S0 � Sc Critical yc � yn C-1, C-3
S0 � Sc Mild yc � yn M-1, M-2, M-3
S0 � 0 Horizontal yn � � H-2, H-3
S0 � 0 Adverse yn � imaginary A-2, A-3
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The solution letters S, C, M, H, and A obviously denote the names of the five types of
slope. The numbers 1, 2, 3 relate to the position of the initial point on the solution curve
with respect to the normal depth yn and the critical depth yc. In type 1 solutions, the ini-
tial point is above both yn and yc, and in all cases the water-depth solution y(x) becomes
even deeper and farther away from yn and yc. In type 2 solutions, the initial point lies
between yn and yc, and if there is no change in S0 or roughness, the solution tends as-
ymptotically toward the lower of yn or yc. In type 3 cases, the initial point lies below
both yn and yc, and the solution curve tends asymptotically toward the lower of these.

Figure 10.14 shows the basic character of the local solutions, but in practice, of
course, S0 varies with x and the overall solution patches together the various cases to
form a continuous depth profile y(x) compatible with a given initial condition and a
given discharge Q. There is a fine discussion of various composite solutions in Ref. 3,
chap. 9; see also Ref. 18, sec. 12.7.

The basic relation for gradually varied flow, Eq. (10.49), is a first-order ordinary dif-
ferential equation which can be easily solved numerically. For a given constant-
volume flow rate Q, it may be written in the form

�
d
d
y
x
� � (10.51)

subject to an initial condition y � y0 at x � x0. It is assumed that the bottom slope S0(x) and
the cross-sectional shape parameters (b0, P, A) are known everywhere along the channel.
Then one may solve Eq. (10.51) for local water depth y(x) by any standard numerical method.
The author uses an Excel spreadsheet for a personal computer. Step sizes �x may be se-
lected so that each change �y is limited to no greater than, say, 1 percent. The solution
curves are generally well behaved unless there are discontinuous changes in channel para-
meters. Note that if one approaches the critical depth yc, the denominator of Eq. (10.51) ap-
proaches zero, so small step sizes are required. It helps physically to know what type solu-
tion curve (M-1, S-2, etc.) you are proceeding along, but this is not mathematically necessary.

EXAMPLE 10.8

Let us extend the data of Example 10.4 to compute a portion of the profile shape. Given is a
wide channel with n � 0.022, S0 � 0.0048, and q � 50 ft3/(s � ft). If y0 � 3 ft at x � 0, how far
along the channel x � L does it take the depth to rise to yL � 4 ft? Is the 4-ft depth position up-
stream or downstream in Fig. E10.8a?

Solution

In Example 10.4 we computed yc � 4.27 ft. Since our initial depth y � 3 ft is less than yc, we
know the flow is supercritical. Let us also compute the normal depth for the given slope S0 by
setting q � 50 ft3/(s � ft) in the Chézy formula (10.19) with Rh � yn:

q � �
�

n
� ARh

2/3S0
1/2 � �

1
0
.
.
4
0
8
2
6
2

� [yn(1 ft)]yn
2/3(0.0048)1/2 � 50 ft3/(s � ft)

Solve for: yn � 4.14 ft

S0 � n2Q2/(�2A2Rh
4/3)

���
1 � Q2b0/(gA3)
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Thus both y(0) � 3 ft and y(L) � 4 ft are less than yn, which is less than yc, so we must be on
an S-3 curve, as in Fig. 10.14a. For a wide channel, Eq. (10.51) reduces to

�
d
d
y
x
� ��

S0 �

1 �

n2q
q

2

2
/
/
(
(
�

gy

2y
3)

10/3)
�

� with y(0) � 3 ft

The initial slope is y�(0) � 0.00494, and a step size �x � 5 ft would cause a change �y �
(0.00494)(5 ft) � 0.025 ft, less than 1 percent. We therefore integrate numerically with �x �
5 ft to determine when the depth y � 4 ft is achieved. Tabulate some values:

x, ft 0 50 100 150 200 230

y, ft 3.00 3.25 3.48 3.70 3.90 4.00

The water depth, still supercritical, reaches y � 4 ft at

x � 230 ft downstream Ans.

We verify from Fig. 10.14a that water depth does increase downstream on an S-3 curve. The so-
lution curve y(x) is shown as the bold line in Fig. E10.8b.

0.0048 � (0.022)2(50)2/(2.208y10/3)
����

1 � (50)2/(32.2y3)
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For little extra effort we can investigate the entire family of S-3 solution curves for this prob-
lem. Figure E10.8b also shows what happens if the initial depth is varied from 0.5 to 3.5 ft in
increments of 0.5 ft. All S-3 solutions smoothly rise and asymptotically approach the uniform-
flow condition y � yn � 4.14 ft.

The solution curves in Fig. 10.14 are somewhat simplistic, since they postulate constant
bottom slopes. In practice, channel slopes can vary greatly, S0 � S0(x), and the solution
curves can cross between two regimes. Other parameter changes, such as A(x), b0(x), and
n(x), can cause interesting composite-flow profiles. Some examples are shown in Fig. 10.15.

Figure 10.15a shows a change from a mild slope to a steep slope in a constant-width
channel. The initial M-2 curve must change to an S-2 curve farther down the steep
slope. The only way this can happen physically is for the solution curve to pass smoothly
through the critical depth, as shown. The critical point is mathematically singular [3,
sec. 9.6], and the flow near this point is generally rapidly, not gradually, varied. The
flow pattern, accelerating from subcritical to supercritical, is similar to a converging-
diverging nozzle in gas dynamics. Other scenarios for Fig. 10.15a are impossible. For
example, the upstream curve cannot be M-1, for the break in slope would cause an 
S-1 curve which would move away from uniform steep flow.

Figure 10.15b shows a mild slope which becomes even milder. The water depth
moves smoothly along an M-1 curve to the new (higher) uniform flow. There is no sin-
gular point, so gradually varied theory is adequate.

Figure 10.15c illustrates a steep slope which becomes less steep. The depth will
change smoothly along an S-3 curve to approach the new (higher) uniform flow. There
is no singular point. Compare with Fig. 10.15b.

Figure 10.15d shows a steep slope which changes to mild. It is generally impossi-
ble to revert back smoothly from supercritical to subcritical flow without dissipation.
A hydraulic jump will form whose position depends upon downstream conditions. Two
cases are illustrated: (1) a jump to an S-1 curve to reach a high downstream normal
depth and (2) a change to an M-3 curve and then a jump to a lower downstream depth.

Figure 10.15e illustrates a free overfall with a mild slope. This acts as a control sec-
tion to the upstream flow, which then forms an M-2 curve and accelerates to critical
flow near the overfall. The falling stream will be supercritical. The overfall “controls”
the water depths upstream and can serve as an initial condition for computation of y(x).
This is the type of flow which occurs in a weir or waterfall, Sec. 10.7.

The examples in Fig. 10.15 show that changing conditions in open-channel flow can
result in complex flow patterns. Many more examples of composite-flow profiles are
given in Refs. 1, 3, and 18.

A weir, of which the ordinary dam is an example, is a channel obstruction over which
the flow must deflect. For simple geometries the channel discharge Q correlates with
gravity and with the blockage height H to which the upstream flow is backed up above
the weir elevation (see Fig. 10.16). Thus a weir is a simple but effective open-chan-
nel flowmeter. We used a weir as an example of dimensional analysis in Prob. 5.32.

Figure 10.16 shows two common weirs, sharp-crested and broad-crested, assumed
to be very wide. In both cases the flow upstream is subcritical, accelerates to critical
near the top of the weir, and spills over into a supercritical nappe. For both weirs the

Some Illustrative 
Composite-Flow Profiles

10.7 Flow Measurement 
and Control by Weirs



discharge q per unit width is proportional to g1/2H3/2 but with somewhat different co-
efficients. The short-crested (or thin-plate) weir nappe should be ventilated to the at-
mosphere; i.e., it should spring clear of the weir crest. Unventilated or drowned nappes
are more difficult to correlate and depend upon tailwater conditions. (The spillway of
Fig. 10.11 is a sort of unventilated weir.)
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Fig. 10.15 Some examples of com-
posite-flow profiles.
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Fig. 10.16 Flow over wide, well-
ventilated weirs: (a) sharp-crested;
(b) broad-crested.

A very complete discussion of weirs, including other designs such as the polygonal
“Crump” weir and various contracting flumes, is given in the text by Ackers et al. [19].
See Prob. 10.122.

It is possible to analyze weir flow by inviscid potential theory with an unknown (but
solvable) free surface, as in Fig. P8.71. Here, however, we simply use one-dimensional-
flow theory plus dimensional analysis to develop suitable weir flow-rate correlations.

A very early theoretical approach is credited to J. Weisbach in 1855. The velocity
head at any point 2 above the weir crest is assumed to equal the total head upstream;
i.e., Bernoulli’s equation is used with no losses:

�
V
2g

2
2� � H � h � �

V
2g

2
1� � H or V2(h) � �2�g�h� �� V�2

1�

where h is the vertical distance down to point 2, as shown in Fig. 10.16a. If we accept
for the moment, without proof, that the flow over the crest draws down to hmin � H/3,
the volume flow q � Q/b over the crest is approximately

q � 	
crest

V2 dh � 	H

H/3
(2gh � V2

1)1/2 dh

� �
2
3

� �2�g� ��H � �
V
2g

2
1��

3/2

� ��
H
3

� � �
V
2g

2
1��

3/2

� (10.52)
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Analysis of Broad-Crested Weirs

Experimental Weir 
Discharge Coefficients

Normally the upstream velocity head V2
1/(2g) is neglected, so this expression reduces to

Sharp-crested theory: q � 0.81(�23�)(2g)1/2H3/2 (10.53)

This formula is functionally correct, but the coefficient 0.81 is too high and should be
replaced by an experimentally determined discharge coefficient.

The broad-crested weir of Fig. 10.16b can be analyzed more accurately because it cre-
ates a short run of nearly one-dimensional critical flow, as shown. Bernoulli’s equation
from upstream to the weir crest yields

�
V
2g

2
1� � Y � H � �

V
2g

c
2

� � Y � yc

If the crest is very wide into the paper, Vc
2 � gyc from Eq. (10.33). Thus we can solve for

yc � �
2
3
H
� � �

V
3g

2
1� � �

2
3
H
�

This result was used without proof to derive Eq. (10.53). Finally, the flow rate follows
from wide-channel critical flow, Eq. (10.32):

Broad-crested theory: q � �g�yc
3� � ��

2
3

�� �2�g� �H � �
V
2g

2
1��

3/2

(10.54)

Again we may usually neglect the upstream velocity head V2
1/(2g). The coefficient

1/�3� � 0.577 is about right, but experimental data are preferred.

Theoretical weir-flow formulas may be modified experimentally as follows. Eliminate
the numerical coefficients �23� and �2�, for which there is much sentimental attachment
in the literature, and reduce the formula to

Qweir � Cdb�g��H � �
V
2g

2
1��

3/2

� Cdb�g�H3/2 (10.55)

where b is the crest width and Cd is a dimensionless, experimentally determined weir
discharge coefficient which may vary with the weir geometry, Reynolds number, and
Weber number. Many data for many different weirs have been reported in the litera-
ture, as detailed in Ref. 19.

An accurate ( �2 percent) composite correlation for wide ventilated sharp crests is
recommended as follows [19]:

Wide sharp-crested weir: Cd � 0.564 � 0.0846 �
H
Y

� for �
H
Y

� � 2 (10.56)

The Reynolds numbers V1H/� for these data varied from 1 E4 to 2 E6, but the formula
should apply to higher Re, such as large dams on rivers.

The broad-crested weir of Fig. 10.16b is considerably more sensitive to geometric
parameters, including the surface roughness 
 of the crest. If the leading-edge nose is
rounded, R/L � 0.05, available data [19, chap. 7] may be correlated as follows:

Round-nosed broad-crested weir: Cd � 0.544�1 � �
	

H
*
/
/
L
L

��
3/2

(10.57)

1
�
�3�
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Part (a)

where �
	

L
*
� � 0.001 � 0.2�
/�L�

The chief effect is due to turbulent boundary-layer displacement-thickness growth 	*
on the crest as compared to upstream head H. The formula is limited to H/L � 0.7,

/L � 0.002, and V1H/� � 3 E5. If the nose is round, there is no significant effect of
weir height Y, at least if H/Y � 2.4.

If the broad-crested weir has a sharp leading edge, thus commonly called a rectan-
gular weir, the discharge may depend upon the weir height Y. However, in a certain
range of weir height and length, Cd is nearly constant:

Sharp-nosed Cd � 0.462 for 0.08 � �
H
L

� � 0.33
broad-crested weir: (10.58)

0.22 � �
H
Y

� � 0.56

Surface roughness is not a significant factor here. For H/L � 0.08 there is large scatter (�10
percent) in the data. For H/L � 0.33 and H/Y � 0.56, Cd increases up to 10 percent due to
each parameter, and complex charts are needed for the discharge coefficient [19, chap. 6].

EXAMPLE 10.9

A weir in a horizontal channel is 1 m high and 4 m wide. The water depth upstream is 1.6 m.
Estimate the discharge if the weir is (a) sharp-crested and (b) round-nosed with an unfinished
cement broad crest 1.2 m long. Neglect V2

1/(2g).

Solution

We are given Y � 1 m and H � Y � 1.6 m, hence H � 0.6 m. Since H � b, we assume that the
weir is “wide.” For a sharp crest, Eq. (10.56) applies:

Cd � 0.564 � 0.0846 �
0
1
.6

m
m

� � 0.615

Then the discharge is given by the basic correlation, Eq. (10.55):

Q � Cdb�g�H3/2 � (0.615)(4 m)�(9�.8�1� m�/s�2)�(0.6 m)3/2 � 3.58 m3/s Ans. (a)

We check that H/Y � 0.6 � 2.0 for Eq. (10.56) to be valid. From continuity, V1 � Q/(by1) �
3.58/[(4.0)(1.6)] � 0.56 m/s, giving a Reynolds number V1H/� � 3.4 E5.

For a round-nosed broad-crested weir, Eq. (10.57) applies. For an unfinished cement surface,
read 
 � 2.4 mm from Table 10.1. Then the displacement thickness is

�
	

L
*
� � 0.001 � 0.2�
/�L� � 0.001 � 0.2��0.0

1
0
.2
24

m
m

��
1/2

� 0.00994

Then Eq. (10.57) predicts the discharge coefficient:

Cd � 0.544�1 � �
0.6

0.
m
00

/
9
1
9
.2
4

m
��

3/2

� 0.528
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Other Thin-Plate Weir Designs

The estimated flow rate is thus

Q � Cdb�g�H3/2 � 0.528(4 m)�(9�.8�1� m�2/�s)�(0.6 m)3/2 � 3.07 m3/s Ans. (b)

Check that H/L � 0.5 � 0.7 as required. The approach Reynolds number is V1H/� � 2.9 E5, just
barely below the recommended limit in Eq. (10.57).

Since V1 � 0.5 m/s, V2
1/(2g) � 0.012 m, so the error in taking total head equal to 0.6 m is

about 2 percent. We could correct this for upstream velocity head if desired.

Weirs are often used for flow measurement and control of artificial channels. The two
most common shapes are a rectangle and a V notch, as shown in Table 10.2. All should
be fully ventilated and not drowned.

Table 10.2a shows a full-width rectangle, which will have slight end-boundary-layer
effects but no end contractions. For a thin-plate design, the top is approximately sharp-
crested, and Eq. (10.56) should give adequate accuracy, as shown in the table. Since
the overfall spans the entire channel, artificial ventilation may be needed, such as holes
in the channel walls.
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Thin-plate weir Flow-rate correlation

Q � �0.564 � 0.0846 �
H
Y

��bg1/2H3/2

(a) Full-width rectangle.

Q � 0.581(b � 0.1H)g1/2H3/2 H � 0.5Y

(b) Rectangle with side contractions.

Q � 0.44 tan �
�

2
� g1/2H5/2 20° � � � 100°

(c) V notch.
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Backwater Curves

Table 10.2b shows a partial-width rectangle, b � L, which will cause the sides of
the overfall to contract inward and reduce the flow rate. An adequate contraction cor-
rection [19, 20] is to reduce the effective weir width by 0.1H, as shown in the table. It
seems, however, that this type of weir is rather sensitive to small effects, such as plate
thickness and sidewall boundary-layer growth. Small heads (H � 75 mm) and small
slot widths (b � 30 cm) are not recommended. See Refs. 19 and 20 for further details.

The V notch, in Table 10.2c, is intrinsically interesting in that its overfall has only one
length scale, H—there is no separate “width.” The discharge will thus be proportional to
H5/2, rather than a power of �32�. Application of Bernoulli’s equation to the triangular open-
ing, in the spirit of Eq. (10.52), leads to the following ideal flow rate for a V notch:

V notch: Qideal � �
8�
15

2�
� tan �

�

2
� g1/2H5/2 (10.59)

where � is the total included angle of the notch. The actual measured flow is about 40
percent less than this, due to contraction similar to a thin-plate orifice. In terms of an
experimental discharge coefficient, the recommended formula is

QV notch � Cd tan �
�

2
� g1/2H5/2 Cd � 0.44 for 20° � � � 100° (10.60)

for heads H � 50 mm. For smaller heads, both Reynolds-number and Weber-number
effects may be important, and a recommended correction [19] is

Low heads, H � 50 mm: Cd, V notch � 0.44 � �
(Re

0
W
.9

e)1/6� (10.61)

where Re � 
g1/2H3/2/� and We � 
gH2/�, with � being the coefficient of surface ten-
sion. Liquids other than water may be used with this formula, as long as Re �
300/tan (�/2)3/4 and We � 300.

A number of other thin-plate weir designs—trapezoidal, parabolic, circular arc, and
U-shaped—are discussed in Ref. 21, which also contains considerable data on broad-
crested weirs.

A weir is a flow barrier which not only alters the local flow over the weir but also mod-
ifies the flow-depth distribution far upstream. Any strong barrier in an open-
channel flow creates a backwater curve, which can be computed by the gradually varied
flow theory of Sec. 10.6. If Q is known, the weir formula, Eq. (10.55), determines H and
hence the water depth just upstream of the weir, y � H � Y, where Y is the weir height.
We then compute y(x) upstream of the weir from Eq. (10.51), following in this case an
M-1 curve (Fig. 10.14c). Such a barrier, where the water depth correlates with the flow
rate, is called a channel control point. These are the starting points for numerical analysis
of floodwater profiles in rivers as studied, e.g., by the U.S. Army Corps of Engineers [22].

EXAMPLE 10.10

A rectangular channel 8 m wide, with a flow rate of 30 m3/s, encounters a 4-m-high sharp-edged
dam, as shown in Fig. E10.10a. Determine the water depth 2 km upstream if the channel slope
is S0 � 0.0004 and n � 0.025.
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E10.10a

Solution

First determine the head H produced by the dam, using sharp-crested full-width weir theory, Eq.
(10.56):

Q � 30 m3/s � Cdbg1/2H3/2 � �0.564 � 0.0846 �
4
H
m
��(8 m)(9.81 m/s2)1/2H3/2

Since the term 0.0846H/4 in parentheses is small, we may proceed by iteration or EES to the
solution H � 1.59 m. Then our initial condition at x � 0, just upstream of the dam, is y(0) �
Y � H � 4 � 1.59 � 5.59 m. Compare this to the critical depth from Eq. (10.30):

yc � ��
b
Q
2

2

g
��

1/3

� ��(8 m
(3
)2
0
(9

m
.8

3

1
/s)

m

2

/s2)
��

1/3

� 1.13 m

Since y(0) is greater than yc, the flow upstream is subcritical. Finally, for reference purposes, es-
timate the normal depth from the Chézy equation (10.19):

Q � 30 m3/s � �
�

n
� byRh

2/3S0
1/2 � �

0
1
.0
.0
25
� (8 m)yn��8 �

8y
2
n

yn
��

2/3

(0.0004)1/2

By trial and error or EES solve for yn � 3.20 m. If there are no changes in channel width or
slope, the water depth far upstream of the dam will approach this value. All these reference val-
ues y(0), yc, and yn are shown in Fig. E10.10b.

Since y(0) � yn � yc, the solution will be an M-1 curve as computed from gradually varied
theory, Eq. (10.51), for a rectangular channel with the given input data:

�
d
d
y
x
� � � � 1.0 A � 8y n � 0.025 Rh � �

8 �

8y
2y

� b0 � 8

Beginning with y � 5.59 m at x � 0, we integrate backward to x � �2000 m. For the Runge-
Kutta method, four-figure accuracy is achieved for �x � �100 m. The complete solution curve
is shown in Fig. E10.10b. The desired solution value is

At x � �2000 m: y � 5.00 m Ans.

S0 � n2Q2/(�2A2Rh
4/3)

���
1 � Q2b0/(gA3)
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Summary

Thus, even 2 km upstream, the dam has produced a “backwater” which is 1.8 m above the nor-
mal depth which would occur without a dam. For this example, a near-normal depth of, say,
10 cm greater than yn, or y � 3.3 m, would not be achieved until x � �13,400 m. Backwater
curves are quite far-reaching upstream, especially in flood stages.

This chapter is an introduction to open-channel flow analysis, limited to steady, one-
dimensional-flow conditions. The basic analysis combines the continuity equation with
the extended Bernoulli equation including friction losses.

Open-channel flows are classified either by depth variation or by Froude number,
the latter being analogous to the Mach number in compressible duct flow (Chap. 9).
Flow at constant slope and depth is called uniform flow and satisfies the classical Chézy
equation (10.19). Straight prismatic channels can be optimized to find the cross sec-
tion which gives maximum flow rate with minimum friction losses. As the slope and
flow velocity increase, the channel reaches a critical condition of Froude number unity,
where velocity equals the speed of a small-amplitude surface wave in the channel.
Every channel has a critical slope which varies with the flow rate and roughness. If the
flow becomes supercritical (Fr � 1), it may undergo a hydraulic jump to a greater depth
and lower (subcritical) velocity, analogous to a normal-shock wave.

The analysis of gradually varied flow leads to a differential equation (10.51) which
can be solved by numerical methods. The chapter ends with a discussion of the flow
over a dam or weir, where the total flow rate can be correlated with upstream water
depth.
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Problems

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equations Solver (EES), while problems labeled with a
computer icon may require the use of a computer. The standard

end-of-chapter problems 10.1 to 10.128 (categorized in the prob-
lem list below) are followed by word problems W10.1 to W10.13,
fundamentals of engineering exam problems FE10.1 to FE10.7,
comprehensive problems C10.1 to C10.3, and design projects
D10.1 and D10.2.



Problem distribution

Section Topic Problems

10.1 Introduction: Froude number, wave speed 10.1–10.10
10.2 Uniform flow: The Chézy formula 10.11–10.36
10.3 Efficient uniform-flow channels 10.37–10.46
10.4 Specific energy: Critical depth 10.47–10.58
10.4 Flow over a bump 10.59–10.68
10.4 Sluice-gate flow 10.69–10.78
10.5 The hydraulic jump 10.79–10.96
10.6 Gradually varied flow 10.97–10.112
10.7 Weirs and flumes 10.113–10.123
10.7 Backwater curves 10.124–10.128

P10.1 The formula for shallow-water wave propagation speed,
Eq. (10.9) or (10.10), is independent of the physical
properties of the liquid, i.e., density, viscosity, or sur-
face tension. Does this mean that waves propagate at
the same speed in water, mercury, gasoline, and glyc-
erin? Explain.

P10.2 A shallow-water wave 1 cm high propagates into still wa-
ter of depth 1.1 m. Compute (a) the wave speed c and
(b) the induced velocity 	V.

P10.3 Narragansett Bay is approximately 21 (statute) mi long
and has an average depth of 42 ft. Tidal charts for the
area indicate a time delay of 30 min between high tide
at the mouth of the bay (Newport, Rhode Island) and its
head (Providence, Rhode Island). Is this delay correlated
with the propagation of a shallow-water tidal-crest wave
through the bay? Explain.

P10.4 The water-channel flow in Fig. P10.4 has a free surface
in three places. Does it qualify as an open-channel flow?
Explain. What does the dashed line represent?
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P10.4

P10.5 Water flows rapidly in a channel 15 cm deep. Piercing
the surface with a pencil point creates a wedgelike down-
stream wave of included angle 35°. Estimate the veloc-
ity V of the water.

P10.6 Pebbles dropped successively at the same point, into a
water channel flow of depth 42 cm, create two circular
ripples, as in Fig. P10.6. From this information estimate
(a) the Froude number and (b) the stream velocity.

P10.7 Pebbles dropped successively at the same point, into a
water channel flow of depth 65 cm, create two circular

V
4 m

9 m

6 m

P10.6

V

9 m

4 m

3 m

P10.7

ripples, as in Fig. P10.7. From this information estimate
(a) the Froude number and (b) the stream velocity.

P10.8 An earthquake near the Kenai Peninsula, Alaska, creates
a single “tidal” wave (called a tsunami) which propagates
south across the Pacific Ocean. If the average ocean depth
is 4 km and seawater density is 1025 kg/m3, estimate the
time of arrival of this tsunami in Hilo, Hawaii.

P10.9 Equation (10.10) is for a single disturbance wave. For pe-
riodic small-amplitude surface waves of wavelength �
and period T, inviscid theory [5 to 9] predicts a wave
propagation speed

c2
0 � �

2
g
�

�
� tanh �

2�

�

y
�

where y is the water depth and surface tension is ne-
glected. (a) Determine if this expression is affected by
the Reynolds number, Froude number, or Weber number.
Derive the limiting values of this expression for (b) y �
� and (c) y � �. (d) Also for what ratio y/� is the wave
speed within 1 percent of limit (c)?

P10.10 If surface tension � is included in the analysis of Prob.
10.9, the resulting wave speed is [5 to 9]

c2
0 � ��

2
g
�

�
� � �

2



�

�

�
�� tanh �

2�

�

y
�

(a) Determine if this expression is affected by the
Reynolds number, Froude number, or Weber number. De-
rive the limiting values of this expression for (b) y � �
and (c) y � �. (d ) Finally determine the wavelength �crit

for a minimum value of c0, assuming that y � �.
P10.11 A rectangular channel is 2 m wide and contains water 

3 m deep. If the slope is 0.85° and the lining is corru-
gated metal, estimate the discharge for uniform flow.



P10.20 A circular corrugated-metal storm drain is flowing half
full over a slope 4 ft/mi. Estimate the normal discharge
if the drain diameter is 8 ft.

*P10.21 A sewer pipe has the shape of Fig. P10.21 and is con-
structed of unfinished concrete. The slope is 3 ft/mi. Plot
the normal flow rate as a function of depth over the full
range 0 � y � 7 ft, and determine the maximum dis-
charge and maximum velocity.

P10.12 (a) For laminar draining of a wide thin sheet of water on
pavement sloped at angle �, as in Fig. P4.36, show that
the flow rate is given by

Q � �

gbh

3

3

�

sin �
�

where b is the sheet width and h its depth. (b) By (some-
what laborious) comparison with Eq. (10.13), show that
this expression is compatible with a friction factor f �
24/Re, where Re � Vavh/�.

P10.13 The laminar-draining flow from Prob. 10.12 may undergo
transition to turbulence if Re � 500. If the pavement
slope is 0.0045, what is the maximum sheet thickness, in
mm, for which laminar flow is ensured?

P10.14 The Chézy formula (10.18) is independent of fluid den-
sity and viscosity. Does this mean that water, mercury,
alcohol, and SAE 30 oil will all flow down a given open
channel at the same rate? Explain.

P10.15 The finished-concrete channel of Fig. P10.15 is designed
for a flow rate of 6 m3/s at a normal depth of 1 m. De-
termine (a) the design slope of the channel and (b) the
percentage of reduction in flow if the surface is asphalt.
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1 m

3 m

Proposed
barrier

P10.16 In Prob. 10.15, for finished concrete, determine the per-
centage of reduction in flow if the channel is divided in
the center by the proposed barrier in Fig. P10.15. How
does your estimate change if all surfaces are clay tile?

P10.17 The trapezoidal channel of Fig. P10.17 is made of brick-
work and slopes at 1:500. Determine the flow rate if the
normal depth is 80 cm.

30°
2 m

30°

P10.18 Modify Prob. 10.17 as follows. Determine the normal
depth for which the flow rate will be 8 m3/s.

P10.19 Modify Prob. 10.17 as follows. Let the surface be clean
earth, which erodes if V exceeds 1.5 m/s. What is the
maximum depth to avoid erosion?

P10.15

P10.17

y

2 ft

3 ft

2 ft

P10.21

P10.22 A trapezoidal aqueduct (Fig. 10.7) has b � 5 m and � �
40° and carries a normal flow of 60 m3/s of water when
y � 3.2 m. For clay tile surfaces, estimate the required
elevation drop in m/km.

P10.23 For the aqueduct of Prob. 10.22, if the slope is 0.0004
and the discharge is 40 m3/s, use the Moody-chart for-
mulation (10.15a) to estimate the normal depth.

P10.24 A riveted-steel channel slopes at 1:500 and has a V shape
with an included angle of 80°. Find the normal depth if
the flow rate is 900 m3/h.

*P10.25 The equilateral-triangle channel in Fig. P10.25 has con-
stant slope S0 and constant Manning factor n. Find Qmax

and Vmax. Then, by analogy with Fig. 10.6b, plot the ra-
tios Q/Qmax and V/Vmax as a function of y/a for the com-
plete range 0 � y/a � 0.866.

a

a

y

a

P10.25

P10.26 Water flows in a 6-m-wide rectangular channel lined with
rocks whose dominant size is 20 cm. The channel slope
is 0.003. Assuming uniform flow and the rock-friction
correlation of Eq. (10.15b), estimate (a) the flow rate if
the depth is 2 m and (b) the depth if the flow rate is 



P10.33 Five of the sewer pipes from Prob. 10.32 empty into a
single asphalt pipe, also laid out at 0.25°. If the large pipe
is also to run half full, what should be its diameter?

P10.34 A brick rectangular channel with S0 � 0.002 is designed
to carry 230 ft3/s of water in uniform flow. There is an
argument over whether the channel width should be 4 or
8 ft. Which design needs fewer bricks? By what per-
centage?

P10.35 In flood stage a natural channel often consists of a deep
main channel plus two floodplains, as in Fig. P10.35. The
floodplains are often shallow and rough. If the channel
has the same slope everywhere, how would you analyze
this situation for the discharge? Suppose that y1 � 20 ft,
y2 � 5 ft, b1 � 40 ft, b2 � 100 ft, n1 � 0.020, n2 � 0.040,
with a slope of 0.0002. Estimate the discharge in ft3/s.

15 m3/s. (c) In part (a) what is the equivalent value of
Manning’s roughness factor n for the same flow rate?
Does your result agree with Table 10.1?

P10.27 A circular unfinished-cement water channel has a slope
of 1:600 and a diameter of 5 ft. Estimate the normal dis-
charge in gal/min for which the average wall shear stress
is 0.15 lbf/ft2, and compare your result to the maximum
possible discharge for this channel.

P10.28 Show that, for any straight prismatic channel in uniform
flow, the average wall shear stress is given by

�av � 
gRhS0

If you happen to spot this result early, you can use it in
solving Prob. 10.27.

P10.29 Suppose that the trapezoidal channel of Fig. P10.17 con-
tains sand and silt which we wish not to erode. Accord-
ing to an empirical correlation by A. Shields in 1936, the
average wall shear stress �crit required to erode sand par-
ticles of diameter dp is approximated by

� 0.5

where 
s � 2400 kg/m3 is the density of sand. If the slope
of the channel in Fig. P10.17 is 1�900 and n � 0.014, de-
termine the maximum water depth to keep from eroding
particles of 1-mm diameter.

P10.30 A clay tile V-shaped channel, with an included angle of
90°, is 1 km long and is laid out on a 1�400 slope. When
running at a depth of 2 m, the upstream end is suddenly
closed while the lower end continues to drain. Assuming
quasi-steady normal discharge, find the time for the chan-
nel depth to drop to 20 cm.

P10.31 A storm drain has the cross section shown in Fig. P10.31
and is laid on a slope of 1.5 m/km. If it is constructed of
brickwork, find the normal discharge when it is exactly
half full of water.

�crit��
(
s � 
)g dp
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90˚

45˚

R=1m

P10.31

P10.32 A 2-m-diameter clay tile sewer pipe runs half full on 
a slope of 0.25°. Compute the normal flow rate in
gal/min.

y2

n 2

b 2
y

1

n 1

b 1

y
1

b 2

y2

n  2

P10.35

P10.36 The Blackstone River in northern Rhode Island normally
flows at about 25 m3/s and resembles Fig. P10.35 with a
clean-earth center channel, b1 � 20 m and y1 � 3 m. The
bed slope is about 2 ft/mi. The sides are heavy brush with
b2 � 150 m. During hurricane Carol in 1955, a record flow
rate of 1000 m3/s was estimated. Use this information to
estimate the maximum flood depth y2 during this event.

P10.37 The answer to Prob. 10.34 is that the 8-ft width is 29 per-
cent more efficient than the 4-ft width and is almost op-
timum. Verify this result, using the “best-efficiency” con-
cepts of Sec. 10.3.

P10.38 A rectangular channel has b � 3 m and y � 1 m. If n and
S0 are the same, what is the diameter of a semicircular
channel that will have the same discharge? Compare the
two wetted perimeters.

P10.39 A trapezoidal channel has n � 0.022 and S0 � 0.0003
and is made in the shape of a half-hexagon for maximum
efficiency. What should the length of the side of the hexa-
gon be if the channel is to carry 225 ft3/s of water? What
is the discharge of a semicircular channel of the same
cross-sectional area and the same S0 and n?

P10.40 Using the geometry of Fig. 10.6a, prove that the most ef-
ficient circular open channel (maximum hydraulic radius
for a given flow area) is a semicircle.

P10.41 Determine the most efficient value of � for the V-shaped
channel of Fig. P10.41.

EES



Fig. P10.50. If the channel surface is painted steel and
the depth is 35 cm, determine (a) the Froude number, (b)
the critical depth, and (c) the critical slope for uniform
flow.

P10.42 Suppose that the side angles of the trapezoidal channel
in Prob. 10.39 are reduced to 15° to avoid earth slides. If
the bottom flat width is 8 ft, (a) determine the normal
depth and (b) compare the resulting wetted perimeter with
the solution P � 24.1 ft from Prob. 10.39. (Do not reveal
this answer to friends still struggling with Prob. 10.39.)

P10.43 What are the most efficient dimensions for a riveted-steel
rectangular channel to carry 4.8 m3/s at a slope of 1�900?

P10.44 What are the most efficient dimensions for a half-hexa-
gon cast-iron channel to carry 15,000 gal/min on a slope
of 0.16°?

P10.45 What is the most efficient depth for an asphalt trapezoidal
channel, with sides sloping at 45°, to carry 3 m3/s on a
slope of 0.0008?

P10.46 It is suggested that a channel which affords minimum
erosion has a half-sine-wave shape, as in Fig. P10.46. The
local depth takes the form h(z) � h0 sin (�z /b). For uni-
form-flow conditions, determine the most efficient ratio
h0 /b for this channel shape.
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P10.46

P10.47 Replot Fig. 10.8b in the form of q versus y for constant
E. Does the maximum q occur at the critical depth?

P10.48 A wide, clean-earth river has a flow rate q � 150 ft3/(s � ft).
What is the critical depth? If the actual depth is 12 ft, what
is the Froude number of the river? Compute the critical
slope by (a) Manning’s formula and (b) the Moody chart.

P10.49 Find the critical depth of the brick channel in Prob. 10.34
for both the 4- and 8-ft widths. Are the normal flows sub-
or supercritical?

P10.50 A pencil point piercing the surface of a rectangular chan-
nel flow creates a wedgelike 25° half-angle wave, as in

25°

P10.50

P10.51 Modify Prob. 10.50 as follows. Let the water be flowing
in an unfinished-cement half-full circular channel of di-
ameter 60 cm. Determine (a) the Froude number, (b) the
flow velocity, and (c) the critical slope.

P10.52 Water flows full in an asphalt half-hexagon channel of
bottom width W. The flow rate is 12 m3/s. Estimate W if
the Froude number is exactly 0.60.

P10.53 For the river flow of Prob. 10.48, find the depth y2 which
has the same specific energy as the given depth y1 �
12 ft. These are called conjugate depths. What is Fr2?

P10.54 A clay tile V-shaped channel has an included angle of
70° and carries 8.5 m3/s. Compute (a) the critical depth,
(b) the critical velocity, and (c) the critical slope for uni-
form flow.

P10.55 A trapezoidal channel resembles Fig. 10.7 with b � 1 m
and � � 50°. The water depth is 2 m, and the flow rate
is 32 m3/s. If you stick your fingernail in the surface, as
in Fig. P10.50, what half-angle wave might appear?

P10.56 A riveted-steel triangular duct flows partly full as in Fig.
P10.56. If the critical depth is 50 cm, compute (a) the
critical flow rate and (b) the critical slope.

1 m

1 m 1 m

P10.56

P10.57 For the triangular duct of Prob. 10.56, if the critical flow
rate is 1.0 m3/s, compute (a) the critical depth and (b) the
critical slope.

P10.58 A circular corrugated-metal channel is half full and in
uniform flow at a slope S0 � 0.0037. Estimate the Froude
number of the flow.

P10.59 Uniform water flow in a wide brick channel of slope 0.02°
moves over a 10-cm bump as in Fig. P10.59. A slight de-
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P10.65 Program and solve the differential equation of “friction-
less flow over a bump,” from Prob. 10.62, for entrance
conditions V0 � 1 m/s and y0 � 1 m. Let the bump have
the convenient shape h � 0.5hmax[1 � cos (2�x/L)],
which simulates Fig. P10.62. Let L � 3 m, and generate
a numerical solution for y(x) in the bump region 0 � x �
L. If you have time for only one case, use hmax � 15 cm
(Prob. 10.63), for which the maximum Froude number is
0.425. If more time is available, it is instructive to ex-
amine a complete family of surface profiles for hmax �
1 cm up to 35 cm (which is the solution of Prob. 10.64).

P10.66 In Fig. P10.62 let V0 � 6 m/s and y0 � 1 m. If the max-
imum bump height is 35 cm, estimate (a) the Froude num-
ber over the top of the bump and (b) the maximum in-
crease in the water-surface level.

P10.67 In Fig. P10.62 let V0 � 6 m/s and y0 � 1 m. If the flow
over the top of the bump is exactly critical (Fr � 1.0),
determine the bump height hmax.

P10.68 Modify Prob. 10.65 to have a supercritical approach con-
dition V0 � 6 m/s and y0 � 1 m. If you have time for
only one case, use hmax � 35 cm (Prob. 10.66), for which
the maximum Froude number is 1.47. If more time is
available, it is instructive to examine a complete family
of surface profiles for 1 cm � hmax � 52 cm (which is
the solution to Prob. 10.67).

*P10.69 Given is the flow of a channel of large width b under a
sluice gate, as in Fig. P10.69. Assuming frictionless
steady flow with negligible upstream kinetic energy, de-
rive a formula for the dimensionless flow ratio
Q2/(y3

1b2g) as a function of the ratio y2/y1. Show by dif-
ferentiation that the maximum flow rate occurs at y2 �
2y1/3.

pression in the water surface results. If the minimum wa-
ter depth over the bump is 50 cm, compute (a) the ve-
locity over the bump and (b) the flow rate per meter of
width.
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0.02°

P10.59

P10.60 Modify Prob. 10.59 as follows. Again assuming uniform
subcritical approach flow (V1, y1), find (a) the flow rate
and (b) y2 for which the Froude number Fr2 at the crest
of the bump is exactly 0.8.

P10.61 Modify Prob. 10.59 as follows. Again assuming uniform
subcritical approach flow (V1, y1), find (a) the flow rate
and (b) y2 for which the flow at the crest of the bump is
exactly critical (Fr2 � 1.0).

P10.62 Consider the flow in a wide channel over a bump, as in
Fig. P10.62. One can estimate the water-depth change or
transition with frictionless flow. Use continuity and the
Bernoulli equation to show that

�
d
d
y
x
� ���

1 �

dh
V
/
2
d
/
x
(gy)

�

Is the drawdown of the water surface realistic in Fig.
P10.62? Explain under what conditions the surface might
rise above its upstream position y0.

V0
y

0 V ( x)y ( x)

h ( x)

Bump

P10.62

P10.63 In Fig. P10.62 let V0 � 1 m/s and y0 � 1 m. If the max-
imum bump height is 15 cm, estimate (a) the Froude num-
ber over the top of the bump and (b) the maximum de-
pression in the water surface.

P10.64 In Fig. P10.62 let V0 � 1 m/s and y0 � 1 m. If the flow
over the top of the bump is exactly critical (Fr � 1.0),
determine the bump height hmax.

V2

y2

Gate

y1

V1

P10.69

P10.70 In Fig. P10.69 let y1 � 90 cm and V1 � 65 cm/s. Esti-
mate (a) y2, (b) Fr2, and (c) the flow rate per unit width.

P10.71 In Fig. P10.69 let y1 � 95 cm and y2 � 50 cm. Estimate
the flow rate per unit width if the upstream kinetic en-
ergy is (a) neglected and (b) included.

*P10.72 Water approaches the wide sluice gate of Fig. P10.72 at
V1 � 0.2 m/s and y1 � 1 m. Accounting for upstream ki-
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Figure P10.77 shows data from Ref. 3 on drowned ver-
tical sluice gates. Use this chart to repeat Prob. 10.73,
and plot the estimated flow rate versus y2 in the range
0 � y2 � 110 cm.

(1)

(2)

(3)
5�

P10.72

netic energy, estimate at the outlet, section 2, the (a)
depth, (b) velocity, and (c) Froude number.

P10.73 In Fig. P10.69 suppose that y1 � 1.2 m and the gate is
raised so that its gap is 15 cm. Estimate the resulting flow
rate per unit width.

P10.74 With respect to Fig. P10.69, show that, for frictionless
flow, the upstream velocity may be related to the water
levels by

V1 � 
�
where K � y1/y2.

P10.75 A tank of water 1 m deep, 3 m long, and 4 m wide into
the paper has a closed sluice gate on the right side, as in
Fig. P10.75. At t � 0 the gate is opened to a gap of 10
cm. Assuming quasi-steady sluice-gate theory, estimate
the time required for the water level to drop to 50 cm.
Assume free outflow.

2g(y1 � y2)
��

K2 � 1

Gate
closed

Gate raised to
a gap of 10 cm

1 m

3 m

P10.75

P10.76 In Prob. 10.75 estimate what gap height would cause the
tank level to drop from 1 m to 50 cm in exactly 1 min.
Assume free outflow.

*P10.77 Equation (10.41) for the discharge coefficient is for free
(nearly frictionless) outflow. If the outlet is drowned, as
in Fig. 10.10c, there is dissipation and Cd drops sharply.

0.6

0.5

0.4

0.3

0.2

0.1

Cd

y1
H

y2
H

=

0 2 4 6 8 10 12 14 16

Drowned tailwater
Fig. 10.10c

Free outflow

2 3 4 5 6 7 8

P10.77 (From Ref. 3, p. 509.)

P10.78 Repeat Prob. 10.75 if the gate is drowned at y2 � 40 cm.
P10.79 Show that the Froude number downstream of a hydraulic

jump will be given by 
Fr2 � 81/2 Fr1/[(1 � 8 Fr2

1)1/2 � 1]3/2

Does the formula remain correct if we reverse subscripts
1 and 2? Why?

P10.80 Water, flowing horizontally in a wide channel of depth
30 cm, undergoes a hydraulic jump whose energy dissi-
pation is 71 percent. Estimate (a) the downstream depth
and (b) the volume flow rate per meter of width.

P10.81 Water flows in a wide channel at q � 25 ft3/(s � ft), y1 �
1 ft, and then undergoes a hydraulic jump. Compute y2,
V2, Fr2, hf, the percentage dissipation, and the horsepower
dissipated per unit width. What is the critical depth?

P10.82 The flow downstream of a wide hydraulic jump is 7 m deep
and has a velocity of 2.2 m/s. Estimate the upstream (a)
depth and (b) velocity and (c) the critical depth of the flow.

P10.83 A wide-channel flow undergoes a hydraulic jump from
40 to 140 cm. Estimate (a) V1, (b) V2, (c) the critical
depth, in cm, and (d ) the percentage of dissipation.

*P10.84 Consider the flow under the sluice gate of Fig. P10.84.
If y1 � 10 ft and all losses are neglected except the
dissipation in the jump, calculate y2 and y3 and the per-
centage of dissipation, and sketch the flow to scale
with the EGL included. The channel is horizontal and
wide.

P10.85 In Prob. 10.72 the exit velocity from the sluice gate is
4.33 m/s. If there is a hydraulic jump just downstream of
section 2, determine the downstream (a) velocity, (b)
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trol-volume sketch of a sloping jump to show why this
is so. The sloped-jump chart given in Chow’s figure 
15-20 may be approximated by the following curve fit:

�
2
y
y

1

2� � [(1 � 8 Fr2
1)1/2 � 1]e3.5S0

where 0 � S0 � 0.3 are the channel slopes for which data
are available. Use this correlation to modify your solu-
tion to Prob. 10.89. If time permits, make a graph of y2/y1

(� 20) versus Fr1 (� 15) for various S0 (� 0.3).
P10.92 At the bottom of an 80-ft-wide spillway is a horizontal

hydraulic jump with water depths 1 ft upstream and 10
ft downstream. Estimate (a) the flow rate and (b) the
horsepower dissipated.

P10.93 Water in a horizontal channel accelerates smoothly over
a bump and then undergoes a hydraulic jump, as in Fig.
P10.93. If y1 � 1 m and y3 � 40 cm, estimate (a) V1, (b)
V3, (c) y4, and (d) the bump height h.

depth, (c) Froude number, and (d ) percent dissipation.
Neglect the effect of the nonhorizontal bottom (see Prob.
10.91).

P10.86 A bore is a hydraulic jump which propagates upstream
into a still or slower-moving fluid, as in Fig. 10.4a. Sup-
pose that the still water is 2 m deep and the water behind
the bore is 3 m deep. Estimate (a) the propagation speed
of the bore and (b) the induced water velocity.

P10.87 A tidal bore may occur when the ocean tide enters an es-
tuary against an oncoming river discharge, such as on the
Severn River in England. Suppose that the tidal bore is
10 ft deep and propagates at 13 mi/h upstream into a river
which is 7 ft deep. Estimate the river current in kn.

P10.88 At one point in a rectangular channel 7 ft wide, the depth
is 2 ft and the flow rate is 200 ft3/s. If a hydraulic jump
occurs nearby, determine (a) whether it is upstream or
downstream of this point and (b) the percentage of dis-
sipation in the jump.

P10.89 Water 30 cm deep is in uniform flow down a 1° unfin-
ished-concrete slope when a hydraulic jump occurs, as in
Fig. P10.89. If the channel is very wide, estimate the wa-
ter depth y2 downstream of the jump.
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V1 = 2 ft / s y2

Jumpy1

y3

P10.84

y1 = 30 cm

Jump

y2?

Unfinished
concrete, 1° slope

P10.89

P10.90 Modify Prob. 10.89 as follows. Suppose that y2 � 1 m
and y1 � 30 cm but the channel slope is not equal to 1°.
Determine the proper slope for this condition.

*P10.91 No doubt you used the horizontal-jump formula (10.43)
to solve Probs. 10.89 and 10.90, which is reasonable since
the slope is so small. However, Chow [3, p. 425] points
out that hydraulic jumps are higher on sloped channels,
due to “the weight of the fluid in the jump.” Make a con-

Jump

1

2

3

4

h

P10.93

P10.94 Modify Prob. 10.93 as follows. Let the bump height be
20 cm and the subcritical approach velocity be V1 �
1.5 m/s. Determine (a) y2, (b) the supercritical flow V3,
and (c) y4.

P10.95 A 10-cm-high bump in a wide horizontal water channel
creates a hydraulic jump just upstream and the flow pat-
tern in Fig. P10.95. Neglecting losses except in the jump,
for the case y3 � 30 cm, estimate (a) V4, (b) y4, (c) V1,
and (d ) y1.

Jump

1

2

3

4

Bump: h = 10 cm

P10.95

P10.96 Show that the Froude numbers on either side of a wide
hydraulic jump are related by the simple relation Fr2 �
Fr1(y1/y2)3/2.



no hydraulic jump, compute from gradually varied the-
ory the downstream distance where y � 2.0 ft.

P10.106 A rectangular channel with n � 0.018 and a constant
slope of 0.0025 increases its width linearly from b to 2b
over a distance L, as in Fig. P10.106. (a) Determine the
variation y(x) along the channel if b � 4 m, L � 250 m,
the initial depth is y(0) � 1.05 m, and the flow rate is 7
m3/s. (b) Then, if your computer program is running well,
determine the initial depth y(0) for which the exit flow
will be exactly critical.

P10.97 A brickwork rectangular channel 4 m wide is flowing at
8.0 m3/s on a slope of 0.1°. Is this a mild, critical, or
steep slope? What type of gradually varied solution curve
are we on if the local water depth is (a) 1 m, (b) 1.5 m,
and (c) 2 m?

P10.98 A gravelly earth wide channel is flowing at 10 m3/s per
meter of width on a slope of 0.75°. Is this a mild, criti-
cal, or steep slope? What type of gradually varied solu-
tion curve are we on if the local water depth is (a) 1 m,
(b) 2 m, and (c) 3 m?

P10.99 A clay tile V-shaped channel of included angle 60° is
flowing at 1.98 m3/s on a slope of 0.33°. Is this a mild,
critical, or steep slope? What type of gradually varied so-
lution curve are we on if the local water depth is (a) 1
m, (b) 2 m, and (c) 3 m?

P10.100 If bottom friction is included in the sluice-gate flow of
Prob. 10.84, the depths (y1, y2, y3) will vary with x. Sketch
the type and shape of gradually varied solution curve in
each region (1, 2, 3), and show the regions of rapidly var-
ied flow.

P10.101 Consider the gradual change from the profile beginning
at point a in Fig. P10.101 on a mild slope S01 to a mild
but steeper slope S02 downstream. Sketch and label the
curve y(x) expected.

Problems 703

a
?

yn2
yc

Mild

Mild but
steeper

yn1yc

P10.101

*P10.102 The wide-channel flow in Fig. P10.102 changes from a
steep slope to one even steeper. Beginning at points a and
b, sketch and label the water-surface profiles which are
expected for gradually varied flow.

P10.103 A circular painted-steel channel is running half full at 
1 m3/s  and is laid out on a slope of 5 m/km. Is this a mild
or steep slope, of type 1, 2, or 3? Take R � 50 cm.

P10.104 The rectangular-channel flow in Fig. P10.104 expands to
a cross section 50 percent wider. Beginning at points a
and b, sketch and label the water-surface profiles which
are expected for gradually varied flow.

P10.105 In Prob. 10.84 the frictionless solution is y2 � 0.82 ft,
which we denote as x � 0 just downstream of the gate.
If the channel is horizontal with n � 0.018 and there is

a

b

Steep

Steeper

yc

yn1

yn2

P10.102

a

b

Steep

50% increase in
channel width

yc1

yn1

yc2

yn2

P10.104

b

xx = 0

x = L

2 b

P10.106



P10.113 Figure P10.113 shows a channel contraction section of-
ten called a venturi flume [19, p. 167], because mea-
surements of y1 and y2 can be used to meter the flow rate.
Show that if losses are neglected and the flow is one-di-
mensional and subcritical, the flow rate is given by

Q � � �
1/2

Apply this to the special case b1 � 3 m, b2 � 2 m, and
y1 � 1.9 m. (a) Find the flow rate if y2 � 1.5 m. (b) Also
find the depth y2 for which the flow becomes critical in
the throat.

2g(y1 � y2)
���
1/(b2

2y2
2) � 1/(b2

1y2
1)

P10.107 A clean-earth wide-channel flow is flowing up an adverse
slope with S0 � �0.002. If the flow rate is q � 4.5
m3/(s � m), use gradually varied theory to compute the
distance for the depth to drop from 3.0 to 2.0 m.

P10.108 Illustrate Prob. 10.104 with a numerical example. Let the
channel be rectangular with a width b1 � 10 m for 0 �
x � 100 m, expanding to b2 � 15 m for 100 � x �
250 m. The flow rate is 27 m3/s, and n � 0.012. Com-
pute the water depth at x � 250 m for initial depth y(0)
equal to (a) 75 cm and (b) 5 cm. Compare your results
with the discussion in Prob. 10.104. Let S0 � 0.005.

P10.109 Figure P10.109 illustrates a free overfall or dropdown
flow pattern, where a channel flow accelerates down a
slope and falls freely over an abrupt edge. As shown, the
flow reaches critical just before the overfall. Between yc

and the edge the flow is rapidly varied and does not sat-
isfy gradually varied theory. Suppose that the flow rate
is q � 1.3 m3/(s � m) and the surface is unfinished ce-
ment. Use Eq. (10.51) to estimate the water depth 300 m
upstream as shown.
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300 m

S0 = 0.06°
y?

y
c

P10.109

P10.110 We assumed frictionless flow in solving the bump case,
Prob. 10.65, for which V2 � 1.21 m/s and y2 � 0.826 m
over the crest when hmax � 15 cm, V1 � 1 m/s, and y1 �
1 m. However, if the bump is long and rough, friction may
be important. Repeat Prob. 10.65 for the same bump shape,
h � 0.5hmax[1 � cos (2�x/L)], to compute conditions (a)
at the crest and (b) at the end of the bump, x � L. Let hmax �
15 cm and L � 100 m, and assume a clean-earth surface.

P10.111 Modify Prob. 10.110 as follows. Keep all other data the
same, and find the bump length L for which the flow first
becomes critical somewhere along the bump surface.

P10.112 The clean-earth channel in Fig. P10.112 is 6 m wide and
slopes at 0.3°. Water flows at 30 m3/s in the channel and
enters a reservoir so that the channel depth is 3 m just
before the entry. Assuming gradually varied flow, how
far is the distance L to a point in the channel where y �
2 m? What type of curve is the water surface?

Reservoir

30 m3/s

2 m

3 m

L

P10.112

b1 b2

y1 y2

Top view

Side view

P10.113

P10.114 Investigate the possibility of choking in the venturi flume
of Fig. P10.113. Let b1 � 4 ft, b2 � 3 ft, and y1 � 2 ft.
Compute the values of y2 and V1 for a flow rate of (a)
30 ft3/s and (b) 35 ft3/s. Explain your vexation.

P10.115 Gradually varied theory, Eq. (10.49), neglects the effect
of width changes, db/dx, assuming that they are small.
But they are not small for a short, sharp contraction such
as the venturi flume in Fig. P10.113. Show that, for a rec-
tangular section with b � b(x), Eq. (10.49) should be
modified as follows:

�
d
d
y
x
� � S0 � S � [V2/(gb)](db/dx)

���
1 � Fr2



P10.122 In 1952 E. S Crump developed the triangular weir shape
shown in Fig. P10.122 [19, chap. 4]. The front slope is
1�2 to avoid sediment deposition, and the rear slope is 1�5
to maintain a stable tailwater flow. The beauty of the de-
sign is that it has a unique discharge correlation up to
near-drowning conditions, H2/H1 � 0.75:

Q � Cdbg1/2�H1 � �
V
2g

2
1� � kh�

3/2

where Cd � 0.63 and kh � 0.3 mm

The term kh is a low-head loss factor. Suppose that the
weir is 3 m wide and has a crest height Y � 50 cm. If
the water depth upstream is 65 cm, estimate the flow rate
in gal/min.

Investigate a criterion for reducing this relation to Eq.
(10.49).

P10.116 Investigate the possibility of frictional effects in the venturi
flume of Prob. 10.113, part (a), for which the frictionless
solution is Q � 9.88 m3/s. Let the contraction be 3 m long
and the measurements of y1 and y2 be at positions 3 m up-
stream and 3 m downstream of the contraction, respectively.
Use the modified gradually varied theory of Prob. 10.115,
with n � 0.018 to estimate the flow rate.

P10.117 A full-width weir in a horizontal channel is 5 m wide and
80 cm high. The upstream depth is 1.5 m. Estimate the
flow rate for (a) a sharp-crested weir and (b) a round-
nosed broad-crested weir.

*P10.118 Using a Bernoulli-type analysis similar to Fig. 10.16a,
show that the theoretical discharge of the V-shaped weir
in Fig. P10.118 is given by

Q � 0.7542g1/2 tan � H5/2
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α Hα

*P10.118

P10.119 Data by A. T. Lenz for water at 20°C (reported in Ref.
19) show a significant increase of discharge coefficient
of V-notch weirs (Fig. P10.118) at low heads. For � �
20°, some measured values are as follows:

H, ft 0.2 0.4 0.6 0.8 1.0

Cd 0.499 0.470 0.461 0.456 0.452

Determine if these data can be correlated with the
Reynolds and Weber numbers vis-à-vis Eq. (10.61). If
not, suggest another correlation.

P10.120 The rectangular channel in Fig. P10.120 contains a V-
notch weir as shown. The intent is to meter flow rates
between 2.0 and 6.0 m3/s with an upstream hook gage
set to measure water depths between 2.0 and 2.75 m.
What are the most appropriate values for the notch height
Y and the notch half-angle �?

P10.121 Water flow in a rectangular channel is to be metered by
a thin-plate weir with side contractions, as in Table 10.1b,
with L � 6 ft and Y � 1 ft. It is desired to measure flow
rates between 1500 and 3000 gal/min with only a 6-in
change in upstream water depth. What is the most ap-
propriate length for the weir width b?

Flow

2 m
Y

P10.120

Flow 1:2 slope

Hydraulic
jump

1:5 slope

H2

Y

H1

P10.122 The Crump weir [19, chap. 4]

*P10.123 The Crump weir calibration in Prob. 10.122 is for mod-
ular flow, i.e., when the flow rate is independent of down-
stream tailwater. When the weir becomes drowned, the
flow rate decreases by the following factor:

Q � Qmod f

where f � 1.035�0.817 � ��
H
H

*
*1
2��

4

�
0.0647

for 0.70 � H*2/H*1 � 0.93, where H* denotes H1 �
V2

1/(2g) � kh for brevity. The weir is then double-gaged
to measure both H1 and H2. Suppose that the weir crest
is 1 m high and 2 m wide. If the measured upstream and
downstream water depths are 2.0 and 1.9 m, respectively,
estimate the flow rate in gal/min. Comment on the pos-
sible uncertainty of your estimate.



slope of 0.15°. If the V-notch weir has � � 30° and Y �
50 cm, estimate, from gradually varied theory, the water
depth 100 m upstream.

P10.127 A horizontal gravelly earth channel 2 m wide contains a
full-width Crump weir (Fig. P10.122) 1 m high. If the
weir is not drowned, estimate, from gradually varied the-
ory, the flow rate for which the water depth 100 m up-
stream will be 2 m.

P10.128 A rectangular channel 4 m wide is blocked by a broad-
crested weir 2 m high, as in Fig. P10.128. The channel
is horizontal for 200 m upstream and then slopes at 0.7°
as shown. The flow rate is 12 m3/s, and n � 0.03. Com-
pute the water depth y at 300 m upstream from gradually
varied theory.

P10.124 Water flows at 600 ft3/s in a rectangular channel 22 ft wide
with n � 0.024 and a slope of 0.1°. A dam increases the
depth to 15 ft, as in Fig. P10.124. Using gradually varied
theory, estimate the distance L upstream at which the water
depth will be 10 ft. What type of solution curve are we on?
What should be the water depth asymptotically far upstream?
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Backwater curve

10 ft 15 ft

L = ?

P10.124

P10.125 The Tupperware dam on the Blackstone River is 12 ft
high, 100 ft wide, and sharp-edged. It creates a backwater
similar to Fig. P10.124. Assume that the river is a weedy-
earth rectangular channel 100 ft wide with a flow rate of
800 ft3/s. Estimate the water-depth 2 mi upstream of the
dam if S0 � 0.001.

P10.126 Suppose that the rectangular channel of Fig. P10.120 is
made of riveted steel and carries a flow of 8 m3/s on a

y?

y ( x)

Slope
0.7°

12 m 
3/s

200 m

100 m

P10.128

Word Problems

W10.1 Free-surface problems are driven by gravity. Why do so
many of the formulas in this chapter contain the square
root of the acceleration of gravity?

W10.2 Explain why the flow under a sluice gate, Fig. 10.10, ei-
ther is or is not analogous to compressible gas flow
through a converging-diverging nozzle, Fig. 9.12.

W10.3 In uniform open-channel flow, what is the balance of
forces? Can you use such a force balance to derive the
Chézy equation (10.13)?

W10.4 A shallow-water wave propagates at the speed c0 �
(gy)1/2. What makes it propagate? That is, what is the bal-
ance of forces in such wave motion? In which direction
does such a wave propagate?

W10.5 Why is the Manning friction correlation, Eq. (10.16),
used almost universally by hydraulics engineers, instead
of the Moody friction factor?

W10.6 During horizontal channel flow over a bump, is the spe-
cific energy constant? Explain.

W10.7 Cite some similarities, and perhaps some dissimilarities,
between a hydraulic jump and a gas-dynamic normal-
shock wave.

W10.8 Give three examples of rapidly varied flow. For each case,
cite reasons why it does not satisfy one or more of the
five basic assumptions of gradually varied flow theory.

W10.9 Is a free overfall, Fig. 10.15e, similar to a weir? Could it
be calibrated versus flow rate in the same manner as a
weir? Explain.

W10.10 Cite some similarities, and perhaps some dissimilarities,
between a weir and a Bernoulli obstruction flowmeter
from Sec. 6.7.

W10.11 Is a bump, Fig. 10.9a, similar to a weir? If not, when
does a bump become large enough, or sharp enough, to
be a weir?

W10.12 After doing some reading and/or thinking, explain the de-
sign and operation of a long-throated flume.

W10.13 Describe the design and operation of a critical-depth
flume. What are its advantages compared to the venturi
flume of Prob. 10.113?

EES



FE10.4 For the channel of Prob. FE10.1, if the water depth is 
2 m and the uniform-flow rate is 24 m3/s, what is the ap-
proximate value of Manning’s roughness factor n?
(a) 0.015, (b) 0.020, (c) 0.025, (d) 0.030, (e) 0.035

FE10.5 For the channel of Prob. FE10.1, if Manning’s roughness
factor n � 0.020 and Q � 29 m3/s, what is the normal
depth yn?
(a) 1 m, (b) 1.5 m, (c) 2 m, (d) 2.5 m, (e) 3 m

FE10.6 For the channel of Prob. FE10.1, if Q � 24 m3/s, what is
the critical depth yc?
(a) 1.0 m, (b) 1.26 m, (c) 1.5 m, (d) 1.87 m, (e) 2.0 m

FE10.7 For the channel of Prob. FE10.1, if Q � 24 m3/s and the
depth is 2 m, what is the Froude number of the flow?
(a) 0.50, (b) 0.77, (c) 0.90, (d) 1.00, (e) 1.11

Fundamentals of Engineering Exam Problems

The FE Exam is fairly light on open-channel problems in the gen-
eral (morning) session, but it plays a big part in the specialized
civil engineering (afternoon) exam.
FE10.1 Consider a rectangular channel 3 m wide laid on a 1°

slope. If the water depth is 2 m, the hydraulic radius is
(a) 0.43 m, (b) 0.6 m, (c) 0.86 m, (d) 1.0 m, (e) 1.2 m

FE10.2 For the channel of Prob. FE10.1, the most efficient wa-
ter depth (best flow for a given slope and resistance) is
(a) 1 m, (b) 1.5 m, (c) 2 m, (d) 2.5 m, (e) 3 m

FE10.3 If the channel of Prob. FE10.1 is built of rubble cement
(Manning’s n � 0.020), what is the uniform-flow rate
when the water depth is 2 m?
(a) 6 m3/s, (b) 18 m3/s, (c) 36 m3/s, (d) 40 m3/s,
(e) 53 m3/s
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Comprehensive Problems

C10.1 February 1998 saw the failure of the earthen dam im-
pounding California Jim’s Pond in southern Rhode Island.
The resulting flood raised temporary havoc in the nearby
village of Peace Dale. The pond is 17 acres in area and 15
ft deep and was full from heavy rains. The breach in the
dam was 22 ft wide and 15 ft deep. Estimate the time re-
quired for the pond to drain to a depth of 2 ft.

C10.2 A circular, unfinished concrete drainpipe is laid on a slope
of 0.0025 and is planned to carry from 50 to 300 ft3/s of
runoff water. Design constraints are that (1) the water depth
should be no more than three-fourths of the diameter and

(2) the flow should always be subcritical. What is the ap-
propriate pipe diameter to satisfy these requirements? If no
commercial pipe is exactly this calculated size, should you
buy the next smallest or the next largest pipe? 

C10.3 Extend Prob. 10.72, whose solution was V2 � 4.33 m/s. Use
gradually varied theory to estimate the water depth 10 m
downstream at section (3) for (a) the 5° unfinished-concrete
slope shown in Fig. P10.72. (b) Repeat your calculation for
an upward (adverse) slope of 5°. (c) When you find that
part (b) is impossible with gradually varied theory, explain
why and repeat for an adverse slope of 1°.

Design Projects

D10.1 A straight weedy-earth channel has the trapezoidal shape of
Fig. 10.7, with b � 4 m and � � 35°. The channel has a con-
stant bottom slope of 0.001. The flow rate varies seasonally
from 5 up to 10 m3/s. It is desired to place a sharp-edged
weir across the channel so that the water depth 1 km up-
stream remains at 2.0 m � 10 percent throughout the year.
Investigate the possibility of accomplishing this with a full-
width weir; if successful, determine the proper weir height
Y. If unsuccessful, try other alternatives, such as (a) a full-
width broad crested weir or (b) a weir with side contractions
or (c) a V-notch weir. Whatever your final design, cite the
seasonal variation of normal depths and critical depths for
comparison with the desired year-round depth of 2 m.

D10.2 The Caroselli Dam on the Pawcatuck River is 10 ft high,
90 ft wide, and sharp edged. The Coakley Company uses

this head to generate hydropower electricity and wants
more head. They ask the town for permission to raise the
dam higher. The river above the dam may be approximated
as rectangular, 90 ft wide, sloping upstream at 12 ft per
statute mile, and with a stony, cobbled bed. The average
flow rate is 400 ft3/s, with a 30-year predicted flood rate
of 1200 ft3/s. The river sides are steep until 1 mi upstream,
where there are low-lying residences. The town council
agrees the dam may be heightened if the new river level
near these houses, during the 30-year flood, is no more
than 3 ft higher than the present level during average-flow
conditions. You, as project engineer, have to predict how
high the dam crest can be raised and still meet this re-
quirement.
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Wind-energy generator farm, Altamont Pass, Cali-
fornia. Windmills have been used for power for
more than two thousand years. These multi-bladed
horizontal-axis wind turbines (HAWT’s) are
among the most efficient of windpower designs, as
discussed in this chapter. (Courtesy of Kevin
Schafer/Peter Arnold, Inc.)



11.1 Introduction and
Classification

Motivation. The most common practical engineering application for fluid mechanics
is the design of fluid machinery. The most numerous types are machines which add
energy to the fluid (the pump family), but also important are those which extract en-
ergy (turbines). Both types are usually connected to a rotating shaft, hence the name
turbomachinery.

The purpose of this chapter is to make elementary engineering estimates of the per-
formance of fluid machines. The emphasis will be upon nearly incompressible flow,
i.e., liquids or low-velocity gases. Basic flow principles are discussed, but not the de-
tailed construction of the machine.

Turbomachines divide naturally into those which add energy (pumps) and those which
extract energy (turbines). The prefix turbo- is a Latin word meaning “spin’’ or “whirl,’’
appropriate for rotating devices.

The pump is the oldest fluid-energy-transfer device known. At least two designs
date before Christ: (1) the undershot-bucket waterwheels, or norias, used in Asia and
Africa (1000 B.C.) and (2) Archimedes’ screw pump (250 B.C.), still being manufac-
tured today to handle solid-liquid mixtures. Paddlewheel turbines were used by the Ro-
mans in 70 B.C., and Babylonian windmills date back to 700 B.C. [1].

Machines which deliver liquids are simply called pumps, but if gases are involved,
three different terms are in use, depending upon the pressure rise achieved. If the pres-
sure rise is very small (a few inches of water), a gas pump is called a fan; up to 1 atm,
it is usually called a blower; and above 1 atm it is commonly termed a compressor.

There are two basic types of pumps: positive-displacement and dynamic or momentum-
change pumps. There are several billion of each type in use in the world today.

Positive-displacement pumps (PDPs) force the fluid along by volume changes. A
cavity opens, and the fluid is admitted through an inlet. The cavity then closes, and the
fluid is squeezed through an outlet. The mammalian heart is a good example, and many
mechanical designs are in wide use. The text by Warring [14] gives an excellent sum-
mary of PDPs. A brief classification of PDP designs is as follows:
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A. Reciprocating
1. Piston or plunger
2. Diaphragm

B. Rotary
1. Single rotor

a. Sliding vane
b. Flexible tube or lining
c. Screw
d. Peristaltic (wave contraction)

2. Multiple rotors
a. Gear
b. Lobe
c. Screw
d. Circumferential piston

All PDPs deliver a pulsating or periodic flow as the cavity volume opens, traps, and
squeezes the fluid. Their great advantage is the delivery of any fluid regardless of its
viscosity.

Figure 11.1 shows schematics of the operating principles of seven of these PDPs.
It is rare for such devices to be run backward, so to speak, as turbines or energy ex-
tractors, the steam engine (reciprocating piston) being a classic exception.

Since PDPs compress mechanically against a cavity filled with liquid, a common
feature is that they develop immense pressures if the outlet is shut down for any rea-
son. Sturdy construction is required, and complete shutoff would cause damage if pres-
sure-relief valves were not used.

Dynamic pumps simply add momentum to the fluid by means of fast-moving blades
or vanes or certain special designs. There is no closed volume: The fluid increases mo-
mentum while moving through open passages and then converts its high velocity to a
pressure increase by exiting into a diffuser section. Dynamic pumps can be classified
as follows:

A. Rotary
1. Centrifugal or radial exit flow
2. Axial flow
3. Mixed flow (between radial and axial)

B. Special designs
1. Jet pump or ejector (see Fig. P3.36)
2. Electromagnetic pumps for liquid metals
3. Fluid-actuated: gas-lift or hydraulic-ram

We shall concentrate in this chapter on the rotary designs, sometimes called rotody-
namic pumps. Other designs of both PDP and dynamic pumps are discussed in spe-
cialized texts [for example, 11, 14, 31].

Dynamic pumps generally provide a higher flow rate than PDPs and a much stead-
ier discharge but are ineffective in handling high-viscosity liquids. Dynamic pumps
also generally need priming; i.e., if they are filled with gas, they cannot suck up a liq-
uid from below into their inlet. The PDP, on the other hand, is self-priming for most
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Fig. 11.1 Schematic design of posi-
tive-displacement pumps: (a) recip-
rocating piston or plunger, (b) ex-
ternal gear pump, (c) double-screw
pump, (d) sliding vane, (e) three-
lobe pump, ( f ) double circumfer-
ential piston, (g) flexible-tube
squeegee.

applications. A dynamic pump can provide very high flow rates (up to 300,000 gal/min)
but usually with moderate pressure rises (a few atmospheres). In contrast, a PDP can
operate up to very high pressures (300 atm) but typically produces low flow rates (100
gal/min).

The relative performance (�p versus Q) is quite different for the two types of pump,
as shown in Fig. 11.2. At constant shaft rotation speed, the PDP produces nearly con-
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Fig. 11.2 Comparison of perfor-
mance curves of typical dynamic
and positive-displacement pumps at
constant speed.

Fig. 11.3 Cutaway schematic of a
typical centrifugal pump.

stant flow rate and virtually unlimited pressure rise, with little effect of viscosity. The
flow rate of a PDP cannot be varied except by changing the displacement or the speed.
The reliable constant-speed discharge from PDPs has led to their wide use in meter-
ing flows [35].

The dynamic pump, by contrast in Fig. 11.2, provides a continuous constant-speed
variation of performance, from near-maximum �p at zero flow (shutoff conditions) to
zero �p at maximum flow rate. High-viscosity fluids sharply degrade the performance
of a dynamic pump.

As usual—and for the last time in this text—we remind the reader that this is merely
an introductory chapter. Many books are devoted solely to turbomachines: generalized
treatments [2 to 7], texts specializing in pumps [8 to 16], fans [17 to 20], compressors
[21 to 23], turbines [24 to 28], and PDPs [35 to 38]. There are several useful handbooks
[29 to 32], and at least two elementary textbooks [33, 34] have a comprehensive dis-
cussion of turbomachines. The reader is referred to these sources for further details.

Let us begin our brief look at rotodynamic machines by examining the characteristics
of the centrifugal pump. As sketched in Fig. 11.3, this pump consists of an impeller
rotating within a casing. Fluid enters axially through the eye of the casing, is caught
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Basic Output Parameters

up in the impeller blades, and is whirled tangentially and radially outward until it leaves
through all circumferential parts of the impeller into the diffuser part of the casing. The
fluid gains both velocity and pressure while passing through the impeller. The dough-
nut-shaped diffuser, or scroll, section of the casing decelerates the flow and further in-
creases the pressure.

The impeller blades are usually backward-curved, as in Fig. 11.3, but there are also
radial and forward-curved blade designs, which slightly change the output pressure.
The blades may be open, i.e., separated from the front casing only by a narrow clear-
ance, or closed, i.e., shrouded from the casing on both sides by an impeller wall. The
diffuser may be vaneless, as in Fig. 11.3, or fitted with fixed vanes to help guide the
flow toward the exit.

Assuming steady flow, the pump basically increases the Bernoulli head of the flow be-
tween point 1, the eye, and point 2, the exit. From Eq. (3.67), neglecting viscous work
and heat transfer, this change is denoted by H:

H � � � � z�
2

� � � � z�
1

� hs � hf (11.1)

where hs is the pump head supplied and hf the losses. The net head H is a primary out-
put parameter for any turbomachine. Since Eq. (11.1) is for incompressible flow, it
must be modified for gas compressors with large density changes.

Usually V2 and V1 are about the same, z2 � z1 is no more than a meter or so, and
the net pump head is essentially equal to the change in pressure head

H � � (11.2)

The power delivered to the fluid simply equals the specific weight times the discharge
times the net head change

Pw � �gQH (11.3)

This is traditionally called the water horsepower. The power required to drive the pump
is the brake horsepower1

bhp � �T (11.4)

where � is the shaft angular velocity and T the shaft torque. If there were no losses,
Pw and brake horsepower would be equal, but of course Pw is actually less, and the ef-
ficiency � of the pump is defined as

� � � (11.5)

The chief aim of the pump designer is to make � as high as possible over as broad a
range of discharge Q as possible.
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Elementary Pump Theory

The efficiency is basically composed of three parts: volumetric, hydraulic, and me-
chanical. The volumetric efficiency is

�� � (11.6)

where QL is the loss of fluid due to leakage in the impeller-casing clearances. The hy-
draulic efficiency is

�h � 1 � (11.7)

where hf has three parts: (1) shock loss at the eye due to imperfect match between in-
let flow and the blade entrances, (2) friction losses in the blade passages, and (3) cir-
culation loss due to imperfect match at the exit side of the blades.

Finally, the mechanical efficiency is

�m � 1 � (11.8) 

where Pf is the power loss due to mechanical friction in the bearings, packing glands,
and other contact points in the machine.

By definition, the total efficiency is simply the product of its three parts

� � ���h�m (11.9)

The designer has to work in all three areas to improve the pump.

You may have thought that Eqs. (11.1) to (11.9) were formulas from pump theory. Not so;
they are merely definitions of performance parameters and cannot be used in any predic-
tive mode. To actually predict the head, power, efficiency, and flow rate of a pump, two
theoretical approaches are possible: (1) simple one-dimensional-flow formulas and (2) com-
plex digital-computer models which account for viscosity and three-dimensionality. Many
of the best design improvements still come from testing and experience, and pump research
remains a very active field [39]. The last 10 years have seen considerable advances in com-
putational fluid-dynamics (CFD) modeling of flow in turbomachines [42], and at least eight
commercial turbulent-flow three-dimensional CFD codes are now available.

To construct an elementary theory of pump performance, we assume one-dimen-
sional flow and combine idealized fluid-velocity vectors through the impeller with the
angular-momentum theorem for a control volume, Eq. (3.55).

The idealized velocity diagrams are shown in Fig. 11.4. The fluid is assumed to en-
ter the impeller at r � r1 with velocity component w1 tangent to the blade angle �1

plus circumferential speed u1 � �r1 matching the tip speed of the impeller. Its absolute
entrance velocity is thus the vector sum of w1 and u1, shown as V1. Similarly, the flow
exits at r � r2 with component w2 parallel to the blade angle �2 plus tip speed u2 �
�r2, with resultant velocity V2.

We applied the angular-momentum theorem to a turbomachine in Example 3.14
(Fig. 3.13) and arrived at a result for the applied torque T

T � �Q(r2Vt2 � r1Vt1) (11.10) 

Pf
	
bhp

hf
	
hs

Q
	
Q � QL
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Fig. 11.4 Inlet and exit velocity 
diagrams for an idealized pump 
impeller.

where Vt1 and Vt2 are the absolute circumferential velocity components of the flow.
The power delivered to the fluid is thus

Pw � �T � �Q(u2Vt2 � u1Vt1)

(11.11)
or H � � (u2Vt2 � u1Vt1)

These are the Euler turbomachine equations, showing that the torque, power, and ideal
head are functions only of the rotor-tip velocities u1,2 and the absolute fluid tangential
velocities Vt1,2, independent of the axial velocities (if any) through the machine.

Additional insight is gained by rewriting these relations in another form. From the
geometry of Fig. 11.4

V2 � u2 � w2 � 2uw cos � w cos � � u � Vt

or uVt � 	12	(V2 � u2 � w2) (11.12) 

Substituting this into Eq. (11.11) gives

H � [(V2
2 � V2

1) � (u2
2 � u2

1) � (w2
2 � w2

1)] (11.13) 

Thus the ideal head relates to the absolute plus the relative kinetic-energy change of
the fluid minus the rotor-tip kinetic-energy change. Finally, substituting for H from its
definition in Eq. (11.1) and rearranging, we obtain the classic relation

� z � � � const (11.14) 

This is the Bernoulli equation in rotating coordinates and applies to either two- or
three-dimensional ideal incompressible flow.
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Part (a)

For a centrifugal pump, the power can be related to the radial velocity Vn �
Vt tan 
 and the continuity relation

Pw � �Q(u2Vn2 cot 
2 � u1Vn1 cot 
1) (11.15) 

where

Vn2 � and Vn1 �

and where b1 and b2 are the blade widths at inlet and exit. With the pump parameters
r1, r2, �1, �2, and � known, Eqs. (11.11) or Eq. (11.15) is used to compute idealized
power and head versus discharge. The “design’’ flow rate Q* is commonly estimated
by assuming that the flow enters exactly normal to the impeller


1 � 90° Vn1 � V1 (11.16) 

We can expect this simple analysis to yield estimates within �25 percent for the head,
water horsepower, and discharge of a pump. Let us illustrate with an example.

EXAMPLE 11.1

Given are the following data for a commercial centrifugal water pump: r1 � 4 in, r2 � 7 in, �1

� 30°, �2 � 20°, speed � 1440 r/min. Estimate (a) the design-point discharge, (b) the water
horsepower, and (c) the head if b1 � b2 � 1.75 in.

Solution

The angular velocity is � � 2� r/s � 2�(1440/60) � 150.8 rad/s. Thus the tip speeds are u1 �
�r1 � 150.8(4/12) � 50.3 ft/s and u2 � �r2 � 150.8(7/12) � 88.0 ft/s. From the inlet-velocity
diagram, Fig. E11.1a, with 
1 � 90° for design point, we compute

Vn1 � u1 tan 30° � 29.0 ft/s 

whence the discharge is

Q � 2�r1b1Vn1 � (2�)� �� �(29.0)

� (8.87 ft3/s)(60 s/min)� gal/ft3�
� 3980 gal/min Ans. (a)

(The actual pump produces about 3500 gal/min.)

The outlet radial velocity follows from Q

Vn2 � � � 16.6 ft/s

This enables us to construct the outlet-velocity diagram as in Fig. E11.1b, given �2 � 20°. The
tangential component is

Vt2 � u2 � Vn2 cot �2 � 88.0 � 16.6 cot 20° � 42.4 ft/s


2 � tan�1 � 21.4°
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Part (b)

E11.1b 

E11.1a 

V2

20°
16.6
ft /s2α

88.0 ft /s

V1

90° 30°
u1 = 50.3 ft/s



Effect of Blade Angle on Pump
Head

Fig. 11.5 Theoretical effect of
blade exit angle on pump head 
versus discharge.

The power is then computed from Eq. (11.11) with Vt1 � 0 at the design point

Pw � �Qu2Vt2 � (1.94 slugs/ft3)(8.87 ft3/s)(88.0 ft/s)(42.4 ft/s)

� � 117 hp Ans. (b)

(The actual pump delivers about 125 water horsepower, requiring 147 bhp at 85 percent effi-
ciency.)

Finally, the head is estimated from Eq. (11.11)

H � � � 116 ft Ans. (c)

(The actual pump develops about 140-ft head.) Improved methods for obtaining closer estimates
are given in advanced references [for example, 6, 8, and 31].

The simple theory above can be used to predict an important blade-angle effect. If we
neglect inlet angular momentum, the theoretical water horsepower is

Pw � �Qu2Vt2 (11.17) 

where Vt2 � u2 � Vn2 cot �2 Vn2 �

Then the theoretical head from Eq. (11.11) becomes

H � � Q (11.18) 

The head varies linearly with discharge Q, having a shutoff value u2
2/g, where u2 is the

exit blade-tip speed. The slope is negative if �2 � 90° (backward-curved blades) and
positive for �2 � 90° (forward-curved blades). This effect is shown in Fig. 11.5 and is
accurate only at low flow rates.
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11.3 Pump Performance
Curves and Similarity Rules

The measured shutoff head of centrifugal pumps is only about 60 percent of the the-
oretical value H0 � �2r2

2 /g. With the advent of the laser-doppler anemometer, re-
searchers can now make detailed three-dimensional flow measurements inside pumps
and can even animate the data into a movie [40].

The positive-slope condition in Fig. 11.5 can be unstable and can cause pump surge,
an oscillatory condition where the pump “hunts’’ for the proper operating point. Surge
may cause only rough operation in a liquid pump, but it can be a major problem in gas-
compressor operation. For this reason a backward-curved or radial blade design is gen-
erally preferred. A survey of the problem of pump stability is given by Greitzer [41].

Since the theory of the previous section is rather qualitative, the only solid indicator
of a pump’s performance lies in extensive testing. For the moment let us discuss the
centrifugal pump in particular. The general principles and the presentation of data are
exactly the same for mixed-flow and axial-flow pumps and compressors.

Performance charts are almost always plotted for constant shaft-rotation speed n
(in r/min usually). The basic independent variable is taken to be discharge Q (in
gal/min usually for liquids and ft3/min for gases). The dependent variables, or “out-
put,’’ are taken to be head H (pressure rise �p for gases), brake horsepower (bhp),
and efficiency �.

Figure 11.6 shows typical performance curves for a centrifugal pump. The head is
approximately constant at low discharge and then drops to zero at Q � Qmax. At this
speed and impeller size, the pump cannot deliver any more fluid than Qmax. The pos-
itive-slope part of the head is shown dashed; as mentioned earlier, this region can be
unstable and can cause hunting for the operating point.

720 Chapter 11 Turbomachinery

Positive slope may be
unstable for certain
system loss curves Best efficiency point 

(BEP) or design point
Head

Horsepower

Efficiency

Effect of cavitation
or gas entrainment

on liquid heads

0

Flow rate Q

Q* Qmax0

Fig. 11.6 Typical centrifugal pump
performance curves at constant im-
peller-rotation speed. The units are
arbitrary.



Measured Performance Curves

Net Positive-Suction Head

The efficiency � is always zero at no flow and at Qmax, and it reaches a maximum,
perhaps 80 to 90 percent, at about 0.6Qmax. This is the design flow rate Q* or best ef-
ficiency point (BEP), � � �max. The head and horsepower at BEP will be termed H*
and P* (or bhp*), respectively. It is desirable that the efficiency curve be flat near �max,
so that a wide range of efficient operation is achieved. However, some designs simply
do not achieve flat efficiency curves. Note that � is not independent of H and P but
rather is calculated from the relation in Eq. (11.5), � � �gQH/P.

As shown in Fig. 11.6, the horsepower required to drive the pump typically rises
monotonically with the flow rate. Sometimes there is a large power rise beyond the
BEP, especially for radial-tipped and forward-curved blades. This is considered unde-
sirable because a much larger motor is then needed to provide high flow rates. Back-
ward-curved blades typically have their horsepower level off above BEP (“nonover-
loading’’ type of curve).

Figure 11.7 shows actual performance data for a commercial centrifugal pump. Figure
11.7a is for a basic casing size with three different impeller diameters. The head curves
H(Q) are shown, but the horsepower and efficiency curves have to be inferred from the
contour plots. Maximum discharges are not shown, being far outside the normal oper-
ating range near the BEP. Everything is plotted raw, of course [feet, horsepower, gal-
lons per minute (1 U.S. gal � 231 in3)] since it is to be used directly by designers. Fig-
ure 11.7b is the same pump design with a 20 percent larger casing, a lower speed, and
three larger impeller diameters. Comparing the two pumps may be a little confusing:
The larger pump produces exactly the same discharge but only half the horsepower and
half the head. This will be readily understood from the scaling or similarity laws we
are about to formulate.

A point often overlooked is that raw curves like Fig. 11.7 are strictly applicable to
a fluid of a certain density and viscosity, in this case water. If the pump were used to
deliver, say, mercury, the brake horsepower would be about 13 times higher while Q,
H, and � would be about the same. But in that case H should be interpreted as feet of
mercury, not feet of water. If the pump were used for SAE 30 oil, all data would change
(brake horsepower, Q, H, and �) due to the large change in viscosity (Reynolds num-
ber). Again this should become clear with the similarity rules.

In the top of Fig. 11.7 is plotted the net positive-suction head (NPSH), which is the
head required at the pump inlet to keep the liquid from cavitating or boiling. The pump
inlet or suction side is the low-pressure point where cavitation will first occur. The
NPSH is defined as

NPSH � � � (11.19) 

where pi and Vi are the pressure and velocity at the pump inlet and p� is the vapor pres-
sure of the liquid. Given the left-hand side, NPSH, from the pump performance curve,
we must ensure that the right-hand side is equal or greater in the actual system to avoid
cavitation.
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Fig. 11.7 Measured-performance
curves for two models of a cen-
trifugal water pump: (a) basic cas-
ing with three impeller sizes; (b) 20
percent larger casing with three
larger impellers at slower speed.
(Courtesy of Ingersoll-Rand Corpo-
ration, Cameron Pump Division.)

If the pump inlet is placed at a height Zi above a reservoir whose free surface is at
pressure pa, we can use Bernoulli’s equation to rewrite NPSH as

NPSH � � Zi � hfi � (11.20) 

where hfi is the friction-head loss between the reservoir and the pump inlet. Knowing
pa and hfi, we can set the pump at a height Zi which will keep the right-hand side
greater than the “required’’ NPSH plotted in Fig. 11.7.
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Deviations from Ideal Pump
Theory

If cavitation does occur, there will be pump noise and vibration, pitting damage to the
impeller, and a sharp dropoff in pump head and discharge. In some liquids this deteriora-
tion starts before actual boiling, as dissolved gases and light hydrocarbons are liberated.

The actual pump head data in Fig. 11.7 differ considerably from ideal theory, Eq.
(11.18). Take, e.g., the 36.75-in-diameter pump at 1170 r/min in Fig. 11.7a. The the-
oretical shutoff head is

H0(ideal) � � � 1093 ft

From Fig. 11.7a, at Q � 0, we read the actual shutoff head to be only 670 ft, or 61
percent of the theoretical value. This is a sharp dropoff and is indicative of nonrecov-
erable losses of three types:

1. Impeller recirculation loss, significant only at low flow rates

2. Friction losses on the blade and passage surfaces, which increase monotonically
with the flow rate

3. “Shock’’ loss due to mismatch between the blade angles and the inlet flow direc-
tion, especially significant at high flow rates

These are complicated three-dimensional-flow effects and hence are difficult to pre-
dict. Although, as mentioned, numerical (CFD) techniques are becoming more impor-
tant [42], modern performance prediction is still a blend of experience, empirical cor-
relations, idealized theory, and CFD modifications [45].

EXAMPLE 11.2

The 32-in pump of Fig. 11.7a is to pump 24,000 gal/min of water at 1170 r/min from a reser-
voir whose surface is at 14.7 lbf/in2 absolute. If head loss from reservoir to pump inlet is 6 ft,
where should the pump inlet be placed to avoid cavitation for water at (a) 60°F, p� � 0.26 lbf/in2

absolute, SG � 1.0 and (b) 200°F, p� � 11.52 lbf/in2 absolute, SG � 0.9635?

Solution

For either case read from Fig. 11.7a at 24,000 gal/min that the required NPSH is 40 ft. For this
case �g � 62.4 lbf/ft3. From Eq. (11.20) it is necessary that

NPSH � 	
pa

�

�

g

p�
	 � Zi � hfi

or 40 ft � � Zi � 6.0

or Zi � 27.3 � 40 � �12.7 ft Ans. (a)

The pump must be placed at least 12.7 ft below the reservoir surface to avoid cavitation.

For this case �g � 62.4(0.9635) � 60.1 lbf/ft3. Equation (11.20) applies again with the
higher p�

40 ft � � Zi � 6.0 
(14.7 � 11.52)(144)
			

60.1

(14.7 � 0.26)(144)
		

62.4

[1170(2�/60) rad/s]2[(36.75/2)/(12) ft]2
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g
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Dimensionless Pump Performance

or Zi � 1.6 � 40 � �38.4 ft Ans. (b)

The pump must now be placed at least 38.4 ft below the reservoir surface. These are unusually
stringent conditions because a large, high-discharge pump requires a large NPSH.

For a given pump design, the output variables H and brake horsepower should be de-
pendent upon discharge Q, impeller diameter D, and shaft speed n, at least. Other pos-
sible parameters are the fluid density �, viscosity �, and surface roughness �. Thus the
performance curves in Fig. 11.7 are equivalent to the following assumed functional re-
lations:2

gH � f1(Q, D, n, �, �, �) bhp � f2(Q, D, n, �, �, �) (11.21) 

This is a straightforward application of dimensional-analysis principles from Chap. 5.
As a matter of fact, it was given as an exercise (Prob. 5.20). For each function in Eq.
(11.21) there are seven variables and three primary dimensions (M, L, and T); hence
we expect 7 � 3 � 4 dimensionless pis, and that is what we get. You can verify as an
exercise that appropriate dimensionless forms for Eqs. (11.21) are

� g1� , , �
(11.22)

� g2� , , �
The quantities �nD2/� and �/D are recognized as the Reynolds number and roughness
ratio, respectively. Three new pump parameters have arisen:

Capacity coefficient CQ �

Head coefficient CH � (11.23)

Power coefficient CP �

Note that only the power coefficient contains fluid density, the parameters CQ and CH

being kinematic types.
Figure 11.7 gives no warning of viscous or roughness effects. The Reynolds num-

bers are from 0.8 to 1.5 � 107, or fully turbulent flow in all passages probably. The
roughness is not given and varies greatly among commercial pumps. But at such high
Reynolds numbers we expect more or less the same percentage effect on all these
pumps. Therefore it is common to assume that the Reynolds number and the rough-
ness ratio have a constant effect, so that Eqs. (11.23) reduce to, approximately,

CH � CH(CQ) CP � CP(CQ) (11.24) 

bhp
	
�n3D5

gH
	
n2D2

Q
	
nD3

�
	
D

�nD2

	
�

Q
	
nD3

bhp
	
�n3D5

�
	
D

�nD2

	
�

Q
	
nD3

gH
	
n2D2
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2 We adopt gH as a variable instead of H for dimensional reasons.



Fig. 11.8 Nondimensional plot of
the pump performance data from
Fig. 11.7. These numbers are not
representative of other pump de-
signs.

For geometrically similar pumps, we expect head and power coefficients to be (nearly)
unique functions of the capacity coefficient. We have to watch out that the pumps are
geometrically similar or nearly so because (1) manufacturers put different-sized im-
pellers in the same casing, thus violating geometric similarity, and (2) large pumps have
smaller ratios of roughness and clearances to impeller diameter than small pumps. In
addition, the more viscous liquids will have significant Reynolds-number effects; e.g.,
a factor-of-3 or more viscosity increase causes a clearly visible effect on CH and CP.

The efficiency � is already dimensionless and is uniquely related to the other three.
It varies with CQ also

� � � �(CQ) (11.25) 

We can test Eqs. (11.24) and (11.25) from the data of Fig. 11.7. The impeller diame-
ters of 32 and 38 in are approximately 20 percent different in size, and so their ratio
of impeller to casing size is the same. The parameters CQ, CH, and CP are computed
with n in r/s, Q in ft3/s (gal/min � 2.23 � 10�3), H and D in ft, g � 32.2 ft/s2, and
brake horsepower in horsepower times 550 ft 
 lbf/(s 
 hp). The nondimensional data
are then plotted in Fig. 11.8. A dimensionless suction-head coefficient is also defined

CHS � � CHS(CQ) (11.26) 
g(NPSH)
	

n2D2

CHCQ
	

CP
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Part (a)

Part (b)

The coefficients CP and CHS are seen to correlate almost perfectly into a single func-
tion of CQ, while � and CH data deviate by a few percent. The last two parameters are
more sensitive to slight discrepancies in model similarity; since the larger pump has
smaller roughness and clearance ratios and a 40 percent larger Reynolds number, it de-
velops slightly more head and is more efficient. The overall effect is a resounding vic-
tory for dimensional analysis.

The best-efficiency point in Fig. 11.8 is approximately

CQ* � 0.115 CP* � 0.65
(11.27)�max � 0.88:

CH* � 5.0 CHS* � 0.37

These values can be used to estimate the BEP performance of any size pump in this
geometrically similar family. In like manner, the shutoff head is CH(0) � 6.0, and by
extrapolation the shutoff power is CP(0) � 0.25 and the maximum discharge is 
CQ,max � 0.23. Note, however, that Fig. 11.8 gives no reliable information about, say,
the 28- or 35-in impellers in Fig. 11.7, which have a different impeller-to-casing-size
ratio and thus must be correlated separately.

By comparing values of n2D2, nD3, and n3D5 for two pumps in Fig. 11.7 we can
see readily why the large pump had the same discharge but less power and head:

Discharge Head Power
D, ft n, r/s nD3, ft3/s n2D2/g, ft �n3D5/550, hp

Fig. 11.7a 32/12 1170/60 370 0.84 3527
Fig. 11.7b 38/12 710/60 376 0.44 1861
Ratio — — 1.02 0.52 0.53

Discharge goes as nD3, which is about the same for both pumps. Head goes as n2D2

and power as n3D5 for the same � (water), and these are about half as much for the
larger pump. The NPSH goes as n2D2 and is also half as much for the 38-in pump.

EXAMPLE 11.3

A pump from the family of Fig. 11.8 has D � 21 in and n � 1500 r/min. Estimate (a) discharge,
(b) head, (c) pressure rise, and (d) brake horsepower of this pump for water at 60°F and best ef-
ficiency.

Solution

In BG units take D � 21/12 � 1.75 ft and n � 1500/60 � 25 r/s. At 60°F, � of water is 1.94
slugs/ft3. The BEP parameters are known from Fig. 11.8 or Eqs. (11.27). The BEP discharge is
thus

Q* � CQ*nD3 � 0.115(25)(1.75)3 � (15.4 ft3/s)(448.8) � 6900 gal/min Ans. (a)

Similarly, the BEP head is

H* � � � 300-ft water Ans. (b)
5.0(25)2(1.75)2

		
32.2

CH*n2D2

		
g
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Part (c)

Part (d)

Part (a)

Part (c)

Part (d)

Part (b)

Similarity Rules

Since we are not given elevation or velocity-head changes across the pump, we neglect them
and estimate

�p � �gH � 1.94(32.2)(300) � 18,600 lbf/ft2 � 129 lbf/in2 Ans. (c)

Finally, the BEP power is

P* � CP*�n3D5 � 0.65(1.94)(25)3(1.75)5

� � 590 hp Ans. (d)

EXAMPLE 11.4

We want to build a pump from the family of Fig. 11.8, which delivers 3000 gal/min water at
1200 r/min at best efficiency. Estimate (a) the impeller diameter, (b) the maximum discharge,
(c) the shutoff head, and (d) the NPSH at best efficiency.

Solution

3000 gal/min � 6.68 ft3/s and 1200 r/min � 20 r/s. At BEP we have

Q* � CQ*nD3 � 6.68 ft3/s � (0.115)(20)D3

or D � � �
1/3

� 1.43 ft � 17.1 in Ans. (a)

The maximum Q is related to Q* by a ratio of capacity coefficients

Qmax � � � 6000 gal/min Ans. (b)

From Fig. 11.8 we estimated the shutoff head coefficient to be 6.0. Thus

H(0) � � � 152 ft Ans. (c)

Finally, from Eq. (11.27), the NPSH at BEP is approximately

NPSH* � � � 9.4 ft Ans. (d)

Since this a small pump, it will be less efficient than the pumps in Fig. 11.8, probably about 85
percent maximum.

The success of Fig. 11.8 in correlating pump data leads to simple rules for comparing
pump performance. If pump 1 and pump 2 are from the same geometric family and
are operating at homologous points (the same dimensionless position on a chart such
as Fig. 11.8), their flow rates, heads, and powers will be related as follows:

� � �
3

� � �
2

� �
2D2

	
D1

n2
	
n1

H2
	
H1

D2
	
D1

n2
	
n1

Q2
	
Q1

0.37(20)2(1.43)2

		
32.2

CHS*n2D2

		
g

6.0(20)2(1.43)2

		
32.2

CH(0)n2D2

		
g

3000(0.23)
		

0.115

Q*CQ,max
		

CQ*

6.68
		
0.115(20)

323,000 ft 
 lbf/s
		

550
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Fig. 11.9 Effect of changes in size
and speed on homologous pump
performance: (a) 20 percent change
in speed at constant size; (b) 20
percent change in size at constant
speed.

� � �
3

� �
5

(11.28) 

These are the similarity rules, which can be used to estimate the effect of changing the
fluid, speed, or size on any dynamic turbomachine—pump or turbine—within a geo-
metrically similar family. A graphic display of these rules is given in Fig. 11.9, show-
ing the effect of speed and diameter changes on pump performance. In Fig. 11.9a the
size is held constant and the speed is varied 20 percent, while Fig. 11.9b shows a 20
percent size change at constant speed. The curves are plotted to scale but with arbitrary
units. The speed effect (Fig. 11.9a) is substantial, but the size effect (Fig. 11.9b) is even
more dramatic, especially for power, which varies as D5. Generally we see that a given
pump family can be adjusted in size and speed to fit a variety of system characteristics.

Strictly speaking, we would expect for perfect similarity that �1 � �2, but we have
seen that larger pumps are more efficient, having a higher Reynolds number and lower
roughness and clearance ratios. Two empirical correlations are recommended for max-
imum efficiency. One, developed by Moody [43] for turbines but also used for pumps,
is a size effect. The other, suggested by Anderson [44] from thousands of pump tests,
is a flow-rate effect:

Size changes [43]: � � �
1/4

(11.29a)

Flow-rate changes [44]: � � �
0.32

(11.29b) 

Anderson’s formula (11.29b) makes the practical observation that even an infinitely
large pump will have losses. He thus proposes a maximum possible efficiency of 94
percent, rather than 100 percent. Anderson recommends that the same formula be used

Q1
	
Q2

0.94 � �2
		
0.94 � �1

D1
	
D2

1 � �2
	
1 � �1

D2
	
D1

n2
	
n1
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�1

P2
	
P1
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Effect of Viscosity

11.4 Mixed- and Axial-Flow
Pumps: The Specific Speed

Part (a)

for turbines if the constant 0.94 is replaced by 0.95. The formulas in Eq. (11.29) as-
sume the same value of surface roughness for both machines—one could micropolish
a small pump and achieve the efficiency of a larger machine.

Centrifugal pumps are often used to pump oils and other viscous liquids up to 1000
times the viscosity of water. But the Reynolds numbers become low turbulent or even
laminar, with a strong effect on performance. Figure 11.10 shows typical test curves
of head and brake horsepower versus discharge. High viscosity causes a dramatic drop
in head and discharge and increases in power requirements. The efficiency also drops
substantially according to the following typical results:

�/�water 1.0 10.0 100 1000

�max, % 85 76 52 11

Beyond about 300�water the deterioration in performance is so great that a positive-
displacement pump is recommended.

We have seen from the previous section that the modern centrifugal pump is a formi-
dable device, able to deliver very high heads and reasonable flow rates with excellent
efficiency. It can match many system requirements. But basically the centrifugal pump
is a high-head, low-flow machine, whereas there are many applications requiring low
head and high discharge. To see that the centrifugal design is not convenient for such
systems, consider the following example.

EXAMPLE 11.5

We want to use a centrifugal pump from the family of Fig. 11.8 to deliver 100,000 gal/min of
water at 60°F with a head of 25 ft. What should be (a) the pump size and speed and (b) brake
horsepower, assuming operation at best efficiency?

Solution

Enter the known head and discharge into the BEP parameters from Eq. (11.27):

H* � 25 ft � 	
CH*

g

n2D2

	 � 	
5.

3
0
2
n
.

2

2
D2

	

Q* � 100,000 gal/min � 222.8 ft3/s � CQ*nD3 � 0.115nD3

The two unknowns are n and D. Solve simultaneously for

D � 12.4 ft n � 1.03 r/s � 62 r/min Ans. (a)

If you wish to avoid algebraic manipulation, simply program the above two simultaneous equa-
tions in EES, using English units:

25 � 5.0*n^2*D^2/32.2

222.8 � 0.115*n*D^3
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Part (b)

Specify in Variable Information that n and D are positive, and EES promptly returns the correct
solution: D � 12.36 ft and n � 1.027 r/s.

The most efficient horsepower is then, from Eq. (11.27),

bhp* � CP*�n3D5 � � 720 hp Ans. (b)

The solution to Example 11.5 is mathematically correct but results in a grotesque
pump: an impeller more than 12 ft in diameter, rotating so slowly one can visualize
oxen walking in a circle turning the shaft.

There are other dynamic-pump designs which do provide low head and high discharge.
For example, there is a type of 38-in, 710 r/min pump, e.g., with the same input parame-
ters as Fig. 11.7b, which will deliver the 25-ft head and 100,000 gal/min flow rate called
for in Example 11.5. This is done by allowing the flow to pass through the impeller with
an axial-flow component and less centrifugal component. The passages can be opened up
to the increased flow rate with very little size increase, but the drop in radial outlet veloc-
ity decreases the head produced. These are the mixed-flow (part radial, part axial) and axial-
flow (propeller-type) families of dynamic pump. Some vane designs are sketched in Fig.
11.11, which introduces an interesting new “design’’ parameter, the specific speed Ns or N�s.

0.65(1.94)(1.03)3(12.4)5

			
550
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The Specific Speed Most pump applications involve a known head and discharge for the particular system,
plus a speed range dictated by electric motor speeds or cavitation requirements. The
designer then selects the best size and shape (centrifugal, mixed, axial) for the pump.
To help this selection, we need a dimensionless parameter involving speed, discharge,
and head but not size. This is accomplished by eliminating the diameter between CQ

and CH, applying the result only to the BEP. This ratio is called the specific speed and
has both a dimensionless form and a somewhat lazy, practical form:

Rigorous form: N�s � � (11.30a)

Lazy but common: Ns � (11.30b)

In other words, practicing engineers do not bother to change n to revolutions per sec-
ond or Q* to cubic feet per second or to include gravity with head, although the latter
would be necessary for, say, a pump on the moon. The conversion factor is

Ns � 17,182N�s

Note that Ns is applied only to BEP; thus a single number characterizes an entire fam-
ily of pumps. For example, the family of Fig. 11.8 has N�s � (0.115)1/2/(5.0)3/4 � 0.1014,
Ns � 1740, regardless of size or speed.

It turns out that the specific speed is directly related to the most efficient pump de-
sign, as shown in Fig. 11.11. Low Ns means low Q and high H, hence a centrifugal
pump, and large Ns implies an axial pump. The centrifugal pump is best for Ns between
500 and 4000, the mixed-flow pump for Ns between 4000 and 10,000, and the axial-
flow pump for Ns above 10,000. Note the changes in impeller shape as Ns increases.

If we use NPSH rather than H in Eq. (11.30), the result is called suction specific speed

Rigorous: N�ss � (11.31a)

Lazy: Nss � (11.31b)

where NPSH denotes the available suction head of the system. Data from Wislicenus
[4] show that a given pump is in danger of inlet cavitation if

N�ss � 0.47 Nss � 8100

In the absence of test data, this relation can be used, given n and Q, to estimate the
minimum required NPSH.

A multistage axial-flow geometry is shown in Fig. 11.12a. The fluid essentially passes
almost axially through alternate rows of fixed stator blades and moving rotor blades.
The incompressible-flow assumption is frequently used even for gases, because the
pressure rise per stage is usually small.

(r/min)(gal/min)1/2

		
[NPSH (ft)]3/4

nQ1/2

		
(g NPSH)3/4

(r/min)(gal/min)1/2
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Fig. 11.12 Analysis of an axial-
flow pump: (a) basic geometry; 
(b) stator blades and exit-velocity
diagram; (c) rotor blades and exit-
velocity diagram.

The simplified vector-diagram analysis assumes that the flow is one-dimensional and
leaves each blade row at a relative velocity exactly parallel to the exit blade angle. Fig-
ure 11.12b shows the stator blades and their exit-velocity diagram. Since the stator is
fixed, ideally the absolute velocity V1 is parallel to the trailing edge of the blade. After
vectorially subtracting the rotor tangential velocity u from V1, we obtain the velocity w1

relative to the rotor, which ideally should be parallel to the rotor leading edge.
Figure 11.12c shows the rotor blades and their exit-velocity diagram. Here the rel-

ative velocity w2 is parallel to the blade trailing edge, while the absolute velocity V2

should be designed to enter smoothly the next row of stator blades.
The theoretical power and head are given by Euler’s turbine relation (11.11). Since

there is no radial flow, the inlet and exit rotor speeds are equal, u1 � u2, and one-
dimensional continuity requires that the axial-velocity component remain constant

Vn1 � Vn2 � Vn � � const
Q
	
A
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Performance of an Axial-Flow
Pump

From the geometry of the velocity diagrams, the normal velocity (or volume flow) can
be directly related to the blade rotational speed u:

u � �rav � Vn1(tan 
1 � tan �1) � Vn2(tan 
2 � tan �2) (11.32) 

Thus the flow rate can be predicted from the rotational speed and the blade angles.
Meanwhile, since Vt1 � Vn1 cot 
1 and Vt2 � u � Vn2 cot �2, Euler’s relation (11.11)
for the pump head becomes

gH � uVn(cot 
2 � cot 
1)

� u2 � uVn(cot 
1 � cot �2) (11.33)

the preferred form because it relates to the blade angles 
1 and �2. The shutoff or no-
flow head is seen to be H0 � u2/g, just as in Eq. (11.18) for a centrifugal pump. The
blade-angle parameter cot 
1 � cot �2 can be designed to be negative, zero, or posi-
tive, corresponding to a rising, flat, or falling head curve, as in Fig. 11.5.

Strictly speaking, Eq. (11.33) applies only to a single streamtube of radius r, but it
is a good approximation for very short blades if r denotes the average radius. For long
blades it is customary to sum Eq. (11.33) in radial strips over the blade area. Such com-
plexity may not be warranted since theory, being idealized, neglects losses and usually
predicts the head and power larger than those in actual pump performance.

At high specific speeds, the most efficient choice is an axial-flow, or propeller, pump,
which develops high flow rate and low head. A typical dimensionless chart for a pro-
peller pump is shown in Fig. 11.13. Note, as expected, the higher CQ and lower CH

compared with Fig. 11.8. The head curve drops sharply with discharge, so that a large
system-head change will cause a mild flow change. The power curve drops with head
also, which means a possible overloading condition if the system discharge should sud-
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Fig. 11.14 Optimum efficiency of
pumps versus capacity and specific
speed. (Adapted from Refs. 4 and
31.)

denly decrease. Finally, the efficiency curve is rather narrow and triangular, as opposed
to the broad, parabolic-shaped centrifugal pump efficiency (Fig. 11.8).

By inspection of Fig. 11.13, CQ* � 0.55, CH* � 1.07, CP* � 0.70, and �max � 0.84.
From this we compute N�s � (0.55)1/2/(1.07)3/4 � 0.705, Ns � 12,000. The relatively
low efficiency is due to small pump size: d � 14 in, n � 690 r/min, Q* � 4400 gal/min.

A repetition of Example 11.5 using Fig. 11.13 would show that this propeller pump
family can provide a 25-ft head and 100,000 gal/min discharge if D � 46 in and n �
430 r/min, with bhp � 750; this is a much more reasonable design solution, with im-
provements still possible at larger-Ns conditions.

Specific speed is such an effective parameter that it is used as an indicator of both per-
formance and efficiency. Figure 11.14 shows a correlation of the optimum efficiency
of a pump as a function of the specific speed and capacity. Because the dimensional
parameter Q is a rough measure of both size and Reynolds number, � increases with
Q. When this type of correlation was first published by Wislicenus [4] in 1947, it be-
came known as the pump curve, a challenge to all manufacturers. We can check that
the pumps of Figs. 11.7 and 11.13 fit the correlation very well.

Figure 11.15 shows the effect of specific speed on the shape of the pump perfor-
mance curves, normalized with respect to the BEP point. The numerical values shown
are representative but somewhat qualitative. The high-specific-speed pumps (Ns �
10,000) have head and power curves which drop sharply with discharge, implying over-
load or start-up problems at low flow. Their efficiency curve is very narrow.
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Fig. 11.15 Effect of specific speed
on pump performance curves.

A low-specific-speed pump (Ns � 600) has a broad efficiency curve, a rising power
curve, and a head curve which “droops’’ at shutoff, implying possible surge or hunt-
ing problems.

The design of turbomachinery has traditionally been highly experimental, with simple
theories, such as in Sec. 11.2, only able to predict trends. Dimensionless correlations,
such as Fig. 11.15, are useful but require extensive experimentation. Consider that flow
in a pump is three-dimensional; unsteady (both periodic and turbulent); and involves
flow separation, recirculation in the impeller, unsteady blade wakes passing through
the diffuser, and blade roots, tips, and clearances. It is no wonder that one-dimensional
theory cannot give firm quantitative predictions.

Modern computer analysis can give realistic results and is becoming a useful tool
for turbomachinery designers. A good example is Ref. 56, reporting combined exper-
imental and computational results for a centrifugal pump diffuser. A photograph of the
device is shown in Fig. 11.16a. It is made of clear Perspex, so that laser measurements
of particle tracking velocimetry (LPTV) and doppler anemometry (LDA) could be taken
throughout the system. The data were compared with a CFD simulation of the impeller
and diffuser, using the grids shown in Fig. 11.16b. The computations used a turbulence
formulation called the k-� model, popular in commercial CFD codes (see Sec. 8.9).
Results were good but not excellent. The CFD model predicted velocity and pressure
data adequately up until flow separation, after which it was only qualitative. Clearly,
CFD is developing a significant role in turbomachinery design.

The ultimate test of a pump is its match with the operating-system characteristics. Phys-
ically, the system head must match the head produced by the pump, and this intersec-
tion should occur in the region of best efficiency.

The system head will probably contain a static-elevation change z2 � z1 plus fric-
tion losses in pipes and fittings

Hsys � (z2 � z1) � �� � �K� (11.34) 
fL
	
D

V2

	
2g
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Fig. 11.16 Turbomachinery design
now involves both experimentation
and computational fluid dynamics
(CFD): (a) a centrifugal impeller
and diffuser (Courtesy of K. Eisele
and Z. Zhang, Sulzer Innotec Ltd.);
(b) a three-dimensional CFD model
grid for this system. (From Ref. 56
by permission of the American So-
ciety of Mechanical Engineers.)

where � K denotes minor losses and V is the flow velocity in the principal pipe. Since
V is proportional to the pump discharge Q, Eq. (11.34) represents a system-head curve
Hs(Q). Three examples are shown in Fig. 11.17: a static head Hs � a, static head plus
laminar friction Hs � a � bQ, and static head plus turbulent friction Hs � a � cQ2.
The intersection of the system curve with the pump performance curve H(Q) defines
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Fig. 11.17 Illustration of pump op-
erating points for three types of
system-head curves.

the operating point. In Fig. 11.17 the laminar-friction operating point is at maximum
efficiency while the turbulent and static curves are off design. This may be unavoid-
able if system variables change, but the pump should be changed in size or speed if its
operating point is consistently off design. Of course, a perfect match may not be pos-
sible because commercial pumps have only certain discrete sizes and speeds. Let us il-
lustrate these concepts with an example.

EXAMPLE 11.6

We want to use the 32-in pump of Fig. 11.7a at 1170 r/min to pump water at 60°F from one
reservoir to another 120 ft higher through 1500 ft of 16-in-ID pipe with friction factor f � 0.030.
(a) What will the operating point and efficiency be? (b) To what speed should the pump be
changed to operate at the BEP?

Solution

For reservoirs the initial and final velocities are zero; thus the system head is

Hs � z2 � z1 � � 120 ft �
0.030(1500 ft)
		

	11
6
2	 ft

V2

	
2g
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D
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   (Q)η

Η,η

Part (a)

From continuity in the pipe, V � Q/A � Q/[	14	� (	11
6
2	 ft)2], and so we substitute for V above to get

Hs � 120 � 0.269Q2 Q in ft3/s (1)

Since Fig. 11.7a uses thousands of gallons per minute for the abscissa, we convert Q in Eq. (1)
to this unit:

Hs � 120 � 1.335Q2 Q in 103 gal/min (2)

We can plot Eq. (2) on Fig. 11.7a and see where it intersects the 32-in pump-head curve, as in
Fig. E11.6. A graphical solution gives approximately

H � 430 ft Q � 15,000 gal/min



Pumps Combined in Parallel

The efficiency is about 82 percent, slightly off design.
An analytic solution is possible if we fit the pump-head curve to a parabola, which is very

accurate

Hpump � 490 � 0.26Q2 Q in 103 gal/min (3)

Equations (2) and (3) must match at the operating point:

490 � 0.26Q2 � 120 � 1.335Q2

or Q2 � � 232

Q � 15.2 � 103 gal/min � 15,200 gal/min Ans. (a)

H � 490 � 0.26(15.2)2 � 430 ft Ans. (a)

To move the operating point to BEP, we change n, which changes both Q � n and H � n2.
From Fig. 11.7a, at BEP, H* � 386 ft; thus for any n, H* � 386(n/1170)2. Also read Q* �
20 � 103 gal/min; thus for any n, Q* � 20(n/1170). Match H* to the system characteristics,
Eq. (2),

H* � 386� �
2

� 120 � 1.335�20 �
2

Ans. (b)

which gives n2 � 0. Thus it is impossible to operate at maximum efficiency with this particular
system and pump.

If a pump provides the right head but too little discharge, a possible remedy is to com-
bine two similar pumps in parallel, i.e., sharing the same suction and inlet conditions.
A parallel arrangement is also used if delivery demand varies, so that one pump is used
at low flow and the second pump is started up for higher discharges. Both pumps should
have check valves to avoid backflow when one is shut down.

The two pumps in parallel need not be identical. Physically, their flow rates will
sum for the same head, as illustrated in Fig. 11.18. If pump A has more head than pump
B, pump B cannot be added in until the operating head is below the shutoff head of
pump B. Since the system curve rises with Q, the combined delivery QA�B will be less
than the separate operating discharges QA � QB but certainly greater than either one.

n
	
1170

n
	
1170

490 � 120
		
0.26 � 1.335
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Pumps Combined in Series

For a very flat (static) curve two similar pumps in parallel will deliver nearly twice the
flow. The combined brake horsepower is found by adding brake horsepower for each
of pumps A and B at the same head as the operating point. The combined efficiency
equals �g(QA�B)(HA�B)/(550 bhpA�B).

If pumps A and B are not identical, as in Fig. 11.18, pump B should not be run and
cannot even be started up if the operating point is above its shutoff head.

If a pump provides the right discharge but too little head, consider adding a similar
pump in series, with the output of pump B fed directly into the suction side of pump
A. As sketched in Fig. 11.19, the physical principle for summing in series is that the
two heads add at the same flow rate to give the combined-performance curve. The two
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need not be identical at all, since they merely handle the same discharge; they may
even have different speeds, although normally both are driven by the same shaft.

The need for a series arrangement implies that the system curve is steep, i.e., re-
quires higher head than either pump A or B can provide. The combined operating-point
head will be more than either A or B separately but not as great as their sum. The com-
bined power is the sum of brake horsepower for A and B at the operating point flow
rate. The combined efficiency is

similar to parallel pumps.
Whether pumps are used in series or in parallel, the arrangement will be uneco-

nomical unless both pumps are operating near their best efficiency.

For very high heads in continuous operation, the solution is a multistage pump, with
the exit of one impeller feeding directly into the eye of the next. Centrifugal, mixed-
flow, and axial-flow pumps have all been grouped in as many as 50 stages, with heads
up to 8000 ft of water and pressure rises up to 5000 lbf/in2 absolute. Figure 11.20
shows a section of a seven-stage centrifugal propane compressor which develops 300
lbf/in2 rise at 40,000 ft3/min and 35,000 bhp.

Most of the discussion in this chapter concerns incompressible flow, that is, negligible
change in fluid density. Even the pump of Fig. 11.7, which can produce 600 ft of head
at 1170 r/min, will only increase standard air pressure by 46 lbf/ft2, about a 2 percent
change in density. The picture changes at higher speeds, �p � n2, and multiple stages,
where very large changes in pressure and density are achieved. Such devices are called
compressors, as in Fig. 11.20. The concept of static head, H � �p/�g, becomes inap-
propriate, since � varies. Compressor performance is measured by (1) the pressure ra-
tio across the stage p2/p1 and (2) the change in stagnation enthalpy (h02 � h01), where
h0 � h � 	12	V2 (see Sec. 9.3). Combining m stages in series results in pfinal/pinitial �
(p2/p1)m. As density increases, less area is needed: note the decrease in impeller size
from right to left in Fig. 11.20. Compressors may be either of the centrifugal or axial-
flow type [21 to 23].

Compressor efficiency, from inlet condition 1 to final outlet f, is defined by the
change in gas enthalpy, assuming an adiabatic process:

�comp � �

Compressor efficiencies are similar to hydraulic machines (�max � 70 to 80 percent),
but the mass-flow range is more limited: on the low side by compressor surge, where
blade stall and vibration occur, and on the high side by choking (Sec. 9.4), where the
Mach number reaches 1.0 somewhere in the system. Compressor mass flow is nor-
mally plotted using the same type of dimensionless function formulated in Eq. (9.47):
ṁ(RT0)1/2/(D2p0), which will reach a maximum when choking occurs. For further de-
tails, see Refs. 21 to 23. 

Tf � T01		
T0f � T01

hf � h01	
h0f � h01

�g(QA�B)(HA�B)
		

550 bhpA�B
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EXAMPLE 11.7

Investigate extending Example 11.6 by using two 32-in pumps in parallel to deliver more flow.
Is this efficient?

Solution

Since the pumps are identical, each delivers 	12	Q at the same 1170 r/min speed. The system curve
is the same, and the balance-of-head relation becomes

H � 490 � 0.26(	12	Q)2 � 120 � 1.335Q2

or Q2 � Q � 16,300 gal/min Ans.

This is only 7 percent more than a single pump. Each pump delivers 	12	Q � 8130 gal/min, for
which the efficiency is only 60 percent. The total brake horsepower required is 3200, whereas a
single pump used only 2000 bhp. This is a poor design.

490 � 120
		
1.335 � 0.065
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Fig. 11.20 Cross section of a
seven-stage centrifugal propane
compressor which delivers 40,000
ft3/min at 35,000 bhp and a pres-
sure rise of 300 lbf/in2. Note the
second inlet at stage 5 and the
varying impeller designs. 
(Courtesy of DeLaval-Stork V.O.F.,
Centrifugal Compressor 
Division.)



11.6 Turbines

Reaction Turbines

EXAMPLE 11.8

Suppose the elevation change in Example 11.6 is raised from 120 to 500 ft, greater than a sin-
gle 32-in pump can supply. Investigate using 32-in pumps in series at 1170 r/min.

Solution

Since the pumps are identical, the total head is twice as much and the constant 120 in the sys-
tem-head curve is replaced by 500. The balance of heads becomes

H � 2(490 � 0.26Q2) � 500 � 1.335Q2

or Q2 � 	
1
9
.3
8
3
0
5
�

�

5
0
0
.
0
52

	 Q � 16.1 � 103 gal/min Ans.

The operating head is 500 � 1.335(16.1)2 � 845 ft, or 97 percent more than that for a single
pump in Example 11.5. Each pump is operating at 16.1 � 103 gal/min, which from Fig. 11.7a
is 83 percent efficient, a pretty good match to the system. To pump at this operating point re-
quires 4100 bhp, or about 2050 bhp for each pump.

A turbine extracts energy from a fluid which possesses high head, but it is fatuous to
say a turbine is a pump run backward. Basically there are two types, reaction and im-
pulse, the difference lying in the manner of head conversion. In the reaction turbine, the
fluid fills the blade passages, and the head change or pressure drop occurs within the
impeller. Reaction designs are of the radial-flow, mixed-flow, and axial-flow types and
are essentially dynamic devices designed to admit the high-energy fluid and extract its
momentum. An impulse turbine first converts the high head through a nozzle into a high-
velocity jet, which then strikes the blades at one position as they pass by. The impeller
passages are not fluid-filled, and the jet flow past the blades is essentially at constant
pressure. Reaction turbines are smaller because fluid fills all the blades at one time.

Reaction turbines are low-head, high-flow devices. The flow is opposite that in a pump,
entering at the larger-diameter section and discharging through the eye after giving up
most of its energy to the impeller. Early designs were very inefficient because they
lacked stationary guide vanes at the entrance to direct the flow smoothly into the im-
peller passages. The first efficient inward-flow turbine was built in 1849 by James B.
Francis, a U.S. engineer, and all radial- or mixed-flow designs are now called Francis
turbines. At still lower heads, a turbine can be designed more compactly with purely
axial flow and is termed a propeller turbine. The propeller may be either fixed-blade
or adjustable (Kaplan type), the latter being complicated mechanically but much more
efficient at low-power settings. Figure 11.21 shows sketches of runner designs for Fran-
cis radial, Francis mixed-flow, and propeller-type turbines.

The Euler turbomachine formulas (11.11) also apply to energy-extracting machines if
we reverse the flow direction and reshape the blades. Figure 11.22 shows a radial tur-
bine runner. Again assume one-dimensional frictionless flow through the blades. Ad-
justable inlet guide vanes are absolutely necessary for good efficiency. They bring the
inlet flow to the blades at angle 
2 and absolute velocity V2 for minimum “shock’’ or
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Fig. 11.21 Reaction turbines:
(a) Francis, radial type; (b) Francis
mixed-flow; (c) propeller axial-
flow; (d) performance curves for 
a Francis turbine, n � 600 r/min,
D � 2.25 ft, Nsp � 29.

Fig. 11.22 Inlet- and outlet-velocity
diagrams for an idealized radial-
flow reaction turbine runner.

directional-mismatch loss. After vectorially adding in the runner tip speed u2 � �r2, the
outer blade angle should be set at angle �2 to accommodate the relative velocity w2, as
shown in the figure. (See Fig. 11.4 for the analogous radial-pump velocity diagrams.)

Application of the angular-momentum control-volume theorem, Eq. (3.55), to Fig.
11.22 (see Example 3.14 for a similar case) yields an idealized formula for the power
P extracted by the runner:

P � �T � ��Q(r2Vt2 � r1Vt1) � �Q(u2V2 cos 
2 � u1V1 cos 
1) (11.35) 
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Power Specific Speed

where Vt2 and Vt1 are the absolute inlet and outlet circumferential velocity components
of the flow. Note that Eq. (11.35) is identical to Eq. (11.11) for a radial pump, except
that the blade shapes are different.

The absolute inlet normal velocity Vn2 � V2 sin 
2 is proportional to the flow rate
Q. If the flow rate changes and the runner speed u2 is constant, the vanes must be ad-
justed to a new angle 
2 so that w2 still follows the blade surface. Thus adjustable in-
let vanes are very important to avoid shock loss.

Turbine parameters are similar to those of a pump, but the dependent variable is the out-
put brake horsepower, which depends upon the inlet flow rate Q, available head H, im-
peller speed n, and diameter D. The efficiency is the output brake horsepower divided
by the available water horsepower �gQH. The dimensionless forms are CQ, CH, and CP,
defined just as for a pump, Eqs. (11.23). If we neglect Reynolds-number and roughness
effects, the functional relationships are written with CP as the independent variable:

CH � CH(CP) CQ � CQ(CP) � � � �(CP) (11.36) 

Figure 11.21d shows typical performance curves for a small Francis radial turbine. The
maximum efficiency point is called the normal power, and the values for this particu-
lar turbine are

�max � 0.89 CP* � 2.70 CQ* � 0.34 CH* � 9.03

A parameter which compares the output power with the available head, independent
of size, is found by eliminating the diameter between CH and CP. It is called the power
specific speed:

Rigorous form: N�sp � � (11.37a)

Lazy but common: Nsp � (11.37b) 

For water, � � 1.94 slugs/ft3 and Nsp � 273.3N�sp. The various turbine designs divide
up nicely according to the range of power specific speed, as follows:

Turbine type Nsp range CH range

Impulse 1–10 15–50
Francis 10–110 5–25
Propeller:

Water 100–250 1–4
Gas, steam 25–300 10–80

Note that Nsp, like Ns for pumps, is defined only with respect to the BEP and has a
single value for a given turbine family. In Fig. 11.21d, Nsp � 273.3(2.70)1/2/(9.03)5/4 �
29, regardless of size.

(r/min)(bhp)1/2

		
[H (ft)]5/4

n(bhp)1/2

		
�1/2(gH)5/4

C*P
1/2

	
C*H

5/4

bhp
	
�gQH
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Impulse Turbines

Like pumps, turbines of large size are generally more efficient, and Eqs. (11.29) can
be used as an estimate when data are lacking.

The design of a complete large-scale power-generating turbine system is a major en-
gineering project, involving inlet and outlet ducts, trash racks, guide vanes, wicket gates,
spiral cases, generator with cooling coils, bearings and transmission gears, runner blades,
draft tubes, and automatic controls. Some typical large-scale reaction turbine designs
are shown in Fig. 11.23. The reversible pump-and-turbine design of Fig. 11.23d requires
special care for adjustable guide vanes to be efficient for flow in either direction.

The largest (1000-MW) hydropower designs are awesome when viewed on a hu-
man scale, as shown in Fig. 11.24. The economic advantages of small-scale model test-
ing are evident from this photograph of the Francis turbine units at Grand Coulee Dam.

For high head and relatively low power, i.e., low Nsp, not only would a reaction tur-
bine require too high a speed but also the high pressure in the runner would require a
massive casing thickness. The impulse turbine of Fig. 11.25 is ideal for this situation.
Since Nsp is low, n will be low and the high pressure is confined to the small nozzle,
which converts the head to an atmospheric pressure jet of high velocity Vj. The jet
strikes the buckets and imparts a momentum change similar to that in our control-
volume analysis for a moving vane in Example 3.10 or Prob. 3.51. The buckets have
an elliptical split-cup shape, as in Fig. 11.25b. They are named Pelton wheels, after
Lester A. Pelton (1829–1908), who produced the first efficient design.

From Example 3.10 the force and power delivered to a Pelton wheel are theoretically

F � �Q(Vj � u)(1 � cos �)
(11.38)

P � Fu � �Qu(Vj � u)(1 � cos �)

where u � 2�nr is the bucket linear velocity and r is the pitch radius, or distance to
the jet centerline. A bucket angle � � 180° gives maximum power but is physically
impractical. In practice, � � 165°, or 1 � cos � � 1.966 or only 2 percent less than
maximum power.

From Eq. (11.38) the theoretical power of an impulse turbine is parabolic in bucket
speed u and is maximum when dP/du � 0, or

u* � 2�n*r � 	12	Vj (11.39) 

For a perfect nozzle, the entire available head would be converted to jet velocity Vj �
(2gH)1/2. Actually, since there are 2 to 8 percent nozzle losses, a velocity coefficient
C� is used

Vj � C� (2gH)1/2 0.92 � C� � 0.98 (11.40) 

By combining Eqs. (11.36) and (11.40), the theoretical impulse turbine efficiency becomes

� � 2(1 � cos �)�(C� � �) (11.41) 

where � � � peripheral-velocity factor

Maximum efficiency occurs at � � 	12	C� � 0.47.

u
	
(2gH)1/2
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Fig. 11.23 Large-scale turbine designs depend upon available head and flow rate and operating conditions: (a) Francis (radial); 
(b) Kaplan (propeller); (c) bulb mounting with propeller runner; (d) reversible pump turbine with radial runner. (Courtesy of 
Allis-Chalmers Fluid Products Company.)
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Fig. 11.24 Interior view of the 1.1-
million hp (820-MW) turbine units
on the Grand Coulee Dam of the
Columbia River, showing the spiral
case, the outer fixed vanes (“stay
ring’’), and the inner adjustable
vanes (“wicket gates’’). (Courtesy
of Allis-Chalmers Fluid Products 
Company.)

Fig. 11.25 Impulse turbine: (a) side
view of wheel and jet; (b) top view
of bucket; (c) typical velocity 
diagram.

Figure 11.26 shows Eq. (11.41) plotted for an ideal turbine (� � 180°, Cv � 1.0)
and for typical working conditions (� � 160°, Cv � 0.94). The latter case predicts 
�max � 85 percent at � � 0.47, but the actual data for a 24-in Pelton wheel test are
somewhat less efficient due to windage, mechanical friction, backsplashing, and nonuni-
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Fig. 11.26 Efficiency of an impulse
turbine calculated from Eq. (11.41):
solid curve � ideal, � � 180°,
Cv � 1.0; dashed curve � actual,
� � 160°, Cv � 0.94; open circles
� data, Pelton wheel, diameter �
2 ft.

form bucket flow. For this test �max � 80 percent, and, generally speaking, an impulse
turbine is not quite as efficient as the Francis or propeller turbines at their BEPs.

Figure 11.27 shows the optimum efficiency of the three turbine types, and the im-
portance of the power specific speed Nsp as a selection tool for the designer. These ef-
ficiencies are optimum and are obtained in careful design of large machines.

The water power available to a turbine may vary due to either net-head or flow-rate
changes, both of which are common in field installations such as hydroelectric plants.
The demand for turbine power also varies from light to heavy, and the operating re-
sponse is a change in the flow rate by adjustment of a gate valve or needle valve (Fig.
11.25a). As shown in Fig. 11.28, all three turbine types achieve fairly uniform effi-
ciency as a function of the level of power being extracted. Especially effective is the
adjustable-blade (Kaplan-type) propeller turbine, while the poorest is a fixed-blade pro-
peller. The term rated power in Fig. 11.28 is the largest power delivery guaranteed by
the manufacturer, as opposed to normal power, which is delivered at maximum effi-
ciency.

For further details of design and operation of turbomachinery, the readable and in-
teresting treatment in Ref. 33 is especially recommended. The feasibility of micro-
hydropower is discussed in [26]. See also Refs. 27 and 28.
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Fig. 11.28 Efficiency versus power
level for various turbine designs at
constant speed and head.

EXAMPLE 11.9

Investigate the possibility of using (a) a Pelton wheel similar to Fig. 11.26 or (b) the Francis
turbine family of Fig. 11.21d to deliver 30,000 bhp from a net head of 1200 ft.

Solution

From Fig. 11.27, the most efficient Pelton wheel occurs at about

Nsp � 4.5 �

or n � 183 r/min � 3.06 r/s

From Fig. 11.26 the best operating point is

� � 0.47 �

or D � 13.6 ft Ans. (a)

This Pelton wheel is perhaps a little slow and a trifle large. You could reduce D and increase n
by increasing Nsp to, say, 6 or 7 and accepting the slight reduction in efficiency. Or you could
use a double-hung, two-wheel configuration, each delivering 15,000 bhp, which changes D and
n by the factor 21/2:

Double wheel: n � (183)21/2 � 260 r/min D � � 9.6 ft Ans. (a)
13.6
	
21/2

�D(3.06 r/s)
		
[2(32.2)(1200)]1/2

(r/min)(30,000 bhp)1/2

			
(1200 ft)1.25
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Part (b) The Francis wheel of Fig. 11.21d must have

Nsp � 29 �

or n � 1183 r/min � 19.7 r/s

Then the optimum power coefficient is

CP* � 2.70 � �

or D5 � 412 D � 3.33 ft � 40 in Ans. (b)

This is a faster speed than normal practice, and the casing would have to withstand 1200 ft of
water or about 520 lbf/in2 internal pressure, but the 40-in size is extremely attractive. Francis
turbines are now being operated at heads up to 1500 ft.

Wind energy has long been used as a source of mechanical power. The familiar four-
bladed windmills of Holland, England, and the Greek islands have been used for cen-
turies to pump water, grind grain, and saw wood. Modern research concentrates on the
ability of wind turbines to generate electric power. Koeppl [47] stresses the potential
for propeller-type machines. Spera [49] gives a detailed discussion of the technical and
economic feasibility of large-scale electric power generation by wind. See also Refs.
46, 48, and 50 to 52.

Some examples of wind turbine designs are shown in Fig. 11.29. The familiar Amer-
ican multiblade farm windmill (Fig. 11.29a) is of low efficiency, but thousands are in
use as a rugged, reliable, and inexpensive way to pump water. A more efficient design
is the propeller mill in Fig. 11.29b, similar to the pioneering Smith-Putnam 1250-kW
two-bladed system which operated on Grampa’s Knob, 12 mi west of Rutland, Ver-
mont, from 1941 to 1945. The Smith-Putnam design broke because of inadequate blade
strength, but it withstood winds up to 115 mi/h and its efficiency was amply demon-
strated [47].

The Dutch, American multiblade, and propeller mills are examples of horizontal-
axis wind turbines (HAWTs), which are efficient but somewhat awkward in that they
require extensive bracing and gear systems when combined with an electric generator.
Thus a competing family of vertical-axis wind turbines (VAWTs) has been proposed
which simplifies gearing and strength requirements. Figure 11.29c shows the “egg-
beater’’ VAWT invented by G. J. M. Darrieus in 1925, now used in several govern-
ment-sponsored demonstration systems. To minimize centrifugal stresses, the twisted
blades of the Darrieus turbine follow a troposkien curve formed by a chain anchored
at two points on a spinning vertical rod.

An alternative VAWT, simpler to construct than the troposkien, is the straight-bladed
Darrieus-type turbine in Fig. 11.29d. This design, proposed by Reading University in
England, has blades which pivot due to centrifugal action as wind speeds increase, thus
limiting bending stresses.

30,000(550)
		
(1.94)(19.7)3D5

P
	
�n3D5

(r/min)(30,000 bhp)1/2

			
(1200 ft)1.25
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Fig. 11.29 Wind turbine designs:
(a) the American multiblade farm
HAWT; (b) propeller HAWT
(Courtesy of Grumman Aerospace
Corp.); (c) the Darrieus VAWT
(Courtesy of National Research
Council, Canada); (d) modified
straight-blade Darrieus VAWT
(Courtesy of Reading University—
Nat’l Wind Power Ltd.).
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Idealized Wind Turbine Theory

Fig. 11.30 Idealized actuator-disk
and streamtube analysis of flow
through a windmill.

The ideal, frictionless efficiency of a propeller windmill was predicted by A. Betz in
1920, using the simulation shown in Fig. 11.30. The propeller is represented by an ac-
tuator disk which creates across the propeller plane a pressure discontinuity of area A
and local velocity V. The wind is represented by a streamtube of approach velocity V1

and a slower downstream wake velocity V2. The pressure rises to pb just before the
disk and drops to pa just after, returning to free-stream pressure in the far wake. To
hold the propeller rigid when it is extracting energy from the wind, there must be a
leftward force F on its support, as shown.

A control-volume–horizontal-momentum relation applied between sections 1 and 2
gives

� Fx � �F � ṁ(V2 � V1)

A similar relation for a control volume just before and after the disk gives

�Fx � �F � (pb � pa)A � ṁ(Va � Vb) � 0

Equating these two yields the propeller force

F � (pb � pa)A � ṁ(V1 � V2) (11.42) 

Assuming ideal flow, the pressures can be found by applying the incompressible
Bernoulli relation up to the disk

From 1 to b: p� � 	12	�V2
1 � pb � 	12	�V2

From a to 2: pa � 	12	�V2 � p� � 	12	�V 2
2

Subtracting these and noting that ṁ � �AV through the propeller, we can substitute for
pb � pa in Eq. (11.42) to obtain

pb � pa � 	12	�(V2
1 � V 2

2) � �V(V1 � V2) 

or V � 	12	(V1 � V2) (11.43) 
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Fig. 11.31 Estimated performance
of various wind turbine designs as
a function of blade-tip speed ratio.
(From Ref. 53.)

Continuity and momentum thus require that the velocity V through the disk equal the
average of the wind and far-wake speeds.

Finally, the power extracted by the disk can be written in terms of V1 and V2 by
combining Eqs. (11.42) and (11.43)

P � FV � �AV2(V1 � V2) � 	14	�A(V 2
1 � V2

2)(V1 � V2) (11.44) 

For a given wind speed V1, we can find the maximum possible power by differentiat-
ing P with respect to V2 and setting equal to zero. The result is

P � Pmax � 	2
8
7	�AV 3

1 at V2 � 	13	V1 (11.45) 

which corresponds to V � 2V1/3 through the disk.
The maximum available power to the propeller is the mass flow through the pro-

peller times the total kinetic energy of the wind

Pavail � 	12	ṁV2
1 � 	12	�AV3

1

Thus the maximum possible efficiency of an ideal frictionless wind turbine is usually
stated in terms of the power coefficient

CP � (11.46) 

Equation (11.45) states that the total power coefficient is

Cp,max � 	12
6
7	 � 0.593 (11.47) 

This is called the Betz number and serves as an ideal with which to compare the ac-
tual performance of real windmills.

Figure 11.31 shows the measured power coefficients of various wind turbine de-
signs. The independent variable is not V2/V1 (which is artificial and convenient only in

P
	

	12	�AV3
1

11.6 Turbines 753

0.6

0.5

0.4

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8

American
multiblade

Savonius
rotor

Ideal,
propeller type

Grumman
windstream

(Fig. 11.29 b)

Dutch, four-arm

Darrieus
VAWT

High-speed
HAWT

Ideal
Betz

number

ωSpeed ratio    r/V1

Cp



Fig. 11.32 World availability of
land-based wind energy: estimated
annual electric output in kWh/kW
of a wind turbine rated at 11.2 m/s
(25 mi/h). (From Ref. 54.)

the ideal theory) but the ratio of blade-tip speed �r to wind speed. Note that the tip
can move much faster than the wind, a fact disturbing to the laity but familiar to en-
gineers in the behavior of iceboats and sailing vessels. The Darrieus has the many ad-
vantages of a vertical axis but has little torque at low speeds and also rotates more
slowly at maximum power than a propeller, thus requiring a higher gear ratio for the
generator. The Savonius rotor (Fig. 6.29b) has been suggested as a VAWT design be-
cause it produces power at very low wind speeds, but it is inefficient and susceptible
to storm damage because it cannot be feathered in high winds.

As shown in Fig. 11.32, there are many areas of the world where wind energy is an
attractive alternative. Greenland, Newfoundland, Argentina, Chile, New Zealand, Ice-
land, Ireland, and the United Kingdom have the highest prevailing winds, but Australia,
e.g., with only moderate winds, has the potential to generate half its electricity with
wind turbines [53]. In addition, since the ocean is generally even windier than the land,
there are many island areas of high potential for wind power. There have also been
proposals [47] for ocean-based floating windmill farms. The inexhaustible availability
of the winds, coupled with improved low-cost turbine designs, indicates a bright fu-
ture for this alternative.
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P11.3 A PDP can deliver almost any fluid, but there is always
a limiting very high viscosity for which performance will
deteriorate. Can you explain the probable reason?

P11.4 Figure 11.2c shows a double-screw pump. Sketch a sin-
gle-screw pump and explain its operation. How did
Archimedes’ screw pump operate?

P11.5 What type of pump is shown in Fig. P11.5? How does
it operate?

Problems
Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-
gineering Equations Solver (EES), while problems labeled with a
computer icon may require the use of a computer. The standard
end-of-chapter problems 11.1 to 11.103 (categorized in the prob-
lem list below) are followed by word problems W11.1 to W11.10,
comprehensive problems C11.1 to C11.3, and design project D11.1.

Problem distribution

Section Topic Problems

11.1 Introduction and classification 11.1–11.14
11.2 Centrifugal pump theory 11.15–11.21
11.3 Pump performance and similarity rules 11.22–11.41
11.3 Net positive-suction head 11.42–11.44
11.4 Specific speed: Mixed- and axial-flow pumps 11.45–11.62
11.5 Matching pumps to system characteristics 11.63–11.73
11.5 Pumps in parallel or series 11.74–11.81
11.5 Pump instability 11.82–11.83
11.6 Reaction and impulse turbines 11.84–11.99
11.6 Wind turbines 11.100–11.103

P11.1 Describe the geometry and operation of a peristaltic pos-
itive-displacement pump which occurs in nature.

P11.2 What would be the technical classification of the fol-
lowing turbomachines: (a) a household fan, (b) a wind-
mill, (c) an aircraft propeller, (d) a fuel pump in a car,
(e) an eductor, ( f ) a fluid-coupling transmission, and (g)
a power plant steam turbine?

Problems 755

Turbomachinery design is perhaps the most practical and most active application of the
principles of fluid mechanics. There are billions of pumps and turbines in use in the
world, and thousands of companies are seeking improvements. This chapter discusses
both positive-displacement devices and, more extensively, rotodynamic machines. With
the centrifugal pump as an example, the basic concepts of torque, power, head, flow
rate, and efficiency are developed for a turbomachine. Nondimensionalization leads to
the pump similarity rules and some typical dimensionless performance curves for ax-
ial and centrifugal machines. The single most useful pump parameter is found to be
the specific speed, which delineates the type of design needed. An interesting design
application is the theory of pumps combined in series and in parallel.

Turbines extract energy from flowing fluids and are of two types: impulse turbines,
which convert the momentum of a high-speed stream, and reaction turbines, where the
pressure drop occurs within the blade passages in an internal flow. By analogy with
pumps, the power specific speed is important for turbines and is used to classify them
into impulse, Francis, and propeller-type designs. A special case of reaction turbine
with unconfined flow is the wind turbine. Several types of windmills are discussed and
their relative performances compared.

Summary

P11.5

P11.6 Figure P11.6 shows two points a half-period apart in the
operation of a pump. What type of pump is this? How
does it work? Sketch your best guess of flow rate versus
time for a few cycles.

P11.7 A piston PDP has a 5-in diameter and a 2-in stroke and
operates at 750 r/min with 92 percent volumetric effi-
ciency. (a) What is its delivery, in gal/min? (b) If the pump
delivers SAE 10W oil at 20°C against a head of 50 ft,
what horsepower is required when the overall efficiency
is 84 percent?



P11.8 A centrifugal pump delivers 550 gal/min of water at 20°C
when the brake horsepower is 22 and the efficiency is 71
percent. (a) Estimate the head rise in ft and the pressure
rise in lbf/in2. (b) Also estimate the head rise and horse-
power if instead the delivery is 550 gal/min of gasoline
at 20°C.

P11.9 Figure P11.9 shows the measured performance of the
Vickers model PVQ40 piston pump when delivering SAE
10W oil at 180°F (� � 910 kg/m3). Make some general
observations about these data vis-à-vis Fig. 11.2 and your
intuition about the behavior of piston pumps.

P11.10 Suppose that the piston pump of Fig. P11.9 is used to de-
liver 15 gal/min of water at 20°C using 20 brake horse-
power. Neglecting Reynolds-number effects, use the fig-
ure to estimate (a) the speed in r/min and (b) the pressure
rise in lbf/in2.

P11.11 A pump delivers 1500 L/min of water at 20°C against a
pressure rise of 270 kPa. Kinetic- and potential-energy
changes are negligible. If the driving motor supplies 
9 kW, what is the overall efficiency?

P11.12 In a test of the centrifugal pump shown in Fig. P11.12,
the following data are taken: p1 � 100 mmHg (vacuum)
and p2 � 500 mmHg (gage). The pipe diameters are 
D1 � 12 cm and D2 � 5 cm. The flow rate is 180 gal/min
of light oil (SG � 0.91). Estimate (a) the head developed,

in meters; and (b) the input power required at 75 percent
efficiency.

P11.13 A 20-hp pump delivers 400 gal/min of gasoline at 20°C
with 75 percent efficiency. What head and pressure rise
result across the pump?

P11.14 A pump delivers gasoline at 20°C and 12 m3/h. At the
inlet p1 � 100 kPa, z1 � 1 m, and V1 � 2 m/s. At the exit
p2 � 500 kPa, z2 � 4 m, and V2 � 3 m/s. How much
power is required if the motor efficiency is 75 percent?

P11.15 A lawn sprinkler can be used as a simple turbine. As
shown in Fig. P11.15, flow enters normal to the paper in
the center and splits evenly into Q/2 and Vrel leaving each
nozzle. The arms rotate at angular velocity � and do work
on a shaft. Draw the velocity diagram for this turbine.
Neglecting friction, find an expression for the power de-
livered to the shaft. Find the rotation rate for which the
power is a maximum.
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P11.16 For the “sprinkler turbine’’ of Fig. P11.15, let R � 18 cm,
with total flow rate of 14 m3/h of water at 20°C. If the noz-
zle exit diameter is 8 mm, estimate (a) the maximum power
delivered in W and (b) the appropriate rotation rate in r/min.

P11.17 A centrifugal pump has d1 � 7 in, d2 � 13 in, b1 � 4 in,
b2 � 3 in, �1 � 25°, and �2 � 40° and rotates at 1160
r/min. If the fluid is gasoline at 20°C and the flow enters
the blades radially, estimate the theoretical (a) flow rate
in gal/min, (b) horsepower, and (c) head in ft.

P11.18 A jet of velocity V strikes a vane which moves to the right at
speed Vc, as in Fig. P11.18. The vane has a turning angle �.

P11.18

EES



Derive an expression for the power delivered to the vane by
the jet. For what vane speed is the power maximum?

P11.19 A centrifugal pump has r2 � 9 in, b2 � 2 in, and �2 �
35° and rotates at 1060 r/min. If it generates a head of
180 ft, determine the theoretical (a) flow rate in gal/min
and (b) horsepower. Assume near-radial entry flow.

P11.20 Suppose that Prob. 11.19 is reversed into a statement of
the theoretical power Pw � 153 hp. Can you then com-
pute the theoretical (a) flow rate and (b) head? Explain
and resolve the difficulty which arises.

P11.21 The centrifugal pump of Fig. P11.21 develops a flow rate of
4200 gal/min of gasoline at 20°C with near-radial absolute
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inflow. Estimate the theoretical (a) horsepower, (b) head rise,
and (c) appropriate blade angle at the inner radius.

P11.22 A 37-cm-diameter centrifugal pump, running at 2140
r/min with water at 20°C, produces the following per-
formance data:

Q, m3/s 0.0 0.05 0.10 0.15 0.20 0.25 0.30

H, m 105 104 102 100 95 85 67

P, kW 100 115 135 171 202 228 249

(a) Determine the best efficiency point. (b) Plot CH ver-
sus CQ. (c) If we desire to use this same pump family to
deliver 7000 gal/min of kerosine at 20°C at an input power
of 400 kW, what pump speed (in r/min) and impeller size
(in cm) are needed? What head will be developed?

P11.23 If the 38-in-diameter pump of Fig. 11.7b is used to de-
liver 20°C kerosine at 850 r/min and 22,000 gal/min, what
(a) head and (b) brake horsepower will result?

P11.24 Figure P11.24 shows performance data for the Taco, Inc.,
model 4013 pump. Compute the ratios of measured shut-
off head to the ideal value U2/g for all seven impeller
sizes. Determine the average and standard deviation of
this ratio and compare it to the average for the six im-
pellers in Fig. 11.7.

P11.25 At what speed in r/min should the 35-in-diameter pump
of Fig. 11.7b be run to produce a head of 400 ft at a dis-
charge of 20,000 gal/min? What brake horsepower will
be required? Hint: Fit H(Q) to a formula.

P11.26 Determine if the seven Taco, Inc., pump sizes in Fig.
P11.24 can be collapsed into a single dimensionless chart
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Fig. P11.24 Performance data for a centrifugal pump. (Courtesy of Taco, Inc., Cranston, Rhode Island.)



of CH, CP, and � versus CQ, as in Fig. 11.8. Comment
on the results.

P11.27 The 12-in pump of Fig. P11.24 is to be scaled up in size
to provide a head of 90 ft and a flow rate of 1000 gal/min
at BEP. Determine the correct (a) impeller diameter, (b)
speed in r/min, and (c) horsepower required.

P11.28 Tests by the Byron Jackson Co. of a 14.62-in-diameter
centrifugal water pump at 2134 r/min yield the follow-
ing data:

Q, ft3/s 0 2 4 6 8 10

H, ft 340 340 340 330 300 220

bhp 135 160 205 255 330 330

What is the BEP? What is the specific speed? Estimate
the maximum discharge possible.

P11.29 If the scaling laws are applied to the pump of Prob.
11.28 for the same impeller diameter, determine (a) the
speed for which the shutoff head will be 280 ft, (b) the
speed for which the BEP flow rate will be 8.0 ft3/s, and
(c) the speed for which the BEP conditions will require
80 hp.

P11.30 A pump from the same family as Prob. 11.28 is built with
D � 18 in and a BEP power of 250 hp for gasoline (not
water). Using the scaling laws, estimate the resulting (a)
speed in r/min, (b) flow rate at BEP, and (c) shutoff head.

P11.31 Figure P11.31 shows performance data for the Taco, Inc.,
model 4010 pump. Compute the ratios of measured shut-
off head to the ideal value U2/g for all seven impeller
sizes. Determine the average and standard deviation of
this ratio, and compare it to the average of 0.58 � 0.02
for the seven impellers in Fig. P11.24. Comment on your
results.
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P11.32 Determine if the seven Taco, Inc., impeller sizes in Fig.
P11.31 can be collapsed into a single dimensionless chart
of CH, CP, and � versus CQ, as in Fig. 11.8. Comment
on the results.

P11.33 Clearly the maximum efficiencies of the pumps in Figs.
P11.24 and P11.31 decrease with impeller size. Compare
�max for these two pump families with both the Moody
and the Anderson correlations, Eqs. (11.29). Use the cen-
tral impeller size as a comparison point.

P11.34 You are asked to consider a pump geometrically similar
to the 9-in-diameter pump of Fig. P11.31 to deliver 1200
gal/min at 1500 r/min. Determine the appropriate (a) im-
peller diameter, (b) BEP horsepower, (c) shutoff head,
and (d) maximum efficiency. The fluid is kerosine, not
water.

P11.35 An 18-in-diameter centrifugal pump, running at 880
r/min with water at 20°C, generates the following per-
formance data:

Q, gal/min 0.0 2000 4000 6000 8000 10,000

H, ft 92 89 84 78 68 50

P, hp 100 112 130 143 156 163

Determine (a) the BEP, (b) the maximum efficiency, and
(c) the specific speed. (d) Plot the required input power
versus the flow rate. 

P11.36 Plot the dimensionless performance curves for the pump
of Prob. 11.35 and compare with Fig. 11.8. Find the ap-
propriate diameter in inches and speed in r/min for a geo-
metrically similar pump to deliver 400 gal/min against a
head of 200 ft. What brake horsepower would be re-
quired?

P11.37 The efficiency of a centrifugal pump can be approximated
by the curve fit � � aQ 	 bQ3, where a and b are con-
stants. For this approximation, (a) what is the ratio of Q*
at BEP to Qmax? If the maximum efficiency is 88 per-
cent, what is the efficiency at (b) 
13
Qmax and (c) 
43
Q*?

P11.38 A 6.85-in pump, running at 3500 r/min, has the follow-
ing measured performance for water at 20°C:

Q, gal/min 50 100 150 200 250 300 350 400 450

H, ft 201 200 198 194 189 181 169 156 139

�, % 29 50 64 72 77 80 81 79 74

(a) Estimate the horsepower at BEP. If this pump is
rescaled in water to provide 20 bhp at 3000 r/min, de-
termine the appropriate (b) impeller diameter, (c) flow
rate, and (d) efficiency for this new condition.

P11.39 The Allis-Chalmers D30LR centrifugal compressor de-
livers 33,000 ft3/min of SO2 with a pressure change from

14.0 to 18.0 lbf/in2 absolute using an 800-hp motor at
3550 r/min. What is the overall efficiency? What will the
flow rate and �p be at 3000 r/min? Estimate the diame-
ter of the impeller.

P11.40 The specific speed Ns, as defined by Eqs. (11.30), does
not contain the impeller diameter. How then should we
size the pump for a given Ns? Logan [7] suggests a pa-
rameter called the specific diameter Ds, which is a di-
mensionless combination of Q, gH, and D. (a) If Ds is
proportional to D, determine its form. (b) What is the re-
lationship, if any, of Ds to CQ*, CH*, and CP*? (c) Esti-
mate Ds for the two pumps of Figs. 11.8 and 11.13.

P11.41 It is desired to build a centrifugal pump geometrically
similar to that of Prob. 11.28 to deliver 6500 gal/min of
gasoline at 20°C at 1060 r/min. Estimate the resulting (a)
impeller diameter, (b) head, (c) brake horsepower, and
(d) maximum efficiency.

P11.42 An 8-in model pump delivering 180°F water at 800
gal/min and 2400 r/min begins to cavitate when the inlet
pressure and velocity are 12 lbf/in2 absolute and 20 ft/s,
respectively. Find the required NPSH of a prototype
which is 4 times larger and runs at 1000 r/min.

P11.43 The 28-in-diameter pump in Fig. 11.7a at 1170 r/min is used
to pump water at 20°C through a piping system at 14,000
gal/min. (a) Determine the required brake horsepower. The
average friction factor is 0.018. (b) If there is 65 ft of 12-in-
diameter pipe upstream of the pump, how far below the sur-
face should the pump inlet be placed to avoid cavitation?

P11.44 The pump of Prob. 11.28 is scaled up to an 18-in diam-
eter, operating in water at best efficiency at 1760 r/min.
The measured NPSH is 16 ft, and the friction loss be-
tween the inlet and the pump is 22 ft. Will it be sufficient
to avoid cavitation if the pump inlet is placed 9 ft below
the surface of a sea-level reservoir?

P11.45 Determine the specific speeds of the seven Taco, Inc.,
pump impellers in Fig. P11.24. Are they appropriate for
centrifugal designs? Are they approximately equal within
experimental uncertainty? If not, why not?

P11.46 The answer to Prob. 11.40 is that the dimensionless “spe-
cific diameter” takes the form Ds � D(gH*)1/4/Q*1/2,
evaluated at the BEP. Data collected by the author for 30
different pumps indicate, in Fig. P11.46, that Ds corre-
lates well with specific speed Ns. Use this figure to esti-
mate the appropriate impeller diameter for a pump which
delivers 20,000 gal/min of water and a head of 400 ft
when running at 1200 r/min. Suggest a curve-fit formula
to the data. Hint: Use a hyperbolic formula.

P11.47 A typical household basement sump pump provides a
discharge of 5 gal/min against a head of 15 ft. Estimate
(a) the maximum efficiency and (b) the minimum horse-
power required to drive such a pump at 1750 r/min.
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P11.48 Compute the specific speeds for the pumps in Probs.
11.28, 11.35, and 11.38 plus the median sizes in Figs.
P11.24 and P11.31. Then determine if their maximum ef-
ficiencies match the values predicted in Fig. 11.14.

P11.49 Data collected by the author for flow coefficient at BEP
for 30 different pumps are plotted versus specific speed
in Fig. P11.49. Determine if the values of C*Q for the five
pumps in Prob. 11.48 also fit on this correlation. If so,
suggest a curve-fitted formula for the data.

P11.52 An axial-flow fan operates in sea-level air at 1200 r/min
and has a blade-tip diameter of 1 m and a root diameter
of 80 cm. The inlet angles are �1 � 55° and �1 � 30°,
while at the outlet �2 � 60°. Estimate the theoretical val-
ues of the (a) flow rate, (b) horsepower, and (c) outlet
angle �2.

P11.53 If the axial-flow pump of Fig. 11.13 is used to deliver
70,000 gal/min of 20°C water at 1170 r/min, estimate (a)
the proper impeller diameter, (b) the shutoff head, (c) the
shutoff horsepower, and (d) �p at best efficiency.

P11.54 The Colorado River Aqueduct uses Worthington Corp.
pumps which deliver 200 ft3/s at 450 r/min against a head
of 440 ft. What types of pump are these? Estimate the
impeller diameter.

P11.55 We want to pump 70°C water at 20,000 gal/min and 1800
r/min. Estimate the type of pump, the horsepower re-
quired, and the impeller diameter if the required pressure
rise for one stage is (a) 170 kPa and (b) 1350 kPa.

P11.56 A pump is needed to deliver 40,000 gal/min of gasoline
at 20°C against a head of 90 ft. Find the impeller size,
speed, and brake horsepower needed to use the pump
families of (a) Fig. 11.8 and (b) Fig. 11.13. Which is the
better design?

P11.57 Performance data for a 21-in-diameter air blower running
at 3550 r/min are as follows:

�p, inH2O 29 30 28 21 10

Q, ft3/min 500 1000 2000 3000 4000

bhp 6 8 12 18 25

Note the fictitious expression of pressure rise in terms of
water rather than air. What is the specific speed? How
does the performance compare with Fig. 11.8? What are
C*Q, C*H, and C*P?
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Fig. P11.46 Specific diameter at BEP for 30 commer-
cial pumps.
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Fig. P11.49 Flow coefficient at BEP for 30 commercial
pumps.

P11.50 Data collected by the author for power coefficient at BEP
for 30 different pumps are plotted versus specific speed
in Fig. P11.50. Determine if the values of C*P for the five
pumps in Prob. 11.48 also fit on this correlation. If so,
suggest a curve-fitted formula for the data.

P11.51 An axial-flow pump delivers 40 ft3/s of air which enters
at 20°C and 1 atm. The flow passage has a 10-in outer
radius and an 8-in inner radius. Blade angles are �1 �
60° and �2 � 70°, and the rotor runs at 1800 r/min. For
the first stage compute (a) the head rise and (b) the power
required.

Fig. P11.50 Power coefficient at BEP for 30 commer-
cial pumps.



P11.58 The Worthington Corp. model A-12251 water pump, op-
erating at maximum efficiency, produces 53 ft of head at
3500 r/min, 1.1 bhp at 3200 r/min, and 60 gal/min at 2940
r/min. What type of pump is this? What is its efficiency,
and how does this compare with Fig. 11.14? Estimate the
impeller diameter.

P11.59 Suppose it is desired to deliver 700 ft3/min of propane
gas (molecular weight � 44.06) at 1 atm and 20°C with
a single-stage pressure rise of 8.0 inH2O. Determine the
appropriate size and speed for using the pump families
of (a) Prob. 11.57 and (b) Fig. 11.13. Which is the bet-
ter design?

P11.60 A 45-hp pump is desired to generate a head of 200 ft
when running at BEP with 20°C gasoline at 1200 r/min.
Using the correlations in Figs. P11.49 and P11.50, de-
termine the appropriate (a) specific speed, (b) flow rate,
and (c) impeller diameter.

P11.61 A mine ventilation fan, running at 295 r/min, delivers 500
m3/s of sea-level air with a pressure rise of 1100 Pa. Is
this fan axial, centrifugal, or mixed? Estimate its diame-
ter in ft. If the flow rate is increased 50 percent for the
same diameter, by what percentage will the pressure rise
change?

P11.62 The actual mine ventilation fan discussed in Prob. 11.61
had a diameter of 20 ft [20, p. 339]. What would be the
proper diameter for the pump family of Fig. 11.14 to pro-
vide 500 m3/s at 295 r/min and BEP? What would be the
resulting pressure rise in Pa?

P11.63 The 36.75-in pump in Fig. 11.7a at 1170 r/min is used
to pump water at 60°F from a reservoir through 1000 ft
of 12-in-ID galvanized-iron pipe to a point 200 ft above
the reservoir surface. What flow rate and brake horse-
power will result? If there is 40 ft of pipe upstream of
the pump, how far below the surface should the pump in-
let be placed to avoid cavitation?

P11.64 In Prob. 11.63 the operating point is off design at an ef-
ficiency of only 77 percent. Is it possible, with the sim-
ilarity rules, to change the pump rotation speed to deliver
the water near BEP? Explain your results.

P11.65 The 38-in pump of Fig. 11.7a is used in series to lift 20°C
water 3000 ft through 4000 ft of 18-in-ID cast-iron pipe.
For most efficient operation, how many pumps in series
are needed if the rotation speed is (a) 710 r/min and (b)
1200 r/min?

P11.66 It is proposed to run the pump of Prob. 11.35 at 880 r/min
to pump water at 20°C through the system in Fig. P11.66.
The pipe is 20-cm-diameter commercial steel. What flow
rate in ft3/min will result? Is this an efficient application?

P11.67 The pump of Prob. 11.35, running at 880 r/min, is to
pump water at 20°C through 75 m of horizontal galva-
nized-iron pipe. All other system losses are neglected.

Determine the flow rate and input power for (a) pipe di-
ameter � 20 cm and (b) the pipe diameter found to yield
maximum pump efficiency.

P11.68 A 24-in pump is homologous to the 32-in pump in Fig.
11.7a. At 1400 r/min this pump delivers 12,000 gal/min
of water from one reservoir through a long pipe to an-
other 50 ft higher. What will the flow rate be if the pump
speed is increased to 1750 r/min? Assume no change in
pipe friction factor or efficiency.

P11.69 The pump of Prob. 11.38, running at 3500 r/min, is used
to deliver water at 20°C through 600 ft of cast-iron pipe
to an elevation 100 ft higher. Determine (a) the proper
pipe diameter for BEP operation and (b) the flow rate
which results if the pipe diameter is 3 in.

P11.70 The pump of Prob. 11.28, operating at 2134 r/min, is used
with 20°C water in the system of Fig. P11.70. (a) If it is
operating at BEP, what is the proper elevation z2? (b) If
z2 � 225 ft, what is the flow rate if d � 8 in.?
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4 m

Pump

8 m

3 m

20 m 12 m

P11.66

z1 = 100 ft

Pump

z 2

1500 ft of
cast-iron pipe

P11.70

P11.71 The pump of Prob. 11.38, running at 3500 r/min, deliv-
ers water at 20°C through 7200 ft of horizontal 5-in-di-
ameter commercial-steel pipe. There are a sharp entrance,
sharp exit, four 90° elbows, and a gate valve. Estimate
(a) the flow rate if the valve is wide open and (b) the
valve closing percentage which causes the pump to op-
erate at BEP. (c) If the latter condition holds continuously
for 1 year, estimate the energy cost at 10 ¢/kWh.

P11.72 Performance data for a small commercial pump are as
follows:

Q, gal/min 0 10 20 30 40 50 60 70

H, ft 75 75 74 72 68 62 47 24
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This pump supplies 20°C water to a horizontal 
58
-in-
diameter garden hose (
 � 0.01 in) which is 50 ft long.
Estimate (a) the flow rate and (b) the hose diameter which
would cause the pump to operate at BEP.

P11.73 The piston pump of Fig. P11.9 is run at 1500 r/min to
deliver SAE 10W oil through 100 m of vertical 2-cm-di-
ameter wrought-iron pipe. If other system losses are ne-
glected, estimate (a) the flow rate, (b) the pressure rise,
and (c) the power required.

P11.74 The 32-in pump in Fig. 11.7a is used at 1170 r/min in a
system whose head curve is Hs (ft) � 100 � 1.5Q2, with
Q in thousands of gallons of water per minute. Find the
discharge and brake horsepower required for (a) one
pump, (b) two pumps in parallel, and (c) two pumps in
series. Which configuration is best?

P11.75 Two 35-in pumps from Fig. 11.7b are installed in paral-
lel for the system of Fig. P11.75. Neglect minor losses.
For water at 20°C, estimate the flow rate and power re-
quired if (a) both pumps are running and (b) one pump
is shut off and isolated.

P11.80 It is proposed to use one 32- and one 28-in pump from Fig.
11.7a in parallel to deliver water at 60°F. The system-head
curve is Hs � 50 � 0.3Q2, with Q in thousands of gallons
per minute. What will the head and delivery be if both
pumps run at 1170 r/min? If the 28-in pump is reduced be-
low 1170 r/min, at what speed will it cease to deliver?

P11.81 Reconsider the system of Fig. P6.68. Use the Byron Jack-
son pump of Prob. 11.28 running at 2134 r/min, no scal-
ing, to drive the flow. Determine the resulting flow rate
between the reservoirs. What is the pump efficiency?

P11.82 The S-shaped head-versus-flow curve in Fig. P11.82 oc-
curs in some axial-flow pumps. Explain how a fairly flat
system-loss curve might cause instabilities in the opera-
tion of the pump. How might we avoid instability?
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z 1 = 200 ft
1 statute mile
of cast-iron pipe,
24-in diameter

Two pumps

z2 = 300 ft

P11.75

P11.76 Two 32-in pumps from Fig. 11.7a are combined in par-
allel to deliver water at 60°F through 1500 ft of hori-
zontal pipe. If f � 0.025, what pipe diameter will ensure
a flow rate of 35,000 gal/min for n � 1170 r/min?

P11.77 Two pumps of the type tested in Prob. 11.22 are to be
used at 2140 r/min to pump water at 20°C vertically up-
ward through 100 m of commercial-steel pipe. Should
they be in series or in parallel? What is the proper pipe
diameter for most efficient operation?

P11.78 Suppose that the two pumps in Fig. P11.75 are modified
to be in series, still at 710 r/min. What pipe diameter is
required for BEP operation?

P11.79 Two 32-in pumps from Fig. 11.7a are to be used in se-
ries at 1170 r/min to lift water through 500 ft of vertical
cast-iron pipe. What should the pipe diameter be for most
efficient operation? Neglect minor losses.

H

Q0

H

Q0

P11.82

P11.83

P11.83 The low-shutoff head-versus-flow curve in Fig. P11.83
occurs in some centrifugal pumps. Explain how a fairly
flat system-loss curve might cause instabilities in the op-
eration of the pump. What additional vexation occurs
when two of these pumps are in parallel? How might we
avoid instability?

P11.84 Turbines are to be installed where the net head is 400 ft
and the flow rate 250,000 gal/min. Discuss the type, num-
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ber, and size of turbine which might be selected if the
generator selected is (a) 48-pole, 60-cycle (n � 150
r/min) and (b) 8-pole (n � 900 r/min). Why are at least
two turbines desirable from a planning point of view?

P11.85 Turbines at the Conowingo Plant on the Susquehanna
River each develop 54,000 bhp at 82 r/min under a head
of 89 ft. What type of turbines are these? Estimate the
flow rate and impeller diameter.

P11.86 The Tupperware hydroelectric plant on the Blackstone
River has four 36-in-diameter turbines, each providing
447 kW at 200 r/min and 205 ft3/s for a head of 30 ft.
What type of turbines are these? How does their perfor-
mance compare with Fig. 11.21?

P11.87 An idealized radial turbine is shown in Fig. P11.87. The
absolute flow enters at 30° and leaves radially inward.
The flow rate is 3.5 m3/s of water at 20°C. The blade
thickness is constant at 10 cm. Compute the theoretical
power developed at 100 percent efficiency.

P11.92 At a proposed turbine installation the available head is
800 ft, and the water flow rate is 40,000 gal/min. Dis-
cuss the size, speed, and number of turbines which might
be suitable for this purpose while using (a) a Pelton wheel
and (b) a Francis wheel.

P11.93 Figure P11.93 shows a cutaway of a cross-flow or
“Banki’’ turbine [55], which resembles a squirrel cage
with slotted curved blades. The flow enters at about 2 
o’clock, passes through the center and then again through
the blades, leaving at about 8 o’clock. Report to the class
on the operation and advantages of this design, includ-
ing idealized velocity vector diagrams.
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V2

b = 10 cm

30°

V1 40 cm

70 cm135 r / min

P11.87

P11.88 A certain turbine in Switzerland delivers 25,000 bhp at
500 r/min under a net head of 5330 ft. What type of tur-
bine is this? Estimate the approximate discharge and size.

P11.89 A Pelton wheel of 12-ft pitch diameter operates under a
net head of 2000 ft. Estimate the speed, power output,
and flow rate for best efficiency if the nozzle exit diam-
eter is 4 in.

P11.90 An idealized radial turbine is shown in Fig. P11.90. The
absolute flow enters at 25° with the blade angles as
shown. The flow rate is 8 m3/s of water at 20°C. The
blade thickness is constant at 20 cm. Compute the theo-
retical power developed at 100 percent efficiency.

P11.91 The flow through an axial-flow turbine can be idealized
by modifying the stator-rotor diagrams of Fig. 11.12 for
energy absorption. Sketch a suitable blade and flow
arrangement and the associated velocity vector diagrams.
For further details see chap. 8 of Ref. 25.

b = 20 cm

1.2 m

35°

25°V2

Vr 2

80
r / min

Vr 1

30°

0.8 m

P11.90

Flow

Flow
P11.93

P11.94 A simple cross-flow turbine, Fig. P11.93, was constructed
and tested at the University of Rhode Island. The blades
were made of PVC pipe cut lengthwise into three 120°-
arc pieces. When it was tested in water at a head of 5.3
ft and a flow rate of 630 gal/min, the measured power



output was 0.6 hp. Estimate (a) the efficiency and (b) the
power specific speed if n � 200 rev/min.

P11.95 One can make a theoretical estimate of the proper diam-
eter for a penstock in an impulse turbine installation, as
in Fig. P11.95. Let L and H be known, and let the tur-
bine performance be idealized by Eqs. (11.38) and
(11.39). Account for friction loss hf in the penstock, but
neglect minor losses. Show that (a) the maximum power
is generated when hf � H/3, (b) the optimum jet veloc-
ity is (4gH/3)1/2, and (c) the best nozzle diameter is 
Dj � [D5/(2 fL)]1/4, where f is the pipe-friction factor.

(11.20), the empirical criterion given by Wislicenus [4]
for cavitation is

Nss � � 11,000 

Use this criterion to compute how high z1 	 z2, the im-
peller eye in Fig. P11.98, can be placed for a Francis tur-
bine with a head of 300 ft, Nsp � 40, and pa � 14 lbf/in2

absolute before cavitation occurs in 60°F water.
P11.100 One of the largest wind generators in operation today is

the ERDA/NASA two-blade propeller HAWT in San-
dusky, Ohio. The blades are 125 ft in diameter and reach
maximum power in 19 mi/h winds. For this condition es-
timate (a) the power generated in kW, (b) the rotor speed
in r/min, and (c) the velocity V2 behind the rotor.

P11.101 A Darrieus VAWT in operation in Lumsden, Saskatchewan,
that is 32 ft high and 20 ft in diameter sweeps out an area
of 432 ft2. Estimate (a) the maximum power and (b) the
rotor speed if it is operating in 16 mi/h winds.

P11.102 An American 6-ft diameter multiblade HAWT is used to
pump water to a height of 10 ft through 3-in-diameter
cast-iron pipe. If the winds are 12 mi/h, estimate the rate
of water flow in gal/min.

P11.103 A very large Darrieus VAWT was constructed by the U.S.
Department of Energy near Sandia, New Mexico. It is 
60 ft high and 30 ft in diameter, with a swept area of
1200 ft2. If the turbine is constrained to rotate at 90 r/min,
use Fig. 11.31 to plot the predicted power output in kW
versus wind speed in the range V � 5 to 40 mi/h.

(r/min)(gal/min)1/2




[NPSH (ft)]3/4
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Vj

Reservoir

Penstock: L, D

H

P11.95

P11.96 Apply the results of Prob. 11.95 to determining the opti-
mum (a) penstock diameter and (b) nozzle diameter for
the data of Prob. 11.92 with a commercial-steel penstock
of length 1500 ft.

P11.97 Consider the following nonoptimum version of Prob.
11.95: H � 450 m, L � 5 km, D � 1.2 m, Dj � 20 cm.
The penstock is concrete, 
 � 1 mm. The impulse wheel
diameter is 3.2 m. Estimate (a) the power generated by
the wheel at 80 percent efficiency and (b) the best speed
of the wheel in r/min. Neglect minor losses.

P11.98 Francis and Kaplan turbines are often provided with draft
tubes, which lead the exit flow into the tailwater region,
as in Fig. P11.98. Explain at least two advantages in us-
ing a draft tube.

P11.99 Turbines can also cavitate when the pressure at point 1
in Fig. P11.98 drops too low. With NPSH defined by Eq.

1
2

P11.98

Word Problems

W11.1 We know that an enclosed rotating bladed impeller will
impart energy to a fluid, usually in the form of a pres-
sure rise, but how does it actually happen? Discuss, with
sketches, the physical mechanisms through which an im-
peller actually transfers energy to a fluid.

W11.2 Dynamic pumps (as opposed to PDPs) have difficulty
moving highly viscous fluids. Lobanoff and Ross [15]
suggest the following rule of thumb: D (in) �
0.015�/�water, where D is the diameter of the discharge
pipe. For example, SAE 30W oil (� 300�water) should
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require at least a 4.5-in outlet. Can you explain some rea-
sons for this limitation?

W11.3 The concept of NPSH dictates that liquid dynamic pumps
should generally be immersed below the surface. Can
you explain this? What is the effect of increasing the liq-
uid temperature?

W11.4 For nondimensional fan performance, Wallis [20] sug-
gests that the head coefficient should be replaced by
FTP/(�n2D2), where FTP is the fan total pressure change.
Explain the usefulness of this modification.

W11.5 Performance data for centrifugal pumps, even if well
scaled geometrically, show a decrease in efficiency with
decreasing impeller size. Discuss some physical reasons
why this is so.

W11.6 Consider a dimensionless pump performance chart such
as Fig. 11.8. What additional dimensionless parameters

might modify or even destroy the similarity indicated in
such data?

W11.7 One parameter not discussed in this text is the number
of blades on an impeller. Do some reading on this sub-
ject, and report to the class about its effect on pump per-
formance.

W11.8 Explain why some pump performance curves may lead
to unstable operating conditions.

W11.9 Why are Francis and Kaplan turbines generally consid-
ered unsuitable for hydropower sites where the available
head exceeds 1000 ft?

W11.10 Do some reading on the performance of the free propeller
that is used on small, low-speed aircraft. What dimen-
sionless parameters are typically reported for the data?
How do the performance and efficiency compare with
those for the axial-flow pump?
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C11.1

Comprehensive Problems

C11.1 The net head of a little aquarium pump is given by the man-
ufacturer as a function of volume flow rate as listed below:

Q, m3/s H, mH2O

0 1.10
1.0 E-6 1.00
2.0 E-6 0.80
3.0 E-6 0.60
4.0 E-6 0.35
5.0 E-6 0.0

What is the maximum achievable flow rate if you use this
pump to pump water from the lower reservoir to the upper
reservoir as shown in Fig. C11.1? Note: The tubing is

smooth with an inner diameter of 5.0 mm and a total length
of 29.8 m. The water is at room temperature and pressure.
Minor losses in the system can be neglected.

C11.2 Reconsider Prob. 6.68 as an exercise in pump selection. Se-
lect an impeller size and rotational speed from the Byron
Jackson pump family of Prob. 11.28 which will deliver a
flow rate of 3 ft3/s to the system of Fig. P6.68 at minimum
input power. Calculate the horsepower required.

C11.3 Reconsider Prob. 6.77 as an exercise in turbine selection.
Select an impeller size and rotational speed from the Fran-
cis turbine family of Fig. 11.21d which will deliver maxi-
mum power generated by the turbine. Calculate the turbine
power output and remark on the practicality of your design.

C11.4 A pump provides a net head H which is dependent on the
volume flow rate Q, as follows: H � a � bQ2, where a �
80 m and b � 20 s2/m5. The pump delivers water at 20°C
through a horizontal 30-cm-diameter cast-iron pipe which
is 120 m long. The pressures at the inlet and exit of the sys-
tem are the same. Neglecting minor losses, calculate the ex-
pected volume flow rate in gal/min.

C11.5 In Prob. 11.23, estimate the efficiency of the pump in two
ways: (a) Read it directly from Fig. 11.7b (for the dynam-
ically similar water pump); and (b) Calculate it from Eq.
(11.5) for the actual kerosene flow. Compare your results
and discuss any discrepancies.

Pump

Q

Q

0.80 m
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Design Project

D11.1 To save on electricity costs, a town water supply system uses
gravity-driven flow from five large storage tanks during the
day and then refills these tanks from 10 p.m. to 6 a.m. at a
cheaper night rate of 7 ¢/kWh. The total resupply needed
each night varies from 5 E5 to 2 E6 gal, with no more than
5 E5 gallons to any one tank. Tank elevations vary from 40
to 100 ft. A single constant-speed pump, drawing from a large
groundwater aquifer and valved into five different cast-iron
tank supply lines, does this job. Distances from the pump to
the five tanks vary more or less evenly from 1 to 3 mi. Each
line averages one elbow every 100 ft and has four butterfly
valves which can be controlled at any desirable angle. Select
a suitable pump family from one of the six data sets in this

chapter: Figs. 11.8, P11.24, and P11.31 plus Probs. 11.28,
11.35, and 11.38. Assume ideal similarity (no Reynolds-num-
ber or pump roughness effects). The goal is to determine
pump and pipeline sizes which achieve minimum total cost
over a 5-year period. Some suggested cost data are

1. Pump and motor: $2500 plus $1500 per inch of pipe
size

2. Valves: $100 plus $100 per inch of pipe size

3. Pipelines: 50¢ per inch of diameter per foot of length

Since the flow and elevation parameters vary considerably,
a random daily variation within the specified ranges might
give a realistic approach.
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Fig. A.1 Absolute viscosity of com-
mon fluids at 1 atm.
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Fig. A.2 Kinematic viscosity of
common fluids at 1 atm.
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Table A.1 Viscosity and Density of
Water at 1 atm

Suggested curve fits for water in the range 0 � T � 100°C:

�(kg/m3) � 1000 � 0.0178T°C � 4°C1.7 � 0.2%

ln �
�
�

0
� � �1.704 � 5.306z � 7.003z2

z 	 �
2
T
73

K
K

� �0 	 1.788 E-3 kg/(m 
 s)

Physical Properties of Fluids 771

T, °C �, kg/m3 �, N � s/m2 �, m2/s T, °F �, slug/ft3 �, lb � s/ft2 �, ft2/s

0 1000 1.788 E-3 1.788 E-6 32 1.940 3.73 E-5 1.925 E-5
10 1000 1.307 E-3 1.307 E-6 50 1.940 2.73 E-5 1.407 E-5
20 998 1.003 E-3 1.005 E-6 68 1.937 2.09 E-5 1.082 E-5
30 996 0.799 E-3 0.802 E-6 86 1.932 1.67 E-5 0.864 E-5
40 992 0.657 E-3 0.662 E-6 104 1.925 1.37 E-5 0.713 E-5
50 988 0.548 E-3 0.555 E-6 122 1.917 1.14 E-5 0.597 E-5
60 983 0.467 E-3 0.475 E-6 140 1.908 0.975 E-5 0.511 E-5
70 978 0.405 E-3 0.414 E-6 158 1.897 0.846 E-5 0.446 E-5
80 972 0.355 E-3 0.365 E-6 176 1.886 0.741 E-5 0.393 E-5
90 965 0.316 E-3 0.327 E-6 194 1.873 0.660 E-5 0.352 E-5

100 958 0.283 E-3 0.295 E-6 212 1.859 0.591 E-5 0.318 E-5

Table A.2 Viscosity and Density of
Air at 1 atm T, °C �, kg/m3 �, N � s/m2 �, m2/s T, °F �, slug/ft3 �, lb � s/ft2 �, ft2/s

�40 1.520 1.51 E-5 0.99 E-5 �40 2.94 E-3 3.16 E-7 1.07 E-4
� 0 1.290 1.71 E-5 1.33 E-5 � 32 2.51 E-3 3.58 E-7 1.43 E-4
� 20 1.200 1.80 E-5 1.50 E-5 � 68 2.34 E-3 3.76 E-7 1.61 E-4
� 50 1.090 1.95 E-5 1.79 E-5 �122 2.12 E-3 4.08 E-7 1.93 E-4
�100 0.946 2.17 E-5 2.30 E-5 �212 1.84 E-3 4.54 E-7 2.47 E-4
�150 0.835 2.38 E-5 2.85 E-5 �302 1.62 E-3 4.97 E-7 3.07 E-4
�200 0.746 2.57 E-5 3.45 E-5 �392 1.45 E-3 5.37 E-7 3.71 E-4
�250 0.675 2.75 E-5 4.08 E-5 �482 1.31 E-3 5.75 E-7 4.39 E-4
�300 0.616 2.93 E-5 4.75 E-5 �572 1.20 E-3 6.11 E-7 5.12 E-4
�400 0.525 3.25 E-5 6.20 E-5 �752 1.02 E-3 6.79 E-7 6.67 E-4
�500 0.457 3.55 E-5 7.77 E-5 �932 0.89 E-3 7.41 E-7 8.37 E-4

Suggested curve fits for air:

� 	 �
R
p
T
� Rair � 287 J/(kg 
 K)

Power law:              �
�
�

0
� � ��

T
T

0
��

0.7

Sutherland law: �
�
�

0
� � ��

T
T

0
��

3/2

��TT0

�

�

S
S

�� Sair � 110.4 K

with T0 	 273 K, �0 	 1.71 E-5 kg/(m 
 s), and T in kelvins.



Table A.3 Properties of Common
Liquids at 1 atm and 20°C (68°F)

Molecular Specific-heat Power-law
Gas weight R, m2/(s2 � K) �g, N/m3 �, N � s/m2 ratio exponent n†

H2 2.016 4124 00.822 9.05 E-6 1.41 0.68
He 4.003 2077 01.630 1.97 E-5 1.66 0.67
H2O 18.020 0461 07.350 1.02 E-5 1.33 1.15
Ar 39.944 0208 16.300 2.24 E-5 1.67 0.72
Dry air 28.960 0287 11.800 1.80 E-5 1.40 0.67
CO2 44.010 0189 17.900 1.48 E-5 1.30 0.79
CO 28.010 0297 11.400 1.82 E-5 1.40 0.71
N2 28.020 0297 11.400 1.76 E-5 1.40 0.67
O2 32.000 0260 13.100 2.00 E-5 1.40 0.69
NO 30.010 0277 12.100 1.90 E-5 1.40 0.78
N2O 44.020 0189 17.900 1.45 E-5 1.31 0.89
Cl2 70.910 0117 28.900 1.03 E-5 1.34 1.00
CH4 16.040 0518 06.540 1.34 E-5 1.32 0.87

†The power-law curve fit, Eq. (1.27), �/�293K � (T/293)n, fits these gases to within �4 percent in the range 250 � T �

1000 K. The temperature must be in kelvins.
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Bulk modulus, Viscosity
Liquid �, kg/m3 �, kg/(m � s) �, N/m* p�, N/m2 N/m2 parameter C†

Ammonia 13,608 2.20 E-4 2.13 E-2 9.10 E�5 — 1.05
Benzene 13,881 6.51 E-4 2.88 E-2 1.01 E�4 1.43 E�9 4.34
Carbon tetrachloride 31,590 9.67 E-4 2.70 E-2 1.20 E�4 9.65 E�8 4.45
Ethanol 13,789 1.20 E-3 2.28 E-2 5.73 E�3 9.03 E�8 5.72
Ethylene glycol 31,117 2.14 E-2 4.84 E-2 1.23 E�1 — 11.7 
Freon 12 31,327 2.62 E-4 — — — 1.76
Gasoline 13,680 2.92 E-4 2.16 E-2 5.51 E�4 9.58 E�80 3.68
Glycerin 31,260 1.49 6.33 E-2 1.43 E-2 4.34 E�90 28.0 
Kerosine 13,804 1.92 E-3 2.83 E-2 3.11 E�3 1.63 E�90 5.56
Mercury 13,550 1.56 E-3 4.84 E-1 1.13 E-3 2.55 E�10 1.07
Methanol 13,791 5.98 E-4 2.25 E-2 1.34 E�4 8.33 E�80 4.63
SAE 10W oil 13,870 1.04 E-1‡ 3.63 E-2 — 1.31 E�90 15.7 
SAE 10W30 oil 13,876 1.7 E-1‡ — — — 14.0 
SAE 30W oil 13,891 2.9 E-1‡ 3.53 E-2 — 1.38 E�90 18.3
SAE 50W oil 13,902 8.6 E-1‡ — — — 20.2 
Water 13,998 1.00 E-3 7.28 E-2 2.34 E�3 2.19 E�90 Table A.1
Seawater (30%) 31,025 1.07 E-3 7.28 E-2 2.34 E�3 2.33 E�90 7.28

*In contact with air.
†The viscosity-temperature variation of these liquids may be fitted to the empirical expression

�
�2

�

0°C
� � exp �C��2T

93
K
K

� � 1��
with accuracy of �6 percent in the range 0 � T � 100°C.
‡Representative values. The SAE oil classifications allow a viscosity variation of up to �50 percent, especially at lower
temperatures.

Table A.4 Properties of Common
Gases at 1 atm and 20°C (68°F)



Table A.5 Surface 
Tension, Vapor 
Pressure, and Sound 
Speed of Water

z, m T, K p, Pa �, kg/m3 a, m/s

0�500 291.41 107,508 1.2854 342.2
0,0000 288.16 101,350 1.2255 340.3
0,0500 284.91 095,480 1.1677 338.4
01,000 281.66 089,889 1.1120 336.5
01,500 278.41 084,565 1.0583 334.5
02,000 275.16 079,500 1.0067 332.6
02,500 271.91 074,684 0.9570 330.6
03,000 268.66 070,107 0.9092 328.6
03,500 265.41 065,759 0.8633 326.6
04,000 262.16 061,633 0.8191 324.6
04,500 258.91 057,718 0.7768 322.6
05,000 255.66 054,008 0.7361 320.6
05,500 252.41 050,493 0.6970 318.5
06,000 249.16 047,166 0.6596 316.5
06,500 245.91 044,018 0.6237 314.4
07,000 242.66 041,043 0.5893 312.3
07,500 239.41 038,233 0.5564 310.2
08,000 236.16 035,581 0.5250 308.1
08,500 232.91 033,080 0.4949 306.0
09,000 229.66 030,723 0.4661 303.8
09,500 226.41 028,504 0.4387 301.7
10,000 223.16 026,416 0.4125 299.5
10,500 219.91 024,455 0.3875 297.3
11,000 216.66 022,612 0.3637 295.1
11,500 216.66 020,897 0.3361 295.1
12,000 216.66 019,312 0.3106 295.1
12,500 216.66 017,847 0.2870 295.1
13,000 216.66 016,494 0.2652 295.1
13,500 216.66 015,243 0.2451 295.1
14,000 216.66 014,087 0.2265 295.1
14,500 216.66 013,018 0.2094 295.1
15,000 216.66 012,031 0.1935 295.1
15,500 216.66 011,118 0.1788 295.1
16,000 216.66 010,275 0.1652 295.1
16,500 216.66 009,496 0.1527 295.1
17,000 216.66 008,775 0.1411 295.1
17,500 216.66 008,110 0.1304 295.1
18,000 216.66 007,495 0.1205 295.1
18,500 216.66 006,926 0.1114 295.1
19,000 216.66 006,401 0.1029 295.1
19,500 216.66 005,915 0.0951 295.1
20,000 216.66 005,467 0.0879 295.1
22,000 218.60 004,048 0.0645 296.4
24,000 220.60 002,972 0.0469 297.8
26,000 222.50 002,189 0.0343 299.1
28,000 224.50 001,616 0.0251 300.4
30,000 226.50 001,197 0.0184 301.7
40,000 250.40 000,287 0.0040 317.2
50,000 270.70 000,080 0.0010 329.9
60,000 255.70 000,022 0.0003 320.6
70,000 219.70 000,006 0.0001 297.2

Physical Properties of Fluids 773

T, °C �, N/m p�, kPa a, m/s

0 0.0756 0.611 1402
10 0.0742 1.227 1447
20 0.0728 2.337 1482
30 0.0712 4.242 1509
40 0.0696 7.375 1529
50 0.0679 12.34 1542
60 0.0662 19.92 1551
70 0.0644 31.16 1553
80 0.0626 47.35 1554
90 0.0608 70.11 1550

100 0.0589 101.3 1543

120 0.0550 198.5 1518
140 0.0509 361.3 1483
160 0.0466 617.8 1440
180 0.0422 1,002 1389
200 0.0377 1,554 1334
220 0.0331 2,318 1268
240 0.0284 3,344 1192
260 0.0237 4,688 1110
280 0.0190 6,412 1022
300 0.0144 8,581 920
320 0.0099 11,274 800
340 0.0056 14,586 630
360 0.0019 18,651 370
374* 0.0*19 22,090* 0*

*Critical point.

Table A.6 Prop-
erties of the 
Standard 
Atmosphere



Table B.1
Isentropic Flow
of a Perfect
Gas, k 	 1.4

Appendix B
Compressible-Flow Tables

Ma p/p0 �/�0 T/T0 A/A*

0.0 1.0 1.0 1.0 �
0.02 0.9997 0.9998 0.9999 28.9421
0.04 0.9989 0.9992 0.9997 14.4815
0.06 0.9975 0.9982 0.9993 9.6659
0.08 0.9955 0.9968 0.9987 7.2616
0.1 0.9930 0.9950 0.9980 5.8218
0.12 0.9900 0.9928 0.9971 4.8643
0.14 0.9864 0.9903 0.9961 4.1824
0.16 0.9823 0.9873 0.9949 3.6727
0.18 0.9776 0.9840 0.9936 3.2779
0.2 0.9725 0.9803 0.9921 2.9635
0.22 0.9668 0.9762 0.9904 2.7076
0.24 0.9607 0.9718 0.9886 2.4956
0.26 0.9541 0.9670 0.9867 2.3173
0.28 0.9470 0.9619 0.9846 2.1656
0.3 0.9395 0.9564 0.9823 2.0351
0.32 0.9315 0.9506 0.9799 1.9219
0.34 0.9231 0.9445 0.9774 1.8229
0.36 0.9143 0.9380 0.9747 1.7358
0.38 0.9052 0.9313 0.9719 1.6587
0.4 0.8956 0.9243 0.9690 1.5901
0.42 0.8857 0.9170 0.9659 1.5289
0.44 0.8755 0.9094 0.9627 1.4740
0.46 0.8650 0.9016 0.9594 1.4246
0.48 0.8541 0.8935 0.9559 1.3801
0.5 0.8430 0.8852 0.9524 1.3398
0.52 0.8317 0.8766 0.9487 1.3034
0.54 0.8201 0.8679 0.9449 1.2703
0.56 0.8082 0.8589 0.9410 1.2403
0.58 0.7962 0.8498 0.9370 1.2130
0.6 0.7840 0.8405 0.9328 1.1882
0.62 0.7716 0.8310 0.9286 1.1656
0.64 0.7591 0.8213 0.9243 1.1451
0.66 0.7465 0.8115 0.9199 1.1265
0.68 0.7338 0.8016 0.9153 1.1097
0.7 0.7209 0.7916 0.9107 1.0944
0.72 0.7080 0.7814 0.9061 1.0806

Ma p/p0 �/�0 T/T0 A/A*

0.74 0.6951 0.7712 0.9013 1.0681
0.76 0.6821 0.7609 0.8964 1.0570
0.78 0.6690 0.7505 0.8915 1.0471
0.8 0.6560 0.7400 0.8865 1.0382
0.82 0.6430 0.7295 0.8815 1.0305
0.84 0.6300 0.7189 0.8763 1.0237
0.86 0.6170 0.7083 0.8711 1.0179
0.88 0.6041 0.6977 0.8659 1.0129
0.9 0.5913 0.6870 0.8606 1.0089
0.92 0.5785 0.6764 0.8552 1.0056
0.94 0.5658 0.6658 0.8498 1.0031
0.96 0.5532 0.6551 0.8444 1.0014
0.98 0.5407 0.6445 0.8389 1.0003
1.0 0.5283 0.6339 0.8333 1.0000
1.02 0.5160 0.6234 0.8278 1.0003
1.04 0.5039 0.6129 0.8222 1.0013
1.06 0.4919 0.6024 0.8165 1.0029
1.08 0.4800 0.5920 0.8108 1.0051
1.1 0.4684 0.5817 0.8052 1.0079
1.12 0.4568 0.5714 0.7994 1.0113
1.14 0.4455 0.5612 0.7937 1.0153
1.16 0.4343 0.5511 0.7879 1.0198
1.18 0.4232 0.5411 0.7822 1.0248
1.2 0.4124 0.5311 0.7764 1.0304
1.22 0.4017 0.5213 0.7706 1.0366
1.24 0.3912 0.5115 0.7648 1.0432
1.26 0.3809 0.5019 0.7590 1.0504
1.28 0.3708 0.4923 0.7532 1.0581
1.3 0.3609 0.4829 0.7474 1.0663
1.32 0.3512 0.4736 0.7416 1.0750
1.34 0.3417 0.4644 0.7358 1.0842
1.36 0.3323 0.4553 0.7300 1.0940
1.38 0.3232 0.4463 0.7242 1.1042
1.4 0.3142 0.4374 0.7184 1.1149
1.42 0.3055 0.4287 0.7126 1.1262
1.44 0.2969 0.4201 0.7069 1.1379
1.46 0.2886 0.4116 0.7011 1.1501
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Ma p/p0 �/�0 T/T0 A/A*

2.56 0.0533 0.1232 0.4328 2.7891
2.58 0.0517 0.1205 0.4289 2.8420
2.6 0.0501 0.1179 0.4252 2.8960
2.62 0.0486 0.1153 0.4214 2.9511
2.64 0.0471 0.1128 0.4177 3.0073
2.66 0.0457 0.1103 0.4141 3.0647
2.68 0.0443 0.1079 0.4104 3.1233
2.7 0.0430 0.1056 0.4068 3.1830
2.72 0.0417 0.1033 0.4033 3.2440
2.74 0.0404 0.1010 0.3998 3.3061
2.76 0.0392 0.0989 0.3963 3.3695
2.78 0.0380 0.0967 0.3928 3.4342
2.8 0.0368 0.0946 0.3894 3.5001
2.82 0.0357 0.0926 0.3860 3.5674
2.84 0.0347 0.0906 0.3827 3.6359
2.86 0.0336 0.0886 0.3794 3.7058
2.88 0.0326 0.0867 0.3761 3.7771
2.9 0.0317 0.0849 0.3729 3.8498
2.92 0.0307 0.0831 0.3696 3.9238
2.94 0.0298 0.0813 0.3665 3.9993
2.96 0.0289 0.0796 0.3633 4.0763
2.98 0.0281 0.0779 0.3602 4.1547
3.0 0.0272 0.0762 0.3571 4.2346
3.02 0.0264 0.0746 0.3541 4.3160
3.04 0.0256 0.0730 0.3511 4.3990
3.06 0.0249 0.0715 0.3481 4.4835
3.08 0.0242 0.0700 0.3452 4.5696
3.1 0.0234 0.0685 0.3422 4.6573
3.12 0.0228 0.0671 0.3393 4.7467
3.14 0.0221 0.0657 0.3365 4.8377
3.16 0.0215 0.0643 0.3337 4.9304
3.18 0.0208 0.0630 0.3309 5.0248
3.2 0.0202 0.0617 0.3281 5.1210
3.22 0.0196 0.0604 0.3253 5.2189
3.24 0.0191 0.0591 0.3226 5.3186
3.26 0.0185 0.0579 0.3199 5.4201
3.28 0.0180 0.0567 0.3173 5.5234
3.3 0.0175 0.0555 0.3147 5.6286
3.32 0.0170 0.0544 0.3121 5.7358
3.34 0.0165 0.0533 0.3095 5.8448
3.36 0.0160 0.0522 0.3069 5.9558
3.38 0.0156 0.0511 0.3044 6.0687
3.4 0.0151 0.0501 0.3019 6.1837
3.42 0.0147 0.0491 0.2995 6.3007
3.44 0.0143 0.0481 0.2970 6.4198
3.46 0.0139 0.0471 0.2946 6.5409
3.48 0.0135 0.0462 0.2922 6.6642
3.5 0.0131 0.0452 0.2899 6.7896
3.52 0.0127 0.0443 0.2875 6.9172
3.54 0.0124 0.0434 0.2852 7.0471
3.56 0.0120 0.0426 0.2829 7.1791
3.58 0.0117 0.0417 0.2806 7.3135
3.6 0.0114 0.0409 0.2784 7.4501
3.62 0.0111 0.0401 0.2762 7.5891

Table B.1 (Cont.)
Isentropic Flow of
a Perfect Gas,
k 	 1.4

Ma p/p0 �/�0 T/T0 A/A*

1.48 0.2804 0.4032 0.6954 1.1629
1.5 0.2724 0.3950 0.6897 1.1762
1.52 0.2646 0.3869 0.6840 1.1899
1.54 0.2570 0.3789 0.6783 1.2042
1.56 0.2496 0.3710 0.6726 1.2190
1.58 0.2423 0.3633 0.6670 1.2344
1.6 0.2353 0.3557 0.6614 1.2502
1.62 0.2284 0.3483 0.6558 1.2666
1.64 0.2217 0.3409 0.6502 1.2836
1.66 0.2151 0.3337 0.6447 1.3010
1.68 0.2088 0.3266 0.6392 1.3190
1.7 0.2026 0.3197 0.6337 1.3376
1.72 0.1966 0.3129 0.6283 1.3567
1.74 0.1907 0.3062 0.6229 1.3764
1.76 0.1850 0.2996 0.6175 1.3967
1.78 0.1794 0.2931 0.6121 1.4175
1.8 0.1740 0.2868 0.6068 1.4390
1.82 0.1688 0.2806 0.6015 1.4610
1.84 0.1637 0.2745 0.5963 1.4836
1.86 0.1587 0.2686 0.5910 1.5069
1.88 0.1539 0.2627 0.5859 1.5308
1.9 0.1492 0.2570 0.5807 1.5553
1.92 0.1447 0.2514 0.5756 1.5804
1.94 0.1403 0.2459 0.5705 1.6062
1.96 0.1360 0.2405 0.5655 1.6326
1.98 0.1318 0.2352 0.5605 1.6597
2.0 0.1278 0.2300 0.5556 1.6875
2.02 0.1239 0.2250 0.5506 1.7160
2.04 0.1201 0.2200 0.5458 1.7451
2.06 0.1164 0.2152 0.5409 1.7750
2.08 0.1128 0.2104 0.5361 1.8056
2.1 0.1094 0.2058 0.5313 1.8369
2.12 0.1060 0.2013 0.5266 1.8690
2.14 0.1027 0.1968 0.5219 1.9018
2.16 0.0996 0.1925 0.5173 1.9354
2.18 0.0965 0.1882 0.5127 1.9698
2.2 0.0935 0.1841 0.5081 2.0050
2.22 0.0906 0.1800 0.5036 2.0409
2.24 0.0878 0.1760 0.4991 2.0777
2.26 0.0851 0.1721 0.4947 2.1153
2.28 0.0825 0.1683 0.4903 2.1538
2.3 0.0800 0.1646 0.4859 2.1931
2.32 0.0775 0.1609 0.4816 2.2333
2.34 0.0751 0.1574 0.4773 2.2744
2.36 0.0728 0.1539 0.4731 2.3164
2.38 0.0706 0.1505 0.4688 2.3593
2.4 0.0684 0.1472 0.4647 2.4031
2.42 0.0663 0.1439 0.4606 2.4479
2.44 0.0643 0.1408 0.4565 2.4936
2.46 0.0623 0.1377 0.4524 2.5403
2.48 0.0604 0.1346 0.4484 2.5880
2.5 0.0585 0.1317 0.4444 2.6367
2.52 0.0567 0.1288 0.4405 2.6865
2.54 0.0550 0.1260 0.4366 2.7372

Compressible-Flow Tables 775



776 Appendix B

Table B.1
(Cont.) Isentropic
Flow of a Perfect
Gas, k 	 1.4

Ma p/p0 �/�0 T/T0 A/A*

3.64 0.0108 0.0393 0.2740 7.7305
3.66 0.0105 0.0385 0.2718 7.8742
3.68 0.0102 0.0378 0.2697 8.0204
3.7 0.0099 0.0370 0.2675 8.1691
3.72 0.0096 0.0363 0.2654 8.3202
3.74 0.0094 0.0356 0.2633 8.4739
3.76 0.0091 0.0349 0.2613 8.6302
3.78 0.0089 0.0342 0.2592 8.7891
3.8 0.0086 0.0335 0.2572 8.9506
3.82 0.0084 0.0329 0.2552 9.1148
3.84 0.0082 0.0323 0.2532 9.2817
3.86 0.0080 0.0316 0.2513 9.4513
3.88 0.0077 0.0310 0.2493 9.6237
3.9 0.0075 0.0304 0.2474 9.7990
3.92 0.0073 0.0299 0.2455 9.9771
3.94 0.0071 0.0293 0.2436 10.1581
3.96 0.0069 0.0287 0.2418 10.3420
3.98 0.0068 0.0282 0.2399 10.5289
4.0 0.0066 0.0277 0.2381 10.7188
4.02 0.0064 0.0271 0.2363 10.9117
4.04 0.0062 0.0266 0.2345 11.1077
4.06 0.0061 0.0261 0.2327 11.3068
4.08 0.0059 0.0256 0.2310 11.5091
4.1 0.0058 0.0252 0.2293 11.7147
4.12 0.0056 0.0247 0.2275 11.9234
4.14 0.0055 0.0242 0.2258 12.1354
4.16 0.0053 0.0238 0.2242 12.3508
4.18 0.0052 0.0234 0.2225 12.5695
4.2 0.0051 0.0229 0.2208 12.7916
4.22 0.0049 0.0225 0.2192 13.0172
4.24 0.0048 0.0221 0.2176 13.2463
4.26 0.0047 0.0217 0.2160 13.4789
4.28 0.0046 0.0213 0.2144 13.7151
4.3 0.0044 0.0209 0.2129 13.9549
4.32 0.0043 0.0205 0.2113 14.1984

Ma p/p0 �/�0 T/T0 A/A*

4.34 0.0042 0.0202 0.2098 14.4456
4.36 0.0041 0.0198 0.2083 14.6965
4.38 0.0040 0.0194 0.2067 14.9513
4.4 0.0039 0.0191 0.2053 15.2099
4.42 0.0038 0.0187 0.2038 15.4724
4.44 0.0037 0.0184 0.2023 15.7388
4.46 0.0036 0.0181 0.2009 16.0092
4.48 0.0035 0.0178 0.1994 16.2837
4.5 0.0035 0.0174 0.1980 16.5622
4.52 0.0034 0.0171 0.1966 16.8449
4.54 0.0033 0.0168 0.1952 17.1317
4.56 0.0032 0.0165 0.1938 17.4228
4.58 0.0031 0.0163 0.1925 17.7181
4.6 0.0031 0.0160 0.1911 18.0178
4.62 0.0030 0.0157 0.1898 18.3218
4.64 0.0029 0.0154 0.1885 18.6303
4.66 0.0028 0.0152 0.1872 18.9433
4.68 0.0028 0.0149 0.1859 19.2608
4.7 0.0027 0.0146 0.1846 19.5828
4.72 0.0026 0.0144 0.1833 19.9095
4.74 0.0026 0.0141 0.1820 20.2409
4.76 0.0025 0.0139 0.1808 20.5770
4.78 0.0025 0.0137 0.1795 20.9179
4.8 0.0024 0.0134 0.1783 21.2637
4.82 0.0023 0.0132 0.1771 21.6144
4.84 0.0023 0.0130 0.1759 21.9700
4.86 0.0022 0.0128 0.1747 22.3306
4.88 0.0022 0.0125 0.1735 22.6963
4.9 0.0021 0.0123 0.1724 23.0671
4.92 0.0021 0.0121 0.1712 23.4431
4.94 0.0020 0.0119 0.1700 23.8243
4.96 0.0020 0.0117 0.1689 24.2109
4.98 0.0019 0.0115 0.1678 24.6027
5.0 0.0019 0.0113 0.1667 25.0000

Man1 Man2 p2/p1 V1/V2 	 �2/�1 T2/T1 p02/p01 A*2/A*1

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.02 0.9805 1.0471 1.0334 1.0132 1.0000 1.0000
1.04 0.9620 1.0952 1.0671 1.0263 0.9999 1.0001
1.06 0.9444 1.1442 1.1009 1.0393 0.9998 1.0002
1.08 0.9277 1.1941 1.1349 1.0522 0.9994 1.0006
1.1 0.9118 1.2450 1.1691 1.0649 0.9989 1.0011
1.12 0.8966 1.2968 1.2034 1.0776 0.9982 1.0018
1.14 0.8820 1.3495 1.2378 1.0903 0.9973 1.0027
1.16 0.8682 1.4032 1.2723 1.1029 0.9961 1.0040
1.18 0.8549 1.4578 1.3069 1.1154 0.9946 1.0055
1.2 0.8422 1.5133 1.3416 1.1280 0.9928 1.0073
1.22 0.8300 1.5698 1.3764 1.1405 0.9907 1.0094
1.24 0.8183 1.6272 1.4112 1.1531 0.9884 1.0118

Table B.2 Normal-Shock Relations
for a Perfect Gas, k 	 1.4
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Table B.2 (Cont.) Normal-Shock
Relations for a Perfect Gas, k 	 1.4 Man1 Man2 p2/p1 V1/V2 	 �2/�1 T2/T1 p02/p01 A*2/A*1

1.26 0.8071 1.6855 1.4460 1.1657 0.9857 1.0145
1.28 0.7963 1.7448 1.4808 1.1783 0.9827 1.0176
1.3 0.7860 1.8050 1.5157 1.1909 0.9794 1.0211
1.32 0.7760 1.8661 1.5505 1.2035 0.9758 1.0249
1.34 0.7664 1.9282 1.5854 1.2162 0.9718 1.0290
1.36 0.7572 1.9912 1.6202 1.2290 0.9676 1.0335
1.38 0.7483 2.0551 1.6549 1.2418 0.9630 1.0384
1.4 0.7397 2.1200 1.6897 1.2547 0.9582 1.0436
1.42 0.7314 2.1858 1.7243 1.2676 0.9531 1.0492
1.44 0.7235 2.2525 1.7589 1.2807 0.9476 1.0552
1.46 0.7157 2.3202 1.7934 1.2938 0.9420 1.0616
1.48 0.7083 2.3888 1.8278 1.3069 0.9360 1.0684
1.5 0.7011 2.4583 1.8621 1.3202 0.9298 1.0755
1.52 0.6941 2.5288 1.8963 1.3336 0.9233 1.0830
1.54 0.6874 2.6002 1.9303 1.3470 0.9166 1.0910
1.56 0.6809 2.6725 1.9643 1.3606 0.9097 1.0993
1.58 0.6746 2.7458 1.9981 1.3742 0.9026 1.1080
1.6 0.6684 2.8200 2.0317 1.3880 0.8952 1.1171
1.62 0.6625 2.8951 2.0653 1.4018 0.8877 1.1266
1.64 0.6568 2.9712 2.0986 1.4158 0.8799 1.1365
1.66 0.6512 3.0482 2.1318 1.4299 0.8720 1.1468
1.68 0.6458 3.1261 2.1649 1.4440 0.8639 1.1575
1.7 0.6405 3.2050 2.1977 1.4583 0.8557 1.1686
1.72 0.6355 3.2848 2.2304 1.4727 0.8474 1.1801
1.74 0.6305 3.3655 2.2629 1.4873 0.8389 1.1921
1.76 0.6257 3.4472 2.2952 1.5019 0.8302 1.2045
1.78 0.6210 3.5298 2.3273 1.5167 0.8215 1.2173
1.8 0.6165 3.6133 2.3592 1.5316 0.8127 1.2305
1.82 0.6121 3.6978 2.3909 1.5466 0.8038 1.2441
1.84 0.6078 3.7832 2.4224 1.5617 0.7948 1.2582
1.86 0.6036 3.8695 2.4537 1.5770 0.7857 1.2728
1.88 0.5996 3.9568 2.4848 1.5924 0.7765 1.2877
1.9 0.5956 4.0450 2.5157 1.6079 0.7674 1.3032
1.92 0.5918 4.1341 2.5463 1.6236 0.7581 1.3191
1.94 0.5880 4.2242 2.5767 1.6394 0.7488 1.3354
1.96 0.5844 4.3152 2.6069 1.6553 0.7395 1.3522
1.98 0.5808 4.4071 2.6369 1.6713 0.7302 1.3695
2.0 0.5774 4.5000 2.6667 1.6875 0.7209 1.3872
2.02 0.5740 4.5938 2.6962 1.7038 0.7115 1.4054
2.04 0.5707 4.6885 2.7255 1.7203 0.7022 1.4241
2.06 0.5675 4.7842 2.7545 1.7369 0.6928 1.4433
2.08 0.5643 4.8808 2.7833 1.7536 0.6835 1.4630
2.1 0.5613 4.9783 2.8119 1.7705 0.6742 1.4832
2.12 0.5583 5.0768 2.8402 1.7875 0.6649 1.5039
2.14 0.5554 5.1762 2.8683 1.8046 0.6557 1.5252
2.16 0.5525 5.2765 2.8962 1.8219 0.6464 1.5469
2.18 0.5498 5.3778 2.9238 1.8393 0.6373 1.5692
2.2 0.5471 5.4800 2.9512 1.8569 0.6281 1.5920
2.22 0.5444 5.5831 2.9784 1.8746 0.6191 1.6154
2.24 0.5418 5.6872 3.0053 1.8924 0.6100 1.6393
2.26 0.5393 5.7922 3.0319 1.9104 0.6011 1.6638
2.28 0.5368 5.8981 3.0584 1.9285 0.5921 1.6888
2.3 0.5344 6.0050 3.0845 1.9468 0.5833 1.7144
2.32 0.5321 6.1128 3.1105 1.9652 0.5745 1.7406



Table B.2 (Cont.) Normal-Shock
Relations for a Perfect Gas, k 	 1.4 Man1 Man2 p2/p1 V1/V2 	 �2/�1 T2/T1 p02/p01 A*2/A*1

2.34 0.5297 6.2215 3.1362 1.9838 0.5658 1.7674
2.36 0.5275 6.3312 3.1617 2.0025 0.5572 1.7948
2.38 0.5253 6.4418 3.1869 2.0213 0.5486 1.8228
2.4 0.5231 6.5533 3.2119 2.0403 0.5401 1.8514
2.42 0.5210 6.6658 3.2367 2.0595 0.5317 1.8806
2.44 0.5189 6.7792 3.2612 2.0788 0.5234 1.9105
2.46 0.5169 6.8935 3.2855 2.0982 0.5152 1.9410
2.48 0.5149 7.0088 3.3095 2.1178 0.5071 1.9721
2.5 0.5130 7.1250 3.3333 2.1375 0.4990 2.0039
2.52 0.5111 7.2421 3.3569 2.1574 0.4911 2.0364
2.54 0.5092 7.3602 3.3803 2.1774 0.4832 2.0696
2.56 0.5074 7.4792 3.4034 2.1976 0.4754 2.1035
2.58 0.5056 7.5991 3.4263 2.2179 0.4677 2.1381
2.6 0.5039 7.7200 3.4490 2.2383 0.4601 2.1733
2.62 0.5022 7.8418 3.4714 2.2590 0.4526 2.2093
2.64 0.5005 7.9645 3.4937 2.2797 0.4452 2.2461
2.66 0.4988 8.0882 3.5157 2.3006 0.4379 2.2835
2.68 0.4972 8.2128 3.5374 2.3217 0.4307 2.3218
2.7 0.4956 8.3383 3.5590 2.3429 0.4236 2.3608
2.72 0.4941 8.4648 3.5803 2.3642 0.4166 2.4005
2.74 0.4926 8.5922 3.6015 2.3858 0.4097 2.4411
2.76 0.4911 8.7205 3.6224 2.4074 0.4028 2.4825
2.78 0.4896 8.8498 3.6431 2.4292 0.3961 2.5246
2.8 0.4882 8.9800 2.6636 2.4512 0.3895 2.5676
2.82 0.4868 9.1111 3.6838 2.4733 0.3829 2.6115
2.84 0.4854 9.2432 3.7039 2.4955 0.3765 2.6561
2.86 0.4840 9.3762 3.7238 2.5179 0.3701 2.7017
2.88 0.4827 9.5101 3.7434 2.5405 0.3639 2.7481
2.9 0.4814 9.6450 3.7629 2.5632 0.3577 2.7954
2.92 0.4801 9.7808 3.7821 2.5861 0.3517 2.8436
2.94 0.4788 9.9175 3.8012 2.6091 0.3457 2.8927
2.96 0.4776 10.0552 3.8200 2.6322 0.3398 2.9427
2.98 0.4764 10.1938 3.8387 2.6555 0.3340 2.9937
3.0 0.4752 10.3333 3.8571 2.6790 0.3283 3.0456
3.02 0.4740 10.4738 3.8754 2.7026 0.3227 3.0985
3.04 0.4729 10.6152 3.8935 2.7264 0.3172 3.1523
3.06 0.4717 10.7575 3.9114 2.7503 0.3118 3.2072
3.08 0.4706 10.9008 3.9291 2.7744 0.3065 3.2630
3.1 0.4695 11.0450 3.9466 2.7986 0.3012 3.3199
3.12 0.4685 11.1901 3.9639 2.8230 0.2960 3.3778
3.14 0.4674 11.3362 3.9811 2.8475 0.2910 3.4368
3.16 0.4664 11.4832 3.9981 2.8722 0.2860 3.4969
3.18 0.4654 11.6311 4.0149 2.8970 0.2811 3.5580
3.2 0.4643 11.7800 4.0315 2.9220 0.2762 3.6202
3.22 0.4634 11.9298 4.0479 2.9471 0.2715 3.6835
3.24 0.4624 12.0805 4.0642 2.9724 0.2668 3.7480
3.26 0.4614 12.2322 4.0803 2.9979 0.2622 3.8136
3.28 0.4605 12.3848 4.0963 3.0234 0.2577 3.8803
3.3 0.4596 12.5383 4.1120 3.0492 0.2533 3.9483
3.32 0.4587 12.6928 4.1276 3.0751 0.2489 4.0174
3.34 0.4578 12.8482 4.1431 3.1011 0.2446 4.0877
3.36 0.4569 13.0045 4.1583 3.1273 0.2404 4.1593
3.38 0.4560 13.1618 4.1734 3.1537 0.2363 4.2321
3.4 0.4552 13.3200 4.1884 3.1802 0.2322 4.3062
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Table B.2 (Cont.) Normal-Shock
Relations for a Perfect Gas, k 	 1.4 Man1 Man2 p2/p1 V1/V2 	 �2/�1 T2/T1 p02/p01 A*2/A*1

3.42 0.4544 13.4791 4.2032 3.2069 0.2282 4.3815
3.44 0.4535 13.6392 4.2178 3.2337 0.2243 4.4581
3.46 0.4527 13.8002 4.2323 3.2607 0.2205 4.5361
3.48 0.4519 13.9621 4.2467 3.2878 0.2167 4.6154
3.5 0.4512 14.1250 4.2609 3.3151 0.2129 4.6960
3.52 0.4504 14.2888 4.2749 3.3425 0.2093 4.7780
3.54 0.4496 14.4535 4.2888 3.3701 0.2057 4.8614
3.56 0.4489 14.6192 4.3026 3.3978 0.2022 4.9461
3.58 0.4481 14.7858 4.3162 3.4257 0.1987 5.0324
3.6 0.4474 14.9533 4.3296 3.4537 0.1953 5.1200
3.62 0.4467 15.1218 4.3429 3.4819 0.1920 5.2091
3.64 0.4460 15.2912 4.3561 3.5103 0.1887 5.2997
3.66 0.4453 15.4615 4.3692 3.5388 0.1855 5.3918
3.68 0.4446 15.6328 4.3821 3.5674 0.1823 5.4854
3.7 0.4439 15.8050 4.3949 3.5962 0.1792 5.5806
3.72 0.4433 15.9781 4.4075 3.6252 0.1761 5.6773
3.74 0.4426 16.1522 4.4200 3.6543 0.1731 5.7756
3.76 0.4420 16.3272 4.4324 3.6836 0.1702 5.8755
3.78 0.4414 16.5031 4.4447 3.7130 0.1673 5.9770
3.8 0.4407 16.6800 4.4568 3.7426 0.1645 6.0801
3.82 0.4401 16.8578 4.4688 3.7723 0.1617 6.1849
3.84 0.4395 17.0365 4.4807 3.8022 0.1589 6.2915
3.86 0.4389 17.2162 4.4924 3.8323 0.1563 6.3997
3.88 0.4383 17.3968 4.5041 3.8625 0.1536 6.5096
3.9 0.4377 17.5783 4.4156 3.8928 0.1510 6.6213
3.92 0.4372 17.7608 4.5270 3.9233 0.1485 6.7348
3.94 0.4366 17.9442 4.5383 3.9540 0.1460 6.8501
3.96 0.4360 18.1285 4.5494 3.9848 0.1435 6.9672
3.98 0.4355 18.3138 4.5605 4.0158 0.1411 7.0861
4.0 0.4350 18.5000 4.5714 4.0469 0.1388 7.2069
4.02 0.4344 18.6871 4.5823 4.0781 0.1364 7.3296
4.04 0.4339 18.8752 4.5930 4.1096 0.1342 7.4542
4.06 0.4334 19.0642 4.6036 4.1412 0.1319 7.5807
4.08 0.4329 19.2541 4.6141 4.1729 0.1297 7.7092
4.1 0.4324 19.4450 4.6245 4.2048 0.1276 7.8397
4.12 0.4319 19.6368 4.6348 4.2368 0.1254 7.9722
4.14 0.4314 19.8295 4.6450 4.2690 0.1234 8.1067
4.16 0.4309 20.0232 4.6550 4.3014 0.1213 8.2433
4.18 0.4304 20.2178 4.6650 4.3339 0.1193 8.3819
4.2 0.4299 20.4133 4.6749 4.3666 0.1173 8.5227
4.22 0.4295 20.6098 4.6847 4.3994 0.1154 8.6656
4.24 0.4290 20.8072 4.6944 4.4324 0.1135 8.8107
4.26 0.4286 21.0055 4.7040 4.4655 0.1116 8.9579
4.28 0.4281 21.2048 4.7135 4.4988 0.1098 9.1074
4.3 0.4277 21.4050 4.7229 4.5322 0.1080 9.2591
4.32 0.4272 21.6061 4.7322 4.5658 0.1062 9.4131
4.34 0.4268 21.8082 4.7414 4.5995 0.1045 9.5694
4.36 0.4264 22.0112 4.7505 4.6334 0.1028 9.7280
4.38 0.4260 22.2151 4.7595 4.6675 0.1011 9.8889
4.4 0.4255 22.4200 4.7685 4.7017 0.0995 10.0522
4.42 0.4251 22.6258 4.7773 4.7361 0.0979 10.2179
4.44 0.4247 22.8325 4.7861 4.7706 0.0963 10.3861
4.46 0.4243 23.0402 4.7948 4.8053 0.0947 10.5567
4.48 0.4239 23.2488 4.8034 4.8401 0.0932 10.7298



Table B.2 (Cont.) Normal-Shock
Relations for a Perfect Gas, k 	 1.4
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Man1 Man2 p2/p1 V1/V2 	 �2/�1 T2/T1 p02/p01 A*2/A*1

4.5 0.4236 23.4583 4.8119 4.8751 0.0917 10.9054
4.52 0.4232 23.6688 4.8203 4.9102 0.0902 11.0835
4.54 0.4228 23.8802 4.8287 4.9455 0.0888 11.2643
4.56 0.4224 24.0925 4.8369 4.9810 0.0874 11.4476
4.58 0.4220 24.3058 4.8451 5.0166 0.0860 11.6336
4.6 0.4217 24.5200 4.8532 5.0523 0.0846 11.8222
4.62 0.4213 24.7351 4.8612 5.0882 0.0832 12.0136
4.64 0.4210 24.9512 4.8692 5.1243 0.0819 12.2076
4.66 0.4206 25.1682 4.8771 5.1605 0.0806 12.4044
4.68 0.4203 25.3861 4.8849 5.1969 0.0793 12.6040
4.7 0.4199 25.6050 4.8926 5.2334 0.0781 12.8065
4.72 0.4196 25.8248 4.9002 5.2701 0.0769 13.0117
4.74 0.4192 26.0455 4.9078 5.3070 0.0756 13.2199
4.76 0.4189 26.2672 4.9153 5.3440 0.0745 13.4310
4.78 0.4186 26.4898 4.9227 5.3811 0.0733 13.6450
4.8 0.4183 26.7133 4.9301 5.4184 0.0721 13.8620
4.82 0.4179 26.9378 4.9374 5.4559 0.0710 14.0820
4.84 0.4176 27.1632 4.9446 5.4935 0.0699 14.3050
4.86 0.4173 27.3895 4.9518 5.5313 0.0688 14.5312
4.88 0.4170 27.6168 4.9589 5.5692 0.0677 14.7604
4.9 0.4167 27.8450 4.9659 5.6073 0.0667 14.9928
4.92 0.4164 28.0741 4.9728 5.6455 0.0657 15.2284
4.94 0.4161 28.3042 4.9797 5.6839 0.0647 15.4672
4.96 0.4158 28.5352 4.9865 5.7224 0.0637 15.7902
4.98 0.4155 28.7671 4.9933 5.7611 0.0627 15.9545
5.0 0.4152 29.0000 5.0000 5.8000 0.0617 16.2032

Table B.3 Adiabatic Frictional
Flow in a Constant-Area Duct for
k 	 1.4

Ma f�L*/D p/p* T/T* �*/� 	 V/V* p0/p*0

0.0 � � 1.2000 0.0 �
0.02 1778.4500 54.7701 1.1999 0.0219 28.9421
0.04 440.3520 27.3817 1.1996 0.0438 14.4815
0.06 193.0310 18.2508 1.1991 0.0657 9.6659
0.08 106.7180 13.6843 1.1985 0.0876 7.2616
0.1 66.9216 10.9435 1.1976 0.1094 5.8218
0.12 45.4080 9.1156 1.1966 0.1313 4.8643
0.14 32.5113 7.8093 1.1953 0.1531 4.1824
0.16 24.1978 6.8291 1.1939 0.1748 3.6727
0.18 18.5427 6.0662 1.1923 0.1965 3.2779
0.2 14.5333 5.4554 1.1905 0.2182 2.9635
0.22 11.5961 4.9554 1.1885 0.2398 2.7076
0.24 9.3865 4.5383 1.1863 0.2614 2.4956
0.26 7.6876 4.1851 1.1840 0.2829 2.3173
0.28 6.3572 3.8820 1.1815 0.3043 2.1656
0.3 5.2993 3.6191 1.1788 0.3257 2.0351
0.32 4.4467 3.3887 1.1759 0.3470 1.9219
0.34 3.7520 3.1853 1.1729 0.3682 1.8229
0.36 3.1801 3.0042 1.1697 0.3893 1.7358
0.38 2.7054 2.8420 1.1663 0.4104 1.6587
0.4 2.3085 2.6958 1.1628 0.4313 1.5901
0.42 1.9744 2.5634 1.1591 0.4522 1.5289
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Table B.3 (Cont.) Adiabatic
Frictional Flow in a Constant-Area
Duct for k 	 1.4

Ma f�L*/D p/p* T/T* �*/� 	 V/V* p0/p*0

0.44 1.6915 2.4428 1.1553 0.4729 1.4740
0.46 1.4509 2.3326 1.1513 0.4936 1.4246
0.48 1.2453 2.2313 1.1471 0.5141 1.3801
0.5 1.0691 2.1381 1.1429 0.5345 1.3398
0.52 0.9174 2.0519 1.1384 0.5548 1.3034
0.54 0.7866 1.9719 1.1339 0.5750 1.2703
0.56 0.6736 1.8975 1.1292 0.5951 1.2403
0.58 0.5757 1.8282 1.1244 0.6150 1.2130
0.6 0.4908 1.7634 1.1194 0.6348 1.1882
0.62 0.4172 1.7026 1.1143 0.6545 1.1656
0.64 0.3533 1.6456 1.1091 0.6740 1.1451
0.66 0.2979 1.5919 1.1038 0.6934 1.1265
0.68 0.2498 1.5413 1.0984 0.7127 1.1097
0.7 0.2081 1.4935 1.0929 0.7318 1.0944
0.72 0.1721 1.4482 1.0873 0.7508 1.0806
0.74 0.1411 1.4054 1.0815 0.7696 1.0681
0.76 0.1145 1.3647 1.0757 0.7883 1.0570
0.78 0.0917 1.3261 1.0698 0.8068 1.0471
0.8 0.0723 1.2893 1.0638 0.8251 1.0382
0.82 0.0559 1.2542 1.0578 0.8433 1.0305
0.84 0.0423 1.2208 1.0516 0.8614 1.0237
0.86 0.0310 1.1889 1.0454 0.8793 1.0179
0.88 0.0218 1.1583 1.0391 0.8970 1.0129
0.9 0.0145 1.1291 1.0327 0.9146 1.0089
0.92 0.0089 1.1011 1.0263 0.9320 1.0056
0.94 0.0048 1.0743 1.0198 0.9493 1.0031
0.96 0.0021 1.0485 1.0132 0.9663 1.0014
0.98 0.0005 1.0238 1.0066 0.9833 1.0003
1.0 0.0000 1.0000 1.0000 1.0000 1.0000
1.02 0.0005 0.9771 0.9933 1.0166 1.0003
1.04 0.0018 0.9551 0.9866 1.0330 1.0013
1.06 0.0038 0.9338 0.9798 1.0492 1.0029
1.08 0.0066 0.9133 0.9730 1.0653 1.0051
1.1 0.0099 0.8936 0.9662 1.0812 1.0079
1.12 0.0138 0.8745 0.9593 1.0970 1.0113
1.14 0.0182 0.8561 0.9524 1.1126 1.0153
1.16 0.0230 0.8383 0.9455 1.1280 1.0198
1.18 0.0281 0.8210 0.9386 1.1432 1.0248
1.2 0.0336 0.8044 0.9317 1.1583 1.0304
1.22 0.0394 0.7882 0.9247 1.1732 1.0366
1.24 0.0455 0.7726 0.9178 1.1879 1.0432
1.26 0.0517 0.7574 0.9108 1.2025 1.0504
1.28 0.0582 0.7427 0.9038 1.2169 1.0581
1.3 0.0648 0.7285 0.8969 1.2311 1.0663
1.32 0.0716 0.7147 0.8899 1.2452 1.0750
1.34 0.0785 0.7012 0.8829 1.2591 1.0842
1.36 0.0855 0.6882 0.8760 1.2729 1.0940
1.38 0.0926 0.6755 0.8690 1.2864 1.1042
1.4 0.0997 0.6632 0.8621 1.2999 1.1149
1.42 0.1069 0.6512 0.8551 1.3131 1.1262
1.44 0.1142 0.6396 0.8482 1.3262 1.1379
1.46 0.1215 0.6282 0.8413 1.3392 1.1501
1.48 0.1288 0.6172 0.8344 1.3520 1.1629
1.5 0.1361 0.6065 0.8276 1.3646 1.1762



Table B.3 (Cont.) Adiabatic
Frictional Flow in a Constant-Area
Duct for k 	 1.4

782 Appendix B

Ma f�L*/D p/p* T/T* �*/� 	 V/V* p0/p*0

1.52 0.1433 0.5960 0.8207 1.3770 1.1899
1.54 0.1506 0.5858 0.8139 1.3894 1.2042
1.56 0.1579 0.5759 0.8071 1.4015 1.2190
1.58 0.1651 0.5662 0.8004 1.4135 1.2344
1.6 0.1724 0.5568 0.7937 1.4254 1.2502
1.62 0.1795 0.5476 0.7869 1.4371 1.2666
1.64 0.1867 0.5386 0.7803 1.4487 1.2836
1.66 0.1938 0.5299 0.7736 1.4601 1.3010
1.68 0.2008 0.5213 0.7670 1.4713 1.3190
1.7 0.2078 0.5130 0.7605 1.4825 1.3376
1.72 0.2147 0.5048 0.7539 1.4935 1.3567
1.74 0.2216 0.4969 0.7474 1.5043 1.3764
1.76 0.2284 0.4891 0.7410 1.5150 1.3967
1.78 0.2352 0.4815 0.7345 1.5256 1.4175
1.8 0.2419 0.4741 0.7282 1.5360 1.4390
1.82 0.2485 0.4668 0.7218 1.5463 1.4610
1.84 0.2551 0.4597 0.7155 1.5564 1.4836
1.86 0.2616 0.4528 0.7093 1.5664 1.5069
1.88 0.2680 0.4460 0.7030 1.5763 1.5308
1.9 0.2743 0.4394 0.6969 1.5861 1.5553
1.92 0.2806 0.4329 0.6907 1.5957 1.5804
1.94 0.2868 0.4265 0.6847 1.6052 1.6062
1.96 0.2929 0.4203 0.6786 1.6146 1.6326
1.98 0.2990 0.4142 0.6726 1.6239 1.6597
2.0 0.3050 0.4082 0.6667 1.6330 1.6875
2.02 0.3109 0.4024 0.6608 1.6420 1.7160
2.04 0.3168 0.3967 0.6549 1.6509 1.7451
2.06 0.3225 0.3911 0.6491 1.6597 1.7750
2.08 0.3282 0.3856 0.6433 1.6683 1.8056
2.1 0.3339 0.3802 0.6376 1.6769 1.8369
2.12 0.3394 0.3750 0.6320 1.6853 1.8690
2.14 0.3449 0.3698 0.6263 1.6936 1.9018
2.16 0.3503 0.3648 0.6208 1.7018 1.9354
2.18 0.3556 0.3598 0.6152 1.7099 1.9698
2.2 0.3609 0.3549 0.6098 1.7179 2.0050
2.22 0.3661 0.3502 0.6043 1.7258 2.0409
2.24 0.3712 0.3455 0.5989 1.7336 2.0777
2.26 0.3763 0.3409 0.5936 1.7412 2.1153
2.28 0.3813 0.3364 0.5883 1.7488 2.1538
2.3 0.3862 0.3320 0.5831 1.7563 2.1931
2.32 0.3911 0.3277 0.5779 1.7637 2.2333
2.34 0.3959 0.3234 0.5728 1.7709 2.2744
2.36 0.4006 0.3193 0.5677 1.7781 2.3164
2.38 0.4053 0.3152 0.5626 1.7852 2.3593
2.4 0.4099 0.3111 0.5576 1.7922 2.4031
2.42 0.4144 0.3072 0.5527 1.7991 2.4479
2.44 0.4189 0.3033 0.5478 1.8059 2.4936
2.46 0.4233 0.2995 0.5429 1.8126 2.5403
2.48 0.4277 0.2958 0.5381 1.8192 2.5880
2.5 0.4320 0.2921 0.5333 1.8257 2.6367
2.52 0.4362 0.2885 0.5286 1.8322 2.6865
2.54 0.4404 0.2850 0.5239 1.8386 2.7372
2.56 0.4445 0.2815 0.5193 1.8448 2.7891
2.58 0.4486 0.2781 0.5147 1.8510 2.8420
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Table B.3 (Cont.) Adiabatic
Frictional Flow in a Constant-Area
Duct for k 	 1.4

Ma f�L*/D p/p* T/T* �*/� 	 V/V* p0/p*0

2.6 0.4526 0.2747 0.5102 1.8571 2.8960
2.62 0.4565 0.2714 0.5057 1.8632 2.9511
2.64 0.4604 0.2682 0.5013 1.8691 3.0073
2.66 0.4643 0.2650 0.4969 1.8750 3.0647
2.68 0.4681 0.2619 0.4925 1.8808 3.1233
2.7 0.4718 0.2588 0.4882 1.8865 3.1830
2.72 0.4755 0.2558 0.4839 1.8922 3.2440
2.74 0.4791 0.2528 0.4797 1.8978 3.3061
2.76 0.4827 0.2498 0.4755 1.9033 3.3695
2.78 0.4863 0.2470 0.4714 1.9087 3.4342
2.8 0.4898 0.2441 0.4673 1.9140 3.5001
2.82 0.4932 0.2414 0.4632 1.9193 3.5674
2.84 0.4966 0.2386 0.4592 1.9246 3.6359
2.86 0.5000 0.2359 0.4552 1.9297 3.7058
2.88 0.5033 0.2333 0.4513 1.9348 3.7771
2.9 0.5065 0.2307 0.4474 1.9398 3.8498
2.92 0.5097 0.2281 0.4436 1.9448 3.9238
2.94 0.5129 0.2256 0.4398 1.9497 3.9993
2.96 0.5160 0.2231 0.4360 1.9545 4.0763
2.98 0.5191 0.2206 0.4323 1.9593 4.1547
3.0 0.5222 0.2182 0.4286 1.9640 4.2346
3.02 0.5252 0.2158 0.4249 1.9686 4.3160
3.04 0.5281 0.2135 0.4213 1.9732 4.3989
3.06 0.5310 0.2112 0.4177 1.9777 4.4835
3.08 0.5339 0.2090 0.4142 1.9822 4.5696
3.1 0.5368 0.2067 0.4107 1.9866 4.6573
3.12 0.5396 0.2045 0.4072 1.9910 4.7467
3.14 0.5424 0.2024 0.4038 1.9953 4.8377
3.16 0.5451 0.2002 0.4004 1.9995 4.9304
3.18 0.5478 0.1981 0.3970 2.0037 5.0248
3.2 0.5504 0.1961 0.3937 2.0079 5.1210
3.22 0.5531 0.1940 0.3904 2.0120 5.2189
3.24 0.5557 0.1920 0.3872 2.0160 5.3186
3.26 0.5582 0.1901 0.3839 2.0200 5.4201
3.28 0.5607 0.1881 0.3807 2.0239 5.5234
3.3 0.5632 0.1862 0.3776 2.0278 5.6286
3.32 0.5657 0.1843 0.3745 2.0317 5.7358
3.34 0.5681 0.1825 0.3714 2.0355 5.8448
3.36 0.5705 0.1806 0.3683 2.0392 5.9558
3.38 0.5729 0.1788 0.3653 2.0429 6.0687
3.4 0.5752 0.1770 0.3623 2.0466 6.1837
3.42 0.5775 0.1753 0.3594 2.0502 6.3007
3.44 0.5798 0.1736 0.3564 2.0537 6.4198
3.46 0.5820 0.1718 0.3535 2.0573 6.5409
3.48 0.5842 0.1702 0.3507 2.0607 6.6642
3.5 0.5864 0.1685 0.3478 2.0642 6.7896
3.52 0.5886 0.1669 0.3450 2.0676 6.9172
3.54 0.5907 0.1653 0.3422 2.0709 7.0471
3.56 0.5928 0.1637 0.3395 2.0743 7.1791
3.58 0.5949 0.1621 0.3368 2.0775 7.3135
3.6 0.5970 0.1616 0.3341 2.0808 7.4501
3.62 0.5990 0.1590 0.3314 2.0840 7.5891
3.64 0.6010 0.1575 0.3288 2.0871 7.7305
3.66 0.6030 0.1560 0.3262 2.0903 7.8742



Table B.3 (Cont.) Adiabatic
Frictional Flow in a Constant-Area
Duct for k 	 1.4
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Ma f�L*/D p/p* T/T* �*/� 	 V/V* p0/p*0

3.68 0.6049 0.1546 0.3236 2.0933 8.0204
3.7 0.6068 0.1531 0.3210 2.0964 8.1691
3.72 0.6087 0.1517 0.3185 2.0994 8.3202
3.74 0.6106 0.1503 0.3160 2.1024 8.4739
3.76 0.6125 0.1489 0.3135 2.1053 8.6302
3.78 0.6143 0.1475 0.3111 2.1082 8.7891
3.8 0.6161 0.1462 0.3086 2.1111 8.9506
3.82 0.6179 0.1449 0.3062 2.1140 9.1148
3.84 0.6197 0.1436 0.3039 2.1168 9.2817
3.86 0.6214 0.1423 0.3015 2.1195 9.4513
3.88 0.6231 0.1410 0.2992 2.1223 9.6237
3.9 0.6248 0.1397 0.2969 2.1250 9.7990
3.92 0.6265 0.1385 0.2946 2.1277 9.9771
3.94 0.6282 0.1372 0.2923 2.1303 10.1581
3.96 0.6298 0.1360 0.2901 2.1329 10.3420
3.98 0.6315 0.1348 0.2879 2.1355 10.5289
4.0 0.6331 0.1336 0.2857 2.1381 10.7188

Table B.4 Frictionless Duct Flow
with Heat Transfer for k 	 1.4 Ma T0/T*0 p/p* T/T* �*/� 	 V/V* p0/p*0

0.0 0.0 2.4000 0.0 0.0 1.2679
0.02 0.0019 2.3987 0.0023 0.0010 1.2675
0.04 0.0076 2.3946 0.0092 0.0038 1.2665
0.06 0.0171 2.3800 0.0205 0.0086 1.2647
0.08 0.0302 2.3787 0.0362 0.0152 1.2623
0.1 0.0468 2.3669 0.0560 0.0237 1.2591
0.12 0.0666 2.3526 0.0797 0.0339 1.2554
0.14 0.0895 2.3359 0.1069 0.0458 1.2510
0.16 0.1151 2.3170 0.1374 0.0593 1.2461
0.18 0.1432 2.2959 0.1708 0.0744 1.2406
0.2 0.1736 2.2727 0.2066 0.0909 1.2346
0.22 0.2057 2.2477 0.2445 0.1088 1.2281
0.24 0.2395 2.2209 0.2841 0.1279 1.2213
0.26 0.2745 2.1925 0.3250 0.1482 1.2140
0.28 0.3104 2.1626 0.3667 0.1696 1.2064
0.3 0.3469 2.1314 0.4089 0.1918 1.1985
0.32 0.3837 2.0991 0.4512 0.2149 1.1904
0.34 0.4206 2.0657 0.4933 0.2388 1.1822
0.36 0.4572 2.0314 0.5348 0.2633 1.1737
0.38 0.4935 1.9964 0.5755 0.2883 1.1652
0.4 0.5290 1.9608 0.6151 0.3137 1.1566
0.42 0.5638 1.9247 0.6535 0.3395 1.1480
0.44 0.5975 1.8882 0.6903 0.3656 1.1394
0.46 0.6301 1.8515 0.7254 0.3918 1.1308
0.48 0.6614 1.8147 0.7587 0.4181 1.1224
0.5 0.6914 1.7778 0.7901 0.4444 1.1141
0.52 0.7199 1.7409 0.8196 0.4708 1.1059
0.54 0.7470 1.7043 0.8469 0.4970 1.0979
0.56 0.7725 1.6678 0.8723 0.5230 1.0901
0.58 0.7965 1.6316 0.8955 0.5489 1.0826
0.6 0.8189 1.5957 0.9167 0.5745 1.0753
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Table B.4 (Cont.)  Frictionless
Duct Flow with Heat Transfer for
k 	 1.4

Ma T0/T*0 p/p* T/T* �*/� 	 V/V* p0/p*0

0.62 0.8398 1.5603 0.9358 0.5998 1.0682
0.64 0.8592 1.5253 0.9530 0.6248 1.0615
0.66 0.8771 1.4908 0.9682 0.6494 1.0550
0.68 0.8935 1.4569 0.9814 0.6737 1.0489
0.7 0.9085 1.4235 0.9929 0.6975 1.0431
0.72 0.9221 1.3907 1.0026 0.7209 1.0376
0.74 0.9344 1.3585 1.0106 0.7439 1.0325
0.76 0.9455 1.3270 1.0171 0.7665 1.0278
0.78 0.9553 1.2961 1.0220 0.7885 1.0234
0.8 0.9639 1.2658 1.0255 0.8101 1.0193
0.82 0.9715 1.2362 1.0276 0.8313 1.0157
0.84 0.9781 1.2073 1.0285 0.8519 1.0124
0.86 0.9836 1.1791 1.0283 0.8721 1.0095
0.88 0.9883 1.1515 1.0269 0.8918 1.0070
0.9 0.9921 1.1246 1.0245 0.9110 1.0049
0.92 0.9951 1.0984 1.0212 0.9297 1.0031
0.94 0.9973 1.0728 1.0170 0.9480 1.0017
0.96 0.9988 1.0479 1.0121 0.9658 1.0008
0.98 0.9997 1.0236 1.0064 0.9831 1.0002
1.0 1.0000 1.0000 1.0000 1.0000 1.0000
1.02 0.9997 0.9770 0.9930 1.0164 1.0002
1.04 0.9989 0.9546 0.9855 1.0325 1.0008
1.06 0.9977 0.9327 0.9776 1.0480 1.0017
1.08 0.9960 0.9115 0.9691 1.0632 1.0031
1.1 0.9939 0.8909 0.9603 1.0780 1.0049
1.12 0.9915 0.8708 0.9512 1.0923 1.0070
1.14 0.9887 0.8512 0.9417 1.1063 1.0095
1.16 0.9856 0.8322 0.9320 1.1198 1.0124
1.18 0.9823 0.8137 0.9220 1.1330 1.0157
1.2 0.9787 0.7958 0.9118 1.1459 1.0194
1.22 0.9749 0.7783 0.9015 1.1584 1.0235
1.24 0.9709 0.7613 0.8911 1.1705 1.0279
1.26 0.9668 0.7447 0.8805 1.1823 1.0328
1.28 0.9624 0.7287 0.8699 1.1938 1.0380
1.3 0.9580 0.7130 0.8592 1.2050 1.0437
1.32 0.9534 0.6978 0.8484 1.2159 1.0497
1.34 0.9487 0.6830 0.8377 1.2264 1.0561
1.36 0.9440 0.6686 0.8269 1.2367 1.0629
1.38 0.9391 0.6546 0.8161 1.2467 1.0701
1.4 0.9343 0.6410 0.8054 1.2564 1.0777
1.42 0.9293 0.6278 0.7947 1.2659 1.0856
1.44 0.9243 0.6149 0.7840 1.2751 1.0940
1.46 0.9193 0.6024 0.7735 1.2840 1.1028
1.48 0.9143 0.5902 0.7629 1.2927 1.1120
1.5 0.9093 0.5783 0.7525 1.3012 1.1215
1.52 0.9042 0.5668 0.7422 1.3095 1.1315
1.54 0.8992 0.5555 0.7319 1.3175 1.1419
1.56 0.8942 0.5446 0.7217 1.3253 1.1527
1.58 0.8892 0.5339 0.7117 1.3329 1.1640
1.6 0.8842 0.5236 0.7017 1.3403 1.1756
1.62 0.8792 0.5135 0.6919 1.3475 1.1877
1.64 0.8743 0.5036 0.6822 1.3546 1.2002
1.66 0.8694 0.4940 0.6726 1.3614 1.2131
1.68 0.8645 0.4847 0.6631 1.3681 1.2264
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Ma T0/T*0 p/p* T/T* �*/� 	 V/V* p0/p*0

1.7 0.8597 0.4756 0.6538 1.3746 1.2402
1.72 0.8549 0.4668 0.6445 1.3809 1.2545
1.74 0.8502 0.4581 0.6355 1.3870 1.2692
1.76 0.8455 0.4497 0.6265 1.3931 1.2843
1.78 0.8409 0.4415 0.6176 1.3989 1.2999
1.8 0.8363 0.4335 0.6089 1.4046 1.3159
1.82 0.8317 0.4257 0.6004 1.4102 1.3324
1.84 0.8273 0.4181 0.5919 1.4156 1.3494
1.86 0.8228 0.4107 0.5836 1.4209 1.3669
1.88 0.8185 0.4035 0.5754 1.4261 1.3849
1.9 0.8141 0.3964 0.5673 1.4311 1.4033
1.92 0.8099 0.3895 0.5594 1.4360 1.4222
1.94 0.8057 0.3828 0.5516 1.4408 1.4417
1.96 0.8015 0.3763 0.5439 1.4455 1.4616
1.98 0.7974 0.3699 0.5364 1.4501 1.4821
2.0 0.7934 0.3636 0.5289 1.4545 1.5031
2.02 0.7894 0.3575 0.5216 1.4589 1.5246
2.04 0.7855 0.3516 0.5144 1.4632 1.5467
2.06 0.7816 0.3458 0.5074 1.4673 1.5693
2.08 0.7778 0.3401 0.5004 1.4714 1.5924
2.1 0.7741 0.3345 0.4936 1.4753 1.6162
2.12 0.7704 0.3291 0.4868 1.4792 1.6404
2.14 0.7667 0.3238 0.4802 1.4830 1.6653
2.16 0.7631 0.3186 0.4737 1.4867 1.6908
2.18 0.7596 0.3136 0.4673 1.4903 1.7168
2.2 0.7561 0.3086 0.4611 1.4938 1.7434
2.22 0.7527 0.3038 0.4549 1.4973 1.7707
2.24 0.7493 0.2991 0.4488 1.5007 1.7986
2.26 0.7460 0.2945 0.4428 1.5040 1.8271
2.28 0.7428 0.2899 0.4370 1.5072 1.8562
2.3 0.7395 0.2855 0.4312 1.5104 1.8860
2.32 0.7364 0.2812 0.4256 1.5134 1.9165
2.34 0.7333 0.2769 0.4200 1.5165 1.9476
2.36 0.7302 0.2728 0.4145 1.5194 1.9794
2.38 0.7272 0.2688 0.4091 1.5223 2.0119
2.4 0.7242 0.2648 0.4038 1.5252 2.0451
2.42 0.7213 0.2609 0.3986 1.5279 2.0789
2.44 0.7184 0.2571 0.3935 1.5306 2.1136
2.46 0.7156 0.2534 0.3885 1.5333 2.1489
2.48 0.7128 0.2497 0.3836 1.5359 2.1850
2.5 0.7101 0.2462 0.3787 1.5385 2.2218
2.52 0.7074 0.2427 0.3739 1.5410 2.2594
2.54 0.7047 0.2392 0.3692 1.5434 2.2978
2.56 0.7021 0.2359 0.3646 1.5458 2.3370
2.58 0.6995 0.2326 0.3601 1.5482 2.3770
2.6 0.6970 0.2294 0.3556 1.5505 2.4177
2.62 0.6945 0.2262 0.3512 1.5527 2.4593
2.64 0.6921 0.2231 0.3469 1.5549 2.5018
2.66 0.6896 0.2201 0.3427 1.5571 2.5451
2.68 0.6873 0.2171 0.3385 1.5592 2.5892
2.7 0.6849 0.2142 0.3344 1.5613 2.6343
2.72 0.6826 0.2113 0.3304 1.5634 2.6802
2.74 0.6804 0.2085 0.3264 1.5654 2.7270
2.76 0.6781 0.2058 0.3225 1.5673 2.7748
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Table B.4 (Cont.) Frictionless
Duct Flow with Heat Transfer for
k 	 1.4

Ma T0/T*0 p/p* T/T* �*/� 	 V/V* p0/p*0

2.78 0.6761 0.2030 0.3186 1.5693 2.8235
2.8 0.6738 0.2004 0.3149 1.5711 2.8731
2.82 0.6717 0.1978 0.3111 1.5730 2.9237
2.84 0.6696 0.1953 0.3075 1.5748 2.9752
2.86 0.6675 0.1927 0.3039 1.5766 3.0278
2.88 0.6655 0.1903 0.3004 1.5784 3.0813
2.9 0.6635 0.1879 0.2969 1.5801 3.1359
2.92 0.6615 0.1855 0.2934 1.5818 3.1914
2.94 0.6596 0.1832 0.2901 1.5834 3.2481
2.96 0.6577 0.1809 0.2868 1.5851 3.3058
2.98 0.6558 0.1787 0.2835 1.5867 3.3646
3.0 0.6540 0.1765 0.2803 1.5882 3.4245
3.02 0.6522 0.1743 0.2771 1.5898 3.4854
3.04 0.6504 0.1722 0.2740 1.5913 3.5476
3.06 0.6486 0.1701 0.2709 1.5928 3.6108
3.08 0.6469 0.1681 0.2679 1.5942 3.6752
3.1 0.6452 0.1660 0.2650 1.5957 3.7408
3.12 0.6435 0.1641 0.2620 1.5971 3.8076
3.14 0.6418 0.1621 0.2592 1.5985 3.8756
3.16 0.6402 0.1602 0.2563 1.5998 3.9449
3.18 0.6386 0.1583 0.2535 1.6012 4.0154
3.2 0.6370 0.1565 0.2508 1.6025 4.0871
3.22 0.6354 0.1547 0.2481 1.6038 4.1602
3.24 0.6339 0.1529 0.2454 1.6051 4.2345
3.26 0.6324 0.1511 0.2428 1.6063 4.3101
3.28 0.6309 0.1494 0.2402 1.6076 4.3871
3.3 0.6294 0.1477 0.2377 1.6088 4.4655
3.32 0.6280 0.1461 0.2352 1.6100 4.5452
3.34 0.6265 0.1444 0.2327 1.6111 4.6263
3.36 0.6251 0.1428 0.2303 1.6123 4.7089
3.38 0.6237 0.1412 0.2279 1.6134 4.7929
3.4 0.6224 0.1397 0.2255 1.6145 4.8783
3.42 0.6210 0.1381 0.2232 1.6156 4.9652
3.44 0.6197 0.1366 0.2209 1.6167 5.0536
3.46 0.6184 0.1351 0.2186 1.6178 5.1435
3.48 0.6171 0.1337 0.2164 1.6188 5.2350
3.5 0.6158 0.1322 0.2142 1.6198 5.3280
3.52 0.6145 0.1308 0.2120 1.6208 5.4226
3.54 0.6133 0.1294 0.2099 1.6218 5.5188
3.56 0.6121 0.1280 0.2078 1.6228 5.6167
3.58 0.6109 0.1267 0.2057 1.6238 5.7162
3.6 0.6097 0.1254 0.2037 1.6247 5.8173
3.62 0.6085 0.1241 0.2017 1.6257 5.9201
3.64 0.6074 0.1228 0.1997 1.6266 6.0247
3.66 0.6062 0.1215 0.1977 1.6275 6.1310
3.68 0.6051 0.1202 0.1958 1.6284 6.2390
3.7 0.6040 0.1190 0.1939 1.6293 6.3488
3.72 0.6029 0.1178 0.1920 1.6301 6.4605
3.74 0.6018 0.1166 0.1902 1.6310 6.5739
3.76 0.6008 0.1154 0.1884 1.6318 6.6893
3.78 0.5997 0.1143 0.1866 1.6327 6.8065
3.8 0.5987 0.1131 0.1848 1.6335 6.9256
3.82 0.5977 0.1120 0.1830 1.6343 7.0466
3.84 0.5967 0.1109 0.1813 1.6351 7.1696
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Ma T0/T*0 p/p* T/T* �*/� 	 V/V* p0/p*0

3.86 0.5957 0.1098 0.1796 1.6359 7.2945
3.88 0.5947 0.1087 0.1779 1.6366 7.4215
3.9 0.5937 0.1077 0.1763 1.6374 7.5505
3.92 0.5928 0.1066 0.1746 1.6381 7.6816
3.94 0.5918 0.1056 0.1730 1.6389 7.8147
3.96 0.5909 0.1046 0.1714 1.6396 7.9499
3.98 0.5900 0.1036 0.1699 1.6403 8.0873
4.0 0.5891 0.1026 0.1683 1.6410 8.2269

Table B.5 Prandtl-Meyer
Supersonic Expansion Function for
k 	 1.4

Ma �, deg Ma �, deg Ma �, deg Ma �, deg

1.00 0.0
1.05 0.49 3.05 50.71 5.05 77.38 7.05 91.23
1.10 1.34 3.10 51.65 5.10 77.84 7.10 91.49
1.15 2.38 3.15 52.57 5.15 78.29 7.15 91.75
1.20 3.56 3.20 53.47 5.20 78.73 7.20 92.00
1.25 4.83 3.25 54.35 5.25 79.17 7.25 92.24
1.30 6.17 3.30 55.22 5.30 79.60 7.30 92.49
1.35 7.56 3.35 56.07 5.35 80.02 7.35 92.73
1.40 8.99 3.40 56.91 5.40 80.43 7.40 92.97
1.45 10.44 3.45 57.73 5.45 80.84 7.45 93.21
1.50 11.91 3.50 58.53 5.50 81.24 7.50 93.44
1.55 13.38 3.55 59.32 5.55 81.64 7.55 93.67
1.60 14.86 3.60 60.09 5.60 82.03 7.60 93.90
1.65 16.34 3.65 60.85 5.65 82.42 7.65 94.12
1.70 17.81 3.70 61.60 5.70 82.80 7.70 94.34
1.75 19.27 3.75 62.33 5.75 83.17 7.75 94.56
1.80 20.73 3.80 63.04 5.80 83.54 7.80 94.78
1.85 22.16 3.85 63.75 5.85 83.90 7.85 95.00
1.90 23.59 3.90 64.44 5.90 84.26 7.90 95.21
1.95 24.99 3.95 65.12 5.95 84.61 7.95 95.42
2.00 26.38 4.00 65.78 6.00 84.96 8.00 95.62
2.05 27.75 4.05 66.44 6.05 85.30 8.05 95.83
2.10 29.10 4.10 67.08 6.10 85.63 8.10 96.03
2.15 30.43 4.15 67.71 6.15 85.97 8.15 96.23
2.20 31.73 4.20 68.33 6.20 86.29 8.20 96.43
2.25 33.02 4.25 68.94 6.25 86.62 8.25 96.63
2.30 34.28 4.30 69.54 6.30 86.94 8.30 96.82
2.35 35.53 4.35 70.13 6.35 87.25 8.35 97.01
2.40 36.75 4.40 70.71 6.40 87.56 8.40 97.20
2.45 37.95 4.45 71.27 6.45 87.87 8.45 97.39
2.50 39.12 4.50 71.83 6.50 88.17 8.50 97.57
2.55 40.28 4.55 72.38 6.55 88.47 8.55 97.76
2.60 41.41 4.60 72.92 6.60 88.76 8.60 97.94
2.65 42.53 4.65 73.45 6.65 89.05 8.65 98.12
2.70 43.62 4.70 73.97 6.70 89.33 8.70 98.29
2.75 44.69 4.75 74.48 6.75 89.62 8.75 98.47
2.80 45.75 4.80 74.99 6.80 89.90 8.80 98.64
2.85 46.78 4.85 75.48 6.85 90.17 8.85 98.81
2.90 47.79 4.90 75.97 6.90 90.44 8.90 98.98
2.95 48.78 4.95 76.45 6.95 90.71 8.95 99.15
3.00 49.76 5.00 76.92 7.00 90.97 9.00 99.32
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Fig. B.1 Mach number downstream
of an oblique shock for k 	 1.4.
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Fig. B.2 Pressure ratio downstream
of an oblique shock for k 	 1.4.
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During this period of transition there is a constant need for conversions between BG
and SI units (see Table 1.2). Some additional conversions are given here. Conversion
factors are given inside the front cover.

Length Volume

1 ft 	 12 in 	 0.3048 m 1 ft3 	 0.028317 m3

1 mi 	 5280 ft 	 1609.344 m 1 U.S. gal 	 231 in3 	 0.0037854 m3

1 nautical mile (nmi) 	 6076 ft 	 1852 m 1 L 	 0.001 m3 	 0.035315 ft3

1 yd 	 3 ft 	 0.9144 m 1 U.S. fluid ounce 	 2.9574 E-5 m3

1 angstrom (Å) 	 1.0 E-10 m 1 U.S. quart (qt) 	 9.4635 E-4 m3

Mass Area

1 slug 	 32.174 lbm 	 14.594 kg 1 ft2 	 0.092903 m2

1 lbm 	 0.4536 kg 1 mi2 	 2.78784 E7 ft2 	 2.59 E6 m2

1 short ton 	 2000 lbm 	 907.185 kg 1 acre 	 43,560 ft2 	 4046.9 m2

1 tonne 	 1000 kg 1 hectare (ha) 	 10,000 m2

Velocity Acceleration

1 ft/s 	 0.3048 m/s 1 ft/s2 	 0.3048 m/s2

1 mi/h 	 1.466666 ft/s 	 0.44704 m/s
1 kn 	 1 nmi/h 	 1.6878 ft/s 	 0.5144 m/s

Mass flow Volume flow

1 slug/s 	 14.594 kg/s 1 gal/min 	 0.002228 ft3/s 	 0.06309 L/s
1 lbm/s 	 0.4536 kg/s 1 � 106 gal/day 	 1.5472 ft3/s 	 0.04381 m3/s

Pressure Force

1 lbf/ft2 	 47.88 Pa 1 lbf 	 4.448222 N 	 16 oz
1 lbf/in2 	 144 lbf/ft2 	 6895 Pa 1 kgf 	 2.2046 lbf 	 9.80665 N
1 atm 	 2116.2 lbf/ft2 	 14.696 lbf/in2 	 1 U.S. (short) ton 	 2000 lbf

101,325 Pa 1 dyne 	 1.0 E-5 N
1 inHg (at 20°C) 	 3375 Pa 1 ounce (avoirdupois) (oz) 	 0.27801 N
1 bar 	 1.0 E5 Pa
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Energy Power

1 ft 
 lbf 	 1.35582 J 1 hp 	 550 ft 
 lbf/s 	 745.7 W
1 Btu 	 252 cal 	 1055.056 J 	 778.17 ft 
 lbf 1 ft 
 lbf/s 	 1.3558 W
1 kilowatt hour (kWh) 	 3.6 E6 J

Specific weight Density

1 lbf/ft3 	 157.09 N/m3 1 slug/ft3 	 515.38 kg/m3

1 lbm/ft3 	 16.0185 kg/m3

1 g/cm3 	 1000 kg/m3

Viscosity Kinematic viscosity

1 slug/(ft 
 s) 	 47.88 kg/(m 
 s) 1 ft2/h 	 0.000025806 m2/s
1 poise (P) 	 1 g/(cm 
 s) 	 0.1 kg/(m 
 s) 1 stokes (St) 	 1 cm2/s 	 0.0001 m2/s

Temperature scale readings

TF 	 �95�TC � 32 TC 	 �59�(TF � 32) TR 	 TF � 459.69 TK 	 TC � 273.16
where subscripts F, C, R, and K refer to readings on the Fahrenheit, Celsius, Kelvin, and Rankine scales,
respectively

Specific heat or gas constant* Thermal conductivity*

1 ft 
 lbf/(slug 
 °R) 	 0.16723 N 
 m/(kg 
 K) 1 Btu/(h 
 ft 
 °R) 	 1.7307 W/(m 
 K)
1 Btu/(lb 
 °R) 	 4186.8 J/(kg 
 K)

*Although the absolute (Kelvin) and Celsius temperature scales have different starting points, the intervals are the same
size: 1 kelvin 	 1 Celsius degree. The same holds true for the nonmetric absolute (Rankine) and Fahrenheit scales: 1
Rankine degree 	 1 Fahrenheit degree. It is customary to express temperature differences in absolute-temperature units.
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The equations of motion of an incompressible newtonian fluid with constant �, k, and
cp are given here in cylindrical coordinates (r, 
, z), which are related to cartesian co-
ordinates (x, y, z) as in Fig. 4.2:

x 	 r cos 
 y 	 r sin 
 z 	 z (D.1)

The velocity components are �r, �
, and �z. The equations are:

Continuity:
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Convective time derivative:
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Laplacian operator:
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The r-momentum equation:
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The 
-momentum equation:
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The z-momentum equation:
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The energy equation:
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Angular-velocity components:
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Overview

Background Information

EES (pronounced “ease”) is an acronym for Engineering Equation Solver. The basic
function provided by EES is the numerical solution of nonlinear algebraic and differ-
ential equations. In addition, EES provides built-in thermodynamic and transport prop-
erty functions for many fluids, including water, dry and moist air, refrigerants, and
combustion gases. Additional property data can be added by the user. The combina-
tion of equation solving capability and engineering property data makes EES a very
powerful tool.

A license for EES is provided to departments of educational institutions which adopt
this text by WCB/McGraw-Hill. If you need more information, contact your local
WCB/McGraw-Hill representative, call 1-800-338-3987, or visit our website at
www.mhhe.com. A commercial version of EES can be obtained from:

F-Chart Software
4406 Fox Bluff Rd
Middleton, WI 53562
Phone: (608)836-8531
Fax: (608)836-8536

The EES program is probably installed on your departmental computer. In addition,
the license agreement for EES allows students and faculty in a participating educa-
tional department to copy the program for educational use on their personal computer
systems. Ask your instructor for details.

To start EES from the Windows File Manager or Explorer, double-click on the 
EES program icon or on any file created by EES. You can also start EES from the
Windows Run command in the Start menu. EES begins by displaying a dialog
window which shows registration information, the version number, and other infor-
mation. Click the OK button to dismiss the dialog window.

Detailed help is available at any point in EES. Pressing the F1 key will bring up a
Help window relating to the foremost window. (See Fig. E.1.) Clicking the Contents
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Fig. E.1 EES Help index.

button will present the Help index shown below. Clicking on an underlined word (shown
in green on color monitors) will provide help relating to that subject.
EES commands are distributed among nine pull-down menus as shown below. Many

of the commands are accessible with the speed button palette that appears below the
menu bar. A brief summary of their functions follows. (A tenth pull-down menu, which
is made visible with the Load Textbook command described below, provides ac-
cess to problems from this text.)
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The System menu appears above the File menu. The System menu is not
part of EES but rather is a feature of the Windows operating system. It holds
commands which allow window moving, resizing, and switching to other ap-
plications.



The File menu provides commands for loading, merging, and saving work files;
libraries; and printing. The Load Textbook command in this menu reads
the problem disk developed for this text and creates a new menu to the right of
the Help menu for easy access to EES problems accompanying this text.

The Edit menu provides the editing commands to cut, copy, and paste informa-
tion.

The Search menu provides Find and Replace commands for use in the
Equations window.

The Options menu provides commands for setting the guess values and bounds
of variables, the unit system, default information, and program preferences. A
command is also provided for displaying information on built-in and user-
supplied functions.

The Calculate menu contains the commands to check, format, and solve the
equation set.

The Tables menu contains commands to set up and alter the contents of the
parametric and lookup tables and to do linear regression on the data in these
tables. The parametric table, which is similar to a spreadsheet, allows the
equation set to be solved repeatedly while varying the values of one or more
variables. The lookup table holds user-supplied data which can be interpolated
and used in the solution of the equation set.

The Plot menu provides commands to modify an existing plot or prepare a new
plot of data in the parametric, lookup, or array tables. Curve-fitting capability
is also provided.

The Windows menu provides a convenient method of bringing any of the EES
windows to the front or to organize the windows.

The Help menu provides commands for accessing the on-line help documentation.

A basic capability provided by EES is the solution of a set of nonlinear algebraic
equations. To demonstrate this capability, start EES and enter this simple example prob-
lem in the Equations window.
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Text is entered in the same manner as for any word processor. Formatting rules are as
follows:

1. Uppercase and lowercase letters are not distinguished. EES will (optionally)
change the case of all variables to match the manner in which they first appear.

2. Blank lines and spaces may be entered as desired since they are ignored.



3. Comments must be enclosed within braces { } or within quotation marks “ ”.
Comments may span as many lines as needed. Comments within braces may
be nested, in which case only the outermost set of braces is recognized. 
Comments within quotes will also be displayed in the Formatted Equations
window.

4. Variable names must start with a letter and consist of any keyboard characters
except ( ) ‘*/ � � ^ { } : " or ;. Array variables are identified with square
braces around the array index or indices, e.g., X[5,3]. The maximum variable
length is 30 characters.

5. Multiple equations may be entered on one line if they are separated by a semi-
colon (;). The maximum line length is 255 characters.

6. The caret symbol (^) or ** is used to indicate raising to a power.

7. The order in which the equations are entered does not matter.

8. The position of knowns and unknowns in the equation does not matter.

If you wish, you may view the equations in mathematical notation by selecting the
Formatted Equations command from the Windows menu.
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Select the Solve command from the Calculate menu. A Dialog window will ap-
pear indicating the progress of the solution. When the calculations are completed, the
button will change from Abort to Continue.

Click the Continue button. The solution to this equation set will then be displayed.



Let us now solve Prob. 6.55 from the text, for a cast-iron pipe, to illustrate the capa-
bilities of the EES program. This problem, without EES, would require iteration for
Reynolds number, velocity, and friction factor, a daunting task. State the problem:

6.55 Reservoirs 1 and 2 contain water at 20°C. The pipe is cast iron, with L 	
4500 m and D 	 4 cm. What will be the flow rate in m3/h if �z 	 100 m?

This is a representative problem in pipe flow (see Fig. E.2), and, being water in a rea-
sonably large (noncapillary) pipe, it will probably be turbulent (Re � 4000). The steady-
flow energy equation (3.71) may be written between the surfaces of reservoirs 1 and 2:

�
�
p
g
1� � �

V
2g

1
2

� � z1 	 �
�
p
g
2� � �

V
2g

2
2

� � z2 � hf where hf 	 f �
D
L

� �
V
2
p

g
ipe

2

�

Since p1 	 p2 	 patm and V1 � V2 � 0, this relation simplifies to

�z 	 f �
D
L

� �
2
V
g

2

� (1)

where V 	 Q/A is the velocity in the pipe. The friction factor f is a function of Reynolds
number and pipe roughness ratio, if the flow is turbulent, from Eq. (6.64):

�
f 1
1
/2� 	 �2.0 log10 ��

�
3
/
.
D
7
� � �

R
2
e
.5
f
1
1/2�� if Re � 4000 (2)

Finally, we need the definitions of Reynolds number and volume flow rate:

Re 	 �
�V

�
D
� (3)

and Q 	 V�
�
4

�D2 (4)

where � and � are the fluid density and viscosity, respectively.
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A Pipe Friction Example
Problem

1

2

�z

L, D, �

Fig. E.2 Sketch of the flow system.



Fig. E.3 Unit Selection dialog 
window.

Fig. E.4 Equations window.

There are a total of 11 variables involved in this problem: (L, D, �z, �, g, �, �, V,
Re, f, Q). Of these, seven can be specified at the start (L, D, �z, �, g, �, �), while four
(V, Re, f, Q) must be calculated from relations (1) to (4) above. These four equations
in four unknowns are well posed and solvable but only by laborious iteration, exactly
what EES is designed to do.

Start EES or select the New command from the File menu if you have already
been using the program. A blank Equations window will appear. Our recommenda-
tion is to always set the unit system immediately: Select Unit System from the
Options menu (Fig. E.3). We select SI and Mass units and trig Degrees, although
we do not actually have trigonometric functions this time. We select kPa for pres-
sure and Celsius for temperature, which will be handy for using the EES built-in
physical properties of water.
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Now, onto the blank screen, enter the equations for this problem (Fig. E.4), of which
five are known input values, two are property evaluations, and four are the relations
(1) to (4) from above.



There are several things to notice in Fig. E.4. First, quantities in quotes, such as “m,”
are for the user’s benefit and ignored by EES. Second, we changed Eps and D to me-
ters right away, to keep the SI units consistent. Third, we called on EES to input the
viscosity and density of water at 20°C and 1 atm, a procedure well explained in the
Helpmenu. For example, viscosity(water,T	20,P	101)meets the EES
requirement that temperature (T) and pressure (P) should be input in °C and kPa—EES
will then evaluate � in kg/(m 
 s). Finally, note that EES recognizes pi to be 3.141593.

In Fig. E.4 we used only one built-in function, log10. There are many such func-
tions, found by scrolling down the Function Information command in the
Options menu.

Having entered the equations, check the syntax by using the Check/Format com-
mand in the Calculate menu. If you did well, EES will report that the 11 equations in
11 unknowns look OK. If not, EES will guess at what might be wrong. If OK, why not go
for it? Hit the Solve command in the Optionsmenu. EES reports “logarithm of a neg-
ative number—try setting limits on the variables”. We might have known. Go to the Vari-
able Information command in the Optionsmenu. A box, listing the 11 variables,
will appear (Fig. E.5). All default EES “guesses” are unity; all default limits are �� to �
�, which is too broad a range. Enter (as already shown in Fig. E.5) guesses for f 	 0.02 and
Re 	 10,000, while V 	 1 and Q 	 1 seem adequate, and other variables are fixed. Make
sure that f, Re, V, and Q cannot be negative. The “display” columns normally say “A”, au-
tomatic, satisfactory for most variables. We have changed “A” to “F” (fixed decimal) for Q
and V to make sure they are displayed to four decimal places. The “units” column is nor-
mally blank—type in the correct units and they will be displayed in the solution.

Our guesses and limits are excellent, and the Solve command now iterates and
reports success: “max residual 	 2E-10”, a negligible error. (The default runs for 100

Introduction to EES 801

Fig. E.5 Variable Information window with units and guess values entered.



Parametric Studies with
Tabular Input

iterations, which can be modified by the Stop Criteria command in the Op-
tions menu.) Hit Continue, and the complete solution is displayed for all vari-
ables (Fig. E.6).
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This is the correct solution to Prob. 6.55: this cast-iron pipe, when subjected to a 
100-m elevation difference, will deliver Q 	 3.17 m3/h of water. EES did all the 
iteration.

One of the most useful features of EES is its ability to provide parametric studies. For
example, suppose we wished to know how varying �z changed the flow rate Q. First
comment out the equation that reads DELTAZ 	 100 by enclosing it within braces. (If
you select the equation and press the right mouse button, EES will automatically en-
ter the braces.) Select the New Parametric Table command in the Options
menu. A dialog will be displayed (Fig. E.7) listing all the variables in the problem.
Highlight what you wish to vary: �z. Also highlight variables to be calculated and tab-
ulated: V, Q, Re, and f.

Fig. E.6 The Solutions window for
Prob. 6.55.

Fig. E.7 New Parametric Table
window showing selected variables
(V is not shown).



Fig. E.8 Parametric Table window.

Fig. E.9 Solve Table Dialog.
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Clearly the parametric table operates much like a spreadsheet. Select Solve Table
from the Calculate menu, and the Solve Table dialog window will appear (Fig. E.9).
These are satisfactory default values; the author has changed nothing. Hit the OK button
and the calculations will be made and the entire parametric table filled out, as in Fig. E.10.

The flow rates can be seen in Fig. E.10, but as always, in the author’s experience, a plot
is more illuminating. Select New Plot window from the Plot menu. The New Plot
window dialog (Fig. E.11) will appear. Choose �z as the x-axis and Q as the y-axis.
We added grid lines. Click the OK button, and the desired plot will appear in the Plot
window (Fig. E.12). We see a nonlinear relationship, roughly a square-root type, and
learn that flow rate Q is not linearly proportional to head difference �z.

The plot appearance in Fig. E.12 can be modified in several ways. Double-click the
mouse in the plot rectangle to see some of these options.

Click the OK button and the new table will be displays (Fig. E.8). Enter 10 values of
�z that cover the range of interest—we have selected the linear range 10 � �z � 500 m.



Fig. E.10 Parametric Table window after calculations are completed.
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Fig. E.11 New Plot Setup dialog window.
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Fig. E.12 Plot window for flow
rate versus elevation difference.

A problems disk developed for EES has been included with this textbook. Place the
disk in the disk drive, and then select the Load Textbook command in the File
menu. Use the Windows Open File command to open the textbook problem in-
dex file which, for this book, is named WHITE.TXB. A new menu called Fluid
Mechanics will appear to the right of the Help menu. This menu will provide ac-
cess to all the EES problem solutions developed for this book organized by chapter.
As an example, select Chap. 6 from the Fluid Mechanics menu. A dialog win-
dow will appear listing the problems in Chap. 6. Select Problem 6.55—Flow Between
Reservoirs. This problem is a modification (smooth instead of cast-iron pipe) of the
problem you just entered. It provides a diagram window in which you can enter �z.
Enter other values, and then select the Solve command in the Calculate menu
to see their effect on the flow rate. 

At this point, you should explore. Try whatever you wish. You can’t hurt anything.
The on-line help (invoked by pressing F1) will provide details for the EES commands.
EES is a powerful tool that you will find very useful in your studies.

Loading a Textbook File



1.68 h � (�/�g)1/2 cot �
1.70 h � 2� cos �/(�gW)
1.72 z � 4800 m
1.74 Cavitation occurs for both (a) and (b)
1.76 z � 7500 m
1.78 (a) 25°C; (b) 4°C
1.80 x2y � y3/3 � constant
1.82 y � x tan � � constant
1.84 x � x0{ln (y/y0) � ln2 (y/y0)}

Chapter 2

2.2 �xy � �289 lb/ft2, 	AA � �577 lb/ft2

2.4 x � Const e�2Cz/B

2.6 (a) 30.3 ft; (b) 30.0 in; (c) 10.35 m; (d) 13,100 mm
2.8 DALR � 9.77°C/km
2.10 10,500 Pa
2.12 8.0 cm
2.14 74,450 Pa with air; 75,420 Pa without air
2.16 (a) 21,526 cm3; (b) 137 kPa
2.18 1.56
2.20 14 lbf
2.22 0.94 cm
2.24 psealevel � 117 kPa, mexact � 5.3 E18 kg
2.26 (a) 2580 m; (b) 5410 m
2.28 4400 
 400 ft
2.30 101,100 Pa
2.32 22.6 cm
2.34 �p � �h[�water(1 � d2/D2) � �oil(1 � d2/D2)]
2.36 25°
2.38 (a) p1,gage � (�m � �a)gh � (�t � �a)gH
2.40 21.3 cm
2.42 pA � pB � (�2 � �1)gh
2.44 (a) 171 lb/ft2; (b) 392 lb/ft2; manometer reads friction

loss

Chapter 1

1.2 1.3 E44 molecules
1.4 1.63 slug/ft3, 839 kg/m3

1.6 (a) {L2/T2}; (b) {M/T}
1.8 � � 1.00 My/I
1.10 Yes, all terms are {ML/T2}
1.12 {B} � {L�1}
1.14 Q � Const B g1/2H3/2

1.16 All terms are {ML�2T�2}
1.18 V � V0e�mt/K

1.20 zmax � 64.2 m at t � 3.36 s
1.22 (a) �0.372U


2 /R; (b) x � �1.291 R
1.24 e � 221,000 J/kg
1.26 Wair � 0.71 lbf
1.28 �wet � 1.10 kg/m3, �dry � 1.13 kg/m3

1.30 W1-2 � 21 ft � lbf
1.32 (a) 76 kN; (b) 501 kN
1.34 1300 atm
1.36 (a) BN2O � 1.33 E5 Pa; (b) Bwater � 2.13 E9 Pa
1.38 	 � 1380 Pa, ReL � 28
1.40 A � 0.0016 kg/(m � s), B � 1903 K
1.42 �/�200K � (T K/200 K)0.68

1.44 Data 50 percent higher; Andrade fit varies 
50 percent
1.46 V � 15 m/s
1.48 F � (�1/h1 � �2/h2)AV
1.50 � � M(ro � ri)/(2��ri

3L)
1.52 P � 73 W
1.54 M � ���R4/h
1.56 � � 3M sin �/(2��R3)
1.58 � � 0.040 kg/(m � s), last 2 points are turbulent flow
1.60 � � 0.88 
 0.023 kg/(m � s)
1.62 28,500 Pa
1.64 (a) �0.023 m; (b) � 0.069 m
1.66 F � 0.014 N
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2.46 1.45
2.48 F � 39700 N
2.50 (a) 524 kN; (b) 350 kN; (c) 100 kN
2.52 0.96
2.54 879 kg/m3

2.56 16.08 ft
2.58 0.40 m
2.60 Fnet � 23,940 N at 1.07 m above B
2.62 10.6 ft
2.64 1.35 m
2.66 F � 1.18 E9 N, MC � 3.13 E9 N � m counterclockwise,

no tipping
2.68 18,040 N
2.70 4490 lbf at 1.44 ft to right and 1.67 ft up from point B
2.72 33,500 N
2.74 F � ba2�0{(a2/g)[exp(gh/a2) � 1] � h}
2.76 P � (�/24)h2b(3 � csc2 �)
2.78 P � ��R3/4
2.80 (a) 58,800 Pa; (b) 0.44 m
2.82 FH � 97.9 MN, FV � 153.8 MN
2.84 FH � 4895 N, FV � 7343 N
2.86 FH � 0, FV � 6800 lbf
2.88 FH � 176 kN, FV � 31.9 kN, yes
2.90 467 lbf
2.92 Fone bolt � 11,300 N
2.94 Cx � 2996 lb, Cz � 313 lbf
2.96 (a) 940 kN; (b) 1074 kN; (c) 1427 kN
2.98 FH � 7987 lbf, FV � 2280 lbf
2.100 FH � 0, FV � 297 kN
2.102 124 kN
2.104 5.0 N
2.106 4310 N/m3

2.108 12.6 N
2.110 h � (a) 7.05 mm; (b) 7.00 mm
2.112 (a) 39 N; (b) 0.64
2.114 0.636
2.116 19100 N/m3

2.118 (a) draft � 7.24 in; (b) 25 lbf
2.120 34.3°
2.122 a/b � 0.834
2.124 6850 m
2.126 h/H � Z � (Z2 � 1 � �)1/2, � � d/H, Z � (2 � � � �)/2,

� � pa/(�gH)
2.128 Yes, stable if S � 0.789
2.130 Slightly unstable, MG � �0.007 m
2.132 Stable if R/h � 3.31
2.134 (a) unstable; (b) stable
2.136 MG � L2/(3�R) � 4R/(3�) � 0 if L � 2R
2.138 2.77 in deep; volume � 10.8 fluid ounces
2.140 ax � (a) �1.96 m/s2 (deceleration); (b) �5.69 m/s2

(deceleration)

2.142 (a) 16.3 cm; (b) 15.7 N
2.144 (a) ax � 319 m/s2; (b) no effect, pA � pB

2.146 Leans to the right at � � 27°
2.148 Leans to the left at � � 27°
2.150 5.5 cm; linear scale OK
2.152 (a) 224 r/min; (b) 275 r/min
2.154 (a) both are paraboloids; (b) pB � 2550 Pa (gage)
2.157 77 r/min, minimum pressure halfway between B and C
2.158 10.57 r/min

Chapter 3

3.2 r � position vector from point O
3.6 Q � (2b/3)(2g)1/2[(h � L)3/2 � (h � L)3/2]
3.8 Q � K per unit depth
3.10 (�/3)R2�U0cpTw

3.12 (a) 44 m3/h; (b) 9.6 m/s
3.14 dh/dt � (Q1 � Q2 � Q3)/(�d2/4)
3.16 Qtop � 3U0b�/8
3.18 (b) Q � 16bhumax/9
3.20 (a) 7.97 mL/s; (b) 1.27 cm/s
3.22 (a) 0.06 kg/s; (b) 1060 m/s; (c) 3.4
3.24 h � [3Kt2d2/(8 tan2 �)]1/3

3.26 Q � 2U0bh/3
3.28 t � �(1 � 1/�3�)h0

1/2/(2CA�2�g�)
3.30 (a) dh/dt � Q/(2hb cot 20°)
3.32 Vhole � 6.1 m/s
3.34 V2 � 4660 ft/s
3.36 U3 � 6.33 m/s
3.38 V � V0r/(2h)
3.40 500 N to the left
3.42 F � (p1 � pa)A1 � �1A1V1

2[(D1/D2)2 � 1]
3.44 F � �U2Lb/3
3.46 � � (1 � cos �)/2
3.48 V0 � 2.27 m/s
3.50 102 kN
3.52 F � �WhV1

2[1/(1 � sin �) � 1] to the left
3.54 163 N
3.56 2.45 N/m
3.58 40 N
3.60 2100 N
3.62 3100 N
3.64 980 N
3.66 8800 N
3.70 91 lbf
3.72 Drag � 4260 N
3.74 Fx � 0, Fy � �17 N, Fz � 126 N
3.76 77 m/s
3.80 F � (�/2)gb(h1

2 � h2
2) � �h1bV1

2(h1/h2 � 1)
3.82 25 m/s
3.84 23 N
3.86 274 kPa
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3.88 V � � � [�2 � 2Vj]
1/2, � � �Q/2k

3.90 dV/dt � g
3.92 dV/dt � gh/(L � h)
3.94 h � 0 at t � 70 s
3.96 d2Z/dt2 � 2gZ/L � 0
3.100 (a) 507 m/s and 1393 m; (b) 14.5 km
3.102 h2/h1 � ��12� ��12�[1 � 8V1

2/(gh1)]1/2

3.104 � � (�Ve /R) ln (1 � ṁt/M0)
3.106 �final � 75 rad/s
3.108 (a) V � V0 /(1 � CV0t/M), C � �bh(1 � cos �)
3.110 (a) 0.113 ft � lbf; (b) 250 r/min
3.112 T � ṁR0

2�
3.114 (a) 414 r/min; (b) 317 r/min
3.116 P � �Qr2�[r2� � Q cot �2/(2�r2b2)]
3.118 P � �QuVn(cot �1 � cot �2)
3.120 (a) 22 ft/s; (b) 110 ft/s; (c) 710 hp
3.122 L � �h1 (cot �)/2
3.124 41 r/min
3.126 �15.5 kW (work done on the fluid)
3.128 1.07 m3/s
3.130 34 kW
3.134 4500 hp
3.136 5.6 m3/h
3.138 � � ��gd4(H � L�)/(128L�Q) � �2�Q/(16�L�)
3.140 1640 hp
3.142 (a) 1150 gal/min; (b) 67 hp
3.144 26 kW
3.146 h � 3.6 ft
3.148 hf � 0.21 m
3.152 (a) 85.9°; (b) 55.4°
3.154 h � 0.133 m
3.156 (a) 102 kPa; (b) 88 mi/h
3.158 (a) 169.4 kPa; (b) 209 m3/h
3.160 (a) 31 m3/s; (b) 54 kW
3.162 Q � 166 ft3/min, �p � 0.0204 lbf/in2

3.164 (a) 5.25 kg/s; (b) 2.9 cm
3.166 (a) 60 mi/h; (b) 1 atm
3.168 h � 1.08 ft
3.170 h � 1.76 m
3.172 D � 0.132 ft
3.174 (a) 5.61 ft/s; (b) further constriction reduces V2

3.176 (a) 9.3 m/s; (b) 68 kN/m
3.178 h2 � 2.03 ft (subcritical) or 0.74 ft (supercritical)
3.180 V � Vf tanh (Vft/2L), Vf � (2gh)1/2

3.182 kp/[(k � 1)�] � V2/2 � gz � constant

Chapter 4

4.2 (a) du/dt � (2V0
2/L)(1 � 2x/L)

4.4 At (2, 1), dT/dt � 125 units
4.6 (a) 6V0

2/L; (b) L ln 3/(2V0)

4.8 (a) 0.0196 V2/L; (b) at t � 1.05 L /U
4.12 If �� � �� � 0, �r � r�2 fcn (�, �)
4.14 �� � fcn(r) only
4.16 � � y2 � 3x2y � fcn(x, z)
4.18 � � �0L0/(L0 � Vt)
4.20 � � �0 � const, {K} � {L/T}, {a} � {L�1}
4.22 �x�L � 1.82 kg/m3

4.28 Exact solution for any a or b
4.30 p � const � (�K2/2)(x2 � y2)
4.32 f1 � C1r; f2 � C2/r
4.34 p � p(0) � 4�umaxz/R2

4.36 C � �g sin �/(2�)
4.38 Cz � 	yx � 	xy

4.42 Tmean � (∫uT dy)/(∫u dy)
4.48 � � Kxy � const
4.50 Inviscid flow around a 180° turn
4.52 � � �4Q�/(�b)
4.54 Q � ULb
4.60 Irrotational, z0 � H � �2R2/(2g)
4.62 � � Vy2/(2h) � const
4.66 � � �K sin �/r
4.68 � � m tan�1[2xy/(x2 � y2 � a2)]
4.70 � � � cos �/r2, � � 2am
4.72 (a) 8.8m; (b) 55 m
4.74 � � Uy � K ln r
4.76 (a) 0.106 m from A; (b) 0.333 m above the wall
4.78 (a) Vwall,max � m/L�; (b) pmin at x � L�
4.80 (a) w � (�g/2�)(2�x � x2)
4.82 Obsessive result: �� � �R2/r
4.84 �z � (�gb2/2�) ln (r/a) � (�g/4�)(r2 � a2)
4.86 Q � 0.0031 m3/(s � m)
4.88 �z � U ln (r/b)/[ln (a/b)]
4.90 F � 3.34 N

Chapter 5

5.2 1.21 m
5.4 V � 1.55 m/s, F � 1.3 N
5.6 F � 450 N
5.10 (a) {ML�2T�2}; (b) {MLT�2}
5.14 �/x � fcn (�Ux/�)
5.16 Stanton number � h/(�Vcp)
5.18 Q�/[(�p/L)b4] � const
5.20 P/(��3D5) � fcn[Q/(�D3), ��D2/�]
5.22 �D/V � fcn(N, H/L)
5.24 F/(�V2L2) � fcn(�, �VL/�, L/D, V/a)
5.26 (a) indeterminate; (b) T � 2.75 s
5.28 �/L � fcn[L/D, �VD/�, E/(�V2)]
5.30 hL/k � fcn(�UL /�, �cp/k)
5.32 Q/(bg1/2H3/2) � const
5.34 khydrogen � 0.182 W/(m � K)
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5.36 (a) QlossR/(A�� ) � constant
5.38 d/D � fcn(�UD/�, �U2D/Y)
5.40 h/L � fcn(�gL2/Y, �, �)
5.44 (a) {�} � {L2}
5.48 F � 0.17 N; (doubling U quadruples F)
5.50 (a) F/(�UL�) � constant
5.52 U � 5 ft/s, F � 0.003 lbf/ft
5.54 Power � 7 hp
5.56 V � 128 ft/s � 87 mi/h
5.58 V � 2.8 m/s
5.60 Prototype power � 157 hp
5.62 �max � 26.5 r/s; �p � 22,300 Pa
5.64 �aluminum � 0.77 Hz
5.66 (a) V � 27 m/s; (b) z � 27 m
5.68 (a) F/(�U) � constant; (b) No, not plausible
5.70 F � 87 lbf
5.72 V � 25 ft/s
5.74 Prototype moment � 88 kN � m
5.76 Drag � 107,000 lbf
5.78 Weber no. � 100 if Lm/Lp � 0.0090
5.80 (a) 1.86 m/s; (b) 42,900; (c) 254,000
5.82 Speeds: 19.6, 30.2, and 40.8 ft/s; 

Drags: 14,600; 31,800; and 54,600 lbf
5.84 Vm � 39 cm/s; Tm � 3.1 s; Hm � 0.20 m
5.88 At 340 W, D � 0.109 m
5.90 �pD/(�V2L) � 0.155(�VD/�)�1/4

Chapter 6

6.2 (a) x � 2.1 m; (b) x � 0.14 m
6.4 (a) 39 m3/h; (b) 1.3 m3/h
6.6 (a) laminar; (b) laminar
6.8 (a) �3600 Pa/m; (b) �13,400 Pa/m
6.10 (a) from A to B; (b) hf � 7.8 m
6.18 (a) 0.054 m3/s; (b) 8.5 m/s; (c) 122 Pa; (d) 542 kPa
6.20 (a) 0.204 m; (b) �19,800 Pa/m; (c) �9980 Pa/m
6.22 (a) 39 kg/s; (b) 1430
6.24 Head loss � 25 m
6.26 4 mm
6.28 Q � 0.31 m3/h
6.30 F � 4 N
6.32 (a) 127 MPa; (b) 127 kW
6.34 � � 0.000823 kg/(m � s)
6.36 �p � 65 Pa
6.38 (a) 19.3 m3/h; (b) flow is up
6.40 (a) flow is up; (b) 1.86 m3/h
6.44 hf � 10.5 m, �p � 1.4 MPa
6.46 Input power � 11.2 MW
6.48 r/R � 1 � e�3/2

6.50 (a) �4000 Pa/m; (b) 50 Pa; (c) 46 percent

6.52 p1 � 2.38 MPa
6.54 D � 0.118 m
6.56 (a) 188 km; (b) 27 MW
6.58 Power � 870 kW
6.64 Q � 19.6 m3/h (laminar, Re � 1450)
6.66 (a) 56 kPa; (b) 85 m3/h; (c) u � 3.3 m/s at r � 1 cm
6.68 Power � 204 hp
6.70 Q � 2.21 ft3/s
6.72 Optimum � � 90° (0.7 m rise)
6.74 D � 0.52 in
6.76 Q � 15 m3/h
6.78 Q � 25 m3/h (to the left)
6.80 Q � 0.905 m3/s
6.82 D � 0.394 m
6.84 D � 0.104 m
6.86 (a) 3.0 m/s; (b) 0.325 m/m; (c) 2770 Pa/m
6.90 Q � 19.6 ft3/s
6.92 (a) 1530 m3/h; (b) 6.5 Pa (vacuum)
6.94 260 Pa/m
6.96 Cross section 0.106 m by 0.531 m
6.98 Approximately 128 squares
6.102 (a) 5.55 hp; (b) 5.31 hp with 6° cone
6.104 �p � 0.0305 lbf/in2

6.106 Q � 0.0296 ft3/s
6.108 Q � 0.22 ft3/s
6.110 840 W
6.112 Q � 0.0151 ft3/s
6.114 (a) Q1 � 0.0167 m3/s, Q2 � 0.0193 m3/s, �p � 774 kPa
6.116 Q � 0.027 m3/s
6.118 �p � 131 lbf/in2

6.120 Q1 � 0.0109 m3/s, Q2 � 0.0264 m3/s, Q3 � 0.0183 
m3/s

6.122 Increased �/d and L/d are the causes
6.124 Q1 � �2.09 ft3/s, Q2 � 1.61 ft3/s, Q3 � 0.49 ft3/s
6.126 �opening � 35°
6.128 QAB � 3.47, QBC � 2.90, QBD � 0.58, QCD � 5.28,

QAC � 2.38 ft3/s (all)
6.130 QAB � 0.95, QBC � 0.24, QBD � 0.19, QCD � 0.31,

QAC � 1.05 ft3/s (all)
6.132 2� � 6°, De � 2.0 m, pe � 224 kPa
6.134 2� � 10°, We � 8.4 ft, pe � 2180 lbf/ft2

6.136 (a) 25.5 m/s, (b) 0.109 m3/s, (c) 1.23 Pa
6.138 46.7 m/s
6.140 �p � 273 kPa
6.142 Q � 18.6 gal/min, dreducer � 0.84 cm
6.144 Q � 54 m3/h
6.146 (a) 0.00653 m3/s; (b) 100 kPa
6.148 (a) 1.58 m; (b) 1.7 m
6.150 �p � 27 kPa
6.152 D � 4.12 cm
6.154 h � 59 cm
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6.156 Q � 0.924 ft3/s
6.158 (a) 49 m3/h; (b) 6200 Pa

Chapter 7

7.2 Rec � 1.5 E7
7.4 d � 8 mm lies in the transition region
7.6 H � 2.5 (versus 2.59 for Blasius)
7.8 Approximately 0.08 N
7.12 Does not satisfy ∂2u/∂y2 � 0 at y � 0
7.14 C � ��0/� � const � 0 (wall suction)
7.16 (a) F � 181 N; (b) 256 N
7.18 � � 0.16°; Fdrag � 0.024 N
7.20 x � 0.91 m
7.22 � � ( xU)1/2 f(!)
7.24 h1 � 9.2 mm; h2 � 5.5 mm
7.26 Fa � 2.83 F1, Fb � 2.0 F1

7.28 (a) Fdrag � 2.66 N2(��L)1/2U3/2a
7.30 (a) F � 72 N; (b) 79 N
7.32 F � 0.0245 � 1/7 L6/7 U0

13/7 �
7.34 F � 725 N
7.36 7.2 m/s � 14 kn
7.38 (a) 7.6 m/s; (b) 6.2 m/s
7.40 L � 3.53 m, b � 1.13 m
7.42 P4 blades � 0.032�1/7(�C)6/7 �20/7 R27/7

7.44 Accurate to about 
6 percent
7.46 � � 9 mm, U � 11.2 m/s � 22 kn
7.48 Separation at x/L � 0.158 (1 percent error)
7.50 Separation at x/R � 1.80 rad � 103.1°
7.52 CD (ReL�)1/2 � 2.67 (by numerical integration)
7.54 Moment � 200,000 N � m
7.56 (a) 10 N; (b) 80 N
7.58 (a) 3200 N/m; (b) 2300 N/m
7.60 Tow power � 140 hp
7.62 Square side length � 0.83 m
7.64 �t1000–2000m � 202 s
7.68 (a) 34 m/s; (b) no, only 67 percent of terminal velocity

at impact
7.70 (a) 642 ft; (b) 425 ft
7.72 (a) L � 6.3 m; (b) 120 m
7.78 �p � 100 Pa
7.80 � � 72°
7.82 Vmin � 138 ft/s; (b) Vmax � 377 ft/s
7.84 V � 9 m/s
7.86 Approximately 3.05 m by 6.1 m
7.88 (a) 62 hp; (b) 86 hp
7.90 Voverturn � 145 ft/s � 99 mi/h
7.94 Torque � (CD/4)��2DR4, �max � 85 r/min
7.96 �avg � 0.21 U/D
7.98 (b) h � 0.18 m
7.100 (b) Dmax � 78 �m
7.106 (a) 300 m; (b) 380 m

7.108 �xball � 13 m
7.110 �y � 1.9 ft
7.114 Vfinal � 18.3 m/s � 66 km/h
7.116 (a) 87 mi/h; (b) 680 hp
7.118 (a) 21 m/s; (b) 360 m
7.120 (L/D)max � 21; � � 4.8°
7.122 (a) 6.7 m/s; (b) 13.5 m/s � 26 kn
7.124 �crude theory � 340 r/s

Chapter 8

8.2 " � ��(R2
2 � R1

2)
8.4 No, 1/r is not a proper two-dimensional potential
8.6 � � B(y2 � x2)
8.8 " � 4B
8.12 " � 0
8.14 Irrotational outer, rotational inner; minimum 

p � p
 � ��2R2 at r � 0
8.18 From afar: a single source 4m
8.20 Vortex near a wall (see Fig. 8.17b)
8.22 Same as Fig. 8.6 except upside down
8.24 Cp � �{2(x/a)/[1 � (x/a)2]}2, Cp,min � �1.0 at x � a
8.26 Vresultant � 9.4 m/s at � � 47°
8.28 Creates a source in a square corner
8.34 Two stagnation points, at x � 
a/�3�
8.36 U
 � 12.9 m/s, 2L � 53 cm, Vmax � 22.5 m/s
8.42 K/(U
a) � 0.396, h/a � 1.124
8.44 K � 4.6 m2/s; (a) 218 kPa; (b) 214 kPa at upper

shoulder, �6 kPa at lower shoulder (cavitation)
8.46 F1-bolt � 5000 N
8.50 h � 3a/2, Umax � 5U/4
8.52 Vboat � 10.2 ft/s with wind at 44°
8.54 Fparallel � 6700 lbf, Fnormal � 2700 lbf, power � 560 hp

(very approximate)
8.56 CD � 2.67 (too high, incorrect prear)
8.60 This is Fig. 8.15a, flow in a 60° corner
8.62 Stagnation flow near a “bump”
8.64 All favorable gradients: no separation
8.66 � � 0.45m/(5m � 1) if U � Cxm

8.68 Flow past a Rankine oval
8.70 Applied to wind-tunnel “blockage”
8.72 Adverse gradient for x � a
8.74 VB,total � (8Ki � 4Kj)/(15a)
8.78 Need an infinite array of images
8.82 (a) 4.5 m/s; (b) 1.13; (c) 1.26 hp
8.84 (a) 0.21; (b) 1.9°
8.86 (a) 26 m; (b) 8.7; (c) 1600 N
8.88 Thrust1-engine � 2900 lbf
8.90 (a) 4.0; (b) 4.8°
8.92 (a) 0.77 m; (b) V � 4.5 m/s at (r, �) � (1.81, 51°) and

(1.11, 88°)
8.94 Yes, they are orthogonal
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8.98 Yes, a closed teardrop shape appears
8.100 V � 14.1 m/s, pA � 115 kPa
8.102 (a) 1250 ft; (b) 1570 ft (crudely)

Chapter 9

9.2 (a) V2 � 450 m/s, �s � 515 J/(kg � K); (b) V2 � 453
m/s, �s � 512 J/(kg � K)

9.4 About 50 m/s
9.6 Exit at about T2 � 54°C and V2 � 1445 m/s
9.8 410 K
9.10 Ma � 0.78
9.12 (a) 2.13 E9 Pa and 1460 m/s; (b) 2.91 E9 Pa and 1670

m/s; (c) 2645 m/s
9.18 (a) 930 ft/s; (b) 878 ft/s
9.20 (a) air: 144 kPa and 995 m/s; (b) helium: 128 kPa and

2230 m/s
9.22 (a) 267 m/s; (b) 286 m/s
9.24 (b) at Ma � 0.576
9.28 (a) 0.17 kg/s; (b) 0.90
9.30 (a) 262 m/s; (b) 0.563; (c) 0.905 kg/m3

9.32 (a) 141 kPa; (b) 101 kPa; (c) 0.706
9.34 (a) 0.00424 slug/s; (b) 0.00427 slug/s
9.40 (a) 2.50; (b) 7.6 cm2; (c) 1.27 kg/s; (d) Ma2 � 1.50
9.42 (a) Ma � 0.90, T � 260 K, V � 291 m/s
9.44 Ve � 5680 ft/s, pe � 15.7 psia, Te � 1587°R, thrust �

4000 lbf
9.46 Rx � �8 N (to the left)
9.48 (a) 313 m/s; (b) 0.124 m/s; (c) 0.00331 kg/s
9.50 (a) Dexit � 5.8 cm
9.52 (a) 5.9 cm2; (b) 773 kPa
9.54 Ma2 � 0.648, V2 � 279 m/s, T2 � 461°K, p2 � 458 kPa,

p02 � 607 kPa
9.56 At about A1 � 24.7 cm2

9.58 (a) 306 m/s; (b) 599 kPa; (c) 498 kPa
9.60 Upstream: Ma � 1.92, V � 585 m/s
9.62 C � 19,100 ft/s, Vinside � 15,900 ft/s
9.64 (a) 0.150 kg/s; (b, c) 0.157 kg/s
9.66 h � 1.09 m
9.68 patm � 92.6 kPa; max flow � 0.140 kg/s
9.70 (a) 388 kPa; (b) 19 kPa
9.72 Mass flow � 0.5 kg/s, pe � 185 kPa, Mae � 0.407
9.74 (a) 1.096 MPa; (b) 2.24 kg/s
9.76 �tshocks � 23 s; �tchoking-stops � 39 s
9.78 Case A: 0.0071 kg/s; B: 0.0068 kg/s
9.80 A* � 2.4 E-6 ft2 or Dhole � 0.021 in
9.82 Ve � 110 m/s, Mae � 0.67 (yes)
9.84 (a) 0.96 kg/s; (b) 0.27; (c) 435 kPa
9.86 V2 � 107 m/s, p2 � 371 kPa, T2 � 330 K, p02 � 394 kPa
9.88 L � 2 m, yes, a shock at Ma2 � 2.14
9.90 (a) 0.764 kg/s; (b) 0.590 kg/s; (c) 0.314 kg/s
9.92 (a) 0.45; (b) 2.04 kg/s

9.98 (a) 430; (b) 0.12; (c) 0.00243 kg/h
9.100 Lpipe � 69 m
9.102 Flow is choked at 0.69 kg/s
9.104 ptank � 99 kPa
9.106 (a) 0.031 m; (b) 0.53 m; (c) 26 m
9.108 Mass flow drops by about 32 percent
9.112 (a) 105 m/s; (b) 215 kPa
9.116 Vplane � 2640 ft/s
9.118 V � 204 m/s, Ma � 0.6
9.120 P is 3 m ahead of the small circle, Ma � 2.0, Tstag �

518 K
9.122 � � 23.13°, Ma2 � 2.75, p2 � 145 kPa
9.126 (a) 25.9°; (b) 26.1°
9.128 �wedge � 15.5°
9.130 (a) 57.87°; (b) 21.82°
9.132 (a) pA � 18.0 psia; (b) pB � 121 psia
9.134 Ma3 � 1.02, p3 � 727 kPa, � � 42.8°
9.136 (a) h � 0.40 m; (b) Ma3 � 2.43
9.138 pr � 21.7 kPa
9.140 Ma2 � 2.75, p2 � 145 kPa
9.142 (a) Ma2 � 2.641, p2 � 60.3 kPa; (b) Ma2 � 2.299, p2 �

24.1 kPa
9.146 �� � 9.47° (helium)
9.148 CL � 0.184 (approximately linear), CD � 0.0193

(approximately parabolic)
9.150 (a) � � 4.10°; (b) drag � 2150 N/m
9.152 Parabolic shape has 33 percent more drag

Chapter 10

10.2 (a) C � 3.31 m/s; (b) �V � 0.030 m/s
10.4 These are piezometer tubes (no flow)
10.6 (a) Fr � 3.8; (b) Vcurrent � 7.7 m/s
10.8 �ttravel � 6.3 h
10.10 �crit � 2�(�/�g)1/2

10.14 Flow must be fully rough turbulent (high Re) for Chézy
to be valid

10.16 20 percent less flow, independent of n
10.18 yn � 0.993 m
10.20 Q � 74 ft3/s
10.22 S0 � 0.00038 (or 0.38 m/km)
10.24 yn � 0.56 m
10.26 (a) 17.8 m3/s; (b) 1.79 m
10.30 �t � 32 min
10.32 74,000 gal/min
10.34 If b � 4 ft, y � 9.31 ft, P � 22.62 ft; 

if b � 8 ft, y � 4.07 ft, P �16.14 ft
10.36 y2 � 3.6 m
10.38 Dsemicircle � 2.67 m (16 percent less perimeter)
10.42 P � 41.3 ft (71 percent more than Prob. 10.39)
10.44 Hexagon side length b � 2.12 ft
10.46 Best h0/b � 0.53 
 0.03
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10.48 (a) 0.00634; (b) 0.00637
10.50 (a) 2.37; (b) 0.62 m; (c) 0.0026
10.52 W � 2.06 m
10.54 (a) 1.98 m; (b) 3.11 m/s; (c) 0.00405
10.56 (a) 1.02 m3/s; (b) 0.0205
10.58 Fr � 0.628R1/6, R in meters
10.60 (a) 0.052 m3/(m � s); (b) 0.0765 m
10.64 hmax � 0.35 m
10.66 (a) 1.47; (b) y2 � 1.19 m
10.70 (a) 0.15 m; (b) 3.2; (c) 0.59 m3/(s � m)
10.72 (a) 0.046 m; (b) 4.33 m/s; (c) 6.43
10.76 H � 0.011 m
10.78 �t � 8.6 s (crude analysis)
10.80 (a) 3.83 m; (b) 4.83 m3/(s � m)
10.82 (a) 0.88 m; (b) 17.6 m/s; (c) 2.89 m
10.84 y2 � 0.82 ft; y3 � 5.11 ft; 47 percent
10.86 (a) 6.07 m/s; (b) �V � 2.03 m/s
10.88 (a) downstream; (b) 5.7 percent
10.90 0.0207 (or 1.19°)
10.92 (a) 3370 ft3/s; (b) 7000 hp
10.94 (a) 0.61 m; (b) 3.74 m/s; (c) 0.89 m
10.98 (a) steep S-3; (b) S-2; (c) S-1
10.106 No entry depth leads to critical flow
10.108 (a, b) Both curves reach y � yn � 0.5 m at x � 250 m
10.110 (a) ycrest � 0.782 m; (b) y(L) � 0.909 m
10.112 M-1 curve, with y � 2 m at L � 214 m
10.114 Vexing! Flow chokes at Q � 17 m3/s
10.116 Q � 9.51 m3/s
10.120 Y � 0.64 m, � � 34°
10.122 5500 gal/min
10.124 M-1 curve, y � 10 ft at x � �3040 ft
10.126 At x � �100 m, y � 2.81 m
10.128 At 300 m upstream, y � 2.37 m

Chapter 11

11.6 This is a diaphragm pump
11.8 (a) H � 112 ft and �p � 49 lb/in2; (b) H � 112 ft (of

gasoline); P � 15 hp
11.10 (a) 1300 r/min; (b) 2080 lbf/in2

11.12 (a) 11.3 m; (b) 1520 W
11.14 1870 W

11.16 (a) 1450 W; (b) 1030 r/min
11.18 Vvane � (1/3)Vjet for max power
11.20 (a) 2 roots: Q � 7.5 and 38.3 ft3/s; (b) 2 roots; H �

180 ft and 35 ft
11.22 (a) BEP � 92 percent at Q � 0.22 m3/s
11.26 Correlation is “fair,” not geometrically similar
11.28 BEP at about 6 ft3/s; Ns � 1430, Qmax � 12 ft3/s
11.30 (a) 1700 r/min; (b) 8.9 ft3/s; (c) 330 ft
11.32 Correlation “fair,” not geometrically similar
11.34 (a) 11.5 in; (b) 28 hp; (c) 100 ft; (d) 78 percent
11.36 D � 9.8 in, n � 2100 r/min
11.38 (a) 18.5 hp; (b) 7.64 in; (c) 415 gal/min; (d) 81 percent
11.40 (a) Ds � D(gH*)1/4/Q*1/2

11.42 NPSHproto � 23 ft
11.44 No cavitation, required depth is only 5 ft
11.46 Ds � C/Ns, C � 7800 
 7 percent
11.52 (a) 7.97 m3/s; (b) 14.6 kW; (c) 28.3°
11.54 Centrifugal pumps, D � 7.2 ft
11.56 (a) D � 5.67 ft, n � 255 r/min, P � 700 hp; 

(b) D � 1.76 ft, n � 1770 r/min, P � 740 hp
11.58 Centrifugal pump, ! � 67 percent, D � 0.32 ft
11.60 (a) 623; (b) 762 gal/min; (c) 1.77 ft
11.62 D � 18.7 ft, �p � 1160 Pa
11.64 No speed is able to get to BEP
11.66 Q � 1240 ft3/min
11.68 Qnew � 15,300 gal/min
11.70 (a) 212 ft; (b) 5.8 ft3/s
11.72 (a) 10 gal/min; (b) 1.3 in
11.74 (a) 14.9; (b) 15.9; (c) 20.7 kgal/min
11.76 Dpipe � 1.70 ft
11.78 Dpipe � 1.67 ft, P � 2000 hp
11.80 Q32 � 22,900 gal/min; Q28 � 8400 gal/min, H � 343 ft

for both
11.84 Two turbines: (a) D � 9.6 ft; (b) D � 3.3 ft
11.86 Nsp � 70, hence Francis turbines
11.88 Q � 52 ft3/s, D � 10.5 ft
11.90 P � 800 kW
11.92 Pelton and Francis wheels both OK
11.94 (a) 71 percent; (b) Nsp � 19
11.96 (a) 1.68 ft; (b) 0.78 ft
11.100 (a) 190 kW; (b) 24 r/min; (c) 9.3 ft/s
11.102 Q � 29 gal/min
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Index

A

Acceleration of a particle, 15, 90, 216
centripetal, 90, 157
convective, 216
Coriolis, 157
local, 216

Ackeret airfoil theory, 635–636
Acoustics, 573
Actuator disk theory, 752–753
Added mass, 539–540
Adiabatic flow, 578–579

atmospheric lapse rate, 102, 105
with friction, 604–606, 776–780

Adverse pressure gradient, 430, 445–448,
501

Aerodynamic forces and moments, 452–453
NACA designs, 471, 528–530, 565

Air-cushion vehicle, 206
Airfoil description, 468, 529
Airfoil theory, 523–534

finite-span, 530–534
supersonic flow, 632–637
thick-cambered, 528–530
thin-plate, 524–528

Andrade’s equation, 49
Anemometer

cup, 387, 485
hot-wire and film, 387, 389

Angle of attack
definition, 468
in inviscid flow, 499, 517

Angular momentum theorem, 130, 158–159,
230

Angular velocity of a fluid, 246–247
Annulus

flow in, 362–364
laminar friction factors, 364

Answers to selected problems, 806–812
Archimedes’ laws of buoyancy, 44, 84
Area, body reference, 453
Area change in a duct, 583–587
Aspect ratio

of a diffuser, 384
of a wing, 472, 473, 530

Atmosphere
isothermal, 68
U. S. standard, 69, 773

Automobile drag forces, 461–463
Average velocity, 143, 26

in pipe flow, 144, 341, 344, 346
Avogadro’s number, 46
Axial-flow pumps, 730–734
Axisymmetric potential flow, 534–540

B

Backwater curve, 693–695
Barometer, 66–67
Basic equations (see Differential equations of

flow)
Basic laws of fluid motion, 35, 129–131
Bend losses, 371
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Bump, channel flow over, 675–676
Butterfly valve, 370
Buoyancy, 84–86
Buoyant force, 85

C

Cambered airfoil, 468, 471, 528–530
Capillary effect, 31, 299–300
Cauchy-Riemann equations, 249
Cavitation, 32–33, 552

of a pump, 720, 721
of a turbine, 765

Cavitation erosion, 33
Cavitation number, 32, 294, 297
Center of buoyancy, 85, 88
Center of mass, 80
Center of pressure, 75–76

of an airfoil, 527, 636
Centrifugal pump, 161–162, 200, 714–718

dimensionless coefficients, 724–726
performance curves,  720–723, 758, 

759
similarity rules, 727–729

Centripetal acceleration, 90, 157
Centroid, 75

of various cross-sections, 76
Channel flow (see Open channel flow)
Chézy coefficient, 665
Chézy formulas, 664–666
Choked flow, 586, 598, 740

due to friction, 608–609
due to heat transfer, 617
in an open channel, 676

Chord line, 452, 468
Circular section

open channel, 668–669
pipe flow, 338–357

Circulation, 499
at airfoil trailing edge, 524
on a cylinder, 509, 511

Classification of flow, 36–37
Colebrook pipe-friction formula, 348
Complex-variable potential theory, 

516–521

Bernoulli, Daniel, 10, 174
Bernoulli constant, 176, 248
Bernoulli obstruction meters, 397–404
Bernoulli’s equation, 10, 174–177, 230, 

248–249
outside a boundary layer, 435
compared to the energy equation, 176, 580
for irrotational flow, 230, 249, 496
for isentropic flow, 580–581
limitations and assumptions, 176, 177
in rotating coordinates, 717
for unsteady flow, 175, 248, 249, 496

Betz number, 753
BG units, 8
Bingham-plastic fluid, 28
Blasius flat-plate solution, 437–439, 478
Blasius pipe friction formula, 345
Blowdown analysis, 598, 643
Blower, 711
Blunt-body flows, 429
Body forces, 61, 224
Bore in a channel, 702
Boundary conditions, 34, 234–236

for a boundary layer, 436
free surface or interface, 234–236, 497
at an inlet or outlet, 234, 496
for inviscid flow, 496, 497
kinematic, 235
no-slip, 24, 34, 234

Boundary-element method, 546–548
Boundary layer, 23, 45, 250, 431, 496, 578

displacement thickness, 433, 438, 443
equations of, 434–436
on a flat plate, 153–155, 266
momentum thickness, 431, 438
with pressure gradient, 445–450
with rough walls, 443–444
separation, 435, 447, 447–449
shape factor, 438, 443, 448
thickness, 428, 442
transition, 298, 432, 439

Bourdon tube gage, 99–100
Brinkman number, 268
Broad-crested weir, 689, 690
Buckingham pi theorem, 280, 286–288
Bulk modulus, 49, 102, 577

of various liquids, 772

814 Index
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Composite channel flows, 687–688
Compressibility criterion, 35, 221, 571
Compressible flow, 220, 315, 571

with area change, 583–587, 774–776
with friction, 603–613, 780–784
with heat transfer, 613–618, 784–788
tables, 774–788

Compressor, 711, 740–741
Computational fluid dynamics, 3, 434, 465,

540–555, 735–736
commercial codes, 552–553

Concentric cylinder flows, 261–263
Cone flow, supersonic, 638
Conformal mapping, 516, 562
Conical diffuser, 373, 386
Conjugate depths, 699
Conservation laws, 35, 130–131

for angular momentum, 130, 158–159
for energy, 131, 163–165, 231
for linear momentum, 130, 146
for mass, 130, 141–146
for salt or species, 35, 315

Consistent units, 11–13
Contact angle, 30–31
Continuity, equation of, 218

cylindrical polar form, 219–220, 793
incompressible flow, 220
spherical polar form, 265
turbulent flow, 334

Continuum, 6–7
Contraction losses, 372, 374
Control section of a channel, 687, 693
Control surface, 136
Control volume, 36, 133

arbitrary but fixed, 135–136
deformable, 137–138, 140
differential-sized, 218
guidelines for selection, 183
moving, 133, 137, 152
one-dimensional, 134–135

Convective acceleration, 15–16
Converging-diverging nozzle, 600–603
Converging nozzle, 598–600
Conversion factors, 8–9, 791–792
Coriolis acceleration, 156, 157, 250
Corner flow, inviscid, 242, 518–519
Correlations, turbulent, 334

Corresponding states, law of, 24
Couette flow

between cylinders, 261–263
instability of, 262–263
between plates, 25–26, 258–259
nonnewtonian, 272

Couple, concentrated, 268
Creeping motion, 25, 298, 315, 317, 328, 483

past a sphere, 47, 457, 483
Critical channel flow, 671–674
Critical depth, 664, 672
Critical Reynolds number, 329–330
Critical slope of a channel, 674
Critical sonic-point properties, 581, 605
Critical state, 6, 24
Crossflow turbine, 764
Crump weir, 705
Cup anemometer, 387, 485
Cup-mixing temperature, 268
Curl of a vector, 247
Current meter, 387, 389
Curved surface, force on, 79–82
Curvilinear coordinate system, 267
Cylinder

array of, 515
in inviscid flow, 245, 508–510
rotating, 512
in viscous flow, 261–263, 295–296, 298,

455
Cylindrical coordinates, 219

equations of motion, 793–794

D

da Vinci, Leonardo, 44, 143
d’Alembert paradox, 45, 510
Darcy friction factor, 340, 342, 344, 604
Darcy’s law of porous flow, 420 
Darcy-Weisbach equation, 340, 664
Decimal prefixes, 13
Deformable control volume, 133, 137
Deformation of a fluid element, 245–247
Del operator, 216, 219
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Density
definition of, 6, 17
of various fluids, 771–772

Detached shock wave, 624
Diaphragm transducer, 101
Differential equations of flow, 36, 215, 682,

793
angular momentum, 230
continuity or mass, 217–221
cylindrical coordinates, 793–794
energy, 231–233
incompressible, 220, 228, 236–237
linear momentum, 62, 223–227

Diffuser flows, 313, 381–385, 447
head loss, 373
performance maps, 385, 386
separation and stall, 383, 447–448
stability map, 382
subsonic versus supersonic, 584

Digital computer (see Computational fluid
dynamics)

Dilatant fluid, 28
Dimensional analysis, 7, 12, 277

of the basic equations, 292–294
of the boundary conditions, 293–294
of pipe flow, 307–309
pitfalls of, 305–307
of turbomachines, 724–726, 744

Dimensional homogeneity, 11–12, 280
nonhomogeneity, 285–286

Dimensional matrix, 313
Dimensionless groups, list of, 297
Dimensions, 7–13, 278

list of, 8–9, 287
Discharge coefficient, 12, 179, 181, 

398
flow nozzle, 401
orifice plate, 399–400
sluice gate, 677
venturi, 401, 402
weir, 690–692

Displacement thickness, 433
for a flat plate, 433, 438, 443

Dissipation function, 233
of a hydraulic jump, 680

Divergence of a vector, 220, 226
Dot product, 133

Doublet
line, 270, 505–506
point, 536

Downwash on a wing, 531, 532
Draft tube, 765
Drag, 452–467

biological adaptation, 467–468
induced, 472, 533

Drag coefficient, 195, 297, 453, 468, 632
of airfoils, 457, 468, 471–473
of a cylinder, 298, 455, 457

rotating, 511–512
on a flat plate, 438, 442–443
at high Mach numbers, 465–466
of road vehicles, 461–463
of a sphere, 298, 456, 457

spinning, 487, 488
of surface ships, 464–465
of three-dimensional bodies, 457, 460
of two-dimensional bodies, 457–458

Drag reduction, 456, 462, 464
Drowned channel flow, 678, 701
Duct flow, 325, 603

compressible, with friction, 603–613, 780
with heat transfer, 613–618, 784

Dynamic similarity, 304–305

E

Eckert number, 297
Eddy viscosity, 406
Effective duct diameter, 360
Efficiency, 47, 715

of an open channel, 669–671
of a turbomachine, 715, 734
volumetric, 716, 757
of wind turbines, 753

Elbows, losses in, 368, 369
Elliptical wing, 533
Energy, 18, 131, 163
Energy equation, 163–165, 231–233

steady flow, 167–168
Energy flux, 165, 231
Energy grade line, 177–178, 339 672
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Engineering Equation Solver (EES), 41
Enthalpy, 19, 165, 574
Entrance length, 331
Entrance losses, 331, 371, 372
Entrance region, 330–331
Entropy, of an ideal gas, 574
Entropy change, 574

across a normal shock, 591
across a weak oblique shock, 627

Equations of motion (see Differential equa-
tions of flow)

Equilibrium of forces, 61–62
Equivalent length, minor losses, 367
Erosion of particles, 313, 698
Euler, Leonhard, 45, 174, 294
Euler number, 294, 297
Euler turbine equations, 161–162, 717
Eulerian description, 14, 216
Euler’s equation, 227, 237, 247
Exit pipe loss, 371, 372
Expansion losses, 372–373
Explicit numerical model, 549
External flow, 333, 427, 451–467

F

Falling-body problem, 12
dimensional analysis of, 282–285, 

289
Fanno line, 648
Favorable pressure gradient, 430, 445–447,

495, 502
Film of fluid draining

down an inclined plane, 268
down a vertical cylinder, 272
down a vertical plate, 271

Finite-difference method, 541–543
Finite-element method, 541
Finite-span wings, 472–473, 530–534
First law of thermodynamics, 131, 163
Fittings, losses in, 368
Flap, airfoil, 471, 472, 474
Flat-plate flow,153–155, 428, 

431–433
Blasius solution, 437–439, 478

integral theory, 
laminar, 432
turbulent, 441–444

normal to the stream, 457–459, 519–521
with rough walls, 443–444

Flettner rotorship, 511–512, 559
Floating element shear measurement, 480
Flooding of channels, 698
Flow between plates, 25–27, 258–260, 359–

360
Flow coefficient of a meter, 398
Flow meters (see Fluid meters)
Flow net, 497
Flow nozzle, 399, 400–401
Flow straighteners, 479
Flow visualization, 40, 426, 470, 515, 554
Fluctuation, turbulent, 326, 333–334
Fluid, definition of, 4
Fluid meters, 385–404

Coriolis type, 395, 396
electromagnetic, 389
flow nozzle, 399, 400–401
head losses, 402
hot-wire, hot-film, 387, 389
laminar-flow element, 396–397
laser-doppler, 387, 389–390
obstruction type, 397–404
orifice plate, 398–400
pitot-static tube, 387, 388–389
rotameter, 395
Savonius rotor, 387, 486
turbine type, 392–393
ultrasonic, 394–395
venturi meter, 399, 401–402
volume flow type, 391
vortex type, 393–394

Fluid properties, 769–773
Force coefficient, 278, 310
Forces

hydrostatic, 74–84
on a turning vane, 150–151

Fourier’s law of conduction, 27, 231
Francis turbine, 742
Free-body concept, 77, 133
Free overfall, 687, 688
Free-streamline theory, 520–521
Free-surface flows, 4–5, 236, 326, 497, 659
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Free vortex, 253
Friction drag, 154, 453
Friction losses, 168
Friction factor, 42, 340, 342, 604

compressible flow, 606
Friction factor—Cont.

laminar pipe-flow, 342
noncircular ducts, 364, 365
rocky channels, 665
turbulent pipe-flow, 345, 348

Friction velocity, 336
Frictionless flow, 227, 495, 613
Frontal area, 453, 462
Froude, William, 45, 294
Froude number, 294, 297, 465–466, 662, 

679, 683
Froude scaling laws, 303–304
Fully developed flow, 258, 330–331
Fully rough flow

in channels, 665 
on a flat plate, 443–444
in pipes, 347, 348

Fundamentals of Engineering (FE) 
Exam, 43

G

Gage pressure, 63, 77, 148
Gages, pressure, 97–101
Gas constant, 19, 573

of various gases, 772
Gas dynamics (see Compressible flow)
Geometric similarity, 301–303

violation of, 302, 303, 307
Glide angle, 489
Gradient operator, 61, 216, 219
Gradual contraction loss, 374
Gradual expansion loss, 373
Gradually varied flow, 662, 682–687

classification, 683–685
effect of width changes, 704

Grashof number, 297
Gravity

acceleration of, 9, 64
variation with radius, 65

Gravity force on an element, 61, 224
Grid, numerical, 542, 549, 553, 564

H

Hagen, G. L. H., 329
Hagen-Poiseuille flow, 341
Half-body, plane, 256–258, 501–502

axisymmetric, 537–538
Halocline, 120
Hazen-Williams formula, 47, 285
Head loss, 168, 340, 661

of a hydraulic jump, 680
minor, 367–375
in pipe flow, 340

Heat addition, flow with, 613–618, 784–788
Heat conduction equation, 233
Heat flux through an element, 232
Heat transfer coefficient, 312
Hele-Shaw flow, 513–514
Herschel-type venturi, 401
High-lift devices, 474
History of fluid mechanics, 44–46, 280
Hodograph for an oblique shock, 623, 624
Homologous points, 302, 727
Honeycomb flow straightener, 408
Horseshoe vortex, 555
Hot-wire or hot-film anemometer, 387, 389
Hydraulic diameter, 358, 363, 661
Hydraulic efficiency, 716
Hydraulic grade line, 177–178, 339, 659
Hydraulic jump, 198–199, 664, 678–681, 

702
classification, 679
sloping, 702

Hydraulic model, 307
Hydraulic radius, 13, 358, 661
Hydraulically smooth wall, 347
Hydrodynamic mass, 539–540
Hydrogen bubble technique, 34
Hydrometer, 118
Hydrostatic condition, 4, 59, 62, 63

in gases, 67–69
in liquids, 65–66
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Hydrostatic forces
on curved surfaces, 79–83
in layered fluids, 82–84
laboratory apparatus, 127
on plane surfaces, 74–79

Hydrostatic pressure distribution, 63–65
Hypersonic flow, 572, 639

I

Icebergs, 89–90
Ideal gas (see Perfect-gas law)
Images, 521–522
Implicit numerical model, 550
Impulse turbines, 745–749
Incompressible flow, 17, 142–143, 220, 

236, 572 
Induced drag, 533
Inertial coordinate system, 156
Initial conditions, 234
Integral equations (see Control volume)
Intensity of turbulence, 334, 405
Interface, 29
Internal energy, 18, 574
Internal flow, 330
Inviscid flow, 36, 496
Irrotational flow, 230, 247–249, 496

frictionless, 247, 579–582
Isentropic flow, 579–582, 529

with area change, 583–587, 774
compared to Bernoulli’s equation, 

580–581
tables, 774–776

Isentropic process, 574
Isothermal duct flow, 610–611
Isovelocity contours, 660

J

Jet exit pressure condition, 149
Jet flow, laminar and turbulent, 326–327
Jet pump, 189, 712

Jet-turning vane, 150–151
Joukowski transformation, 562 

K

Kaplan turbine, 742, 746, 749
Kármán momentum-integral relation, 154,

431
Kármán vortex street, 295–296
Kelvin oval, 513–514
Kinematic properties, 15
Kinematic similarity, 303–304, 498
Kinematic viscosity, 24

of various fluids, 24, 770–772
Kinetic energy, 18, 164

correction factor, 170–171
Kline-Fogleman airfoil, 473, 474
Kutta condition, 523–524
Kutta-Joukowski lift theorem, 510–511

L

Lagrangian description, 14
Laminar flow, 34, 326, 327, 551

in a concentric annulus, 346–364
between parallel plates, 25–27, 258–260,

359–360
in a pipe, 341–344
between rotating cylinders, 261–263 

Laplace’s equation, 239, 251, 496, 497, 
516, 793

numerical simulation, 541–543
in polar coordinates, 498, 564, 793

Lapse rate, 68
Large-eddy simulation, 554
Laser-Doppler anemometer, 387, 389
Law-of-the-wall, 336
Lawn sprinkler analysis, 163
Layered fluids, 70, 82–84
Lift

definition of, 452, 468
in flow past a cylinder, 510–511
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Lift coefficient
of airfoils, 470–474, 527, 529–530, 533

supersonic, 632–637
definition, 297, 468, 632
maximum, 473, 528
of a rotating cylinder, 511–512
of a rotating sphere, 488

Lift-drag polar plot, 472
Lifting line theory, 532
Lifting vane, 150–151, 469
Linear momentum, 130, 146–158, 223–227
Liquids versus gases, 4–6
Local acceleration, 216
Local mass-flow function, 586–587
Logarithmic velocity profile, 336, 344
Loss

minor, 367–375
in pumps, 723

Lubricating oil properties, 769, 770, 772
Lubrication theory, 271

M

Mach angle, 619
Mach cone, 619
Mach number, 35, 221, 295, 297, 306, 572,

579, 592
effect on body drag, 467

Mach waves, 594, 618–621, 628
analogy to water waves, 663, 673, 681

Magnus effect, 510
Manifold flow, 422–423 
Manning, Robert, 13, 665
Manning roughness factor, 13, 285, 665

for various channels, 667
Manometer, 70–73, 97, 99

two-fluid differential, 72, 108
Mass, units of, 8
Mass flow, 133, 142, 586, 599, 611

in choked flow, 586
MATLAB contouring, 506
Mean free path of a gas, 7, 46
Meniscus, 74
Metacenter, 87

Metacentric height, 87, 88
Meter (see Fluid meters)
Minor losses in pipe flow, 367–375
Mixing-length theory, 406
Model-testing principles, 278, 301–307

pitfalls and discrepancies, 296–297
Mohr’s circle, 4–5, 59
Molecular weight, 19, 573

of various gases, 772
Moment of inertia, 76, 88, 131

for various areas, 76
Momentum

angular, 130, 158, 230
linear, 130, 146–148, 223–227

Momentum flux, 147, 224
correction factor, 155–156

Momentum integral theory, 155, 431–433,
448 

Momentum thickness, 431
for a flat plate, 438, 442
Thwaites’ parameter, 448

Moody chart, 349, 443, 606, 665
Moody pump-size formula, 728
Moving shock wave, 595–596
Multiple-pipe systems, 375–381

N

NACA airfoils, 470–471, 528, 567 
Nappe, 687, 689
Natural convection, 312, 315, 573
Navier-Stokes equations, 45, 228, 789

nonuniqueness of, 263
Net positive suction head, 721–722
Network, piping, 380–381
Neutral buoyancy, 86, 386
Newton, Sir Isaac, 23, 45, 577
Newtonian fluid, 23, 227–228
Newton’s second law, 8, 130, 146

for a fluid element, 62, 216, 224
in noninertial coordinates, 156–158

No-slip condition, 24, 34, 234, 259, 262, 340
No-temperature-jump condition, 34, 234
Noncircular duct flow, 357–366
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Nondimensionalization (see Dimensional 
analysis)

Noninertial coordinate system, 156–158
Nonnewtonian fluids, 28, 272
Nonwetting liquid, 30, 31
Normal channel depth, 662, 667
Normal shock wave, 590–595, 618

tables, 776–780
Normal stresses, 225
Nozzle flow, 598–601

analogy with a sluice gate, 664, 677 
choked, 586, 600
converging-diverging, 600–603
design conditions, 600–601

Nozzle flow—Cont.
subsonic versus supersonic, 584

Numerical analysis, 3, 434, 540–555
instability, 549
of inviscid flow, 540–548
of open-channel flow, 685–687
of pumps, 735–736
of viscous flow, 548–555

O

Oblique shock wave, 620, 621–628, 789–790
reflection of, 651

One-dimensional approximation, 134–135,
138, 147, 165, 583, 660–661

One-seventh power-law, 439, 442, 479
Open channel flow, 236, 659

analogy with gas dynamics, 663, 664, 673,
677, 681

classification of, 662–664
critical flow, 671–674
gradually varied flow, 682–687
most efficient section, 669–671
over weirs, 687–693

Orifice plate, 398–400
Orthogonality conditions, 249, 497–498, 

516
Outer layer, turbulent, 335–336
Overlap layer, 335–336, 441
Overrelaxation, 543

P

Parallel plates, 26, 258–259, 359–360
Pascal unit, 9, 11 
Pascal’s law, 71
Pathline, 37–38
Pelton wheel turbine, 745, 747
Perfect-gas law, 19, 35, 67, 573, 585
Permeability of porous media, 315, 420
Physical properties of fluids, 769–773
Pi theorem, 286–288
Piezometer, 103
Pipe flow, 328, 338–357

bend loss, 371
compressible, 604–613, 780–788
flow rate determination, 352–355
head loss or pressure drop, 307, 339, 351
laminar, 341–344
minor losses, 367–375
in a network, 380–381
noncircular, 357–366
in parallel, 376–378
with rough walls, 346–349
in series, 375–376
sizing problem, 355–357
turbulent, 344–348

Pipe standard sizes, 357
Pipelines, 168, 610
Pitching moment, 452, 527
Pitot-static tube, 387, 388, 642
Planform area, 299, 453, 468
Pode’s angle, 487
Poiseuille, J. L. M., 10, 341
Poiseuille flow, 260, 341–342
Poisson’s ratio, 577
Polar coordinates, 220, 243, 498, 499
Polar drag plot, 472
Positive-displacement pump, 711–714, 757
Potential energy, 18, 164
Potential flow, 252–257, 497

analog  methods, 513–515
axisymmetric, 534–540
complex variable, 516–521
numerical analysis, 540–548

Potential lines, 248, 498
Potential vortex, 253, 498
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Power coefficient, 724, 753, 761
Power-law correlation, for pipe flow, 309, 345

for velocity profile, 155, 439, 442, 479
for viscosity, 27, 772

Power product method, 286
Power specific speed, 744
Prandtl, Ludwig, 2, 45, 434, 629

flat-plate formulas, 479
lifting line theory, 532

Prandtl-Meyer angle, 630, 788
Prandtl-Meyer expansion waves, 628–631, 788
Prandtl number, 297, 579
Prefixes for units, 13
Pressure, 17, 59–61

absolute versus gage, 63
at a point, 60
stagnation, 312, 580
vacuum, 63 
vapor, 31–32, 772, 773

Pressure coefficient, 297, 454, 526, 546
Pressure condition at a jet exit, 149
Pressure distribution, 62, 89

hydrostatic, 63–65
in irrotational flow, 249
in a nozzle, 599, 601
in rigid-body translation, 91–93
in rotating rigid-body motion, 93–97

Pressure drop in pipes, 339, 345
Pressure drag, 453
Pressure force

on a control volume, 147–148
on a curved surface, 79–82
on an element, 60–61
on a plane surface, 74–79

Pressure gradient, 61, 96, 259, 341
adverse and favorable, 430, 445–448, 501

Pressure head, 65, 102, 168
Pressure measurement, 97–101
Pressure recovery of a diffuser, 373, 382, 

385, 386
Pressure transducers, 99–101
Primary dimensions, 8, 278
Principle of corresponding sates, 24–25
Principle of dimensional homogeneity, 

10–11, 280
Problem-solving techniques, 44
Product of inertia, 76

Propeller turbine, 742, 746, 749
Properties of fluids, 769–773
Propulsion, rocket, 158
Prototype, 36, 278
Pseudoplastic fluid, 28
Pump-system matching, 735–740
Pump-turbine system, 203, 746
Pumps, 47, 711

axial-flow, 729–733
centrifugal, 161–162, 714–718
dimensionless, 724
effect of blade angle, 719
effect of viscosity, 729, 730
multistage, 740
net positive-suction head, 721–722
in parallel, 738–739
performance curves, 204, 212, 714, 720–

722, 733–735, 758, 759
positive-displacement, 711–714
in series, 739–740
similarity rules, 727–728
size effects, 728

R

Radius of curvature, 29, 235
Rankine half-body, plane, 256–258, 501–502

axisymmetric, 537–538
Rankine oval, plane, 507–508

axisymmetric, 563
Rankine-Hugoniot relations, 590
Rapidly varied channel flow, 662, 687
Rarefaction shock, 593, 624
Rayleigh line, 649
Reaction turbines, 742
Rectangular duct flow, 365, 366
Relative roughness, 349
Relative velocity, 137–138, 152
Reversible adiabatic flow (see Isentropic flow)
Reynolds, Osborne, 45, 294, 330
Reynolds number, 24, 278, 294, 297, 325, 427

for an airfoil, 469
local, 429

Reynolds pipe-flow experiment, 330
Reynolds time-averaging concept, 333–334
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Reynolds transport theorem, 133–141
Rheology, 5, 28
Rheopectic fluid, 28
Rigid-body fluid motion, plane, 89–97
Rocket motion, 158
Rolling moment, 452
Rotameter, 395
Rotating cylinder, 512

sphere, 488
Rotationality, generation of, 249–250
Rough-wall effects

on channels, 665–667
on cylinder drag, 298
on a flat plate, 443–444
on pipe flow, 346–348
on pumps, 726
sand-grain tests, 347
on sphere drag, 321, 456

Roughness
of commercial pipes, 349
of open channels, 667

S

Salinity, 22
Sandgrain roughness, 347
Savonius rotor, 387, 486
Saybolt viscosity, 286
Scaling laws, 278–279, 304, 306
Scaling parameters, 282
Schedule-40 pipe sizes, 357
Seawater properties, 22, 772
Second law of thermodynamics, 131, 233,

606, 624, 679, 680
Secondary dimensions, 8–9
Secondary flow, 365–366
Separated flow, 429, 455, 456, 502
Separation bubble, 469
Separation point

on an airfoil, 525
on a cylinder, 455
definition of, 447
in a diffuser, 447
in a laminar boundary layer, 449, 501–502
on a sphere, 456

Shaft work, 164
Shape factor, 438, 443, 448
Sharp-crested weir, 689–690
Shear stresses, 4–5, 23, 225

turbulent, 334
Shear work, 164
Shock-expansion theory, 632–637
Shock polar, 623, 624
Shock-tube wind tunnel, 598
Shock wave, 250, 591, 521

detached, 624
linearized, 626
moving, 595–596
normal, 590–595, 776–780
oblique, 621–628, 789–790
rarefaction, 593, 624
strong versus weak, 624–626

Shut-off head of a pump. 719–720
SI units, 7–8
Silicon resonance transducer, 67, 101
Similarity, 279, 301

dynamic, 304–305
geometric, 301–303
violations, 302, 303, 307
kinematic, 303–304, 498
for pumps, 727–728

Sink
line, 253, 498, 563
point, 536

Siphon, 208, 406
Skin friction coefficient, 432, 438, 441, 442,

449
Slip conditions in inviscid flow, 237
Sluice gate, 664, 677–678

drowned, 678, 701
Smoke-flow visualization, 40, 470
Soap bubble, 29
Sonic boom, 620, 621
Sonic point, 581, 605
Source

line, 253, 498, 517
point, 536

Spar buoy, 119
Specific diameter, 760–761
Specific energy, 671–672
Specific gravity, 12, 18
Specific heat, 19–20, 573
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Specific-heat ratio, 19, 295, 297, 572
of common gases, 21, 772

Specific speed, 730–731, 734, 735
Specific weight, 17

of common fluids, 65, 772
Speed of sound, 35, 221, 575–577

in the atmosphere, 773
of a perfect gas, 35, 577
of various materials, 577
of water, 577, 769

Sphere
inviscid flow, 265, 538–539
viscous flow, 298, 321, 456, 457, 483, 488

Spherical droplet, 29
Spherical polar coordinates, 265, 535–536
Stability of floating bodies, 86–89
Stability of a pump, 720, 763
Stability map of a diffuser, 382
Stagnation density, 580
Stagnation enthalpy, 167, 578, 614
Stagnation point, 38, 249, 252, 256, 519

plane flow near, 39–40, 265
Stagnation pressure, 312, 580
Stagnation properties, 578–580
Stagnation speed of sound, 579
Stagnation temperature, 579
Stall angle of attack, 528
Stall speed, 473
Stalled airfoil, 470
Standard atmosphere, 69, 773
Stanton number, 312
Starting vortex, 469
State, equation  of, 16, 18, 67, 131, 234, 573

for gases, 18–20, 573–574
for liquids, 21–22
van der Waals, 642

Static-pressure measurement, 97
Steady-flow energy equation, 167–168, 578,

661
Stokes flow past a sphere, 47, 457, 483, 487
Stokes’ stream function, 269, 535
Stopping vortex, 469
Strain rate, 23, 247
Stratified flow, 221, 250
Streakline, 37–38
Stream function, 238–244, 497

axisymmetric flow, 243–244, 535

compressible flow, 243
geometric interpretation, 240–241
irrotational flow, 239, 497
polar coordinates, 243
of Stokes, 269, 535

Streamline, 37–40, 240, 498
Streamline coordinates, 267
Streamlining of bodies, 456
Streamtube, 38, 143, 174
Stress gradients, 225
Stress tensor, 225, 227, 794

symmetry condition, 231
Strouhal number, 295, 296, 297
Subcritical channel flow, 663, 672
Subsonic flow, 572
Substantial derivative, 216
Suction specific speed, 731
Sudden expansion or contraction, 192–193,

371–372
Supercritical channel flow, 663, 672–673
Superposition of potential flows, 254–257,

500–501
Supersonic airfoil theory, 632–637
Supersonic flow, 149, 572, 618
Surface forces, 61, 225
Surface tension, 29–31, 235, 693

of air-water, 30, 773
of various interfaces, 29, 772

Sutherland-law viscosity formula, 27, 771
Swallow float, 86
System, 16, 130
System-matching of pumps, 735–740
Systems of units, 7

T

Tainter gate, 115
Takeoff analysis for aircraft, 475
Taylor number, 262
Taylor vortices, 263
Tee-junction losses, 368
Temperature

definition, 17
rise due to dissipation, 238

Terminal velocity, 309, 483
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Thermal conductivity, 27, 231
Thermodynamic properties, 16, 131, 

771–772
Thickness drag, supersonic, 635
Thin-airfoil theory, 524–527, 635
Thixotropic fluid, 28
Three-dimensional flow, 535–540, 637

compressible, 637–640
Three-reservoir pipe junction, 376, 379
Throat in a duct, 585
Thwaites’ integral method, 448–450
Time-averaging of turbulence, 333–334
Timeline, 37
Tornado flow model, 255, 501, 556
Torricelli’s formula, 179
Total head, 168, 177
Trailing vortex, 469, 531–532
Transition to turbulence, 326–330

in a boundary layer, 299, 432, 439
on a flat plate, 405, 439
in a jet exit stream, 327
in pipe flow, 326, 328
in sphere flow, 310, 405

Transitional roughness, 347
Transonic flow, 572
Transport properties, 16
Trapezoidal channel, 668, 670–671
Triangular duct flow, 365, 366
Tri-diagonal matrix, 550
Trip wire, 405
Troposphere, 68
Tube bundle, 412
Turbines, 742–749

efficiency, 744, 748–749
impulse, 745–749
reaction, 742
windmills, 750–754

Turbomachine classification, 711–714
Turbulent flow, 3, 34, 376

on a flat plate, 441–444
fluctuations 326, 333–334
historical details, 328–330
intensity, 405
intermittency, 326
numerical models, 552–553
in a pipe, 328, 344–348

Turbulent puff, 328

Turbulent shear flow, 333–337
logarithmic overlap layer, 335–337
wall and outer layers, 335–336

Turbulent stresses, 334
Two-phase flow, 6, 219

U

Ultrasonic flowmeter, 394
Uncertainty of data, 42–43
Uncoupling of velocity and temperature, 

236–237
Uniform channel flow, 662, 664–667
Uniform stream, 252–253, 498, 517, 536
Unit normal vector, 132, 136
U. S. Standard Atmosphere, 69, 773
Units, 7–10
Universal gas constant, 19, 573
Unsteady Bernoulli equation, 175, 248, 249,

496
Unsteady flow, 36, 40, 549
Upwind differencing, 552

V

V-notch weir, 692–693, 705
Vacuum pressure, 63
Valve flows, 12, 367–370
Van der Waals’ equation, 642
Vane flow, 150–151
Vapor pressure, 31–32

of various fluids, 772
of water, 32, 773

Varied flow, 662, 682–687
Vector differentiation, 215–217
Velocity-defect law, 336
Velocity diagrams, 717, 732, 743
Velocity field, 14–15, 215
Velocity gradient, 23, 246
Velocity head, 168, 367
Velocity  measurement, 385–390
Velocity of approach factor, 398
Velocity potential, 248, 496, 535 
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Velocity profile, 23, 34, 439, 449, 535
for the Blasius solution, 437, 439

Vena contracta, 391, 392, 397, 398, 678
VentureStar spacecraft, 639–640
Venturi flume, 704
Venturi meter, 180–181, 207, 399, 401–402
Virtual mass, 539–540
Viscometer, 50, 51, 203
Viscosity, 22–24

formula for liquids, 27
generalized chart, 25
Sutherland and power-law, 27, 772
of various fluids, 24, 769, 771–772

Viscous dissipation, 233
Viscous flow analysis, 258–263
Viscous force on an element, 226
Viscous stresses, 23, 225, 228

symmetry condition, 231
Viscous sublayer, 337–347
Viscous work, 164
Visualization of flow, 40
Volume expansion rate, 15
Volume flow, 132, 142

measurement of, 391–404
Von Kármán, Theodore, 45, 154, 406, 431,

567
Vortex, line, 253–254, 498, 503, 518

infinite row, 503–504
potential, 253, 498
starting and stopping, 469
trailing, 531–532

Vortex flowmeter, 393–394
Vortex shedding, 295–296
Vortex sheet, 504–505

for a thin airfoil, 524–527
Vorticity, 247

W

Wake flow, 190, 195, 250, 426, 429, 455
Wall roughness, 339–340
Wall shear stress, 341, 342, 438, 442

Waterline area, 88
Wave drag

of ships, 464–466
of supersonic bodies, 635

Wave motion, 494, 576, 663–664, 672
periodic, 696

Weber number, 294, 297, 693
Weirs, 47, 687–693

broad-crested, 689, 690
Crump type, 705
drowned, 196, 705
inviscid flow model, 560
sharp-crested, 689–690

Wetted area, 453, 465
Wetted perimeter, 358, 661
Wind turbines, 750–754

performance of, 753
typical designs, 751
world energy distribution, 754

Wing theory, two-dimensional, 523–534
finite span, 472, 530–534

Work, 164
due to viscous stresses, 232

X

X-33 spacecraft, 639–640

Y

Yawing moment, 452
Young’s modulus, 577

Z

Zero-lift airfoil angle, 530
Zones of action and silence, 620, 672
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Preface 
 

The following materials are provided as a study guide for the text Fluid 
Mechanics by Frank White.  A brief summary of the key concepts and theory 
is presented for each chapter along with the final form of basic equations 
(without detailed derivations) used in the various analyses being presented.  
In most cases, a detailed explanation for the physical significance of each 
term in a fundamental governing equation is given (e.g., linear momentum, 
pg. III-8) to assist the student in identifying when a given term should be 
included in the analysis. 
Example problems are provided for major sections.  In each case, the 
starting general equation used in the solution is given followed by any 
necessary simplifications and the resulting complete solution.  Where 
appropriate, the control volume and coordinate system used in the analysis 
are shown with the problem schematic.  In many cases, an explanation is 
given with the final numerical answer to help the student understand the 
engineering significance of the answer (e.g., forces on curved surfaces, pg. 
II–18).  In selected cases, computer based solutions to example problems are 
provided as an example to the student in the use of computer based problem 
solving techniques (e.g., parallel pipe sections, pg. VI-23). 
For problems areas involving multiple steps in the solution, a summary of 
the steps used in a typical problem solution sequence is provided and 
enclosed in a boxed border (e.g., rigid body motion, pg. II-22).  Areas where 
the author’s experience has shown that mistakes in the analysis can easily 
occur are noted as Key Points (e.g., laminar flat plate boundary layer, pg. 
VII-5) throughout the material. 
Finally, the author of this study guide appreciates the opportunity to 
contribute to the instructional materials provided with one of the leading 
texts in the area of fluid mechanics and to collaborate with an educator with 
whom he has long has the highest respect and had the privilege to further his 
education in fluid mechanics while a student at Georgia Tech. 

 
Jerry R. Dunn, P.E. 
Associate Professor, 
Department of Mechanical Engineering 
Texas Tech University 
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I.  FLUID MECHANICS 
 
 

I.1 Basic Concepts & Definitions: 
 
 

Fluid Mechanics - Study of fluids at rest, in motion, and the effects of fluids on 
boundaries. 

 
Note: This definition outlines the key topics in the study of fluids: 

 
(1)  fluid statics (fluids at rest),  (2)  momentum and energy analyses (fluids 
in motion), and  (3)  viscous effects and all sections considering pressure 
forces (effects of fluids on boundaries). 

 
 

Fluid - A substance which moves and deforms continuously as a result of an 
applied shear stress. 

 
The definition also clearly shows that viscous effects are not considered in the 
study of fluid statics. 

 
 

Two important properties in the study of fluid mechanics are: 
 

Pressure   and   Velocity 
 

These are defined as follows: 
 
 

Pressure - The normal stress on any plane through a fluid element at rest. 
 

Key Point:  The direction of pressure forces will always be perpendicular to 
the surface of interest. 

 
Velocity  - The rate of change of position at a point in a flow field.  It is used 

not only to specify flow field characteristics but also to specify 
flow rate, momentum, and viscous effects for a fluid in motion. 
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I.4  Dimensions and Units 
 
 

This text will use both the International System of Units (S.I.) and British 
Gravitational System (B.G.). 

 
A key feature of both is that neither system uses gc.  Rather, in both systems 
the combination of units for mass * acceleration yields the unit of force, i.e. 
Newton’s  second law yields 
 
 
S.I.   1  Newton (N)  =  1 kg m/s2 B.G.  1 lbf  =  1 slug ft/s2 
 
 

This will be particularly useful in the following: 
 

Concept Expression Units 

momentum mV&  kg/s * m/s = kg m/s2 =N 
   slug/s * ft/s = slug ft/s2 = lbf 
manometry ρ g h kg/m3*m/s2*m = (kg m/s2)/ m2 =N/m2 

   slug/ft3*ft/s2*ft = (slug ft/s2)/ft2 = lbf/ft2 

dynamic viscosity µ N s /m2 = (kg m/s2) s /m2 = kg/m s 

   lbf s /ft2 = (slug ft/s2) s /ft2 = slug/ft s 
 

Key Point:  In the B.G. system of units, the mass unit is the slug 
and not the lbm. and 1 slug = 32.174 lbm.  Therefore, be careful not 
to use conventional values for fluid density in English units without 
appropriate conversions, e.g.,   ρw = 62.4 lb/ft3   

 
For this case the manometer equation would be written as 
 

  ∆ P = ρ g
gc

h  
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Example: 
 

Given:  Pump power requirements are given by 

pW&   =  fluid density*volume flow rate*g*pump head  =  ρ Q g hp 

For ρ = 1.928 slug/ft3,  Q = 500 gal/min,  and hp = 70 ft, 

Determine:  The power required in kW. 
 

pW& = 1.928 slug/ft3 * 500 gal/min*1 ft3/s /448.8 gpm*32.2 ft/s2 * 70 ft 
 

pW&   =  4841 ft–lbf/s  *  1.3558*10-3 kW/ft–lbf/s  =  6.564 kW 

 

Note:  We used the following:  1 lbf = 1 slug ft/s2  to obtain the desired 
units 

 
 
Recommendation: In working with problems with complex or mixed system 

units, at the start of the problem convert all parameters with 
units to the base units being used in the problem, e.g. for 
S.I. problems, convert all parameters to kg, m, & s; for BG 
problems, convert all parameters to slug, ft, & s.  Then 
convert the final answer to the desired final units. 

 
 
1.5 Properties of the velocity Field 
 
 

Two important properties in the study of fluid mechanics are   
 
  Pressure and Velocity 
 
 
The basic definition for velocity has been given previously, however, one of 

its most important uses in fluid mechanics is to specify both the volume 
and mass flow rate of a fluid. 
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Volume flow rate: 
 

 

= V n dA V dA
cs

Q ncs
⋅ =⋅ =⋅ =⋅ =∫ ∫∫ ∫∫ ∫∫ ∫&  

 

where  Vn is the normal component of 
velocity at a point on the area across 
which fluid flows. 
 
Key Point:  Note that only the normal 
component of velocity contributes to 
flow rate across a boundary. 
  

 
 
 
Mass flow rate: 

 
  
 

m =
ncscs

V n d A V d Aρ ρρ ρρ ρρ ρ⋅ =⋅ =⋅ =⋅ = ∫∫∫∫∫∫∫∫&  

 
 

NOTE:  While not obvious in the basic 
equation, Vn must also be measured 
relative to any flow area boundary 
motion, i.e.,  if the flow boundary is 
moving,  Vn is measured relative to the 
moving boundary. 
 
 

 

 
 
This will be particularly important for problems involving moving control 
volumes in Ch. III. 
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1.6  Thermodynamic Properties 
 
All of the usual thermodynamic properties are important in fluid mechanics 
 

P - Pressure     (kPa,  psi) 

T- Temperature (oC, oF) 

ρ ñ Density (kg/m3, slug/ft3) 
 

Alternatives for density 
 

γ   -   specific weight  =  weight per unit volume  (N/m3,  lbf/ft3) 
 
γ = ρ g H2O: γ = 9790 N/m3 = 62.4 lbf/ft3 

  Air: γ = 11.8 N/m3 = 0.0752 lbf/ft3 

S.G. -  specific gravity  =  ρ / ρ (ref) 

where:  ρ (ref) =  ρ (water at 1 atm, 20˚C) for liquids = 998 kg/m3 

 =  ρ (air at 1 atm, 20˚C) for gases = 1.205 kg/m3 

 
Example:  Determine the static pressure difference indicated by an 18 cm 
column of fluid (liquid) with a specific gravity of 0.85. 
 

∆P = ρ g h  =  S.G. γ h  = 0.85* 9790 N/m3 0.18 m  = 1498 N/m2 = 1.5 kPa 
 

I.7  Transport Properties 
Certain transport properties are important as they relate to the diffusion of 
momentum due to shear stresses.  Specifically: 

 
  µ  ≡   coefficient of viscosity (dynamic viscosity)    {M / L  t } 
 
  ν   ≡   kinematic viscosity  ( µ / ρ )     { L

2
 / t } 
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This gives rise to the definition of a Newtonian fluid. 
 

Newtonian fluid:  A fluid which 
has a linear relationship between 
shear stress and velocity gradient. 
 

    
τ = µ

dU
dy

 

The linearity coefficient in the 
equation is the coefficient of 
viscosity   µ . 

 
 

 
Flows constrained by solid surfaces can typically be divided into two regimes: 

 
 a.  Flow near a bounding surface with 
  1.  significant velocity gradients 
  2.  significant shear stresses 
 
 This flow region is referred to as a "boundary layer." 
 
 b.  Flows far from bounding surface with 
  1.  negligible velocity gradients 
  2.  negligible shear stresses 
  3.  significant inertia effects 
 
This flow region is referred to as "free stream" or "inviscid flow region." 
 

An important parameter in identifying the characteristics of these flows is the 
 

Reynolds number  =  Re  =  
ρV L

µ
 

 
This physically represents the ratio of inertia forces in the flow to viscous 
forces.  For most flows of engineering significance, both the characteristics 
of the flow and the important effects due to the flow, e.g., drag, pressure 
drop, aerodynamic loads, etc.,  are dependent on this parameter. 
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II.  Fluid Statics 
 
 
 
From a force analysis on a triangular fluid element at rest,  the following three  
concepts are easily developed: 
For a continuous, hydrostatic, shear free fluid:  

1.  Pressure is constant along a horizontal plane, 
2.  Pressure at a point is independent of orientation, 
3.  Pressure change in any direction is proportional to the fluid density, 

local g, and vertical change in depth. 
 
These concepts are key to the solution of problems in fluid statics, e.g. 

1. Two points at the same depth in a static fluid have the same pressure. 
2. The orientation of a surface has no bearing on the pressure at a point 

in a static fluid. 
3. Vertical depth is a key dimension in determining pressure change in a 

static fluid. 
 

 
If we were to conduct a more general force analysis on a fluid in motion, we would 
then obtain the following: 

 

    ∇ P = ρ g − a { } + µ ∇ 2V  
 

Thus the pressure change in fluid in general depends on: 

effects of fluid statics (ρ g),  Ch. II 

inertial effects (ρ a),  Ch. III 

viscous effects  ( µ∇ 2 V  )  Chs VI & VII 

 
Note:  For problems involving the effects of both  (1)  fluid statics and  

(2) inertial effects, it is the net    
v g − v a   acceleration vector that controls  

both the magnitude and direction of the pressure gradient. 
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This equation can be simplified for a fluid at rest (ie., no inertial or viscous 
effects) to yield 

 

    

∇ p = ρ g 

∂ p

∂ x
= 0 ;

∂ p

∂ y
= 0 ;

∂ p

∂z 
=

dp

dz 
= −ρ g

P2 − P1 = − ρ g d Z
1

2

∫
 

 

For liquids and incompressible fluids, 
this integrates to 
 

P1 – P2 = -ρg (Z2 – Z1) 
 

Note:   
 

Z2 – Z1 is positive for Z2 above Z1.   
but 

 P2 – P1 is negative for Z2 above Z1. 

2 P
1

P
2

x

y

z

Free surface
Pressure = Pa

h = Z  -  Z
2 1

Z

Z

1

 

 
 

We can now define a new fluid parameter useful in static fluid analysis: 

γ = ρg ≡ specific weight of the fluid 

With this, the previous equation becomes (for an incompressible, static fluid) 
 

 P2 – P1 = - γ (Z2 – Z1) 

The most common application of this result is that of manometry. 
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Consider the U-tube, multi- 
fluid manometer shown on 
the right.   
If we first label all 
intermediate points between 
A & a, we can write for the 
overall pressure change 

  
 

PA - Pa = (PA- P1) + (P1 - P2) + (P2 - Pa ) 
 

This equation was obtained by adding and subtracting each 
intermediate pressure.  The total pressure difference now is expressed 
in terms of a series of intermediate pressure differences.  Substituting 
the previous result for static pressure difference, we obtain 

 
PA - PB = - ρ g(ZA- Z1) – ρ g (Z1 – Z2) – ρ g (Z2 - ZB ) 
 
 

Again note:   Z positive up and ZA > Z1  ,  Z1 < Z2  ,  Z2 < Za . 
 

In general, follow the following steps when analyzing manometry problems: 
 

 1. On manometer schematic, label points on each end of manometer and each 
intermediate point where there is a fluid-fluid interface:  e.g., A – 1 – 2 - B 

 2. Express overall manometer pressure difference in terms of appropriate 
intermediate pressure differences. 

  PA - PB = (PA- P1) + (P1 – P2) + (P2 - PB ) 

 3. Express each intermediate pressure difference in terms of appropriate 
product of specific weight * elevation change (watch signs) 

  PA - PB = - ρ g(zA- z1) – ρ g (z1 – z2) – ρ g (z2 - zB ) 

 4. Substitute for known values and solve for remaining unknowns. 
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When developing a solution for manometer problems, take care to: 
1. Include all pressure changes 

2. Use correct ∆Z and γ with each fluid 

3. Use correct signs with ∆ Z.  If pressure difference is expressed as  
PA – P1, the elevation change should be written as ZA – Z1 

4. Watch units. 
 

Manometer Example: 

Given the indicated manometer, 
determine the gage pressure at A.  Pa = 
101.3 kPa.  The fluid at A is Meriam red 
oil no. 3. 

ρgw = 9790 N/m3 

ρg A = S.G.*ρgw = 0.83*9790 N/m3 

ρg A = 8126 N/m3 

ρgair = 11.8 N/m3 

1

2

a

A

1

10 cm
18 cm

S.G. = .83

H  0
2

 
With the indicated points labeled on the manometer, we can write 
 

PA - Pa = (PA- P1) + (P1 – P2) + (P2 - Pa ) 
 

Substituting the manometer expression for a static fluid, we obtain 
 

PA - Pa = - ρgA(zA- z1) – ρgw(z1 – z2) – ρga(z2 - za ) 
 

Neglect the contribution due to the air column.  Substituting values, we obtain 
 
PA - Pa = - 8126 N/m3 * 0.10 m – 9790 N/m3 * -0.18  = 949.6 N/m2 
  
Note why:  (zA- z1) = 0.10 m   and   (z1 – z2) = -0.18 m, & did not use Pa 
 
Review the text examples for manometry. 



 

II-5 

Hydrostatic Forces on Plane Surfaces 
 

Consider a plane surface 
of arbitrary shape and 
orientation, submerged in 
a static fluid as shown: 
 
If  P  represents the local 
pressure at any point on 
the surface and h the depth 
of fluid above any point 
on the surface, from basic 
physics we can easily 
show that 

  
 

the net hydrostatic force on a plane surface is given by (see text for development): 
 

 F = PdA
A
∫ = Pcg A  

  
The basic physics says that the hydrostatic force is a distributed load equal to the 
integral of the local pressure force over the area.  This is equivalent to the following: 
 

The hydrostatic force on one side of a plane surface submerged in a static 
fluid equals the product of the fluid pressure at the centroid of the surface 
times the surface area in contact with the fluid. 
 

Also:  Since pressure acts normal to a surface, the direction of the resultant force will 
always be normal to the surface. 
 
Note: In most cases since it is the net hydrostatic force that is desired and the 
contribution of atmospheric pressure Pa will act on both sides of a surface, the result 
of atmospheric pressure Pa will cancel and the net force is obtained by 
 

 

F = ρ gh cgA

F = Pcg A  
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Pcg is now the gage pressure at the centroid of the area in contact with the fluid. 
Therefore, to obtain the net hydrostatic force F on a plane surface: 
 

  1. Determine depth of centroid hcg for the area in contact with the 
fluid 

  2. Determine the (gage) pressure at the centroid Pcg 
  3. Calculate    F = PcgA. 

 
The following page shows the centroid, and other geometric properties of several 
common areas. 
 
It is noted that care must be taken when dealing with layered fluids.  The required 
procedure is essentially that the force on the plane area in each layer of fluid must be 
determined individually for each layer using the steps listed above. 
 
We must now determine the effective point of application of  F.  This is commonly 
called the “center of pressure - cp” of the hydrostatic force. 
 
Define an  x – y  coordinate system whose origin is at  the centroid, c.g, of the area. 
 
The location of the resultant force is determined by integrating the moment of the 
distributed fluid load on the surface about each axis and equating this to the moment 
of the resultant force.  Therefore, for the moment about the  x  axis: 
 

   
F y cp = y P d

A
∫ A

 
 
Applying a procedure similar to that used previously to determine the resultant force, 
and using the definition (see text for detailed development), 

for   Ixx   defined as the     ≡ moment of inertia, or  2nd moment of area we obtain 
 

 

Ycp = −
ρgsinθ I xx

Pcg A
≤ 0

  
 
Therefore, the resultant force will always act at a distance  ycp  below the centroid of 
the surface ( except for the special case of  sin θ = 0 ).
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a

PROPERTIES OF PLANE SECTIONS

Geometry Centroid
Moment of

Inertia
I x x

Product of
Inertia

I x  y
Area

b
1

h

b

b

L

y

x

L

2R

b

L

b

y

x

Fluid Specific Weight

Seawater

Glycerin

Mercury

Carbon

.0752

57.3

62.4

49.2

11.8

8,996

9,790

7,733

64.0

78.7

846.

99.1

10,050

12,360

133,100

15,570

0

0

0

h
0

y

x

y

x

x

y

Ry

x

y

x

s

R

Air

Oil

Water

Ethyl

31bf /ft N /m3

bL3

12
b L⋅

b + b 1( )
h

2

a =
4 R

3 π
π
16

−
4

9π
R

4




1

8
−

4

9 π
R

4





πR 2

4

a =
L

3

bL3

36

b b − 2s( ) L2

72
1

2
b ⋅ L

b
3 ,

L
3

bL3

36
−

b 2L2

72

b ⋅ L

2

πR 2

2
R

4 π
8

−
8

9 π



0 ,a =

4R

3π

πR 4

4
0, 0 πR 2

b
2 ,

L
2

a
)

=
h b + 2b1(
3 b + b1( )

)3
b

2
+ 4bb 1 + b 1

2(
36 b + b

1
( )

N /m331bf/ft
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Proceeding in a similar manner for the  x  location, and defining Ixy = product of 
inertia,  we obtain 

   
X cp = −

ρgsinθ I xy

Pcg A  
 

where Xcp can be either positive or negative since  Ixy  can be either positive or 
negative. 
 
Note: For areas with a vertical plane of symmetry (e.g., squares, circles, isosceles 
triangles, etc.) through the centroid, i.e. the ( y - axis),  the center of pressure is 
located directly below the centroid along the plane of symmetry, i.e.,  Xcp = 0. 
 

Key Points:  The values Xcp and Ycp are both measured with respect to the 
centroid of the area in contact with the fluid.  

 
  Xcp and Ycp are both measured in the plane of the area;  i.e., 

Ycp is not necessarily a vertical dimension, unless θ = 90o. 
 
 
Special Case:  For most problems where (1) we have a single, homogeneous fluid 
( i.e., not applicable to layers of multiple fluids) and (2) the surface pressure is 
atmospheric, the fluid specific weight  γ  cancels in the equation for Ycp and Xcp 
and we have the following simplified expressions: 
 

   F = ρ g h cg A  
 

 
Ycp = −

I xx sinθ
hcgA

Xcp = −
Ixy sinθ
hcgA  

 
However, for problems where we have either (1)  multiple fluid layers, or  (2)  a 
container with surface pressurization > Patm , these simplifications do not occur 
and the original, basic expressions for F , Ycp , and Xcp  must be used; i.e., take 
care to use the approximate expressions only for cases where they apply.  The 
basic equations always work. 
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Summary: 
 

1. The resultant force is determined from the product of the pressure 
at the centroid of the surface times the area in contact with the fluid 

2. The centroid is used to determine the magnitude of the force.  This 
is not the location of the resultant force 

3. The location of the resultant force will be at the center of pressure  
which will be at a location Ycp below the centroid and Xcp as 
specified previously 

4. Xcp = 0 for areas with a vertical plane of symmetry through the c.g. 
 
Example 2.5 
 
Given:  Gate,  5 ft wide 
Hinged at B 
Holds seawater as shown 
 
Find:   
a.  Net hydrostatic force on gate
b.  Horizontal force at wall - A 
c.  Hinge reactions - B 
 
 

8’

θ

Seawater

• c.g.

hc.g.

A

B

64 lbf/ft3

15’

6’

9’

 
 
 

a.  By geometry:   θ  =  tan-1 (6/8)  =  36.87o          Neglect Patm 
 
Since plate is rectangular, hcg = 9 ft + 3ft = 12 ft      A = 10 x 5 = 50 ft2 
 
Pcg  =  γ hcg =  64 lbf/ft3 * 12 ft  =  768 lbf/ft2 
 
∴  Fp =  Pcg A  =  768 lbf/ft2 * 50 ft2  =  38,400 lbf     
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b. Horizontal Reaction at A 
 Must first find the location, c.p., for Fp 
 
 

ycp = −ρ gsinθ Ixx
Pcg A = − Ixx sinθ

hcg A  

 
For a rectangular wall: 
 
Ixx = bh3/12  
 
Ixx = 5 * 103/12 = 417 ft4 
 
Note:  The relevant area is a 

rectangle, not a triangle. 
 

 
 

θ

•
c.g.•

c.p.Bx

Bz

P

Fw

8 ft

6 ft

yc.p.θ

 

 
Note: Do not overlook the hinged reactions at B. 
 

 
4

2
417 0.6 0.417
12 50cp

fty ft
ft ft

= − = −= − = −= − = −= − = −
4

2
417 0.6 0.417
12 50cp

fty ft
ft ft

= − = −= − = −= − = −= − = −    below  c.g. 

 
 xcp = 0  due to symmetry 
 
 
 

0BM ====∑∑∑∑  
 
(5 0.417) 38,400 6 0P− ⋅ − =− ⋅ − =− ⋅ − =− ⋅ − =  
 
P = 29,330 lbf    ←←←← 

 

θ

•
c.g.•

c.p.Bx

Bz

P

Fw

8 ft

6 ft

yc.p.θ
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c. Fx∑ =0, Bx + Fsinθ − P= 0 
 
  Bx   +  38,400*0.6 - 29,330  =  0 
 
  Bx  =  6290 lbf  →→→→ 
 
 

 Fz∑ =0, Bz − Fcosθ =0 
 
  Bz  =  38,400 * 0.8  =  30,720 lbf     ↑↑↑↑  
 
 
Note:  Show the direction of all forces in final answers. 
 
 
 
Summary:  To find net hydrostatic force on a plane surface: 
 
 1. Find area in contact with fluid. 
 2. Locate centroid of that area. 
 3. Find hydrostatic pressure Pcg at centroid,  

typically  = γ γ γ γ hcg   ( generally neglect Patm ). 
 4. Find force F = Pcg  A. 
 5. Location will not be at c.g., but at a distance ycp below 

centroid.  ycp is in the plane of the area.  
 
 
 
Review all text examples for forces on plane surfaces. 
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Forces on Curved Surfaces 
 

Since this class of surface is curved, the 
direction of the force is different at each 
location on the surface. 

Therefore,  we will evaluate separate x 
and y components of net hydrostatic 
force. 
 
Consider curved surface, a-b.  Force 
balances in x & y directions yields 
 

Fh = FH  

Fv = Wair +  W1  +  W2  
 
 
From this force balance, the basic rules for determining the horizontal and vertical 
component of forces on a curved surface in a static fluid can be summarized as 
follows: 
 
Horizontal Component, Fh 

The horizontal component of force on a curved surface equals the force on 
the plane area formed by the projection of the curved surface onto a 
vertical plane normal to the component. 

 
 

 

The horizontal force will act 
through the c.p. (not the centroid) 
of the projected area. 

 
b

a

cp

hcg

Fh

ycp

a’

b’

Projected vertical
plane

Curved
surface
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Therefore, to determine the horizontal component of force on a curved surface in a 
hydrostatic fluid: 
 
 

  1. Project the curved surface into the appropriate vertical plane. 
  2. Perform all further calculations on the vertical plane. 
  3. Determine the location of the centroid - c.g. of the vertical plane. 

  4. Determine the depth of the centroid - hcg  of the vertical plane. 

  5. Determine the pressure - Pcg  = g hcg  at the centroid of the 
vertical plane. 

  6. Calculate  Fh = Pcg A, where A is the area of the projection of the 
curved surface into the vertical plane, ie., the area of the vertical 
plane.                     

  7. The location of  Fh  is through the center of pressure of the 
vertical plane ,  not the centroid. 

 
Get the picture? All elements of the analysis are performed with the 

vertical plane.  The original curved surface is important 
only as it is used to define the projected vertical plane. 

 
Vertical Component - Fv 
 
 

The vertical component of force on a curved surface equals the weight of 
the effective column of fluid necessary to cause the pressure on the 
surface. 

 
The use of the words effective column of fluid is important in that there 
may not always actually be fluid directly above the surface. ( See graphic 
that follows.) 
 
This effective column of fluid is specified by identifying the column of fluid 
that would be required to cause the pressure at each location on the surface. 
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Thus to identify the effective volume - Veff: 
 

   1. Identify the curved surface in contact with the fluid. 
   2. Identify the pressure at each point on the curved surface. 
   3. Identify the height of fluid required to develop the pressure. 
   4. These collective heights combine to form Veff. 

 
 

b

aVeff P

P
P

 
Fluid above the surface 

a

b

Veff

P
P P

fluid

 

No fluid actually above surface 
 
These two examples show two typical cases where this concept is used to 
determine Veff. 
 
 
The vertical force acts vertically through the centroid (center of mass) of the 
effective column of fluid.  The vertical direction will be the direction of the 
vertical components of the pressure forces. 
 
Therefore, to determine the vertical component of force on a curved surface in a 
hydrostatic fluid: 
 

 1. Identify the effective column of fluid necessary to cause the fluid 
pressure on the surface. 

 2. Determine the volume of the effective column of fluid. 
 3. Calculate the weight of the effective column of fluid - Fv = ρgVeff. 
 4. The location of Fv is through the centroid of Veff. 
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Finding the Location of the Centroid 
 
A second problem associated with the topic of curved surfaces is that of finding 
the location of the centroid of Veff. 
 
Recall: 
 
Centroid = the location where the first moment of a point area, volume, or mass 

equals the first moment of the distributed area, volume, or mass, e.g. 
 

  xcgV1 = xdV
V1

∫  

 
This principle can also be used to determine the location of the centroid of 
complex geometries. 
 

For example: 
 

If   Veff  =   V1   +   V2 
 
then 

xcgVeff  =   x1V1   +   x2V2 
 
or 
 

VT =  V1   +   Veff 
 

xTVT =  x1V1   +   xcgVeff 
 

b

a

2V

V1

 
 

a

b

V1

Veff

fluid

 

Note:  In the figures shown above, each of the  x  values would be specified 
relative to a vertical axis through  b  since the cg of the quarter circle is most 
easily specified relative to this axis. 
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Example: 
 
Gate AB holds back 15 ft of 
water.  Neglecting the weight of 
the gate, determine the magnitude 
(per unit width) and location of 
the hydrostatic forces on the gate 
and the resisting moment about B. 
 

•

•

15 ft

A

B

Water
H

F

F
V

Width -  W

 
 

 
a.  Horizontal component γ  = ρg = 62.4 lbf/ft3 
 
Rule:  Project the curved surface into 
the vertical plane.  Locate the centroid 
of the projected area.  Find the pressure 
at the centroid of the vertical 
projection.  F = Pcg  Ap 
Note:  All calculations are done with 
the projected area.  The curved 
surface is not used at all in the 
analysis. 

•

•
A

B

a

b

h cg
Pcg

 
 

 
The curved surface projects onto plane  a - b  and results in a rectangle,  
 (not a quarter circle)  15 ft x W.  For this rectangle: 
 
 
hcg = 7.5, Pcg = γhcg  = 62.4 lbf/ft3 * 7.5 ft  = 468 lbf/ft2 
 
Fh = Pcg A = 468 lbf/ft2 * 15 ft*W=  7020 W  lbf   
 
Location:  Ixx = bh3/12  =  W * 153 /12 = 281.25 W ft4 
 

ycp = − Ixx sinθ
hcg A = −281.25W ft4 sin90o

7.5 ft15W ft2 = −2.5 ft
 

The location is 2.5 ft 
below the c.g. or 10 ft 
below the surface, 5 ft 
above the bottom.   
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b.  Vertical force: 
 
 
Rule:  Fv equals the weight of the 
effective column of fluid above the 
curved surface. 

A
•

c.g.

C

B

•

b
Fv

•  
 

 
Q:  What is the effective volume of fluid above the surface? 
 
 What volume of fluid would result in the actual pressure distribution on the 
curved surface? 
 

Vol = A - B - C 
 

Vrec = Vqc + VABC, VABC = Vrec - Vqc 
 

VABC = Veff  = 152 W - π 152/4*W  =  48.29 W ft3 

Fv = ρg Veff  = 62.4 lbf/ft3 * 48.29 ft3 = 3013 lbf  
 
Note: Fv is directed upward even though the effective volume is above the surface. 
 
c. What is the location? 
 

Rule:  Fv will act through the 
centroid of the “effective volume 
causing the force. 
 
 

A
•

c.g.

C

B

•

b
Fv

•  
 
We need the centroid of volume A-B-C.       How do we obtain this centroid? 
 
Use the concept which is the basis of the centroid, the  “first moment of an area.” 



 

II-18 

Since:  Arec  =  Aqc  + AABC Mrec  =  Mqc  +  MABC MABC  =  Mrec  -  Mqc 
 
Note:  We are taking moments about the left side of the figure, ie., point b. WHY? 
 

(The c.g. of the quarter circle is known to be 4 R/ 3 π  w.r.t.  b.) 
 

xcg A  = xrec Arec - xqc Aqc  

 

xcg {152  -  π*152/4}  =  7.5*152 - {4*15/3/π}* π*152/4 
 
 xcg = 11.65 ft    { distance to rt. of  b  to centroid } 
 
 
Q:  Do we need a   y  location?   Why? 
 
 
d.  Calculate the moment about  B 

needed for equilibrium. 
 

0BM ====∑∑∑∑    clockwise positive. 
 
MB +5Fh + 15−xv( )Fv = 0 

 

 
(((( ))))5 7020 15 11.65 3013 0BM W W+ × + − =+ × + − =+ × + − =+ × + − = (((( ))))5 7020 15 11.65 3013 0BM W W+ × + − =+ × + − =+ × + − =+ × + − =

aP g y G gρρρρ≠ ≠≠ ≠≠ ≠≠ ≠  
 
MB +35,100W +10,093.6W = 0 
 
MB = −45,194W ft −lbf  Why negative? 
 
The hydrostatic forces will tend to roll the surface clockwise relative to  B, 
thus a resisting moment that is counterclockwise is needed for static 
equilibrium. 
 
Always review your answer (all aspects: magnitude, direction, units, etc.) to 
determine if it makes sense relative to physically what you understand 
about the problem.    Begin to think like an engineer. 
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Buoyancy 

 
 
An important extension of the procedure for vertical forces on curved surfaces is 
that of the concept of buoyancy. 
 
The basic principle was discovered by Archimedes. 
 
 

 
It can be easily shown that 
  (see text for detailed 
development) the buoyant  
force  Fb  is given by: 

 
Fb  =  ρ g Vb 
 
where   Vb is the volume of 
the fluid displaced by the 
submerged body and ρ g is the 
specific weight of the fluid 
displaced. 
 

Vb

P
atm

Fb

 
Thus, the buoyant force equals the weight of the fluid displaced, which is 
equal to the product of the specific weight times the volume of fluid 
displaced. 
 
 

The location of the buoyant force is: 
 
 

Through a vertical line of action, directed upward, which acts through the 
centroid of the volume of fluid displaced. 

 
Review all text examples  and material on buoyancy. 
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Pressure distribution in rigid body motion 
 
 
All of the problems considered to this point were for static fluids.  We will now 
consider an extension of our static fluid analysis to the case of rigid body motion, 
where the entire fluid mass moves and accelerates uniformly (as a rigid body). 
 
The container of fluid shown below is accelerated uniformly up and to the right as 
shown. 
 

 
 
 
From a previous analysis, the general equation governing fluid motion is 
 

   ∇ P = ρ( g − a ) + µ ∇ 2 V  
 
For rigid body motion, there is no velocity gradient in the fluid, therefore 
 
 µ∇ 2 V = 0  
 
The simplified equation can now be written as 
 
   ∇ P = ρ( g − a ) = ρG  
 

where   G = g − a ≡  the net acceleration vector acting on the fluid. 
 



 

II-21 

This result is similar to the equation for the variation of pressure in a hydrostatic 
fluid. 
 

However, in the case of rigid body motion: 
 

 *   ∇ P  = f {fluid density & the net acceleration vector-  G = g − a  } 
 
 *   ∇ P  acts in the vector direction of  G = g − a  
 

* Lines of constant pressure are perpendicular to     G  .  The new 
orientation of the free surface will also be perpendicular to   G . 

 
 
The equations governing the analysis for this class of problems are most easily 
developed from an acceleration diagram. 
 
 

 Acceleration diagram: 
 
For the indicated geometry: 
 

1tan x

z

a
g a

θθθθ −−−−====
++++

1tan x

z

a
g a

θθθθ −−−−====
++++

 

 

  
dP
ds

= ρG where G = a x
2 + (g + a z ) 2{ } 1

2

 

and        P2 − P1 = ρG(s 2 − s1 )  
 
Note:  P2 − P1 ≠ ρ g z2 − z1( ) 

and 

s2 – s1  is not a vertical dimension 
 

a

-a

g

G

θ

θ

Freesurface

P2

P1
s

ax

az

 

 
Note:  s  is the depth to a 
given point perpendicular 
to the free surface or its 
extension.  s is aligned 
with   G . 
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In analyzing typical problems with rigid body motion: 
 

1. Draw the acceleration diagram taking care to correctly indicate –a, g, 
and θ, the inclination angle of the free surface. 

2. Using the previously developed equations, solve for G and θ. 

3. If required, use geometry to determine s2 – s1  (the perpendicular 
distance from the free surface to a given point)  and then the pressure 
at that point relative to the surface  using  P2 – P1 = ρ G (s2 – s1) . 

 
Key Point:  Do not use  ρg  to calculate  P2 – P1, use  ρ G. 

 
Example 2.12 
Given:  A coffee mug, 6 cm x 6 cm 
square, 10 cm deep, contains 7 cm of 
coffee.  Mug is accelerated to the right 
with  ax = 7 m/s2 .  Assuming rigid body 
motion.  ρc = 1010 kg/m3, 
Determine:  a.  Will the coffee spill? 
b.  Pg at  “a & b”. 
c.  Fnet on left wall. 

a.  First draw schematic showing 
original orientation and final 
orientation of the free surface. 

a b

7 cm

10 cm

∆ z

a
x

θ

6 cm

 

ρc = 1010 kg/m3 ax = 7m/s2 az = 0 g = 9.8907 m/s2 
 

Have a new free surface angle  θ  where 
1tan x

z
a

g aθθθθ −−−−==== ++++  

θ = tan−1 7
9.807 =35.5°  

∆z = 3 tan 35.5  = 2.14 cm 

a-a

gG

θ
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 hmax =  7 + 2.14 = 9.14 cm < 10 cm  ∴   Will not spill. 
 
b.  Pressure at “ a & b.” 

Pa = ρ G ∆ sa 

G = {a2
x + g2}.5 = { 72 + 9.8072}.5 

G = 12.05 m/s2 

∆ sa = {7 + z} cos θ  

∆ sa = 9.14 cm cos 35.5 = 7.44 cm 

Pa = 1010 kg/m3*12.05m/s2*0.0744 m 

Pa = 906 (kg m/s2)/m2 = 906 Pa 
Note:   aP g y G gρρρρ≠ ≠≠ ≠≠ ≠≠ ≠   

a b

7 cm

10 cm

∆ z

a
x

θ

6 cm

θ
∆ sa

 

 
Q:  How would you find the pressure at b,  Pb? 
 
c.  What is the force on the left wall? 
We have a plane surface, what is the rule? 

Find  cg, Pcg, F = Pcg. A 
Vertical depth to cg is: 

zcg = 9.14/2 = 4.57 cm 

∆scg = 4.57 cos 35.5 = 3.72 cm 

Pcg = ρ G ∆scg  

Pcg = 1010 kg/m3*12.05 m/s2* 0.0372 m 

Pcg = 452.7 N/m2 

F = Pcg A = 452.7 N/m2*0.0914*0.06m2 

F = 2.48 N  ← 

a b

7 cm

10 cm

∆ z

a
x

θ

6 cm

θ

•cg

∆ scg
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What is the direction? 
 
Horizontal, perpendicular to the wall;  
 
i.e., Pressure always acts normal to a surface. 
 
Q:  How would you find the force on the right wall? 
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 III. Control Volume Relations for Fluid Analysis 
 
From consideration of hydrostatics, we now move to problems involving fluid 
flow with the addition of effects due to fluid motion, e.g. inertia and convective 
mass, momentum, and energy terms. 
 
We will present the analysis based on a control volume (not differential element) 
formulation, e.g. similar to that used in thermodynamics for the first law. 
 
 
Basic Conservation Laws: 
 

 Each of the following basic conservation laws is presented in its most 
fundamental, fixed mass form.  We will subsequently develop an equivalent 
expression for each law that includes the effects of the flow of mass, momentum, 
and energy (as appropriate) across a control volume boundary.  These transformed 
equations will be the basis for the control volume analyses developed in this 
chapter. 
 

Conservation of Mass: 
 

Defining m as the mass of a fixed mass system, the mass for a control volume 
V is given by 
 

      
msys = ρdV

sys
∫

 
 

The basic equation for conservation of mass is then expressed as 
 

 
dm
dt
 
 sys

= 0
 

The time rate of change of mass for 
the control volume is zero since at 
this point we are still working with 
a fixed mass system. 

 
Linear Momentum: 

 
Defining      P sys   as the linear momentum of a fixed mass, the linear momentum 
of a fixed mass control volume is given by: 
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P sys = mV = V ρdV

sys
∫

 
 

where      V   is the local fluid velocity and        dV   is a differential volume element 
in the control volume.   
 
The basic linear momentum equation is then written as 
 

    
F =∑

dP 
dt
 
 
 

sys
=

d mV ( )
dt

 

 
 

sys  
 

Moment of Momentum: 
 
Defining      H   as the moment of momentum for a fixed mass, the moment of 
momentum for a fixed mass control volume is given by 
 

  

H sys = r × V ρdV
sys
∫

 
 

where      r   is the moment arm from an inertial coordinate system to the 
differential control volume of interest.  The basic equation is then written as 
 

    
M sys = r ×∑ F =∑

dH 
dt
 
 
 

sys  
 

Energy: 
 
Defining      E sys   as the total energy of an element of fixed mass, the energy of a 
fixed mass control volume is given by 
 

  

E sys = eρ dV
sys
∫
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where  e  is the total energy per unit mass ( includes  kinetic, potential, and 
internal energy ) of the differential control volume element of interest.   
 
The basic equation is then written as 
 

sys

d E
d t

Q W ==== 


−−−−& &  (Note:  written on a rate basis) 

It is again noted that each of the conservation relations as previously written 
applies only to fixed, constant mass systems.   
 
 
However, since most fluid problems of importance are for open systems, we 
must transform each of these relations to an equivalent expression for a control 
volume which includes the effect of mass entering and/or leaving the system. 
 
This is accomplished with the Reynolds transport theorem. 
 
 

Reynolds Transport Theorem 
 
We define a general, extensive property ( an extensive property depends on the 
size or extent of the system)   Bsys    where 
 

  

Bsys = β ρd V
sys
∫

 
 
 Bsys could be total mass, total energy, total momentum, etc., of a system. 
 

and      Bsys   per unit mass is defined as   β   or   β =
dB
dm  

 

Thus,  β     is the intensive equivalent of  Bsys  . 

 
Applying a general control volume formulation to the time rate of change of 
Bsys  , we obtain the following (see text for detailed development): 
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e i

e e e e i i i i
sys cv A A

d B dV V d A V d A
d t t

β ρ β ρ β ρβ ρ β ρ β ρβ ρ β ρ β ρβ ρ β ρ β ρ ∂∂∂∂= + −= + −= + −= + − ∂∂∂∂ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

  ↓    ↓   ↓    ↓  
System rate Rate of   Rate of B  Rate of B  
of change  change of  leaving c.v. entering c.v. 
 of B B in c.v. 

   ↓    ↓  

 transient term convective terms 

where  B  is any conserved quantity, e.g. mass, linear momentum, moment of 
momentum, or energy. 
 
We will now apply this theorem to each of the basic conservation equations to 
develop their equivalent open system, control volume forms. 
 

Conservation of mass 
 
For conservation of mass, we have that 
 

  B  =  m and   β = 1 
 
From the previous statement of conservation of mass and these definitions, 
Reynolds transport theorem becomes 
 

 0
e i

e e e i i i
cv A A

dV V d A V d A
t

ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ∂∂∂∂ + − =+ − =+ − =+ − =
∂∂∂∂ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

 

or 
 

 0
e i

e e e i i i
cv A A

dV V d A V d A
t

ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ∂∂∂∂ + − =+ − =+ − =+ − =
∂∂∂∂ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

   ↓    ↓    ↓  
 

 Rate of change Rate of mass Rate of mass  
of mass in c.v., leaving c.v.,  entering c.v., 

 ↓  ↓  ↓  
 = 0 for steady-state em&  

i
m&  
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This can be simplified to 
 

0e i
cv

d m m m
d t

 + − =+ − =+ − =+ − =


∑ ∑∑ ∑∑ ∑∑ ∑& &  

 
Note that the exit and inlet velocities  Ve and Vi  are the local components of 
fluid velocities at the exit and inlet boundaries relative to an observer 
standing on the boundary.  Therefore, if the boundary is moving, the velocity 
is measured relative to the boundary motion.  The location and orientation of a 
coordinate system for the problem are not considered in determining these 
velocities. 
 
Also, the result of   V e ⋅ dA e   and  V i ⋅dA i   is the product of the normal 
velocity component times the flow area at the exit or inlet, e.g.  
 
 
 Ve,n dAe  and Vi,n dAi 
 
Special Case:  For incompressible flow with a uniform velocity over the flow 
area, the previous integral expressions simplify to: 
 
 

cs

m V d A AVρ ρρ ρρ ρρ ρ= == == == =∫∫∫∫&  

 
Conservation of Mass Example 
 

Water at a velocity of 7 m/s exits a 
stationary nozzle with D = 4 cm and is 
directed toward a turning vane with θ = 40o,  
Assume steady-state. 
 
Determine:  
a.  Velocity and flow rate entering the c.v. 
b.  Velocity and flow rate leaving the c.v. 
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a.  Find V1 and 1m&  
 

Recall that the mass flow velocity is the normal component of velocity 
measured relative to the inlet or exit area. 
 
 
Thus, relative to the nozzle, V(nozzle) = 7 m/s and since there is no relative 
motion of point 1 relative to the nozzle, we also have   V1 = 7 m/s    ans. 
 
From the previous equation: 
 
 

cs

m V d A AVρ ρρ ρρ ρρ ρ= == == == =∫∫∫∫& =  998 kg/m3*7 m/s*π*0.042/4 

 
 1m& = 8.78 kg/s   ans. 
 
b.  Find V2 and 2m&  
 
Determine the flow rate first.  
 
Since the flow is steady state and no mass accumulates on the vane: 

 1m& =  2m&  , 2m& =  8.78 kg/s   ans. 
 
Now:   2m& =  8.78 kg/s  =  ρ A V)2   
 
Since  ρ and A are constant,    V2  =  7 m/s  ans. 
 
Key Point:  For steady flow of a constant area, incompressible stream, the 
flow velocity and total mass flow are the same at the inlet and exit, even 
though the direction changes.   
or alternatively: 
Rubber Hose Concept:  For steady flow of an incompressible fluid, the 
flow stream can be considered as a rubber hose and if it enters a c.v. at a 
velocity of V, it exits at a velocity V, even if it is redirected. 
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Problem Extension: 
 
 
Let the turning vane (and c.v.) now 
move to the right at a steady velocity of 
2 m/s (other values remain the same); 
perform the same calculations. 

 
Therefore: 
 
Given:  Uc = 2 m/s     VJ = 7 m/s 

 

 
 
For an observer standing at the c.v. inlet (point 1) 
 
V1 = VJ � Uc = 7 � 2 = 5 m/s 
 

1m& = ρ1 V1 A1 = 998 kg/m3*5 m/s*π*0.042/4 = 6.271 kg/s 
 

Note:  The inlet velocity used to specify the mass flow rate is again measured 
relative to the inlet boundary but now is given by  VJ � Uc .   
 
Exit: 
 1m& =  2m&  = 6.271 kg/s   Again, since ρ and A are constant, V2 = 5 m/s. 
 
Again, the exit flow is most easily specified by conservation of mass concepts. 
 
Note:  The coordinate system could either have been placed on the moving cart or 
have been left off the cart with no change in the results.   
 
Key Point:  The location of the coordinate system does not affect the calculation 
of mass flow rate which is calculated relative to the flow boundary.  It could have 
been placed at Georgia Tech with no change in the results. 
 
Review material and work examples in the text on conservation of mass. 



 

III-8 

Linear Momentum 
 
For linear momentum, we have that 
 
    B = P = mV  and      β = V  
 
From the previous statement of linear momentum and these definitions,  Reynolds 
transport theorem becomes 
 

(((( ))))
e i

e e e i i i
cv A Asys

d mV
F V dV V V d A V V d A

d t t
∂∂∂∂ ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ
∂∂∂∂


= = + ⋅ − ⋅= = + ⋅ − ⋅= = + ⋅ − ⋅= = + ⋅ − ⋅

∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫  

 
or 

e i

e i
cv A A

F V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= + −= + −= + −= + −∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

   ↓    ↓   ↓    ↓  
=  the ∑∑∑∑ of the = the rate of  = the rate of = the rate of 
external forces change of   momentum momentum 
acting on the c.v. momentum  leaving the  entering the c.v. 
  in the c.v. c.v. 
= body + point + =  0  for 
distributed, e.g. steady-state 
(pressure) forces 
 
and where  V  is the vector momentum velocity relative to an inertial reference 
frame.   

 
Key Point:  Thus, the momentum velocity has magnitude and direction and is 
measured relative to the reference frame (coordinate system) being used for the 
problem.  The velocities in the mass flow terms im& and  em&  are scalars, as noted 
previously, and are  measured relative to the inlet or exit boundary. 

 
 

Always clearly define a coordinate system and use it to specify the value of all 
inlet and exit momentum velocities when working linear momentum problems. 
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For the 'x' direction, the previous equation becomes 
 

 , ,
e i

x x x e e x i i
cv A A

F V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= + −= + −= + −= + −∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

 
Note that the above equation is also valid for control volumes moving at 
constant velocity with the coordinate system placed on the moving control 
volume.  This is because an inertial coordinate system is a nonaccelerating 
coordinate system which is still valid for a c.s. moving at constant velocity. 
 
Example: 
 
A water jet 4 cm in diameter with a velocity 
of 7 m/s is directed to a stationary turning 
vane with  θ = 40o.  Determine the force  F 
necessary to hold the vane stationary. 

 
 
Governing equation: 
 

, ,
e i

x x x e e x i i
cv A A

F V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= + −= + −= + −= + −∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

 
Since the flow is steady and the c.v. is stationary, the time rate of change of 
momentum within the c.v. is zero.  Also with uniform velocity at each inlet and 
exit and a constant flow rate, the momentum equation becomes 
 

 b e e i iF m V m V− = −− = −− = −− = −& &  

 
Note that the braking force, Fb, is written as negative since it is assumed to be 
in the negative  x  direction relative to positive  x  for the coordinate system. 
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From the previous example for conservation of mass, we can again write 
 
 

cs

m V d A AVρ ρρ ρρ ρρ ρ= == == == =∫∫∫∫& =  998 kg/m3*7 m/s*π*0.042/4 

 
 1m& = 8.78 kg/s    and  V1 = 7 m/s 

 
and for the exit: 
 
 2m& =  8.78 kg/s   and    V2  =  7 m/s   inclined 40û above the horizontal. 
 
Substituting in the momentum equation, we obtain 
 
 -Fb  =  8.78 kg/s * 7 m/s *cos 40o - 8.78 kg/s * 7 m/s 
 
 and  -Fb  =  - 14.4 kg m/s2   or    Fb  = 14.4 N  ←    ←    ←    ←    ans. 
 
Note: Since our final answer is positive, our original assumption of the 

applied force being to the left was correct.  Had we assumed that the 
applied force was to the right, our answer would be negative, meaning 
that the direction of the applied force is opposite to what was assumed. 

 
Modify Problem:   
Now consider the same problem but with 
the cart moving to the right with a velocity 
Uc  = 2 m/s.  Again solve for the value of 
braking force  Fb  necessary to maintain a 
constant cart velocity of 2 m/s. 

Note:  The coordinate system for the 
problem has now been placed on the 
moving cart. 
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The transient term in the momentum equation is still zero.  With the coordinate 
system on the cart, the momentum of the cart relative to the coordinate system 
is still zero.  The fluid stream is still moving relative to the coordinate system, 
however, the flow is steady with constant velocity and the time rate of change 
of momentum of the fluid stream is therefore also zero. Thus 
 
The momentum equation has the same form as for the previous problem  
(However the value of individual terms will be different.) 
 
 b e e i iF m V m V− = −− = −− = −− = −& &  
 

1m& = ρ1 V1 A1 = 998 kg/m3*5 m/s*π*0.042/4 = 6.271 kg/s =  2m&  
 
Now we must determine the momentum velocity at the inlet and exit.  With the 
coordinate system on the moving control volume, the values of momentum 
velocity are 
 
V1 = VJ � Uc = 7 � 2 = 5 m/s and   V2 = 5 m/s  inclined 40o    
 
The momentum equation ( x - direction ) now becomes 
 
 -Fb  =  6.271 kg/s * 5 m/s *cos 40o - 6.271 kg/s * 5 m/s 
 
 and  -Fb  =  - 7.34 kg m/s2   or    Fb  = 7.34 N  ←    ←    ←    ←    ans. 
 
Question: What would happen to the braking force  Fb  if the turning 
angle had been > 90o, e.g., 130 o?   Can you explain based on your 
understanding of change in momentum for the fluid stream? 
 
Review and work examples for linear momentum with fixed and non-
accelerating (moving at constant velocity) control volumes. 
 
 

Accelerating Control Volume 
 
The previous formulation applies only to an inertial coordinate system, i.e., 
fixed or moving at constant velocity (non-accelerating). 
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We will now consider problems with accelerating control volumes.  For these 
problems we will again place the coordinate system on the accelerating control 
volume, thus making it a non-inertial coordinate system. 
 
For coordinate systems placed on an accelerating control volume, we must 
account for the acceleration of the c.s. by correcting the momentum equation 
for this acceleration.  This is accomplished by including the term as shown 
below: 
 

e i

cv cv e i
cv cv A A

F a d m V dV V d m V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

− = + −− = + −− = + −− = + −∑∑∑∑ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫ ∫& &  

 ↓  
 

 integral sum of 
 the local c.v. (c.s.) 
 acceleration * the c.v. mass 
 
The added term accounts for the acceleration of the control volume and allows 
the problem to be worked with the coordinate system placed on the accelerating 
c.v. 
 
Note:  Thus, all vector (momentum) velocities are then measured relative to an 
observer (coordinate system) on the accelerating control volume.  For example, 
the velocity of a rocket as seen by an observer (c.s.) standing on the rocket is 
zero and the time rate of change of momentum is zero in this reference frame 
even if the rocket is accelerating. 
 
Accelerating Control Volume Example 
 

A turning vane with θ = 60 o accelerates 
from rest due to a jet of water  
(VJ = 35 m/s, AJ = 0.003 m2 ).  Assuming 
the mass of the cart  mc,  is 75 kg and 
neglecting drag and friction effects, find: 
 
a. Cart acceleration at t  = 0. 
 

b. Uc as a f(t) 
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Starting with the general equation shown above, we can make the following 
assumptions: 

 
1. ∑∑∑∑  Fx = 0,  no friction or body forces. 
2. The jet has uniform velocity and constant properties. 
3. The entire cart accelerates uniformly over the entire control volume. 
4. Neglect the relative momentum change of the jet stream that is within the 

control volume. 
With these assumptions, the governing equation simplifies to 
 

, ,c c e x e i x ia m m V m V− = −− = −− = −− = −& &  
 
We thus have terms that account for the acceleration of the control volume, for 
the exit momentum, and for the inlet momentum (both of which change with 
time.) 
 
Mass flow: 
 
As with the previous example for a moving control volume, the mass flow terms 
are given by: 
 

i em m m= = == = == = == = =& & & ρ AJ (VJ � Uc) 
 
Note that since the cart accelerates, Uc is not a constant but rather changes with 
time. 
 
Momentum velocities: 
 

Ux,i=  VJ  -  Uc       Ux,e  =   (VJ  -  Uc ) cos θ 
 

Substituting, we now obtain 
 

- ac mc  =  ρ AJ (VJ � Uc)2 cos θ  -  ρ AJ (VJ � Uc) 
 
Solving for the cart acceleration, we obtain 

 

ac =
ρ AJ 1 − cosθ( ) VJ − Uc( )2

mc
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Substituting for the given values at t = 0,  i.e.,  Uc = 0, we obtain 
 

ac (t = 0)  = 24.45 m/s2  =  2.49 g�s 
 
 
Note:   The acceleration at any other time can be obtained once the cart velocity  

Uc  at that time is known. 
 
 
To determine the equation for cart velocity as a function of time, the equation 
for the acceleration must be written in terms of Uc (t) and integrated. 
 

dUc
dt =

ρ AJ 1 −cosθ( )VJ −Uc( )2
mc

 

 
Separating variables, we obtain 
 
 

dUc

VJ − Uc( )2
0

Uc (t )

∫ =
ρ AJ 1 − cosθ( )

mc0

t

∫ dt  

 
Completing the integration and rearranging the terms, we obtain a final 
expression of the form 
 

  

Uc

VJ
=

VJ b t
1+ VJ b t

 where b =
ρ AJ 1 − cosθ( )

mc
 

 
Substituting for known values, we obtain  VJ b  = 0.699 s-1 
 
Thus the final equation for Uc is give by 
 

Uc
VJ

= 0.699 t
1+0.699 t  
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The final results are now given as shown below: 
 

t Uc/VJ Uc ac 
(s) (m/s) (m/s2)
0 0.0   0.0 24.45 
2 0.583 20.0   4.49 
5 0.757 27.2   1.22 
10 0.875 30.6   0.39 
15 0.912 31.9   0.192 
∞ 1.0 35   0.0 

 

Uc vs t

0

5

10

15
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30

35

0 5 10 15 20

t(s)

 
 

 
Note that the limiting case occurs when the cart velocity reaches the jet 
velocity.  At this point, the jet can impart no more momentum to the cart, the 
acceleration is now zero, and the terminal velocity has been reached. 
 
Review the text example on accelerating control volumes. 
 
 
Moment of Momentum (angular momentum) 
 
 
For moment of momentum we have that 
 
 
 B = H = r × m V ( ) and β = r ×V  
 
 
From the previous equation for moment of momentum and these definitions, 
Reynolds transport theorem becomes 
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e i

e i
cv A A

M r V dV r V d m r V d m
t

∂∂∂∂ ρρρρ
∂∂∂∂

= × + × − ×= × + × − ×= × + × − ×= × + × − ×∑∑∑∑ ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

   ↓    ↓    ↓   ↓  
 

= the ∑∑∑∑  of all = the rate of  = the rate of = the rate of  
 external change of mom- moment of  moment of  
 moments  ent of momentum momentum momentum  
 acting in the c.v.  =  0 leaving entering 
 on the c.v. for steady state the c.v. the c.v. 
 
For the special case of steady-state, steady-flow and uniform properties at any 
exit or inlet, the equation becomes 
 

e e i iM m r V m r V= × − ×= × − ×= × − ×= × − ×∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑∑ ∑ ∑& &  

 
For moment of momentum problems, we must be careful to correctly evaluate 
the moment of all applied forces and all inlet and exit momentum flows, with 
particular attention to the signs.  
 
Moment of Momentum Example: 
 
A small lawn sprinkler operates as indicated.  
The inlet flow rate is 9.98 kg/min with an inlet 
pressure of 30 kPa.  The two exit jets direct 
flow at an angle of 40o above the horizontal.  
 

For these conditions, determine the following: 
a.  Jet velocity relative to the nozzle. 
b.  Torque required to hold the arm stationary. 
c.  Friction torque if the arm is rotating at 35 rpm. 
d.  Maximum rotational speed if we neglect 

friction. 

 

160 mm

D  = 5 mmJ
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a. R = 160 mm,  DJ = 5 mm,   Therefore, for each of the two jets: 
 

QJ =  0.5* 9.98 kg/min/998 kg/m3 = 0.005 m3/min 
 

AJ =  ππππ ππππ  0.00252 =  1.963*10-5 m2    
 

VJ = 0.005 m3/min / 1.963*10-5 m2 /60 s/min 
 
VJ = 4.24 m/s  relative to the nozzle exit    ans. 
 

b.  Torque required to hold the arm stationary. 
 
First develop the governing equations and analysis for the general case of the 
arm rotating.   
 

 
With the coordinate system at the 
center of rotation of the arm, a 
general velocity diagram for the case 
when the arm is rotating is shown in 
the adjacent schematic. 
 
 

R

V cos θJ

oω

rω

+

 
 
 
Taking the moment about the center of rotation, the moment of the inlet flow is 
zero since the moment arm is zero for the inlet flow. 

 
The basic equation then becomes 

 
(((( ))))0 2 cose JT m R V Rα ωα ωα ωα ω= −= −= −= −&  

 
Note that the net momentum velocity is the difference between the tangential 
component of the jet exit velocity and the rotational speed of the arm.  Also note 
that the direction of positive moments was taken as the same as for VJ and 
opposite to the direction of rotation. 

 
For a stationary arm    R ω  =  0.  We thus obtain for the stationary torque 
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To = 2 ρ QJ R VJ cos α 
 

3

3
1min2 * 998 .005 * 4.24 cos4.160

min 60
o

o
kg m mT m

sm
====  

 
To = 0.0864 N m  clockwise. ans. 
 

A resisting torque of  0.0864 N m must be applied in the clockwise direction to 
keep the arm from rotating in the counterclockwise direction. 
 
c.  At  ω = 30 rpm, calculate the friction torque Tf 
 

1min30 2
min 60 s
rev rad rad

rev
ω π πω π πω π πω π π= == == == =  

 
3

3
1min2 * 998 0.005 0.16 4.24 cos40 .16 *

min 60 s
o

o
kg m m radT m m

sm
ππππ    = −= −= −= −        

 

 
 ans. 

Note;  The resisting torque decreases as the speed increases. 
 
d.  Find the maximum rotational speed. 
 
The maximum rotational speed occurs when the opposing torque is zero and all 
the moment of momentum goes to the angular rotation.  For this case,  
 

VJ cos θ � Rω  = 0 
 

4.2 193.8 4 / cos40cos s 20.3 193.8
0.16

J

rad rpm m sV rad rpm
R m s

θθθθωωωω
••••====

= = = == = = == = = == = = =  ans. 

 
Review material and examples on moment of momentum. 
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Energy Equation (Extended Bernoulli Equation) 
 
For energy, we have that 
 

B = E = e ρd V
cv
∫  and β = e = u + 1

2
V 2 + g z  

 
From the previous statement of conservation of energy and these definitions, 
Reynolds transport theorem becomes: 
 

e i

e e e e i i i i
cv A Asys

d EQ W e dV e V d A e V d A
d t t

∂∂∂∂ ρ ρ ρρ ρ ρρ ρ ρρ ρ ρ
∂∂∂∂

− = = + ⋅ − ⋅− = = + ⋅ − ⋅− = = + ⋅ − ⋅− = = + ⋅ − ⋅


∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫& &  

 
After extensive algebra and simplification (see text for detailed development), 
we obtain: 
 

 

P1 − P2
ρ g

=
V2

2
− V1

2

2 g
+ Z2 − Z1 + hf,1−2 − hp 

   ↓    ↓   ↓   ↓    ↓  
Pressure drop Pressure Pressure Pressure Pressure 
from 1 – 2, drop due to  drop due to  drop due to drop due to 
in the flow acceleration elevation frictional mechanical 
direction of the fluid change head loss work on fluid 
 
Note: this formulation must be written in the flow direction from 1 - 2  to be 
consistent with the sign of the mechanical work term and so that  hf,1-2 is always 
a positive term.  Also note the following: 
 

❑  The points 1 and 2 must be specific points along the flow path 

❑  Each term has units of linear dimension, e.g., ft or meters, and z2 � z1 is 
positive for z2 above z1 

❑  The term hf,1-2 is always positive when written in the flow direction and for 
internal, pipe flow includes pipe or duct friction losses and fitting or piping 
component (valves, elbows, etc.) losses, 
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❑  The term hp is positive for pumps and fans ( i.e., pumps increase the 
pressure in the flow direction) and negative for turbines (turbines decrease 
the pressure in the flow direction) 

❑  For pumps: 

hp =
ws

g  
 where   ws = the useful work per unit mass to the fluid 

 
Therefore: psw g h====  

and f s pW mw Q g hρρρρ= == == == =& &  

where fW&    =  the useful power delivered to the fluid 

 

and f
p

p

WW ηηηη====
&

&  where η p    is the pump efficiency 

Example 
 
Water flows at 30 ft/s through a 
1000 ft length of 2 in diameter pipe.  
The inlet pressure is 250 psig and the 
exit is 100 ft higher than the inlet.   
 
Assuming that the frictional loss is 
given by 18 V2/2g, 
 
 Determine the exit pressure.   
 

1

2

100 ft

250 psig

2

 
 
 
Given:  V1 = V2 = 30 ft/s,   L = 1000 ft,    Z2 � Z1 = 100 ft,    P1  =  250 psig 
 
Also, since there is no mechanical work in the process, the energy equation 
simplifies to 
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P1 − P2

ρg
= Z2 − Z1 + hf  

 
P1 − P2

ρg
= 100 ft +18 302 ft2 / s 2

64.4 ft / s2 = 351.8 ft  

 
P1 � P2 = 62.4 lbf/ft3 351.8 ft = 21,949 psf = 152.4 psi 

 
P2 = 250 � 152.4 = 97.6 psig    ans. 

 
Problem Extension 
 
A pump driven by an electric motor is now added to the system.  The motor 
delivers 10.5 hp.  The flow rate and inlet pressure remain constant and the pump 
efficiency is 71.4 %, determine the new exit pressure. 
 

Q  = AV  = ππππ ππππ  (1/12)2 ft2 * 30 ft/s  =  0.6545 ft3/s 
 

Wf = ηp Wp= ρ Q g hp  
3 3

0.714 *10.5 * 550 / / 101
62.4 / * 0.6545 /p

hp ft lbf s hph ft
lbm ft ft s

−−−−= == == == =  

 
The pump adds a head increase equal to 101 ft to the system and the exit pressure 
should increase. 
 
Substituting in the energy equation, we obtain 
 

P1 − P2

ρg
= 100 ft +18 302 ft2 / s 2

64.4 ft / s2 −101 ft = 250.8 ft  

 
P1 � P2 = 62.4 lbf/ft3 250.8 ft = 15,650 psf = 108.7 psi 

 
P2 = 250 � 108.7 = 141.3 psig    ans. 

 
Review examples for the use of the energy equation 
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Ch. IV  Differential Relations for a Fluid Particle 
 

This chapter presents the development and application of the basic differential 
equations of fluid motion.  Simplifications in the general equations and common 
boundary conditions are presented that allow exact solutions to be obtained.  Two 
of the most common simplifications are 1). steady flow and 2). incompressible 
flow. 
 
The Acceleration Field of a Fluid 
 
A general expression of the flow field velocity vector is given by: 
 

V (r ,t) = � i u x, y, z, t( ) + � j v x, y, z, t( ) + � k w x, y, z, t( ) 
 
One of two reference frames can be used to specify the flow field characteristics: 
 

eulerian � the coordinates are fixed and we observe the flow field 
characteristics as it passes by the fixed coordinates. 

 
lagrangian  - the coordinates move through the flow field following individual 

particles in the flow. 
 
Since the primary equation used in specifying the flow field velocity is based on 
Newton�s second law, the acceleration vector is an important solution parameter.  
In cartesian coordinates, this is expressed as 
 

a = d V 
d t

= ∂ V 
∂ t

+ u∂ V 
∂ x

+ v∂ V 
∂ y

+ w ∂ V 
∂ z

 
  

 
  

= ∂ V 
∂ t

+ V ⋅ ∇ ( )V  

 total local convective 
 
The acceleration vector is expressed in terms of three types of derivatives: 
 
    Total acceleration =  total derivative of velocity vector 
 
 = local derivative  +  convective derivative  of velocity vector 
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Likewise, the total derivative (also referred to as the substantial derivative ) of 
other variables can be expressed in a similar form, e.g., 
 

d P
d t

= ∂ P
∂ t

+ u ∂ P
∂ x

+ v∂ P
∂ y

+ w ∂ P
∂ z

 
  

 
  

= ∂ P
∂ t

+ V ⋅ ∇ ( )P  

 
Example 4.1 
 
Given the eulerian velocity-vector field 
 

V = 3 t � i + x z � j + t y2 � k  
 
find the acceleration of the particle. 
 
For the given velocity vector, the individual components are 
 
 u  =  3 t v =  x z w  =  t y2 
 
Evaluating the individual components, we obtain 
 

 
∂ V 
∂ t

 =  3 i  + y2 k  

 

 
∂ V 
∂ x

  =  z j    
∂ V 
∂ y

   =  2 t y k 
∂ V 
∂ z

  =  x j 

 
Substituting, we obtain 
 

d V 
d t

  =  ( 3 i  +  y2 k)  +  (3 t) (z j)  +  (x z) (2 t y k)  +  (t y2) (x j) 

 
After collecting terms, we have 
 

d V 
d t

  =  3 i + (3 t z + t x y2) j + ( 2 x y z t + y2) k    ans. 
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The Differential Equation of Conservation of Mass 
 
If we apply the basic concepts of conservation of mass to a differential control 
volume, we obtain a differential form for the continuity equation in cartesian 
coordinates 
 

∂ ρ
∂ t

+ ∂
∂ x

ρu( )+ ∂
∂ y

ρ v( )+ ∂
∂ z

ρ w( )= 0 

 
and in cylindrical coordinates 

 
∂ ρ
∂ t

+ 1
r

∂
∂ r

r ρvr( )+ 1
r

∂
∂θ

ρ vθ( )+ ∂
∂ z

ρvz( )= 0 

 
Steady Compressible Flow 
 

For steady flow, the term  
∂
∂ t

 =  0  and all properties are function of position only. 

 
The previous equations simplify to 
 

Cartesian: 
∂

∂ x
ρu( )+ ∂

∂ y
ρv( )+ ∂

∂ z
ρw( )= 0 

 

Cylindrical: 
1
r

∂
∂ r

r ρ vr( )+ 1
r

∂
∂θ

ρvθ( )+ ∂
∂ z

ρ vz( )= 0 

 
Incompressible Flow 
 

For incompressible flow, density changes are negligible, ρ = const., and   
∂ ρ
∂ t

  =  0  

 
In the two coordinate systems, we have 
 

Cartesian: 
∂ u
∂ x

+ ∂ v
∂ y

+ ∂ w
∂ z

= 0  
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Cylindrical: 
1
r

∂
∂ r

r vr( )+ 1
r

∂
∂θ

vθ( )+ ∂
∂ z

vz( )= 0  

 
Key Point: 
 
It is noted that the assumption of incompressible flow is not restricted to fluids 
which cannot be compressed, e.g. liquids.  Incompressible flow is valid for  
(1) when the fluid is essentially incompressible (liquids) and (2) for compressible 
fluids for which compressibility effects are not significant for the problem being 
considered. 
 
The second case is assumed to be met when the Mach number is less than 0.3: 
 
 Ma = V/c  < 0.3     Gas flows can be considered incompressible 
 
 
The Differential Equation of Linear Momentum 
 
If we apply Newton�s Second Law of Motion to a differential control volume we 
obtain the three components of the differential equation of linear momentum.  In 
cartesian coordinates, the equations are expressed in the form: 
 

 
 
 
Inviscid Flow:  Euler’s Equation 
 
If we assume the flow is frictionless, all of the shear stress terms drop out. The 
resulting equation is known as Euler�s equation and in vector form is given by: 
 

ρg - ∇ P = ρ dV
d t
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where  
d V
d t

  is the total or substantial derivative of the velocity discussed 

previously and  ∇ P   is the usual vector gradient of pressure.  This form of Euler�s 
equation can be integrated along a streamline to obtain the frictionless Bernoulli�s 
equation ( Sec. 4.9).   
 
 
The Differential Equation of Energy 
 
The differential equation of energy is obtained by applying the first law of 
thermodynamics to a differential control volume.  The most complex element of 
the development is the differential form of the control volume work due to both 
normal and tangential viscous forces.  When this is done, the resulting equation has 
the form 
 

ρ d u
d t

+ P ∇ ⋅ V( ) = ∇ ⋅ k ∇ T( ) + Φ 

 
where Φ  is the viscous dissipation function.  The term for the total derivative of 
internal energy includes both the transient and convective terms seen previously. 
 
Two common assumptions used to simplify the general equation are: 
 
 1.   du ≈ Cv dT     and  2.  Cv, µ, k, ρ  ≈ constants 
 
With these assumptions, the energy equation reduces to 
 

ρCv
d T
d t

= k ∇ 2 T + Φ 

 
It is noted that the flow-work term was eliminated as a result of the assumption of 
constant density, ρ, for which the continuity equation becomes  ∇ ⋅ V = 0   ,thus 
eliminating the term  P ∇ ⋅ V( ) . 
 
We now have the three basic differential equations necessary to obtain complete 
flow field solutions of fluid flow problems. 
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Boundary Conditions for the Basic Equations 
 
In vector form, the three basic governing equations are written as 
 

Continuity: 
∂ ρ
∂ t

+ ∇ ⋅ ρV( )= 0 

 

Momentum: ρ d V
d t

= ρ g − ∇ P + ∇ ⋅ τ i j  

 

Energy: ρ d u
d t

+ P ∇ ⋅ V( ) = ∇ ⋅ k ∇ T( ) + Φ 

 
We have three equations and five unknowns:  ρ, V, P, u, and T ;  and thus need two 
additional equations.  These would be the equations of state describing the 
variation of density and internal energy as functions of P and T, i.e., 
 
 ρ =   ρ (P,T)  and  u = u (P,T) 
 
Two common assumptions providing this information are either: 
 

1. Ideal gas: ρ =  P/RT   and    du =  Cv dT 
 
2. Incompressible fluid: ρ = constant   and  du  =  C dT 
 

Time and Spatial Boundary Conditions 
 
Time Boundary Conditions:  If the flow is unsteady, the variation of each of the 
variables (ρ, V, P, u, and T ) must be specified initially, t = 0, as functions of 
spatial coordinates e.g. x,y,z. 
 
Spatial Boundary Conditions:  The most common spatial boundary conditions are 
those specified at a fluid � surface boundary.  This typically takes the form of 
assuming equilibrium (e.g., no slip condition � no property jump) between the fluid 
and the surface at the boundary. 
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This takes the form: 
 
 Vfluid  =  Vwall Tfluid  =  Twall 
 
Note that for porous surfaces with mass injection, the wall velocity will be equal to 
the injection velocity at the surface. 
 
A second common spatial boundary condition is to specify the values of  V, P, and 
T at any flow inlet or exit. 
 
Example 4.6 
 
For steady incompressible laminar flow through a long tube, the velocity 
distribution is given by 
 

vz =U 1 − r 2

R2
 
  

 
  

vr = 0 vθ = 0 

 
where U is the maximum or centerline velocity and R is the tube radius.  If the wall 
temperature is constant at Tw and the temperature  T  =  T(r) only, find T(r) for this 
flow. 
 
For the given conditions, the energy equation reduces to 
 

ρCv vr
d T
dr

= k
r

d
d r

r d T
d r

 
  

 
  

+ µ d vz

d r
 
  

 
  

2

 

 
Substituting for vz and realizing the vr = 0, we obtain 
 

k
r

d
d r

r d T
d r

 
  

 
  

= − µ d vz

d r
 
  

 
  

2

= − 4U 2 µ r 2

R4  

 
Multiply by  r/k and integrate to obtain 
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d T
d r

= − µU 2r3

k R4 + C1  

 
Integrate a second time to obtain 
 

T = − µU 2r4

4 k R4 + C1 ln r + C2  

 
Since the term, ln r, approaches infinity as r approaches 0, C1 = 0. 
 
Applying the wall boundary condition, T = Tw  at r = R, we obtain for C2 
 

C2 = Tw + µ U 2

4 k
 

 
The final solution then becomes 
 

T r( ) = Tw + µ U 2

4k
1 − r4

R4
 
  

 
  

 

 
 
The Stream Function 
 
The necessity to obtain solutions for multiple variables in multiple governing 
equations presents an obvious mathematical challenge.  However, the stream 
function, Ψ , allows the continuity equation to be eliminated and the momentum 
equation solved directly for the single variable, Ψ .  The use of the stream function 
works for cases when the continuity equation can be reduced to only two terms.   
 
For example, for 2-D, incompressible flow, continuity becomes 
 

∂ u
∂ x

+ ∂ v
∂ y

= 0  
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Defining the velocity components to be 
 

u = ∂ Ψ
∂ y

and v = − ∂ Ψ
∂ x

 

 
which when substituted into the continuity equation yields 
 

∂
∂ x

∂ Ψ
∂ y

 
  

 
  

+ ∂
∂ y

− ∂ Ψ
∂ x

 
  

 
  

= 0  

 
and continuity is automatically satisfied. 
 
 
Geometric interpretation of ΨΨΨΨ    
 
It is easily shown that lines of constant   Ψ Ψ Ψ Ψ  are flow streamlines.  Since flow does 
not cross a streamline, for any two points in the flow we can write 
 

Q1→2 = V ⋅n( )
1

2

∫ d A = d Ψ
1

2

∫ = Ψ2 − Ψ1  
 
Thus the volume flow rate between two points in the flow is equal to the difference 
in the  stream function between the two points. 
 
 
Steady Plane Compressible Flow 
 
In like manner, for steady, 2-D, compressible flow, the continuity equation is 
 

∂
∂ x

ρ u( )+ ∂
∂ y

ρv( )= 0  

 
For this problem, the stream function can be defined such that 
 

ρu = ∂ Ψ
∂ y

and ρ v = − ∂ Ψ
∂ x
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As before, lines of constant stream function are streamlines for the flow, but the 
change in stream function is now related to the local mass flow rate by 
 

(((( ))))
2 2

1 2 2 1
1 1

m V n d A dρρρρ−−−− = ⋅ = Ψ = Ψ − Ψ= ⋅ = Ψ = Ψ − Ψ= ⋅ = Ψ = Ψ − Ψ= ⋅ = Ψ = Ψ − Ψ∫ ∫∫ ∫∫ ∫∫ ∫&  

 
 
Vorticity and Irrotationality 
 
The concept of vorticity and irrotationality are very useful in analyzing many fluid 
problems.  The analysis starts with the concept of angular velocity in a flow field. 
 
Consider three points, A, B, & 
C, initially perpendicular at 
time t, that then move and 
deform to have the position and 
orientation at t + dt.   
 
The lines AB and BC have both 
changed length and incurred 
angular rotation dα and dβ 
relative to their initial 
positions. 
 
 

 
Fig. 4.10 Angular velocity and strain rate of two 

fluid lines deforming in the x-y plane 
 
 
We define the angular velocity ωz about the z axis as the average rate of counter-
clockwise turning of the two lines expressed as 
 

ωz = 1
2

dα
d t

− d β
d t

 
  

 
  
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Applying the geometric properties of the deformation shown in Fig. 4.10 
and taking the limit as ∆t  → 0, we obtain  
 

ωz = 1
2

d v
d x

− d u
d y

 
  

 
  

 

 
In like manner, the angular velocities about the remaining two axes are 
 

 ωx = 1
2

d w
d y

− d v
d z

 
  

 
  

 ωy = 1
2

d u
d z

− d w
d x

 
  

 
  

 

 
From vector calculus, the angular velocity can be expressed as a vector with 
the form 
 
 ωωωω  =  i ω x  +  j ω y  +  k ωz  = 1/2 the curl of the velocity vector, e.g. 
 

ω = 1
2

curl V( )= 1
2

i j k
∂

∂ x
∂

∂ y
∂

∂ z
u v w

 

 
The factor of  2  is eliminated by defining the vorticity, ξ  ,  as follows: 
 

ξξξξ = 2 ωωωω  = curl V 
 
 

Frictionless Irrotational Flows 
 
When a flow is both frictionless and irrotational, the momentum equation reduces 
to Euler�s equation given previously by 
 

ρg - ∇ P = ρ dV
d t
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As shown in the text, this can be integrated along the path, ds, of a streamline 
through the flow to obtain 
 

∂ V
∂ t1

2

∫ ds + d P
ρ1

2

∫ + 1
2

V2
2 − V1

2( )+ g z2 − z1( )= 0 

 
For steady, incompressible flow this reduces to 
 

P
ρ

+ 1
2

V 2 + gz = constant along a streamline 
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V.  Modeling,  Similarity,  and  Dimensional  Analysis 
 
 
To this point, we have concentrated on analytical methods of solution for fluids 
problems. 
 
 
However, analytical methods are not always satisfactory due to: 

(1) limitations due to simplifications required in the analysis, 
(2) complexity and/or expense of a detailed analysis. 

 
The most common alternative is to: 
 Use experimental test & verification procedures. 
 
However, without planning and organization, experimental procedures can : 
 

(a) be time consuming, 
(b) lack direction, 
(c) be expensive. 

 
This is particularly true when the test program necessitates testing at one set of 
conditions, geometry, and fluid with the objective to represent a different but 
similar set of conditions, geometry, and fluid. 
 
 
Dimensional analysis provides a procedure that will typically reduce both the time 
and expense of experimental work necessary to experimentally represent a desired 
set of conditions and geometry. 
 
 
It also provides a means of "normalizing"  the final results for a range of test 
conditions.   A normalized (non-dimensional) set of results for one test condition 
can be used to predict the performance at different but fluid dynamically similar 
conditions ( including even a different fluid). 
 
 
The basic procedure for dimensional analysis can be summarized as follows: 
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1. Compile a list of relevant variables (dependent & independent) for the 
problem being considered, 

2. Use an appropriate procedure to identify both the number and form of 
the resulting non-dimensional parameters. 

 
This procedure is outlined as follows for the Buckingham Pi Theorem 
 
Definitions: 

n  =  the number of independent variables relevant to the problem 
j’  =  the number of independent dimensions found in the n variables 
j   =  the reduction possible in the number of variables necessary to be 

considered simultaneously 
k  =  the number of independent pi terms that can be identified to describe the 

problem,  k  =  n - j 
 
Summary of Steps: 
 

1. List and count the n variables involved in the problem. 

2. List the dimensions of each variable using {MLTΘ} or {FLTΘ}.  Count the 
number of basic dimensions ( j’) for the list of variables being considered. 

3. Find j by initially assuming  j  =  j’ and look for j repeating variables which do 
not form a pi product.  If not successful, reduce j by 1 and repeat the process. 

4. Select j scaling, repeating variables which do not form a pi product. 
5. Form a pi term by adding one additional variable and form a power product.  

Algebraically find the values of the exponents which make the product 
dimensionless.  Repeat the process with each of the remaining variables. 

6. Write the combination of dimensionless pi terms in functional form: 
 

 Πk  =  f( Π1, Π2, …Π i) 

Consider the following example for viscous pipe flow.  The relevant variables for 
this problem are summarized as follows: 

 
∆P = pressure drop ρ = density V =  velocity D = diameter 
µ = viscosity ε = roughness L = length 

Seven  pipe flow variables: {∆P ρ,  V,  D,  µ,  ε,  L } 
 

  dependent independent 
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Use of the Buckingham Pi Theorem proceeds as follows: 
 
1. Number of independent variables:   n  = 7 
 
2. List the dimensions of each variable  ( use  m L t Θ ): 
 
variables ∆P ρ V D µ ε L 

dimensions mL-1t-2 mL-3 Lt-1 L mL-1t-1 L L 
 
 
The number of basic dimensions is  j’ = 3. 
 
3. Choose   j =  3 with the repeating variables being   ρ,  V,  and  D.  They do 

not form a dimensionless pi term.  No combination of the 3 variables will 
eliminate the mass dimension in density or the time dimension in velocity.    

 
4. This step described in the above step.  The repeating variables again are ρ,  

V,  and  D and j = 3.  Therefore,  k =  n – j = 7 – 3  =  4 independent Π 
terms. 

 
5. Form the  Π  terms: 
 
 Π1  =  ρa Vb Dc µ−1 =  (mL-3)a ( Lt-1)b Lc ( mL-1t-1 )−1 
 

In order for the  Π  term to have no net dimensions, the sum of the 
exponents for each dimension must be zero.  Therefore, we have: 

 
mass: a  -  1  = 0 ,   a =  1 
time: - b  +  1  =  0,    b  = 1 
length: -3a  + b  +  c + 1  =  0,  c =  3 – 1 – 1  =  1 
 

We therefore have 
 
 Π1  =  ρ V D /µ  =   Re =  Reynolds number 
 

Repeating the process by adding the roughness  ε 
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Π2 =  ρa Vb Dc ε1 =  (mL-3)a ( Lt-1)b Lc ( L )1 
 
Solving: 
 

mass: a    = 0 ,   a =  0 
time: - b  =  0,    b  = 0 
Length: -3a  + b  +  c + 1  =  0,  c =  – 1 

 
Π2 =  ε / D Roughness ratio 
 

Repeat the process by adding the length  L. 
 

Π3 =  ρa Vb Dc L1 =  (mL-3)a ( Lt-1)b Lc ( L )1 
 
Solving: 
 

mass: a    = 0 ,   a =  0 
time: - b  =  0,    b  = 0 
length: -3a  + b  +  c + 1  =  0,  c =  – 1 

 
Π3 =  L / D length-to-diameter ratio 
 
These three are the independent  Π  terms. 
 
Now obtain the dependent  Π  term by adding  ∆P 
 
Π4 =  ρa Vb Dc ∆P1 =  (mL-3)a ( Lt-1)b Lc ( mL-1t-2 )1 
 
Solving: 
 

mass: a  +  1  = 0 ,   a =  -1 
time: - b  - 2 =  0,    b  = -2 
length: -3a  + b  +  c - 1  =  0,  c =  0 

 
Π4 =  ∆P / ρ V2 Pressure coefficient 
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Application of the Buckingham Pi Theorem to the previous list of variables 
yields the following non-dimensional combinations: 

 
∆P

ρV2 = f ρVD
µ

, L
D

, ε
D

 
 
 

 
 
 

 

  or 
 

{{{{ }}}}pC f Re,L,εεεε====  

 
 

Thus, a non-dimensional pressure loss coefficient for viscous pipe flow 
would be expected to be a function of (1) the Reynolds number, (2) a non-
dimensional pipe length, and (3) a non-dimensional pipe roughness.  This 
will be shown to be exactly the case in Ch. VI, Viscous Internal Flow. 
 
A list of typical dimensionless groups important in fluid mechanics is given in 
the accompanying table. 
 

    From these results, we would now use a planned experiment with data analysis 
techniques to get the exact form of the relationship among these non - 
dimensional parameters. 

 
The next major step is concerned with the design and organization of the 
experimental test program 
 
Two key elements in the test program are: 

* design of the model 
* specification of the test conditions, particularly when the test must be 

performed at conditions similar, but not the same as the conditions of 
interest. 

 
Similarity and non-dimensional scaling 
 
The basic requirement is in this process to achieve 'similarity' between the 
'experimental model and its test conditions' and the 'prototype and its test 
conditions' in the experiment.   
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Table 5.2  Dimensional Analysis and Similarity 
 

Parameter Definition Qualitative ratio 
of effects 

Importance 

Reynolds number RE =
ρUL

µ  

Inertia
Viscosity

 Always 

Mach number MA =
U
A

 
Flow speed
Sound speed

 Compressible flow 

Froude number Fr =
U2

gL
 

Inertia
Gravity

 Free-surface flow 

Weber number We =
ρ U2L

γ
 

Inertia
Surfacetension

 Free-surface flow 

Cavitation number 
(Euler number) 

Ca =
p - pv

ρU 2  
Pressure
Inertia

 Cavitation 

Prandtl number Pr =
Cpµ

k
 

Dissipation
Conduction

 Heat convection 

Eckert number Ec =
U 2

cpTo

 
Kinetic energy

Enthalpy
 Dissipation 

Specific-heat ratio γ =
cp

cv

 
Enthalpy

Internal energy
 Compressible flow 

Strouhal number St =
ω L

U
 

Oscillation
Mean speed

 Oscillating flow 

Roughness ratio 
ε
L

 
Wall roughness

Body length
 Turbulent,rough 

walls 

Grashof number Gr =
β ∆TgL3ρ2

µ 2  
Buoyancy
Viscosity

 Natural convection 

Temperature ratio 
Tw

To

 
Wall temperature

Stream temperature
 Heat transfer 

Pressure coefficient Cp =
p − p∞

1/ 2ρU2  
Static pressure

Dynamic pressure
 Aerodynamics, 

hydrodynamics 

Lift coefficient CL =
L

1/ 2ρU2A
 

Lift force
Dynamic force

 Aerodynamics 
hydrodynamics 

Drag coefficient CD =
D

1/ 2ρ U2A
 

Lift force
Dynamic force

 Aerodynamics, 
hydrodynamics 
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In this context, “similarity” is defined as 
 

Similarity: All relevant dimensionless parameters have the same values 
for the model & the prototype. 

 
Similarity generally includes three basic classifications in fluid mechanics: 
 

(1)  Geometric similarity 
(2)  Kinematic similarity 
(3)  Dynamic similarity 

 
 
 

Geometric similarity 
 
 
In fluid mechanics, geometric similarity is defined as follows: 
 
 

Geometric Similarity All linear dimensions of the model are related 
to the corresponding dimensions of the 
prototype by a constant scale factor   SFG 

 
Consider the following airfoil section (Fig. 5.4): 
 

 

Fig. 5.4  Geometric Similarity in Model Testing 
 

For this case, geometric similarity requires the following: 
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SFG = rm

rp
= Lm

Lp
= Wm

Wp
= ⋅ ⋅ ⋅ 

In addition, in geometric similarity,  
 

All angles are preserved. 
All flow directions are preserved. 
Orientation with respect to the surroundings must be same for the model 
and the prototype, ie., 

 

Angle of attack )m = angle of attack )p 
 
Kinematic Similarity 
 
In fluid mechanics, kinematic similarity is defined as follows: 
 

Kinematic Similarity The velocities at 'corresponding' points on the 
model & prototype are in the same direction 
and differ by a constant scale factor   SFk. 

 
Therefore, the flows must have similar streamline pattterns 
 
Flow regimes must be the same. 
 
These conditions are demonstrated for two flow conditions, as shown in the 
following kinematically similar flows (Fig. 5.6). 
 

 
Fig. 5.6a  Kinematically Similar Low Speed Flows 
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Fig. 5.6b Kinematically Similar Free Surface Flows 

 
The conditions of kinematic similarity are generally met automatically when 
geometric and dynamic similarity conditions are satisfied. 
 
 
Dynamic Similarity 
 
In fluid mechanics, dynamic similarity is typically defined as follows: 
 

Dynamic Similarity This is basically met if model and prototype 
forces differ by a constant scale factor at 
similar points. 

 
This is illustrated in the following figure for flow through a sluice gate (Fig. 5.7). 
 

 
Fig. 5.7  Dynamic Similarity for Flow through a Sluice Gate 
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This is generally met for the following conditions: 
 
1.  Compressible flows: model & prototype   Re, Ma,   are equal 
 

Rem  =  Rep,    Mam=  Map  ,    γm  =  γp 
 
 
2. Incompressible flows 
 
 a.  No free surface 
 
  Rem  =  Rep 
 
 b.  Flow with a free surface 
 
  Rem  =  Rep      ,  Frm  =  Frp 
 
 
Note:  The parameters being considered, e.g., velocity, density, viscosity, 

diameter, length, etc.,  generally relate to the flow, geometry, and fluid 
characteristics of the problem and are considered to be independent 
variables for the subject problem. 

 
 

The result of achieving similarity by the above means is that relevant non - 
dimensional dependent variables, e.g., CD, Cp, Cf, or Nu, etc., are then equal for 
both the model and prototype.   
 
This result would then indicate how the relevant dependent results, e.g. drag force, 
pressure forces, viscous forces, are to be scaled for the model to the prototype.   
 
Equality of the relevant non-dimensional independent variables  Re, Ma, x/L, etc.,  
indicates how the various independent variables of importance should be scaled. 
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An example of this scaling is shown as follows: 
 
 
Example:  The drag on a sonar transducer prototype is to be predicted based on the 
following wind tunnel model data and prototype data requirements.   Determine 
the model test velocity  Vm   necessary to achieve similarity and the expected 
prototype force  Fp   based on the model wind tunnel test results. 
 

Given: Prototype Model 
 sphere sphere 

D 1 ft 6 in 
V 5 knots unknown? 
F ? 5.58 lbf 

ρ 1.98    
slugs

ft
3  0.00238   

slugs
ft

3  

ν 1.4 *10-5  ft
2

s  1.56 * 10-4 ft2

s  

   
 
 
 
From dimensional analysis: 
 

  
CD = f R e{ }

F
D2

ρ V2 = f
VD
υ

  
 

  
 

 

 
 
 
For the prototype, the actual operating velocity and Reynolds number are: 
 
 
Prototype:    

15 6080 8.44
3600p

na mi ft hr ftV
hr na mi s s
⋅⋅⋅⋅= == == == =

⋅⋅⋅⋅
15 6080 8.44

3600p
na mi ft hr ftV

hr na mi s s
⋅⋅⋅⋅= == == == =

⋅⋅⋅⋅  
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R e p
=

VD

υ
 
 p

=
8.44 ft

s * 1ft

1.4 *10 −5 ft 2

s
= 6.03 * 105 

 
Equality of Reynolds number then yields the required model test velocity of 

 

  
R e m

= R e p
=

VD

υ
 
 m

= > Vm = 188 ft
s  

 
Based on actual test results for the model, i.e. measured Fm, equality of model and 
prototype drag coefficients yields 
 

∴ CD p
= C Dm

= > Fp = Fm

ρp

ρm

Vp
2

Vm
2

D p
2

D m
2 = 37.4 lbf  

 
Note:  All fluid dynamic flows and resulting flow characteristics are not Re 

dependent. 
 
Example: 

 
The drag coefficient for bluff bodies with a fixed point of separation; e.g., 
radar antennae,  generally have a constant, fixed number for CD which is not 
a function of Re. 

 
 

 CD = const. ≠ f Re( ) 
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VI. VISCOUS INTERNAL FLOW 
 

To date, we have considered only problems where the viscous effects were either: 
 a.  known: i.e. - known  FD   or hf   
 b.  negligible: i.e. - inviscid flow 
 
This chapter presents methodologies for predicting viscous effects and viscous 
flow losses for internal flows in pipes, ducts, and conduits. 
 
Typically, the first step in determining viscous effects is to determine the flow 
regime at the specified condition. 
 
The two possibilities are: 
 a.  Laminar flow 
 b.  Turbulent flow 
 
The student should read Section 6.1 in the text, which presents an excellent 
discussion of the characteristics of laminar and turbulent flow regions. 
 
For steady flow at a known flow rate, these regions exhibit the following: 

Laminar flow: A local velocity constant with time, but which varies 
spatially due to viscous shear and geometry. 

Turbulent flow:  A local velocity which has a constant mean value but 
also has a statistically random fluctuating component due 
to turbulence in the flow. 

Typical plots of velocity time histories for laminar flow, turbulent flow, and 
the region of transition between the two are shown below.  

 

 
Fig. 6.1 (a) Laminar, (b)transition, and (c) turbulent flow velocity time histories. 
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Principal parameter used to specify the type of flow regime is the 
 

Reynolds number  - Re = ρV D
µ

= V D
ν

 

 
V - characteristic flow velocity 
D  - characteristic flow dimension 
 µ -  dynamic viscosity 

  υ   - kinematic viscosity =   
µ
ρ  

 
We can now define the 
 
 Recr  ≡  critical or transition Reynolds number 
 

Recr  ≡  Reynolds number below which the flow is laminar,  
 above which the flow is turbulent 
 
While transition can occur over a range of Re, we will use the following for 
internal pipe or duct flow: 
 

Recr ≅ 2300 =
ρVD

µ
 
 
 

cr

=
VD
υ
 
 cr  

 
Internal Viscous Flow 
 
A second classification concerns whether the flow has significant entrance region 
effects or is fully developed.  The following figure indicates the characteristics of 
the entrance region for internal flows.  Note that the slope of the streamwise 
pressure distribution is greater in the entrance region than in the fully developed 
region. 
 
Typical criteria for the length of the entrance region are given as follows: 
 

 Laminar: 
Le

D
≅ 0.06 Re  
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 Turbulent Le
D ≅ 4.4Re1/ 6  

 
 where: Le = length of the entrance region 

 

 
 
Note: Take care in neglecting entrance region effects. 

In the entrance region, frictional pressure drop/length > the pressure 
drop/length for the fully developed region.  Therefore, if the effects of the 
entrance region are neglected, the overall predicted pressure drop will be 
low.  This can be significant in a system with short tube lengths, e.g., some 
heat exchangers. 

 
 
Fully Developed Pipe Flow 
 
The analysis for steady, incompressible, fully developed, laminar flow in a 
circular horizontal pipe yields the following equations: 
 
 

U r( ) = −
R2

4µ
dP
dx

1 −
r2

R2
 
 
 

 
 
 
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U

Umax
= 1 −

r2

R2
 
 
 

 
 
 

, Umax = 2Vavg  

 
and 
 
  Q = A Vavg = ππππ R2 Vavg 
 
Key  Points:  Thus for laminar, fully developed pipe flow (not turbulent): 

a. The velocity profile is parabolic. 
b. The maximum local velocity is at the centerline (r = 0). 
c. The average velocity is one-half the centerline velocity. 
d. The local velocity at any radius varies only with radius, not on the 

streamwise (x) location ( due to the flow being fully developed). 
 
Note:  All subsequent equations will use the symbol   V (no subscript) to represent 
the average flow velocity in the flow cross section. 
 
Darcy Friction Factor: 
 
We can now define the Darcy friction factor  f  as: 

f ≡

D
L

 
 

 
 ∆P f

ρ V
2

2  

where  ∆Pf = the pressure drop due to friction 
only. 
The general energy equation must still be used 
to determine total pressure drop. 

Therefore, we obtain 

 
∆P f = ρ ghf = f

L
D

ρ V
2

2

 
and the friction head loss  hf  is given as 

 
h f = f

L
D

V
2g

2 

 
Note:  The definitions for f and hf are valid for either laminar or turbulent flow.  
However, you must evaluate  f  for the correct flow regime, laminar or turbulent. 
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Key Point: It is common in industry to define and use a “fanning” friction 
factor  ff .   The fanning friction factor differs from the Darcy friction factor 
by a factor of   4.  Thus, care should be taken when using unfamiliar 
equations or data since use of ff  in equations developed for the Darcy friction 
factor will result in significant errors (a factor of 4).  Your employer will not 
be happy if you order a 10 hp motor for a 2.5 hp application.  The equation 
suitable for use with  ff I s 
 

h f = 4 f f
L
D

V
2g

2
 

Laminar flow: 
 
Application of the results for the laminar flow velocity profile to the definition of 
the Darcy friction factor yields the following expression: 
 

 f =
64
Re

 laminar flow only (Re < 2300)
 

 

Thus with the value of the Reynolds number, the friction factor for laminar flow is 
easily determined. 

Turbulent flow: 

A similar analysis is not readily available for turbulent flow.  However, the 
Colebrook equation, shown below, provides an excellent representation for the 
variation of the Darcy friction factor in the turbulent flow regime.  Note that the 
equation depends on both the pipe Reynolds number and the roughness ratio, is 
transcendental, and cannot be expressed explicitly for  f . 
 
 

 f = −2log
2.51

Re f 1/ 2 +
ε / D
3.7

 

 
 

 

 
  turbulent flow only (Re > 2300) 
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where ε = nominal roughness of pipe or duct being used.  (Table 6.1, text) 

(Note:  Take care with units for ε;        ε /D must be non-dimensional). 
 
A good approximate equation for the turbulent region of the Moody chart is given 
by Haaland’s equation: 
 

f = −1.8log 6.9
Re

+ ε / D
3.7

 
 

 
 

1.11 

 
 

 

 
 

 
 
 

 
 
 

−2

 

 
Note again the roughness ratio  ε/D  must be non-dimensional in both equations. 
Graphically, the results for both laminar and turbulent flow pipe friction are 
represented by the Moody chart as shown below. 

 

 
 
 
Typical roughness values are shown in the following table: 
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Table 6.1  Average roughness values of commercial pipe 

 
 
Haaland’s equation is valid for turbulent flow (Re > 2300) and is easily set up on a 
computer, spreadsheet, etc. 
 
Key fluid system design considerations for laminar and turbulent flow 
 
a. Most internal flow problems of engineering significance are turbulent, not 

laminar.  Typically, a very low flow rate is required for internal pipe flow to be 
laminar.  If you open your kitchen faucet and the outlet flow stream is larger 
than a kitchen match, the flow is probably turbulent.  Thus, check your work 
carefully if your analysis indicates laminar flow. 

 
b. The following can be easily shown: 
 
 Laminar flow:   ∆Pf ~ µ, L,Q, D−4{ } 

   {{{{ }}}}2 4~ , , ,fW L Q Dµµµµ −−−−&  

 
 Turbulent flow: ∆Pf ~ ρ 3/ 4 , µ 1/ 4 , L, Q1.75, D−4.75{ }  

   {{{{ }}}}3 / 4 1/ 4 2.75 4.75~ , , , ,fW L Q Dρ µρ µρ µρ µ −−−−&  

Thus both pressure drop and pump power are very dependent on flow rate 
and pipe/conduit diameter.  Small changes in diameter and/or flow rate can 
significantly change circuit pressure drop and power requirements. 
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Example ( Laminar flow): 
Water, 20oC flows through a 0.6 cm 
tube, 30 m long, at a flow rate of 0.34 
liters/min.  If the pipe discharges to the 
atmosphere, determine the supply 
pressure if the tube is inclined 10o 
above the horizontal in the flow 
direction. 

10o

1

2

L = 30 m D = 0.6 cm

L

 

 

Water Properties: Energy Equation 

ρ = 998 kg/m3     ρg = 9790 N/m3 

 
ν = 1.005 E-6 m2/s 

P1 − P2
ρg

=
V2

2 − V1
2

2 g
+Z2 −Z1 + hf − hp  

 

which for steady-flow in a 
constant diameter pipe with P2 = 0 
gage becomes, 

P1

ρ g
= Z2 −Z1 + hf =  L sin 10o + hf 

 

V = Q
A

= 0.34E−3 m 3 / min*1min/ 60 s
π 0.3 /100( )2 m2 = 0.2 m / s  

 

Re = V D
υ

= 0.2*0.006
1.005 E−6 =1197 → laminar flow 

 

f = 64
Re

= 64
1197

= 0.0535 

 

hf = f L
D

V 2

2g
= 0.0535* 30m

0.006m
0.22

2*9.807m / s2
= 0.545 m  

 
P1

ρg
= 30 *sin10Þ+ 0.545 = 5.21 + 0.545 = 5.75m  

 gravity friction total head 
 head head loss 

P1 = 9790 N/m3*5.75 m  =  56.34 kN/m3 (kPa)  ~ 8.2 psig   ans. 
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Example:  (turbulent flow) 

Oil, ρ = 900 kg/m3, ν = 1 E-5 m2/s, 
flows at 0.2 m3/s through a 500 m length 
of 200 mm diameter, cast iron pipe. If 
the pipe slopes downward 10o in the 
flow direction, compute  hf, total head 
loss, pressure drop, and power required 
to overcome these losses. 

L
10o

L = 500 m
D = 200 mm

1

2

 

The energy equation can 
be written as follows 
where  ht = total head 
loss. 

P1 − P2
ρg

= ht =
V2

2 − V1
2

2g
+Z2 −Z1 + hf − hp

 
 

which reduces to ht = Z2 −Z1 + hf  
 

V = Q
A

= 0.2 m 3 / s
π .1( )2 m 2 = 6.4 m / s  Table 6.1, cast iron, ε = 0.26 mm 

Re = V D
υ

= 6.4*.2
1E−5 = 128, 000 → turbulent flow, 

ε
D

= 0.26
200

= 0.0013 

 
Since flow is turbulent, use Haaland’s equation to determine friction factor (check your 
work using the Moody chart). 

f = −1.8log 6.9
Re

+ ε / D
3.7

 
 

 
 

1.11 
 
 

 
 
 

 
 
 

 
 
 

−2

, f = −1.8log 6.9
128, 000

+ 0.0013
3.7

 
 

 
 

1.11 

 
 

 

 
 

 
 
 

 
 
 

−2

 

 

f = 0.02257  hf = f L
D

V 2

2g
= 0.02257* 500m

0.2m
6.42

2 *9.807m / s 2
=116.6 m     ans. 

 ht = Z2 – Z1 + hf = - 500 sin 0  + 116.6 = - 86.8 + 116.6 = 29.8 m    ans. 
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Note that for this problem, there is a negative gravity head loss (i.e. a head increase) and 
a positive frictional head loss resulting in the net head loss of  29.8 m.   
 

∆P = ρ ght = 900kg / m3 *9.807m / s2 *29.8m = 263kPa     ans. 
 

3 20.2 / * 273,600 / 54.7tW Q g h Q P m s N m kwρρρρ= = ∆ = == = ∆ = == = ∆ = == = ∆ = =&    ans. 
 

Note that this is not necessarily the power required to drive a pump, as the pump 
efficiency will typically be less than 100%. 

These problems are easily set up for solution in a spreadsheet as shown below.  Make 
sure that the calculation for friction factor includes a test for laminar or turbulent flow 
with the result proceeding to the correct equation.   

Always verify any computer solution with problems having a known solution. 

FRICTIONAL HEAD LOSS CALCULATION

All Data are entered in S.I. Units e.g. (m, sec., kg), except as  noted,   ε

Ex. 6.7
Input Data Calculated Results

L = 500 (m ) V = 6.37 (m/sec)
D = 0.2 (m) Re = 127324
ε = 0.26 (mm) e/D = 0.0013
ρ = 900 (kg/m^3) f= 0.02258
ν = 1.00E-05 (m^2/sec) hf = 116.62

Q = 0.2 (m^3/sec) sum Ki = 0.00
D1 = 0.08 (m) hm = 0.00 (m)
D2 = 0.08 (m)

d KE = 0.00 (m) ht = 29.62 (m)
d Z = -87 (m) (m)

P1-P2 = 261.43 (kPa)  
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Solution Summary: 
To solve basic pipe flow frictional head loss problem, use the following 
procedure: 
 

 1. Use known flow rate to determine Reynolds number. 
 2. Identify whether flow is laminar or turbulent. 

 3. Use appropriate expression to determine friction factor (w ε/D if necessary). 
 4. Use definition of hf to determine friction head loss. 
 5. Use general energy equation to determine total pressure drop. 

  

Unknown Flow Rate and Diameter Problems 
Problems involving unknown flow rate and diameter in general require iterative/ 
trial & error solutions due to the complex dependence of Re, friction factor, and 
head loss on velocity and pipe size. 
Unknown Flow Rate: 
For the special case of known friction loss  hf  a closed form solution can be 
obtained for the problem of unknown Q. 
 
The solution proceeds as follows: 
 

Given:  Known values for  D, L, hf, ρ, and µ     calculate V or Q. 
Define solution parameter:   

ς = 1
2 f ReD

2 =
gD3 hf

Lυ 2  

 

Note that this solution does not contain velocity and the parameter  ζ  can be 
calculated from known values for D, L, hf, ρ, and µ.   The Reynolds number and 
subsequently the velocity can be determined from ζ and the following equations: 
 

Turbulent:   ReD = − 8ς( )1/ 2 log ε / D
3.7

+ 1.775
ζ

 
 
 

 
 
 
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Laminar: ReD =
ς
32

 
 

and laminar to turbulent transition can be assumed to occur approximately at 
ζ = 73,600  (check Re at end of calculation to confirm). 
 
Note that this procedure is not valid (except perhaps for initial estimates) for 
problems involving significant minor losses where the head loss due only to pipe 
friction is not known.   
For these problems a trial and error solution using a computer is best. 
 
Example 6.9 

Oil, with ρ = 950 kg/m3 and ν = 2 E-5 m2/s, flows through 100 m of a 30 cm 
diameter pipe.  The pipe is known to have a head loss of 8 m and a roughness ratio  
ε/D = 0.0002.  Determine the flow rate and oil velocity possible for these 
conditions. 
 

Without any information to the contrary, we will neglect minor losses and KE 
head changes.  With these assumptions, we can write: 
 

ς =
g D3 hf

L υ 2 = 9.807 m / s2 *0.303 m3 *8.0 m

100 m* 2 E−5m2 / s( )2 = 5.3E7>   73,600;  turbulent 

 

ReD = − 8*5.3E7( )1/ 2 log 0.0002
3.7

+ 1.775
5.3E7

 
 
 

 
 
 

= 72,600   checks, turbulent 

 

ReD = V D
υ

, V = 72,600*2 E −5 m2 / s
0.3m

= 4.84 m
s

   ans. 

 

Q = A V = π.152 m2 4.84 m/s = 0.342m3/s   ans. 
 

This is the maximum flow rate and oil velocity that could be obtained through the 
given pipe and given conditions (hf = 8 m). 
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Note that this problem could have also been solved using a computer based trial 
and error procedure in which a value is assumed for the fluid flow rate until a flow 
rate is found which results in the specified head loss.  Note also that with this 
procedure, the problem being solved can include the effects of minor losses, KE, 
and PE changes with no additional difficulty. 
 
Unknown Pipe Diameter: 
 

A similar difficulty arises for problems involving unknown pipe difficulty, except 
a closed form, analytical solution is not available.  Again, a trial and error solution 
is appropriate for use to obtain the solution and the problem can again include 
losses due to KE, PE, and piping components with no additional difficulty. 

 
Non-Circular Ducts: 

 
For flow in non-circular ducts or ducts for which the flow does not fill the entire 
cross-section, we can define the hydraulic diameter   Dh   as  

Dh =
4 A
P

 

where 
A = cross-sectional area of actual flow, 
P = wetted perimeter, i.e. the perimeter 
on which viscous shear acts 

A

P

Cross sectional area -

Perimeter -  
 
With this definition, all previous equations for the Reynolds number  Re  friction 
factor  f  and head loss  hf   are valid as previously defined and can be used on 
both circular and non-circular flow cross sections. 
 
Minor Losses 
 

In addition to frictional losses for a length  L  of pipe, we must also consider 
losses due to various fittings (valves, unions, elbows, tees, etc.).  These losses are 
expressed as 
 

 hm = Ki
V 2

2g
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where 
 
 hm = the equivalent head loss across the fitting or flow component. 
 
 V = average flow velocity for the pipe size of the fitting 
 

Ki = the minor loss coefficient for given flow component; valve, union, etc. 
See Sec. 6.7, Table 6.5, 6.6, Fig. 6.19, 6.20, 6.21, 6.22, etc. 
 

 
Table 6.5 shows minor loss K values for several common types of valves, fully 
open, and for elbows and tees.   

 
 

Table 6.5  Minor loss coefficient for common valves and piping components 

 
 
 
Figure 6.18 shows minor loss K values for several types of common valves.  
 
Note that the K valves shown here are for the indicated fractional opening. Also, 
fully open values may not be consistent with values indicated in Table 6.5 for fully 
open valves or for the valve of a particular manufacturer.  In general, use specific 
manufacturer’s data when available. 
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Fig. 6.18  Average loss coefficients for partially open valves 
 
 
 

Note that exit losses are K 
≅  1  for all submerged 
exits, e.g., fluid discharged 
into a tank at a level below 
the fluid surface.   
 
Also, for an open pipe 
discharge to the 
atmosphere, there is no loss 
coefficient when the energy 
equation is written only to 
the end of the pipe. 
 
In general, do not take 
point 1 for an analysis to be 
in the plane of an inlet 
having an inlet loss.  You 
do not know what fraction 
of the inlet loss to consider. 

 
Fig. 6.21  Entrance and exit loss coefficients 
(a) reentrant inlets; (b) rounded and beveled inlets 
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Fig. 6.22  Sudden contraction and expansion 
losses. 

Note that the losses shown in Fig. 
6.22 do not represent losses 
associated with pipe unions or 
reducers.  These must be found in 
other sources in the literature.  
 
Also note that the loss coefficient 
is always based on the velocity in 
the smaller diameter (d) of the 
pipe, irrespective of the direction 
of flow.    
 
Assume that this is also true for 
reducers and similar area change 
fittings. 

 
These and other sources of data now provide the ability to determine frictional 
losses for both the pipe and other piping/duct flow components. 
 
 
The total frictional loss now becomes 
 

hf = f
L
D

V
2g

2
+∑Ki

V 2

2g
 

 
or  
 

hf = f
L
D

+ ∑Ki
  
 

  
 

V
2g

2
 

 
These equations would be appropriate for a single pipe size (with average velocity 
V).   For multiple pipe/duct sizes, this term must be repeated for each pipe size.   

Key Point:  The energy equation must still be used to determine the total head 
loss and pressure drop from all possible contributions. 
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Example  6.16 
 

 
 
Water, ρ = 1.94 slugs/ft3 and  ν = 1.1 E-5 ft2/s, is pumped between two reservoirs 
at 0.2 ft3/s through 400 ft of 2–in diameter pipe with ε/D = 0.001 having the 
indicated minor losses.  Compute the pump horsepower (motor size) required. 
 
Writing the energy equation between points 1 and 2 (the free surfaces of the two 
reservoirs), we obtain 
 
 

P1 − P2

ρ g
=

V2
2 − V1

2

2g
+ Z2 − Z1 + hf − hp  

 
For this problem, the pressure (P1 = P2) and velocity (V1 = V2 = 0) head terms are 
zero and the equation reduces to 
 

hp = Z2 − Z1 + hf = Z2 − Z1 + f
L
D

+∑Ki
  
 

  
 

V
2g

2
 

 
For a flow rate Q = 0.2 ft3/s we obtain 
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V =
Q
A

=
0.2 ft3 / s

π 1/12( )2 ft2 = 9.17 ft / s  

 

With  ε/D = 0.001  and  Re =
V D
ν

=
9.17 ft / s 2/12( ) ft

1.1E−5 ft2 / s
=139,000  

 
the flow is turbulent and Haaland’s equation can be used to determine the friction 
factor: 
 

f = −1.8log 6.9
139, 000

+ .001
3.7

 
 

 
 
1.11 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

−2
= 0.0214 

 
 

the minor losses for the problem are summarized in the following table: 
 
Note:  The loss for a 
pipe bend is not the 
same as for an elbow 
fitting. 
If there were no tank at 
the pipe discharge and 
point 2 were at the pipe 
exit, there would be no 
exit loss coefficient.  
However, there would 
be an exit K.E. term. 

Loss element Ki
Sharp entrance (Fig. 6.21) 0.5
Open globe valve (Table 6.5) 6.9
12 " bend, R/D = 12/6 = 2 (Fig. 6.19) 0.15
Threaded, 90Þ, reg. elbow, (Table 6.5) 0.95
Gate valve, 1/2 closed (Fig. 6.18) 2.7
Submerged exit (Fig. 6.20) 1

� Ki = 12.2
 

 
 
 

Substituting in the energy equation we obtain 
 

h p = 120 −20( ) + 0.0214 400
2/12

9.172

64.4
 
 
 

 
 
 

+ 12.2 9.172

64.4
 
 
 

 
 
 

 

 
h p =100 + 67.1+ 15.9 = 183ft  
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Note the distribution of the total loss between static, pipe friction, and minor 
losses. 
 
The power required to be delivered to the fluid is give by 
 

Pf = ρ Qghp =1.94 slug
ft3 32.2 ft

s2 0.2 ft3

s
183 ft = 2286 ft lbf  

 

Pf = 2286ftlbf
550ftlbf / s /hp

=4.2hp 

 
If the pump has an efficiency of 70 %, the power requirements would be specified 
by 
 

4.2 6
0.70p

hp hpw = == == == =&  

 
Solution Summary: 
To solve basic pipe flow pressure drop problem, use the following procedure: 

 1. Use known flow rate to determine Reynolds number. 
 2. Identify whether flow is laminar or turbulent. 

 3. Use appropriate expression to find friction factor (with ε/D if necessary). 

 4. Use definition of hf to determine friction head loss. 
 5. Tabulate and sum minor loss coefficients for piping components. 
 6a. Use general energy equation to determine total pressure drop, or 
 6b. Determine pump head requirements as appropriate. 
 7. Determine pump power and motor size if required. 
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Multiple-Pipe Systems 
 
Basic concepts of pipe system analysis apply also to multiple pipe systems.  
However, the solution procedure is more involved and can be iterative. 
 
Consider the following: 

a. Multiple pipes in series 
b. Multiple pipes in parallel 
 

Series Pipe System: 
 
The indicated pipe system has a 
steady flow rate  Q  through three 
pipes with diameters D1, D2, & D3. 
 
Two important rules apply to this 
problem. 

a b
1 2 3

 
 

 
 
1. The flow rate is the same through each pipe section. For incompressible 

flow, this is expressed as 
 
 Q1  =  Q2  =  Q3  =  Q    or    D1

2V1  =  D2
2V2  =  D3

2V3 
 
 
2. The total frictional head loss is the sum of the head losses through the 

various sections. 
 
 hf ,a−b = hf ,1 + hf ,2 + hf ,3 
 

hf ,a−b = f L
D

+ Ki∑ 
 

 
 

D1

V1
2

2 g
+ f L

D
+ Ki∑ 

 
 
 

D2

V2
2

2 g
+ f L

D
+ Ki∑ 

 
 
 

D3

V3
2

2g
 

Note:  Be careful how you evaluate the transitions from one section to the 
next.  In general, loss coefficients for transition sections are based on 
the velocity of the smaller section. 
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Example:  Given a pipe system as shown in the previous figure.  The total 
pressure drop is Pa – Pb = 150 kPa and the elevation change is Za – Zb = – 5 m.  
Given the following data, determine the flow rate of water through the section. 
 

Pipe L (m) D (cm) e (mm) e/D
1 100 8 0.24 0.003
2 150 6 0.12 0.02
3 80 4 0.2 0.005

 
 
The energy equation is written as 
where  hf  is given by the sum of 
the total frictional losses for three 
pipe sections.   

With no pump; hp is 0, Zb  -  Za =  
- 5 m and  ht = 15.3 m for ∆P = 
150 kPa   

Pa − Pb
ρ g

=
Vb

2 − Va
2

2 g
+ Zb − Za + h f − hp 

 

ht =
Pa − Pb

ρ g
=

150,000 N / m2

9790 N / m2 = 15.3m  

 
Since the flow rate  Q  and thus velocity is the only remaining variable, the 
solution is easily obtained from a spreadsheet by assuming Q until ∆P = 150 kPa. 
 

Fluid 1 2 3
ρ(kg/m^3) = 1000 L(m) 100 150 80
ν(m^2/s) = 1.02E-06 D(m) = 0.08 0.06 0.04

ε(mm) = 0.24 0.12 0.20
inlet & exit ε/D= 0.003 0.002 0.005

dZ (m) = -5
Da(m) = 0.08 V(m/s)= 0.56 1.00 2.25
Db(m) = 0.04 Re = 44082.8 58777.1 88165.6

Assume f= 0.02872 0.02591 0.03139
Q (m^3/s)= 0.00283 hf = 0.58 3.30 16.18

Va(m/s)= 0.56 � Ki 0 0 0
Vb(m/s)= 2.25 hm= 0 0 0
dKE(m) = 0.24

hf (net) = 20.08 hf(calc) = 0.58 3.30 16.18
Actual Calculated

Pa - Pb (kPa) 150 150.00 Q(m^3/hr) = 10.17
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Thus it is seen that a flow rate of 10.17 m3/hr produces the indicated head loss 
through each section and a net total ∆P = 150 kPa. 
 
A solution can also be obtained by writing all terms explicitly in terms of a single 
velocity, however, the algebra is quite complex (unless the flow is laminar), and 
an iterative solution is still required.  All equations used to obtained the solution 
are the same as those presented in previous sections. 
 
Parallel Pipe Systems 
 
A flow rate QT enters the indicated 
parallel pipe system.  The total flow 
splits and flows through 3 pipe 
sections, each with different 
diameters and lengths. 
 
Two basic rules apply to parallel 
pipe systems; 

a b

1

2

3
Q

T
Q

T
 

 

 
1. The total flow entering the parallel section is equal to the sum of the flow 

rates through the individual sections, 
2. The total pressure drop across the parallel section is equal to the pressure 

drop across each individual parallel segment. 
 
Note that if a common junction is used for the start and end of the parallel section, 
the velocity and elevation change is also the same for each section.  Thus, the flow 
rate through each section must be such that the frictional loss is the same for each 
and the sum of the flow rates equals the total flow. 
 
For the special case of no kinetic or potential energy change across the sections, 
we obtain: 
 

ht  =  ( hf  +  hm)1  =  ( hf  +  hm)2  =( hf  +  hm)3  
and 
 

QT  =  Q1  +  Q2  +  Q3 
 



 

VI-23 

Again, the equation used for both the pipe friction and minor losses is the same as 
previously presented.  The flow and pipe dimensions used for the previous 
example are now applied to the parallel circuit shown above. 
 
 
Example:  A parallel pipe section consists of three parallel pipe segments with the 
lengths and diameters shown below.  The total pressure drop is 150 kPa and the 
parallel section has an elevation drop of 5 m.  Neglecting minor losses and kinetic 
energy changes, determine the flow rate of water through each pipe section. 
 
The solution is iterative and is again presented in a spreadsheet.  The net friction 
head loss of 20.3 m now occurs across each of the three parallel sections. 
 
Fluid 1 2 3
ρ(kg/m^3) = 1000 L(m) 100 150 80
ν(m^2/s) = 1.02E-06 D(m) = 0.08 0.06 0.04

ε(mm) = 0.24 0.12 0.20
inlet & exit ε/D= 0.003 0.002 0.005

dZ (m) = -5 Q(m^3/hr) = 62.54 25.95 11.41
Da(m) = 0.08 V(m/s)= 3.46 2.55 2.52
Db(m) = 0.04 Re = 271083.5 149977.8 98919.7

f= 0.02666 0.02450 0.03129
Q (m^3/hr)= 99.91 hf = 20.30 20.30 20.30

Assume �Ki = 0 0 0
Q1 (m^3/s)= 62.54 hm= 0.00 0.00 0.00
Q2(m^3/s)= 25.95

hf,net(m) = 20.30 20.30 20.30
hf + ∆z= 15.30 15.30 15.30

Pa - Pb (kPa) 150.13
ht(m) = 15.31 Q(m^3/hr) = 62.54 25.95 11.41

Total Flow, Qt(m^3/hr) = 99.91
 
The strong effect of diameter can be seen with the smallest diameter having the 
lowest flow rate, even though it also has the shortest length of pipe. 
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VII.  Boundary Layer Flows 
 

The previous chapter considered only viscous internal flows. 
 
Viscous internal flows have the following major boundary layer characteristics: 

 
* An entrance region where the boundary layer grows and dP/dx  ≠  constant, 
* A fully developed region where: 

� The boundary layer fills the entire flow area. 
� The velocity profiles, pressure gradient,  and  τw  are  constant;  

i.e., they are not equal to  f(x), 
� The flow is either laminar or turbulent over the entire length of the flow ,  

i.e., transition from laminar to turbulent is not considered. 
 

However, viscous flow boundary layer characteristics for external flows are 
significantly different as shown below for flow over a flat plate: 

 

y

x

δ(x)
turbulentlaminar

xcr

laminar to
turbulent
transition

edge of boundary layer
free stream

U∞

 
 

Fig. 7.1  Schematic of boundary layer flow over a flat plate 
 

For these conditions, we note the following characteristics: 
� The boundary layer thickness  δ  grows continuously from the start of the 

fluid-surface contact, e.g., the leading edge.  It is a function of x, not a 
constant. 

� Velocity profiles and shear stress  τ   are  f(x,y). 
� The flow will generally be laminar starting from x = 0. 
� The flow will undergo laminar-to-turbulent transition if the streamwise 

dimension is greater than a distance  xcr  corresponding to the location of  
the transition Reynolds number  Recr. 

� Outside of the boundary layer region, free stream conditions exist where 
velocity gradients and therefore viscous effects are typically negligible. 
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As it was for internal flows, the most important fluid flow parameter is the 
local Reynolds number defined as 

 

  Rex = ρU∞x
µ

= U∞x
υ

 

where 

ρ = fluid density µ = fluid dynamic viscosity 
ν = fluid kinematic viscosity U∞  = characteristic flow velocity 
x = characteristic flow dimension 

 
It should be noted at this point that all external flow applications will not use a 
distance from the leading edge  x  and the characteristic flow dimension.  For 
example, for flow over a cylinder, the diameter will be used as the characteristic 
dimension for the Reynolds number. 
 

Transition from laminar to turbulent flow typically occurs at the local transition 
Reynolds number which for flat plate flows can be in the range of 

 
 500,000 ≤ Recr ≤3,000,00  
 

With xcr = the value of  x  where transition from laminar to turbulent flow occurs, 
the typical value used for steady, incompressible flow over a flat plate is 

 

 Recr =
ρU∞ xcr

µ
= 500, 000

  
 

 
Thus for flat plate flows for which: 
 
 x < xcr  the flow is laminar 

 x ≥ xcr  the flow is turbulent 
 

The solution to boundary layer flows is obtained from the reduced �Navier � 
Stokes� equations, i.e., Navier-Stokes equations for which boundary layer 
assumptions and approximations have been applied. 
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Flat Plate Boundary Layer Theory 
Laminar Flow Analysis 
For steady, incompressible flow over a flat plate, the laminar boundary layer 
equations are: 

Conservation of mass: 
  

∂ u
∂x + ∂ v

∂ y = 0 

 

'X' momentum: 
  
u ∂ u

∂ x + v ∂ u
∂ y = − 1

ρ
d p
d x

+ 1
ρ

∂
∂ y

µ ∂ u
∂ y

 
 
  

 
  

 

'Y' momentum: 
  
−∂ p

∂ y
= 0 

 
The solution to these equations was obtained in 1908 by Blasius, a student of 
Prandtl's.  He showed that the solution to the velocity profile, shown in the table 
below, could be obtained as a function of a single, non-dimensional variable  η   
defined as 
 
 

    
η = y U ∞

υ x
 
 
  

 
 

1/ 2

 

with the resulting ordinary 
differential equation: 

′ ′ ′ f + 1
2

f ′ ′ f = 0
 

and    ′ f η( )= u
U∞

 
 

 
Boundary conditions for the differential equation are expressed as follows: 
 
 at y = 0,  v = 0  →  f (0) = 0  ;  y component of velocity is zero at y = 0  
 

 at y = 0 , u = 0  → ′ f 0( ) = 0 ; x component of velocity is zero at y = 0 
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The key result of this solution is written as follows: 
 

∂ 2 f
∂η2

 
  

y=0

= 0.332 = τ w

µU∞ U∞ / υ x
 

 
With this result and the definition of the boundary layer thickness, the following 
key results are obtained for the laminar flat plate boundary layer: 
 

Local boundary layer thickness δ x( )= 5x
Re x

 

Local skin friction coefficient: 
(defined below) 

Cfx
=

0.664
Re x

 

Total drag coefficient for length L ( integration 
of τw dA over the length of the plate, per unit 
area, divided by 0.5 ρ U∞

2 ) 
CD =

1.328
Rex

 

where by definition       Cfx
=

τw x( )
1
2 ρU∞

2      and CD =
FD / A
1
2 ρ U∞

2  

 
With these results, we can determine local boundary layer thickness, local wall 
shear stress, and total drag force for laminar flow over a flat plate. 
 
Example: 
Air flows over a sharp edged flat plate with L = 1 m, a width of 3 m and  
U∞  = 2 m/s .  For one side of the plate, find:  δ(L), Cf (L), τw(L), CD, and FD. 
 Air: ρ = 1.23 kg/m3 ν = 1.46 E-5 m2/s 

First check Re: Re L =
U∞L

υ
=

2m / s* 2.15m
1.46E − 5m2 / s

= 294,520 < 500,000  

Key Point: Therefore, the flow is laminar over the entire length of the plate and 
calculations made for any  x  position from 0 - 1 m must be made using laminar 
flow equations. 
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Boundary layer thickness at x = L:   

δ L( ) = 5 L
ReL

= 5*2.15m
294,520

= 0.0198 m =1.98cm  

 
Local skin friction coefficient at x = L: 

Cf L( ) = 0.664
ReL

= 0.664
294,520

= 0.00122  

 
Surface shear stress at x = L: 

τ w =1 / 2 ρU∞
2 Cf = 0.5*1.23 kg / m3 *22 m 2 / s2 *0.00122 

 τ w = 0.0030 N / m2 Pa( )  
 
Drag coefficient over total plate, 0 � L: 

CD L( ) = 1.328
ReL

= 1.328
294, 520

= 0.00245 

 
Drag force over plate, 0 � L: 

FD =1/ 2ρU∞
2 CD A = 0.5*1.23kg / m3 *22 m2 / s2 *0.00245*2 *2.15m2  

 FD = 0.0259 N  
 
Two key points regarding this analysis: 

1. Each of these calculations can be made for any other location on the plate 
by simply using the appropriate x location for any x L≤≤≤≤ . 

2. Be careful not to confuse the calculation for Cf and CD.  Cf is a local 
calculation at a particular x location (including x =  L) and can only be 
used to calculate local shear stress, not drag force.  CD is an integrated 
average over a specified length (including any x ≤ L) and can only be 
used to calculate the average shear stress and the integrated force over the 
length. 
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Turbulent Flow Equations 
While the previous analysis provides an excellent representation of laminar, flat 
plate boundary layer flow, a similar analytical solution is not available for 
turbulent flow due to the complex nature of the turbulent flow structure.  
However, experimental results are available to provide equations for key flow 
field parameters. 
 
A summary of the results for boundary layer thickness and local and average skin 
friction coefficient for a laminar flat plate and a comparison with experimental 
results for a smooth, turbulent flat plate are shown below. 
 
 Laminar Turbulent 
 

 
    
δ x( )= 5x

Re x
 δ x( ) = 0.37x

Re x
.2  

 

 Cfx
= 0.664

Re x

 Cfx
= 0.0592

Re x
.2  

 

CD = 1.328
Re L

 CD = 0.074
ReL

.2  
for turbulent flow over 
entire plate, 0 � L, i.e. 
assumes turbulent flow 
in the laminar region. 

 

where 

Cfx
=

τw
1
2 ρU∞

2

 
 

 
local drag coefficient based on local 
wall shear stress (laminar or turbulent 
flow region). 

and 

CD = total drag coefficient 
based on the integrated 
force over the length 0 to L 

CD =
F / A

1
2 ρU∞

2 = 1
2 ρU∞

2 A( )−1
τ w

0

L
∫ x( )w dx  

 
A careful study of these results will show that in general, boundary layer thickness 
grows faster for turbulent flow and wall shear and total friction drag are greater for 
turbulent flow than for laminar flow given the same Reynolds number. 
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It is noted that the expressions for turbulent flow are valid only for a flat plate with 
a smooth surface.  Expressions including the effects of surface roughness are 
available in the text. 
 
Combined Laminar and Turbulent Flow 

y

x

U�

δ(x)
turbulentlaminar

xcr

laminar to
turbulent
transition

edge of boundary layer
free stream

 
Flat plate with both laminar and turbulent flow sections 

 
For conditions (as shown above) where the length of the plate is sufficiently long 
that we have both laminar and turbulent sections: 
 

* Local values for boundary layer thickness and wall shear stress for either 
the laminar or turbulent sections are obtained from the expressions for  δ(x) 
and Cfx for laminar or turbulent flow as appropriate for the given region. 

* The result for average drag coefficient CD  and thus total frictional force 
over the laminar and turbulent portions of the plate is given by  
(assuming a transition Re of 500,000) 

 

 CD = 0.074
ReL

.2 − 1742
ReL  

 
* Calculations assuming only turbulent flow can be made typically for two cases 

1. when some physical situation (a trip wire) has caused the flow to be 
leading from the leading edge or  

2. if the total length  L  of the plate is much greater than the length xcr of 
the laminar section such that the total flow can be considered turbulent 
from x = 0 to L.  Note that this will overpredict the friction drag force 
since turbulent drag is greater than laminar. 

 
With these results, a detailed analysis can be obtained for laminar and/or turbulent 
flow over flat plates and surfaces that can be approximated as a flat plate. 



 

VII-8 

Example: 

Water flows over a sharp flat plate 2.55 m long, 1 m wide, with U∞ = 2 m/s.  
Estimate the error in FD if it is assumed that the entire plate is turbulent. 
 
Water:   ρ  =  1000 kg/m3 ν  =  1.02 E- m2/s 
 

Reynolds number:       ReL = U∞L
υ

= 2m / s*2.55m
1.02E − 6m 2 / s

= 5E 6 > 500,000  

 
with  Re cr = 500,000 ⇒ xcr = 0.255m   ( or 10% laminar) 
 
a.   Assume that the entire plate is turbulent 
 

CD = 0.074
ReL

.2 = 0.074
5E 6( ).2 = 0.00338 

 

FD = 0.5ρU∞
2 CD A = 0.5*1000 kg

m3 *22 m 2

s2 * 0.00338*2.55m 2  
 

FD = 17.26 N  This should be high since we have assumed that 
the entire plate is turbulent and the first 10% is 
actually laminar. 

 
b.  Consider the actual combined laminar and turbulent flow: 
 

CD = 0.074
ReL

.2 − 1742
ReL

= 0.00338 − 1742
5 E 6

= 0.00303 

 

Note that the CD has decreased when both the laminar and turbulent sections are 
considered. 
 

FD = 0.5ρU∞
2 CD A = 0.5*1000 kg

m3 *22 m 2

s2 * 0.00303* 2.55m 2  
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FD = 15.46 N   {Lower than the fully turbulent value} 
 

Error =
17.26 − 15.46

15.46
*100 =11.6% high 

 
 
Question: Since xcr = 0.255 m, what would your answers represent if you had 

calculated the Re, CD, and FD  using  x = xcr = 0.255 m?   
 
 
Answer: You would have the value of the transition Reynolds number and the 

drag coefficient and drag force over the laminar portion of the plate 
(assuming you used laminar equations).  If you used turbulent 
equations, you would have red marks on your paper. 
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Von Karman Integral Momentum Analysis 
 
While the previous results provide an excellent basis for the analysis of flat plate 
flows, complex geometries and boundary conditions make analytical solutions to 
most problems difficult. 
 
An alternative procedure provides the basis for an approximate solution which in 
many cases can provide excellent results. 
 
The key to practical results is to use a reasonable approximation to the boundary 
layer profile, u(x,y).  This is used to obtain the following: 
 

a. Boundary layer mass flow: 
0

m ubdy
δδδδ

ρρρρ==== ∫∫∫∫&  

 where b is the width of the area for which the flow rate is being obtained. 
 

b. Wall shear stress: τ w = µ d u
d y

 
  y=0

 

 

You will also need the streamwise pressure gradient  
d P
d x

  for many problems. 

The Von Karman integral momentum theory provides the basis for such an 
approximate analysis. The following summarizes this theory. 
 
Displacement thickness: 
 

Consider the problem 
indicated in the adjacent 
figure:   
A uniform flow field with 
velocity  U∞ approaches a 
solid surface.  As a result 
of viscous shear, a 
boundary layer velocity 
profile develops. 

Streamline

δ*

y=h +δ*

 U

y

x
0

h
u

Simulated
effect

U

h

U ∞
∞

∞
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A viscous boundary layer is created when the flow comes in contact with the solid 
surface. 
 
Key point:  Compared to the uniform velocity profile approaching the solid 

surface, the effect of the viscous boundary layer is to displace 
streamlines of the flow outside the boundary layer away from the 
wall. 

 

With this concept, we define   δ* = displacement thickness 
 

 δ* = distance the solid surface would have to be displaced to maintain the 
same mass flow rate as for non-viscous flow. 

 
From the development in the text, we obtain 
 

δ* = 1 −
u

U∞

 
  

 
  0

δ
∫ dy 

 
Therefore, with an expression for the local velocity profile we can obtain δ* = f(δ) 
 
Example: 

Given:  
u

U∞
= 2

y
δ
 
 
 
 −

y
δ
 
 
 
 

2

  determine an expression for δ* = f(δ) 

Note that for this assumed form for the velocity profile: 
 

1. At   y  =  0,   u  =  0       correct for no slip condition 
2. At   y  =  δ,   u  =  U∞    correct for edge of boundary layer 
3. The form is quadratic 
 

To simplify the mathematics,  

let  η = y/δ,    at y = 0,  η = 0 ;     at y = δ  ,   η = 1;  dy = δ dη 

Therefore:    
u

U∞
= 2η − η 2 
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Substituting:         δ* = 1 − 2η +η 2( )
0

1
∫ δ dη = δ η −

2η 2

2
+

η 3

3
 
 
 

 
 
 0

1

 

 

which yields        δ* = 1
3 δ  

 
Therefore, for flows for which the assumed quadratic equation approximates the 
velocity profile, streamlines outside of the boundary layer are displaced 
approximately according to the equation 
 

 δ* = 1
3 δ  

 
This closely approximates flow for a flat plate. 
 
Key Point:  When assuming a form for a velocity profile to use in the Von 
Karman analysis, make sure that the resulting equation satisfies both surface and 
free stream boundary conditions as well as has a form that approximates   u(y).   
 
Momentum Thickness: 
 
The second concept used in the Von Karman momentum analysis is that of  
 

 momentum thickness  -  θ 
 

The concept is similar to that of displacement thickness in that  θ  is related to the 
loss of momentum due to viscous effects in the boundary layer. 
 
Consider the viscous flow 
regions shown in the adjacent 
figure.    Define a control 
volume as shown and 
integrate around the control 
volume to obtain the net 
change in momentum for the 
control volume. 
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If   D  =  drag force on the plate due to viscous flow,  we can write 
 

- D  =  ∑  ( momentum leaving c.v. ) -  ∑  ( momentum entering c.v. ) 
 
Completing an analysis shown in the text, we obtain 
 

 D = ρU∞
2 θ  θ =

u
U∞0

δ
∫ 1 −

u
U∞

 
  

 
  

d y  

 

Using a drag coefficient defined as CD =
D/A

1
2 ρ U∞

2  

 

We can also show that  CD =
2θ L( )

L
 

 
where:   θ(L) is the momentum thickness evaluated over the length  L. 
 
Thus, knowledge of the boundary layer velocity distribution  u = f(y)  allows the 
drag coefficient to be determined. 
 
 
Momentum integral: 
 
The final step in the Von Karman theory applies the previous control volume 
analysis to a differential length of surface.  Performing an analysis similar to the 
previous analysis for drag D we obtain 
 
 

      
τ w

ρ
=δ* U∞

dU∞

d x
+

d
d x

U∞
2 θ( ) 

This is the momentum integral 
for 2-D, incompressible flow 
and is valid for laminar or 
turbulent flow. 
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where  δ* U∞
dU∞

d x
= −

δ*

ρ
d P
d x

 

 

Therefore, this analysis also accounts for 
the effect of freestream pressure 
gradient. 
For a flat plate with non-accelerating 
flow, we can show that 

 

P = const., U∞ = const.,
dU∞

d x
= 0  

 
Therefore, for a flat plate, non-accelerating flow, the Von Karman momentum 
integral becomes 
 

τ w

ρ
=

d
d x

U∞
2 θ( )= U∞

2 dθ
d x

 

 
From the previous analysis and the assumed velocity distribution of 
 

u
U∞

= 2
y
δ
 
 
 
 −

y
δ
 
 
 
 

2

= 2η − η 2 

 
The wall shear stress can be expressed as 
 

 τ w = µ d u
d y

 
  w

= 2U∞
2
δ

−
2 y
δ2

  
 

  
 y=0

=
2 µU∞

δ
    (A) 

 

Also, with the assumed velocity profile, the momentum thickness  θ   can be 
evaluated as 
 

θ =
u

U∞0

δ
∫ 1 −

u
U∞

 
  

 
  

d y  

or  
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θ = 2η − η 2( )
0

δ
∫ 1 − 2η +η 2( )δ dη =

2δ
15

 

 
We can now write from the previous equation for  τw 

 

τ w = ρ U∞
2 dθ

d x
=

2
15

ρ U∞
2 dδ

d x
 

 
Equating this result to Eqn. A we obtain 
 

τ w =
2

15
ρ U∞

2 dδ
d x

=
2 µU∞

δ
 

or 

 δ dδ =
15µ
ρU∞

d x  which after integration yields   

 

 δ =
30 µ x
ρU∞

 
 
 

 
 
 

1/ 2

 or δ =
5.48
Rex

 

 
Note that the this result is within 10% of the exact result from Blasius flat plate 
theory. 
 
Since for a flat plate, we only need to consider friction drag (not pressure drag), 
we can write 
 

Cfx
=

τw x( )
1
2 ρU∞

2 =
2 µU∞

δ
1

1
2 ρ U∞

2  

Substitute for δ to obtain 
 

Cfx
=

2µ U∞

5.48
Re

1
2 ρU∞

2 =
0.73
Rex
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Exact theory has a numerical constant of 0.664 compared with 0.73 for the 
previous result. 
 
It is seen that the von Karman integral theory provides the means to determine 
approximate expressions for   

δ, τw, and  Cf 

using only an assumed velocity profile. 
 

Solution summary: 

 

 1. Assume an analytical expression for the velocity profile for 
the problem. 

 2. Use the assumed velocity profile to determine the solution 
for the displacement thickness for the problem. 

 3. Use the assumed velocity profile to determine the solution 
for the momentum thickness for the problem. 

 4. Use the previous results and the von Karman integral 
momentum equation to determine the solution for the 
drag/wall shear for the problem. 
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Bluff Body, Viscous Flow Characteristics 
( Immersed Bodies) 

 
In general, a body immersed in a flow will experience both externally applied 
forces and moments as a result of the flow about its external surfaces.  The typical 
terminology and designation of these forces and moments are given in the diagram 
shown below. 
 
The orientation of the axis for the drag force is typically along the principal body 
axis, although in certain applications, this axis is aligned with the principal axis of 
the free stream, approach velocity  U. 
 

 
 
Since in many cases the drag force is aligned with the principal axis of the body 
shape and not necessarily aligned with the approaching wind vector.  Review all 
data carefully to determine which coordinate system is being used:  body axis 
coordinate system or a wind axis coordinate system. 
 
These externally applied forces and moments are generally a function of 
 

a. Body geometry 
b. Body orientation 
c. Flow conditions 
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These forces and moments are also generally 
expressed in the form of a non-dimensional 
force/moment coefficient, e.g. the drag 
coefficient: 

CD = FD/A
1
2 ρ U∞

2
 

 
It is noted that it is common to see one of three reference areas used depending on 
the application: 
 

1. Frontal (projected) area:  Used for thick, stubby, non-aerodynamic 
shapes, e.g., buildings, cars, etc. 

 
2. Planform (top view, projected) area:  Used for flat, thin shapes, e.g., 

wings, hydrofoils, etc. 
 
3. Wetted area:  The total area in contact with the fluid.  Used for surface 

ships, barges, etc. 
 

The previous, flat plate boundary layer results considered only the contribution of 
viscous surface friction to drag forces on a body.  However, a second major (and 
usually dominant) factor is pressure or form drag. 
 
Pressure drag is drag due to the integrated surface pressure distribution over the 
body.  Therefore, in general , the total drag coefficient of a body can be expressed 
as 
 

CD = CD,press + CD,friction  
or 
 

CD =
FD, total/A
1
2 ρ U∞

2
=

FD,press. /A
1
2 ρU∞

2
+

FD,friction /A
1
2 ρ U∞

2  

 
Which factor, pressure or friction drag, dominates depends largely on the 
aerodynamics (streamlining) of the shape and to a lesser extent on the flow 
conditions. 
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Typically the most important factor in the magnitude and significance of pressure 
or form drag is the boundary layer separation and resulting low pressure wake 
region associated with flow around non - aerodynamic shapes.  
 
 
 Consider the two shapes shown below: 
 

High Pressure
Low
Pressure
Wake

boundary layer separation
large pressure drag

 
 
 
 
 
 Low pressure drag no separated flow region 
 

 
 

 
 
The flow around the streamlined airfoil remains attached, producing no boundary 
layer separation and comparatively small pressure drag.  However, the flow 
around the less aerodynamic circular cylinder separates, resulting in an area of 
high surface pressure on the front side and low surface pressure on the back side 
and thus significant pressure drag.   
 
 
This effect is shown very graphically in the following figures from the text. 
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Fig. 7.12  Drag of a 2-D, streamlined cylinder 

The previous figure shows the effect of streamlining and aerodynamics on the 
relative importance of friction and pressure drag.  While for a thin flat plate (t/c = 
0), all the drag is due to friction with no pressure drag, for a circular cylinder (t/c = 
1), only 3% of the drag is due to friction with 97% due to pressure.  Likewise for 
most bluff, non-aerodynamic bodies, pressure (also referred to as form drag) is the 
dominant contributor to the total drag. 
 
However, the magnitude of the pressure (and therefore the total) drag can also be 
changed by reducing the size of the low pressure wake region.  One way to do this 
is to change the flow conditions from laminar to turbulent.  This is illustrated in 
the following figures from the text for a circular cylinder.   
 

 
Fig. 7.13 Circular cylinder with (a) laminar separation and (b) turbulent separation   
 
Note that for the cylinder on the left, the flow is laminar, boundary layer 
separation occurs at 82o and the CD is 1.2, whereas for the cylinder on the right, 
the flow is turbulent and separation is delayed and occurs at 120o.  The drag 
coefficient CD  is 0.3, a factor of 4 reduction due to a smaller wake region and 
reduced pressure drag. 
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It should also be pointed out that the 
friction drag for the cylinder on the right 
is probably greater (turbulent flow 
conditions) than for the cylinder on the 
left (laminar flow conditions).   
However, since pressure drag 
dominates, the net result is a significant 
reduction in the total drag. 
The pressure distribution for laminar 
and turbulent flow over a cylinder is 
shown in Fig. 7.13c to the right.  The 
front-to-rear pressure difference is 
greater for laminar flow, thus greater 
drag. 

 

 
Finally, the effect of streamlining on total drag is shown very graphically with the 
sequence of modifications in Fig. 7.15.   
 
 
Two observations can 
be made:   (1) As body 
shape changes from a 
bluff body with fixed 
points of separation to 
a more aerodynamic 
shape, the effect of 
pressure drag and the 
drag coefficient will 
decrease. 

 

 
Fig. 7.15  The effect of streamlining on total drag 

 
 (2)  The addition of surface area from  (a) to (b) and (b) to (c) increases the 
friction drag, however, since pressure drag dominates, the net result is a reduction 
in the drag force and the CD . 



 

VII-22 

The final two figures show results for the drag coefficient for two and three 
dimensional shapes with various geometries.   
 
Table 7.2  CD for Two-Dimensional Bodies at Re ≥ 104 

 

First note that all 
values in Table 7.2 are 
for 2-D geometries, 
that is, the bodies are 
very long (compared to 
the cross-section 
dimensions) in the 
dimension perpen-
dicular to the page. 
 

Key Point:  Non – 
aerodynamic shapes 
with fixed points of 
separations (sharp 
corners) have a single 
value of CD, 
irrespective of the 
value of the Reynolds 
number, e.g. square 
cylinder, half-tube, 
etc. 
Aerodynamic shapes 
generally have a 
reduction in CD for a 
change from laminar 
to turbulent flow as a 
result of the shift in 
the point of boundary 
layer separation, e.g. 
elliptical cylinder. 
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Table 7.3  Drag of three-dimensional bodies at Re ≥ 104 

 
 
The geometries in Table 7.3 are all 3-D and thus are finite perpendicular to the 
page.  Similar to the results from the previous table, bluff body geometries with 
fixed points of separation have a single CD, whereas aerodynamic shapes such as 
slender bodies of revolution have individual values of CD for laminar and 
turbulent flow.   
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In summary, one must remember that broad generalizations such as saying that 
turbulent flow always increases drag, drag coefficients always depend on 
Reynolds number, or increasing surface area increases drag are not always valid.  
One must consider carefully all effects (viscous and pressure drag) due to 
changing flow conditions and geometry. 
 
Example: 
A square 6-in piling is acted on by 
a water flow of 5 ft/s  that is 20 ft 
deep.  Estimate the maximum 
bending stress exerted by the flow 
on the bottom of the piling. 
 

Water:  ρ = 1.99 slugs/ft3 

 ν = 1.1 E � 5 ft2/s 
 

 

 
Assume that the piling can be treated as 2-D and thus end effects are negligible. 
 
Thus for a width of 0.5 ft, we obtain: 
 

Re =
5 ft / s.5 ft

1.1E − 5 ft2 / s
= 2.3E 5 

In this range, Table 7.2 applies for 2-
D bodies and we read CD = 2 .1.  The 
frontal area is A = 20*0.5 = 10 ft2 

 

FD = 0.5ρU∞
2 CD A = 0.5*1.99 slug

ft 3 *52 ft 2

s2 * 2.1*10 ft 2 =522 lbf  

 
For uniform flow, the drag should be uniformly distributed over the total length 
with the net drag located at the mid-point of the piling. 
 
Thus, relative to the bottom of the piling, the bending moment is given by 
 

Mo =  F * 0.5 L  = 522 lbf* 10 ft = 5220 ft-lbf 
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From strength of materials, we can write 
 

σ = Mo c
I

= 5220 ft − lbf * 0.25 ft
1

12 0.5 ft *0.53 ft3 = 251,000 psf = 1740 psi  

 
where    c  =  distance to the neutral axis,   I = moment of inertia = b h3/12 
 
Question:  Since pressure acts on the piling and increases with increasing depth, 
why wasn�t a pressure load considered? 
 
Answer:  Static pressure does act on the piling, but it acts uniformly around the 
piling at every depth and thus cancels.   Dynamic pressure is considered in the 
drag coefficients of Tables 7.2 and 7.3 and does not have to be accounted for 
separately. 
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Ch. VIII  Potential Flow and Computational  
Fluid Dynamics 

 
 
Review of Velocity-Potential Concepts 
 
This chapter presents examples of problems and their solution for which the 
assumption of potential flow is appropriate.   
 
For low speed flows where viscous effects are neglected, the flow is irrotational 
and 
 

 ∇ × V = 0  V = ∇ φ u = ∂φ
∂ x

 v = ∂ φ
∂ y

 w = ∂ φ
∂ z

 

 
The continuity equation ,  ∇ ⋅ V = 0  ,  now reduces to 
 

∇ 2 V = ∂ 2 φ
∂ x2 + ∂ 2 φ

∂ y2 + ∂ 2 φ
∂ z2 = 0  

 
The momentum equation reduces to Bernoulli�s equation: 
 

∂φ
∂ t

+ P
ρ

+ 1
2

V 2 + gz = const  

 
Review of Stream Function Concepts 
 
For plane incompressible flow in x-y coordinates a stream function exists such that 
 

u = ∂ Ψ
∂ y

and v = − ∂ Ψ
∂ x

 

 
The condition of irrotationality reduces to Lapace�s equation for  Ψ  and 
 

∂ 2 Ψ
∂ x2 + ∂ 2 Ψ

∂ y2 = 0  
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Elementary Plane-Flow Solutions 
 
Three useful plane-flow solutions that are very useful in developing more complex 
solutions are: 
 
Uniform stream, iU, in the x direction: Ψ = U y  φ = U x  
 
Line source or sink: Ψ = mθ  φ = m ln r  
 
Line vortex: Ψ = −K ln r  φ = Kθ  
 
In these expressions, the source strength, �m� and vortex strength, � K �, have the 
dimensions of velocity times length, or [L2/t]. 
 
If the uniform stream is written in plane polar coordinates, we have 
 
Uniform stream, iU: Ψ = U r sinθ  φ = U rcosθ  
 
For a uniform stream moving at an angle, a , relative to the  x-axis, we can write 
 

 u = Ucosα = ∂ Ψ
∂ y

= ∂ φ
∂ x

 v = Usin α = −∂ Ψ
∂ x

= ∂ φ
∂ y

 

 
After integration, we obtain the following expressions for the stream function and 
velocity potential: 
 
 Ψ =U y cosα − x sin α( ) φ =U x cosα + y sinα( ) 
 
 
Circulation 
 
The concept of fluid circulation is very useful in the analysis of certain potential 
flows, in particular those useful in aerodynamics analyses.  Consider Figure 8.3 
shown below: 
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We define the circulation, Γ   , as 
the counterclockwise line integral 
of the arc length, ds times the 
velocity component tangent to the 
closed curve, C, e.g. 
 
Γ = V cosα d s

c
∫ = V ⋅ds

c
∫  

 
Γ = u dx + vdy + wdz( )

c
∫  

 

 

 
 
For most flows, this line integral around a closed path, starting and stoping at the 
same point, yields  Γ  = 0.  However,  
 
 for a vortex flow for which φ  =  K θ 
 
 the integral yields Γ  =  2 π K 
 
 
An equivalent calculation can by made by defining a circular path of radius r 
around the vortex center to yield 
 

Γ = vθ
c
∫ d s = K

r0

2π

∫ r dφ = 2π K  

 
 
Superposition of  Potential Flows 
 
Due to the mathematical character of the equations governing potential flows, the 
principle of superposition can be used to determine the solution of the flow which 
results from combining two individual potential flow solutions. 
 
Several classic examples of this are presented as follows: 
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1. Source m at ( -a,0) added to an equal sink at (+a, 0). 
 

 ψ = −m tan−1 2 a y
x 2 + y2 − a2  φ = 1

2
m ln

x + a( )2 + y2

x − a( )2 + y2  

 
The streamlines and potential lines are two families of orthogonal circles (Fig. 
4.13). 
 
2. Sink m plus a vortex K, both at the origin. 
 
 ψ = mθ − K ln r  φ = m ln r + K θ  
 
The streamlines are logarithmic spirals swirling into the origin (Fig. 4.14).  They 

resemble a tornado or a bathtub vortex. 
 
3. Uniform  steam i U∞  plus a source m at the origin (Fig. 4.15), the Ranking half 

body.  If the origin contains a source, a plane half-body is formed with its nose 
to the left as shown below.  If the origin contains a sink, m < 0, the half-body 
nose is to the right..   For both cases, the stagnation point is at a position 
a = m / U∞   away from the origin. 
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Example 8.1 
 
An offshore power plant cooling water intake has a flow rate of 1500 ft3/s in water 
30 ft deep as in Fig. E8.1.  If the tidal velocity approaching the intake is 0.7 ft/s,  
(a) how far downstream does the intake effect extend and (b) how much width of 
tidal flow in entrained into the intake? 
 

The sink strength is related to the volume flow, 
Q and water depth by 
 

m = Q
2πb

= 1500 ft3 / s
2π30 ft

=7.96 ft2 / s 

 
The lengths  a  and  L  are given by  
 

a = m
U∞

= 7.96 ft 2 / s
0.7 ft / s

= 11.4 ft  

 
L = 2πa = 2π11.4 ft = 71 ft  

 

 
 
Flow Past a Vortex 
 
Consider a uniform stream, U∞  flowing in the x direction past a vortex of strength 
K with the center at the origin.  By superposition the combined stream function is 
 

ψ = ψ stream + ψ vortex = U∞ rsinθ − K ln r  
 
The velocity components of this flow are given by 
 

 vr = 1
r

∂ψ
∂ θ

= U∞ cosθ  vθ = − ∂ψ
∂ r

= −U∞ sinθ + K
r

 

 
Setting  vr   and  vθ   = 0, we find the stagnation point at θ   =  90û, r = a  = K/ U∞  
or  (x,y) = (0,a).  
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An Infinite Row of Vortices 
 
Consider an infinite row of vortices of equal strength K and equal spacing a.  A 
single vortex,  i , has a stream function given  by 
 

 
Fig. 8.7  Superposition of vortices 

 
 

ψ i = −K ln ri
i=1

∞

∑  

 
This infinite sum can also be expressed as 
 

ψ =− 1
2

K ln 1
2

cosh 2π y
a

− cosh 2πx
a

 
 

 
 

 
  

 
  

 

 
The resulting left and right flow above and below the row of vortices is given by 
 

u = ∂ ψ
∂ y y >a

= ± πK
a
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Plane flow past Closed-Body Shapes 
 
Various types of external flows over a closed-body can be constructed by 
superimposing a uniform stream with sources, sinks, and vortices.   
 
Key Point:  The body shape will be closed only if the net source of the outflow 

equals the net sink inflow. 
 
Two examples of this are presented below. 
 
The Rankine Oval 
 
A Rankine Oval is a cylindrical 
shape which is long compared to 
its height.  It is formed by a 
source-sink pair aligned parallel to 
a uniform stream.   
The individual flows used to 
produce the final result and the 
combined flow field are shown in 
Fig. 8.9.  The combined stream 
function is given by 
 

ψ = U∞ y − m tan−1 2 a y
x2 + y2 − a2

or 
 

ψ = U∞ rsinθ + m θ1 −θ2( )  
Fig. 8.9  The Rankine Oval 

 
The oval shaped closed body is the streamline, ψ = 0.  Stagnation points occur at 
the front and rear of the oval, x = ± L, y = 0 .  Points of maximum velocity and 
minimum pressure occur at the shoulders, x = 0, y = ± h.  Key geometric and 
flow parameters of the Rankine Oval can be expressed as follows: 
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h
a

= cot h / a
2m / U∞ a( ) 

L
a

= 1+ 2 m
U∞ a

 
  

 
  

1/ 2

 

 
 

 
umax

U∞

=1 +
2m / U∞ a( )
1 + h2 / a2  

 
As the value of the parameter  m / U∞ a( )  is increased from zero, the oval shape 
increases in size and transforms from a flat plate to a circular cylinder at the 
limiting case of  m / U∞ a( )= ∞. 
 
Specific values of these parameters are presented in Table 8.1 for four different 
values of the dimensionless vortex strength, K / U∞ a( ).  
 

Table 8.1  Rankine-Oval Parameters 
m / U∞ a( ) h / a L / a  L / h  umax /U∞  

 0.0 0.0 1.0 ∞  1.0 
 0.01 0.31 1.10  32.79  1.020 
 0.1 0.263 1.095  4.169  1.187 
 1.0 1.307 1.732  1.326  1.739 

 10.0 4.435 4.458  1.033  1.968 
 10.0 14.130 14.177  1.003  1.997 

∞ ∞ ∞  1.000  2.000 
 
 
Flow Past a Circular Cylinder with Circulation 
 
It is seen from Table 8.1 that as source strength m becomes large, the Rankine 
Oval becomes a large circle, much greater in diameter than the source-sink spacing 
2a.  Viewed, from the scale of the cylinder, this is equivalent to a uniform stream 
plus a doublet.  To add circulation, without changing the shape of the cylinder, we 
place a vortex at the doublet center. For these conditions the stream function is 
given by 
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ψ = U∞ sinθ r − a2

r
 
  

 
  

− K ln r
a

 

 
Typical resulting flows are shown in Fig. 8.10 for increasing values of non-
dimensional vortex strength  K / U∞ a . 
 

 
Fig. 8.10  Flow past a cylinder with circulation for values of  

K / U∞ a   of (a) 0, (b) 1.0, (c) 2.0, and (d) 3.0 
 
Again the streamline  ψ = 0   is corresponds to the circle  r = a.  As the counter-
clockwise circulation  Γ = 2π K  increases, velocities below the cylinder increase 
and velocities above the cylinder decrease.  In polar coordinates, the velocity 
components are given by 
 

vr = 1
r

∂ψ
∂ θ

= U∞ cosθ 1 − a2

r2
 
  

 
  

 

 

vθ = − ∂ψ
∂ r

= −U∞ sinθ 1 + a2

r 2
 
  

 
  

+ K
r

 

 
For small K, two stagnation points appear on the surface at angles  θs   or for which 
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sinθs = K
2U∞ a

 

 
Thus for  K = 0, θs  = 0 and 180o.   For K / U∞ a  = 1,  θs   =  30 and 150o .  Figure 
8.10c is the limiting case for which with  K / U∞ a  = 2,  θs  = 90o  and the two 
stagnation points meet at the top of the cylinder.    
 
 
The Kutta-Joukowski Lift Theorem 
 
The development in the text shows that from inviscid flow theory,   
 

The lift per unit depth of any cylinder of any shape immersed in a 
uniform stream equals to ρU∞ Γ  where Γ  is the total net circulation 
contained within the body shape.  The direction of the lift is 90o from 
the stream direction, rotating opposite to the circulation. 
 

This is the well known Kutta-Joukowski lift theorem. 
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IX. Compressible Flow

Compressible flow is the study of fluids flowing at speeds comparable to the local
speed of sound.  This occurs when fluid speeds are about 30% or more of the local
acoustic velocity.  Then, the fluid density no longer remains constant throughout
the flow field.  This typically does not occur with fluids but can easily occur in
flowing gases.

Two important and distinctive effects that occur in compressible flows are (1)
choking where the flow is limited by the sonic condition that occurs when the flow
velocity becomes equal to the local acoustic velocity and (2) shock waves that
introduce discontinuities in the fluid properties and are highly irreversible.

Since the density of the fluid is no longer constant in compressible flows, there are
now four dependent variables to be determined throughout the flow field.  These
are pressure, temperature, density, and flow velocity.  Two new variables,
temperature and density, have been introduced and two additional equations are
required for a complete solution.  These are the energy equation and the fluid
equation of state.  These must be solved simultaneously with the continuity and
momentum equations to determine all the flow field variables.

Equations of State and Ideal Gas Properties:

Two equations of state are used to analyze compressible flows: the ideal gas
equation of state and the isentropic flow equation of state.  The first of these
describe gases at low pressure (relative to the gas critical pressure) and high
temperature (relative to the gas critical temperature).  The second applies to ideal
gases experiencing isentropic (adiabatic and frictionless) flow.

 The ideal gas equation of state is

= P
R T

In this equation, R is the gas constant, and P and T are the absolute pressure and
absolute temperature respectively.  Air is the most commonly incurred
compressible flow gas and its gas constant is Rair = 1717 ft2/(s2-oR) = 287 m2/(s2-
K).
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Two additional useful ideal gas properties are the constant volume and constant
pressure specific heats defined as

Cv = d u
d T

and Cp = d h
d T

where u is the specific internal energy and h is the specific enthalpy.  These two
properties are treated as constants when analyzing elemental compressible flows.
Commonly used values of the specific heats of air are: cv = 4293 ft2/(s2-oR) = 718
m2/(s2-K) and cp = 6010 ft2/(s2-oR) = 1005 m2/(s2-K).  Additional specific heat
relationships are

R = Cp − Cv and k =
C p

Cv

The specific heat ratio k  for air is 1.4.

When undergoing an isentropic process (constant entropy process), ideal
gases obey the isentropic process equation of state:

P
k = constant

Combining this equation of state with the ideal gas equation of state and
applying the result to two different locations in a compressible flow field
yields

P2

P1

= T2

T1

 
  

 
  

k / k−1( )

= 2

1

 
  

 
  

k

Note: The above equations may be applied to any ideal gas as it undergoes
an isentropic process.

Acoustic Velocity and Mach Number

The acoustic velocity (speed of sound) is the speed at which an infinitesimally
small pressure wave (sound wave) propagates through a fluid.  In general, the
acoustic velocity is given by
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a2 = P

The process experienced by the fluid as a sound wave passes through it is an
isentropic process.  The speed of sound in an ideal gas is then given by

a = k RT

The Mach number is the ratio of the fluid velocity and speed of sound,

Ma = V
a

This number is the single most important parameter in understanding and
analyzing compressible flows.

Mach Number Example:

An aircraft flies at a speed of 400 m/s.  What is this aircraft’s Mach number when
flying at standard sea-level conditions (T = 289 K) and at standard 15,200 m (T =
217 K) atmosphere conditions?

At standard sea-level conditions, a = k RT = 1.4( ) 287( ) 289( ) = 341m / s
and at 15,200 m, a = 1.4( ) 287( ) 217( ) = 295m / s .  The aircraft Mach
numbers are then

sea − level : Ma = V
a

= 400
341

=1.17

15,200 m : Ma = V
a

= 400
295

=1.36

Note: Although the aircraft speed did not change, the Mach number did change
because of the change in the local speed of sound.
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Ideal Gas Steady Isentropic Flow

When the flow of an ideal gas is such that there is no heat transfer (i.e., adiabatic)
or irreversible effects (e.g., friction, etc.), the flow is isentropic.  The steady-flow
energy equation applied between two points in the flow field becomes

h1 + V1
2

2
= h2 + V2

2

2
= ho = constant

where h0 is called the stagnation enthalpy that remains constant throughout the
flow field.  Observe that the stagnation enthalpy is the enthalpy at any point in an
isentropic flow field where the fluid velocity is zero or very nearly so.

The enthalpy of an ideal gas is given by h = Cp T  over reasonable ranges of

temperature.  When this is substituted into the adiabatic, steady-flow energy
equation, we see that ho = Cp To = constant  and

To

T
=1 + k −1

2
Ma 2

Thus, the stagnation temperature To remains constant throughout an isentropic or
adiabatic flow field and the relationship of the local temperature to the field
stagnation temperature only depends upon the local Mach number.

Incorporation of the acoustic velocity equation and the ideal gas equations of
state into the energy equation yields the following useful results for steady
isentropic flow of ideal gases.

To

T
=1 + k −1

2
Ma 2

ao

a
= To

T
 
 

 
 

1 / 2

= 1 + k− 1
2

Ma2 
 

 
 

1 / 2

Po

P
= To

T
 
 

 
 

k / k−1( )

= 1 + k −1
2

Ma 2 
 

 
 

k / k−1( )

o = To

T
 
 

 
 

1/ k−1( )

= 1+ k −1
2

Ma2 
 

 
 

1/ k−1( )
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The values of the ideal gas properties when the Mach number is 1 (i.e., sonic
flow) are known as the critical or sonic properties and are given by

To

T* = 1+ k −1
2

ao

a* = To

T*
 
 

 
 

1 / 2

= 1 + k −1
2

 
 

 
 

1 / 2

Po

P* = To

T*
 
 

 
 

k / k−1( )

= 1+ k −1
2

 
 

 
 

k / k−1( )

o
* = To

T*
 
 

 
 

1/ k−1( )

= 1 + k −1
2

 
 

 
 

1/ k−1( )

 given by
Isentropic Flow Example:

Air flowing through an adiabatic, frictionless duct is supplied from a large supply
tank in which P = 500 kPa and T = 400 K.  What are the Mach number Ma. the
temperature T, density _, and fluid V at a location in this duct where the pressure is
430 kPa?

The pressure and temperature in the supply tank are the stagnation pressure and
temperature since the velocity in this tank is practically zero.  Then, the Mach
number at this location is

Ma = 2
k −1

Po

P
 
 

 
 

k−1( ) / k

−1
 

 
 

 

 
 

Ma = 2
0.4

500
430

 
 

 
 

0.4/1.4

−1
 
 
 

 
 
 

Ma = 0.469

and the temperature is given by
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T = To

1 + k −1
2

Ma 2

T = 400
1 + 0.2 0.469( )2

T = 383K

The ideal gas equation of state is used to determine the density,

= P
R T

= 430,000
287( ) 383( )

= 3.91kg / m3

Using the definition of the Mach number and the acoustic velocity,

V = Ma k RT = 0.469 1.4( ) 287( ) 383( ) =184 m / s

Solving Compressible Flow Problems

Compressible flow problems come in a variety of forms, but the majority of
them can be solved by

1. Use the appropriate equations and reference states (i.e., stagnation and sonic
states) to determine the Mach number at all the flow field locations
involved in the problem.

2. Determine which conditions are the same throughout the flow field (e.g.,
the stagnation properties are the same throughout an isentropic flow field).

3. Apply the appropriate equations and constant conditions to determine the
necessary remaining properties in the flow field.

4. Apply additional relations (i.e., equation of state, acoustic velocity, etc.) to
complete the solution of the problem.

Most compressible flow equations are expressed in terms of the Mach number.
You can solve these equations explicitly by rearranging the equation, by using
tables, or by programming them with spreadsheet or EES software.
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Isentropic Flow with Area Changes

All flows must satisfy the continuity and momentum relations as well as the
energy and state equations.  Application of the continuity and momentum
equations to a differential flow (see textbook for derivation) yields:

d V
V

= 1
Ma2 − 1

d A
A

This result reveals that when Ma < 1 (subsonic flow) velocity changes are the
opposite of area changes.  That is, increases in the fluid velocity require that the
area decrease in the direction of the flow.  For supersonic flow (Ma > 1), the area
must increase in the direction of the flow to cause an increase in the velocity.
Changes in the fluid velocity  dV  can only be finite in sonic flows (Ma = 1) when
dA = 0.  The effect of the geometry upon velocity, Mach number, and pressure is
illustrated in Figure 1 below.

Figure 1

Combining the mass flow rate equation ˙ m = A V = constant  with the
preceding isentropic flow equations yields

*

= 2
k +1

1+ k −1
2

Ma2 
 

 
 

 
  

 
  

1 / k−1( )
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V*

V
= 1

Ma
2

k +1
1 + k −1

2
Ma2 

 
 
 

 
  

 
  

1 / 2

A
A* = 1

Ma
1 + 0.5 k −1( )Ma2

0.5 k +1( )
 
 
 

 
 
 

k+1( ) / 2 k−1( )[ ]

where the sonic state (denoted with *) may or may not occur in the duct.  If the
sonic condition does occur in the duct, it will occur at the duct minimum or
maximum area.  If the sonic condition occurs, the flow is said to be choked since
the mass flow rate ˙ m = A V = * A* V * is the maximum mass flow rate the
duct can accommodate without a modification of the duct geometry.

Review Example 9.4 of the textbook.

Normal Shock Waves

Under the appropriate conditions, very thin, highly irreversible discontinuities can
occur in otherwise isentropic compressible flows.  These discontinuities are known
as shock waves which when they are perpendicular to the flow velocity vector are
called normal shock waves.  A normal shock wave in a one-dimensional flow
channel is illustrated in Figure 2.

Figure 2
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Application of the second law of thermodynamics to the thin, adiabatic normal
shock wave reveals that normal shock waves can only cause a sharp rise in the gas
pressure and must be supersonic upstream and subsonic downstream of the normal
shock.  Rarefaction waves that result in a decrease in pressure and increase in
Mach number are impossible according to the second law.

Application of the conservation of mass, momentum, and energy equations along
with the ideal gas equation of state to a thin, adiabatic control volume surrounding
a normal shock wave yields the following results.

Ma2
2 = k −1( )Ma1

2 + 2

2k Ma1
2 − k −1( )

, Ma1 >1

P2

P1

= 1 + k Ma1
2

1 + k Ma2
2

2

1

= V1

V2

= k +1( ) Ma1
2

k −1( ) Ma1
2 + 2

To1 = To 2

T2

T1

= 2 + k − 1( )Ma1
2[ ] 2k Ma1

2 − k −1( )
k +1( )2 Ma1

2

Po2

Po1

= o2

o1

= k +1( ) Ma1
2

2 + k− 1( ) Ma1
2

 

 
 

 

 
 

k / k−1( )
k + 1

2k Ma1
2 − k −1( )

 

 
 

 

 
 

1/ k−1( )

A2
*

A1
* = Ma2

Ma1

2 + k −1( ) Ma1
2

2 + k −1( ) Ma2
2

 
 
 

 
 
 

k+1( ) / 2 k−1( )[ ]

When using these equations to relate conditions upstream and downstream of a
normal shock wave, keep the following points in mind:
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1. Upstream Mach numbers are always supersonic while downstream Mach
numbers are subsonic.

2. Stagnation pressures and densities decrease as one moves downstream
across a normal shock wave while the stagnation temperature remains
constant.

3. Pressures increase greatly while temperature and density increase
moderately across a shock wave in the downstream direction.

4. The effective throat area increases across a normal shock wave in the
downstream direction.

5. Shock waves are very irreversible causing the specific entropy downstream
of the shock wave to be greater than the specific entropy upstream of the
shock wave.

Moving normal shock waves such as those caused by explosions, spacecraft
reentering the atmosphere, and others can be analyzed as stationary normal
shock waves by using a frame of reference that moves at the speed of the
shock wave in the direction of the shock wave.

Converging-Diverging Nozzle Example:  Also see Example 9.6 of textbook

Air is supplied to the converging-diverging
nozzle shown here from a large tank where
P = 2 Mpa and T = 400 K.  A normal shock
wave in the diverging section of this nozzle
forms at a point Po1 = Po2 = 2 MPa  where
the upstream Mach number is 1.4.  The
ratio of the nozzle exit area to the throat
area is 1.6.  Determine (a) the Mach
number downstream of the shock wave, (b) the Mach number at the nozzle
exit, (c) the pressure at the nozzle exit, and (d) the temperature at the nozzle
exit.

This flow is isentropic from the supply tank (1) to just upstream of the
normal shock (2) and also from just downstream of the shock (3) to the exit
(4).  Stagnation temperatures do not change in isentropic flows or across
shock waves, To1 = To 2 = To3 = To4 = 400 K .  Stagnation pressures do not
change in isentropic flows, Po1 = Po2 = 2 MPa  and Po3 = Po4 , but
stagnation pressures change across shocks, Po2 > Po3 .
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Based upon the Mach number at 2 and the isentropic relations,

A2

At

=
A3

At

= A2

At
* = 1

Ma2

1+ 0.2 Ma2
2( )3

1.728
=1.115

The normal shock relations can be used to work across the shock itself.  The
answer to (a) is then:

Ma3 = k −1( )Ma2
2 + 2

2k Ma2
2 − k −1( )

 

 
 

 

 
 

1 / 2

= 0.4( ) 1.4( )2 + 2
2 1.4( ) 1.4( )2 − 0.4

 
 
 

 
 
 

1 / 2

= 0.740

Continuing to work across the shock,

Po4 = Po3 = Po2

k + 1( )Ma2
2

2 + k −1( ) Ma2
2

 

 
 

 

 
 

k / k−1( )
k + 1

2 k Ma2
2 − k −1( )

 

 
 

 

 
 

1/ k−1( )

Po4 = Po3 = 2
2.4( ) 0.74( )2

2 + 0.4( ) 0.74( )2

 
 
 

 
 
 

3.5
2.4

2 1.4( ) 0.74( )2 − 0.4
 
  

 
  

2.5

= 1.92 MPa

A3
*

A2
* =

Ma3

Ma2

2 + k −1( )Ma2
2

2 + k −1( )Ma3
2

 

 
 

 

 
 

k+1( ) / 2 k−1( )[ ]

=1.044

Now, we know A4/At, and the flow is again isentropic between states 3 and 4.
Writing an expression for the area ratio between the exit and the throat, we have

A4

At

= 1.6 = A4

A4
*

A4
*

A3
*

A3
*

A2
*

A2
*

At

= A4

A4
* 1( ) 1.044( ) 1.115( )

Solving for 
A4

A4
*  we obtain

A4

A4
* =1.374

Using a previously developed equation for choked, isentropic flow, we can write
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A4

A4
* =1.374 = 1

Ma
1 + 0.5 k −1( )Ma2

0.5 k +1( )
 
 
 

 
 
 

k+1( ) / 2 k−1( )[ ]

or

1.374 = 1
Ma4

1+ 0.2Ma4
2( )3

1.728

The solution of this equation gives answer (b) Ma4 = 0.483.

Now that the Mach number at 4 is known, we can proceed to apply the
isentropic relations to obtain answers (c) and (d).

P4 = Po4

1 + 0.5 k − 1( )Ma4
2[ ]k / k−1( ) = 1.92 MPa

1 + 0.2 0.483( )2[ ]3.5 =1.637MPa

T4 = To4

1 + 0.5 k −1( )Ma4
2 = 400 K

1 + 0.2 0.483( )2 = 382 K

Note: Observe how the sonic area downstream from the shock is not the
same as upstream of the shock.   Also, observe the use of the area ratios
to determine the Mach number at the nozzle exit.

The following steps can be used to solve most one-dimensional compressible flow
problems.

1. Clearly identify the flow conditions:e.g., isentropic flow, constant stagnation
temperature, constant stagnation pressure, etc.

2. Use the flow condition relationships, tables, or software to determine the
Mach number at major locations in the flow field.

3. Once the Mach number is known at the principal flow locations, one can
proceed to use the flow relations, tables, or software to determine other flow
properties such as fluid velocity, pressure, and temperature.  This may
require the reduction of property ratios to the product of several ratios, as
was done with the area ratio in the above example to obtain the answer.
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Operation of Converging-Diverging Nozzles

A converging-diverging nozzle like that shown in Figure 3 can operate in several
different modes depending upon the ratio of the discharge and supply pressure

Pd/Ps.  These modes of operation are illustrated on the pressure ratio – axial
position diagram of Figure 3.

Figure 3

Mode (a) The flow is subsonic throughout the nozzle, supply, and discharge
chambers.  Without friction, this flow is also isentropic and the
isentropic flow equations may be used throughout the nozzle.

Mode (b) The flow is still subsonic and isentropic throughout the nozzle and
chambers.  The Mach number at the nozzle throat is now unity.
At the throat, the flow is sonic, the throat is choked, and the mass
flow rate through the nozzle has reached its upper limit.  Further
reductions in the discharge tank pressure will not increase the
mass flow rate any further.

Mode (c) A shock wave has now formed in the diverging section of the
nozzle.  The flow is subsonic before the throat, same as mode (b),
the throat is choked, same as mode (b), and the flow is supersonic
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and accelerating between the throat and just upstream of the shock.
The flow is isentropic between the supply tank and just upstream of
the shock.  The flow downstream of the shock is subsonic and
decelerating.  The flow is also isentropic downstream of the shock
to the discharge tank.  The flow is not isentropic across the shock.
Isentropic flow methods can be applied upstream and downstream
of the shock while normal shock methods are used to relate
conditions upstream to those downstream of the shock.

Mode (d) The normal shock is now located at the nozzle exit.  Isentropic flow
now exists throughout the nozzle.  The flow at the nozzle exit is
subsonic and adjusts to flow conditions in the discharge tank, not
the nozzle.  Isentropic flow methods can be applied throughout the
nozzle.

Mode (e) A series of two-dimensional shocks are established in the discharge
tank downstream of the nozzle.  These shocks serve to decelerate
the flow.  The flow is isentropic throughout the nozzle, same as
mode (d).

Mode (f) The pressure in the discharge tank equals the pressure predicted by
the supersonic solution of the nozzle isentropic flow equations.  The
pressure ratio is known as the supersonic design pressure ratio.
Flow is isentropic everywhere in the nozzle, same as mode (d) and
(e), and in the discharge tank.

Mode (g) A series of two-dimensional shocks are established in the discharge
tank downstream of the nozzle.  These shocks serve to decelerate
the flow.  The flow is isentropic throughout the nozzle, same as
modes (d), (e), and (f).

Review Example 9.9 of the textbook.
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Adiabatic, Constant Duct Area Compressible Flow with Friction

When compressible fluids flow through insulated, constant-area ducts, they are
subject to Moody-like pipe-friction which can be described by an average Darcy-
Weisbach friction factor f .  Application of the conservation of mass, momentum,
and energy principles as well as the ideal gas equation of state yields the following
set of working equations.

f  L*

D
= 1− Ma2

k Ma2 + k +1

2k
ln

k+ 1( )Ma 2

2 + k −1( ) Ma2

P
P* = 1

Ma
k +1( )

2 + k −1( ) Ma2

 
 
 

 
 
 

1 / 2

* = V *

V
= 1

Ma
2 + k −1( )Ma2

k +1
 
  

 
  

1 / 2

T
T * = a

a*2 = k +1( )
2 + k −1( ) Ma2

P
Po

* = o

o
* = 1

Ma
2 + k −1( ) Ma2

k +1
 
 
 

 
 
 

k+1( ) / 2 k−1( )[ ]

where the asterisk state is the sonic state at which the flow Mach number is one.
This state is the same throughout the duct and may be used to relate conditions at
one location in the duct to those at another location.  The length of the duct enters
these calculations by

f ∆L
D

= f  L*

D
 
  

 
  

1

− f  L*

D
 
  

 
  

2

Thus, given the length ∆L  of the duct and the Mach number at the duct entrance or
exit, the Mach number at the other end (or location) of the duct can be determined.
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Compressible Flow with Friction Example:

Air enters a 0.01-m-diameter duct ( f = 0.05) with Ma = 0.05.  The pressure and
temperature at the duct inlet are 1.5 MPa and 400 K.  What are the (a) Mach
number, (b) pressure, and (c) temperature in the duct 50 m from the entrance?

At the duct entrance, with f = 0.05, D = 0.01 m, and Ma = 0.05, we obtain

f L*

D
 
  

 
  

1

= 1− Ma2

k Ma2 + k +1
2k

ln
k +1( ) Ma2

2 + k −1( ) Ma2

 
 
 

 
 
 

1

f L*

D
 
  

 
  

1

= 1− 0.052

1.4 0.05( )2 + 2.4
2.8

ln
2.4( ) 0.052

2 + 0.4( )0.052

 
 
 

 
 
 

1

= 280

Then, at the duct exit we obtain

f L*

D
 
  

 
  

2

= f L*

D
 
  

 
  

1

− f ∆L
D

= 280 − 0.05( ) 50
0.01

= 30

We can not write for the duct exit that

f L*

D
 
  

 
  

2

= 30 = 1− Ma2

k Ma2 + k +1
2k

ln
k+ 1( ) Ma2

2 + k −1( ) Ma2

 
 
 

 
 
 

2

or

30 = 1− Ma2
2

1.4 Ma2
2 + 2.4

2.8
ln

2.4 Ma2
2

2 + 0.4 Ma2
2

The solution of the second of these equations gives answer (a) Ma2 = 0.145.
Writing the following expression for pressure ratios yields for (b),

P2 = P1

P2

P2
*

P2
*

P1
*

P1
*

P1
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P2 = 1.5( ) 1
Ma2

k +1( )
2 + k −1( ) Ma2

2

 

 
 

 

 
 

1 / 2

1( )Ma1

1
2 + k −1( ) Ma1

2

k +1
 
  

 
  

1 / 2

P2 = 1.5( ) 1
0.145

2.4
2+ 0.4( ) 0.1452

 
  

 
  

1 / 2

1( ) 0.05
1

2 + 0.4( ) 0.052

2.4
 
  

 
  

1 / 2

= 0.516

Application of the temperature ratios yields answer (c),

T2 = T1

T1
*

T1

T2
*

T1
*

T2

T2
* = 400

2 + k − 1( ) Ma1
2

2 + k −1( )Ma2
2 = 400

2 + 0.4( )0.052

2 + 0.4( )0.1452 = 399

This example demonstrates what happens when the flow at the inlet to the duct is
subsonic, the Mach number increases as the duct gets longer.  When the inlet flow
is supersonic, the Mach number decreases as the duct gets longer.  A plot of the
specific entropy of the fluid as a function of the duct Mach number (length) is
presented in Figure 4 for both subsonic and supersonic flow.

Figure 4

These results clearly illustrate that the Mach number in the duct approaches unity
as the length of the duct is increased.  Once the sonic condition exists at the duct
exit, the flow becomes choked.  This figure also demonstrates that the flow can
never proceed from subsonic to supersonic (or supersonic to subsonic) flow, as this
would result in a violation of the second law of thermodynamics.
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Other compressible flows in constant area ducts such as isothermal flow with
friction and frictionless flow with heat addition may be analyzed in a similar
manner using the equations appropriate to each flow.  Many of these flows
also demonstrate choking behavior.

Oblique Shock Waves

Bodies moving through a compressible fluid at speeds exceeding the speed of
sound create a shock system shaped like a cone.  The half-angle of this shock cone
is given by

= sin−1 1
Ma

 This angle is known as the Mach angle .  The interior of the shock cone is called
the zone of action.  Inside the zone of action, it is possible to hear any sounds
produced by the moving body.  Outside the Mach cone, in what is known as the
zone of silence, sounds produced by the moving body cannot be heard.

An oblique shock wave at angle  with respect to the approaching compressible
fluid whose Mach number is supersonic is shown in Figure 5.  Observe that the
streamlines (parallel to the velocity vector) have been turned by the deflection
angle  by passing through the oblique shock wave.

Figure 5
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This flow is readily analyzed by considering the normal velocity components
Vn1 = V1 sin and Vn2 = V2 sin −( ) and the tangential components

Vt1 and Vt2 .  Application of the momentum principle in the tangential
direction (along which there are no pressure changes) verifies that

12=ttVV
Vt1 = Vt2

By defining the normal Mach numbers as

Man1 = Vn1

a1

= Ma1 sin and Man2 = Vn 2

a2

= Ma2 sin −( )

The simultaneous solution of the conservation of mass, momentum, and energy
equations in the normal direction along with the ideal gas equation of state are the

same as those of the normal shock wave with Ma1 replaced with Man1 and Ma2

replaced with Man2.  In this way, all the results developed in the normal shock
wave section can be applied to two-dimensional oblique shock waves.

Oblique Shock Example:

A two-dimensional shock wave is created at the leading edge of an aircraft flying

at Ma = 1.6 through air at 70 kPa, 300 K.  If this oblique shock forms a 55o angle
with respect to the approaching air, what is (a) the Mach number of the flow after
the oblique shock (this is not the normal Mach number) and (b) the streamline
deflection angle ?

The velocity of the fluid upstream of the oblique shock wave is

V1 = Ma1 a1 = Ma1 k R T = 1.6 1.4( ) 287( ) 300( ) = 556m / s

whose components are

Vn1 = V1 sin = 556s in55= 455m / s

Vt1 = Vt2 = V1 cos = 556cos55= 319m / s
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The upstream normal Mach number is then

Man1 = Ma1 sin =1 .6 s in55= 1.311

and the downstream normal Mach number is

Man2 = k −1( )Man1
2 + 2

2k Man1
2 − k −1( )

 

 
 

 

 
 

1 / 2

= 0.4( ) 1.311( )2 + 2
2 1.4( ) 1.311( )2 − 0.4

 
 
 

 
 
 

1 / 2

= 0.780

and the downstream temperature is

T2 = T1 k − 1( )Man1
2 + 2[ ] 2 k Man1

2 − k −1( )
k +1( )2 Man1

2

 
 
 

 
 
 

T2 = 300 0.4( )1.3112 + 2[ ] 2 1.4( )1.3112 − 0.4
2.4( )21.3112

 
 
 

 
 
 

= 359 K

Now, the downstream normal velocity is

Vn2 = Man2 a2 = Man2 k R T2 = 0.780 1.4( ) 287( ) 359( ) = 296m / s

 and the downstream fluid velocity is

V2 = Vn2
2 + Vt 2

2 = 2962 + 3192 = 435m / s

and the downstream Mach number is

Ma2 = V2

a2

= 435
1.4( ) 287( ) 359( )

=1.15

According to the geometry of Figure 5,
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= − tan −1 Vn2

Vt2

= 55 − tan −1 296
319

=12.1

Other downstream properties can be calculated in the same way as the
downstream temperature by using the normal Mach numbers in the normal
shock relations.

Prandl-Meyer Expansion Waves

The preceding section demonstrated that when the streamlines of a supersonic flow
are turned into the direction of the flow an oblique compression shock wave is
formed.  Similarly, when the streamlines of a supersonic flow are turned away
from the direction of flow as illustrated in Figure 6, an expansion wave system is
established.  Unlike shock waves (either normal or oblique) which form a strong
discontinuity to change the flow conditions, expansion waves are a system of
infinitesimally weak waves distributed in such a manner as required to make the
required changes in the flow conditions.

Figure 6

The Mach waves that accomplish the turning of supersonic flows form an angle
with respect to the local flow velocity equal to the Mach angle = sin−1 1 /Ma( )
and are isentropic.  Application of the governing conservation equations and
equation of state to an infinitesimal turning of the supersonic flow yields
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− Ma( ) = Ma( ) = k +1
k −1

 
 

 
 

1 / 2

tan −1 k −1( ) Ma2 −1( )
k +1

 

 
 
 

 

 
 
 

1 / 2

− tan−1 Ma2 −1( )1 / 2

where Ma( ) is the Prandl-Meyer expansion function.  The overall change in the
flow angle as a supersonic flow undergoes a Prandl-Meyer expansion is then

∆ = Ma1( ) − Ma2( )
where 1 refers to the upstream condition and 2 refers to the downstream condition.

The flow through a Prandl-Meyer expansion fan is isentropic flow.  The
isentropic flow equations can then be used to relate the fluid properties
upstream and downstream of the expansion fan.

Example:

Air at 80 kPa, 300 K with a Mach number of 1.5 turns the sharp corner of an airfoil
as shown here.  Determine the angles of the initial and final Mach waves, and the
downstream pressure and temperature of this flow.

The initial angle between the flow velocity vector and the Prandtl-Meyer fan is the
Mach angle.

1 = sin−1 1
Ma1

= sin −1 1
1.5

= 41.80
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The upstream Prandtl-Meyer function is

Ma1( ) = k +1
k −1

 
 

 
 

1 / 2

tan −1 k −1( ) Ma1
2 −1( )

k +1

 

 
 

 

 
 

1 / 2

− tan−1 Ma1
2 −1( )1 / 2

Ma1( ) = 2.4
0.4

 
 

 
 

1 / 2

tan−1 0.4( ) 1.52 −1( )
2.4

 

 
 
 

 

 
 
 

1 / 2

− tan−1 1.52 − 1( )1 / 2

Ma1( ) =11.900

The downstream Prandtl-Meyer function is then

Ma2( ) = Ma1( ) − ∆ = 11.90 − 100 =1.900

Solving the Prandtl-Meyer function gives the downstream Mach number
Ma2 =1.13.  The downstream Mach angle is then 2 = 62.20 .  According to
the geometry of the above figure,

2 = 2 − ∆ = 62.20 −100 = 52.20

Since T0 and P0 remain constant, the isentropic flow relations yield

T2 = T1

T01

T1

T2

T02

= T1

1+ k −1
2

Ma1
2

1+ k −1
2

Ma2
2

= 300
1+ 0.2 1.5( )2

1+ 0.2 1.13( )
= 346K

P2 = P1

P01

P1

P2

P02

= P1

1+ k −1
2

Ma1
2

1+ k −1
2

Ma2
2

 

 

 
 
 

 

 

 
 
 

k / k−1( )

= 80
1+ 0.2 1.5( )2

1+ 0.2 1.13( )
 
 
 

 
 
 

3.5

=132 MPa

Students are encouraged to examine the flow visualization photographs in Ch 9.
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Ch. 10  Open-Channel Flow 
 

Previous internal flow analyses have considered only closed conduits where the 
fluid typically fills the entire conduit and may be either a liquid or a gas. 
 
This chapter considers only partially filled channels of liquid flow referred to as 
open-channel flow. 
 
Open-Channel Flow:  Flow of a liquid in a conduit with a free surface. 
 
Open-channel flow analysis basically results in the balance of gravity and friction 
forces. 
 
One Dimensional Approximation 
 
While open-channel flow can, in general, be very complex ( three dimensional and 
transient),  one common approximation in basic analyses is the 
 
One-D Approximation:   
The flow at any local cross 
section can be treated as 
uniform and at most varies 
only in the principal flow 
direction. 

 
 
This results in the following equations. 
 
Conservation of Mass (for ρ = constant) 
 

 Q  =  V(x) A(x)  =  constant 
 
Energy Equation 
 

 
V1

2

2 g
+ Z1 = V2

2

2g
+ Z2 + hf  
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The equation in this form is written between two points ( 1 – 2 ) on the free surface 
of the flow.  Note that along the free surface, the pressure is a constant, is equal to 
local atmospheric pressure, and does not contribute to the analysis with the energy 
equation. 
 
The friction head loss  hf  is analogous to the head loss term in duct flow, Ch. VI, 
and can be represented by 
 

h f = f x2 −x1

Dh

Vavg
2

2g
 

where   P = wetted perimeter 

Dh = hydraulic diameter = 
4A
P

 

 
Note:  One of the most commonly used formulas uses the hydraulic radius: 
 

Rh = 1
4

Dh = A
P

 

 
Flow Classification by Depth Variation 
 
The most common classification method is by rate of change of free-surface depth.  
The classes are summarized as 
 

1. Uniform flow (constant depth and slope) 
2. Varied flow 

a. Gradually varied (one-dimensional) 
b. Rapidly varied (multidimensional) 
 

Flow Classification by Froude Number: Surface Wave Speed 
 
A second classification method is by the dimensionless Froude number, which is a 
dimensionless surface wave speed.  For a rectangular or very wide channel we 
have 
 

Fr = V
co

= V
gy( )1/2  where   y is the water depth 

and       co = the speed of a surface wave as the wave height approaches zero.   
 
There are three flow regimes of incompressible flow. These have analogous flow 
regimes in compressible flow as shown below: 
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Incompressible Flow Compressible Flow 

Fr < 1  subcritical flow 
Fr = 1 critical flow 
Fr > 1 supercritical flow 

Ma < 1 subsonic flow 
Ma = 1 sonic flow 
Ma > 1 supersonic flow 

  
 
Hydraulic Jump 
 
Analogous to a normal shock in compressible flow, a hydraulic jump provides a 
mechanism by which an incompressible flow, once having accelerated to the 
supercritical regime, can return to subcritical flow.  This is illustrated by the 
following figure. 
 

 
Fig. 10.5  Flow under a sluice gate accelerates from subcritical to critical to 

supercritical and then jumps back to subcritical flow. 
 

The critical depth  yc = Q
b2g
 
  

 
  

1/3

 is an important parameter in open-

channel flow and is used to determine the local flow regime (Sec. 10.4). 
 
Uniform Flow;  the Chezy Formula 
 
Uniform flow 1.  Occurs in long straight runs of constant slope 

2.  The velocity is constant with V = Vo 
3.  Slope is constant with  So  = tan θ 
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From the energy equation with  V1  =  V2  =  Vo, we have 
 
 h f = Z1 − Z2 = SoL  
 
Since the flow is fully developed, we can write from Ch. VI 
 

 h f = f L
Dh

Vo
2

2g
 and Vo = 8g

f
 
 

 
 

1/2

Rh
1/2So

1/2  

 

For fully developed, uniform flow, the quantity  
8g
f

 
 

 
 

1/2

is a constant 

and can be denoted by  C.  The equations for velocity and flow rate 
thus become 
 

Vo = C Rh
1/2 So

1/2 and Q = CA Rh
1/2 So

1/2  
 
The quantity C is called the  Chezy coefficient, and varies from 60 ft1/2/s for small 
rough channels to 160 ft1/2/s for large rough channels (30 to 90 m1/2/s in  SI). 
 
The Manning Roughness Correlation 
 
The friction factor   f   in the Chezy equations can be obtained from the Moody 
chart of Ch. VI.  However, since most flows can be considered fully rough, it is 
appropriate to use Eqn 6.64: 
 

 fully rough flow:     f ≈ 2.0 log 3.7Dh

ε
 
 

 
 

−2

 

 
However, most engineers use a simple correlation by Robert Manning: 
 

 S.I. Units Vo m/s( ) ≈ α
n

Rh m( )[ ]2/3 So
1/2  

 

 B.G. Units Vo ft/s( ) ≈ α
n

Rh ft( )[ ]2/3 So
1/2  
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where   n   is a roughness parameter given in Table 10.1 and is the same in both 
systems of units and α is a dimensional constant equal to 1.0 in S.I. units and 1.486 
in B.G. units.  The volume flow rate is then given by 
 
 

 Uniform flow Q = Vo A ≈ α
n

A Rh
2/3 So

1/2  

 
 
 Table 10.1  Experimental Values for Manning’s    n   Factor 
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Example 10.1 
 
Given: 
Rectangular channel, 
finished concrete, slope = 0.5˚ 
water depth: y = 4 ft, width: b = 8 ft 
Find: 
Volume flow rate (ft3/s) 
 

 

4 ft

8 ft

cross-section

 

θ  
 
For the given conditions:      n = 0.012 So = tan 0.5˚  =  0.0873 
 
 A =  b y  =  (8 ft) (4 ft)  =  32 ft2 P  =  b  +  2 y  =  8  +  2 (4) = 16 ft 
 

 Rh = A
P

= 32 ft2

16 ft
= 2 ft Dh = 4 Rh = 8ft  

 
Using Manning’s formula in BG units, we obtain for the flow rate 
 

Q ≈ 1.486
0.012

32ft2( ) 2ft( )2/3 0.00873( )1.2 ≈ 590 ft3/s    ans. 

 
 
Alternative Problem 
 
The previous uniform problem can also be formulated where the volume flow rate 
Q  is given and the fluid depth is unknown.  For these conditions, the same basic 
equations are used and the area A and hydraulic radius Rh are expressed in terms 
of the unknown water depth  yn.   
 
The solution is then obtained using iterative or systematic trial and error techniques 
that are available in several math analysis/ math solver packages such as EES 
(provided with the text) or Mathcad ®.   
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Uniform Flow in a Partly Full, Circular Pipe 
 

Fig. 10.6 shows a partly full, circular 
pipe with uniform flow.  Since 
frictional resistance increases with 
wetted perimeter, but volume flow 
rate increases with cross sectional 
flow area, 
 
the maximum velocity and flow rate 
occur before the pipe is completely 
full. 
 
For this condition, the geometric 
properties of the flow are given by the 
equations below. 

 
Fig. 10.6 Uniform Flow in a Partly Full, 

Circular Channel 
 
 

A = R2 θ − sin2θ
2

 
 

 
  P = 2Rθ  Rh = R

2
1− sin2θ

2θ
 
  

 
  

 

 
 
The previous Manning formulas are used to predict Vo and Q for uniform flow 
when the above expressions are substituted for A, P, and Rh.   
 
 

Vo ≈ α
n

R
2

1− sin2θ
2θ

 
  

 
  

 

 
 

 

 
 

2 /3

So
1/2  Q = Vo R2 θ −sin2θ

2
 
 

 
  

 
 
These equations have respective maxima for Vo and Q  given by 
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Vmax = 0.718α
n

R2/3 So
1/2 at θ =128.73Þ and y = 0.813 D 

Qmax = 2.129α
n

R8/3 So
1/2 at θ = 151.21Þ and y = 0.938 D 

 
Efficient Uniform Flow Channels 
 
A common problem in channel flow is 
that of finding the most efficient low-
resistance sections for given conditions. 
This is typically obtained by maximizing 
Rh for a given  area and flow rate.  This 
is the same as minimizing the wetted 
perimeter. 

 

 

Note:  Minimizing the wetted perimeter for a given flow should minimize the 
frictional pressure drop per unit length for a given flow. 

 
It is shown in the text that for constant value of area A and  α = cot θ,   the 
minimum value of  wetted perimeter is obtained for  
 

A = y2 2 1+α 2( )1/ 2
−α[ ] P = 4 y 1+α 2( )1/ 2

− 2α y Rh = 1
2

y  

 
Note:  For any trapezoid angle, the most efficient cross section occurs when the 
hydraulic radius is one-half the depth. 
 
For the special case of a rectangle (a = 0, q = 90˚),  the most efficient cross section 
occurs with 
 

A = 2y2  P = 4 y Rh = 1
2

y  b = 2y  
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Best Trapezoid Angle 
 
The general equations listed previously are valid for any value of α.   For a given, 
fixed value of area A and depth y the best trapezoid angle is given by 
 

 1/2
1= cot =

3
orα θ θα θ θα θ θα θ θ ==== 60o 

 
Example 10.3 
What are the best dimensions for a rectangular brick channel designed to carry 5 
m3/s of water in uniform flow with So = 0.001? 
 

Taking n = 0.015 from Table 10.1,    A  =  2 y2 ,  and  Rh = 1/2 y ; Manning’s 
formula is written as 
 

Q ≈ 1.0
n

A Rh
2/3 So

1/2 or 5 m3 / s = 1.0
0.015

2 y2( ) 1
2

y 
 

 
 

2 / 3

0.001( )1/ 2  

 
This can be solved to obtain 
 

y8/ 3 =1.882 m8 / 3 or y = 1.27m  
 
The corresponding area and width are 
 

A = 2y2 = 3.21m2 and b = A
y

= 2.53m  

Note:  The text compares these results with those for two other geometries having 
the same area. 
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Specific Energy:  Critical Depth 
 

One useful parameter in channel 
flow is the specific energy E, 
where  y is the local water depth. 
 
Defining a flow per unit channel 
width as    q  =  Q/b    we write 

E = y + V2

2 g
 

 

E = y + q2

2 g y2  

 
Fig. 10.8b is a plot of 
the water depth  y  vs. 
the specific energy E. 
 
The water depth for 
which E is a minimum 
is referred to as the 
critical depth  yc. 
 

 
Fig. 10.8  Specific Energy Illustration 

 

Emin  occurs at y = yc = q2

g
 
  

 
  

1/3

= Q2

b2 g
 
  

 
  

1/3

 

 

The value of   Emin   is given by   Emin = 3
2

yc  

 
At this value of minimum energy and minimum depth we can write 
 

Vc = gyc( )1/2 = Co and Fr =1 
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Depending on the value of Emin and V, one of several flow conditions can exist. 
 
For a given flow, if 
 

E   <   Emin 

E   =   Emin 

E   >   Emin  , V  <  Vc 

 

E   >   Emin  ,  V  >  Vc 

No solution is possible 

Flow is critical, y = yc, V = Vc 

Flow is subcritical, y > yc ,disturbances can 
propagate upstream as well as downstream 

Flow is supercritical, y < yc , disturbances can 
only propagate downstream within a wave angle 
given by 

 µ = sin-1 Co

V
= sin-1 g y( )1/ 2

V
 

 
Nonrectangular Channels 
 
For flows where the local channel width varies with depth y, critical values can be 
expressed as 
 

 Ac = bo Q2

g
 
  

 
  

1/3

   and Vc = Q
Ac

= g Ac

bo

 
  

 
  

1/2

 

where bo = channel width at the free surface. 
 
These equations must be solved iteratively to determine the critical area  Ac  and 
critical velocity  Vc. 
 
For critical channel flow that is also moving with constant depth (yc), the slope 
corresponds to a critical slope  Sc  given by 
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Sc = n2 gAc

α 2 bo Rh, c

        and       α = 1. for S I units and 2.208 for B. G. units 

 
Example 10.5 
Given:  a 50˚, triangular channel has a 
flow rate of Q = 16 m3/s.  

Compute:  (a) yc,   (b)  Vc,   

  (c)    Sc  for n = 0.018  

a.  For the given geometry, we have 
 
 P = 2 ( y csc 50˚) A = 2[y (1/2 y cot 50̊)]  

 Rh = A/P = y/2  cos 50˚ bo = 2 ( y cot 50˚) 
 
For critical flow, we can write 

   g Ac
3 = bo Q2 or g yc

2 cot 50Þ( )= 2 yc cot 50Þ( )Q2  
 

 yc = 2.37 m   ans. 
 

b.  With yc, we compute   

 Pc = 6.18 m Ac = 4.70 m2  bo,c = 3.97 m 
 

The critical velocity is now   Vc = Q
A

= 16 m3 / s
4.70m

= 3.41 m / s     ans. 

c.  With n = 0.018, we compute the critical slope as 

Sc = g n2 P
α 2 bo Rh

1/3 = 9.81 0.018( )2 6.18( )
1.02 3.97( ) 0.76( )1 /3 = 0.0542  
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Frictionless Flow over a Bump 
 
Frictionless flow over a bump 
provides a second interesting 
analogy,  that of  compressible 
gas flow in a nozzle. 
 
The flow can either increase or 
decrease in depth depending on 
whether the initial flow is 
subcritical or supercritical.   
 
The height of the bump can also 
change the results of the 
downstream flow. 

 
Fig. 10.9 Frictionless, 2-D flow over a bump 

 
Writing the continuity and energy equations for two dimensional, frictionless flow 
between sections 1 and 2 in Fig. 10.10, we have 
 

V1 y1 = V2 y2 and V1
2

2g
+ y1 = V2

2

2g
+ y2 + ∆h  

Eliminating V2, we obtain 
 

y2
3 − E2 y2

2 + V1
2 y1

2

2 g
= 0 where E2 = V1

2

2g
+ y1 − ∆ h 

 
The problem has the following solutions depending on the initial flow condition 
and the height of the jump: 
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Key Points: 

1. The specific energy E2 is exactly  ∆h less than the approach energy E1. 
2. Point 2 will lie on the same leg of the curve as point 1. 
3. For Fr < 1, subcritical 

approach 
4. For Fr > 1, supercritical 

approach 
5. For bump height equal to 

∆hmax = E1 - Ec 

6. For ∆h  > ∆hmax 

The water level will decrease at the bump.  Flow 
at point 2 will be subcritical. 
The water level will increase at the bump.  Flow at 
point 2 will be supercritical. 
Flow at the crest will be exactly critical (Fr =1). 
 
No physically correct, frictionless solutions are 
possible. Instead, the channel will choke and 
typically result in a hydraulic jump. 

 
Flow under a Sluice Gate 
A sluice gate is a bottom opening in a wall as shown below in Fig. 10.10a.  For 
free discharge through the gap, the flow smoothly accelerates to critical flow near 
the gap and the supercritical flow downstream. 
 

 
Fig. 10.10 Flow under a sluice gate 

 
This is analogous to the compressible flow through a converging-diverging nozzle.  
For a free discharge, we can neglect friction. Since this flow has no bump (∆h = 0) 
and E1 = E2, we can write 
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y2
3 − V1

2

2g
+ y1

 
  

 
  

y2
2 + V1

2 y1
2

2g
= 0  

 
This equation has the following possible solutions. 
 
Subcritical upstream flow 
and low to moderate 
tailwater (downstream 
water level) 
 
Subcritical upstream flow 
and high tailwater 

One positive, real solution.  Supercritical flow at y2 
with the same specific energy E2 = E1.  Flow rate 
varies as y2/y1.  Maximum flow is obtained for  
y2/y1 = 2/3. 
The sluice gate is drowned or partially drowned 
(analogous to a choked condition in compressible 
flow).  Energy dissipation will occur downstream in 
the form of a hydraulic jump and the flow 
downstream will be subcritical. 

 
The Hydraulic Jump 
 
The hydraulic jump is an irreversible, 
frictional dissipation of energy which 
provides a mechanism for super-
critical flow to transition (jump) to 
subcritical flow analogous to  a 
normal shock in compressible flow. 

 
 
 
 
The development of the theory is equivalent to that for a strong fixed wave (Sec 
10.1) and is summarized for a hydraulic jump in the following section. 
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Theory for a Hydraulic Jump 
 
If we apply the continuity and momentum equations between points 1 and 2 across 
a hydraulic  jump, we obtain 
 

2 y2

y1

= −1 + 1+ 8 Fr1
2( )1 /2

 which can be solved for y2. 

 

We obtain V2 from continuity:  V2 = V1 y1

y2

 

 
The dissipation head loss is obtained from the energy equation as 
 

hf = E1 − E2 = V1
2

2 g
+ y1

 
  

 
  

− V2
2

2g
+ y2

 
  

 
  

 

or 

hf =
y2 − y1( )3

4 y1 y2

 

Key points: 

 1. Since the dissipation loss must be positive, y2 must be >  y1. 

 2. The initial Froude number Fr1 must be > 1 (supercritical flow). 

 3. The downstream flow must be subcritical and V2 < V1. 
 

 
Example 10.7 

Water flows in a wide channel at q = 10 m3/(s m) and y1 = 1.25 m. If the flow 
undergoes a hydraulic jump, compute:  (a) y2, (b) V2, (c) Fr2, (d) hf, (e) the 
percentage dissipation, (f)  power dissipated/unit width, and (g) temperature rise. 
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a.  The upstream velocity is V1 = q
y1

=
10 m3 / s ⋅m( )

1.25 m
= 8.0 m / s 

 

      The upstream Froude number is Fr1 = V1

g y1( )1/ 2 = 8.0
9.81 1.25( )[ ]1/ 2 = 2.285 

 

This is a weak jump and y2 is given by 
2 y2

y1

= −1 + 1+ 8 2.285( )2( )1/ 2
= 5.54 

and 
y2 =1 / 2 y1 5.54( ) = 3.46 m  

 

b.  The downstream velocity is  V2 = V1 y1

y2

= 8.0 1.25( )
3.46

= 2.89 m / s  

 
c.  The downstream Froude number is 
 

Fr2 = V2

g y2( )1/ 2 = 2.89
9.81 3.46( )[ ]1/ 2 = 0.496 

and Fr2 is subcritical as expected. 
 
d.  The dissipation loss is given by   

hf =
y2 − y1( )3

4 y1 y2

=
3.46 −1.25( )3

4 3.46( ) 1.25( )
= 0.625 m  

 

e.  The percentage dissipation is the ratio of  hf/E1. 
 

E1 = V1
2

2 g
+ y1 =1.25 + 8.02

2 9.81( )
= 4.51m  
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The percentage loss is thus given by   

% Loss =
hf

E1

100 = 0.625
4.51

100 = 14% 

 
f. The power dissipated per unit width is 
 

Power  = ρ Q g hf  =  9800 M/m3*10 m3/(s m) * 0.625 m  =  61.3 kw/m 

 

g.  Using Cp = 4200 J/kg K, the temperature rise is given by 
 

pPower dissipated mC T= ∆= ∆= ∆= ∆&  

or 
61,300 W/m  =  10,000 kg/s m * 4200 J/kg K* ∆T 

 
∆T  =  0.0015˚K 

negligible temperature rise 
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 XI.  Turbomachinery 
 
This chapter considers the theory and performance characteristics of the 
mechanical devices associated with the fluid circulation. 
 
General Classification: 
 
Turbomachine -  A device which adds or extracts energy from a fluid. 
 
 Adds energy: Pump 
 Extracts energy: Turbine 
 
In this context, a pump is a generic classification that includes any device 
that adds energy to a fluid, e.g. fans, blowers, compressors. 
 
We can classify pumps by operating concept: 
 

1. Positive displacement 
2. Dynamic (momentum change) 

 
General Performance Characteristics 

 
Positive Displacement Pumps 
1. Delivers pulsating or periodic flow (cavity opens, fluid enters, cavity 

closes, decreasing volume forces fluid out exit opening. 
2. Not sensitive to wide viscosity changes. 
3. Delivers a moderate flow rate. 
4. Produces a high pressure rise. 
5. Small range of flow rate operation (fixed pump speed). 
Dynamic Pumps 
1. Typically higher flow rates than PD’s. 
2. Comparatively steady discharge. 
3. Moderate to low pressure rise. 
4. Large range of flow rate operation. 
5. Very sensitive to fluid viscosity. 
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Typical Performance Curves (at fixed impeller speed) 
 

 
Fig. 11.2  Performance curves for dynamic and positive 

displacement pumps 
 
Centrifugal Pumps  
Most common turbomachine used in industry.  Includes the general 
categories of (a) liquid pumps, (b) fans, (c) blowers, etc. 
 
They are momentum change devices and thus fall within the dynamic 
classification. 
 
Typical schematic shown as 
 

 
Fig. 11.3  Cutaway schematic of a typical centrifugal pump 
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Writing the energy equation across the device and solving for hp – hf ,we 
have 
 

H = hp − hf = P2 − P1

ρ g
+ V2

2 − V1
2

2 g
+ Z2 − Z1 

 
where  H is the net useful head delivered to the fluid, the head that results in 
pressure, velocity, and static elevation change. 
 

Since for most pumps (not all),  V1 = V2  and  ∆Z  is small, we can write 
 

H ≅ ∆ P
ρg

 
Since friction losses have already been subtracted, this is 
the ideal head delivered to the fluid.  Note that velocity 
head has been neglected and can be significant at large 
flow rates where pressure head is small. 

 
The ideal power to the fluid is given 
by 

Pw = ρ Q g H 

 
 
The pump efficiency is given by η = Pw

BHP
= ρQ g H

BHP
= ρQ gH

ω T
 

 
where   BHP = shaft power necessary to drive the pump 
 ω  =  angular speed of shaft 
 T = torque delivered to pump shaft 
 
Note that from the efficiency equation, pump efficiency is zero  at zero flow 

rate Q and at zero pump head,H. 
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Basic Pump Theory 
 
Development of basic pump theory begins with application of the integral 
conservation equation for moment-of-momentum previously presented in Ch. III. 
 
Applying this equation to a centrifugal pump with one inlet,  one exit, and uniform 
properties at each inlet and exit, we obtain 
 

e iT r x V r x Ve im m= −= −= −= −& &  

 
where T    is the shaft torque needed to drive the pump 

 V i , V e   are the absolute velocities at the inlet and exit of the pump 

 
This is used to determine the change of angular momentum across the device. 
 

 
Fig. 11.4  Inlet and exit velocity diagrams for an idealized impeller 

 
Since the velocity diagram is key to the analysis of the device,  we will discuss the 
elements in detail. 
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1. At the inner radius r1 have two velocity components: 

a. the circumferential velocity due to the 
impeller rotation 

u1 = r1 ω  blade tip speed at inner radius 

b. relative flow velocity tangent to the 
blade 
w1  tangent to the blade angle   β1 

These combine to yield the absolute inlet 
velocity  V1  at angle  α1 

 

u1

w1 V1

Vn1

Vt1

α1
β1

 

 
The absolute velocity can be resolved into two absolute velocity components: 
 
1. Normal ( radial ) component: 
 
Vn1 = V1 sinα1 = w1 sin β1 Note that for ideal pump design,  

Vn1 = V1 and α 1 = 90o  
 
2. Absolute tangential velocity: 
 
Vt1 = V1 cosα 1 = u1 - w1 cos β1 again, ideally  Vt1 = 0  

 
It is also important to note that  Vn1   is use to determine the inlet flow rate, i.e.,  
 

Q = A1Vn1 = 2π r1 b1 Vn1  

 

where   b1   is the inlet blade width 
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Likewise for the outer radius r2  we have the following: 

a. the circumferential velocity due to the 
impeller rotation 

u2 = r2 ω  blade tip speed at outer radius 

b. relative flow velocity tangent to the 
blade 
w2  tangent to the blade angle   β2 

These again combine to yield the absolute 
outlet velocity  V2  at angle  α2 

 

u2

w2
V2

Vt2

α2
β2

Vn2

 

 
The exit absolute velocity can also be resolved into two absolute velocity 

components: 
 

1. Normal ( radial ) component: 
 

Vn2 = V2 sinα 2 = w2 sin β2 = Q
2π r2 b2

 
Note that Q is the same as for the 
inlet flow rate 

 
2. Absolute tangential velocity: 
 

Vt 2 = V2 cosα 2 = u2 - w2 cos β2  
 

Vt 2 = u2 -
Vn2

tan β2
= u2 - Q

2π r2 b2 tan β2
 

 

where         Q = A1Vn1 = 2π r1 b1 Vn1 = A2Vn2 = 2π r2 b2 Vn2  
 
Again,  each of the above expressions follows easily from the velocity diagram, 
and the student should draw and use the diagram with each pump theory 
problem.  
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We can now apply moment - of – momentum equation. 
 

 T = ρQ r2 *Vt2 − r1 * Vt1{ }    (again  Vt1 is zero for the ideal design) 

 

For a sign convention, we have assumed that Vt1  and Vt2  are positive in the 
direction of impeller rotation. 
 
The “ ideal” power supplied to the fluid is given by 
 

Pw = ωT = ρQ ω r2 Vt2 − ωr1 Vt1{ }  

or 

Pw = ωT = ρQ u2 Vt2 − u1 Vt1{ } = ρ Qg H 

 
Since these are ideal values, the shaft power required to drive a non-ideal pump 
is given by 

BHP = Pw

ηp
 

 
The head delivered to the fluid is 

H =
ρQ u2 Vt2

− u1 Vt1{ }
ρQ g

=
u2 Vt 2

− u1 Vt1{ }
g

 

 

For the special case of purely radial inlet flow 
 

H* =
u2 Vt 2

g
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From the exit velocity diagram, substituting for Vt2 we can show that 
 

H = u2
2

g
− ωQ

2πb2 g tan β2
 has the form   C1  -  C2 Q 

 

where: C1  =   
u2

2

g
 

shutoff head, the head produced at zero flow, Q = 0 

 

Example: 

A centrifugal water pump operates at the following conditions: 
speed = 1440 rpm,  r1 = 4 in, r2 = 7 in,  β1 = 30o, β2 = 20o, b1 = b2 = 1.75 in 

Assuming the inlet flow enters normal to the impeller (zero absolute tangential 
velocity): 
find:  (a) Q, (b)  T, (c) Wp, (d) hp, (e) ∆P 
 

ω = 1440 rev
min

2π
60

= 150.8 rad
s

 

Calculate blade tip velocities: 
 

u1 = r1 ω = 4
12

ft150.8 rad
s

= 50.3 ft
s

 

 

u2 = r2 ω = 7
12

ft150.8 rad
s

= 88 ft
s

 

 

Since design is ideal, at inlet 

α1 = 90o,    Vt1 = 0 

Vn1 = U1 tan 300 = 50.3 tan 30o = 29.04 ft/s 

Q = 2π r1 b1 Vn1  
30Þ 30Þ90Þ

V   =  V1 1n
w1

u1r1
•  
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Q = 2π 4
12

ft1.75 ft 29.04 ft
s

= 8.87 ft3

s
 

Q = 8.87 ft3

s
60 s

min
7.48 gal

ft3 = 3981 gal
min

 
 
Repeat for the outlet: 
 

Vn2 = Q
2π r2 b2

=
8.87 ft3

s
2π 7

12
ft 1.75

12
ft

 

Vn2 =16.6 ft
s

 

w2 =
Vn2

sin 20o = 16.6 ft/s
sin 20o = 48.54 ft

s
 

20Þ 20Þ
u2r2

•

w2
V2

α2

 

 
 

Vt 2
= u2 - w2 cos β2 = 88 − 48.54 cos20o = 42.4 ft

s
 

 
We are now able to determine the pump performance parameters.  Since for the 
centrifugal pump, the moment arm  r1  at the inlet is zero, the momentum equation 
becomes 
 
Ideal moment of momentum delivered to the fluid: 

T = ρQ r2 *Vt2{ } = 1.938slug
ft3 8.87 ft3

s
7

12
ft 42.4 ft

s
= 425.1ft − lbf  

 
Ideal power delivered to the fluid: 

P = ωT = 150.8 rad
s

425.1ft − lbf = 64,103ft − lbf
s

=116.5hp   
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Head produced by the pump (ideal): 
 

H = P
ρ gQ

= 64,103 ft − lbf/s

62.4 lbf
ft3 8.87 ft3

s

= 115.9 ft  

 

Pressure increase produced by the pump: 
 

∆ P = ρgH = 62.4 ft3

s
115.9 ft = 7226 psf = 50.2 psi  

 

Pump Performance Curves and Similarity Laws 

 

Pump performance results are typically obtained from an experimental test of the 
given pump and are presented graphically for each performance parameter. 

 
•  Basic independent variable  - Q {usually  gpm   or  cfm } 
 
•  Dependent variables typically 

 H      – head pressure rise, in some cases ∆P 
 BHP – input power requirements (motor size) 
 η      – pump efficiency 

•  These typically presented at fixed pump speed and impeller diameter 
 

Typical performance curves appear as 
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Fig. 11.6  Typical Centrifugal Pump Performance Curves 

at Fixed Pump Speed and diameter 
 

These curves are observed to have the following characteristics: 

1. hp is approximately constant at low flow rate. 

2. hp = 0 at Qmax. 
3. BHP  is not equal to 0 at Q = 0. 
4. BHP increases monotonically with the increase in Q. 
5. ηp = 0 at Q = 0  and at Qmax. 
6. Maximum pump efficiency occurs at approximately  Q* = 0.6 Qmax .  This 

is the best efficiency point BEP.  At any other operating point, efficiency is 
less, pump head can be higher or lower, and BHP can be higher or lower. 

7. At the BEP,    Q = Q*, hp = hp*,  BHP = BHP*. 
 

Measured Performance Data 
Actual pump performance data will typically be presented graphically as shown in  
Fig. 11.7.  Each graph will usually have curves representing the pump head vs flow 
rate for two or more impeller diameters for a given class/model of pumps having a 
similar design.  The graphs will also show curves of constant efficiency and 
constant pump power (BHP) for the impeller diameters shown.  All curves will be 
for a fixed pump impeller speed. 
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Fig. 11.7  Measured performance curves for two models of a centrifugal 

water pump 
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How to Read Pump Performance Curves 
Care must be taken to correctly read the performance data from pump curves.  This 
should be done as follows: 

(1) For a given flow rate  Q 
(2) Read vertically to a point on the pump head curve h for the impeller 

diameter  D  of interest. 
(3) All remaining parameters ( efficiency & BHP) are read at this point; i.e., 

graphically interpolate between adjacent curves for BHP to obtain the pump 
power at this point. 

Note that the resulting values are valid only for the conditions of these curves: 
(1) pump model and design, (2) pump speed – N, (3) impeller size – D, (4) fluid 
(typically water) 
 
Thus for the pump shown in Fig. 11.7a with an impeller diameter D = 32 in, we 
obtain the following performance at Q = 20,000 gpm: 

 
Q = 20,000 gpm, D = 32 in, N = 1170 rpm  

H ≅  385 ft, BHP ≅  2300 bhp,  ηp ≅  86.3 % 
 

Note that points that are not on an h vs. Q curve are not valid operating points. 
Thus for Fig. 11.7b, the conditions 

 
Q = 22,000 gpm, BHP = 1500 bhp, hp = 250 ft  

 
do not correspond to a valid operating point because they do not fall on one of the 
given impeller diameter curves.  However, for the same figure, the point 

 
Q = 20,000 gpm, BHP = 1250 bhp  

 
is a valid  point because it coincidentally also falls on the D = 38 in impeller curve 
at  hp = 227 ft. 
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Net Positive Suction Head - NPH 
 
One additional parameter is typically shown on pump performance curves: 
 
NPSH  =  head required at the pump inlet to keep the fluid from cavitating. 
 
NPSH is defined as follows: 
 

NPSH = Pi

ρg
+ Vi

2

2g
− Pv

ρg
 

 

where   Pi = pump inlet pressure 
 Pv = vapor pressure of fluid 
 
Considering the adjacent figure, 
write the energy equation between 
the fluid surface and the pump 
inlet to obtain the following: z=0

zi
Pi

Pa

Pump inlet

 
 

 
 

NPSH = Pi

ρg
+ Vi

2

2g
− Pv

ρg
= Pa

ρg
− Zi − hf,a−i − Pv

ρg
 

 
For a pump installation with this configuration to operate as intended, the right-
hand-side of the above equation must be   >   the NPSH value for the operating 
flow rate for the pump. 
 
Example: 
 
A water supply tank and pump are connected 
as shown.  Pa = 13.6 psia and the water is at 
20 o C with Pv = 0.34 psia.  The system has a 
friction loss of 4.34 ft.  Will the NPSH of the 
pump of Fig. 11.7a at 20,000 gpm work? 

10 ft

i

a
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Applying the previous equation we obtain 
 

NPSH = Pa

ρg
− Zi − hf,a−i − Pv

ρg
 

 

NPSH =
13.6−0.34( ) lbf/in2 *144 in2 /ft2

62.4 lbf/ft3 − −10 ft( ) − 4.34 ft  

 
NPSH = 36.26 ft      The pump will work because the system NPSH as shown in 

Fig. 11.7a is 30 ft which provides a 6.3 ft safety margin.  
Conversely, the pump could be located as close as 3.7 ft 
below the water surface and meet NPSH requirements. 

 
 
Pump Similarity Laws 
 
Application of the dimensional analysis procedures of Ch. V will yield the 
following three dimensionless performance parameters: 
 

Dimensionless flow coefficient: CQ = Q
ω D3  

 

Dimensionless head coefficient: CH = gH
ω2 D2  

 

Dimensionless power coefficient: CP = BHP
ρω3 D5  

 
where  ω  is the pump speed in radians/time and other symbols are standard design 
and operating parameters with units that make the coefficients dimensionless. 
 
How are these used? 
 
These terms can be used to estimate design and performance changes between two 
pumps of similar design. 
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Stated in another way: 
 
If pumps 1 and 2 are from the same geometric design family and are operating at 
similar operating conditions,  the flow rates, pump head, and pump power for the 
two pumps will be related according to the following expressions: 
 
 

Q2

Q1
= N2

N1

D2

D1

 
  

 
  

3

 

 

H2

H1
= N2

N1

 
  

 
  

2
D2

D1

 
  

 
  

2

 

 

BHP2

BHP1
= ρ2

ρ1

 
  

 
  

N2

N1

 
  

 
  

3
D2

D1

 
  

 
  

5

 
 

Use to predict the new flow rate for a design 
change in pump speed N and impeller 
diameter D. 
 
Used to predict the new pump head H for a 
design change in pump speed, N and 
impeller diameter D. 
 
Used to predict the new pump power BHP 
for a design change in fluid, ρ, pump speed 
N and impeller diameter D. 

 
 
Example 
 
It is desired to modify the operating 
conditions for the 38 in diameter 
impeller pump of Fig. 11.7b to a 
new pump speed of 900 rpm and a 
larger impeller diameter of 40 in. 
 
Determine the new pump head and 
power for the new pump speed at 
the BEP. 

Q(gpm)

H(ft)

BEP 2

BEP1

•

•
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For the D = 38 in impeller of Fig. 11.7b operating at 710 rpm,  we read the best 
efficiency point (BEP) values as 
 

Q* = 20,000 gpm,   H* = 225 ft,   BHP * = 1250 hp 
 
 
Applying the similarity laws for N2 = 900 rpm and D2 = D1 = 38 in, we obtain 
 

Q2

Q1
= N2

N1

D2

D1

 
  

 
  

3

= 900
710

40
38
 
 

 
 

3

= 1.478     

 
 Q2  = 20,000*1.478 = 29,570 gpm ans. 
 

H2

H1
= N2

N1

 
  

 
  

2
D2

D1

 
  

 
  

2

= 900
710
 
 

 
 

2 40
38
 
 

 
 

2

=1.78 

 
 H2 = 225*1.78 = 400.5 ft ans. 
 

BHP2

BHP1
= ρ2

ρ1

 
  

 
  

N2

N1

 
  

 
  

3
D2

D1

 
  

 
  

5

= 1( ) 900
710
 
 

 
 

3 40
38
 
 

 
 

5

= 2.632
 

 
 BHP2 = 3290 hp ans. 
 
 
Thus, even small changes in the speed and size of a pump can result in significant 
changes in flow rate, head, and power. 
 
It is noted that every point on the original 38 in diameter performance curve 
exhibits a similar translation to a new operating condition. 
 
The similarity laws are obviously useful to predict changes in the performance 
characteristics of an existing pump or to estimate the performance of a modified 
pump design prior to the construction of a prototype. 
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Matching a Pump to System Characteristics 
 
The typical design/sizing requirement for a pump is to select a pump which has a 
pump head which matches the required system head at the design/operating flow 
rate for the piping system. 
 
 

Key Point 
 

hp  =  hsys  at  Qdes. 
 

 
It is noted that pump selection should occur such that the operating point of the 
selected pump should occur on the pump curve near or at the BEP. 
 
From the energy equation in Ch. VI, the system head is typically expressed as 
 

hsys = P2 −P1
ρg

+ V2
2 −V1

2

2g
+ Z2 − Z1 + f L

D
+ ∑Ki

  
 

  
 

V
2g

2
 

 
Thus the selection of a pump for a  
piping system design should result in 
 a pump for which the pump head  
hp at the design flow rate Qdes is  
equal ( or very close) to the head  
requirements  hsys of the piping  
system at the same flow rate, and this 
 should occur at or near the point of 
maximum efficiency for the chosen 
pump. 

Q(gpm)

•

Qdes

Hdes

hp

hsys

p
η

 

 
Other operating and performance requirements (such as NPSH) are obviously also 
a part of the selection criteria for a pump. 
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Pumping Systems: Parallel and Series Configurations 
For some piping system designs, it may be desirable to consider a multiple pump 
system to meet the design requirements.  Two typical options include parallel and 
series configurations of pumps.  Specific performance criteria must be met when 
considering these options. 
 
Given a piping system which has a known design flow rate and head requirements, 
Qdes, hdes.  The following pump selection criteria apply. 

 
Pumps in Parallel: 
Assuming that the pumps are identical, 
each pump must provide the following: 

Q(pump) = 0.5 Qdes 

h(pump) = hdes 

 
 

Pumps in Series: 
Assuming that the pumps are identical, 
each pump must provide the following: 

Q (pump) = Qdes 

h(pump) = 0.5 hdes 

 

 
For example, if the design point for a given piping system were Qdes = 600 gpm, 
and hsys = 270 ft, the following pump selection criteria would apply: 

1.  Single pump system Q(pump) = 600 gpm, hp = 270 ft 

2.  Parallel pump system Q(pump) = 300 gpm, hp = 270 ft 
for each of the two pumps 

3.  Series pump system Q(pump) = 600 gpm, hp = 135 ft  
for each of the two pumps 
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