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Abstract

This report describes in detail the theoretical backgrounds of the six degrees of
freedom ship motions program SEAWAY.
SEAWAY is a frequency-domain ship motions computer code, based on the linear

strip theory, to calculate the wave-induced loads, motions, added resistance and
internal loads for six degrees of freedom of displacement ships, yachts and barges,
sailing in regular and irregular waves. When not taking into account interaction
e¤ects between the two individual hulls, these calculations can be carried out for
twin-hull ships, such as semi-submersibles and catamarans, too. This potential theory
program is suitable for deep water as well as for shallow water. Viscous roll damping,
bilge keels, anti-roll tanks, free surface e¤ects and linear springs can be added. A
dedicated editor takes care for a simple input of data.

This report and other information on the strip theory program SEAWAY can be
found on the Internet at web site http://dutw189.wbmt.tudelft.nl/~johan, which can
also be reached by a link to this site from http://www.shipmotions.nl.
Aditional information can be obtained by e-mail (J.M.J.Journee@wbmt.tudelft.nl)

from the author.

The last revision of this report is dated: 3 July 2001. Remarks and errata are
very welcome!
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Chapter 1

Introduction

This report aims being a guide and an aid for those who want to study the theoretical
backgrounds and the algorithms of a ship motions computer program based on the strip
theory.
The present report describes in detail the theoretical backgrounds and the algorithms of
a six degrees of freedom ship motions personal computer program, named SEAWAY. A
User Manual is given by [Journée, 2001a]. Extensive veri…cations and validations of this
program have been presented by [Journée, 2001b].
This program, based on the ordinary and the modi…ed strip theory, calculates the wave-
induced loads andmotions with six degrees of freedom of mono-hull ships and barges, sailing
in a seaway. When not taking into account interaction e¤ects between the two individual
hulls, these calculations can be carried out for twin-hull ships, such as semi-submersibles
and catamarans, too.
In the past a preliminary description of all algorithms, used in strip theory based ship
motions calculations, has been given by the author, see [Journée, 1992]. Since then, this
program has been extended and adapted considerably, so a revised report is presented here.

Chapter 1, this introduction, gives a short survey of the contents of all chapters in this
report.

Chapter 2 gives a general description of the various strip theory approaches. A general
description of the potential ‡ow theory is given. The derivations of the hydromechanical
forces and moments, the wave potential and the wave and di¤raction forces and moments
have been described.
The equations of motion are given with solid mass and inertia terms and hydromechanical
forces and moments in the left hand side and the wave exciting forces and moments in the
right hand side.
The principal assumptions are a linear relation between forces and motions and the va-
lidity of obtaining the total forces by a simple integration over the ship length of the
two-dimensional cross sectional forces.
This includes for all motions a forward speed e¤ect caused by the potential mass, as it has
been de…ned by [Korvin-Kroukovsky and Jacobs, 1957] for the heave and pitch motions.
This approach is called the ”Ordinary Strip Theory Method”. Also an inclusion of the

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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2 CHAPTER 1. INTRODUCTION

forward speed e¤ect caused by the potential damping, as for instance given by [Tasai, 1969],
is given. This approach is called the ”Modi…ed Strip Theory Method”.
The inclusion of so-called ”End-Terms” has been described.

Chapter 3 describes several conformal mapping methods. For the determination of the
two-dimensional hydrodynamic potential coe¢cients for sway, heave and roll motions of
ship-like cross sections, these cross sections are conformal mapped to the unit circle. The
advantage of conformal mapping is that the velocity potential of the ‡uid around an arbi-
trary shape of a cross section in a complex plane can be derived from the more convenient
circular section in another complex plane. In this manner hydrodynamic problems can be
solved directly with the coe¢cients of the mapping function.
The close-…t multi-parameter conformal mapping method is given. A very simple and
straight on iterative least squares method, used to determine the conformal mapping co-
e¢cients, has been described. Two special cases of multi-parameter conformal mapping
have been described too: the well known classic Lewis transformation ([Lewis, 1929]) with
two parameters and an Extended-Lewis transformation with three parameters, as given by
[Athanassoulis and Loukakis, 1985].

Chapter 4 describes the determination of the two-dimensional potential mass and damping
coe¢cients for the six modes of motions at in…nite and …nite water depths.
At in…nite water depths, the principle of the calculation of these potential coe¢cients is
based on work of [Ursell, 1949] for circular cylinders and [Frank, 1967] for any arbitrary
symmetric cross section.
Starting from the velocity potentials and the conjugate stream functions of the ‡uid with
an in…nite depth as have been given by [Tasai, 1959], [Tasai, 1960], [Tasai, 1961] and
[Jong, 1973] and using the multi-parameter conformal mapping technique, the calcula-
tion routines of the two-dimensional hydrodynamic potential coe¢cients of ship-like cross
sections are given for the sway, heave and roll motions.
For shallow water, the method of [Keil, 1974] - based on a variation of the theory of
[Ursell, 1949] - has been given.
The pulsating sources method of [Frank, 1967] for deep water has been described too.
Because of using the strip theory approach here, the pitch and yaw coe¢cients follow
from the moment about the ship’s centre of gravity of the heave and sway coe¢cients,
respectively.
Approximations are given for the surge coe¢cients.

Chapter 5 gives some corrections on the hydrodynamic damping due to viscous e¤ects. The
surge damping coe¢cient is corrected for viscous e¤ects by an empirical method, based on
a simple still water resistance curve as published by [Troost, 1955].
The analysis of free-rolling model experiments and two (semi-)empirical methods pub-
lished by [Miller, 1974] and [Ikeda et al., 1978], to determine a viscous correction of the
roll damping coe¢cients are described in detail.

Chapter 6 describes the determination of the hydromechanical forces and moments in the
left hand side of the six equations of motion of a sailing ship in deep water for both the
ordinary and the modi…ed strip theory method.

Chapter 7 describes the wave exciting forces and moments in the right hand side of the six
equations of motion of a sailing ship in water with an arbitrarily depth, using the relative
motion concept for both the ordinary and the modi…ed strip theory method.
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First, the classical approach has been described. Then, an alternative approach - based on
di¤raction of waves - with equivalent accelerations an velocities of the water particles has
been described.

Chapter 8 describes the solution of the equations of motion. The determination of the fre-
quency characteristics of the absolute displacements, rotations, velocities and accelerations
and the vertical relative displacements. The use of a wave potential valid for any arbitrary
water depth makes the calculation method, with deep water coe¢cients, suitable for ships
sailing with keel clearances down to about 50 percent of the ship’s draft.

Chapter 9 describes some anti-rolling devices. A description is given of an inclusion of
passive free-surface tanks as de…ned by the experiments of [Bosch and Vugts, 1966] and
by the theory of [Verhagen and van Wijngaarden, 1965]. Active …n stabilizers and active
rudder stabilizers have been described too.

Chapter 10 describes the inclusion of linear spring terms to simulate the behavior of an-
chored or moored ships.

Chapter 11 describes two methods to determine the transfer functions of the added resis-
tances due to waves. The …rst method is a radiated wave energy method, as published by
[Gerritsma and Beukelman, 1972]. The second method is an integrated pressure method,
as published by [Boese, 1970].

Chapter 12 describes the determination of the frequency characteristics of the lateral and
vertical shear forces and bending moments and the torsional moments in a way as presented
by [Fukuda, 1962] for the vertical mode. Still water phenomena are described too.

Chapter 13 describes the statistics in irregular waves, by using the superposition principle.
Three examples of normalized wave spectra are given: the somewhat wide wave spec-
trum of Neumann, an average wave spectrum of Bretschneider and the more narrow Mean
JONSWAP wave spectrum.
A description is given of the calculation procedure of the energy spectra and the statistics
of the ship motions for six degrees of freedom, the added resistances, the vertical relative
motions and the mechanic loads on the ship in waves coming from any direction.
For the calculation of the probability of exceeding a threshold value by the motions, the
Rayleigh probability density function has been used.
The static and dynamic swell up of the waves, of importance when calculating the proba-
bility of shipping green water, are de…ned according to [Tasaki, 1963].
Bow slamming phenomena are de…ned by both the relative bow velocity criterium of
[Ochi, 1964] and the peak bottom impact pressure criterium of [Conolly, 1974].

Chapter 14 describes the additions to the algorithms in case of twin- hull ships, such as
semi-submersibles and catamarans. For interaction e¤ects between the two individual hulls
will not be accounted here.

Chapter 15 shows some typical numerical recipes, as used in program SEAWAY.
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Chapter 2

Strip Theory Method

The ship is considered to be a rigid body ‡oating in an ideal ‡uid: homogeneous, incom-
pressible, free of surface tension, irrotational and without viscosity. It is assumed that the
problem of the motions of this ‡oating body in waves is linear or can be linearized. As a
result of this, only the external loads on the underwater part of the ship are considered
and the e¤ect of the above water part is fully neglected.

The incorporation of seakeeping theories in ship design has been discussed clearly by
[Faltinsen and Svensen, 1990]. An overview of seakeeping theories for ships were presented
and it was concluded that - nevertheless some limitations - strip theories are the most
successful and practical tools for the calculation of the wave induced motions of the ship,
at least in an early design stage of a ship.
The strip theory solves the three-dimensional problem of the hydromechanical and exciting
wave forces and moments on the ship by integrating the two-dimensional potential solutions
over the ship’s length. Interactions between the cross sections are ignored for the zero-speed
case. So each cross section of the ship is considered to be part of an in…nitely long cylinder.

The strip theory is a slender body theory, so one should expect less accurate predictions
for ships with low length to breadth ratios. However, experiments showed that the strip
theory appears to be remarkably e¤ective for predicting the motions of ships with length
to breadth ratios down to about 3.0, or even sometimes lower.
The strip theory is based on the potential ‡ow theory. This holds that viscous e¤ects are
neglected, which can deliver serious problems when predicting roll motions at resonance
frequencies. In practice, for viscous roll damping e¤ects can be accounted fairly by empirical
formulas.
Because of the way that the forced motion problems are solved generally in the strip theory,
substantial disagreements can be found between the calculated results and the experimental
data of the wave loads at low frequencies of encounter in following waves. In practice, these
”near zero frequency of encounter problems” can be solved by forcing the wave loads to go
to zero arti…cially.

For high-speed vessels and for large ship motions, as appear in extreme sea states, the strip
theory can deliver less accurate results. Then the so-called ”end-terms” can be important
too.

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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The strip theory accounts for the interaction with the forward speed in a very simple
way. The e¤ect of the steady wave system around the ship is neglected and the free surface
conditions are simpli…ed, so that the unsteady waves generated by the ship are propagating
in directions perpendicular to the centre plane of the ship. In reality the wave systems
around the ship are far more complex. For high-speed vessels, unsteady divergent wave
systems become important. This e¤ect is neglected in the strip theory.
The strip theory is based on linearity. This means that the ship motions are supposed to
be small, relative to the cross sectional dimensions of the ship. Only hydrodynamic e¤ects
of the hull below the still water level are accounted for. So when parts of the ship go out
of or into the water or when green water is shipped, inaccuracies can be expected. Also,
the strip theory does not distinguish between alternative above water hull forms.
Because of the added resistance of a ship due to the waves is proportional to the relative
motions squared, its inaccuracy will be gained strongly by inaccuracies in the predicted
motions.

Nevertheless these limitations, seakeeping prediction methods based upon the strip theory
provide a su¢ciently good basis for optimization studies at an early design stage of the
ship. At a more detailed design stage, it can be considered to carry out additional model
experiments to investigate for instance added resistance or extreme event phenomena, such
as shipping green water and slamming.

2.1 De…nitions
Figure 2.1 shows a harmonic wave as seen from two di¤erent perspectives. Figure 2.1-a
shows what one would observe in a snapshot photo made looking at the side of a (trans-
parent) wave ‡ume; the wave pro…le is shown as a function of distance x along the ‡ume
at a …xed instant in time. Figure 2.1-b is a time record of the water level observed at one
location along the ‡ume; it looks similar in many ways to the other …gure, but time t has
replaced x on the horizontal axis.

Figure 2.1: Harmonic Wave De…nitions

Notice that the origin of the coordinate system is at the still water level with the positive
z-axis directed upward; most relevant values of z will be negative. The still water level
is the average water level or the level of the water if no waves were present. The x-axis
is positive in the direction of wave propagation. The water depth, h, (a positive value) is
measured between the sea bed (z = ¡h) and the still water level (z = 0).
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The highest point of the wave is called its crest and the lowest point on its surface is the
trough. If the wave is described by a harmonic wave, then its amplitude ³a is the distance
from the still water level to the crest, or to the trough for that matter. The subscript ”a”
denotes amplitude, here.
The horizontal distance (measured in the direction of wave propagation) between any two
successive wave crests is the wave length, ¸. The distance along the time axis is the wave
period, T: The ratio of wave height to wave length is often referred to as the dimensionless
wave steepness, 2³a=¸:
Since the distance between any two corresponding points on successive sine waves is the
same, wave lengths and periods are usually actually measured between two consecutive
upward (or downward) crossings of the still water level. Such points are also called zero-
crossings, and are easier to detect in a wave record.
Since sine or cosine waves are expressed in terms of angular arguments, the wave length
and period are converted to angles using:

k¸ = 2¼ or: k =
2¼

¸

!T = 2¼ or: ! =
2¼

T
(2.1)

in which k is the wave number (rad/m) and ! is the circular wave frequency (rad/s).
Obviously, the wave form moves one wave length during one period so that its speed or
phase velocity, c, is given by:

c =
¸

T
=
!

k
(2.2)

Suppose now a sailing ship in waves, with coordinate systems as given in …gure 2.2.

A right-handed coordinate system S(x0; y0; z0) is …xed in space. The (x0; y0)-plane lies in
the still water surface, x0 is directed as the wave propagation and z0 is directed upwards.

Another right-handed coordinate system O(x; y; z) is moving forward with a constant ship
speed V . The directions of the axes are: x in the direction of the forward speed V , y in the
lateral port side direction and z upwards. The ship is supposed to carry out oscillations
around this moving O(x; y; z) coordinate system. The origin O lies above or under the
time-averaged position of the centre of gravity G. The (x; y)-plane lies in the still water
surface.

A third right-handed coordinate system G(xb; yb; zb) is connected to the ship with G at
the ship’s centre of gravity. The directions of the axes are: xb in the longitudinal forward
direction, yb in the lateral port side direction and zb upwards. In still water, the (xb; yb)-
plane is parallel to the still water surface.

If the wave moves in the positive x0-direction (de…ned in a direction with an angle ¹ relative
to the ship’s speed vector, V ), the wave pro…le - the form of the water surface - can now
be expressed as a function of both x0 and t as follows:

³ = ³a cos(kx0 ¡ !t) or: ³ = ³a cos(!t¡ kx0) (2.3)
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Figure 2.2: Coordinate System

The right-handed coordinate system O(x; y; z) is moving with the ship’s speed V , which
yields:

x0 = V t cos¹+ x cos¹+ y sin¹ (2.4)

From the relation between the frequency of encounter !e and the wave frequency !:

!e = ! ¡ kV cos¹ (2.5)

follows:
³ = ³a cos(!et¡ kx cos¹¡ ky sin¹) (2.6)

The resulting six ship motions in the O(x; y; z) system are de…ned by three translations
of the ship’s centre of gravity in the direction of the x-, y- and z-axes and three rotations
about them:

surge : x = xa cos(!et+ "x³)

sway : y = ya cos(!et+ "y³)

heave : z = za cos(!et+ "z³)

roll : Á = Áa cos(!et+ "Á³)

pitch : µ = µa cos(!et+ "µ³)

yaw : Ã = Ãa cos(!et+ "Ã³) (2.7)

The phase lags of these motions are related to the harmonic wave elevation at the origin
of the O(x; y; x) system, the average position of the ship’s centre of gravity:

wave: ³ = ³a cos(!et) (2.8)

The harmonic velocities and accelerations in the O(x; y; z) system are found by taking the
derivatives of the displacements, for instance for surge:

surge displacement : x = xa cos(!et+ "x³)
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surge velocity : _x = ¡!exa sin(!et+ "x³)
surge acceleration : Äx = ¡!2exa cos(!et+ "x³) (2.9)

2.2 Incident Wave Potential
In order to use the linear potential theory with waves, it will be necessary to assume that
the water surface slope is very small. This means that the wave steepness is so small
that terms in the equations of motion of the waves with a magnitude in the order of the
steepness-squared can be ignored.
Suppose a wave moving in the x-z plane. The pro…le of a simple wave with a small steepness
looks like a sine or a cosine and the motion of a water particle in a wave depends on the
distance below the still water level. This is reason why the wave potential is written as:

©w(x; z; t) = P (z) ¢ sin (kx¡ !t) (2.10)

in which P (z) is an (as yet) unknown function of z.
The velocity potential ©w(x; z; t) of the harmonic waves has to ful…ll four requirements:
1. Continuity condition or Laplace equation
2. Sea bed boundary condition
3. Free surface dynamic boundary condition
4. Free surface kinematic boundary condition.

These requirements lead to a more complete expression for the velocity potential as will be
explained in the following sections. The relationships presented in these sections are valid
for all water depths, but the fact that they contain so many hyperbolic functions makes
them cumbersome to use. Engineers - as opposed to (some) scientists - often look for ways
to simplify the theory. The simpli…cations stem from the following approximations for
large and very small arguments, s, as shown in …gure 2.3:

for large arguments, s sinh(s) t cosh(s)À s

tanh(s) t 1 (2.11)

for small arguments, s sinh(s) t tanh(s) t s
cosh(s) t 1 (2.12)

2.2.1 Continuity Condition

The velocity of the water particles (u; v; w) in the three translational directions, or alter-
natively (vx; vy; vz), follow from the de…nition of the velocity potential, ©w:

u = vx =
@©w
@x

v = vy =
@©w
@y

w = vz =
@©w
@z

(2.13)

Since the ‡uid is homogeneous and incompressible, the continuity condition becomes:

@u

@x
+
@v

@y
+
@w

@z
= 0 (2.14)
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Figure 2.3: Hyperbolic Functions Limits

2.2.2 Laplace Equation

This continuity condition results in the Laplace equation for potential ‡ows:

r2©w =
@2©w
@x2

+
@2©w
@y2

+
@2©w
@z2

= 0 (2.15)

Water particles move here in the x-z plane only, so in the equations above:

v =
@©w
@y

= 0 and
@v

@y
=
@2©w
@y2

= 0 (2.16)

Taking this into account, a substitution of equation 2.10 in equation 2.15 yields a homo-
geneous solution of this equation:

d2P (z)

dz2
¡ k2P (z) = 0 (2.17)

with as solution for P (z):

P (z) = C1e
+kz + C2e

¡kz (2.18)

Using this result from the …rst boundary condition, the wave potential can be written now
with two unknown coe¢cients as:

©w(x; z; t) =
¡
C1e

+kz + C2e
¡kz¢ ¢ sin (kx¡ !t) (2.19)

in which:

©w(x; z; t) = wave potential (m2/s)
e = base of natural logarithms (-)
C1; C2 = as yet undetermined constants (m2/s)
k = wave number (1/m)
t = time (s)
x = horizontal distance (m)
z = vertical distance, positive upwards (m)
! = wave frequency (1/s)
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2.2.3 Sea Bed Boundary Condition

The vertical velocity of water particles at the sea bed is zero (no-leak condition):

@©w
@z

= 0 for: z = ¡h (2.20)

Substituting this boundary condition in equation 2.19 provides:

kC1e
¡kh ¡ kC2e+kh = 0 (2.21)

By de…ning:
C = 2C1e

¡kh = 2C2e+kh (2.22)

or:

C1 =
C

2
e+kh and C2 =

C

2
e¡kh (2.23)

it follows that P (z) in equation 2.18 can be worked out to:

P (z) =
C

2

¡
e+k(h+z) + e¡k(h+z)

¢
= C cosh k (h+ z) (2.24)

and the wave potential with only one unknown becomes:

©w(x; z; t) = C ¢ cosh k (h+ z) ¢ sin (kx¡ !t) (2.25)

in which C is an (as yet) unknown constant.

2.2.4 Free Surface Dynamic Boundary Condition

The pressure, p, at the free surface of the ‡uid, z = ³, is equal to the atmospheric pressure,
p0. This requirement for the pressure is called the dynamic boundary condition at the free
surface.
The Bernoulli equation for an instationary irrotational ‡ow (with the velocity given in
terms of its three components) is in its general form:

@©w
@t

+
1

2

¡
u2 + v2 + w2

¢
+
p

½
+ gz = 0 (2.26)

In two dimensions, v = 0 and since the waves have a small steepness (u and w are small),
this equation becomes:

@©w
@t

+
p

½
+ gz = 0 (2.27)

At the free surface this condition becomes:

@©w
@t

+
p0
½
+ g³ = 0 for: z = ³ (2.28)

The constant value p0=½ can be included in @©w=@t; this will not in‡uence the velocities
being obtained from the potential ©w. With this the equation becomes:
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@©w
@t

+ g³ = 0 for: z = ³ (2.29)

The potential at the free surface can be expanded in a Taylor series, keeping in mind that
the vertical displacement ³ is relatively small:

f©w(x; z; t)gz=³ = f©w(x; z; t)gz=0 + ³ ¢
½
@©w(x; z; t)

@z

¾
z=0

+ ::::::½
@©w(x; z; t)

@t

¾
z=³

=

½
@©w(x; z; t)

@t

¾
z=0

+O("2) (2.30)

which yields for the linearized form of the free surface dynamic boundary condition:

@©w
@t

+ g³ = 0 for: z = 0 (2.31)

With this, the wave pro…le becomes:

³ = ¡1
g
¢ @©w
@t

for: z = 0 (2.32)

A substitution of equation 2.10 in equation 2.32 yields the wave pro…le:

³ =
!C

g
¢ cosh kh ¢ cos (kx¡ !t) (2.33)

or:

³ = ³a ¢ cos (kx¡ !t) with: ³a =
!C

g
¢ cosh kh (2.34)

With this the corresponding wave potential, depending on the water depth h, is given by
the relation:

©w =
³ag

!
¢ cosh k(h+ z)

cosh kh
¢ sin(kx¡ !t) (2.35)

or when !t is the …rst of the sine function arguments, as generally will be used in ship
motion equations:

©w =
¡³ag
!

¢ cosh k(h+ z)
cosh kh

¢ sin(!t¡ kx) (2.36)

In deep water, the expression for the wave potential reduces to:

©w =
¡³ag
!

¢ ekz ¢ sin(!t¡ kx) (deep water) (2.37)
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2.2.5 Free Surface Kinematic Boundary Condition

So far the relation between the wave period T and the wave length, ¸, is still unknown.
The relation between T and ¸ (or equivalently ! and k) follows from the boundary condition
that the vertical velocity of a water particle in the free surface of the ‡uid is identical to the
vertical velocity of that free surface itself (no-leak condition); this is a kinematic boundary
condition.
Using the equation of the free surface 2.34 yields:

dz

dt
=

@³

@t
+
@³

@x
¢ dx
dt

for the wave surface: z = ³

=
@³

@t
+ u ¢ d³

dx
(2.38)

The second term in this expression is a product of two values, which are both small because
of the assumed small wave steepness. This product becomes even smaller (second order)
and can be ignored, see …gure 2.4.

Figure 2.4: Kinematic Boundary Condition

This linearization provides the vertical velocity of the wave surface:

dz

dt
=
@³

@t
for the wave surface: z = ³ (2.39)

The vertical velocity of a water particle in the free surface is then:

@©w
@z

=
@³

@t
for z = 0 (2.40)

Analogous to equation 2.31 this condition is valid for z = 0 too, instead of for z = ³ only.
A di¤erentiation of the free surface dynamic boundary condition (equation 2.31) with
respect to t provides:

@2©w
@t2

+ g
@³

@t
= 0 for z = 0 (2.41)

or after re-arranging terms:

@³

@t
+
1

g
¢ @

2©w
@t2

= 0 for z = 0 (2.42)

Together with equation 2.39 this delivers the free surface kinematic boundary condition or
the Cauchy-Poisson condition:
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@z

@t
+
1

g
¢ @

2©w
@t2

= 0 for: z = 0 (2.43)

2.2.6 Dispersion Relationship

The information is now available to establish the relationship between ! and k (or equiva-
lently T and ¸) referred to above. A substitution of the expression for the wave potential
(equation 2.35) in equation 2.43 gives the dispersion relation for any arbitrary water depth
h:

!2 = k g ¢ tanh kh (2.44)

In many situations, ! or T will be know; one must determine k or ¸: Since k appears in a
nonlinear way in 2.44, that equation will generally have to be solved iteratively.
In deep water (tanh kh = 1), equation 2.44 degenerates to a quite simple form which can
be used without di¢culty:

!2 = k g (deep water) (2.45)

When calculating the hydromechanical forces and the wave exciting forces on a ship, it
is assumed that x ¼ xb, y ¼ yb and z ¼ zb. In case of forward ship speed, the wave
frequency ! has to be replaced by the frequency of encounter of the waves !e. This leads
to the following expressions for the wave surface and the …rst order wave potential in the
G(xb; yb; zb) system:

³ = ³a cos(!et¡ kxb cos¹¡ kyb sin¹) (2.46)

and the expression for the velocity potential of the regular waves, ©w, becomes:

©w =
¡³ag
!

¢ cosh k(h+ zb)
cosh(kh)

sin(!et¡ kxb cos¹¡ kyb sin¹) (2.47)

2.2.7 Relationships in Regular Waves

Figure 2.5 shows the relation between ¸, T , c and h for a wide variety of conditions. Notice
the boundaries ¸=h ¼ 2 and ¸=h ¼ 20 in this …gure between short (deep water) and long
(shallow water) waves.

2.3 Floating Rigid Body in Waves
Consider a rigid body, ‡oating in an ideal ‡uid with harmonic waves. The water depth is
assumed to be …nite. The time-averaged speed of the body is zero in all directions. For
the sake of simple notation, it is assumed here that the O(x; y; z) system is identical to the
S(x0; y0; z0) system. The x-axis is coincident with the undisturbed still water free surface
and the z-axis and z0-axis are positive upwards.
The linear ‡uid velocity potential can be split into three parts:

©(x; y; z; t) = ©r +©w +©d (2.48)

in which:
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Figure 2.5: Relationships between ¸, T , c and h

©r = the radiation potential for the oscillatory motion of the body in still water
©w = the incident undisturbed wave potential
©d = the di¤raction potential of the waves about the restrained body

2.3.1 Fluid Requirements

From the de…nition of a velocity potential © follows the velocity of the water particles in
the three translational directions:

vx =
@©

@x
vy =

@©

@y
vz =

@©

@z
(2.49)

The velocity potentials, © = ©r + ©w + ©d, have to ful…ll a number of requirements
and boundary conditions in the ‡uid. Of these, the …rst three are identical to those in
the incident undisturbed waves. Additional boundary conditions are associated with the
oscillating ‡oating body.

1. Continuity Condition or Laplace Equation
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As the ‡uid is homogeneous and incompressible, the continuity condition:

@vx
@x

+
@vy
@y

+
@vz
@z

= 0 (2.50)

results into the equation of Laplace:

r2© =
@2©

@x2
+
@2©

@y2
+
@2©

@z2
= 0 (2.51)

2. Sea Bed Boundary Condition
The boundary condition on the sea bed, following from the de…nition of the velocity
potential, is given by:

@©

@z
= 0 for: z = ¡h (2.52)

3. Boundary Condition at the Free Surface
The pressure in a point P (x; y; z) is given by the linearized Bernoulli equation:

p = ¡½@©
@t
¡ ½gz or:

@©

@t
+ g³ =

¡p
½

(2.53)

At the free surface of the ‡uid, so for z = ³(x; y; z; t), the pressure p is constant.
Because of the linearization, the vertical velocity of a water particle in the free surface
becomes:

dz

dt
=
@©

@z
¼ @³

@t
(2.54)

Combining these two conditions provides the boundary condition at the free surface:

@2©

@t2
+ g

@©

@z
= 0 for: z = 0 (2.55)

4. Kinematic Boundary Condition on the Oscillating Body Surface
The boundary condition at the surface of the rigid body plays a very important role.
The velocity of a water particle at a point at the surface of the body is equal to the
velocity of this (watertight) body point itself. The outward normal velocity, vn, at a
point P (x; y; z) at the surface of the body (positive in the direction of the ‡uid) is
given by:

@©

@n
= vn(x; y; z; t) (2.56)

Because the solution is linearized, this can be written as:

@©

@n
= vn(x; y; z; t) =

6X
j=1

vj ¢ fj (2.57)

in terms of oscillatory velocities, vj, and generalized direction-cosines, fj, on the
surface of the body, S, given by:

f1 = cos(n; x)

f2 = cos(n; y)

f3 = cos(n; z)

f4 = y cos(n; z)¡ z cos(n; y) = y ¢ f3 ¡ z ¢ f2
f5 = z cos(n; x)¡ x cos(n; z) = z ¢ f1¡ x ¢ f3
f6 = x cos(n; y)¡ y cos(n; x) = x ¢ f2 ¡ y ¢ f1 (2.58)
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The direction cosines are called generalized, because f1, f2 and f3 have been normal-
ized (the sum of their squares is equal to 1) and used to obtain f4, f5 and f6.
Note: The subscripts 1; 2; :::6 are used here to indicate the mode of the motion. Also
displacements are often indicated in literature in the same way: x1; x2; :::x6.

5. Radiation Condition
The radiation condition states that when the distance R of a water particle to the
oscillating body tends to in…nity, the potential value tends to zero:

lim
R!1

© = 0 (2.59)

6. Symmetric or Anti-symmetric Condition
Since ships and many other ‡oating bodies are symmetric with respect to its middle
line plane, one can make use of this to simplify the potential equations:

©(2)(¡x; y) = ¡©(2)(+x; y) for sway

©(3)(¡x; y) = +©(3)(+x; y) for heave

©(4)(¡x; y) = ¡©(4)(+x; y) for roll (2.60)

in which ©(i) is the velocity potential for the given direction i.
This indicates that for sway and roll oscillations, the horizontal velocities of the water
particles, thus the derivative @©=@x, at any time on both sides of the body must have
the same direction; these motions are anti-symmetric. For heave oscillations these
velocities must be of opposite sign; this is a symmetric motion. However, for all three
modes of oscillations the vertical velocities, thus the derivative @©=@y, on both sides
must have the same directions at any time.

2.3.2 Forces and Moments

The forces ~F and moments ~M follow from an integration of the pressure, p, over the
submerged surface, S, of the body:

~F = ¡
Z Z
S

(p ¢ ~n) ¢ dS

~M = ¡
Z Z
S

p ¢ (~r £ ~n) ¢ dS (2.61)

in which ~n is the outward normal vector on surface dS and ~r is the position vector of
surface dS in the O(x; y; z) coordinate system.
The pressure p - via the linearized Bernoulli equation - is determined from the velocity
potentials by:

p = ¡½@©
@t
¡ ½gz

= ¡½
µ
@©r
@t

+
@©w
@t

+
@©d
@t

¶
¡ ½gz (2.62)
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which can obviously be split into four separate parts, so that the hydromechanical forces
~F and moments ~M can be split into four parts too:

~F = ½

ZZ
S

µ
@©r
@t

+
@©w
@t

+
@©d
@t

+ gz

¶
~n ¢ dS

~M = ½

ZZ
S

µ
@©r
@t

+
@©w
@t

+
@©d
@t

+ gz

¶
(~r £ ~n) ¢ dS (2.63)

or:

~F = ~Fr + ~Fw + ~Fd + ~Fs

~M = ~Mr + ~Mw + ~Md + ~Ms (2.64)

2.3.3 Hydrodynamic Loads

The hydrodynamic loads are the dynamic forces and moments caused by the ‡uid on an
oscillating body in still water; waves are radiated from the body. The radiation potential,
©r, which is associated with this oscillation in still water, can be written in terms, ©j, for
6 degrees of freedom as:

©r(x; y; z; t) =
6X
j=1

©j(x; y; z; t)

=
6X
j=1

Áj(x; y; z) ¢ vj(t) (2.65)

in which the space and time dependent potential term, ©j(x; y; z; t) in direction j, is now
written in terms of a separate space dependent potential, Áj(x; y; z) in direction j, multi-
plied by an oscillatory velocity, vj(t) in direction j.
This allows the normal velocity on the surface of the body to be written as:

@©r
@n

=
@

@n

6X
j=1

©j

=
6X
j=1

½
@Áj
@n
¢vj
¾

(2.66)

and the generalized direction cosines are given by:

fj =
@Áj
@n

(2.67)

With this the radiation terms in the hydrodynamic force becomes:

~F = ½

Z Z
S

µ
@©r
@t

¶
~n ¢ dS

= ½

Z Z
S

Ã
@

@t

6X
j=1

Ájvj

!
~n ¢ dS (2.68)
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and the moment term:

~M = ½

Z Z
S

µ
@©r
@t

¶
(~r £ ~n)dS

= ½

Z Z
S

Ã
@

@t

6X
j=1

Ájvj

!
(~r £ ~n) ¢ dS (2.69)

The components of these radiation forces and moments are de…ned by:

~Fr = (Xr1 ;Xr2 ; Xr3) and ~Mr = (Xr4; Xr5 ;Xr6) (2.70)

with:

~Xrk = ½

Z Z
S

Ã
@

@t

6X
j=1

Ájvj

!
fk ¢ dS

= ½

Z Z
S

Ã
@

@t

6X
j=1

Ájvj

!
@Ák
@n
¢dS for: k = 1; :::6 (2.71)

Since Áj and Ák are not time-dependent in this expression, it reduces to:

Xrk =
6X
j=1

Xrkj for: k = 1; :::6 (2.72)

with:

Xrkj =
dvj
dt
½

Z Z
S

Áj
@Ák
@n
¢dS (2.73)

This radiation force or moment Xrkj in the direction k is caused by a forced harmonic
oscillation of the body in the direction j. This is generally true for all j and k in the range
from 1 to 6. When j = k; the force or moment is caused by a motion in that same direction.
When j 6= k; the force in one direction results from the motion in another direction. This
introduces what is called coupling between the forces and moments (or motions).
The above equation expresses the force and moment components, Xrkj in terms of still
unknown potentials, Áj; not everything is solved yet! A solution for this will be found later
in this chapter.

Oscillatory Motion

Now an oscillatory motion is de…ned; suppose a motion (in a complex notation) given by:

sj = saje
¡i!t (2.74)

Then the velocity and acceleration of this oscillation are:

_sj = vj = ¡i!saje¡i!t

Äsj =
dvj
dt
= ¡i!2saje¡i!t (2.75)
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The hydrodynamic forces and moments can be split into a load in-phase with the acceler-
ation and a load in-phase with the velocity:

Xrkj = ¡MkjÄsj ¡Nkj _sj
=

¡
saj!

2Mkj + isaj!Nkj
¢
e¡i!t

=

0@(¡saj!2½Z Z
S

Áj
@Ák
@n
dS)

1A e¡i!t (2.76)

So in case of an oscillation of the body in the direction j with a velocity potential Áj, the
hydrodynamic mass and damping (coupling) coe¢cients are de…ned by:

Mkj = ¡<
8<:½

Z Z
S

Áj
@Ák
@n
¢dS
9=; and Nkj = ¡=

8<:½!
Z Z
S

Áj
@Ák
@n
¢dS
9=; (2.77)

In case of an oscillation of the body in the direction k with a velocity potential Ák, the
hydrodynamic mass and damping (coupling) coe¢cients are de…ned by:

Mjk = ¡<
8<:½

Z Z
S

Ák
@Áj
@n
¢dS
9=; and Njk = ¡=

8<:½!
Z Z
S

Ák
@Áj
@n
¢dS
9=; (2.78)

Green’s Second Theorem

Green’s second theorem transforms a large volume-integral into a much easier to handle
surface-integral. Its mathematical background is beyond the scope of this text. It is valid
for any potential function, regardless the fact if it ful…lls the Laplace condition or not.
Consider two separate velocity potentials Áj and Ák. Green’s second theorem, applied to
these potentials, is then:Z Z Z

V ¤

¡
Áj ¢ r2Ák ¡ Ák ¢ r2Áj

¢ ¢ dV ¤ = Z Z
S¤

µ
Áj
@Ák
@n

¡ Ák
@Áj
@n

¶
¢ dS¤ (2.79)

This theorem is generally valid for all kinds of potentials; it is not necessary that they
full…l the Laplace equation.
In Green’s theorem, S¤ is a closed surface with a volume V ¤. This volume is bounded
by the wall of an imaginary vertical circular cylinder with a very large radius R, the sea
bottom at z = ¡h, the water surface at z = ³ and the wetted surface of the ‡oating body,
S; see …gure 2.6.
Both of the above radiation potentials Áj and Ák must ful…ll the Laplace equation (r2Áj =

r2Ák = 0). So the left hand side of the above equation becomes zero which yields for the
right hand side of this equation:Z Z

S¤

Áj
@Ák
@n
¢dS¤ =

Z Z
S¤

Ák
@Áj
@n
¢dS¤ (2.80)

The boundary condition at the free surface becomes for © = Á ¢ e¡i!t:

¡!2Á+ g@Á
@z
= 0 for: z = 0 (2.81)
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Figure 2.6: Boundary Conditions

or with the dispersion relation, !2=g = k tanh kh:

k tanh kh ¢ Á = @Á

@z
for: z = 0 (2.82)

This implies that at the free surface of the ‡uid one can write:

k tanh kh ¢ Ák = @Ák
@z
= @Ák

@n
¡! Ák =

1
k tanh kh

¢ @Ák
@n

k tanh kh ¢ Áj = @Áj
@z
=

@Áj
@n

¡! Áj =
1

k tanh kh
¢ @Áj
@n

9=; at the free surface

When taking also the boundary condition at the sea bed and the radiation condition on
the wall of the cylinder in …gure 2.6:

@Á

@n
= 0 (for: z = ¡h) and lim

R!1
Á = 0 (2.83)

into account, the integral equation over the surface S¤ reduces to:ZZ
S

Áj
@Ák
@n
¢dS =

ZZ
S

Ák
@Áj
@n
¢dS (2.84)

in which S is the wetted surface of the body only.
Note that the Áj and Ák still have to be evaluated.

Potential Coe¢cients

The previous section provides - for the zero forward ship speed case - symmetry in the
coe¢cients matrices with respect to their diagonals so that:

Mjk =Mkj and Njk = Nkj (2.85)
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Because of the symmetry of a ship some coe¢cients are zero and the two matrices with
hydrodynamic coe¢cients for a ship become:

Hydrodynamic mass matrix:

0BBBBBB@
M11 0 M13 0 M15 0
0 M22 0 M24 0 M26

M31 0 M33 0 M35 0
0 M42 0 M44 0 M46

M51 0 M53 0 M55 0
0 M62 0 M64 0 M66

1CCCCCCA (2.86)

Hydrodynamic damping matrix:

0BBBBBB@
N11 0 N13 0 N15 0
0 N22 0 N24 0 N26
N31 0 N33 0 N35 0
0 N42 0 N44 0 N46
N51 0 N53 0 N55 0
0 N62 0 N64 0 N66

1CCCCCCA (2.87)

For clarity, the symmetry of terms about the diagonal in these matrices (for example
that M13 = M31 for zero forward speed) has not been included here. The terms on the
diagonals (such as Mnn for example) are the primary coe¢cients relating properties such
as hydrodynamic mass in one direction to the inertia forces in that same direction. O¤-
diagonal terms (such as M13) represent hydrodynamic mass only which is associated with
an inertia dependent force in one direction caused by a motion component in another.

Forward speed has an e¤ect on the velocity potentials itself, but is not discussed here. This
e¤ect is quite completely explained by [Timman and Newman, 1962].

2.3.4 Wave and Di¤raction Loads

The wave and di¤raction terms in the hydrodynamic force and moment are:

~Fw + ~Fd = ½

Z Z
S

µ
@©w
@t

+
@©d
@t

¶
~ndS (2.88)

and:
~Mw + ~Md = ½

Z Z
S

µ
@©w
@t

+
@©d
@t

¶
(~r £ ~n)dS (2.89)

The principles of linear superposition allow the determination of these forces on a restrained
body with zero forward speed; @©=@n = 0. This simpli…es the boundary condition on the
surface of the body to:

@©

@n
=
@©w
@n

+
@©d
@n

= 0 (2.90)

The space and time dependent potentials, ©w(x; y; z; t) and ©d(x; y; z; t), are written now
in terms of isolated space dependent potentials, Áw(x; y; z) and Ád(x; y; z), multiplied by a
normalized oscillatory velocity, v(t) = 1 ¢ e¡i!t:

©w(x; y; z; t) = Áw(x; y; z) ¢ e¡i!t
©d(x; y; z; t) = Ád(x; y; z) ¢ e¡i!t (2.91)
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This results into:
@Áw
@n

= ¡@Ád
@n

(2.92)

With this and the expressions for the generalized direction-cosines it is found for the wave
forces and moments on the restrained body in waves:

Xwk = ¡i½e¡i!t
Z Z
S

(Áw + Ád) fkdS

= ¡i½e¡i!t
Z Z
S

(Áw + Ád)
@Ák
@n
dS for: k = 1; :::6 (2.93)

in which Ák is the radiation potential.
The potential of the incident waves, Áw, is known, but the di¤raction potential, Ád, has
to be determined. Green’s second theorem provides a relation between this di¤raction
potential, Ád, and a radiation potential, Ák:Z Z

S

Ád
@©k
@n

dS =

Z Z
S

Ák
@Ád
@n
dS (2.94)

and with @Áw=@n = ¡@Ád=@n one …nds:Z Z
S

Ád
@©k
@n

dS = ¡
Z Z
S

Ák
@Áw
@n

dS (2.95)

This elimination of the di¤raction potential results into the so-called Haskind relations:

Xwk = ¡i½e¡i!t
Z Z
S

µ
Áw
@Ák
@n

+ Ák
@Áw
@n

¶
dS for: k = 1; :::6 (2.96)

This limiters the problem of the di¤raction potential because the expression for Xwk de-
pends only on the wave potential Áw and the radiation potential Ák.

These relations, found by [Haskind, 1957], are very important; they underlie the relative
motion (displacement - velocity - acceleration) hypothesis, as used in strip theory. These
relations are valid only for a ‡oating body with a zero time-averaged speed in all directions.
[Newman, 1962] however, has generalized the Haskind relations for a body with a constant
forward speed. He derived equations which di¤er only slightly from those found by Haskind.
According to Newman’s approach the wave potential has to be de…ned in the moving
O(x; y; z) system. The radiation potential has to be determined for the constant forward
speed case, taking an opposite sign into account.
The corresponding wave potential for deep water, as given in the previous section, now
becomes:

©w =
¡³ag
!

¢ ekz ¢ sin(!t¡ kx cos¹¡ ky sin¹)

=
¡i³ag
!

¢ ekz ¢ eik(x cos¹+y sin¹)e¡i!t (2.97)

so that the isolated space dependent term is given by:

Áw =
¡i³ag
!

¢ ekz ¢ eik(x cos¹+y sin¹) (2.98)
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In these equations is ¹ the wave direction.
The velocity of the water particles in the direction of the outward normal n on the surface
of the body is:

@Áw
@n

= Áwk

½
@z

@n
+ i

µ
@x

@n
cos¹+

@y

@n
sin¹

¶¾
= Áwk ff3 + i(f1 cos¹+ f2 sin¹)g (2.99)

With this, the wave loads are given by:

Xwk = ¡ i½e¡i!t
Z Z

S

ÁwfkdS

+ i½e¡i!tk
Z Z

S

ÁwÁk ff3 + i(f1 cos¹+ f2 sin¹)g dS for:k = 1; :::6(2.100)

The …rst term in this expression for the wave forces and moments is the so-called Froude-
Krilov force or moment, which is the wave load caused by the undisturbed incident wave.
The second term is caused by the disturbance caused by the presence of the (…xed) body.

2.3.5 Hydrostatic Loads

In the notations used here, the buoyancy forces and moments are:

~Fs = ½g

ZZ
S

z~n ¢ dS and ~Ms = ½g

ZZ
S

z (~r x ~n) ¢ dS (2.101)

or more generally:

Xsk = ½g

ZZ
S

zfk ¢ dS for: k = 1; :::6 (2.102)

in which the Xsk are the components of these hydrostatic forces and moments.

2.4 Equations of Motion

The total mass as well as its distribution over the body is considered to be constant with
time. For ships and other ‡oating structures, this assumption is normally valid during a
time which is large relative to the period of the motions. This holds that small e¤ects -
such as for instance a decreasing mass due to fuel consumption - can be ignored.
The solid mass matrix of a ‡oating structure is given below.

Solid mass matrix: m =

0BBBBBB@
½r 0 0 0 0 0
0 ½r 0 0 0 0
0 0 ½r 0 0 0
0 0 0 Ixx 0 ¡Ixz
0 0 0 0 Iyy 0
0 0 0 ¡Izx 0 Izz

1CCCCCCA (2.103)
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The moments of inertia here are often expressed in terms of the radii of inertia and the
solid mass of the structure. Since Archimedes law is valid for a ‡oating structure:

Ixx = kxx
2 ¢ ½r

Iyy = kyy
2 ¢ ½r

Izz = kzz
2 ¢ ½r (2.104)

When the distribution of the solid mass of a ship is unknown, the radii of inertia can be
approximated by:

for ships:

8<: kxx t 0:30 ¢B to 0:40 ¢B
kyy t 0:22 ¢ L to 0:28 ¢ L
kzz t 0:22 ¢ L to 0:28 ¢ L

(2.105)

in which L is the length and B is the breadth of the ship. Often, the (generally small)
coupling terms, Ixz = Izx, are simply neglected.
Bureau Veritas proposes for the radius of inertia for roll of the ship’s solid mass:

kxx = 0:289 ¢B ¢
Ã
1:0 +

µ
2 ¢KG
B

¶2!
(2.106)

in which KG is the height of the center of gravity, G, above the keel.
For many ships without cargo on board (ballast condition), the mass is concentrated at
the ends (engine room aft and ballast water forward to avoid a large trim), while for ships
with cargo on board (full load condition) the - more or less amidships laden - cargo plays
an important role. Thus, the radii of inertia, kyy and kzz, are usually smaller in the full
load condition than in the ballast condition for normal ships. Note that the longitudinal
radius of gyration of a long homogeneous rectangular beam with a length L is equal to
about 0:29 ¢ L

³
=
p
1=12 ¢ L

´
.

The equations of motions of a rigid body in a space …xed coordinate system follow from
Newton’s second law. The vector equations for the translations of and the rotations about
the center of gravity are given respectively by:

~F =
d

dt

³
m~U

´
and ~M =

d

dt

³
~H
´

(2.107)

in which:

~F = resulting external force acting in the center of gravity
m = mass of the rigid body
~U = instantaneous velocity of the center of gravity
~M = resulting external moment acting about the center of gravity
~H = instantaneous angular momentum about the center of gravity
t = time

Two important assumptions are made for the loads in the right hand side of these equations:

a. The so-called hydromechanical forces and moments are induced by the harmonic
oscillations of the rigid body, moving in the undisturbed surface of the ‡uid.
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b. The so-called wave exciting forces and moments are produced by waves coming
in on the restrained body.

Since the system is linear, these loads are added to obtain the total loads. Thus, after
assuming small motions, symmetry of the body and that the x-, y- and z-axes are principal
axes, one can write the following six motion equations for the ship:

Surge:
d

dt
(½r ¢ _x) = ½r ¢ Äx = Xh1 +Xw1

Sway:
d

dt
(½r ¢ _y) = ½r ¢ Äy = Xh2 +Xw2

Heave:
d

dt
(½r ¢ _z) = ½r ¢ Äz = Xh3 +Xw3

Roll:
d

dt

³
Ixx ¢ _Á¡ Ixz ¢ _Ã

´
= Ixx ¢ ÄÁ¡ Ixz ¢ ÄÃ = Xh4 +Xw4

Pitch:
d

dt

³
Iyy ¢ _µ

´
= Ixx ¢ Äµ = Xh5 +Xw5

Yaw:
d

dt

³
Izz ¢ _Ã ¡ Izx ¢ _Á

´
= Izz ¢ ÄÃ ¡ Izx ¢ ÄÁ = Xh6 +Xw6

(2.108)

in which:

½ = density of water
r = volume of displacement of the ship
Iij = solid mass moment of inertia of the ship
Xh1 , Xh2 , Xh3 = hydromechanical forces in the x-, y- and z-directions respectively
Xh4 , Xh5 , Xh6 = hydromechanical moments about the x-, y- and z-axes respectively
Xw1 , Xw2 , Xw3 = exciting wave forces in the x-, y- and z-directions respectively
Xw4 , Xw5 , Xw6 = exciting wave moments about the x-, y- and z-axes respectively

Generally, a ship has a vertical-longitudinal plane of symmetry, so that its motions can be
split into symmetric and anti-symmetric components. Surge, heave and pitch motions are
symmetric motions, that is to say that a point to starboard has the same motion as the
mirrored point to port side. It is obvious that the remaining motions sway, roll and yaw
are anti-symmetric motions. Symmetric and anti-symmetric motions are not coupled; they
don’t have any e¤ect on each other. For instance, a vertical force acting at the center of
gravity can cause surge, heave and pitch motions, but will not result in sway, roll or yaw
motions.
Because of this symmetry and anti-symmetry, two sets of three coupled equations of motion
can be distinguished for ships:

Surge : ½r ¢ Äx ¡Xh1 = Xw1
Heave : ½r ¢ Äz ¡Xh3 = Xw3
Pitch : Ixx ¢ Äµ ¡Xh5 = Xw5

9=; symmetric motions (2.109)

Sway : ½r ¢ Äy ¡Ixz ¢ ÄÃ ¡Xh2 = Xw2
Roll : Ixx ¢ ÄÁ ¡Xh4 = Xw4
Yaw : Izz ¢ ÄÃ ¡Izx ¢ ÄÁ ¡Xh6 = Xw6

9=; anti-symmetric motions (2.110)
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Note that this distinction between symmetric and anti-symmetric motions disappears when
the ship is anchored. Then, for instance, the pitch motions can generate roll motions via
the anchor lines.
The coupled surge, heave and pitch equations of motion are:

(½r+ a11) ¢ Äx +b11 ¢ _x +c11 ¢ x
+a13 ¢ Äz +b13 ¢ _z +c13 ¢ z
+a15 ¢ Äµ +b15 ¢ _µ +c15 ¢ µ = Xw1 (surge)

a31 ¢ Äx +b31 ¢ _x +c31 ¢ x
+(½r+ a33) ¢ Äz +b33 ¢ _z +c33 ¢ z

+a35 ¢ Äµ +b35 ¢ _µ +c35 ¢ µ = Xw3 (heave)

a51 ¢ Äx +b51 ¢ _x +c51 ¢ x
+a53 ¢ Äz +b53 ¢ _z +c53 ¢ z

+(+Iyy + a55) ¢ Äµ +b55 ¢ _µ +c55 ¢ µ = Xw5 (pitch)

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

symmetric
motions

(2.111)

The coupled sway, roll and yaw equations of motion are:

(½r+ a22) ¢ Äy +b22 ¢ _y +c22 ¢ y
+a24 ¢ ÄÁ +b24 ¢ _Á +c24 ¢ Á
+a26 ¢ ÄÃ +b26 ¢ _Ã +c26 ¢ Ã = Xw2 (sway)

a42 ¢ Äy +b42 ¢ _y +c42 ¢ y
+(+Ixx + a44) ¢ ÄÁ +b44 ¢ _Á +c44 ¢ Á
+(¡Ixz + a46) ¢ ÄÃ +b46 ¢ _Ã +c46 ¢ Ã = Xw4 (roll)

a62 ¢ Äy +b62 ¢ _y +c62 ¢ y
+(¡Izx + a64) ¢ ÄÁ +b64 ¢ _Á +c64 ¢ Á
+(+Izz + a66) ¢ ÄÃ +b66 ¢ _Ã +c66 ¢ Ã = Xw6 (yaw)

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

anti-symmetric
motions

(2.112)

In many applications, Ixz = Izx is not known or small; hence their terms are often omitted.
After the determination of the in and out of phase terms of the hydromechanical and the
wave loads, these equations can be solved with a numerical method.

2.5 Strip Theory Approaches
Strip theory is a computational method by which the forces on and motions of a three-
dimensional ‡oating body can be determined using results from two-dimensional potential
theory. Strip theory considers a ship to be made up of a …nite number of transverse two-
dimensional slices which are rigidly connected to each other. Each of these slices will have
a form which closely resembles the segment of the ship which it represents. Each slice is
treated hydrodynamically as if it is a segment of an in…nitely long ‡oating cylinder; see
…gure 2.7.
This means that all waves which are produced by the oscillating ship (hydromechanical
loads) and the di¤racted waves (wave loads) are assumed to travel perpendicular to the
middle line plane (thus parallel to the y-z plane) of the ship. This holds too that the
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Figure 2.7: Strip Theory Representation by Cross Sections

strip theory supposes that the fore and aft side of the body (such as a pontoon) does not
produce waves in the x direction. For the zero forward speed case, interactions between
the cross sections are ignored as well.
Fundamentally, strip theory is valid for long and slender bodies only. In spite of this
restriction, experiments have shown that strip theory can be applied successfully for ‡oating
bodies with a length to breadth ratio larger than three, (L=B = 3), at least from a practical
point of view.

2.5.1 Zero Forward Speed

When applying the strip theory, the loads on the body are found by an integration of the
2-D loads:

surge: Xh1 =

Z
L

X 0
h1 ¢ dxb Xw1 =

Z
L

X 0
w1 ¢ dxb

sway: Xh2 =

Z
L

X 0
h2
¢ dxb Xw2 =

Z
L

X 0
w2
¢ dxb

heave: Xh3 =

Z
L

X 0
h3
¢ dxb Xw3 =

Z
L

X 0
w3
¢ dxb

roll: Xh4 =

Z
L

X 0
h4
¢ dxb Xw4 =

Z
L

X 0
w4
¢ dxb

pitch: Xh5 = ¡
Z
L

X 0
h3
¢ xb ¢ dxb Xw5 = ¡

Z
L

X 0
w3
¢ xb ¢ dxb
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yaw: Xh6 =

Z
L

X 0
h2
¢ xb ¢ dxb Xw6 =

Z
L

X 0
w2
¢ xb ¢ dxb

(2.113)

in which:

X 0
hj

= sectional hydromechanical force or moment
in direction j per unit ship length

X 0
wj

= sectional exciting wave force or moment
in direction j per unit ship length

The appearance of two-dimensional surge forces seems strange here. It is strange! A more
or less empirical method is used in SEAWAY for the surge motion, by de…ning an equivalent
longitudinal cross section which is swaying. Then, the 2-D hydrodynamic sway coe¢cients
of this equivalent cross section are translated to 2-D hydrodynamic surge coe¢cients by
an empirical method based on theoretical results from three-dimensional calculations and
these coe¢cients are used to determine 2-D loads. In this way, all sets of six surge loads can
be treated in the same numerical way in SEAWAY for the determination of the 3-D loads.
Inaccuracies of the hydromechanical coe¢cients of (slender) ships are of minor importance,
because these coe¢cients are relatively small.
Note how in the strip theory the pitch and yaw moments are derived from the 2-D heave
and sway forces, respectively, while the roll moments are obtained directly.
The equations of motions are de…ned in the moving axis system with the origin at the
average position of the center of gravity, G. All two-dimensional potential coe¢cients
have been de…ned so far in an axis system with the origin, O, in the water plane; the
hydromechanical and exciting wave moments have to be corrected for the distance OG.

2.5.2 Forward Ship Speed

Relative to an oscillating ship moving forward in the undisturbed surface of the ‡uid, the
equivalent displacements, ³¤hj , velocities,

_³
¤
hj
, and accelerations, Ä³

¤
hj
, at forward ship speed

V in the arbitrary direction j of a water particle in a cross section are de…ned by:

³¤hj ,
_³
¤
hj
=
D

Dt

n
³¤hj

o
and Ä³

¤
hj
=
D

Dt

n
_³
¤
hj

o
(2.114)

in which:
D

Dt
=

½
@

@t
¡ V ¢ @

@x

¾
(2.115)

is an operator which transforms the potentials ©(x0; y0; z0; t), de…ned in the earth bounded
(…xed) coordinate system, to the potentials ©(x; y; z; t), de…ned in the ship’s steadily trans-
lating coordinate system with speed V .
Relative to a restrained ship, moving forward with speed V in waves, the equivalent j
components of water particle displacements, ³¤wj , velocities,

_³
¤
wj
, and accelerations, Ä³

¤
wj
, in

a cross section are de…ned in a similar way by:

³¤wj ,
_³
¤
wj
=
D

Dt

n
³¤wj
o

and Ä³
¤
wj
=
D

Dt

n
_³
¤
wj

o
(2.116)
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The e¤ect of this operator can be understood easily when one realizes that in that earth-
bound coordinate system the sailing ship penetrates through a ”virtual vertical disk”.
When a ship sails with speed V and a trim angle, µ, through still water, the relative
vertical velocity of a water particle with respect to the bottom of the sailing ship becomes
V ¢ µ.
Two di¤erent types of strip theory methods are discussed here:

1. Ordinary Strip Theory Method
According to this classic method, the uncoupled two-dimensional potential hydrome-
chanical loads and wave loads in an arbitrary direction j are de…ned by:

X¤
hj

=
D

Dt

n
M 0
jj ¢ _³

¤
hj

o
+N 0

jj ¢ _³
¤
hj
+X 0

rsj

X¤
wj

=
D

Dt

n
M 0
jj ¢ _³

¤
wj

o
+N 0

jj ¢ _³
¤
wj
+X 0

fkj
(2.117)

This in the …rst formulation of the strip theory that can be found in the literature. It
contains a more or less intuitive approach to the forward speed problem, as published
in detail by [Korvin-Kroukovsky and Jacobs, 1957] and others.

2. Modi…ed Strip Theory Method
According to this modi…ed method, these loads become:

X¤
hj

=
D

Dt

½µ
M 0
jj ¡

i

!e
N

0
jj

¶
¢ _³¤hj

¾
+X 0

rsj

X¤
wj

=
D

Dt

½µ
M 0
jj ¡

i

!e
N

0
jj

¶
¢ _³¤wj

¾
+X 0

fkj
(2.118)

This formulation is a more fundamental approach of the forward speed problem, as
published in detail by [Tasai, 1969] and others.

In the equations above, M 0
jj and N

0
jj are the 2-D potential mass and damping coe¢cients.

X 0
rsj
is the two-dimensional quasi-static restoring spring term, generally present for heave,

roll and pitch only. X 0
fkj

is the two-dimensional Froude-Krilov force or moment which is
calculated by an integration of the directional pressure gradient in the undisturbed wave
over the cross sectional area of the hull.
Equivalent directional components of the orbital acceleration and velocity, derived from
these Froude-Krilov loads, are used to calculate the di¤raction parts of the total wave
forces and moments.
From a theoretical point of view, one should prefer the use of the modi…ed method, but it
appeared from user’s experience that for ships with moderate forward speed (Fn 5 0:30),
the ordinary method provides a better …t with experimental data. Thus from a practical
point of view, the use of the ordinary method is advised generally.

2.5.3 End-Terms

From the previous, it is obvious that in the equations of motion longitudinal derivatives of
the two-dimensional potential mass M 0

ij and damping N
0
ij will appear. These derivatives
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have to be determined numerically over the whole ship length in such a manner that the
following relation is ful…lled:

xb(L)+"Z
xb(0)¡"

df(xb)

dxb
dxb =

xb(0)Z
xb(0)¡"

df(xb)

dxb
dxb +

xb(L)Z
xb(0)

df(xb)

dxb
dxb +

xb(L)+"Z
xb(L)

df(xb)

dxb
dxb

= f(0) +

xb(L)Z
xb(0)

df(xb)

dxb
dxb ¡ f(L)

= 0 (2.119)

with "¿ L, while f(xb) is equal to the local values of M 0
jj(xb) or N

0
jj(xb); see …gure 2.8.

Figure 2.8: Integration of Derivatives

The numerical integrations of the derivatives are carried out in the region xb(0) · xb ·
xb(L) only. So, the additional so-called ”end terms” are de…ned by f(0) and f(L).
Because the integration of the derivatives has to be carried out in the region xb(0) ¡ " ·
xb · xb(L)+ ", some algebra provides the integral and the …rst and second order moments
(with respect to G) over the whole ship length:

xb(L)+"Z
xb(0)¡"

df(xb)

dxb
¢ dxb = 0

xb(L)+"Z
xb(0)¡"

df(xb)

dxb
¢ xb ¢ dxb = ¡

xb(L)Z
xb(0)

f(xb) ¢ dxb
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xb(L)+"Z
xb(0)¡"

df(xb)

dxb
¢ x2b ¢ dxb = ¡2

xb(L)Z
xb(0)

f(xb) ¢ xb ¢ dxb (2.120)

Note that these expressions are valid for the integrations of the potential coe¢cients over
the full ship length only. They can not be used for calculating local hydromechanical loads.
Also for the wave loads, these expressions can not be used, because there these derivatives
are multiplied with xb-depending orbital motions.

2.6 Hydrodynamic Coe¢cients
The two-dimensional hydrodynamic sway, heave and roll coe¢cients can be calculated by
several methods:

1. Methods based on Ursell’s Theory and Conformal Mapping
[Ursell, 1949] derived an analytical solution for solving the problem of calculating the
hydrodynamic coe¢cients of an oscillating circular cylinder in the surface of a ‡uid.

(a) Deep Water Coe¢cients by Lewis Conformal Mapping
[Tasai, 1959] and [Tasai, 1961] added the so-called Lewis transformation - which
is a very simple and in a lot of cases also more or less realistic method to trans-
form ship-like cross sections to this unit circle - to Ursell’s solution . This
transformation is carried out by using a scale factor and two mapping coe¢-
cients. Only the breadth, the draft and the area of the mapped cross section
will be equal to that of the actual cross section.

(b) Deep Water Coe¢cients by Close-Fit Conformal Mapping
A more accurate mapping has been added by [Tasai, 1960] too, by using more
than only two mapping coe¢cients. The accuracy obtained depends on the
number of mapping coe¢cients. Generally, a maximum of 10 coe¢cients are
used for de…ning the cross section. These coe¢cients are determined in such
a way that the Root Mean Square of the di¤erences between the o¤sets of the
mapped and the actual cross section is minimal.

(c) Shallow Water Coe¢cients by Lewis Conformal Mapping
For shallow water, the theory of [Keil, 1974] - based on a variation of Ursell’s
potential theory for circular cylinders at deep water - and Lewis conformal
mapping can be used.

2. Frank’s Pulsating Source Theory for Deep Water
Mapping methods require an intersection of the cross section with the water plane
and, as a consequence of this, they are not suitable for submerged cross sections,
like at a bulbous bow. Also, conformal mapping can fail for cross sections with very
low sectional area coe¢cients, such as are sometimes present in the aft body of a
ship. [Frank, 1967] considered a cylinder of constant cross sections with an arbitrar-
ily symmetrical shape, of which the cross sections are simply a region of connected
line elements. This vertical cross section can be fully or partly immersed in a previ-
ously undisturbed ‡uid of in…nite depth. He developed an integral equation method
utilizing the Green’s function which represents a complex potential of a pulsating
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point source of unit strength at the midpoint of each line element. Wave systems
were de…ned in such a way that all required boundary conditions were ful…lled. The
linearized Bernoulli equation provides the pressures after which the potential coe¢-
cients were obtained from the in-phase and out-of-phase components of the resultant
hydrodynamic loads.

The 2-D potential pitch and yaw (moment) coe¢cients follow from the previous heave and
sway coe¢cients and the arm, i.e., the distance of the cross section to the center of gravity
G.

A more or less empiric procedure has followed by the author for the surge motion. An equiv-
alent longitudinal cross section has been de…ned. For each frequency, the two-dimensional
potential hydrodynamic sway coe¢cient of this equivalent cross section is translated to
two-dimensional potential hydrodynamic surge coe¢cients by an empiric method, which is
based on theoretical results of three-dimensional calculations.

The 3-D coe¢cients follow from an integration of these 2-D coe¢cients over the ship’s
length. Viscous terms can be added for surge and roll.
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Chapter 3

Conformal Mapping

Ursell’s derivation of potential coe¢cients is valid for circular cross sections only. For the
determination of the two-dimensional added mass and damping in the sway, heave and
roll mode of the motions of ship-like cross sections by Ursell’s method, the cross sections
have to be mapped conformally to the unit circle. The advantage of conformal mapping is
that the velocity potential of the ‡uid around an arbitrarily shape of a cross section in a
complex plane can be derived from the more convenient circular section in another complex
plane. In this manner hydrodynamic problems can be solved directly with the coe¢cients
of the mapping function.
The general transformation formula is given by:

z =Ms

NX
n=0

¡
a¡(2n¡1³

2n¡1¢
with:

z = x+ iy = plane of the ship’s cross section
³ = ie®e¡iµ = plane of the unit circle
Ms = scale factor
a¡1 = +1
a2n¡1 = conformal mapping coe¢cients (n = 1; :::;N)
N = number of parameters

From this follows the relation between the coordinates in the z-plane (the ship’s cross
section) and the variables in the ³-plane (the circular cross section):

x = ¡Ms

NX
n=0

©
(¡1)na2n¡1e¡(2n¡1)® sin ((2n¡ 1)µ)

ª
y = +Ms

NX
n=0

©
(¡1)na2n¡1e¡(2n¡1)® cos ((2n¡ 1)µ)

ª
0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship

Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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Figure 3.1: Mapping Relation between Two Planes

The contour of the - by conformal mapping approximated - ship’s cross section follows
from putting ® = 0 in the previous relations:

x0 = ¡Ms

NX
n=0

f(¡1)na2n¡1 sin ((2n¡ 1)µ)g

y0 = +Ms

NX
n=0

f(¡1)na2n¡1 cos ((2n¡ 1)µ)g

The breadth on the waterline of the approximate ship’s cross section is de…ned by:

b0 = 2Ms¸a with: ¸a =
NX
n=0

a2n¡1

with scale factor:

Ms =
b0
2¸a

and the draft is de…ned by:

d0 =Ms¸b with: ¸b =
NX
n=0

f(¡1)na2n¡1g

3.1 Lewis Conformal Mapping

A very simple and in a lot of cases also a more or less realistic transformation of the
cross sectional hull form will be obtained with N = 2 in the transformation formula,
the well known Lewis transformation ([Lewis, 1929]). A extended description of the rep-
resentation of ship hull forms by Lewis two-parameter conformal mapping is given by
[Kerczek and Tuck, 1969].
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This two-parameter Lewis transformation of a cross section is de…ned by:

z =Ms ¢
¡
a¡1 ¢ ³ + a1 ¢ ³¡1 + a3 ¢ ³¡3

¢
In here a¡1=+1 and the conformal mapping coe¢cients a1 and a3 are called Lewis coe¢-
cients, while Ms is the scale factor.
Then:

x = Ms ¢
¡
e® sin µ + a1e

¡® sin µ ¡ a3e¡3® sin 3µ
¢

y = Ms ¢
¡
e® cos µ ¡ a1e¡® cos µ + a3e¡3® cos 3µ

¢
By putting ® = 0 is the contour of this so-called Lewis form expressed as:

x0 = Ms ¢ ((1 + a1) sin µ ¡ a3 sin 3µ)
y0 = Ms ¢ ((1¡ a1) cos µ + a3 cos 3µ)

with the scale factor:

Ms =
Bs=2

1 + a1 + a3
or: Ms =

Ds
1¡ a1 + a3

in which:

Bs = sectional breadth on the load water line
Ds = sectional draft

Now the coe¢cients a1 and a3 and the scale factorMs will be determined in such a manner
that the sectional breadth, draft and area of the approximate cross section and of the
actual cross section are identical.
The half breadth to draft ratio H0 is given by:

H0 =
Bs=2

Ds
=
1 + a1 + a3
1¡ a1 + a3

An integration of the Lewis form delivers the sectional area coe¢cient ¾s:

¾s =
As
BsDs

=
¼

4
¢ 1¡ a

2
1 ¡ 3a23

(1 + a3)2 ¡ a21
in which As is the area of the cross section.
Putting a1, derived from the expression for H0, into the expression for ¾s yields a quadratic
equation in a3:

c1a
2
3 + c2a3 + c3 = 0

in which:

c1 = 3 +
4¾s
¼
+

µ
1¡ 4¾s

¼

¶
¢
µ
H0 ¡ 1
H0 + 1

¶2
c2 = 2c1 ¡ 6
c3 = c1 ¡ 4
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The (valid) solutions for a3 and a1 will become:

a3 =
¡c1 + 3 +

p
9¡ 2c1

c1

a1 =
H0 ¡ 1
H0 + 1

¢ (a3 + 1)

Lewis forms with the other solution of a3 in the quadratic equation, with a minus sign
before the square root:

a3 =
¡c1 + 3¡

p
9¡ 2c1

c1
are looped; they intersect themselves at a point within the fourth quadrant. Since ships
are ”better behaved”, these solutions are not considered.
It is obvious that a transformation of a half immersed circle with radius R will result in
Ms = R, a1 = 0 and a3 = 0.
Some typical and realistic Lewis forms are presented in …gure 3.2.

Figure 3.2: Typical Lewis Forms

3.1.1 Boundaries of Lewis Forms

In some cases the Lewis transformation can give more or less ridiculous results. The
following typical Lewis hull forms, with the regions of the half breadth to draft ratio H0
and the area coe¢cient ¾s to match as presented before, can be distinguished:

² re-entrant forms, bounded by:

for H0 · 1:0 : ¾s <
3¼

32
(2¡H0)

for H0 ¸ 1:0 : ¾s <
3¼

32

µ
2¡ 1

H0

¶
² conventional forms, bounded by:

for H0 · 1:0 :
3¼

32
(2¡H0) < ¾s <

3¼

32

µ
3 +

H0
4

¶
for H0 ¸ 1:0 :

3¼

32

µ
2¡ 1

H0

¶
< ¾s <

3¼

32

µ
3 +

1

4H0

¶
² bulbous and not-tunneled forms, bounded by:

H0 · 1:0 and
3¼

32

µ
3 +

H0
4

¶
< ¾s <

3¼

32

µ
3 +

1

4H0

¶
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² tunneled and not-bulbous forms, bounded by:

H0 ¸ 1:0 and
3¼

32

µ
3 +

1

4H0

¶
< ¾s <

3¼

32

µ
3 +

H0
4

¶

² combined bulbous and tunneled forms, bounded by:

for H0 · 1:0 :
3¼

32

µ
3 +

1

4H0

¶
< ¾s <

¼

32

µ
10 +H0 +

1

H0

¶
for H0 ¸ 1:0 :

3¼

32

µ
3 +

H0
4

¶
< ¾s <

¼

32

µ
10 +H0 +

1

H0

¶

² non-symmetric forms, bounded by:

0 < H0 <1 and ¾s >
¼

32

µ
1 +H0 +

1

H0

¶

These ranges of the half breadth to draft ratio H0 and the area coe¢cient ¾s for the
di¤erent typical Lewis forms are shown in …gure 3.3.

Figure 3.3: Ranges of H0 and ¾s of Lewis Forms

3.1.2 Acceptable Lewis Forms

Not-acceptable forms of ships are supposed to be the re-entrant forms and the asymmetric
forms. So conventional forms, bulbous forms and tunneled forms are considered to be
valid forms here, see …gure 3.3. To obtain ship-like Lewis forms, the area coe¢cient ¾s is
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bounded by a lower limit to omit re-entrant Lewis forms and by an upper limit to omit
non-symmetric Lewis forms:

for H0 · 1:0 : 3¼

32
(2¡H0) < ¾s <

¼

32

µ
10 +H0 +

1

H0

¶
for H0 ¸ 1:0 : 3¼

32

µ
2¡ 1

H0

¶
< ¾s <

¼

32

µ
10 +H0 +

1

H0

¶
If a value of ¾s is outside of this range it has to be set to the value of the nearest border
of this range, to calculate the Lewis coe¢cients.
Numerical problems, for instance with bulbous or aft cross sections of a ship, are avoided
when the following requirements are ful…lled:

Bs
2
> °Ds and Ds > °

Bs
2

with for instance ° = 0:01.

3.2 Extended Lewis Conformal Mapping
Somewhat better approximations will be obtained by taking into account also the …rst order
moments of half the cross section about the x0- and y0-axes. These two additions to the
Lewis formulation were proposed by [Reed and Nowacki, 1974] and have been simpli…ed
by [Athanassoulis and Loukakis, 1985] by taking into account the vertical position of the
centroid of the cross section. This has been done by extending the Lewis transformation
to N = 3 in the general transformation formula.
The three-parameter Extended-Lewis transformation is de…ned by:

Z =Ms(a¡1³ + a1³¡1 + a3³¡3 + a5³¡5)

in which a¡1 = +1.
So:

x = Ms(e
® sin µ + a1e

¡® sin µ ¡ a3e¡3® sin 3µ + a5e¡5® sin 5µ)
y = Ms(e

® cos µ ¡ a1e¡® cos µ + a3e¡3® cos 3µ ¡ a5e¡5® cos 5µ)

By putting ® = 0, the contour of this approximate form is expressed as:

x0 = Ms ((1 + a1) sin µ ¡ a3 sin 3µ + a5 sin 5µ)
y0 = Ms ((1¡ a1) cos µ + a3 cos 3µ ¡ a5 cos 5µ)

with the scale factor:

Ms =
Bs=2

1 + a1 + a3 + a5
or: Ms =

Ds
1¡ a1 + a3 ¡ a5

and:

Bs = sectional breadth on the waterline
Ds = sectional draft
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Now the coe¢cients a1, a3 and a5 and the scale factor Ms can be determined in such
a manner that, except the sectional breadth, draft and area, also the centroids of the
approximate cross section and the actual cross section of the ship have an equal position.
The half beam to draft ratio is given by:

H0 =
Bs=2

Ds
=

1 + a1 + a3 + a5
1¡ a1 + a3 ¡ a5

An integration of the approximate form results into the sectional area coe¢cient:

¾s =
As
BsDs

=
¼

4
¢ 1¡ a21 ¡ 3a23 ¡ 5a25
(1 + a3)2 ¡ (a1 + a5)2

For the relative distance of the centroid to the keel point a more complex expression has
been obtained by [Athanassoulis and Loukakis, 1985]:

· =
KB

Ds
= 1¡

3P
i=0

3P
j=0

3P
k=0

(Aijka2i¡1a2j¡1a2k¡1)

H0¾s
3P
i=0

a32i¡1

in which:

Aijk =
1

4

µ
1¡ 2k

3¡ 2(i+ j + k) ¡
1¡ 2k

1¡ 2(i¡ j + k) +
1¡ 2k

1¡ 2(i+ j ¡ k) +
1¡ 2k

1¡ 2(¡i+ j + k)
¶

The following requirements should be ful…lled when also bulbous cross sections are allowed:

² re-entrant forms are avoided when both the following requirements are ful…lled:

1¡ a1 ¡ 3a3 ¡ 5a5 > 0

1 + a1 ¡ 3a3 + 5a5 > 0

² existence of a point of self-intersection is avoided when both the following require-
ments are ful…lled:

9a23 + 145a
2
5 + 10a3a5 + 20H0a5 > 0

9a23 + 145a
2
5 ¡ 10a3a5 ¡ 20H0a5 > 0

Taking these restrictions into account, the equations above can be solved in an iterative
manner.

3.3 Close-Fit Conformal Mapping

A more accurate transformation of the cross sectional hull form can be obtained by using
a greater number of parameters N . A very simple and straight on iterative least squares
method of the author to determine the Close-Fit conformal mapping coe¢cients will be
described here shortly.
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The scale factor Ms and the conformal mapping coe¢cients a2n¡1, with a maximum value
of n varying from N = 2 until N = 10, have been determined successfully from the o¤sets
of various cross sections in such a manner that the mean squares of the deviations of the
actual cross section from the approximate described cross section is minimized.
The general transformation formula is given by:

Z =Ms

NX
n=0

n
a2n¡1³¡(2n¡1)

o
in which: a¡1 = +1.
Then the contour of the approximate cross section is given by:

x0 = ¡Ms

NX
n=0

f(¡1)na2n¡1 sin ((2n¡ 1)µ)g

y0 = +Ms

NX
n=0

f(¡1)na2n¡1 cos ((2n¡ 1)µ)g

with the scale factor:

Ms =
Bs=2

NP
n=0

fa2n¡1g
or: Ms =

Ds
NP
n=0

f(¡1)na2n¡1g

The procedure starts with initial values for [Ms ¢a2n¡1]. The initial values ofMs, a1 and a3
are obtained with the Lewis method as has been described before, while the initial values of
a5 until a2N¡1 are set to zero. With these [Ms¢a2n¡1] values, a µi-value is determined for each
o¤set in such a manner that the actual o¤set (xi; yi) lies on the normal of the approximate
contour of the cross section in (x0i; y0i). Now µi has to be determined. Therefore a function
F (µi), will be de…ned by the distance from the o¤set (xi; yi) to the normal of the contour
to the actual cross section through (x0i; y0i), see …gure 3.4.

Figure 3.4: Close-Fit Conformal Mapping
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These o¤sets have to be selected at approximately equal mutual circumferential lengths,
eventually with somewhat more dense o¤sets near sharp corners. Then ®i is de…ned by:

cos®i =
+xi+1 ¡ xi¡1p

(xi+1 ¡ xi¡1)2 + (yi+1 ¡ yi¡1)2

sin®i =
¡yi+1 + yi¡1p

(xi+1 ¡ xi¡1)2 + (yi+1 ¡ yi¡1)2
With this µi-value, the numerical value of the square of the deviation of (xi; yi) from
(x0i; y0i) is calculated:

ei = (xi ¡ x0i)2 + (yi ¡ y0i)2
After doing this for all I + 1 o¤sets, the numerical value of he sum of the squares of
deviations is known:

E =
IX
i=0

feig

The sum of the squares of these deviations can also be expressed as:

E =
IX
i=0

8<:
Ã
xi +

NX
n=0

f(¡1)n[Ms ¢ a2n¡1] sin ((2n¡ 1)µi)g
!2

+(

Ã
yi ¡

NX
n=0

f(¡1)n[Ms ¢ a2n¡1] cos ((2n¡ 1)µi)g
!29=;

Then new values of [Ms ¢a2n¡1] have to be obtained in such a manner that E is minimized.
This means that each of the derivatives of this equation with respect to each coe¢cients
[Ms ¢ a2n¡1] is zero, so:

@E

@fMsa2j¡1g = 0 for: j = 0; :::N

This yields N+1 equations:

IX
i=0

(
¡ sin ((2j ¡ 1)µi)

NX
n=0

f(¡1)n[Ms ¢ a2n¡1] sin ((2n¡ 1)µi)g +

¡ cos ((2j ¡ 1)µi)
NX
n=0

f(¡1)n[Ms ¢ a2n¡1] cos ((2n¡ 1)µi)g
)
=

=
IX
i=0

fxi sin ((2j ¡ 1)µi)¡ yi cos ((2j ¡ 1)µi)g for: j = 0; :::N

which are rewritten as:
NX
n=0

(
(¡1)n[Ms ¢ a2n¡1]

IX
i=0

fcos ((2j ¡ 2n)µi)g
)
=

=
IX
i=0

f¡xi sin ((2j ¡ 1)µi) + yi cos ((2j ¡ 1)µi)g

for: j = 0; :::N
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To obtain the exact breadth and draft, the last two equations are replaced by the equations
for the breadth at the water line and the draft:(

NX
n=0

f(¡1)n[Ms ¢ a2n¡1]g
IX
i=0

fcos ((2j ¡ 2n)µi)g
)

=

=
IX
i=0

f¡xi sin ((2j ¡ 1)µi) + yi cos ((2j ¡ 1)µi)g for: j = 0; :::N ¡ 2
NX
n=0

f[Ms ¢ a2n¡1]g = Bs=2 for: j = N ¡ 1
NX
n=0

f(¡1)n[Ms ¢ a2n¡1]g = Ds for: j = N

These N+1 equations can be solved numerically, so that new values for [Ms ¢a2n¡1] will be
obtained. These new values are used instead of the initial values to obtain new µi-values of
the I + 1 o¤sets again, etc. This procedure will be repeated several times and stops when
the di¤erence between the numerical E-values of two subsequent calculations becomes less
than a certain threshold value ¢E, depending on the dimensions of the cross section; for
instance:

¢E = (I + 1)
³
0:00005

p
b2max + d

2
max

´2
in which:

bmax = maximum half breadth of the cross section
dmax = maximum height of the cross section

Because a¡1 = +1 the scale factor Ms is equal to the …nal solution of the …rst coe¢cient
(n = 0). The N other coe¢cients a2n¡1 can be found by dividing the …nal solutions of
[Ms ¢ a2n¡1] by this Ms-value.
Reference is also given here to a report of [Jong, 1973]. In that report several other,
suitable but more complex, methods are described to determine the scale factor Ms and
the conformal mapping coe¢cients a2n¡1 from the o¤sets of a cross section.
Attention has to be paid to divergence in the calculation routines and re-entrant forms.
In these cases the number N will be increased until the divergence or re-entrance vanish.
In the most worse case a ”maximum” value of N will be attained without success.. One
can then switch to Lewis coe¢cients with an area coe¢cient of the cross section set to the
nearest border of the valid Lewis form area.

3.4 Comparisons
A …rst example has been given here for the amidships cross section of a container vessel,
with a breadth of 25.40 meter and a draft of 9.00 meter, with o¤sets as tabled below:

i Ds ¡ yi xi
(¡) (m) (m)
0 0.000 0 .000
1 0.135 4 .950
2 0.270 9 .900
3 0.500 10 .960
4 1.000 11 .740
5 2.000 12 .440
6 3.050 12 .700
7 6.000 12 .700
8 9.000 12 .700
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For the least squares method in the conformal mapping method, 33 new o¤sets at equidis-
tant length intervals on the contour of this cross section can be determined by a second
degree interpolation routine. The calculated data of the two-parameter Lewis and the N-
parameter Close-Fit conformal mapping of this amidships cross section are tabled below.
The last line lists the RMS-values for the deviations of the 33 equidistant points on the
approximate contour of this cross section..

Lew is
Conformal N -Parameter C lose F it Conformal Mapping
Mapping

N (¡) 2 2 3 4 5 6 7 8 9 10
2N -1 (¡) 3 3 5 7 9 11 13 15 17 19

Ms (m) 12.2400 12 .2457 12 .2841 12 .3193 12.3186 12.3183 12.3191 12.3190 12.3195 12 .3194

a¡1 (¡) +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000
a1 (¡) +0.1511 +0.1511 +0.1640 +0.1634 +0.1631 +0.1633 +0.1633 +0.1632 +0.1632 +0.1632
a3 (¡) -0.1136 -0 .1140 -0 .1167 -0 .1245 -0.1246 -0.1243 -0.1244 -0.1245 -0.1245 -0 .1245
a5 (¡) -0 .0134 -0 .0133 -0.0105 -0.0108 -0.0108 -0.0108 -0.0107 -0 .0107
a7 (¡) +0.0053 +0.0054 +0.0031 +0.0030 +0.0032 +0.0031 +0.0030
a9 (¡) -0.0024 -0.0023 -0.0024 -0.0026 -0.0029 -0 .0029
a11 (¡) +0.0021 +0.0022 +0.0012 +0.0014 +0.0015
a13 (¡) +0.0002 +0.0002 +0.0021 +0.0020
a15 (¡) +0.0009 +0.0007 +0.0000
a17 (¡) -0.0016 -0 .0015
a19 (¡) +0.0006

RMS (m) 0 .181 0.180 0.076 0.039 0 .027 0 .019 0 .018 0 .017 0.009 0.008

Another example is given in …gure 3.5, which shows the di¤erences between a Lewis trans-
formation and a 10-parameter close-…t conformal mapping of a rectangular cross section
with a breadth of 20.00 meter and a draft of 10.00 meter.

Figure 3.5: Lewis and Close-Fit Conformal Mapping of a Rectangle
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Chapter 4

2-D Potential Coe¢cients

This chapter described the various methods, used in the SEAWAY program, to obtain the
2-D potential coe¢cients:

² the theory of Tasai for deep water, based on Ursell’s potential theory for circular
cylinders and N-parameter conformal mapping

² the theory of Keil for shallow and deep water, based on a variation of Ursell’s potential
theory for circular cylinders and Lewis conformal mapping

² the theory of Frank for deep water, using pulsating sources on the cross sectional
contour.

During the ship motions calculations di¤erent coordinate systems, as shown in …gure 2.2,
will be used. The two-dimensional hydrodynamic potential coe¢cients have been de…ned
here with respect to the O(x; y; z) coordinate system for the moving ship in still water.
However, in this section deviating axes systems are used for the determination of the two-
dimensional hydrodynamic potential coe¢cients for sway, heave and roll motions. This
holds for the sway and roll coupling coe¢cients a change of sign. The signs of the uncoupled
sway, heave and roll coe¢cients do not change.
For each cross section, the following two-dimensional hydrodynamic coe¢cients have to be
obtained:

M 0
22 and N

0
22 = 2-D potential mass and damping coe¢cients of sway

M 0
24 and N

0
24 = 2-D potential mass and damping coupling coe¢cients of roll into sway

M 0
33 and N

0
33 = 2-D potential mass and damping coe¢cients of heave

M 0
44 and N

0
44 = 2-D potential mass and damping coe¢cients of roll

M 0
42 and N

0
42 = 2-D potential mass and damping coupling coe¢cients of sway into roll

The 2-D potential pitch and yaw (moment) coe¢cients follow from the previous heave and
sway coe¢cients and the arm, i.e., the distance of the cross section to the center of gravity
G.
Finally, an approximation is given for the determination of the surge coe¢cients M 0

11 and
N 0
11.

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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4.1 Theory of Tasai
In this section, the determination of the hydrodynamic coe¢cients of a heaving, swaying
and rolling cross section of a ship in shallow at zero forward speed is based on work pub-
lished by [Ursell, 1949], [Tasai, 1959], [Tasai, 1960], [Tasai, 1961] and [Jong, 1973]. Tasai’s
notations have been maintained here as far as possible.

4.1.1 Heave Motions

The determination of the hydrodynamic coe¢cients of a heaving cross section of a ship in
deep and still water at zero forward speed, as described here, is based on work published
by [Ursell, 1949], [Tasai, 1959] and [Tasai, 1960]. Starting points for the derivation these
coe¢cients here are the velocity potentials and the conjugate stream functions of the ‡uid
as they have been derived by Tasai and also by [Jong, 1973].
Suppose an in…nite long cylinder in the surface of a ‡uid, of which a cross section is given
in the next …gure.

Figure 4.1: Axes System for Heave

The cylinder is forced to carry out a simple harmonic vertical motion about its initial
position with a frequency of oscillation ! and a small amplitude of displacement ya:

y = ya cos(!t+ ±)

in which ± is a phase angle.
Respectively, the vertical velocity and acceleration of the cylinder are:

_y = ¡!ya sin(!t+ ±)
Äy = ¡!2ya sin(!t+ ±)

This forced vertical oscillation of the cylinder causes a surface disturbance of the ‡uid.
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Because the cylinder is supposed to be in…nitely long, the generated waves will be two-
dimensional. These waves travel away from the cylinder and a stationary state is rapidly
attained.
Two kinds of waves will be produced:

² A standing wave system, denoted here by subscript A. The amplitudes of these waves
decrease strongly with the distance to the cylinder.

² A regular progressive wave system, denoted here by subscript B. These waves dis-
sipate energy. At a distance of a few wave lengths from the cylinder, the waves on
each side can be described by a single regular wave train.. The wave amplitude at
in…nity ´a is proportional to the amplitude of oscillation of the cylinder ya, provided
that this amplitude is su¢ciently small compared with the radius of the cylinder and
the wave length is not much smaller than the diameter of the cylinder.

The two-dimensional velocity potential of the ‡uid has to ful…l the following requirements:

1. The velocity potential must satisfy to the equation of Laplace:

r2© =
@2©

@x2
+
@2©

@y2
= 0

2. Because the heave motion of the ‡uid is symmetrical about the y-axis, this velocity
potential has the following relation:

©(¡x; y) = ©(+x; y)
from which follows:

@©

@µ
= 0 for: µ = 0

3. The linearized free surface condition in deep water is expressed as follows:

!2

g
© +

@©

@y
= 0 for: jxj ¸ Bs

2
and y = 0

In consequence of the conformal mapping, this free surface condition can be written as:

»b
¾a
©

NX
n=0

©
(2n¡ 1)a2n¡1e¡(2n¡1)®

ª§ @©
@µ

= 0 for: ® ¸ 0 and µ = §¼
2

in which:

»b
¾a
=
!2

g
Ms or: »b =

!2b0
2g

(non-dimensional frequency squared)

From the de…nition of the velocity potential follows the boundary condition on the surface
of the cylinder for ® = 0:

@©0(µ)

@n
= _y

@y0
@n

in which n is the outward normal of the cylinder surface.
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Using the stream function ª, this boundary condition on the surface of the cylinder (®=0)
reduces to:

¡@ª0(µ)
@µ

= _y
@y0
@®

= ¡ _yMs

NX
n=0

f(¡1)n(2n¡ 1)a2n¡1 cos ((2n¡ 1)µ)g

Integration results into the following requirement for the stream function on the surface of
the cylinder:

ª0(µ) = _yMs

NX
n=0

f(¡1)na2n¡1 sin ((2n¡ 1)µ)g

in which C(t) is a function of the time only.
When de…ning:

h(µ) =
2x0
b0

= ¡ 1

¾a

NX
n=0

f(¡1)na2n¡1 sin ((2n¡ 1)µ)g

the stream function on the surface of the cylinder is given by:

ª0(µ) = ¡ _yb0
2
h(µ) + C(t)

Because of the symmetry of the ‡uid about the y-axis, it is clear that:

C(t) = 0

So:

ª0(µ) = ¡ _yb0
2
h(µ)

For the standing wave system a velocity potential and a stream function satisfying to the
equation of Laplace, the symmetrical motion of the ‡uid and the free surface condition has
to be found.
The following set of velocity potentials, as they are given by [Tasai, 1959], [Tasai, 1960]
and [Jong, 1973], ful…l these requirements:

©a =
g´a
¼!

Ã 1X
m=1

©
P2mÁA2m(®; µ) cos(!t)

ª
+

1X
m=1

©
Q2mÁA2m(®; µ) sin(!t)

ª!
in which:

ÁA2m(®; µ) = e¡2m® cos(2mµ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n¡ 1a2n¡1e
¡(2m+2n¡1)® cos ((2m+ 2n¡ 1)µ)

¾
The set of conjugate stream functions is expressed as:

ªA =
g´a
¼!

Ã 1X
m=1

©
P2mÃA2m(®; µ) cos(!t)

ª
+

1X
m=1

©
Q2mÃA2m(®; µ) sin(!t)

ª!
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in which:

ÃA2m(®; µ) = e¡2m® sin(2mµ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n¡ 1a2n¡1e
¡(2m+2n¡1)® sin ((2m+ 2n¡ 1)µ)

¾
These sets of functions tend to zero as ® tends to in…nity.
In these expressions the magnitudes of the P2m and theQ2m series follow from the boundary
conditions as will be explained further on.
Another requirement is a diverging wave train for ® goes to in…nity. It is therefore necessary
to add a stream function, satisfying the free surface condition and the symmetry about
the y-axis, representing such a train of waves at in…nity. For this, a function describing a
source at the origin O is chosen.
[Tasai, 1959], [Tasai, 1960] and [Jong, 1973] gave the velocity potential of the progressive
wave system as:

©B =
g´a
¼!

¡
ÁBc(x; y) cos(!t) + ÁBs(x; y) sin(!t)

¢
in which:

ÁBc = ¼e¡ºy cos(ºx)

ÁBs = ¼e¡ºy sin(ºjxj) +
1Z
0

º sin(ky)¡ k cos(ky)
k2 + º2

e¡kjxjdk

while:

º =
!2

g
(wave number for deep water)

Changing the parameters delivers:

©B =
g´a
¼!

¡
ÁBc(®; µ) cos(!t) + ÁBs(®; µ) sin(!t)

¢
The conjugate stream function is given by:

ªB =
g´a
¼!

¡
ÃBc(x; y) cos(!t) + ÃBs(x; y) sin(!t)

¢
in which:

ÃBc = ¼e¡ºy sin(ºjxj)

ÃBs = ¡¼e¡ºy cos(ºx) +
1Z
0

º cos(ky) + k sin(ky)

k2 + º2
e¡kjxjdk

Changing the parameters delivers:

ªB =
g´a
¼!

¡
ÃBc(®; µ) cos(!t) + ÃBs(®; µ) sin(!t)

¢
When calculating the integrals in the expressions for ÁBs and ÁBc numerically, the conver-
gence is very slowly.
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Power series expansions, as given by [Porter, 1960], can be used instead of these last inte-
grals over k. The summation in these expansions converge much faster than the numeric
integration procedure. This has been shown before for the sway case.
The total velocity potential and stream function to describe the waves generated by a
heaving cylinder are:

© = ©A +©B

ª = ªA +ªB

So the velocity potential and the conjugate stream function are expressed by:

©(®; µ) =
g´a
¼!

ÃÃ
ÁBc(®; µ) +

1X
m=1

©
P2mÁA2m(®; µ)

ª!
cos(!t)

+

Ã
ÁBs(®; µ) +

1X
m=1

©
Q2mÁA2m(®; µ)

ª!
sin(!t)

!

ª(®; µ) =
g´a
¼!

ÃÃ
ÃBc(®; µ) +

1X
m=1

©
P2mÃA2m(®; µ)

ª!
cos(!t)

+

Ã
ÃBs(®; µ) +

1X
m=1

©
Q2mÃA2m(®; µ)

ª!
sin(!t)

!
When putting ® = 0, the stream function is equal to the expression found before from the
boundary condition on the surface of the cylinder:

ª0(µ) =
g´a
¼!

ÃÃ
ÃB0c(µ) +

1X
m=1

©
P2mÃA02m(µ)

ª!
cos(!t)

+

Ã
ÃB0s(µ) +

1X
m=1

©
Q2mÃA02m(µ)

ª!
sin(!t)

!
= ¡ _yb0

2
h(µ)

in which:

ÃA02m(µ) = sin(2mµ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n¡ 1a2n¡1 sin ((2m+ 2n¡ 1)µ)
¾

In this expression ÃB0c(µ) and ÃB0s(µ) are the values of ÃBc(®; µ) and ÃBs(®; µ) at the
surface of the cylinder, so for ® = 0.
So for each µ, the following equation has been obtained:Ã

ÃB0c(µ) +

1X
m=1

©
P2mÃA02m(µ)

ª!
cos(!t)

+

Ã
ÃB0s(µ) +

1X
m=1

©
Q2mÃA02m(µ)

ª!
sin(!t) = ¡ _y¼!b0

2g´a
h(µ)
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The right hand side of this equation can be written as:

¡ _y¼!b0
2g´a

h(µ) = h(µ)
ya
´a
¼»b sin(!t+ ±)

= h(µ) (A0 cos(!t) +B0 sin(!t))

in which:
A0 =

ya
´a
¼»b sin ± and B0 =

ya
´a
¼»b cos ±

This results for each µ into a set of two equations:

ÃB0c(µ) +
1X
m=1

©
P2mÃA02m(µ)

ª
= h(µ)A0

ÃB0s(µ) +

1X
m=1

©
Q2mÃA02mµ)

ª
= h(µ)B0

When putting µ = ¼=2, so at the intersection of the surface of the cylinder with the free
surface of the ‡uid where h(µ)=1, we obtain the coe¢cients A0 and B0:

A0 = ÃB0c(¼=2) +

1X
m=1

©
P2mÃA02m(¼=2)

ª
B0 = ÃB0s(¼=2) +

1X
m=1

©
Q2mÃA02m(¼=2)

ª
in which:

ÃA02m(¼=2) =
»b
¾a
(¡1)m

NX
n=0

½
2n¡ 1

2m+ 2n¡ 1a2n¡1
¾

A substitution of A0 and B0 into the set of two equations for each µ, results for any µ-value
less than ¼=2 into a set of two equations with the unknown parameters P2m and Q2m.
So:

ÃB0c(µ)¡ h(µ)ÃB0c(¼=2) =
1X
m=1

ff2m(µ)P2mg

ÃB0s(µ)¡ h(µ)ÃB0s(¼=2) =

1X
m=1

ff2m(µ)Q2mg

in which:
f2m(µ) = ¡ÃA02m(µ) + h(µ)ÃA02m(¼=2)

The series in these two sets of equations converges uniformly with an increasing value of
m. For practical reasons the maximum value of m is limited to M .
Each µ-value less than ¼=2 will deliver an equation for the P2m and Q2m series. For a lot
of µ-values, the best …t values of P2m and Q2m are supposed to be those found by means
of a least squares method. Note that at least M values of µ, less than ¼=2, are required to
solve these equations.
Another favorable method is to multiply both sides of the equations with ¢µ. Then the
summations over µ can be replaced by integrations.
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Herewith, two sets of M equations have been obtained, one set for P2m and one set for
Q2m:

MX
m=1

8<:P2m
¼=2Z
0

f2m(µ)f2n(µ)dµ

9=; =

¼=2Z
0

¡
ÃB0c(µ)¡ h(µ)ÃB0c(¼=2)

¢
f2n(µ)dµ n = 1; :::M

MX
m=1

8<:Q2m
¼=2Z
0

f2m(µ)f2n(µ)dµ

9=; =

¼=2Z
0

¡
ÃB0s(µ)¡ h(µ)ÃB0s(¼=2)

¢
f2n(µ)dµ n = 1; :::M

Now the P2m and Q2m series can be solved by a numerical method.
With these P2m and Q2m values, the coe¢cients A0 and B0 are known too.
From the de…nition of these coe¢cients follows the amplitude ratio of the radiated waves
and the forced heave oscillation:

´a
ya
=

¼»bp
A20 +B

2
0

With the solved P2m and Q2m values, the velocity potential on the surface of the cylinder
(®=0) is known too:

©0(µ) =
g´a
¼!

ÃÃ
ÁB0c(µ) +

MX
m=1

©
P2mÁA02m(µ)

ª!
cos(!t)

+

Ã
ÁB0s(µ) +

MX
m=1

©
Q2mÁA02m(µ)

ª!
sin(!t)

!

in which:

ÁA02m(µ) = cos(2mµ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n¡ 1a2n¡1 cos ((2m+ 2n¡ 1)µ)
¾

In this expression ÁB0c(µ) and ÁB0s(µ) are the values of ÁBc(®; µ) and ÁBs(®; µ) at the
surface of the cylinder, so for ® = 0.
Now the hydrodynamic pressure on the surface of the cylinder can be obtained from the
linearized equation of Bernoulli:

p(µ) = ¡½@©0(µ)
@t

=
¡½g´a
¼

ÃÃ
ÁB0s(µ) +

MX
m=1

©
Q2mÁA02m(µ)

ª!
cos(!t)

¡
Ã
ÁB0c(µ) +

MX
m=1

©
P2mÁA02m(µ)

ª!
sin(!t)

!

It is obvious that this pressure is symmetric in µ.
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Heave Coe¢cients

The two-dimensional hydrodynamic vertical force, acting on the cylinder in the direction
of the y-axis, can be found by integrating the vertical component of the hydrodynamic
pressure on the surface of the cylinder:

F 0y = ¡
+¼=2Z
¡¼=2

p(µ)
dx0
ds
ds

= ¡2
¼=2Z
0

p(µ)
dx0
dµ
dµ

With this the two-dimensional hydrodynamic vertical force due to heave oscillations can
be written as follows:

F 0y =
½gb0´a
¼

(M0 cos(!t)¡N0 sin(!t))
in which:

M0 = ¡ 1

¾a

¼=2Z
0

ÁB0s(µ)
NX
n=0

f(¡1)n(2n¡ 1)a2n¡1 cos ((2n¡ 1)µ)g dµ

¡ 1

¾a

MX
m=1

(
(¡1)mQ2m

NX
n=0

½
(2n¡ 1)2

(2m)2 ¡ (2n¡ 1)2a2n¡1
¾)

+
¼»b
4¾2a

Ã
Q2 +

NX
m=1

(
(¡1)mQ2m

N¡mX
n=0

f(2n¡ 1)a2n¡1a2m+2n¡1g
)!

and N0 as obtained from this expression for M0, by replacing there ÁB0s(µ) by ÁB0c(µ) and
Q2m by P2m.
For the determination of M0 and N0 it is advised: M = N .
These expressions coincide with those given by [Tasai, 1960].
With:

F 0y =
½gb0´a
¼

(M0 cos(!t+ ± ¡ ±)¡N0 sin(!t+ ± ¡ ±))
and:

sin ± =
´a
ya¼»b

A0 cos ± =
´a
ya¼»b

B0

the two-dimensional hydrodynamic vertical force can be resolved into components in phase
and out phase with the vertical displacement of the cylinder:

F 0y =
½gb0´

2
a

¼2»bya
((M0B0 +N0A0) cos(!t+ ±) + (M0A0 ¡N0B0) sin(!t+ ±))

This hydrodynamic vertical force can also be written as:

F 0y = ¡M 0
33Äy ¡N 0

33 _y

= M 0
33!

2ya cos(!t+ ±) +N
0
33!ya sin(!t+ ±)

in which:
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M 0
33 = 2-D hydrodynamic mass coe¢cient of heave

N 0
33 = 2-D hydrodynamic damping coe¢cient of heave

When using also the amplitude ratio of the radiated waves and the forced heave oscillation,
found before, the two-dimensional hydrodynamic mass and damping coe¢cients of heave
are given by:

M 0
33 =

½b20
2
¢ M0B0 +N0A0

A20 +B
2
0

and N 0
33 =

½b20
2
¢ M0A0 ¡N0B0

A20 +B
2
0

¢ !

The signs of these two coe¢cients are proper in both, the axes system of Tasai and the
ship motions O(x; y; z) coordinate system.
The energy delivered by the exciting forces should be equal to the energy radiated by the
waves.
So:

1

Tosc

T oscZ
0

N 0
33 _y ¢ _ydt =

½g´2ac

2

in which Tosc is the period of oscillation.
With the relation for the wave speed c = g=!, follows the relation between the two-
dimensional heave damping coe¢cient and the amplitude ratio of the radiated waves and
the forced heave oscillation:

N 0
33 =

½g2

!3

µ
´a
ya

¶2
With this amplitude ratio the two-dimensional hydrodynamic damping coe¢cient of heave
is also given by:

N 0
33 =

½¼2b20
4

¢ 1

A20 +B
2
0

¢ !

When comparing this expression for N 0
33 with the expression found before, the following

energy balance relation is found:

M0A0 ¡N0B0 = ¼2

2
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4.1.2 Sway Motions

The determination of the hydrodynamic coe¢cients of a swaying cross section of a ship in
deep and still water at zero forward speed, is based here on work published by [Tasai, 1961]
for the Lewis method. Starting points for the derivation these coe¢cients here are the
velocity potentials and the conjugate stream functions of the ‡uid as they have been derived
by Tasai and also by [Jong, 1973].
Suppose an in…nite long cylinder in the surface of a ‡uid, of which a cross section is given
in …gure 4.2.

Figure 4.2: Axes System for Sway

The cylinder is forced to carry out a simple harmonic lateral motion about its initial
position with a frequency of oscillation ! and a small amplitude of displacement xa:

x = xa cos(!t+ ")

in which " is a phase angle.
Respectively, the lateral velocity and acceleration of the cylinder are:

_x = ¡!xa sin(!t+ ") and Äx = ¡!2xa cos(!t+ ")

This forced lateral oscillation of the cylinder causes a surface disturbance of the ‡uid.
Because the cylinder is supposed to be in…nitely long, the generated waves will be two-
dimensional. These waves travel away from the cylinder and a stationary state is rapidly
attained.
Two kinds of waves will be produced:

² A standing wave system, denoted here by subscript A. The amplitudes of these waves
decrease strongly with the distance to the cylinder.
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² A regular progressive wave system, denoted here by subscript B. These waves dis-
sipate energy. At a distance of a few wave lengths from the cylinder, the waves on
each side can be described by a single regular wave train.. The wave amplitude at
in…nity ´a is proportional to the amplitude of oscillation of the cylinder xa, provided
that this amplitude is su¢ciently small compared with the radius of the cylinder and
the wave length is not much smaller than the diameter of the cylinder.

The two-dimensional velocity potential of the ‡uid has to ful…l the following three require-
ments:

1. The velocity potential must satisfy to the equation of Laplace:

r2© =
@2©

@x2
+
@2©

@y2
= 0

2. Because the sway motion of the ‡uid is not symmetrical about the y-axis, this velocity
potential has the following anti-symmetric relation:

©(¡x; y) = ¡©(+x; y)

3. The linearized free surface condition in deep water is expressed as follows:

!2

g
© +

@©

@y
= 0 for: jxj ¸ Bs

2
and y = 0

In consequence of the conformal mapping, this last equation results into:

»b
¾a
©

NX
n=0

©
(2n¡ 1)a2n¡1e¡(2n¡1)®

ª§ @©
@µ

= 0 for: ® ¸ 0 and µ = §¼
2

in which:

»b
¾a
=
!2

g
Ms or: »b =

!2b0
2g

(non-demensional frequency squared)

From the de…nition of the velocity potential follows the boundary condition on the surface
S of the cylinder for ® = 0:

@©0(µ)

@n
= _x

@x0
@n

in which n is the outward normal of the cylinder surface S.
Using the stream function ª this boundary condition on the surface of the cylinder (® = 0)
reduces to:

@ª0(µ)

@µ
= ¡ _x@x0

@®

= ¡ _xMs

NX
n=0

f(¡1)n(2n¡ 1)a2n¡1 sin ((2n¡ 1)µ)g
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Integration results into the following requirement for the stream function on the surface of
the cylinder:

ª0(µ) = _xMs

NX
n=0

f(¡1)na2n¡1 cos ((2n¡ 1)µ)g+ C(t)

in which C(t) is a function of the time only.
When de…ning:

g(µ) =
2y0
b0

=
1

¾a

NX
n=0

f(¡1)na2n¡1 cos ((2n¡ 1)µ)g

the stream function on the surface of the cylinder is given by:

ª0(µ) = _x
b0
2
g(µ) + C(t)

For the standing wave system a velocity potential and a stream function satisfying to the
equation of Laplace, the non-symmetrical motion of the ‡uid and the free surface condition
has to be found.
The following set of velocity potentials, as they are given by [Tasai, 1961] and [Jong, 1973],
ful…l these requirements:

©A =
g´a
¼!

Ã 1X
m=1

©
P2mÁA2m(®; µ) cos(!t)

ª
+

1X
m=1

©
Q2mÁA2m(®; µ) sin(!t)

ª!

in which:

ÁA2m(®; µ) = e¡(2m+1)® sin ((2m+ 1)µ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1e¡(2m+2n)® sin ((2m+ 2n)µ)

¾
The set of conjugate stream functions is expressed as:

ªA =
g´a
¼!

Ã 1X
m=1

©
P2mÃA2m(®; µ) cos(!t)

ª
+

1X
m=1

©
Q2mÃA2m(®; µ) sin(!t)

ª!

in which:

ÃA2m(®; µ) = ¡e¡(2m+1)® cos ((2m+ 1)µ)

+
»b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1e¡(2m+2n)® cos ((2m+ 2n)µ)

¾
These sets of functions tend to zero as ® tends to in…nity.
In these expressions the magnitudes of the P2m and theQ2m series follow from the boundary
conditions, as will be explained further on.
Another requirement is a diverging wave train for ® goes to in…nity. Therefore it is nec-
essary to add a stream function, satisfying the equation of Laplace, the non-symmetrical
motion of the ‡uid and the free surface condition, representing such a train of waves at



60 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

in…nity. For this, a function describing a two-dimensional horizontal doublet at the origin
O is chosen.
[Tasai, 1961] and [Jong, 1973] gave the velocity potential of the progressive wave system
as:

©B =
g´a
¼!

¡
ÁBc(x; y) cos(!t) + ÁBs(x; y) sin(!t)

¢
in which:

ÁBc ¢ j = ¡¼e¡ºy sin(ºjxj)

ÁBs ¢ j = ¼e¡ºy cos(ºx)¡
1Z
0

º cos(ky) + k sin(ky)

k2 + º2
e¡kjxjdk +

jxj
º(x2 + y2)

while:

j = +1 for x > 0

j = ¡1 for x < 0

º =
!2

g
(wave number for deep water)

Changing the parameters delivers:

©B =
g´a
¼!

¡
ÁBc(®; µ) cos(!t) + ÁBs(®; µ) sin(!t)

¢
The conjugate stream function is given by:

ªB =
g´a
¼!

¡
ÃBc(x; y) cos(!t) + ÃBs(x; y) sin(!t)

¢
in which:

ÃBc = ¼e¡ºy cos(ºx)

ÃBs = ¼e¡ºy sin(ºjxj) +
1Z
0

º sin(ky)¡ k cos(ky)
k2 + º2

e¡kjxjdk ¡ y

º(x2 + y2)

Changing the parameters delivers:

ªB =
g´a
¼!

¡
ÃBc(®; µ) cos(!t) + ÃBs(®; µ) sin(!t)

¢
When calculating the integrals in the expressions for ÃBs and ÁBs numerically, the conver-
gence is very slowly.
Power series expansions, as given by [Porter, 1960], can be used instead of these last inte-
grals over k:

1Z
0

º cos(ky) + k sin(ky)

k2 + º2
e¡kxdk = (Q sin(ºx)¡ (S ¡ ¼) cos(ºx)) e¡ºy

1Z
0

º sin(ky)¡ k cos(ky)
k2 + º2

e¡kxdk = (Q cos(ºx) + (S ¡ ¼) sin(ºx)) e¡ºy
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in which:

Q = ° + ln
³
º
p
x2 + y2

´
+

1X
n=1

fpn cos(n¯)g

S = ¯ +
1X
n=1

fpn sin(n¯)g

¯ = arctan

µ
x

y

¶

pn =

³
º
p
x2 + y2

´n
n ¢ n!

° = 0:5772156649:::::: (Euler constant)

The summation in these expansions converge much faster than the numeric integration
procedure. A suitable maximum value of n should be chosen.
The total velocity potential and stream function to describe the waves generated by a
swaying cylinder are:

© = ©A +©B

ª = ªA +ªB

So the velocity potential and the conjugate stream function are expressed by:

©(®; µ) =
g´a
¼!

ÃÃ
ÁBc(®; µ) +

1X
m=1

©
P2mÁA2m(®; µ)

ª!
cos(!t)

+

Ã
ÁBs(®; µ) +

1X
m=1

©
Q2mÁA2m(®; µ)

ª!
sin(!t)

!

ª(®; µ) =
g´a
¼!

ÃÃ
ÃBc(®; µ) +

1X
m=1

©
P2mÃA2m(®; µ)

ª!
cos(!t)

+

Ã
ÃBs(®; µ) +

1X
m=1

©
Q2mÃA2m(®; µ)

ª!
sin(!t)

!
When putting ® = 0, the stream function is equal to the expression found before from the
boundary condition on the surface of the cylinder:

ª0(µ) =
g´a
¼!

ÃÃ
ÃB0c(µ) +

1X
m=1

©
P2mÃA02m(µ)

ª!
cos(!t)

+

Ã
ÃB0s(µ) +

1X
m=1

©
Q2mÃA02m(µ)

ª!
sin(!t)

!
= _x

b0
2
g(µ) + C(t)

in which:

ÃA02m(µ) = ¡ cos ((2m+ 1)µ)

+
»b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1 cos ((2m+ 2n)µ)

¾
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In this expression ªB0c(µ) and ªB0s(µ) are the values of ªBc(®; µ) and ªBs(®; µ) at the
surface of the cylinder, so for ® = 0.
So for each µ-value, the following equation has been obtained:Ã

ÃB0c(µ) +
1X
m=1

©
P2mÃA02m(µ)

ª!
cos(!t)+Ã

ÃB0s(µ) +

1X
m=1

©
Q2mÃA02m(µ)

ª!
sin(!t) = _x

¼!b0
2g´a

g(µ) + C¤(t)

When putting µ = ¼=2, so at the intersection of the surface of the cylinder with the free
surface of the ‡uid where g(µ) = 0, we obtain the constant C¤(t):

C¤(t) =

Ã
ÃB0c(¼=2) +

1X
m=1

©
P2mÃA02m(¼=2)

ª!
cos(!t) +Ã

ÃB0s(¼=2) +

1X
m=1

©
Q2mÃA02m(¼=2)

ª!
sin(!t)

in which:

ªA02m(¼=2) =
»b
¾a
(¡1)m

NX
n=0

½
2n¡ 1
2m+ 2n

a2n¡1

¾
A substitution of C¤(t) in the equation for each µ-value, results for any µ-value less than
¼=2 into the following equation:Ã
ÃB0c(µ)¡ ÃB0c(¼=2) +

1X
m=1

©
P2m

¡
ÃA02m(µ)¡ ÃA02m(¼=2)

¢ª!
cos(!t)+Ã

ÃB0s(µ)¡ ÃB0s(¼=2) +
1X
m=1

©
Q2m

¡
ÃA02m(µ)¡ ÃA02m(¼=2)

¢ª!
sin(!t) = _x

¼!

g´a

b0
2
g(µ)

The right hand side of this equation can be written as:

_x
¼!b0
2g´a

g(µ) = g(µ)

µ
¡xa
´a
¼»b sin(!t+ ")

¶
= g(µ) (P0 cos(!t) +Q0 sin(!t))

in which:
P0 = ¡xa

´a
¼»b sin " and Q0 = ¡xa

´a
¼»b cos "

This delivers for any µ-value less than ¼=2 two sets of equations with the unknown para-
meters P2m and Q2m.
So:

ÃB0c(µ)¡ ÃB0c(¼=2) = g(µ)P0 +
1X
m=1

ff2m(µ)P2mg

ÃB0s(µ)¡ ÃB0s(¼=2) = g(µ)Q0 +

1X
m=1

ff2m(µ)Q2mg



4.1. THEORY OF TASAI 63

in which:
f2m(µ) = ¡ÃA02m(µ) + ÃA02m(¼=2)

These equations can also be written as:

ÃB0c(µ)¡ ÃB0c(¼=2) =
1X
m=0

ff2m(µ)P2mg

ÃB0s(µ)¡ ÃB0s(¼=2) =

1X
m=0

ff2m(µ)Q2mg

in which:

for m = 0: f0(µ) = g(µ)

for m > 0: f2m(µ) = ¡ÃA02m(µ) + ÃA02m(¼=2)

The series in these two sets of equations converges uniformly with an increasing value of
m. For practical reasons the maximum value of m is limited to M .
Each µ-value less than ¼=2 will deliver an equation for the P2m and Q2m series. The best …t
values of P2m and Q2m are supposed to be those found by means of a least squares method.
Note that at least M + 1 values of µ, less than ¼=2, are required to solve these equations.
Another favorable method is to multiply both sides of the equations with ¢µ. Then the
summations over µ can be replaced by integrations.
Herewith, two sets of M +1 equations have been obtained, one set for P2m and one set for
Q2m:

MX
m=0

8<:P2m
¼=2Z
0

f2m(µ)f2n(µ)dµ

9=; =

¼=2Z
0

¡
ÃB0c(µ)¡ ÃB0c(¼=2)

¢
f2n(µ)dµ n = 0; :::M

MX
m=0

8<:Q2m
¼=2Z
0

f2m(µ)f2n(µ)dµ

9=; =

¼=2Z
0

¡
ÃB0s(µ)¡ ÃB0s(¼=2)

¢
f2n(µ)dµ n = 0; :::M

Now the P2m and Q2m series can be solved with a numerical method. Then P0 and Q0 are
known now and from the de…nition of these coe¢cients follows the amplitude ratio of the
radiated waves and the forced sway oscillation:

´a
xa
=

¼»bp
P 20 +Q

2
0

With the solved P2m and Q2m values, the velocity potential on the surface of the cylinder
(® = 0) is known too:

©0(µ) =
g´a
¼!
(

ÃÃ
ÁB0c(µ) +

1X
m=1

©
P2mÁA02m(µ)

ª!
cos(!t)

+

Ã
ÁB0s(µ) +

1X
m=1

©
Q2mÁA02m(µ)

ª!
sin(!t)

!
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in which:

ÁA02m(µ) = sin ((2m+ 1)µ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1 sin ((2m+ 2n)µ)

¾
In this expression ÁB0c(µ) and ÁB0s(µ) are the values of ÁBc(®; µ) and ÁBs(®; µ) at the
surface of the cylinder, so for ® = 0.
Now the hydrodynamic pressure on the surface of the cylinder can be obtained from the
linearized equation of Bernoulli:

p(µ) = ¡½@©0(µ)
@t

=
¡½g´a
¼

ÃÃ
ÁB0s(µ) +

1X
m=1

©
Q2mÁA02m(µ)

ª!
cos(!t)

¡
Ã
ÁB0c(µ) +

1X
m=1

©
P2mÁA02m(µ)

ª!
sin(!t)

!
It is obvious that this pressure is skew-symmetric in µ.

Sway Coe¢cients

The two-dimensional hydrodynamic lateral force, acting on the cylinder in the direction
of the x¡axis, can be found by integrating the lateral component of the hydrodynamic
pressure on the surface S of the cylinder:

F 0x = ¡
¼=2Z
0

(p(+µ)¡ p(¡µ)) ¡dy0
ds

ds

= 2

¼=2Z
0

p(µ)
dy0
dµ
dµ

With this the two-dimensional hydrodynamic lateral force due to sway oscillations can be
written as follows:

F 0x =
¡½gb0´a
¼

(M0 cos(!t)¡N0 sin(!t))
in which:

M0 = ¡ 1

¾a

¼=2Z
0

ÁB0s(µ)
NX
n=0

f(¡1)n(2n¡ 1)a2n¡1 sin ((2n¡ 1)µ)g dµ

+
¼

4¾a

N¡1X
m=1

f(¡1)mQ2m(2m+ 1)a2m+1g

+
»b
¾2a

MX
m=1

(
(¡1)mQ2m

NX
n=0

NX
i=0

½
(2n¡ 1)(2i¡ 1)

(2m+ 2i)2 ¡ (2n¡ 1)2a2n¡1a2i¡1
¾)
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and N0 as obtained from this expression for M0, by replacing there ÁB0s(µ) by ÁB0c(µ) and
Q2m by P2m.
For the determination of M0 and N0 it is required: M = N .
With:

F 0x =
¡½gb0´a
¼

(M0 cos(!t+ "¡ ")¡N0 sin(!t+ "¡ "))
and:

sin " =
¡´aP0
xa¼»b

cos " =
¡´aQ0
xa¼»b

the two-dimensional hydrodynamic lateral force can be resolved into components in phase
and out phase with the lateral displacement of the cylinder:

F 0x =
½gb0´

2
a

¼2»bxa
((M0Q0 +N0P0) cos(!t+ ") + (M0P0 ¡N0Q0) sin(!t+ "))

This hydrodynamic lateral force can also be written as:

F 0x = ¡M 0
22Äx¡N 0

22 _x

= M 0
22!

2xa cos(!t+ ") +N
0
22!xa sin(!t+ ")

in which:

M 0
22 = 2-D hydrodynamic mass coe¢cient of sway

N 0
22 = 2-D hydrodynamic damping coe¢cient of sway

When using also the amplitude ratio of the radiated waves and the forced sway oscillation,
found before, the two-dimensional hydrodynamic mass and damping coe¢cients of sway
are given by:

M 0
22 =

½b20
2
¢ M0Q0 +N0P0

P 20 +Q
2
0

and N 0
22 =

½b20
2
¢ M0P0 ¡N0Q0

P 20 +Q
2
0

¢ !

The signs of these two coe¢cients are proper in both, the axes system of Tasai and the
ship motions O(x; y; z) coordinate system.
The energy delivered by the exciting forces should be equal to the energy radiated by the
waves.
So:

1

Tosc

T oscZ
0

N 0
22 _x ¢ _xdt =

½g´2ac

2

in which Tosc is the period of oscillation.
With the relation for the wave speed c = g=!, follows the relation between the two-
dimensional sway damping coe¢cient and the amplitude ratio of the radiated waves and
the forced sway oscillation:

N 0
22 =

½g2

!3

µ
´a
xa

¶2
With this amplitude ratio the two-dimensional hydrodynamic damping coe¢cient of sway
is also given by:

N 0
22 =

½¼2b20
4

¢ 1

P 20 +Q
2
0

¢ !
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When comparing this expression for N 0
22 with the expression found before, the following

energy balance relation is found:

M0P0 ¡N0Q0 = ¼2

2

Coupling of Sway into Roll

In the case of a sway oscillation generally a roll moment is produced. The hydrodynamic
pressure is skew-symmetric in µ.
The two-dimensional hydrodynamic moment acting on the cylinder in the clockwise direc-
tion can be found by integrating the roll component of the hydrodynamic pressure on the
surface S of the cylinder:

M 0
R =

¼=2Z
0

(p(+µ)¡ p(¡µ))
µ
¡x0+dx0

ds
+ y0

¡dy0
ds

¶
ds

= ¡2
¼=2Z
0

p(µ)

µ
x0
dx0
dµ

+ y0
dy0
dµ

¶
dµ

With this the two-dimensional hydrodynamic roll moment due to sway oscillations can be
written as follows:

M 0
R =

½gb20´a
¼

(YR cos(!t)¡XR sin(!t))
in which:

YR =
1

2¾2a

¼=2Z
0

ÁB0s(µ)
NX
n=0

NX
i=0

©
(¡1)n+i(2i¡ 1) ¢ a2n¡1a2i¡1 sin ((2n¡ 2i)µ)

ª
dµ

+
1

2¾2a

MX
m=1

(
(¡1)mQ2m

NX
n=0

NX
i=0

½
(2i¡ 1)(2n¡ 2i)

(2m+ 1)2 ¡ (2n¡ 2i)2 ¢ a2n¡1a2i¡1
¾)

¡¼»b
8¾3a

NX
m=1

f(¡1)mQ2m¢Ã
NX
n=m

n¡mX
i=0

½
(¡2m+ 2n¡ 2i¡ 1)(2i¡ 1)

2n¡ 2i ¢ a2n¡1a2i¡1a¡2m+2n¡2i¡1
¾

+
N¡mX
n=0

NX
i=m+n

½
(¡2m¡ 2n+ 2i¡ 1)(2i¡ 1)

2n¡ 2i ¢ a2n¡1a2i¡1a¡2m¡2n+2i¡1
¾!)

and XR as obtained from this expression for YR, by replacing there ÁB0s(µ) by ÁB0c(µ) and
Q2m by P2m.
With:

M 0
R =

½gb20´a
¼

(YR cos(!t+ "¡ ")¡XR sin(!t+ "¡ "))
and:

sin " =
¡´a
xa¼»b

P0 cos " =
¡´a
xa¼»b

Q0
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the two-dimensional hydrodynamic roll moment can be resolved into components in phase
and out phase with the lateral displacement of the cylinder:

M 0
R =

¡½gb20´2a
¼2»bxa

((YRQ0 +XRP0) cos(!t+ ") + (YRP0 ¡XRQ0) sin(!t+ "))

This hydrodynamic roll moment can also be written as:

M 0
R = ¡M 0

42Äx¡N 0
42 _x

= M 0
42!

2xa cos(!t+ ") +N
0
42!xa sin(!t+ ")

in which:

M 0
22 = 2-D hydrodynamic mass coupling coe¢cient of sway into roll

N 0
22 = 2-D hydrodynamic damping coupling coe¢cient of sway into roll

When using also the amplitude ratio of the radiated waves and the forced sway oscillation,
found before, the two-dimensional hydrodynamic mass and damping coupling coe¢cients
of sway into roll in Tasai’s axes system are given by:

M 0
42 =

¡½b30
2

¢ YRQ0 +XRP0
P 20 +Q

2
0

and N 0
42 =

¡½b30
2

¢ YRP0 ¡XRQ0
P 20 +Q

2
0

¢ !

In the ship motions O(x; y; z) coordinate system these two coupling coe¢cients will change
sign.
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4.1.3 Roll Motions

The determination of the hydrodynamic coe¢cients of a rolling cross section of a ship in
deep and still water at zero forward speed, is based here on work published by [Tasai, 1961]
for the Lewis method. Starting points for the derivation these coe¢cients here are the
velocity potentials and the conjugate stream functions of the ‡uid as they have been derived
by Tasai and also by [Jong, 1973].
Suppose an in…nite long cylinder in the surface of a ‡uid, of which a cross section is given
in …gure 4.3.

Figure 4.3: Axes System for Sway Oscillations

The cylinder is forced to carry out a simple harmonic roll motion about the origin O with
a frequency of oscillation ! and a small amplitude of displacement ¯a:

¯ = ¯a cos(!t+ °)

in which ° is a phase angle.
Respectively, the angular velocity and acceleration of the cylinder are:

_̄ = ¡!¯a sin(!t+ °) and Ǟ = ¡!2¯a cos(!t+ °)

This forced angular oscillation of the cylinder causes a surface disturbance of the ‡uid.
Because the cylinder is supposed to be in…nitely long, the generated waves will be two-
dimensional. These waves travel away from the cylinder and a stationary state is rapidly
attained.
Two kinds of waves will be produced:

² A standing wave system, denoted here by subscript A. The amplitudes of these waves
decrease strongly with the distance to the cylinder.
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² A regular progressive wave system, denoted here by subscript B. These waves dis-
sipate energy. At a distance of a few wave lengths from the cylinder, the waves on
each side can be described by a single regular wave train.. The wave amplitude at
in…nity ´a is proportional to the amplitude of oscillation of the cylinder ¯a, provided
that this amplitude is su¢ciently small compared with the radius of the cylinder and
the wave length is not much smaller than the diameter of the cylinder.

The two-dimensional velocity potential of the ‡uid has to ful…l the following three require-
ments:

1. The velocity potential must satisfy to the equation of Laplace:

r2© =
@2©

@x2
+
@2©

@y2
= 0

2. Because the roll motion of the ‡uid is not symmetrical about the y-axis, this velocity
potential has the following relation:

©(¡x; y) = ¡©(+x; y)

3. The linearized free surface condition in deep water is expressed as follows:

!2

g
© +

@©

@y
= 0 for: jxj ¸ Bs

2
and y = 0

In consequence of the conformal mapping, this last equation results into:

»b
¾a
©

NX
n=0

©
(2n¡ 1)a2n¡1e¡(2n¡1)®

ª§ @©
@µ

= 0 for: ® ¸ 0 and µ = §¼
2

in which:

»b
¾a
=
!2

g
Ms or: »b =

!2b0
2g

(non-dimensional frequency squared)

From the de…nition of the velocity potential follows the boundary condition on the surface
S of the cylinder for ® = 0:

@©0(µ)

@n
= r0 _̄

@r0
@s

in which n is the outward normal of the cylinder surface S and r0 is the radius from the
origin to the surface of the cylinder.
Using the stream function ª this boundary condition on the surface of the cylinder (® = 0)
reduces to:

¡@ª0(µ)
@s

= _̄ @

@s

µ
x20 + y

2
0

2

¶
Integration results into the following requirement for the stream function on the surface of
the cylinder:

ª0(µ) = ¡
_̄

2
(x20 + y

2
0) + C(t)
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in which C(t) is a function of the time only.
The vertical oscillation at the intersection of the surface of the cylinder and the waterline
is de…ned by:

Â =
b0
2
¯ = Âa sin(!t+ °)

When de…ning:

¹(µ) =
x20 + y

2
0¡

b0
2

¢2
=

Ã
¡ 1

¾a

NX
n=0

f(¡1)na2n¡1 sin ((2n¡ 1)µ)g
!2

+

Ã
+
1

¾a

NX
n=0

f(¡1)na2n¡1 cos ((2n¡ 1)µ)g
!2

the stream function on the surface of the cylinder is given by:

ª0(µ) = _Â
b0
4
¹(µ) + C(t)

For the standing wave system a velocity potential and a stream function satisfying to the
equation of Laplace, the non-symmetrical motion of the ‡uid and the free surface condition
has to be found.
The following set of velocity potentials, as they are given by [Tasai, 1961] and [Jong, 1973],
ful…l these requirements:

©A =
g´a
¼!

Ã 1X
m=1

©
P2mÁA2m(®; µ) cos(!t)

ª
+

1X
m=1

©
Q2mÁA2m(®; µ) sin(!t)

ª!

in which:

ÁA2m(®; µ) = e¡(2m+1)® sin ((2m+ 1)µ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1e¡(2m+2n)® sin ((2m+ 2n)µ)

¾
The set of conjugate stream functions is expressed as:

ªA =
g´a
¼!

Ã 1X
m=1

©
P2mÃA2m(®; µ) cos(!t)

ª
+

1X
m=1

©
Q2mÃA2m(®; µ) sin(!t)

ª!

in which:

ÃA2m(®; µ) = ¡e¡(2m+1)® cos ((2m+ 1)µ)

+
»b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1e¡(2m+2n)® sin ((2m+ 2n)µ)

¾
These sets of functions tend to zero as ® tends to in…nity.
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In these expressions the magnitudes of the P2m and theQ2m series follow from the boundary
conditions, as will be explained further on.
Another requirement is a diverging wave train for ® goes to in…nity. Therefore it is nec-
essary to add a stream function, satisfying the equation of Laplace, the non-symmetrical
motion of the ‡uid and the free surface condition, representing such a train of waves at
in…nity. For this, a function describing a two-dimensional horizontal doublet at the origin
O is chosen.
[Tasai, 1961] and [Jong, 1973] gave the velocity potential of the progressive wave system
as:

©B =
g´a
¼!

¡
ÁBc(x; y) cos(!t) + ÁBs(x; y) sin(!t)

¢
in which:

ÁBc ¢ j = ¡¼e¡ºy sin(ºjxj)

ÁBs ¢ j = ¼e¡ºy cos(ºx)¡
1Z
0

º cos(ky) + k sin(ky)

k2 + º2
e¡kjxjdk +

jxj
º(x2 + y2)

while:

j = +1 for x > 0

j = ¡1 for x < 0

º =
!2

g
(wave number for deep water)

Changing the parameters delivers:

©B =
g´a
¼!

¡
ÁBc(®; µ) cos(!t) + ÁBs(®; µ) sin(!t)

¢
The conjugate stream function is given by:

ªB =
g´a
¼!

¡
ÃBc(x; y) cos(!t) + ÃBs(x; y) sin(!t)

¢
in which:

ÃBc = ¼e¡ºy cos(ºx)

ÃBs = ¼e¡ºy sin(ºjxj) +
1Z
0

º sin(ky)¡ k cos(ky)
k2 + º2

e¡kjxjdk ¡ y

º(x2 + y2)

Changing the parameters delivers:

ªB =
g´a
¼!

¡
ÃBc(®; µ) cos(!t) + ÃBs(®; µ) sin(!t)

¢
When calculating the integrals in the expressions for ÃBs and ÁBs numerically, the conver-
gence is very slowly.
Power series expansions, as given by [Porter, 1960], can be used instead of these last inte-
grals over k:
The summation in these expansions converge much faster than the numeric integration
procedure. This has been shown before for the sway case.
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The total velocity potential and stream function to describe the waves generated by a
swaying cylinder are:

© = ©A +©B

ª = ªA +ªB

So the velocity potential and the conjugate stream function are expressed by:

©(®; µ) =
g´a
¼!

ÃÃ
ÁBc(®; µ) +

1X
m=1

©
P2mÁA2m(®; µ)

ª!
cos(!t)

+

Ã
ÁBs(®; µ) +

1X
m=1

©
Q2mÁA2m(®; µ)

ª!
sin(!t)

!

ª(®; µ) =
g´a
¼!

ÃÃ
ÃBc(®; µ) +

1X
m=1

©
P2mÃA2m(®; µ)

ª!
cos(!t)

+

Ã
ÃBs(®; µ) +

1X
m=1

©
Q2mÃA2m(®; µ)

ª!
sin(!t)

!
When putting ® = 0, the stream function is equal to the expression found before from the
boundary condition on the surface of the cylinder:

ª0(µ) =
g´a
¼!

ÃÃ
ÃB0c(µ) +

1X
m=1

©
P2mÃA02m(µ)

ª!
cos(!t)

+

Ã
ÃB0s(µ) +

1X
m=1

©
Q2mÃA02m(µ)

ª!
sin(!t)

!
= ¡ _Âb0

4
¹(µ) + C(t)

in which:

ÃA02m(µ) = ¡ cos ((2m+ 1)µ)

+
»b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1 cos ((2m+ 2n)µ)

¾
In this expression ªB0c(µ) and ªB0s(µ) are the values of ªBc(®; µ) and ªBs(®; µ) at the
surface of the cylinder, so for ® = 0.
So for each µ-value, the following equation has been obtained:Ã

ÃB0c(µ) +
1X
m=1

©
P2mÃA02m(µ)

ª!
cos(!t)+Ã

ÃB0s(µ) +
1X
m=1

©
Q2mÃA02m(µ)

ª!
sin(!t) = ¡ _Â¼!b0

4g´a
¹(µ) + C¤(t)

When putting µ = ¼=2, so at the intersection of the surface of the cylinder with the free
surface of the ‡uid where ¹(µ) = 1, we obtain the constant C¤(t):

C¤(t) = ÃB0c(¼=2) +

1X
m=1

©
P2mÃA02m(¼=2)

ª
cos(!t)
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+

Ã
ÃB0s(¼=2) +

1X
m=1

©
Q2mÃA02m(¼=2)

ª!
sin(!t)

+ _Â
¼!b0
4g´a

in which:

ªA02m(¼=2) =
»b
¾a
(¡1)m

NX
n=0

2n¡ 1
2m+ 2n

a2n¡1

A substitution of C¤(t) in the equation for each µ-value, results for any µ-value less than
¼=2 into the following equation:Ã

ÃB0c(µ)¡ ÃB0c(¼=2) +
1X
m=1

©
P2m

¡
ÃA02m(µ)¡ ÃA02m(¼=2)

¢ª!
cos(!t)

+

Ã
ÃB0s(µ)¡ ÃB0s(¼=2) +

1X
m=1

©
Q2m

¡
ÃA02m(µ)¡ ÃA02m(¼=2)

¢ª!
sin(!t)

= ¡ _Â¼!b0
4g´a

(¹(µ)¡ 1)

The right hand side of this equation can be written as:

¡ _Â¼!b0
4g´a

(¹(µ)¡ 1) = (¹(µ)¡ 1)
µ
¡¼Âa
2´a

»b sin(!t+ °)

¶
= (¹(µ)¡ 1) (P0 cos(!t) +Q0 sin(!t))

in which:
P0 =

¼Âa
2´a

»b sin ° and Q0 =
¼Âa
2´a

»b cos °

This delivers for any µ-value less than ¼=2 two sets of equations with the unknown para-
meters P2m and Q2m.
So:

ÃB0c(µ)¡ ÃB0c(¼=2) = (¹(µ)¡ 1)P0 +
1X
m=1

ff2m(µ)P2mg

ÃB0s(µ)¡ ÃB0s(¼=2) = (¹(µ)¡ 1)Q0 +
1X
m=1

ff2m(µ)Q2mg

in which:
f2m(µ) = ¡ÃA0c(µ) + ÃA0c(¼=2)

These equations can also be written as:

ÃB0c(µ)¡ ÃB0c(¼=2) =
1X
m=0

ff2m(µ)P2mg

ÃB0s(µ)¡ ÃB0s(¼=2) =

1X
m=0

ff2m(µ)Q2mg
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in which:

for m = 0: f0(µ) = ¹(µ)¡ 1
for m > 0: f2m(µ) = ¡ÃA02m(µ) + ÃA02m(¼=2)

The series in these two sets of equations converges uniformly with an increasing value of
m. For practical reasons the maximum value of m is limited to M .
Each µ-value less than ¼=2 will deliver an equation for the P2m and Q2m series. The best …t
values of P2m and Q2m are supposed to be those found by means of a least squares method.
Note that at least M+1 values of µ, less than ¼=2, are required to solve these equations.
Another favorable method is to multiply both sides of the equations with ¢µ. Then the
summations over µ can be replaced by integrations.
Herewith, two sets of M +1 equations have been obtained, one set for P2m and one set for
Q2m:

MX
m=0

8<:P2m
¼=2Z
0

f2m(µ)f2n(µ)dµ

9=; =

¼=2Z
0

¡
ÃB0c(µ)¡ ÃB0c(¼=2)

¢
f2n(µ)dµ n = 0; :::M

MX
m=0

8<:Q2m
¼=2Z
0

f2m(µ)f2n(µ)dµ

9=; =

¼=2Z
0

¡
ÃB0s(µ)¡ ÃB0s(¼=2)

¢
f2n(µ)dµ n = 0; :::M

Now the P2m and Q2m series can be solved with a numerical method. Then P0 and Q0 are
known now and from the de…nition of these coe¢cients follows the amplitude ratio of the
radiated waves and the forced sway oscillation:

´a
Âa
=

¼»b

2
p
P 20 +Q

2
0

With the solved P2m and Q2m values, the velocity potential on the surface of the cylinder
(®=0) is known too:

©0(µ) =
g´a
¼!

ÃÃ
ÁB0c(µ) +

MX
m=1

©
P2mÁA02m(µ)

ª!
cos(!t)

+

Ã
ÁB0s(µ) +

MX
m=1

©
Q2mÁA02m(µ)

ª!
sin(!t)

!

in which:

ÁA02m(µ) = sin ((2m+ 1)µ)

¡ »b
¾a

NX
n=0

½
(¡1)n 2n¡ 1

2m+ 2n
a2n¡1 sin ((2m+ 2n)µ)

¾

In this expression ÁB0c(µ) and ÁB0s(µ) are the values of ÁBc(®; µ) and ÁBs(®; µ) at the
surface of the cylinder, so for ® = 0.
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Now the hydrodynamic pressure on the surface of the cylinder can be obtained from the
linearized equation of Bernoulli:

p(µ) = ¡½@©0(µ)
@t

=
¡½g´a
¼

ÃÃ
ÁB0s(µ) +

MX
m=1

©
Q2mÁA02m(µ)

ª!
cos(!t)

¡
Ã
ÁB0c(µ) +

MX
m=1

©
P2mÁA02m(µ)

ª!
sin(!t)

!
It is obvious that this pressure is skew-symmetric in µ.

Roll Coe¢cients

The two-dimensional hydrodynamic moment acting on the cylinder in the clockwise direc-
tion can be found by integrating the roll component of the hydrodynamic pressure on the
surface S of the cylinder:

M 0
R =

¼=2Z
0

(p(+µ)¡ p(¡µ))
µ
¡x0+dx0

ds
+ y0

¡dy0
ds

¶
ds

= ¡2
¼=2Z
0

p(µ)

µ
x0
dx0
dµ

+ y0
dy0
dµ

¶
dµ

With this the two-dimensional hydrodynamic moment due to roll oscillations can be written
as follows:

M 0
R =

½gb20´a
¼

(YR cos(!t)¡XR sin(!t))
in which:

YR =
1

2¾2a

¼=2Z
0

ÁB0s(µ)
NX
n=0

NX
i=0

©
(¡1)n+i(2i¡ 1) ¢ a2n¡1a2i¡1 sin ((2n¡ 2i)µ)

ª
dµ

+
1

2¾2a

MX
m=1

(
(¡1)mQ2m

NX
n=0

NX
i=0

½
(2i¡ 1)(2n¡ 2i)

(2m+ 1)2 ¡ (2n¡ 2i)2 ¢ a2n¡1a2i¡1
¾)

¡¼»b
8¾3a

NX
m=1

f(¡1)mQ2m¢Ã
NX
n=m

n¡mX
i=0

½
(¡2m+ 2n¡ 2i¡ 1)(2i¡ 1)

2n¡ 2i ¢ a2n¡1a2i¡1a¡2m+2n¡2i¡1
¾

+
N¡mX
n=0

NX
i=m+n

½
(¡2m¡ 2n+ 2i¡ 1)(2i¡ 1)

2n¡ 2i ¢ a2n¡1a2i¡1a¡2m¡2n+2i¡1
¾!)

and XR as obtained from this expression for YR, by replacing there ÁB0s(µ) by ÁB0c(µ) and
Q2m by P2m.
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These expressions are similar to those found before for the hydrodynamic roll moment due
to sway oscillations.
With:

M 0
R =

½gb20´a
¼

(YR cos(!t+ ° ¡ °)¡XR sin(!t+ ° ¡ °))
and:

sin ° =
2´a
Âa¼»b

P0 cos ° =
2´a
Âa¼»b

Q0

the two-dimensional hydrodynamic roll moment can be resolved into components in phase
and out phase with the angular displacement of the cylinder:

M 0
R =

2½gb20´
2
a

¼2»bÂa
((YRQ0 +XRP0) cos(!t+ °) + (YRP0 ¡XRQ0) sin(!t+ °))

This hydrodynamic roll moment can also be written as:

M 0
R = ¡M 0

44
Ǟ ¡N 0

44
_̄

= M 0
44!

2¯a cos(!t+ °) +N
0
44!¯a sin(!t+ °)

in which:
M 0
44 = 2-D hydrodynamic mass moment of inertia coe¢cient of roll

N 0
44 = 2-D hydrodynamic damping coe¢cient of roll

When using also the amplitude ratio of the radiated waves and the forced roll oscillation,
found before, the two-dimensional hydrodynamic mass and damping coe¢cients of roll in
Tasai’s axes system are given by:

M 0
44 =

½b40
8
¢ YRQ0 +XRP0

P 20 +Q
2
0

and N 0
44 =

½b40
8
¢ YRP0 ¡XRQ0

P 20 +Q
2
0

¢ !
The signs of these two coe¢cients are proper in both, the axes system of Tasai and the
ship motions O(x; y; z) coordinate system.
The energy delivered by the exciting moments should be equal to the energy radiated by
the waves.
So:

1

Tosc

T oscZ
0

N 0
44
_̄ ¢ _̄ dt = ½g´2ac

2

in which Tosc is the period of oscillation.
With the relation for the wave speed c = g=!, follows the relation between the two-
dimensional roll damping coe¢cient and the amplitude ratio of the radiated waves and the
forced roll oscillation:

N 0
44 =

½g2

!3

µ
´a
¯a

¶2
With this amplitude ratio the two-dimensional hydrodynamic damping coe¢cient of roll
is also given by:

N 0
44 =

½¼2b40
64

¢ 1

P 20 +Q
2
0

¢ !
When comparing this expression for N 0

44 with the expression found before, the following
energy balance relation is found:

YRP0 ¡XRQ0 = ¼2

8
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Coupling of Roll into Sway

The two-dimensional hydrodynamic lateral force, acting on the cylinder in the direction
of the x-axis, can be found by integrating the angular component of the hydrodynamic
pressure on the surface S of the cylinder:

F 0x = ¡
¼=2Z
0

(p(+µ)¡ p(¡µ)) ¡dy0
ds

ds

= 2

¼=2Z
0

p(µ)
dy0
dµ
dµ

With this the two-dimensional hydrodynamic angular force due to roll oscillations can be
written as follows:

F 0x =
¡½gb0´a
¼

(M0 cos(!t)¡N0 sin(!t))
in which:

M0 = ¡ 1

¾a

¼=2Z
0

ÁB0s(µ)
NX
n=0

f(¡1)n(2n¡ 1)a2n¡1 sin ((2n¡ 1)µ)g dµ

+
¼

4¾a

N¡1X
m=1

f(¡1)mQ2m(2m+ 1)a2m+1g

+
»b
¾2a

MX
m=1

(
(¡1)mQ2m

NX
n=0

NX
i=0

½
(2n¡ 1)(2i¡ 1)

(2m+ 2i)2 ¡ (2n¡ 1)2a2n¡1a2i¡1
¾)

and N0 as obtained from this expression for M0, by replacing there ÁB0s(µ) by ÁB0c(µ) and
Q2m by P2m.
For the determination of M0 and N0 it is required: M = N .
These expressions are similar to those found before for the hydrodynamic lateral force due
to sway oscillations.
With:

F 0x =
¡½gb0´a
¼

(M0 cos(!t+ ° ¡ °)¡N0 sin(!t+ ° ¡ °))
and:

sin ° =
2´a
Âa¼»b

P0 cos ° =
2´a
Âa¼»b

Q0

the two-dimensional hydrodynamic angular force can be resolved into components in phase
and out phase with the angular displacement of the cylinder:

F 0x =
¡2½gb0´2a
¼2»bÂa

((M0Q0 +N0P0) cos(!t+ °) + (M0P0 ¡N0Q0) sin(!t+ °))

This hydrodynamic angular force can also be written as:

F 0x = ¡M 0
24
Ǟ ¡N 0

24
_̄

= M 0
24!

2¯a cos(!t+ °) +N
0
24!¯a sin(!t+ °)

in which:
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M 0
24 = 2-D hydrodynamic mass coupling coe¢cient of roll into sway

N 0
24 = 2-D hydrodynamic damping coupling coe¢cient of roll into sway

When using also the amplitude ratio of the radiated waves and the forced roll oscillation,
found before, the two-dimensional hydrodynamic mass and damping coupling coe¢cients
of roll into sway are given by:

M 0
24 =

¡½b30
8

¢ M0Q0 +N0P0
P 20 +Q

2
0

and N 0
24 =

¡½b30
8

¢ M0P0 ¡N0Q0
P 20 +Q

2
0

¢ !

In the ship motions O(x; y; z) coordinate system these two coupling coe¢cients will change
sign.
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4.1.4 Low and High Frequencies

The velocity potentials for very small and very large frequencies are derived and discussed
in the next subsections.

Zero-Frequency Coe¢cients

The two-dimensional hydrodynamic mass coe¢cient of sway of a Lewis cross section is
given by [Tasai, 1961]:

M 0
22(! = 0) =

½¼

2

µ
Ds

1¡ a1 + a3

¶2 ¡
(1¡ a1)2 + 3a23

¢
The two-dimensional hydrodynamic mass coupling coe¢cient of sway into roll of a Lewis
cross section is given by [Grim, 1955]:

M 0
42(! = 0) = ¡M 0

22(! = 0) ¢
16

3¼
¢ Ds
1¡ a1 + a3 ¢

a1
¡
1¡ a1 + 4

5
a3 ¡ a1a3 + 3

5
a23
¢
+ 4

5
a3 ¡ 12

7
a23

(1¡ a1)2 + 3a23
In Tasai’s axes system M 0

42 will change sign.
The two-dimensional hydrodynamic mass moment of inertia coe¢cient of roll of a Lewis
cross section is given by [Grim, 1955]:

M 0
44(! = 0) =

16½

¼
¢
µ

Bs
2(1 + a1 + a3)

¶4
¢µ

a21(1 + a3)
2 +

8

9
a1a3(1 + a3) +

16

9
a23

¶
The two-dimensional hydrodynamic mass coupling coe¢cient of roll into sway of a Lewis
cross section is given by [Grim, 1955]:

M 0
24(! = 0) = ¡M 0

44(! = 0) ¢
¼

6
¢ 1¡ a1 + a3

Ds
¢

a1(1¡ a1)(1 + a3) + 3
5
a1a3(1 + a3) +

4
5
a3(1¡ a1)¡ 12

7
a23

a21(1 + a3)
2 + 8

9
a1a3(1 + a3) +

16
9
a23

In Tasai’s axes system M 0
24 will change sign.

All potential damping values for zero frequency will be zero:

N 0
22(! = 0) = 0

N 0
42(! = 0) = 0

N 0
33(! = 0) = 0

N 0
44(! = 0) = 0

N 0
24(! = 0) = 0
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In…nite Frequency Coe¢cients

The two-dimensional hydrodynamic mass coe¢cient of sway of a Lewis cross section is
given by Landweber and de Macagno:

M 0
22(! =1) =

2½

¼

µ
Ds

1¡ a1 + a3

¶2µ
(1¡ a1 + a3)2 + 16

3
a23

¶
The two-dimensional hydrodynamic mass coe¢cient of heave of a Lewis cross section is
given by [Tasai, 1959]:

M 0
33(! =1) =

½¼

2

µ
Bs

2(1 + a1 + a3)

¶2 ¡
(1 + a1)

2 + 3a23
¢

The two-dimensional hydrodynamic mass moment of inertia coe¢cient of roll of a Lewis
cross section is given by [Kumai, 1959]:

M 0
44(! =1) = ½¼

µ
Bs

2(1 + a1 + a3)

¶4 ¡
a21(1 + a3)

2 + 2a23
¢

All potential damping values for in…nite frequency will be zero:

N 0
22(! =1) = 0

N 0
42(! =1) = 0

N 0
33(! =1) = 0

N 0
44(! =1) = 0

N 0
24(! =1) = 0



4.2. THEORY OF KEIL 81

4.2 Theory of Keil

In this section, the determination of the hydrodynamic coe¢cients of a heaving, swaying
and rolling cross section of a ship in shallow at zero forward speed is based on work
published by [Keil, 1974]. This method is based on a Lewis conformal mapping of the
ships’ cross section to the unit circle

4.2.1 Notation

His notations have been maintained here as far as possible and references are given here
to the formula numbers in his report.

a = Lewis coe¢cient
Aindex = source strength
¹Aindex = amplitude ratio
b = Lewis coe¢cient
B = breadth of body
c = wave velocity
Cindex = non-dimensional force or moment
Eindex = non-dimensional exciting force or moment
Findex = hydrodynamic force
g = acceleration of gravity
G = function (real part)
h = water depth
H = function (imaginary part)
Hindices = …ctive moment arm
HT = water depth - draft ratio
I" = hydrodynamic moment of inertia
kx = wave number in x-direction
ky = wave number in y-direction
m" = hydrodynamic mass
Mindices = hydrodynamic moment
Nindex = hydrodynamic damping coe¢cient
p = pressure
r =

p
y2 + z2 = polar coordinates

t = time or integer value
T = draft
¹U = velocity amplitude of horizontal oscillation
¹V = velocity amplitude of vertical oscillation
Ax = cross sectional area
x; y; z = space-bound coordinates
Yindices = transfer functions
° = Euler constant (= 0.57722)
" = phase lag
¹³ = wave amplitude
µ = polar coordinate or pitch amplitude



82 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

¸ = wave length
¹ = wave direction
º = !2=g = wave number at deep water
º0 = 2¼=¸ = wave number
½ = density of water
' = roll angle
'indices = part of potential
©indices = time-dependent potential
Ãindices = part of stream function
ªindices = time-dependent stream function
! = circular frequency of oscillation

In here, the indices - that he used - are:

E = related to excitation
H = horizontal or related to horizontal motions
j = imaginary part
n = ordering of potential parts
Q = related to transverse motions
r = real part
R = related to roll motions
V = vertical or related to vertical motions
W = related to waves

4.2.2 Basic Assumptions

The following …gure shows the 2-D coordinate system as used by Keil and maintained here.
The potentials of the incoming waves are described in Appendix 1.
The wave number º0 = 2¼=¸, follows from:

º =
!2

g
=
2¼

¸
tanh

2¼h

¸
= º0 tanh [º0h]

The ‡uid is supposed to be incompressible and inviscid. The ‡ow caused by the oscillating
body in the surface of this ‡uid can be described by a potential ‡ow. The problem will
be linearized, i.e., contributions of second and higher order in the de…nition of the bound-
ary conditions will be ignored. Physically, this yields an assumption of small amplitude
motions.
The space-bound axes system of the sectional contour is given in …gure 4.5-a.
Velocities are positive if they are directed in the positive coordinate direction:

@©

@y
= vy

@©

@z
= vz

The value of the stream function increases when - going in the positive direction - the ‡ow
goes in the negative y-direction:

ª1 < ª2 ! @©

@y
= +

@ª

@z



4.2. THEORY OF KEIL 83

Figure 4.4: Axes System, as Used by Keil

ª3 > ª4 ! @©

@z
= ¡@ª

@y
@©

@n
= ¡@ª

@s
@©

@s
= +

@ª

@n

For the imaginary parts, i and j have been used: i for geometrical variables (potential and
stream function) and j for functions of time.

Figure 4.5: De…nition of Sectional Contour
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4.2.3 Vertical Motions

Boundary Conditions

The two-dimensional velocity potential of the ‡uid has to ful…l the following requirements:

1. The ‡uid is incompressible and the velocity potential must satisfy to the Continuity
Condition and the Equation of Laplace:

r2© =
@2©

@y2
+
@2©

@z2
= 0 (Keil-1)

2. The linearized free surface condition follows from the condition that the pressure at
the free surface is not time-depending:

@p

@t
= ½

µ
g
@©

@z
¡ @

2©

@t2

¶
= 0 for: jyj ¸ B

2
and z = 0 (Keil-2/1)

from which follows:

!2

g
© +

@©

@z
= 0 for: jyj ¸ B

2
and z = 0

or:

º© +
@©

@z
= 0 for: jyj ¸ B

2
and z = 0 (Keil-2/2)

3. The sea bottom is impervious, so the vertical ‡uid velocity at z = h is zero:

@©

@z
= 0 for: z = h (Keil-3)

4. The harmonic oscillating cylinder produces a regular progressive wave system, trav-
elling away from the cylinder, which ful…ls the Sommerfeld Radiation Condition:

lim
y!1

½p
jyj
µ
@

@y
Re (©)¡ º0 Im (©)

¶¾
= 0 (Keil-4)

In here, º0 = 2¼=¸ is the wave number of the radiated wave.

5. The oscillating cylinder is impervious too; thus at the surface of the body is the ‡uid
velocity equal to the body velocity, see …gure 4.5-b. This yields that the boundary
conditions on the surface of the body are given by:·

@©

@n

¸
body

= [vn]body

=

·
@©

@z
¢ dy
ds
¡ @©
@y
¢ dz
ds

¸
body

= ¡
·
dª

ds

¸
body

(Keil-5)

Two cases have to be distinguished:



4.2. THEORY OF KEIL 85

a. The hydromechanical loads, which have to be obtained for the vertically oscillating
cylinder in still water with a vertical velocity equal to:

V = ¹V ¢ ejwt

The boundary condition on the surface of the body becomes:

¡
·
dª

ds

¸
body

= ¹V ¢
·
dy

ds

¸
body

¢ ejwt (Keil-5a/1)

or:
ªbody (y; z; t) = ¡¹V ¢ ejwt ¢ ybody + C (Keil-5a/2)

b. The wave loads, which have to be obtained for the restrained cylinder in regular waves
from the incoming undisturbed wave potential ©W and the di¤raction potential ©S:·

@©W
@n

+
@©S
@n

¸
body

= 0

=

·
@©W
@z

¢ dy
ds
¡ @©W

@y
¢ dz
ds
+
@©S
@z

¢ dy
ds
¡ @©S
@y

¢ dz
ds

¸
body

= ¡
·
dªW
ds

+
dªS
ds

¸
body

(Keil-6/1)

or:

[dªS (y; z; t)]body = ¡ [dªW (y; z; t)]body
=

·
@©W
dz

dy ¡ @©W
dy

dz

¸
body

(Keil-6/2)

The stream function of an incoming wave - which travels in the negative y-direction,
so ¹ = 900 - is given in Appendix 1 of this section by:

ªW = j
¹³!

º
¢ ej(wt+º0y) ¢ (sinh [º0z]¡ tanh [º0h] cosh [º0z]) (Keil-A1)

Because only vertical forces have to be determined, only the in y-symmetric part
of the potential and stream functions have to be considered. From this follows the
boundary condition on the surface of the body for beam waves, so wave direction
¹ = 900:

[ªS (y; z; t)]body = ¡ [ªW (y; z; t)]body (Keil-6a)

=
¹³!

º
¢ ejwt ¢ [(sinh [º0z]¡ tanh [º0h] cosh [º0z]) sin(º0y)]body

In case of another wave direction, this problem becomes three-dimensional and a
stream function can not be written. However, boundary condition (Keil-6a) provides
us a ”quasi stream function” ~ªs, i.e., this is the amount of ‡uid which has to come
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out of the body per unit of length so that totally no ‡uid of the incoming wave enters
into the body. This function can be used as an approximation of the problem:

h
~ªS (x1; y1; z1; t)

i
body

=

24 y1Z
0

@ªW
@z

dy ¡
z1Z
z0

@ªW
@y

dz

35
body

= (Keil-6b)

=
¹³!

º
¢ ejwt ¢ cos(º0x cos¹) ¢

fsin¹ sin(º0y1 sin¹) (sinh [º0z1]¡ tanh [º0h] cosh [º0z1])

+º0(1¡ sin2 ¹)
y1Z
0

cos(º0y sin¹) (sinh [º0z]¡ tanh [º0h] cosh [º0z]) dyg

Potentials

3-D Radiation Potential Suppose a three-dimensional oscillating cylindrical body in
previously still water. To …nd the potential of the resulting ‡uid motions, this body will
be replaced by an oscillating pressure p at the free surface. The unknown amplitude ¹p of
this pressure has to follow from the boundary conditions.
This pressure is not supposed to act over the full breadth of the body; it is supposed to
act - over the full length L of the body - only over a small distance ¢y=2 to both sides of
y = 0, so:

p(x; y; z = z0; t) = ¡j ¢ ¹p(x; y; z=z0)ej!t
or :

¹p(x; y; z = z0) = 0 for jyj > ¢y=2 and jxj > L=2 (Keil-7)

in which z0 is the z-coordinate of the ‡uid surface.
The resulting force P in the z-direction becomes:

¹P =

+L=2Z
¡L=2

+¢y=2Z
¡¢y=2

¹p(x; y; z=z0) dydx

=

+L=2Z
¡L=2

¹P
0
(x)dx <1 (Keil-7a)

Boundary condition (Keil-7) can be ful…lled by a pressure amplitude ¹p(x; y; z=z0) which
is found by a superposition of an in…nite number of harmonic pressures. From equation
(Keil-7a) follows that the pressure amplitude ¹p(x) can be integrated, so a Fourier series
expansion follows from:

¹p(x) =
1

¼

1Z
0

+1Z
¡1

¹p(») cos [kx(x¡ »)] d» dkx
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Because the pressure amplitude ¹p depends on two variables, the Fourier series expansion
has to be two-dimensional:

¹p(x; y; z=z0) =
1

¼2

1Z
0

1Z
0

+1Z
¡1

+1Z
¡1

¹p(»; ´) cos [ky(y ¡ ´)] cos [kx(x¡ »)] d´ d» dky dkx

in which kx is the wave number in the x-direction and ky is the wave number in the
y-direction.
According to equation (Keil-7), the pressure amplitude ¹p disappears for jyj > ¢y=2 and
jxj > L=2, so for this pressure expression remains:

¹p(x; y; z=z0) =
1

¼2

1Z
0

1Z
0

+L=2Z
¡L=2

+¢y=2Z
¡¢y=2

¹p(»; ´) cos [ky(y ¡ ´)] cos [kx(x¡ »)] d´ d» dky dkx

It is assumed that the value of ¢y is small. This means that ´ remains small too, thus one
can safely suppose that:

cos [ky(y ¡ ´)] t cos(kyy)
which results in:

¹p(x; y; z=z0) =
1

¼2

1Z
0

1Z
0

+L=2Z
¡L=2

+¢y=2Z
¡¢y=2

¹p(»; ´) d´ cos [kx(x¡ »)] d» cos(kyy) dky dkx

=
1

¼2

1Z
0

1Z
0

cos(kyy)

+L=2Z
¡L=2

¹P
0
(») cos [kx(x¡ »)] d» dky dkx (Keil-7b)

This pressure de…nition leads - as a start - to the following initial de…nition of the radiation
potential:

©0r(x; y; z; t) = ej!t
1Z
0

1Z
0

1Z
0

C(kx; ky) cos [kx(x¡ »)] cos(kyy) ¢

¢cosh
£p
k2x + k

2
y ¢ (z ¡ h)

¤
sinh

£p
k2x + k

2
y ¢ h

¤ dkx dky d» (Keil-8)

in which the function C(kx; ky) is still unknown.
This expression (Keil-8) for the radiation potential ful…ls the Equation of Laplace:

@2©

@x2
+
@2©

@y2
+
@2©

@z2
= 0

Now, the pressure at the free surface p1 can be obtained from an integration of the - with
the Bernoulli Equation obtained - derivative to the time of the pressure:

@p1
@t

= ej!t½

1Z
0

1Z
0

1Z
0

C(kx; ky) cos [kx(x¡ »)] cos(kyy) ¢

¢!
2 ¡ gpk2x + k2y ¢ tanh £pk2x + k2y ¢ h¤

tanh
£p
k2x + k

2
y ¢ h

¤ dkx dky d» (Keil-8a)



88 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

The harmonic oscillating pressure is given by:

p1(x; y; z=z0; t) = ¡j ¢ ¹p1(x; y; z=0) ¢ ej!t

and its amplitude becomes:

¹p1(x; y; z=z0) =
½

!

1Z
0

1Z
0

1Z
0

C(kx; ky) cos [kx(x¡ »)] cos(kyy) ¢ (Keil-8b)

¢!
2 ¡ gpk2x + k2y ¢ tanh £pk2x + k2y ¢ h¤

tanh
£p
k2x + k

2
y ¢ h

¤ dkx dky d»

If this pressure amplitude ¹p1 is supposed to be equal to the amplitude ¹p, then combining
equations (Keil-7b) and (Keil-8b) provides the unknown function C(kx; ky):

¹p(x; y; z=z0) =
1

¼2

1Z
0

1Z
0

cos(kyy)

+L=2Z
¡L=2

¹P
0
(») cos [kx(x¡ »)] d» dky dkx

= ¹p1(x; y; z=z0)

=
½g

!

1Z
0

1Z
0

cos(kyy)

1Z
0

C(kx; ky) cos [kx(x¡ »)]

¢º ¡
p
k2x + k

2
y ¢ tanh

£p
k2x + k

2
y ¢ h

¤
tanh

£p
k2x + k

2
y ¢ h

¤ dkx dky d»

Comparing the two integrands provides:

1Z
0

C(kx; ky) cos [kx(x¡ »)] ½g
!
¢ º ¡

p
k2x + k

2
y ¢ tanh

£p
k2x + k

2
y ¢ h

¤
tanh

£p
k2x + k

2
y ¢ h

¤ d» =

=
1

¼2

+L=2Z
¡L=2

¹P
0
(») cos [kx(x¡ »)] d»

or:

1Z
0

C(kx; ky) cos [kx(x¡ »)] d» =
tanh

£p
k2x + k

2
y ¢ h

¤
º ¡pk2x + k2y ¢ tanh £pk2x + k2y ¢ h¤ ¢
¢ !
½g¼2

+L=2Z
¡L=2

¹P
0
(») cos [kx(x¡ »)] d» (Keil-9)

When de…ning:
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A0(») =
! ¹P

0
(»)

½g¼2

and substituting equation (Keil-9) in equation (Keil-8) provides the radiation potential:

©0r(x; y; z; t) = e
j!t

+L=2Z
¡L=2

A0(»)

1Z
0

cos [kx(x¡ »)] ¢ (Keil-10)

¢
1Z
0

cosh
£p
k2x + k

2
y ¢ (z ¡ h)

¤
cos(kyy)

º cosh
£p
k2x + k

2
y ¢ h

¤¡pk2x + k2y ¢ sinh £pk2x + k2y ¢ h¤ dkx dky d»
This potential ful…lls both the radiation conditions at in…nity and the boundary conditions
at the free surface.

2-D Radiation Potential In case of an oscillating two-dimensional body, no waves are
travelling in the x-direction, so kx = 0 and ky = º0. The distribution of A(») is constant
over the full length of the body from » = ¡1 through » = +1 and the radiation potential
- given in equation (Keil-10) - reduces to:

©0r(y; z; t) = e
j!tA0

1Z
0

cosh [k(z ¡ h)]
º cosh [kh]¡ k sinh [kh] cos(ky) dk (Keil-11)

To ful…l also the Sommerfeld Radiation Condition in (Keil-4), a term has to be added to
equation (Keil-11). For this, use will be made here of the value of the potential given in
equation (Keil-11) at a large distance from the body:

©0r(y; z; t) = ej!tA0

1Z
0

cosh [k(z ¡ h)]
º cosh [kh]¡ k sinh [kh] cos(ky) dk

= ej!tA0
1

2

8<:
1Z
0

F (k)e+ikydk +

1Z
0

F (k)e¡ikydk

9=; (K-11)

with:

F (k) =
cosh [k(z ¡ h)]

º cosh [kh]¡ k sinh [kh] (K-11a)

When substituting for k the term u = k+ il, the …rst integral in equation (K-11) integrates
for y > 0 over the closed line I-II-III-IV in the …rst quadrant of the complex domain and
the second integral in equation (K-11) integrates for y > 0 over the closed line I-V-VI-VII
in the fourth quadrant. So:
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Figure 4.6: Treatment of Singularities

1. For line I-II-III-IV:

I
F (u)e+iuydu =

RZ
0

...dk +
Z
II

...du+
Z
III

...du+
Z
IV

...du

= JI + JII + JIII + JIV

= 0
1Z
0

F (k)e+ikydk = ¡ lim
R!1

[JII + JIII + JIV ]

The location of the singular point follows from the denominator in the expression
(K-11a) for F (k):

º cosh [º0h]¡ º0 sinh [º0h] = 0
Because limR!1 [JIII ] = 0 and JIV disappears too for a large y; the singular point
itself delivers a contribution only:

JII = ¡i¼ ¢ Residue(º0)
= ¡i¼ cosh [º0(z ¡ h)]

ºh sinh [º0h]¡ sinh [º0h]¡ º0h cosh [º0h]e
+iº0y

= +i¼
cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

e+iº0y

and the searched integral becomes for y !1:
1Z
0

F (k)e+ikydk = ¡i¼ cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

e+iº0y
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2. For line I-V-VI-VII :I
F (u)e¡iuydu =

RZ
0

...dk +
Z
V

...du+
Z
V I

...du+
Z
V II

...du

= JI + JV + JV I + JV II

= 0
1Z
0

F (k)e¡ikydk = ¡ lim
R!1

[JV + JV I + JV II ]

Because limR!1 [JV I ] = 0 and JV II disappears too for a large y; the singular point
itself delivers a contribution only:

JV = +i¼ ¢ Residue(º0)
= ¡i¼ cosh [º0h] cosh [º0(z ¡ h)]

º0h+ sinh [º0h] cosh [º0h]
e¡iº0y

and the searched integral becomes for y !1:
1Z
0

F (k)e¡ikydk = +i¼
cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

e¡iº0y

This provides for the potential in equation (Keil-11) for y !1:

©0r(y; z; t) = e
j!tA0¼

cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

sin(º0y) (Keil-11a)

The Sommerfeld Radiation Condition in equation (Keil-4) will be ful…lled when:

ej!tA0¼º0
cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y)¡ º0 Im f©0(y; z; t)g = 0

or:

Im f©0(y; z; t)g = ©0j(y; z; t)

= ej!tA0¼
cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y) (Keil-11b)

With equations (Keil-11a) and (Keil-11b), the radiation potential becomes:

©0r(y; z; t) + j©0j(y; z; t) = ej!tA0 ¢ (Keil-12)

¢
8<:

1Z
0

cosh [k(z ¡ h)]
º cosh [kh]¡ k sinh [kh] cos(ky) dk

+j¼
cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y)

¾
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From this follows for y !1:

©0(y !1; z; t) = j ¢ ej!tA0¼ cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

e¡jº0y

This means that equation (Keil-12) describes a ‡ow, consisting of waves with an amplitude:

¹³ = A0
!¼

g

cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
(Keil-12c)

travelling away from both sides of the cylinder.
From the orthogonality condition:

@©

@y
= +

@ª

@z

follows the stream function:

ª0r(y; z; t) + jª0j(y; z; t) = ¡ej!tA0 ¢ (Keil-13)

¢
8<:

1Z
0

sinh [k(z ¡ h)]
º cosh [kh]¡ k sinh [kh] sin(ky) dk

+j¼
cosh [º0h] sinh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

sin(º0y)

¾
For an in…nite water depth, equations (Keil-12) and (Keil-13) reduces to:

©0r1(y; z; t) + j©0j1(y; z; t) = ej!tA0

8<:
1Z
0

e¡kz

º ¡ k cos(ky) dk + j¼e
¡ºz cos(ºy)

9=;
(Keil-12a)

ª0r1(y; z; t) + jª0j1(y; z; t) = ej!tA0

8<:
1Z
0

e¡kz

º ¡ k sin(ky) dk + j¼e
¡ºz sin(ºy)

9=;
(Keil-13a)

Now, the potential and stream functions can be written as:

©0 = ©0r1 +©0rad + j©0j = ej!tA0 ¢ (Keil-12-b)

¢
8<:

1Z
0

e¡kz

º ¡ k cos(ky) dk +
1Z
0

e¡kh

º ¡ k cos(ky)
º sinh [kz]¡ k cosh [kz]
º cosh [kh]¡ k sinh [kh] dk

+j¼
cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y)

¾
ª0 = ª0r1 +ª0rad + jª0j = ej!tA0 ¢ (Keil-13b)
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¢
8<:

1Z
0

e¡kz

º ¡ k sin(ky) dk ¡
1Z
0

e¡kh

º ¡ k sin(ky)
º cosh [kz]¡ k sinh [kz]
º cosh [kh]¡ k sinh [kh] dk

¡j¼ cosh [º0h] sinh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

sin(º0y)

¾
In here, ©0r1 is the potential at deep water and ©0rad is the additional potential due to
the …nite water depth. ©j can be written in the same way.

Alternative Derivation Assuming that the real part of the potential at an in…nite water
depth, ©r1,is known, another derivation of the 2-D potential is given by [Porter, 1960].
The additional potential for a restricted water depth, ©rad, will be determined in such a
way that it ful…lls the free surface condition and - together with ©r1 - also the boundary
condition at the sea bed.
As an extension of the additional real potential will be chosen:

©0rad(y; z; t) = ej!tA0

1Z
0

fC1(k) sinh [kz] + C2(k) cosh [k(z ¡ h)]g cos(ky)dk

(Keil-14)

From the free surface condition (Keil-2) follows for jyj > B=2:

ej!tA0

1Z
0

fºC2(k) cosh [kh] + kC1(k)¡ kC2(k) sinh [kh]g cos(ky)dk = 0

The solution of this Fourier integral equation:

1Z
0

f(k) cos(k»)dk = g(»)

is known:

f(k) =
1

¼

1Z
0

g(») cos(k») d»

Also will be obtained:

f(k) = kC1(k) + C2(k) fº cosh [kh]¡ k sinh [kh]g = 0
from which follows:

C2(k) =
¡k

º cosh [kh]¡ k sinh [kh]C1(k)

With this will be obtained:

©0rad(y; z; t) = e
j!tA0

1Z
0

C1(k)

½
sinh [kz]¡ k cosh [k(z ¡ h)]

º cosh [kh]¡ k sinh [kh]
¾
cos(ky) dk
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The still unknown function C1(k) follows from the boundary condition at the sea bed:

·
@©0r1
@z

+
@©0rad
@z

¸
z=h

= 0 =

= ej!tA0

8<:¡
1Z
0

ke¡kh

º ¡ k cos(ky) dk +
1Z
0

kC1(k) cosh [kh] cos(ky) dk

9=;
So:

C1(k) =
e¡kh

(º ¡ k) cosh [kh]

C2(k) =
¡ke¡kh

(º ¡ k) fº cosh [kh]¡ k sinh [kh]g cosh [kh]
With this, the extension of the additional real potential, as given in equation (Keil-12b),
becomes:

©0rad(y; z; t) = ej!tA0

1Z
0

e¡kh

º ¡ k ¢
º sinh [kz]¡ k cosh [kz]
º cosh [kh]¡ k sinh [kh] cos(ky) dk

(Keil-14a)

The imaginary part can be obtained as described before.

2-D Multi-Potential The free surface conditions can not be ful…lled with the potential
(Keil-12b) - and the stream function (Keil-13b) respectively - only. Additional potentials
©n are required which ful…ll the boundary conditions (Keil-1) through (Keil-4) and together
with ©0 also ful…ll the boundary conditions (Keil-5) or (Keil-6):

©(y; z; t) = A0©
0
0(y; z; t) +

1X
n=1

An©
0
n(y; z; t) (Keil-15)

= A0

h
©
0
0r1(y; z; t) + ©

0
0rad(y; z; t) + j©

0
0j(y; z; t)

i
+

1X
n=1

An

h
©
0
nr1(y; z; t) + ©

0
nrad(y; z; t) + j©

0
nj(y; z; t)

i
Use will be made here of multi-potentials given by [Grim, 1956] and [Grim, 1957], of which
- using the Sommerfeld Radiation Condition - the real part of the additional potential
©nrad and the imaginary part potential ©nj will be determined. This results in:

©nr1(y; z; t) = +ej!tAn

1Z
0

(k + º)k2(n¡1)e¡kz cos(ky) dk
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(Keil-16)

©nrad(y; z; t) = +ej!tAn

1Z
0

(k + º)k2(n¡1)e¡kh
º sinh [kz]¡ k cosh [kz]
º cosh [kh]¡ k sinh [kh] cos(ky) dk

(Keil-16a)

©nj(y; z; t) = ¡ej!tAn ¼º2n0
cosh [º0h]

¢ cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y)

(Keil-16b)

The orthogonality condition provides the stream function:

ªnr1(y; z; t) = +ej!tAn

1Z
0

(k + º)k2(n¡1)e¡kz sin(ky) dk

(Keil-17)

ªnrad(y; z; t) = ¡ej!tAn
1Z
0

(k + º)k2(n¡1)e¡kh
º cosh [kz]¡ k sinh [kz]
º cosh [kh]¡ k sinh [kh] sin(ky) dk

(Keil-17a)

ªnj(y; z; t) = +ej!tAn
¼º2n0

cosh [º0h]
¢ sinh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

sin(º0y)

(Keil-17b)

The potentials ©nj and ©nrad disappear in deep water.

Total Potentials Only the complex constant An with (0 6 n 61) in the potential has
to be determined:

©(y; z; t) =

1X
n=0

[Anr + jAnj ]
h
©
0
nr1(y; z; t) + ©

0
nrad(y; z; t) + j©

0
nj(y; z; t)

i
=

1X
n=0

n
Anr

h
©
0
nr1 +©

0
nrad

i
¡Anj©0

nj + j
h
Anj(©

0
nr1 +©

0
nrad) +Anr©

0
nj

io
= ej!t

1X
n=0

©
Anr ['nr1 + 'nrad]¡ Anj'nj + j

£
Anj('nr1 + 'nrad) +Anr'nj

¤ª
(Keil-18)

and

ª(y; z; t) =
1X
n=0

[Anr + jAnj]
h
ª

0
nr1(y; z; t) + ª

0
nrad(y; z; t) + jª

0
nj(y; z; t)

i
=

1X
n=0

n
Anr

h
ª

0
nr1 +ª

0
nrad

i
¡Anjª0

nj + j
h
Anj(ª

0
nr1 +ª

0
nrad) +Anrª

0
nj

io
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= ej!t
1X
n=0

©
Anr [Ãnr1 + Ãnrad]¡ AnjÃnj + j

£
Anj(Ãnr1 + Ãnrad) +AnrÃnj

¤ª
(Keil-19)

Summarized, the complex total potential can now be written as:

©(y; z; t) + iª(y; z; t) = (Keil-20)

ej!t [A0r + jA0j]

8<:
1Z
0

cos (k [y + i(z ¡ h)])
º cosh [kh]¡ k sinh [kh] dk

+j¼
cosh [º0h] cos (º0 [y + i(z ¡ h)])
º0h+ sinh [º0h] cosh [º0h]

¾

+ej!t
1X
n=1

[Anr + jAnj]

8<:
1Z
0

(º2 ¡ k2)k2(n¡1) cos (k [y + i(z ¡ h)])
º cosh [kh]¡ k sinh [kh] dk

¡j ¼º2n0
cosh [º0h]

¢ cos fº0 (y + i(z ¡ h))g
º0h+ sinh [º0h] cosh [º0h]

¾
The coe¢cients Anr and Anj with (0 6 n 6 1) have to be determined in such a way
that the instantaneous boundary conditions on the body surface have been ful…lled. These
coe¢cients are dimensional and it is very practical to determine them for the amplitude of
the ‡ow velocity ¹V ; also if they then have the dimension [L2n+1]:

Ar + jAj = ¹V
Ar + jAj

¹V
= ¹V

³
A
0
r + jA

0
j

´
Then, A

0
n'n and A

0
nÃn have the dimensions of a length [L].

Expansion of Potential Parts

The expansion of the potential parts at an in…nite water depth is given by Grim.
For ºr = º

p
y2 + z2 ! 0:

'0r1 = e¡ºz
("
° + ln(ºr) +

1X
m=1

ºm

m ¢m! Re f(z + iy)
mg
#
cos(ºy)

+

"
arctan

y

z
+

1X
m=1

ºm

m ¢m! Im f(z + iy)
mg
#
sin(ºy)

)
(Keil-21)

Ã0r1 = e¡ºz
("
° + ln(ºr) +

1X
m=1

ºm

m ¢m! Re f(z + iy)
mg
#
sin(ºy)

¡
"
arctan

y

z
+

1X
m=1

ºm

m ¢m! Im f(z + iy)
mg
#
cos(ºy)

)
(Keil-21a)

with the Euler constant: ° = 0:57722.



4.2. THEORY OF KEIL 97

For ºr = º
p
y2 + z2 !1:

'0r1 =
MX
m=1

(m¡ 1)!
ºmr2m

Re f(z + iy)mg+ ¼e¡ºz yjyj sin(ºy)

Ã0r1 =
MX
m=1

(m¡ 1)!
ºmr2m

Im f(z + iy)mg ¡ ¼e¡ºz yjyj cos(ºy)

Mind you that (m¡1)!
ºmr2m

f(z + iy)mg is semi–convergent.

'nr1 = (¡1)n(2n¡ 1)! Re©(y + iz)¡2nª+ º

2n¡ 1 Im
©
(y + iz)¡(2n¡1)

ª
(Keil-22)

Ãnr1 = (¡1)n(2n¡ 1)! Im©(y + iz)¡2nª¡ º

2n¡ 1 Re
©
(y + iz)¡(2n¡1)

ª
(Keil-22a)

For the expansion of the remaining potential parts use has been made of the following
relations as derived in Appendix 2:

cosh [kz] cos(ky) =

1X
t=0

k2t

(2t)!
Re
©
(z + iy)2t

ª
sinh [kz] sin(ky) =

1X
t=0

k2t

(2t)!
Im
©
(z + iy)2t

ª
sinh [kz] cos(ky) =

1X
t=0

k2t+1

(2t+ 1)!
Re
©
(z + iy)2t+1

ª
cosh [kz] sin(ky) =

1X
t=0

k2t+1

(2t+ 1)!
Im
©
(z + iy)2t+1

ª
With these relations follows from equation (Keil-14a):

'0rad =

1Z
0

e¡kh

(º ¡ k) (º cosh [kh]¡ k sinh [kh]) dk ¢

¢
(
º

1X
t=0

k2t+1

(2t+ 1)!
Re
©
(z + iy)2t+1

ª¡ k 1X
t=0

k2t

(2t)!
Re
©
(z + iy)2t

ª)

=

1X
t=0

1

(2t+ 1)!

1Z
0

k2t+1e¡kh

(º ¡ k) (º cosh [kh]¡ k sinh [kh]) dk ¢

¢©º Re©(z + iy)2t+1ª¡ (2t+ 1)Re©(z + iy)2tªª
=

1X
t=0

¡G(2t+ 1)
(2t+ 1)!

©
º Re

©
(z + iy)2t+1

ª¡ (2t+ 1)Re©(z + iy)2tªª
(Keil-23)
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It is obvious that:

ª0rad =

1X
t=0

¡G(2t+ 1)
(2t+ 1)!

©
(2t+ 1) Im

©
(z + iy)2t

ª¡ º Im©(z + iy)2t+1ªª (Keil-23a)

The function:

G(t) =

1Z
0

kte¡kh

(k ¡ º) [º cosh [kh]¡ k sinh [kh]] dk

will be treated in the next section.
Further, it follows from (Keil-16a):

'nrad =

1Z
0

(k2 ¡ º2) k2(n¡1)e¡kh
(k ¡ º) (º cosh [kh]¡ k sinh [kh]) dk ¢

¢
(
º

1X
t=0

k2t+1

(2t+ 1)!
Re
©
(z + iy)2t+1

ª¡ k 1X
t=0

k2t

(2t)!
Re
©
(z + iy)2t

ª)

=

1X
t=0

1

(2t+ 1)!

8<:
1Z
0

k2t+2n+1e¡kh

(k ¡ º) (º cosh [kh]¡ k sinh [kh]) dk

¡º2
1Z
0

k2t+2n¡1e¡kh

(k ¡ º) (º cosh [kh]¡ k sinh [kh]) dk
9=; ¢

¢©º Re©(z + iy)2t+1ª¡ (2t+ 1)Re©(z + iy)2tªª
=

1X
t=0

G(2t+ 2n+ 1)¡ º2 ¢G(2t+ 2n¡ 1)
(2t+ 1)!

¢

¢©º Re©(z + iy)2t+1ª¡ (2t+ 1)Re©(z + iy)2tªª (Keil-24)

It is clear that:

Ãnrad =
1X
t=0

G(2t+ 2n+ 1)¡ º2 ¢G(2t+ 2n¡ 1)
(2t+ 1)!

¢

¢©(2t+ 1) Im©(z + iy)2tª¡ º Im©(z + iy)2t+1ªª (Keil-24a)

For the imaginary parts can be written:

'oj = +¼
cosh2 (º0h)

º0h+ sinh [º0h] cosh [º0h]
¢ (Keil-25)

¢
( 1X
t=0

º2t0
(2t)!

Re
©
(z + iy)2t

ª¡ tanh [º0h] 1X
t=0

º2t+10

(2t+ 1)!
Re
©
(z + iy)2t+1

ª)
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Ãoj = ¡¼ cosh2 (º0h)

º0h+ sinh [º0h] cosh [º0h]
¢ (Keil-25a)

¢
( 1X
t=0

º2t0
(2t)!

Im
©
(z + iy)2t

ª¡ tanh [º0h] 1X
t=0

º2t+10

(2t+ 1)!
Im
©
(z + iy)2t+1

ª)

'nj = ¡¼ º2n0
º0h+ sinh [º0h] cosh [º0h]

¢ (Keil-26)

¢
( 1X
t=0

º2t0
(2t)!

Re
©
(z + iy)2t

ª¡ tanh [º0h] 1X
t=0

º2t+10

(2t+ 1)!
Re
©
(z + iy)2t+1

ª)
= ¡º2(n¡1)0

¡
º20 ¡ º2

¢ ¢ 'oj
Ãnj = +¼

º2n0
º0h+ sinh [º0h] cosh [º0h]

¢ (Keil-26a)

¢
( 1X
t=0

º2t0
(2t)!

Im
©
(z + iy)2t

ª¡ tanh [º0h] 1X
t=0

º2t+10

(2t+ 1)!
Im
©
(z + iy)2t+1

ª)
= ¡º2(n¡1)0

¡
º20 ¡ º2

¢ ¢ Ãoj
Function G(t)

The function:

G(t) =

1Z
0

kte¡kh

(k ¡ º) (º cosh [kh]¡ k sinh [kh]) dk with unit:
£
L1¡t

¤
has two singular points: k = º and k = º0. Thus, it is not possible to solve this integral
directly.
First, this integral will be normalized:

G
0
(t) = G(t) ¢ ht¡1

=

1Z
0

ute¡u

(u¡ ºh) (ºh cosh [u]¡ u sinh [u]) du

A substitution of:

w = u+ iv =
&

2

p
2 ¢ ei¾

provides:

J =

I
wte¡w

(w ¡ ºh) (ºh cosh [w]¡ w sinh [w]) dw

=

1Z
0

...du+
Z
I

...dw +
Z
II

...dw +
Z
III

...dw +
Z
IV

...dw
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Figure 4.7: Singularities in G-Function

=

1Z
0

...du+ JI + JII + JIII + JIV

= 0 (Keil-27a)

From this follows:

1Z
0

ute¡u

(u¡ ºh) (ºh cosh [u]¡ u sinh [u]) du = ¡Re fJI + JII + JIII + JIV g

JI and JII are imaginary because they are residues and JIII = 0 for R!1.
So, it remains:

1Z
0

ute¡u

(u¡ ºh) (ºh cosh [u]¡ u sinh [u]) du = ¡Re fJIV g

= ¡Re
8<:
Z
IV

wte¡w

(w ¡ ºh) (ºh cosh [w]¡ w sinh [w]) dw
9=;

With the complex function:

( ~w ¡ ºh) (ºh cosh [ ~w]¡ ~w sinh [ ~w]) with: ~w =
&

2

p
2 ¢ ei¾

the nominator of this integral will be made real by removing.
So:

G
0
(t) =

¡Re
8<:
Z
IV

wte¡w ( ~w ¡ ºh) (ºh cosh [ ~w]¡ ~w sinh [ ~w])

(w ¡ ºh) ( ~w ¡ ºh) (ºh cosh [w]¡ w sinh [w]) (ºh cosh [ ~w]¡ ~w sinh [ ~w])
dw

9=;
(Keil-28)
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= ¡ cos t¼
4
¢

1Z
0

0BBBBBBB@
µ
&p
2

¶t
2 (ºh)2

©¡
1¡ tan t¼

4

¢
(cos & + e¡&) +

¡
1 + tan t¼

4

¢
sin &

ª
¡4ºh& ©cos & + tan t¼

4
sin &

ª
+&2

©¡
1 + tan t¼

4

¢
(cos & ¡ e¡&)¡ ¡1¡ tan t¼

4

¢
sin &

ª
f&2 ¡ 2ºh (& ¡ ºh)g ¢

¢ fcosh [&] (2º2h2 + &2 ¡ 2ºh& tanh [&])
+ (2º2h2 ¡ &2) cos & + 2ºh& sin &g

1CCCCCCCA
d&

Because t is always odd:

G
0
(t) = ¡ cos t¼

4

1Z
0

4 (ºh)2 sin & + 2&2 (cos & ¡ e¡&)¡ 4ºh& (cos & + sin &)
denominator

µ
&p
2

¶t
d&

for t = 1, 5, 9, ...

= ¡ cos t¼
4

1Z
0

4 (ºh)2 (cos & + e¡&)¡ 2&2 sin & ¡ 4ºh& (cos & ¡ sin &)
denominator

µ
&p
2

¶t
d&

for t = 3, 7, 11, ...

For t > 1 the function G
0
(t) becomes …nite. However, G

0
(1) does not converge for ºh! 0;

the integral increases monotone with decreasing ºh. This will be investigated …rst.

G
0
(1) = G(1) =

1Z
0

ue¡u

(u¡ ºh) (ºh cosh [u]¡ u sinh [u]) du (Keil-28a)

This integral converges fast for small ºh values. This will be approximated by:

lim
ºh!0

G1(1) =

1Z
0

ue¡u

(u¡ ºh) (ºh¡ u2) du (Keil-29)

This can be written as:

lim
ºh!0

G1(1) = lim
ºh!0

8<: 1

1¡ ºh

1Z
0

e¡u

u¡ ºh du

+
1

2
p
ºh
³p
ºh¡ 1

´ 1Z
0

e¡u

u¡pºh du

+
1

2
p
ºh
³p
ºh+ 1

´ 1Z
0

e¡u

u+
p
ºh
du

9=;
From:

1Z
0

e¡u

u¡ a du = ¡e
¡a ¢

(
° + ln jaj+

1X
m=1

am

m ¢m!

)
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follows:

lim
ºh!0

G1(1) = lim
ºh!0

(
¡e¡ºh
1¡ ºh

"
° + ln (ºh) +

1X
m=1

(ºh)m

m ¢m!

#

+
e¡
p
ºh

2
p
ºh
³
1¡pºh

´ "° + 1
2
ln (ºh) +

1X
m=1

(ºh)
m
2

m ¢m!

#

¡ e
p
ºh

2
p
ºh
³
1 +

p
ºh
´ "° + 1

2
ln (ºh) +

1X
m=1

(¡1)m (ºh)
m
2

m ¢m!

#9=;
= lim

ºh!0

(
¡e¡ºh
1¡ ºh

"
° + ln (ºh) +

1X
m=1

(ºh)m

m ¢m!

#

+

³
1 +

p
ºh
´
e¡
p
ºh

2
p
ºh (1¡ ºh)

"
° +

1

2
ln (ºh) +

p
ºh+

1X
m=2

(ºh)
m
2

m ¢m!

#

¡
³
1¡pºh

´
e
p
ºh

2
p
ºh (1¡ ºh)

"
° +

1

2
ln (ºh)¡

p
ºh+

1X
m=2

(¡1)m (ºh)
m
2

m ¢m!

#9=;
= lim

ºh!0

(
¡e¡ºh
1¡ ºh

"
° + ln (ºh) +

1X
m=1

(ºh)m

m ¢m!

#

+
1

1¡ ºh

24cosh hpºhi¡ sinh
hp
ºh
i

p
ºh

35·° + 1
2
ln (ºh)

¸

+
cosh

hp
ºh
i

1¡ ºh ¡
sinh

hp
ºh
i

1¡ ºh

+
1

2 (1¡ ºh)

"
e¡
p
ºh

1X
m=2

(ºh)
m¡1
2

m ¢m! + e
¡pºh

1X
m=2

(ºh)
m
2

m ¢m!

¡e
p
ºh

1X
m=2

(¡1)m (ºh)
m¡1
2

m ¢m! + e
p
ºh

1X
m=2

(¡1)m (ºh)
m
2

m ¢m!

#)
= 1¡ ° ¡ ln (ºh) (Keil-29a)

The imaginary part of integral (Keil-27a) has been treated in Appendix 3.

Hydrodynamic Loads

The hydrodynamic loads can be found from an integration of the pressures on the hull of
the oscillating body in (previously) still water. With a known potential, these pressures
can be found from the linear part of the instationary pressures as follows from the Bernoulli
equation:

pdyn = p¡ pstat = ¡½@©
@t
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= ¡j!½©
The potential is in-phase with the oscillation velocity. To obtain the phase of the pressures
with respect to the oscillatory motion a phase shift of -900 is required, which means a
multiplication with -j. Then the pressure is:

pdyn = ¡½!©
The hydrodynamic force on the body is equal to the integrated pressure on the body. This
is - in the two-dimensional case - a force per unit length.
The vertical force becomes:

FV = FV r + jFV j =

Z
S

pdy

= ½! ¹V
h
F

0
V r + jF

0
V j

i
(Keil-30)

= ¡½! ¹V ej!t
1X
n=0

Z
S

h
A
0
nr'nr ¡ A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i
dy

The real part of this force is equal to the hydrodynamic mass coe¢cient times the oscillatory
acceleration, from which the hydrodynamic mass coe¢cient follows:

m" =
FV r
b
=
¹FV r
! ¹V

or non-dimensional:

CV =
m"

½¼
8
B2

=
¹FV r

½¼
8
B2! ¹V

(Keil-30a)

The imaginary part of the force must be equal to the hydrodynamic damping coe¢cient
times the oscillatory velocity, from which the damping coe¢cient follows:

NV =

¯̄
¹FV j
¯̄

¹V

Instead of this coe¢cient, generally the ratio between amplitude of the radiated wave ¹³
and the oscillatory motion ¹z will be used. The energy balance provides:

¹A2V =
¹³
2

¹z2
=

!2

½g
¢ NV
2 ¢ cgroup

=
!º0
½g

¢ sinh [2º0h]

2º0h+ sinh [2º0h]
NV

=
º2

½! ¹V
¢ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
¹FV j (Keil-30b)

In deep water becomes the hydrodynamic mass for º ! 0 in…nite, because potential
(Keil-21) becomes:
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lim
º!0

'0r1 = ° + ln (ºr) (Keil-30c)

and the non-dimensional mass of a circle becomes:

lim
º!0

CV = lim
º!0

m
0

½¼
8
B2

=
8

¼2

"
¡° ¡ ln (ºr) +

1X
n=1

1

n (4n2 ¡ 1)

#
and the amplitude ratio - in this deep water case - becomes:

lim
º!0

d ¹AV
dº

= B

The hydrodynamic mass for º ! 0 in shallow water remains …nite. Because the multi-
potentials - just as in deep water - provide …nite contributions, the radiation potential
has to be discussed only, which is decisive (in…nite mass) in deep water. the borderline
change-over ”deep to shallow” water provides for this radiation potential:

lim
º!0

['0r1 + '0rad] = ° + ln (ºr)¡ ln (ºh)

= ° + ln
³ r
h

´
It is obvious that equation (Keil-30d) - just as equation (Keil-30c) - provides an in…nite
value.
When the contributions of the multi-potentials (which disappear here for the borderline
case º ! 0) are ignored, it follows from equation (Keil–12c) for the amplitude ratio in
shallow water:

¹AV =
¹³

¹z
= A0

!¼

g¹z
¢ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]

= A0
º¼

!¹z
¢ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]

=
A0
¹V
¼º

cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]

= A
0
0¼

º0 sinh [º0h] cosh [º0h]

º0h+ sinh [º0h] cosh [º0h]

Because:

lim
º!0

A
0
0¼

B
= 1

it follows:

lim
º!0

¹AV = B
º0 sinh [º0h] cosh [º0h]

º0h+ sinh [º0h] cosh [º0h]
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and:

lim
º!0

d ¹AV
dº

= lim
º0!0

d ¹AV
dº0

=
B

2
lim
º0!0

1

º0h+ sinh [º0h] cosh [º0h]
= 1

Thus, ¹AV (ºB=2) has at ºB=2 = 0 a vertical tangent.
The fact that the hydrodynamic mass goes to in…nity for zero frequency can be explained
physically as follows. The smaller the frequency becomes, the longer becomes the radiated
wave and the faster travels it away from the cylinder. In the borderline case º = 0 has the
wave an in…nite length and it travels away - just as the pressure (incompressible ‡uid) -
with an in…nite velocity. This means that all ‡uid particles are in phase with the motions
of the body. This means that the hydrodynamic force is in phase with the motion of the
body, which holds too that:

"HT=1 = arctan
¹FV i
¹FV r

= arctan
¹F
0
V j

¹F
0
V r

= 0

This condition is ful…lled only when ¹F
0
V j = 0 or ¹F

0
V r = m

"=½ =1. However, ¹F 0
V j is …nite:

¹F
0
V j =

¹FV j
½! ¹V

=
NV
½!

=
g2

!4
¹A2V =

¹A2V
º2

Because limº0!0 ¹AV = BV follows limº0!0 ¹F
0
V j = B2. The term ¹F

0
V r = m"=½ has to be

in…nite.
The …nite value of the hydrodynamic mass at shallow water is physically hard to interpret.
A full explanation is not given here. However, it has been shown here that the result makes
some sense. At shallow water can the wave (even in an incompressible ‡uid) not travel
with an in…nite velocity; its maximum velocity is

p
gh In case of long waves at shallow

water, the energy has the same velocity. From that can be concluded that at low decreasing
frequencies the damping part in the hydrodynamic force will increase. This means that:

"HT 6=1 = arctan
¹F
0
V i

¹F
0
V r

6= 0

So or ¹F
0
V r = m

"=½ has to be …nite.

Wave Loads

The wave forces on the restrained body in waves consists of forces F1 in the undisturbed
incoming waves (Froude-Krylov hypothesis), and the forces caused by the disturbance of
the waves by the body, one part F2 in phase with the accelerations of the water particles
and another part F3 in phase with the velocity of the water particles:

FE = F1 + F2 + jF3
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These forces will be determined from the undisturbed wave potential ©W and the dis-
turbance potential ©S. As mentioned before, for ¹ 6= 900 only an approximation will be
found.

FE = F1 + F2 + jF3 =

= ¡½!
Z
S

[©W +©S] dy

= ¡½!ej!t
Z
S

½¹³!
º
e¡jº0x cos¹ (cosh [º0z]¡ tanh [º0h] sinh [º0z]) cos (º0y sin¹)

+¹V
1X
n=0

h
A
0
nr'nr ¡ A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i)
dy (Keil-31)

In here:

F1 = ¡½!
2¹³

º
ej(!t¡º0x cos¹)

Z
S

f(cosh [º0z]¡ tanh [º0h] sinh [º0z]) cos (º0y sin¹)g dy

F2 = ¡½! ¹V ej!t
1X
n=0

h
A
0
nr'nr ¡ A

0
nj'nj

i
dy

F3 = ¡½! ¹V ej!t
1X
n=0

h
A
0
nr'nj +A

0
nj'nr

i
dy

Using ¹V = ¹³!, the non-dimensional amplitudes are:

¹E1 =
¹F1

½g¹³B
= ¡ 1

B

Z
S

f(cosh [º0z]¡ tanh [º0h] sinh [º0z]) cos (º0y sin¹)g dy

¹E2 =
¹F2

½g¹³B
= ¡ º

B

1X
n=0

h
A
0
nr'nr ¡ A

0
nj'nj

i
dy

¹E3 =
¹F3

½g¹³B
= ¡ º

B

1X
n=0

h
A
0
nr'nj +A

0
nj'nr

i
dy

In case of ¹ = 900, so beam waves, the theory of [Haskind, 1957] can be used too to
determine the amplitudes ¹E1, ¹E2 and ¹E3. When ©W = 'W e

j!t is the potential of the
incoming wave and ©S = 'Se

j!t is the potential of the disturbance by the body at a large
distance from the body with a velocity amplitude ¹V = 1, then:

FE = ¡½!ej!t
hZ
0

µ
'w
@'

@y
¡ '@'w

@y

¶
dz (Keil-32)

According to equation (Keil-A4) in Appendix 1 is:

'W =
¹³ ¢ !
º
fcosh [º0z]¡ tanh [º0h] sinh [º0z]g cos (º0y)
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From the previous subsections follows the asymptotic expression for the disturbance po-
tential in still water with ¹V = 1:

'y!1 =
¼ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
(cosh [º0z]¡ tanh [º0h] sinh [º0z]) sin (º0y) ¢

¢
"
A
0
0r + jA

0
0j ¡

¡
º20 ¡ º2

¢ 1X
n=1

³
A
0
nr + jA

0
nj

´
º
2(n¡1)
0

#
Substituting this in equation (Keil-32), provides:

FE = ¡½g¹³º0ej!t 2¼ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
¢

¢
hZ
0

(cosh [º0z]¡ tanh [º0h] sinh [º0z])2 dz ¢

¢
"
A
0
0r + jA

0
0j ¡

¡
º20 ¡ º2

¢ 1X
n=1

³
A
0
nr + jA

0
nj

´
º2(n¡1)0

#

= ¡½g¹³¼ej!t
"
A
0
0r + jA

0
0j ¡

¡
º20 ¡ º2

¢ 1X
n=1

³
A
0
nr + jA

0
nj

´
º
2(n¡1)
0

#
Non-dimensional:

¹E1 + ¹E2 =
Re
©
¹FE
ª

½g¹³B
= ¡ ¼

B

"
A
0
0r ¡

¡
º20 ¡ º2

¢ 1X
n=1

A
0
nrº

2(n¡1)
0

#
(Keil-32a)

¹E3 =
Im
©
¹FE
ª

½g¹³B
= ¡ ¼

B

"
A
0
0j ¡

¡
º20 ¡ º2

¢ 1X
n=1

A
0
njº

2(n¡1)
0

#

Solution

The Lewis transformation of a cross section is given by:

y + iz = e+i¢µ + ae¡i¢µ + be¡i¢3µ (Keil-33)

Then, the coordinates of the cross section are:

y = (1 + a) cos µ + b cos (3µ)

z = (1¡ a) sin µ ¡ b sin (3µ) (Keil-33a)

Then:

z + iy = i (y ¡ iz) = i ¡e¡i¢µ + ae+i¢µ + be+i¢3µ¢ (Keil-33b)

All calculations will be carried out in the Lewis domain. Scale factors are given in the
table below.
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Ship Lewis Form Ship
Lewis Form

Breadth BR 2 (1 + a+ b) BR= f2 (1 + a+ b)g
Draft TI 1¡ a+ b TI= (1¡ a+ b)
Water depth HT ¢ TI WT = HT ¢ (1¡ a+ b) TI= (1¡ a+ b)
Wave number º0 WF = º0 ¢ TI= (1¡ a+ b) (1¡ a+ b) =TI
Acceleration g g 1

Forces FG F fTI= (1¡ a+ b)g2

The yet unknown complex coe¢cients An (0 6 n 61), the source strengths of the by the
‡ow generated singularity, can be determined by substituting the stream function (Keil-
19) and the coordinates of the cross section in the relevant boundary conditions (Keil-5a)
through (Keil-6b).

ª
h
(y; z)body ; t

i
= ªbody

h
(y; z)body ; t

i
(Keil-34)

To determine the unknowns An, an equal number of equations has to be formulated.
Because Lewis forms are used only here, a simple approach is possible.
All stream function parts and boundary conditions can be given as a Fourier series:

Ãn =
1X
m=0

fcnm sin [2mµ] + dnm cos [(2m+ 1) µ]g

or with

cos [(2m+ 1) µ] = 1¡ 2µ
¼
+
2

¼

1X
k=1

(2m+ 1)2

k
£
4k2 ¡ (2m+ 1)2¤ sin (2kµ)

by:

Ãn = an0 +

1X
m=1

anm sin [2mµ]

The solution of the by equating coe¢cients generated equations provide the unknowns A
0
n.
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4.2.4 Horizontal Motions

Boundary Conditions

The for the vertical motions made …rst four assumptions are valid for horizontal motions
too. The potential must ful…l the motion-dependent boundary conditions which have
been substituted in the equations (Keil-1) through (Keil-4). However, the …fth boundary
condition needs here a new formulation.
Because two motions (a translation and a rotation) are considered here, follows in still
water from: ·

@©

@n

¸
body

= [vn]body

two boundary conditions:

1. For sway: ·
@©

@n

¸
body

= [vn]body

=

·
@©

@z
¢ dy
ds
¡ @©
@y
¢ dz
ds

¸
body

= ¡
·
dª

ds

¸
body

= ¡ ¹Uej!t
·
dz

ds

¸
body

or:
dªbody = ¹Uej!t [dz]body

from which follows:
ªbody (y; z; t) = ¹Uej!t [z]body + C (Keil-35a)

2. For roll: ·
@©

@n

¸
body

= [vn]body

=

·
@©

@z
¢ dy
ds
¡ @©
@y
¢ dz
ds

¸
body

= ¡
·
dª

ds

¸
body

= ¡¹'!ej!t
·
dr

ds
r

¸
body

or:
dªbody = ¡¹'!ej!t [r dr]body

from which follows:

ªbody (y; z; t) = ¡ ¹'!
2
ej!t

£
y2 + z2

¤
body

+ C (Keil-35b)
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For the restrained body in waves, only the force in the horizontal direction and the moment
about the longitudinal axis of the body will be calculated. One gets in beam waves only
the in y point-symmetric part of the potential and the in y symmetric part of the stream
function of the wave (see Appendix 1), respectively:

[ªs (y; z; t)]body =
¹³!

º
¢ ejwt ¢ [(sinh [º0z]¡ tanh [º0h] cosh [º0z]) ¢ cos(º0y)]body (Keil-36a)

and in oblique waves:

h
~ªs (x; y1; z1; t)

i
body

=
¹³!

º
¢ ejwt ¢ sin(º0x cos¹) ¢ (Keil-36b)

[sin¹ cos(º0y1 sin¹) ¢ (sinh [º0z1]¡ tanh [º0h] cosh [º0z1])

¡º0(1¡ sin2 ¹)
y1Z
0

sin(º0y sin¹) ¢ (sinh [º0z]¡ tanh [º0h] cosh [º0z]) dy
35
body

Potentials

2-D Radiation Potential In a similar way as equation (Keil-10) for heave, the three
dimensional radiation potential for sway and roll can be derived as:

©0r(x; y; z; t) = e
j!t

+L=2Z
¡L=2

A0(»)

1Z
0

cos [kx(x¡ »)] ¢ (Keil-37)

¢
1Z
0

p
k2x + k

2
y ¢ cosh

£p
k2x + k

2
y ¢ (z ¡ h)

¤
º cosh

£p
k2x + k

2
y ¢ h

¤¡pk2x + k2y ¢ sinh £pk2x + k2y ¢ h¤ sin(kyy)dkx dky d»
This becomes for the two-dimensional case:

©0r(y; z; t) = e
j!tA0

1Z
0

k cosh [k(z ¡ h)]
º cosh [kh]¡ k sinh [kh] sin(ky) dk (Keil-38)

With the Sommerfeld radiation Condition (Keil-4) and Appendix 3 the total radiation
potential becomes:

©0r(y; z; t) + j©0j(y; z; t) = ej!tA0 ¢ (Keil-39)

¢
8<:

1Z
0

k cosh [k(z ¡ h)]
º cosh [kh]¡ k sinh [kh] sin(ky) dk

+j¼º0
cosh [º0h] cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

sin(º0y)

¾
and the stream function becomes:



4.2. THEORY OF KEIL 111

ª0r(y; z; t) + jª0j(y; z; t) = ej!tA0 ¢ (Keil-40)

¢
8<:

1Z
0

k sinh [k(z ¡ h)]
º cosh [kh]¡ k sinh [kh] cos(ky) dk

+j¼º0
sinh [º0(z ¡ h)] cosh [º0h]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y)

¾
Potential and stream function are separated by:

©0 = ©0r1 +©0rad + j©0j = ej!t ¢ (Keil-39-b)

¢
8<:

1Z
0

ke¡kz

º ¡ k sin(ky) dk +
1Z
0

ke¡kh

º ¡ k ¢
º sinh [kz]¡ k cosh [kz]
º cosh [kh]¡ k sinh [kh] sin(ky) dk

+j¼º0
cosh [º0(z ¡ h)] cosh [º0h]
º0h+ sinh [º0h] cosh [º0h]

sin(º0y)

¾
ª0 = ª0r1 +ª0rad + jª0j = ej!t ¢ (Keil-40b)

¢
8<:

1Z
0

ke¡kh

º ¡ k cos(ky) dk +
1Z
0

ke¡kh

º ¡ k ¢
º cosh [kz]¡ k sinh [kz]
º cosh [kh]¡ k sinh [kh] cos(ky) dk

+j¼º0
sinh [º0(z ¡ h)] cosh [º0h]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y)

¾
2-D Multi-Potential The two-dimensional multi-potential becomes:

©nr1(y; z; t) = ¡ej!tAn
1Z
0

(k + º)k2n¡1e¡kz sin(ky) dk

(Keil-41)

©nrad(y; z; t) = ¡ej!tAn
1Z
0

(k + º)k2n¡1e¡kh
º sinh [kz]¡ k cosh [kz]
º cosh [kh]¡ k sinh [kh] sin(ky) dk

(Keil-41a)

©nj(y; z; t) = +ej!tAn
¼º2n+10

cosh [º0h]
¢ cosh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

sin(º0y)

(Keil-41b)

The stream function related to it is:

ªnr1(y; z; t) = +ej!tAn

1Z
0

(k + º)k2n¡1e¡kz cos(ky) dk
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(Keil-42)

ªnrad(y; z; t) = ¡ej!tAn
1Z
0

(k + º)k2n¡1e¡kh
º cosh [kz]¡ k sinh [kz]
º cosh [kh]¡ k sinh [kh] cos(ky) dk

(Keil-42a)

ªnj(y; z; t) = +ej!tAn
¼º2n+10

cosh [º0h]
¢ sinh [º0(z ¡ h)]
º0h+ sinh [º0h] cosh [º0h]

cos(º0y)

(Keil-42b)

Total Potentials With exception of the complex constant An with (0 6 n 6 1), the
potential is known:

©(y; z; t) + iª(y; z; t) = (Keil-43)

+ej!t [A0r + jA0j ]

8<:
1Z
0

k sin (k [y + i(z ¡ h)])
º cosh [kh]¡ k sinh [kh] dk

+j¼º0
cosh [º0h] sin (º0 [y + i(z ¡ h)])
º0h+ sinh [º0h] cosh [º0h]

¾

¡ej!t
1X
n=1

[Anr + jAnj ]

8<:
1Z
0

(º2 ¡ k2)k2n¡1 sin (k [y + i(z ¡ h)])
º cosh [kh]¡ k sinh [kh] dk

¡j ¼º2n+10

cosh [º0h]
¢ sin fº0 (y + i(z ¡ h))g
º0h+ sinh [º0h] cosh [º0h]

¾
Writing in a similar way as for heave provides:

©(y; z; t) = ej!t
1X
n=0

©
Anr ['nr1 + 'nrad]¡Anj'nj + j [Anj('nr1 + 'nrad)] +Anr'nj

ª
(Keil-43a)

and

ª(y; z; t) = ej!t
1X
n=0

©
Anr [Ãnr1 + Ãnrad]¡ AnjÃnj + j [Anj(Ãnr1 + Ãnrad)] +AnrÃnj

ª
(Keil-43b)

with:

Ar + jAj = ¹U
h
A
0
r + jA

0
j

i
for sway

¹'!
h
A
0
r + jA

0
j

i
for roll

A
0
n has the dimension [L

2n+2]. Then, A
0
n'n and A

0
nÃn have for sway the dimension [L] and

for roll the dimension [L2].
The determination of the coe¢cients A

0
n follow from the conditions at the body contour.
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Expansion of Potential Parts

For ºr = º
p
y2 + z2 ! 0:

'0r1 = ¡ y

y2 + z2
+ ºe¡ºz

(
sin(ºy)

"
° + ln(ºr) +

1X
m=1

ºm

m ¢m! Re f(z + iy)
mg
#

¡ cos(ºy)
"
arctan

y

z
+

1X
m=1

ºm

m ¢m! Im f(z + iy)
mg
#)

(Keil-44)

Ã0r1 = +
z

y2 + z2
¡ ºe¡ºz

(
cos(ºy)

"
° + ln(ºr) +

1X
m=1

ºm

m ¢m! Re f(z + iy)
mg
#

+sin(ºy)

"
arctan

y

z
+

1X
m=1

ºm

m ¢m! Im f(z + iy)
mg
#)

(Keil-44a)

with the Euler constant: ° = 0:57722.
For ºr = º

p
y2 + z2 !1:

'0r1 = ¡ y

y2 + z2
+ º

MX
m=1

(m¡ 1)!
ºmr2m

Im f(z + iy)mg ¡ ¼ºe¡ºz yjyj cos(ºy)

Ã0r1 = +
z

y2 + z2
¡ º

MX
m=1

(m¡ 1)!
ºmr2m

Re f(z + iy)mg ¡ ¼ºe¡ºz yjyj sin(ºy)

Mind you that (m¡1)!
ºmr2m

f(z + iy)mg is semi–convergent.

'nr1 = (¡1)n+1(2n)!
n
Re
©
(y + iz)¡(2n+1)

ª
+
º

2n
Im
©
(y + iz)¡2n

ªo
(Keil-45)

Ãnr1 = (¡1)n+1(2n)!
n
Im
©
(y + iz)¡(2n+1)

ª¡ º

2n
Re
©
(y + iz)¡2n

ªo
(Keil-45a)

'0rad =
1X
t=0

½
G(2t+ 3)

(2t+ 1)!
Im
©
(z + iy)2t+1

ª¡ ºG(2t+ 1)
(2t)!

Im
©
(z + iy)2t

ª¾
(Keil-46)

ª0rad =

1X
t=0

½
G(2t+ 3)

(2t+ 1)!
Re
©
(z + iy)2t+1

ª¡ ºG(2t+ 1)
(2t)!

Re
©
(z + iy)2t

ª¾
(Keil-46a)

'nrad =

1X
t=0

½
G(2t+ 2n+ 3)¡ º2 ¢G(2t+ 2n+ 1)

(2t+ 1)!
Im
©
(z + iy)2t+1

ª
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¡ºG(2t+ 2n+ 1)¡ º
2 ¢G(2t+ 2n¡ 1)

(2t)!
Im
©
(z + iy)2t

ª¾
(Keil-47)

Ãnrad =
1X
t=0

½
G(2t+ 2n+ 3)¡ º2 ¢G(2t+ 2n+ 1)

(2t+ 1)!
Re
©
(z + iy)2t+1

ª
¡ºG(2t+ 2n+ 1)¡ º

2 ¢G(2t+ 2n¡ 1)
(2t)!

Re
©
(z + iy)2t

ª¾
(Keil-47a)

'oj = +¼º0
cosh2 (º0h)

º0h+ sinh [º0h] cosh [º0h]
¢ (Keil-48)

¢
( 1X
t=0

º2t+10

(2t+ 1)!
Im
©
(z + iy)2t+1

ª¡ tanh [º0h] 1X
t=0

º2t0
(2t)!

Im
©
(z + iy)2t

ª)

Ãoj = +¼º0
cosh2 (º0h)

º0h+ sinh [º0h] cosh [º0h]
(Keil-48a)

¢
( 1X
t=0

º2t+10

(2t+ 1)!
Re
©
(z + iy)2t+1

ª¡ tanh [º0h] 1X
t=0

º2t0
(2t)!

Re
©
(z + iy)2t

ª)

'nj = +º
2(n¡1)
0

¡
º20 ¡ º2

¢ ¢ 'oj (Keil-49)

Ãnj = +º
2(n¡1)
0

¡
º20 ¡ º2

¢ ¢ Ãoj (Keil-49a)

Zero-Frequency Potential

[Grim, 1956] and [Grim, 1957] give for the horizontal motions at zero frequency the complex
potential:

'+ iÃ =

1X
n=0

An

n
(y + iz)¡(2n+1)+ (Keil-50)

1X
m=1

n
(y + iz + i2mh)¡(2n+1) + (y + iz ¡ i2mh)¡(2n+1)

o)
For Lewis forms this becomes:

' + iÃ =
1X
n=0

An

(
e¡i(2n+1)µ

1X
p=0

(¡1)p
µ
2n+ p

p

¶¡
ae¡i2µ + be¡i4µ

¢p
+i2

1X
m=1

n
(i2mH)¡(2n+1) ¢

¢
1X
p=0

(¡1)p
µ
2p+ 2n+ 1

2p+ 1

¶µ
e+iµ + ae¡iµ + be¡i3µ

2mH

¶2p+1))
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=
1X
n=0

An

( 1X
p=0

(
(¡1)p

pX
l=0

µ
2n+ p

p

¶µ
p

l

¶
ap¡lble¡i(2n+2p+2l+1)µ

)

+2
1X
m=1

1X
p=0

(¡1)p+n
"
(2mH)¡2(p+n+1)

2p+1X
l=0

lX
k=0

(Keil-50a)µ
2n+ 2p+ 1

2p+ 1

¶µ
2p+ 1

l

¶µ
l

º0

¶
al¡kbkei(2p¡2l¡2k+1)µ

¸¾
These sums converge as long as:

e+iµ + ae¡iµ + be¡i3µ

2m ¢H =
e+iµ + ae¡iµ + be¡i3µ

2m ¢HT ¢ (1¡ a+ b) < 1 (Keil-51)

Because m > 1, it follows:

2HT > 1 + ae¡i2µ + be¡i4µ

1¡ a+ b
The potential converges too when:

2HT > 1 + a+ b

1¡ a+ b =
B

2T
(Keil-51a)

breadth 6 4 x water depth (Keil-51b)

Hydrodynamic Loads

The hydrodynamic force at sway oscillations in still water becomes:

FQ = FQr + jFQj = ¡½! ¹Uej!t ¢ (Keil-52)

¢
1X
n=0

Z
S

h
A
0
nr'nr ¡ A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i
dz

and at roll oscillations:

FR = FRr + jFRj = ¡½!2¹'ej!t ¢ (Keil-52a)

¢
1X
n=0

Z
S

h
A
0
nr'nr ¡ A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i
dz

The hydrodynamic moment at sway oscillations in still water becomes:

MQ = MQr + jMQj = ¡½! ¹Uej!t ¢ (Keil-53)

¢
1X
n=0

Z
S

h
A
0
nr'nr ¡ A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i
[ydy + zdz]
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and at roll oscillations:

MR = MRr + jMRj = ¡½!2¹'ej!t ¢ (Keil-53a)

¢
1X
n=0

Z
S

h
A
0
nr'nr ¡ A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i
[ydy + zdz]

Of course, the coe¢cients A
0
nr and A

0
nj of sway and roll will di¤er.

Fictive moment levers are de…ned by:

¹HQr =
¹MQr

¹U!m"
¹HQj =

¹MQj

¹UNQ

¹HRr =
I"!2¹'
¹FRr

¹HRj =
NR!¹'B

2 ¹FRj

Non-dimensional values for the sway motions are:

CH =
m"

½¼
2
T 2
=

¹FQr
½! ¹U ¼

2
T 2

¹A2Q =
¹³
2

¹y2
=

º2

½! ¹U
¢ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
¹FQj

¹HQr
T

=
¹MQr

T ¢ ¹FQr
¹HQj
T

=
¹MQj

T ¢ ¹FQj (Keil-54)

and for roll motions:

CR =
I"

½¼
8
T 4
=

¹MRr

½!2¹'¼
8
T 4

¹A2R =
¹³
2

¹'2B
2

4

=
4º2

½!2¹'B2
¢ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
¹MRj

¹HRr
T

=
¹MRr

T ¢ ¹FRr
¹HRj
T

=
¹MRj

T ¢ ¹FRj (Keil-54a)

Wave Loads

The wave loads are separated in contributions of the undisturbed wave and di¤raction:

FE = F1 + F2 + jF3 =
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= ¡½!
Z
S

[©W +©S] dz

= ¡½!ej!t
Z
S

½
¡
¹³!

º
e¡jº0x cos¹ (cosh [º0z]¡ tanh [º0h] sinh [º0z]) sin (º0y sin¹)

+ ¹U

1X
n=0

h
A
0
nr'nr ¡ A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i)
dz (Keil-55)

ME = M1 +M2 + jM3 =

= ¡½!ej!t
Z
S

½
¡
¹³!

º
e¡jº0x cos¹ (cosh [º0z]¡ tanh [º0h] sinh [º0z]) sin (º0y sin¹)

+ ¹U

1X
n=0

h
A
0
nr'nr ¡A

0
nj'nj + j

³
A
0
nr'nj +A

0
nj'nr

´i)
[ydy + zdz] (Keil-56)

The separate parts are:

F1 = +
½!2¹³

º
ej(!t¡º0x cos¹)

Z
S

f(cosh [º0z]¡ tanh [º0h] sinh [º0z]) sin (º0y sin¹)g dz

F2 = ¡½! ¹Uej!t
1X
n=0

h
A
0
nr'nr ¡ A

0
nj'nj

i
dz

F2 = ¡½! ¹Uej!t
1X
n=0

h
A
0
nr'nj +A

0
nj'nr

i
dz

M1 = +
½!2¹³

º
ej(!t¡º0x cos¹)

Z
S

f(cosh [º0z]¡ tanh [º0h] sinh [º0z]) sin (º0y sin¹)g ¢

¢ [ydy + zdz]

M2 = ¡½! ¹Uej!t
1X
n=0

h
A
0
nr'nr ¡ A

0
nj'nj

i
[ydy + zdz]

M2 = ¡½! ¹Uej!t
1X
n=0

h
A
0
nr'nj +A

0
nj'nr

i
[ydy + zdz]

Dimensionless:

¹E1 =
¹F1

½g¹³º0Ax
= +

tanh [º0h]

ºAx

Z
S

f(cosh [º0z]¡ tanh [º0h] sinh [º0z]) sin (º0y sin¹)g dz

¹E2 =
¹F2

½g¹³º0Ax
= ¡tanh [º0h]

Ax

1X
n=0

h
A
0
nr'nr ¡ A

0
nj'nj

i
dz

¹E3 =
¹F3

½g¹³º0Ax
= ¡tanh [º0h]

Ax

1X
n=0

h
A
0
nr'nj +A

0
nj'nr

i
dz (Keil-55a)
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¹HWr

T
=

¹M1 + ¹M2

T ¢ ¡ ¹F1 + ¹F2
¢ ¹HWj

T
=

¹M3

T ¢ ¹F3 (Keil-56a)

The Haskind-Newman relations are valid too here:

¹E1 + ¹E2 =
Re
©
¹FE
ª

½g¹³º0Ax
= +

¼

Ax

"
A
0
0r +

¡
º20 ¡ º2

¢ 1X
n=1

A
0
nrº

2(n¡1)
0

#
(Keil-55b)

¹E3 =
Im
©
¹FE
ª

½g¹³º0Ax
= +

¼

Ax

"
A
0
0j +

¡
º20 ¡ º2

¢ 1X
n=1

A
0
njº

2(n¡1)
0

#

Solution

To determine the unknowns An, an equal number of equations has to be formulated.
Because Lewis forms are used only here, a simple approach is possible.
All stream function parts and boundary conditions can be given as a Fourier series:

Ãn =

1X
m=0

fcnm sin [(2m+ 1) µ] + dnm cos [2mµ]g

or with

cos [2mµ] = 1 +
16

¼

1X
k=0

m2

(2k + 2m+ 1) (2k ¡ 2m+ 1) (2k + 1) sin [(2k + 1) µ]

in:

Ãn =
1X
m=0

anm sin [(2m+ 1) µ]

The solution of the by equating coe¢cients generated equations provide the unknowns A
0
n.
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4.2.5 Appendices

Appendix 1: Undisturbed Wave Potential

The general expression of the complex potential of a shallow wave, travelling in the negative
y-direction, is:

©W + iªW = ¹³ ¢ c ¢ cos fº0 (y + i (z ¡ h)) + !tg
sinh(º0h)

with: c =
!

º0
(Keil-A1)

=
¹³!

º0 sinh [º0h]
fcosh [º0 (z ¡ h)] cos (º0y + !t)
¡i sinh [º0 (z ¡ h)] sin (º0y + !t)g

=
¹³!

º cosh [º0h]
fcosh [º0 (z ¡ h)] cos (º0y + !t)
¡i sinh [º0 (z ¡ h)] sin (º0y + !t)g

©W =
¹³!

º cosh [º0h]
cosh [º0 (z ¡ h)] cos (º0y + !t)

=
¹³!

º cosh [º0h]
ej!t ¢ cosh [º0 (z ¡ h)] ejº0y

=
¹³!

º
ej!t fcosh [º0z]¡ tanh [º0h] sinh [º0z]g ejº0y

ªW = ¡
¹³!

º cosh [º0h]
sinh [º0 (z ¡ h)] sin (º0y + !t)

= j
¹³!

º cosh [º0h]
ej!t ¢ sinh [º0 (z ¡ h)] ejº0y

= j
¹³!

º
ej!t fsinh [º0z]¡ tanh [º0h] cosh [º0z]g ejº0y

For the vertical motions is the in y symmetrical part of the potential signi…cant. For the
horizontal motions is the in y point symmetrical part - multiplied with j, so a phase shift
of 900 - important.

©WV = +
¹³!

º
ej!t fcosh [º0z]¡ tanh [º0h] sinh [º0z]g cos (º0y) (Keil-A2)

ªWV = ¡
¹³!

º
ej!t fsinh [º0z]¡ tanh [º0h] cosh [º0z]g sin (º0y) (Keil-A2a)

©WH = ¡
¹³!

º
ej!t fcosh [º0z]¡ tanh [º0h] sinh [º0z]g sin (º0y) (Keil-A3)

ªWH = ¡
¹³!

º
ej!t fsinh [º0z]¡ tanh [º0h] cosh [º0z]g cos (º0y) (Keil-A3a)

When the wave travels in the xw-direction, the potential becomes:
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©W =
¹³!

º
ej(!t¡º0xw) fcosh [º0z]¡ tanh [º0h] sinh [º0z]g

With:

xw = x cos¹¡ y sin¹
yw = x sin¹+ y cos¹

the potential becomes:

©W =
¹³!

º
ej!tejº0(y sin¹¡x cos¹) fcosh [º0z]¡ tanh [º0h] sinh [º0z]g

This results for the vertical motions in:

©WV = +
¹³!

º
ej(!t¡º0x cos¹) fcosh [º0z]¡ tanh [º0h] sinh [º0z]g cos (º0y sin¹) (Keil-A4)

and for the horizontal motions in:

©WH = ¡
¹³!

º
ej(!t¡º0x cos¹) fcosh [º0z]¡ tanh [º0h] sinh [º0z]g sin (º0y sin¹) (Keil-A5)

Appendix 2: Series Expansions of Hyperbolic Functions

With:

z § iy =
p
y2 + z2 ¢ e§i arctan y

z

= r ¢ e§i¯

the following series expansions can be found.

cosh [kz] cos (ky) = cosh [kz] ¢ cosh [iky]
=

1

2
fcosh [k (z + iy)] + cosh [k (z ¡ iy)]g

=
1

2

©
cosh

£
kre+i¯

¤
+ cosh

£
kre¡i¯

¤ª
=

1

2

( 1X
t=0

(kr)2t

(2t)!
e+i2t¯ +

1X
t=0

(kr)2t

(2t)!
e¡i2t¯

)

=
1X
t=0

(kr)2t

(2t)!
cos (2t¯)

=

1X
t=0

k2t

(2t)!
Re
©
(z + iy)2t

ª
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sinh [kz] cos (ky) = sinh [kz] ¢ cosh [iky]
=

1

2
fsinh [k (z + iy)] + sinh [k (z ¡ iy)]g

=
1

2

©
sinh

£
kre+i¯

¤
+ sinh

£
kre¡i¯

¤ª
=

1

2

( 1X
t=0

(kr)2t+1

(2t+ 1)!
e+i(2t+1)¯ +

1X
t=0

(kr)2t+1

(2t+ 1)!
e¡i(2t+1)¯

)

=

1X
t=0

(kr)2t+1

(2t+ 1)!
cos ((2t+ 1) ¯)

=
1X
t=0

k2t+1

(2t+ 1)!
Re
©
(z + iy)2t+1

ª
sinh [kz] sin (ky) = ¡i sinh [kz] ¢ sinh [iky]

= ¡ i
2
fcosh [k (z + iy)]¡ cosh [k (z ¡ iy)]g

= ¡ i
2

©
cosh

£
kre+i¯

¤¡ cosh £kre¡i¯¤ª
= ¡ i

2

( 1X
t=0

(kr)2t

(2t)!
e+i2t¯ ¡

1X
t=0

(kr)2t

(2t)!
e¡i2t¯

)

=

1X
t=0

(kr)2t

(2t)!
sin (2t¯)

=

1X
t=0

k2t

(2t)!
Im
©
(z + iy)2t

ª
cosh [kz] sin (ky) = ¡i cosh [kz] ¢ sinh [iky]

= ¡ i
2
fsinh [k (z + iy)]¡ sinh [k (z ¡ iy)]g

= ¡ i
2

©
sinh

£
kre+i¯

¤¡ sinh £kre¡i¯¤ª
= ¡ i

2

( 1X
t=0

(kr)2t+1

(2t+ 1)!
e+i(2t+1)¯ ¡

1X
t=0

(kr)2t+1

(2t+ 1)!
e¡i(2t+1)¯

)

=

1X
t=0

(kr)2t+1

(2t+ 1)!
sin ((2t+ 1)¯)

=

1X
t=0

k2t+1

(2t+ 1)!
Im
©
(z + iy)2t+1

ª
Appendix 3: Treatment of Singular Points

The determination of ©0j and his terms - which can be added to ©0r in equation (Keil-11)
with which the by ©0r + j©0j described ‡ow of the waves (travelling from both sides of



122 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

the body away) is given - is also possible in another way. This approach is based on work
carried out by Rayleigh and is given in the literature by [Lamb, 1932] for an in…nite water
depth.
In this approach, an viscous force ½¹w will be included in the Euler equations, ¹ is the
dynamic viscosity and w is the velocity. Because the ‡uid is assumed to be non-viscous,
in a later stage this dynamic viscosity ¹ will be set to zero.
From the Euler equation follows with this viscosity force the with time changing pressure
change:

@p

@t
= ½ lim

¹!0

·
g
@©

@z
¡ ¹@©

@t
¡ @

2©

@t2

¸
From this follows the approach as given in a subsection before for the two-dimensional
radiation potential:

©0r(y; z; t) +j©0j(y; z; t) =

= ej!tA0 lim
¹!0

1Z
0

cosh [k (z ¡ h)]³
º ¡ j !¹

g

´
cosh [kh]¡ k sinh [kh]

cos (ky) dk

= ej!tA0 lim
¹!0

8<:
1Z
0

e¡kz

º ¡ j !¹
g
¡ k cos(ky) dk

+

1Z
0

e¡kh

º ¡ j !¹
g
¡ k ¢

³
º ¡ j !¹

g

´
sinh [kz]¡ k cosh [kz]³

º ¡ j !¹
g

´
cosh [kh]¡ k sinh [kh]

cos(ky) dk

9=;
= ej!tA0

©¡
'0r1 + j'0j1

¢
+
¡
'0rad + j'0jad

¢ª
The …rst integral leads to equation (Keil-12a) and the second integral can be expanded as
follows:

©0rad +j©0jad =

= lim
¹!0

1Z
0

e¡kh

º ¡ j !¹
g
¡ k ¢

³
º ¡ j !¹

g

´
sinh [kz]¡ k cosh [kz]³

º ¡ j !¹
g

´
cosh [kh]¡ k sinh [kh]

cos(ky) dk

= lim
¹!0

1X
t=0

("µ
º ¡ j !¹

g

¶
Re
©
(z + iy)2t+1

ª
(2t+ 1)!

¡ Re
©
(z + iy)2t

ª
(2t)!

#
¢

¢
1Z
0

e¡khk2t+1³
º ¡ j !¹

g
¡ k

´ h³
º ¡ j !¹

g

´
cosh [kh]¡ k sinh [kh]

i dk
9=;

= ¡ lim
¹!0

1X
t=0

("µ
º ¡ j !¹

g

¶
Re
©
(z + iy)2t+1

ª
(2t+ 1)!

¡ Re
©
(z + iy)2t

ª
(2t)!

#
¢

¢ [G (2t+ 1) + jH (2t+ 1)]g
The function:
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G (t) + iH (t) = lim
¹!0

1Z
0

e¡kh

k ¡
³
º ¡ i!¹

g

´ ¢ kth³
º ¡ i!¹

g

´
cosh [kh]¡ k sinh [kh]

i dk
will be normalized as done before:

G
0
(t) + iH

0
(t) = ht¡1 [G (t) + iH (t)]

= lim
¹!0

1Z
0

ute¡u

u¡
³
ºh¡ i!¹h

g

´ h³
ºh¡ i!¹h

g

´
cosh [hu]¡ u sinh [hu]

i du
This is a complex integral and must be solved in the complex domain with w = u+ iv .
The integrand has singularity for:

w1 = ºh¡ i!¹h
g

and w2

where w2 is the solution of the equation:µ
ºh¡ i!¹h

g

¶
cosh [w]¡ w sinh [w] = 0

see …gure 4.8-a.

Figure 4.8: Treatment of Singularities

lim
¹!0

I
e¡wwt

(w ¡ w1) (w1 coshw ¡ w sinhw) dw = lim
¹!0

8<:
RZ
0

...du+
Z
I

...dw +
Z
II

...dw

9=;
= lim

¹!0

8<:
RZ
0

...du+ JI + JII

9=;
= 0
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Thus:

G
0
(t) + iH

0
(t) = lim

¹!0

1Z
0

ute¡u

u¡
³
ºh¡ i!¹h

g

´ h³
ºh¡ i!¹h

g

´
cosh [hu]¡ u sinh [hu]

i du
= lim

¹!0 R!1
fJI + JIIg

Because:

lim
R!1

JI = 0

follows:

G
0
(t) + iH

0
(t) = ¡ lim

¹!0

Z
II

wte¡w

(w ¡ w1) (w1 cosh [w]¡ w sinh [w]) dw

The real part of this integral:

G
0
(t) = ¡Re

8<:lim¹!0
Z
II

wte¡w

(w ¡ w1) (w1 cosh [w]¡ w sinh [w]) dw
9=;

will be calculated as done before. This integral has no singularity and the boundary ¹! 0
can be passed before integration; see …gure 4.8-b.
The imaginary part of this integral:

H
0
(t) = ¡ Im

8<:lim¹!0
Z
II

wte¡w

(w ¡ w1) (w1 cosh [w]¡ w sinh [w]) dw
9=;

can be calculated numerically in an analog way. It is also possible to solve this integral
independently by using another integral path:

lim
¹!0

I
wte¡w

(w ¡ w1) (w1 cosh [w]¡ w sinh [w]) dw = lim
¹!0

fJII + JIII + JIV g
= 2¼i lim

¹!0
fResidue (w1) + Residue (w2)g

JIV disappears for R!1.
It can be found that:

Re fJIIg = ¡Re fJIIIg
Im fJIIg = +Im fJIIIg

Then it follows:
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H
0
(t) = ¡ Im

½
lim
¹!0

JII

¾
= ¡¼ lim

¹!0
fResidue (w1) + Residue (w2)g

= ¼ (º0h)
t¡1
½

cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
¡ tanht¡1 [º0h]

¾
and the imaginary additional potential becomes:

©0jad =

1X
t=0

H (2t+ 1)

(
Re
©
(z + iy)2t

ª
(2t)!

¡ ºRe
©
(z + iy)2t+1

ª
(2t+ 1)!

)

=
1X
t=0

¼

½
º2t0 cosh

2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
¡ º2t

¾
¢

¢
(
Re
©
(z + iy)2t

ª
(2t)!

¡ ºRe
©
(z + iy)2t+1

ª
(2t+ 1)!

)

=
¼ cosh2 [º0h]

º0h+ sinh [º0h] cosh [º0h]
¢

¢
( 1X
t=0

º2t0
(2t)!

Re
©
(z + iy)2t

ª¡ tanh [º0h] 1X
t=0

º2t+10

(2t+ 1)!
Re
©
(z + iy)2t+1

ª)
¡¼e¡ºz cos (ºy)

The same will be found as a di¤erence between (Keil-25) and (Keil-12a).
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4.3 Theory of Frank
As a consequence of conformal mapping to the unit circle, the cross sections need to have a
certain breadth at the water surface; fully submersed cross sections, such as at the bulbous
bow, cannot be mapped. Mapping problems can also appear for cross sections with too
high or too low an area coe¢cient. These cases require another approach: the pulsating
source method of Frank, also called Frank’s Close-Fit Method. The report of [Frank, 1967]
has used here to explain this method.

Hydrodynamic research of horizontal cylinders oscillating in or below the free surface of a
deep ‡uid has increased in importance in the last decades and has been studied by a number
of investigators. The history of this subject began with [Ursell, 1949], who formulated and
solved the boundary-value problem for the semi-immersed heaving circular cylinder within
the framework of linearized free-surface theory. He represented the velocity potential as
the sum of an in…nite set of multi-poles, each satisfying the linear free-surface condition
and each being multiplied by a coe¢cient determined by requiring the series to satisfy the
kinematic boundary condition at a number of points on the cylinder.
[Grim, 1953] used a variation of the Ursell method to solve the problem for two-parameter
Lewis form cylinders by conformal mapping onto a circle. [Tasai, 1959] and [Porter, 1960],
using the Ursell approach obtained the added mass and damping for oscillating contours
mappable onto a circle by the more general Theodorsen transformation. [Ogilvie, 1963]
calculated the hydrodynamic forces on completely submerged heaving circular cylinders.
Despite the success of the multipole expansion-mapping methods, [Frank, 1967] discusses
the problem from a di¤erent view. The velocity potential is represented by a distribution
of sources over the submerged cross section. The density of the sources is an unknown
function (of position along the contour) to be determined from integral equations found by
applying the kinematic boundary condition on the submerged part of the cylinder. The
hydrodynamic pressures are obtained from the velocity potential by means of the linearized
Bernoulli equation. Integration of these pressures over the immersed portion of the cylinder
yields the hydrodynamic forces or moments.
A simpler approximation to the solution of the two-dimensional hydrodynamic problem
was used in the strip theory of ship motions introduced by Korvin-Kroukovsky. The solu-
tion of two-dimensional water-wave problems for ship sections by multipole expansion and
mapping techniques have been applied to this strip theory by several authors to predict
the motions of surface vessels.
The work of [Frank, 1967] has largely been motivated by the desirability of devising a com-
puter program, based on strip theory and independent of mapping techniques, to predict
the response of surface ships moving with steady forward speed in oblique as well as head
or following seas for all six degrees of freedom.
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4.3.1 Notation

The notation of Frank is as follows:

A(m) = oscillation amplitude in the m-th mode
B = beam of cross section C0
C0 = submerged part of cross sectional contour in rest position
g = acceleration of gravity
I
(m)
ij = in‡uence coe¢cient in-phase with displacement on the i-th midpoint

due to the j-th segment in the m-th mode of oscillation
J
(m)
ij = in‡uence coe¢cient in-phase with velocity on the i-th midpoint

due to the j-th segment in the m-th mode of oscillation
M

(m)
(!) = added mass force or moment for the m-th mode of oscillation

at frequency !
N = number of line segments de…ning submerged portion of half section

in rest position
N
(m)
(!) = damping force or moment for the m-th mode of oscillation

at frequency !
n
(m)
i = direction cosine of the normal velocity at i-th midpoint

for the m-th mode of oscillation
PV = Cauchy pricipal value of integral
p
(m)
a = hydrodynamic pressure in-phase with displacement

for the m-th mode of oscillation
p
(m)
v = hydrodynamic pressure in-phase with velocity

for the m-th mode of oscillation
Q
(m)
j = source strength in-phase with displacement along the j-th segment

for the m-th mode of oscillation
Q
(m)
j+N = source strength in-phase with velocity along the j-th segment

for the m-th mode of oscillation
s = length variable along C0
sj = j-th line segment
T = draft of cross section
t = time
v
(m)
i = normal velocity component at the i-th midpoint

for the m-th mode of oscillation
x1 = abscissa of the i-th midpoint
yi = ordinate of the i-th midpoint
y0 = ordinate of the center of roll
z = x+ iy = complex …eld point in region of ‡uid domain
zi = xi + iyi = complex midpoint of i-th segment
®i = angle between i-th segment and positive x-axis
³ = complex variable along C0
³j = j-th complex input point along C0
´j = ordinate of j-th input point
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º = !2=g = wave number
ºk = k-th irregular wave number for ajoint interior problem
»j = abscissa of the j-th input point
½ = density of ‡uid
©(m) = velocity potential for th m-th mode of oscillation
! = radian frequency of oscillation
!k = k-th irregular frequency for adjoint interior problem

(k-th eigen-frequency)

4.3.2 Formulation of the problem

Consider a cylinder, whose cross section is a simply connected region, which is fully or
partially immersed horizontally in a previously undisturbed ‡uid of in…nite depth. The
body is forced into simple harmonic motion and it is assumed that steady state conditions
have been attained.
The two-dimensional nature of the problem implies three degrees of freedom of motion.
Therefore, consider the following three types of oscillatory motions: vertical or heave,
horizontal or sway and rotational about a horizontal axis or roll.
To use linearized free-surface theory, the following assumptions are made:

1. The ‡uid is incompressible and inviscid.

2. The e¤ects of surface tension are negligible.

3. The ‡uid is irrotational.

4. The motion amplitudes and velocities are small enough that all but the linear terms
of the free-surface condition, the kinematic boundary condition on the cylinder and
the Bernoulli equation may be neglected.

Given the above conditions and assumptions, the problem reduces to the following bound-
ary-value problem of potential theory. The cylinder is forced into simple harmonic motion
A(m) ¢cos(!t) with a prescribed radian frequency of oscillation !, where the superscript may
take on the values 2, 3 and 4, denoting swaying, heaving and rolling motions, respectively.
It is required to …nd a velocity potential:

©(m)(x; y; t) = Re
n
Á(m)(x; y) ¢ e¡i!t

o
(Frank-1)

satisfying the following conditions:

1. The Laplace equation:

r2©(m) =
@2©(m)

@x2
+
@2©(m)

@y2
= 0 (Frank-2)

in the ‡uid domain, i.e., for y < 0 outside the cylinder;

2. The free surface condition:

@2©(m)

@t2
+ g

@©(m)

@y
= 0 (Frank-3)

on the free surface y = 0 outside the cylinder, while g is the acceleration of gravity.
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3. The sea bed boundary condition for deep water:

lim
y!¡1

¯̄r©(m)¯̄ = lim
y!¡1

¯̄̄̄
@©(m)

@y

¯̄̄̄
= 0 (Frank-4)

4. The condition of the normal velocity component of the ‡uid at the surface of the
oscillating cylinder being equal to the normal component of the forced velocity of
the cylinder. i.e., if vn is the component of the forced velocity of the cylinder in the
direction of the outgoing unit normal vector ~n, then

~n ¢ ~r©(m) = vn (Frank-5)

this kinematic boundary condition on the oscillating body surface the kinematic
boundary condition being satis…ed at the mean (rest) position of the cylindrical
surface.

5. The radiation condition that the disturbed surface of the ‡uid takes the form of
regular progressive outgoing gravity waves at large distances from the cylinder.

According to Wehausen and Laitone, the complex potential at z of a pulsating point source
of unit strength at the point ³ in the lower half plane is:

G¤(z; ³; t) =
1

2¼

8<:ln(z ¡ ³)¡ ln(z ¡ b³) + 2PV
1Z
0

e¡ik(z¡b³)
º ¡ k dk

9=; cos!t

¡
n
e¡iº(z¡

b³)o sin!t

(Frank-6)

so that the real point-source potential is:

H(x; y; »; ´; t) = Re fG¤(z; ³; t)g (Frank-7)

where:

z = x+ iy ³ = » + i´ b³ = » ¡ i´ º =
!2

g

Letting:

G(z; ³) =
1

2¼
Re

8<:ln(z ¡ ³)¡ ln(z ¡ b³) + 2PV
1Z
0

e¡ik(z¡b³)
º ¡ k dk

9=;
¡iRe

n
e¡iº(z¡

b³)o (Frank-8)

then:

H(x; y; »; ´; t) = Re
©
G(z; ³) ¢ e¡i!tª (Frank-9)



130 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

Equation (Frank-9) satis…es the radiation condition and also the equations (Frank-1)
through (Frank-4).
Another expression satisfying all these conditions is:

H(x; y; »; ´; t¡ ¼

2!
) = Re

©
iG(z; ³) ¢ e¡i!tª (Frank-10)

Since the problem is linear, a superposition of equations (Frank-9) and (Frank-10) results
in the velocity potential:

©(m)(x; y; t) = Re

8<:
Z
C0

Q(s) ¢G(z; ³) ¢ e¡i!t ¢ ds
9=; (Frank-11)

where C0 is the submerged contour of the cylindrical cross section at its mean (rest) position
and Q(s) represents the complex source density as a function of the position along C0.
Application of the kinematic boundary condition on the oscillating cylinder at z yields:

Re

8<:(~n ¢ ~r)
Z
C0

Q(s) ¢G(z; ³) ¢ ds
9=; = 0

(Frank-12)

Im

8<:(~n ¢ ~r)
Z
C0

Q(s) ¢G(z; ³) ¢ ds
9=; = A(m) ¢ ! ¢ n(m)

where A(m) denotes the amplitude of oscillation and n(m) the direction cosine of the normal
velocity at z on the cylinder. Both A(m) and n(m) depend on the mode of motion of the
cylinder, as will be shown in the following section.
The fact that Q(s) is complex implies that equations (Frank-12) represent a set of coupled
integral equations for the real functions RefQ(s)g and ImfQ(s)g. The solution of these
integral equations and the evaluation of the kernel and potential integrals are described in
the following section and in Appendices B and C, respectively.

4.3.3 Solution of the Problem

Since ship sections are symmetrical, this investigation is con…ned to bodies with right and
left symmetry.
Take the x-axis to be coincident with the undisturbed free surface of a conventional two-
dimensional Cartesian coordinate system. Let the cross sectional contour C0 of the sub-
merged portion of the cylinder be in the lower half plane, the y-axis being the axis of
symmetry of C0; see …gure 4.9.
Select N + 1 points (»i; ´i) of C0 to lie in the fourth quadrant so that (»1; ´1) is located
on the negative y-axis. For partially immersed cylinders, (»N+1; ´N+1) is on the positive
x-axis. For fully submerged bodies, »N+1 = »1 and ´N+1 < 0.
Connecting these N + 1 points by successive straight lines, N straight line segments are
obtained which, together with their re‡ected images in the third quadrant, yield an ap-
proximation to the given contour as shown in …gure 4.9.
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Figure 4.9: Axes System and Notation, as Used by Frank

The coordinates, length and angle associated with the j-th segment are identi…ed by the
subscript j, whereas the corresponding quantities for the re‡ected image in the third quad-
rant are denoted by the subscript ¡j, so that by symmetry »¡j = ¡»j and ´¡j = ¡´j for
1 6 j 6 N + 1.
Potentials and pressures are to be evaluated at the midpoint of each segment. The coordi-
nates of the midpoint of the i-th segment are:

xi =
»i + »i+1

2
and yi =

´i + ´i+1
2

(Frank-13)

for 1 6 i 6 N .
The length of the i-th segment is:

jsij =
q¡
»i+1 ¡ »i

¢2
+
¡
´i+1 ¡ ´i

¢2
(Frank-14)

while the angle made by the i-th segment with the positive x-axis is given by:

®i = arctan

½
´i+1 ¡ ´i
»i+1 ¡ »i

¾
(Frank-15)

The outgoing unit vector normal to the cross section at the i-th midpoint (xi; yi) is:

~ni =~i sin®i ¡~j cos®i (Frank-16)

where ~i and ~j are unit vectors in the directions of increasing x and y, respectively.
The cylinder is forced into simple harmonic motion with radian frequency !, according to
the displacement equation:

S(m) = A(m) ¢ cos!t (Frank-17)

for m = 2, 3 or 4, corresponding to sway, heave or roll, respectively. The rolling motions
are about an axis through a point (0; y0) in the symmetry plane of the cylinder.
In the translational modes, any point on the cylinder moves with the velocity:

sway: ~v(2) = ¡~i A(2)! sin!t (Frank-18)

heave: ~v(3) = ¡~j A(3)! sin!t (Frank-19)



132 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

The rolling motion is illustrated in …gure 4.9. Considering a point (xi; yi) on C0, an
inspection of this …gure yields:

Ri =

q
xi2 + (yi ¡ y0)2 and µi = arctan

½
yi ¡ y0
xi

¾
= arcsin

½
yi ¡ y0
Ri

¾
= arccos

½
xi
Ri

¾
Therefore, by elementary two-dimensional kinematics, the unit vector in the direction of
increasing µ is:

~¿ i = ¡~i sin µi +~j cos µi
= ¡yi ¡ y0

Ri
~i+

xi
Ri
~j

so that:

roll: ~v(4) = RiS
(4)~¿ i

= !A(4)
n
(yi ¡ y0)~i¡ xi~j

o
sin!t (Frank-20)

The normal components of the velocity vi(m) = ~ni ¢~v(m) at the midpoint of the i-th segment
(xi; yi) are:

sway: vi
(2) = ¡!A(2) sin®i sin!t

heave: vi
(3) = +!A(3) cos®i sin!t (Frank-21)

roll: vi
(4) = +!A(4) f(yi ¡ y0) sin®i + xi cos®ig sin!t

De…ning:

ni
(m) =

vi
(m)

A(m)! sin!t
then, consistent with the previously mentioned notation, the direction cosines for the three
modes of motion are:

sway: ni
(2) = ¡ sin®i

heave: ni
(3) = +cos®i (Frank-22)

roll: ni
(4) = +(yi ¡ y0) sin®i + xi cos®i

Equations (Frank-22) illustrate that heaving is symmetrical, i.e., n¡i(3) = ni(3). Swaying
and rolling, however, are anti-symmetrical modes, i.e., n¡i(2) = ¡ni(2) and n¡i(4) = ¡ni(4).
Equations (Frank-12) are applied at the midpoints of each of the N segments and it is
assumed that over an individual segment the complex source strength Q(s) remains con-
stant, although it varies from segment to segment. With these stipulations, the set of
coupled integral equations (Frank-12) becomes a set of 2N linear algebraic equations in
the unknowns:

Re
©
Q(m) ¢ (sj)

ª
= Qj

(m)

Im
©
Q(m) ¢ (sj)

ª
= QN+j

(m)
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Thus, for i = 1, 2, ....., N :

+
NX
j=1

n
Qj

(m) ¢ Iij(m)
o
+

NX
j=1

n
QN+j

(m) ¢ Jij(m)
o
= 0

(Frank-23)

¡
NX
j=1

n
Qj

(m) ¢ Jij(m)
o
+

NX
j=1

n
QN+j

(m) ¢ Iij(m)
o
= ! ¢A(m) ¢ ni(m)

where the superscript (m) denotes the mode of motion.
The ”in‡uence coe¢cients” Iij(m) and Jij(m) and the potential ©(m)(xi; yi; t) are evaluated
in the appendix. The resulting velocity potential consists of a term in-phase with the
displacement and a term in-phase with the velocity.
The hydrodynamic pressure at (xi; yi) along the cylinder is obtained from the velocity
potential by means of the linearized Bernoulli equation:

p(m)(xi; yi; !; t) = ¡½ ¢ @©
(m)

@t
(xi; yi; !; t) (Frank-24)

as:

p(m)(xi; yi; !; t) = pa
(m)(xi; yi;!) ¢ cos!t

+pv
(m)(xi; yi;!) ¢ sin!t (Frank-25)

where pa(m) and pv(m) are the hydrodynamic pressures in-phase with the displacement and
in-phase with the velocity, respectively and ½ denotes the density of the ‡uid.
As indicated by the notation of equations (Frank-24) and (Frank-25), the pressure as well
as the potential is a function of the oscillation frequency !.
The hydrodynamic force or moment (when m = 4) per unit length along the cylinder,
necessary to sustain the oscillations, is the integral of p(m) ¢n(m) over the submerged contour
of the cross section C0. It is assumed that the pressure at the i-th midpoint is the mean
pressure for the i-th segment, so that the integration reduces to a summation, whence:

M (m)(!) = 2
NX
i=1

pa
(m)(xi; yi;!) ¢ ni(m) ¢ jsij (Frank-26)

N (m)(!) = 2
NX
i=1

pv
(m)(xi; yi;!) ¢ ni(m) ¢ jsij (Frank-27)

for the added mass and damping forces or moments, respectively.
The velocity potentials for very small and very large frequencies are derived and discussed
in the next section.

4.3.4 Low and High Frequencies

For very small frequencies, i.e., as ! ! 0, the free-surface condition equation (Frank-3) of
the section formulating the problem degenerates into the wall-boundary condition:

@©

@y
= 0 (Frank-49)
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on the surface of the ‡uid outside the cylinder, whereas for extremely large frequencies,
i.e., when ! !1, the free-surface condition becomes the ”impulsive” surface condition:

© = 0 (Frank-50)

on y = 0 outside the cylinder.
Equations (Frank-2), (Frank-4) and (Frank-5) remain valid for both asymptotic cases. The
radiation condition is replaced by a condition of boundedness at in…nity.
Therefore, there is a Neumann problem for the case ! ! 0 and a mixed problem when
! !1. The appropriate complex potentials for a source of unit strength at a point ³ in
the lower half plane are:

G0 (z; ³) =
1

2¼

n
ln(z ¡ ³) + ln(z ¡ b³)o+K0 (Frank-51)

and:

G1 (z; ³) =
1

2¼

n
ln(z ¡ ³)¡ ln(z ¡ b³)o+K1 (Frank-52)

for the Neuman and mixed problems, respectively, where K0 and K1 are constants not
yet speci…ed.
Let:

Áa (x; y; »; ´) = Re fGa (z; ³)g
so that the velocity potentials for the m-th mode of motion are:

©(m)a (x; y) =

Z
C0

Q(m)a (s) ¢ Áa (x; y; »; ´) ds (Frank-53)

for a = 0, and a = 1, where Q(m)a is the expression for the source strength as a function
of position along the submerged contour of the cross section C0.
An analysis similar to the one in the section on formulating the problem leads to the
integral equation:

(~n ¢ ~r)
Z
C0

Q(m)a (s) ¢ Áa (x; y; »; ´) ds = A(m)n(m) (Frank-54)

which - after application at the N segmental midpoint - yields a set of N linear algebraic
equations in the N unknown source strengths Qj.
It remains to be shown whether these two problems are, in the language of potential theory,
well posed, i.e., whether the solutions to these problems lead to unique forces or moments.
The mixed problem raises no di¢culty, since as z ! 1, G1 (z; ³) ! 0. In fact K1 = 0,
which can be inferred from the pulsating source-potential equation (Frank-8) by letting
º !1.
Considering the Neumann problem, note that the constant K0 in the Green’s function
equation (Frank-51) yields by integration an additive constantK to the potential. However,
for a completely submerged cylinder the cross sectional contour C0 is a simply closed curve,
so that the contribution of K in integrating the product of the pressure with the direction
cosine of the body-surface velocity vanishes. For partially submerged bodies C0 is no longer
closed. But since n(m)¡i = ¡n(m)i for m being even,
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Z
C0

K n(m) ds = 0

so that the swaying force and rolling moment are unique.
The heaving force on a partially submerged cylinder is not unique for, in this case, n(3)¡i =
n
(3)
i , so that: Z

C0

K n(3) ds 6= 0

The constant K0 may be obtained by letting º ! 0 in the pulsating source-potential
equation (Frank-8).

4.3.5 Irregular Frequencies

[John, 1950] proved the existence and uniqueness of the solutions to the three- and two-
dimensional potential problems pertaining to oscillations of rigid bodies in a free surface.
The solutions were subject to the provisions that no point of the immersed surface of the
body would be outside a cylinder drawn vertically downward from the intersection of the
body with the free surface and that the free surface would be intersected orthogonally by
the body in its mean or rest position.
[John, 1950] also showed that for a set of discrete ”irregular” frequencies the Green’s
function-integral equation method failed to give a solution. He demonstrated that the
irregular frequencies occurred when the following adjoint interior-potential problem had
eigen-frequencies..
Let Ã(x; y) be such that:

1. @2Ã
@x2

+ @2Ã
@y2

= 0 inside the cylinder in the region bounded by the immersed surface of
the body and the extension of the free surface inside the cylinder;

2. @Ã
@y
¡ ºkÃ = 0 on the extension of the free surface inside the cylinder, ºk being the

wave number corresponding to the irregular frequency !k, k = 1, 2, 3, ...;

3. Ã = 0 on the surface of the cylinder below the free surface.

For a rectangular cylinder with beam B and draft T , the irregular wave numbers may be
easily obtained by separation of variables in the Laplace equation. Separating variables
gives the eigen-frequencies:

Ãk = Bk sin

µ
k¼x

B

¶
sinh

·
k¼y

B

¸
for: k = 1; 2; 3; ...... etc.

whereBk are Fourier coe¢cients to be determined from an appropriate boundary condition.
Applying the free surface condition (Frank-2) on y = T for 0 < x < B, the eigen-wave
numbers (or irregular wave numbers):

ºk =
k¼

B
coth

·
k¼T

B

¸
(Frank-28)
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are obtained for k = 1, 2, 3, ..., etc. In particular, the lowest such irregular wave number
is given by:

k1 =
¼

B
coth

·
¼T

B

¸
(Frank-29)

Keeping T …xed in equation (Frank-29) but letting B vary and setting b = ¼=B, then from
the Taylor expansion:

b coth [bT ] = b

"
1

bT
+
bT

3
¡ (bT )

3

45
+ ......

#

it is seen that as b! 0, which is equivalent to B !1, º1 ! 1=T .
Therefore, for rectangular cylinders of draft T :

º1 =
1

T
(Frank-30)

a relation that John proved for general shapes complying with the restrictions previously
outlined. For a beam-to-draft ratio of B=T = 2:5: º1 = 1:48, while for B=T = 2: º1 = 1:71.
At an irregular frequency the matrix of in‡uence coe¢cients of equations (Frank-23) be-
comes singular as the number of de…ning points per cross section increases without limit,
i,e., as N ! 1. In practice, with …nite N , the determinant of this matrix becomes very
small, not only at the irregular frequency but also at an interval about this frequency. This
interval can be reduced by increasing the number of de…ning points N for the cross section.
Most surface vessels have nearly constant draft over the length of the ship and the maximum
beam occurs at or near amidships, where the cross section is usually almost rectangular, so
that for most surface ships the …rst irregular frequency !1 is less for the midsection than
for any other cross section.
For a ship with a 7:1 length-to-beam and a 5:2 beam-to-draft, the …rst irregular wave
encounter frequency - in non-dimensional form with L denoting the ship length - occurs
at:

!1

s
L

g
t 5:09

which is beyond the range of practical interest for ship-motion analysis.
Therefore, for slender surface vessels, the phenomenon of the …rst irregular frequency of
wave encounter is not too important.

An e¤ective method to reduce the e¤ects of irregular frequencies is, among others, to
”close” the body by means of discretization of the free surface inside the body (putting a
”lid” on the free surface inside the body); see the added mass and damping of a hemisphere
in …gure 4.10. The solid line in this …gure results from including the ”lid”.
Increasing the number of panels does not remove the irregular frequency but tends to
restrict the e¤ects to a narrower band around it; see for instance [Huijsmans, 1996]. It
should be mentioned that irregular frequencies only occur for free surface piercing bodies;
fully submerged bodies do not display these characteristics.
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Figure 4.10: E¤ect of ”Lid-Method” on Irregular Frequencies

4.3.6 Appendices

Appendix A: Principle Value Integrals

The real and imaginary parts of the principle value integral:

PV

1Z
0

e¡ik(z¡b³)
º ¡ k dk

are used in evaluating some of the kernel and potential integrals.
The residue of the integrand at k = º is e¡iº(z¡³), so that:

PV

1Z
0

e¡ik(z¡b³)
º ¡ k dk =

1Z
y 0

e¡ik(z¡b³)
º ¡ k dk ¡ i¼e¡iº(z¡b³) (Frank-31)

where the path of integration is the positive real axis indented into the upper half plane
about k = º.
Note that º = !2=g > 0, Im fzg < 0 and Im f³g 6 0.
The transformation ! = i (k ¡ º)

³
z ¡ b³´ converts the contour integral on the right hand

side of equation (Frank-31) to:

1Z
y 0

e¡ik(z¡b³)
º ¡ k dk = ¡e¡iº(z¡b³)

1Z
¡iº(z¡b³)

e¡w

w
dw

= ¡e¡iº(z¡b³)E1 h¡iº(z ¡ b³)i+µ2¼i
0
for

x¡ » > 0
x¡ » < 0

¶
= ¡e¡iº(z¡³)

n
° + ln

h
¡iº(z ¡ b³)i (Frank-32)
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+

1X
n=1

(¡1)n
h
¡iº(z ¡ b³)in
n ¢ n!

9=;+
µ
2¼i

0
for

x¡ » > 0
x¡ » < 0

¶

where ° = 0:5772::: is the well known Euler-Mascheroni constant and the value of E1 is
de…ned by Abramowitz and Stegun.
Setting:

r =
¯̄̄
¡iº(z ¡ b³)¯̄̄ and µ = arctan

24Im
n
¡iº(z ¡ b³)o

Re
n
¡iº(z ¡ b³)o

35+ ¼
the following expression is obtained for equation (Frank-31):

PV

1Z
0

e¡ik(z¡b³)
º ¡ k dk = eº(y+´) [cos º (x¡ »)¡ i sin º (x¡ »)] ¢

¢
("
° + ln r +

1X
n=1

rn cos (nµ)

n ¢ n!

#
(Frank-33)

+i

"µ
µ

µ ¡ 2¼ for
x¡ » > 0
x¡ » < 0

¶
+

1X
n=1

rn sin (nµ)

n ¢ n!

#)

Separating equation (Frank-33) into its real and imaginary parts yields:

PV

1Z
0

ek(y+´) cos k (x¡ »)
º ¡ k dk = eº(y+´) [C (r; µ) cos º (x¡ »)]

+S (r; µ) sin º (x¡ »)
(Frank-34)

PV

1Z
0

ek(y+´) sin k (x¡ »)
º ¡ k dk = eº(y+´) [C (r; µ) sin º (x¡ »)]

¡S (r; µ) cos º (x¡ »)

provided that:

C (r; µ) = ° + ln r +
1X
n=1

rn cos (nµ)

n ¢ n!

S (r; µ) = µ +
1X
n=1

rn sin (nµ)

n ¢ n! +

µ
µ

µ ¡ 2¼ for
x¡ » > 0
x¡ » < 0

¶
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Appendix B: Kernel Integrals

The in‡uence coe¢cients of equations (Frank-23) are:

I
(m)
ij = Re

8><>:(~ni ¢ ~r)
264Z
sj

0@ 1

2¼

³
ln(z ¡ ³)¡ ln(z ¡ b³)´+ 1

¼
PV

1Z
0

e¡ik(z¡b³)
º ¡ k dk

1A ds
(Frank-35)

¡ (¡1)m
Z
s¡j

0@ 1

2¼

³
ln(z + b³)¡ ln(z + ³)´+ 1

¼
PV

1Z
0

e¡ik(z+³)

º ¡ k dk

1A ds
375
z=zi

9>=>;
and:

J
(m)
ij = Re

8><>:(~ni ¢ ~r)
264Z
sj

e¡iº(z¡
b³)ds¡ (¡1)m

Z
s¡j

e¡iº(z+³)ds

375
z=zi

9>=>; (Frank-36)

Note that in the complex plane with zi on si:

Re

½h
(~ni ¢ ~r)F (z)

i
z=z1

¾
= Re

(·
¡iei®i dF (z)

dz

¸
z=z1

)

Considering the term containing ln (z ¡ ³), it is evident that the kernel integral is singular
when i = j, so that the indicated di¤erentiation cannot be performed under the integral
sign. However, in that case one may proceed as follows:
since:

³ = » + i´

d³ = d» + id´

= ds cos®j + ids sin®j

= ei®jds

for ³ along the j-th segment.
Therefore, ds = e¡i®jd³ and:

Re

8>><>>:(~nj ¢ ~r)
264Z
sj

ln (z ¡ ³) ds

375
z=zj

9>>=>>; = Re

8>><>>:¡iei®j
d

dz

264 ³j+1Z
³j

e¡i®jd³ ln (z ¡ ³)

375
z=zj

9>>=>>;
= Re

8>><>>:¡i
d

dz

264 ³j+1Z
³j

d³ ln (z ¡ ³) d³

375
z=zj

9>>=>>;
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Setting ³
0
= z ¡ ³, the last integral becomes:

Re

8>><>>:¡i
d

dz

264 z¡³jZ
z¡³j+1

ln ³
0
d³

0

375
z=zj

9>>=>>; = arg
¡
zj ¡ ³j

¢¡ arg ¡zj ¡ ³j+1¢
= ¼ (Frank-37)

If i 6= j, di¤erentiation under the integral sign may be performed, so that:

(L1) = Re

8><>:(~ni ¢ ~r)
264Z
sj

ln (z ¡ ³) ds

375
z=zi

9>=>;
= sin (®i ¡ ®j) ln

vuut ¡
xi ¡ »j

¢2
+
¡
yi ¡ ´j

¢2¡
xi ¡ »j+1

¢2
+
¡
yi ¡ ´j+1

¢2 (Frank-38)

+cos (®i ¡ ®j)
·
arctan

yi ¡ ´j
xi ¡ »j

¡ arctan yi ¡ ´j+1
xi ¡ »j+1

¸

For the integral containing the ln
³
z ¡ b³´ term, ds = ei®jdb³, so that:

(L2) = Re

8><>:(~ni ¢ ~r)
264Z
sj

ln
³
z ¡ b³´ ds

375
z=zi

9>=>;
= sin (®i + ®j) ln

vuut ¡
xi ¡ »j

¢2
+
¡
yi + ´j

¢2¡
xi ¡ »j+1

¢2
+
¡
yi + ´j+1

¢2 (Frank-39)

+cos (®i + ®j)

·
arctan

yi + ´j
xi ¡ »j

¡ arctan yi + ´j+1
xi ¡ »j+1

¸
The kernel integral containing the principal value integrals is:

(L5) = Re

8><>:(~ni ¢ ~r)
264Z
sj

ds ¢ PV
1Z
0

e¡ik(zi¡b³)
º ¡ k dk

375
z=zi

9>=>;
= Re

8><>:¡iei(®i+®j)
b³jZ

b³j+1
db³ d
db³ PV

1Z
0

e¡ik(zi¡b³)
º ¡ k dk

9>=>;
= +sin (®i + ®j)

24PV 1Z
0

ek(yi+´j) cos k
¡
xi ¡ »j

¢
º ¡ k dk
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¡PV
1Z
0

ek(yi+´j+1) cos k
¡
xi ¡ »j+1

¢
º ¡ k dk

35
¡ cos (®i + ®j)

24PV 1Z
0

ek(yi+´j) sin k
¡
xi ¡ »j

¢
º ¡ k dk (Frank-40)

¡PV
1Z
0

ek(yi+´j+1) sin k
¡
xi ¡ »j+1

¢
º ¡ k dk

35
The …rst integral on the right hand side of equation (Frank-36) becomes:

(L7) = Re

8><>:(~ni ¢ ~r)
264Z
sj

e¡iº(z¡
b³)ds

375
z=zi

9>=>; (Frank-41)

= ¡ sin (®i + ®j)
£
eº(yi+´j) cos º

¡
xi ¡ »j

¢¡ eº(yi+´j+1) cos º ¡xi ¡ »j+1¢¤
+cos (®i + ®j)

£
eº(yi+´j) sin º

¡
xi ¡ »j

¢¡ eº(yi+´j+1) sin º ¡xi ¡ »j+1¢¤
The kernel integrals over the image segments are obtained from equations (Frank-38)
through (Frank-41) by replacing »j, »j+1 and ®j with »¡j = ¡»j, »¡(j+1) = ¡»j+1 and
®¡j = ¡®j, respectively.

Appendix C: Potential Integrals

The velocity potential of the m-th mode of oscillation at the i-th midpoint (xi; yi) is:

©(m)(xi; yi; t) =
1

2¼

NX
j=1

Qj Re

8><>:
Z
sj

24ln(zi ¡ ³)¡ ln(zi ¡ b³) + 2PV 1Z
0

e¡ik(zi¡b³)
º ¡ k dk

35 ds
¡ (¡1)m

Z
s¡j

24ln(zi + b³)¡ ln(zi + ³) + 2PV 1Z
0

e¡ik(zi+³)

º ¡ k dk

35 ds
9>=>;

¨
NX
j=1

QN+j Re

8><>:
Z
sj

e¡iº(zi¡
b³)ds¡ (¡1)m

Z
s¡j

e¡iº(zi+³)ds

9>=>; ¢ cos!tsin!t

(Frank-42)

The integration of the ln(zi ¡ ³) term is straight forward, yielding:

Re

8><>:
Z
sj

ln(zi ¡ ³)ds

9>=>; = +cos®j

·¡
xi ¡ »j

¢
ln

q¡
xi ¡ »j

¢2
+
¡
yi ¡ ´j

¢2
+ »j ¡ »j¡1



142 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

¡ ¡xi ¡ »j+1¢ lnq¡xi ¡ »j+1¢2 + ¡yi ¡ ´j+1¢2
¡ ¡yi ¡ ´j¢ arctan yi ¡ ´jxi ¡ »j

+
¡
yi ¡ ´j+1

¢
arctan

yi ¡ ´j+1
xi ¡ »j+1

¸
+sin®j

·¡
yi ¡ ´j

¢
ln

q¡
xi ¡ »j

¢2
+
¡
yi ¡ ´j

¢2
+ ´j ¡ ´j¡1

¡ ¡yi ¡ ´j+1¢ lnq¡xi ¡ »j+1¢2 + ¡yi ¡ ´j+1¢2 (Frank-43)

+
¡
xi ¡ »j

¢
arctan

yi ¡ ´j
xi ¡ »j

¡ ¡xi ¡ »j+1¢ arctan yi ¡ ´j+1xi ¡ »j+1

¸
In the integration of the ln(z ¡ b³) term, note that ´j and ´j+1 are replaced by ¡´j and
¡´j+1 , respectively.
To evaluate the potential integral containing the principal value integral, proceed in the
following manner. For an arbitrary z in the ‡uid domain:

b³j+1Z
b³j
ds ¢ PV

1Z
0

e¡ik(z¡b³)
º ¡ k dk = ei®j ¢ PV

1Z
0

dk

º ¡ k

b³j+1Z
b³j
e¡ik(z¡

b³)db³

= ei®j ¢ PV
1Z
0

e¡ikz

º ¡ kdk
b³j+1Z
b³j
eik

b³db³
= ¡ei®j ¢ PV

1Z
0

e¡ikz

º ¡ k
eik

b³j+1 ¡ eikb³j
k

dk

where the change of integration is permissible since only one integral requires a principle
value interpretation.
After dividing by º and multiplying by º¡k+k under the integral sign, the last expression
becomes:

¡ ie
i®j

º

24 1Z
0

e¡ikz
eik

b³j+1 ¡ eikb³j
k

dk + PV

1Z
0

e¡ik(z¡b³j+1)
º ¡ k dk ¡ PV

1Z
0

e¡ik(z¡b³j)
º ¡ k dk

35
(Frank-44)

Regarding the …rst integral in equation (Frank-44) as a function of z:

F (z) =

1Z
0

e¡ikz
eik

b³j+1 ¡ eikb³j
k

dk (Frank-45)

Di¤erentiating equation (Frank-45) with respect to z gives:

F
0
(z) = ¡i

8<:
1Z
0

e¡ik(z¡
b³j+1)dk ¡

1Z
0

e¡ik(z¡
b³j)dk

9=;
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=
1

z ¡ b³j ¡ 1

z ¡ b³j+1
So:

F (z) = ln
³
z ¡ b³j´¡ ln³z ¡ b³j+1´+ º (Frank-46)

where º is a constant of integration to be determined presently. Since F (z) is de…ned and
analytic for all z in the lower half plane and since by equation (Frank-45), limz!¡i1 F (z) =
0, it follows from equation (Frank-46) that º = 0.
Therefore:

(K5) = Re

8><>:
Z
sj

ds ¢ PV
1Z
0

e¡ik(zi¡b³)
º ¡ k dk

9>=>;
= Re

½
¡ ie

i®j

º

h
ln(zi ¡ b³j)¡ ln(zi ¡ b³j+1)

+PV

1Z
0

e¡ik(zi¡b³j+1)
º ¡ k dk ¡ PV

1Z
0

e¡ik(zi¡b³j)
º ¡ k dk

359=;
=

1

º

8<:sin®j
24ln

vuut ¡
xi ¡ »j

¢2
+
¡
yi + ´j

¢2¡
xi ¡ »j+1

¢2
+
¡
yi + ´j+1

¢2 (Frank-47)
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0
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¢
º ¡ k dk

35
+cos®j

·
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¡
xi ¡ »j

¢
º ¡ k dk ¡ PV

1Z
0

ek(yi+´j+1) sin k
¡
xi ¡ »j+1

¢
º ¡ k dk

359=;
The integration of the potential component in-phase with the velocity over sj gives:

(K7) = Re

8><>:
Z
sj

e¡iº(zi¡
b³)ds

9>=>; (Frank-48)

=
1

º

©
eº(yi+´j) sin

£
º
¡
xi ¡ »j

¢¡ ®j¤¡ eº(yi+´j+1) sin £º ¡xi ¡ »j+1¢¡ ®j¤ª
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4.4 Surge Coe¢cients

An equivalent longitudinal section, being constant over the ship’s breadth B, is de…ned by:

sectional breadth Bx = ship length L
sectional draught dx = midship draught d
sectional area coe¢cient CMx = block coe¢cient CB

By using a Lewis transformation of this equivalent longitudinal section to the unit circle,
the two-dimensional potential mass M¤

11 and damping N
¤
11 can be calculated in an analog

manner as has been described for the two-dimensional potential mass and damping of sway,
M 0
22 and N

0
22.

With these two-dimensional values, the total potential mass and damping of surge are
de…ned by:

M11 = B ¢M¤
11

N11 = B ¢N¤
11

in which B is the breadth of the ship.
These frequency-dependent hydrodynamic coe¢cients do not include three-dimensional
e¤ects. Only the hydrodynamic mass coe¢cient, of which a large three-dimensional e¤ect
is expected, will be adapted here empirically. According to [Tasai, 1961] the zero-frequency
potential mass for sway can be expressed in Lewis-coe¢cients:

M 0
22(! = 0) = ½

¼

2

µ
dx

1¡ a1 + a3

¶2 ¡
(1¡ a1)2 + 3a23

¢
When using this formula for surge, the total potential mass of surge is de…ned by:

M11(! = 0) = B ¢M¤
11(! = 0)

A frequency-independent total hydrodynamic mass coe¢cient is estimated empirically by
[Sargent and Kaplan, 1974] as a proportion of the total mass of the ship ½r:

M11(S&K) = ® ¢ ½r

The factor ® is depending on the breadth-length ratio B=L of the ship:

® =
a

2¡ a
in which:

a =
1¡ b2
b3

µ
ln

½
1 + b

1¡ b
¾
¡ 2b

¶
with: b =

s
1¡

µ
B

L

¶2
With this hydrodynamic mass value, a correction factor ¯ for three-dimensional e¤ects has
been determined:

¯ =
M11(S&K)

M11(! = 0)

The three-dimensional e¤ects for the potential damping of surge are ignored.
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Figure 4.11: Surge Hydrodynamic Mass

So, the potential mass and damping of surge are de…ned by:

M11 = B ¢M¤
11 ¢ ¯

N11 = B ¢N¤
11

To obtain a uniform approach during all ship motions calculations, the cross sectional two-
dimensional values of the hydrodynamic mass and damping have to be obtained. Based
on the results of numerical 3-D studies with a Wigley hull form, a proportionality of both
the two-dimensional hydrodynamic mass and damping with the absolute values of the
derivatives of the cross sectional areas Ax in the xb-direction is assumed:

M 0
11 =

jdAx
dxb
jR

L

jdAx
dxb
jdxb

¢M11 N 0
11 =

jdAx
dxb
jR

L

jdAx
dxb
jdxb

¢N11
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4.5 Comparative Results
Figure 4.12 compares the calculated coe¢cients for an amidships cross section of a container
vessel with the three previous methods:

- Ursell-Tasai’s method with 2-parameter Lewis conformal mapping.

- Ursell-Tasai’s method with 10-parameter close-…t conformal mapping.

- Frank’s pulsating source method.
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Figure 4.12: Comparison of Calculated Coe¢cients

With the exception of the roll motions, the three results are very close. The roll motion de-
viation, predicted with the Lewis conformal mapping method, is caused by the description
of the ”bilge” by the simple Lewis transformation.
A disadvantage of Frank’s method can be the large computing time, when compared with
Ursell-Tasai’s method. Generally, it is advised to use Ursell-Tasai’s method with 10 para-
meter close-…t conformal mapping. For submerged sections, bulbous sections and sections
with an area coe¢cient, ¾s, less than 0.5, Frank’s pulsating source method should be used.



Chapter 5

Viscous Damping

The strip theory is based on the potential ‡ow theory. This holds that viscous e¤ects are
neglected, which can deliver serious problems when predicting roll motions at resonance
frequencies. In practice, viscous roll damping e¤ects can be accounted for by empirical for-
mulas. For surge and roll, additional damping coe¢cients have to be introduced. Because
of these additional contributions to the damping are from a viscous origin mainly, it is not
possible to calculate the total damping in a pure theoretical way.

5.1 Surge Damping
The total damping for surge B11t = B11 + B11v consists of a potential part, B11, and an
additional viscous part, B11v. At forward ship speed V , the total damping coe¢cient,
B11t, can be determined simply from the resistance-speed curve of the ship in still water,
Rsw(V ):

B11t = B11 +B11v =
d fRsw(V )g

dV

5.1.1 Total Surge Damping

For a rough estimation of the still water resistance use can be made of a modi…ed empiric
formula of [Troost, 1955], in principle valid at the ship’s service speed for hull forms with
a block coe¢cient CB between 0.60 and 0.80:

Rsw = Ct ¢ ½r 2
3V 2

with:
Ct ¼ 0:0036 + 0:0152

log10fLg+ 0:60
(with L in meter)

in which:

r = volume of displacement of the ship in m3

L = length of the ship in m
V = forward ship speed in m/s.

This total resistance coe¢cient Ct is given in …gure 5.1 as a function of the ship length.
0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship

Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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Figure 5.1: Total Still Water Resistance Coe¢cient of Troost

Then the total surge damping coe¢cient at forward ship speed V becomes:

B11t = 2Ct ¢ ½r 2
3V

5.1.2 Viscous Surge Damping

This total damping coe¢cient includes a viscous part, which can be derived from the
frictional part of the ship’s resistance, de…ned by the ITTC-line:

Rf (V ) =
1

2
½V 2S ¢ 0:075

(lnfRng ¡ 2)2 with: Rn =
V L

º

in which:

º = kinematic viscosity of seawater
S = wetted surface of the hull of the ship
Rn = Reynolds number

From this empiric formula follows the pure viscous part of the additional damping coe¢-
cient at forward ship speed V :

B11v =
d fRf(V )g

dV

which can be obtained numerically.

5.2 Roll Damping
In case of pure free rolling in still water (free decay test), the uncoupled linear equation of
the roll motion about the centre of gravity G is given by:

(Ixx +A44) ¢ ÄÁ+ (B44 +B44v) ¢ _Á+ C44 ¢ Á = 0
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with:

A44 = a44 +OG ¢ a42 +OG ¢ a24 +OG2 ¢ a22 (potential mass coe¢cient)

B44 = b44 +OG ¢ b42 +OG ¢ b24 +OG2 ¢ b22 (potential damping coe¢ciernt)

B44V = b44V (viscous damping coe¢cient)

C44 = ½gr ¢GM (restoring term coe¢cient)

while for zero forward speed:

a42 = a24 and b42 = b24

These equations can be rewritten as:
ÄÁ+ 2º ¢ _Á+ !20 ¢ Á = 0

in which:

2º =
B44 +B44v
Ixx +A44

(quotient of damping and moment of inertia)

!20 =
C44

Ixx +A44
(natural roll frequency squared)

The non-dimensional roll damping coe¢cient, ·, is given by:

· =
º

!0
=

B44 +B44v

2
p
(Ixx +A44) ¢ C44

This damping coe¢cient is written as a fraction between the actual damping coe¢cient,
B44+B44v, and the critical damping coe¢cient, B44cr = 2

p
(Ixx +A44) ¢ C44; so for critical

damping: ·cr = 1.
Herewith, the equation of motion can be re-written as:

ÄÁ+ 2·!0 ¢ _Á+ !20 ¢ Á = 0
Suppose the vessel is de‡ected to an initial heel angle, Áa, in still water and then released.
The solution of the equation of motion of this decay becomes:

Á = Áae
¡ºt
µ
cos!Át+

º

!Á
sin!Át

¶
Then the logarithmic decrement of the motion is:

ºTÁ = ·!0TÁ = ln

½
Á(t)

Á(t+ TÁ)

¾
Because !2Á = !20 ¡ º2 for the natural frequency oscillation and the damping is small so
that º2 ¿ !20, one can neglect º

2 here and use !Á ¼ !0; this leads to:
!0TÁ ¼ !ÁTÁ = 2¼

The non-dimensional total roll damping is given now by:

· =
1

2¼
ln

½
Á(t)

Á(t+ TÁ)

¾
= (B44 +B44v) ¢ !0

2C44

The non-potential part of the total roll damping coe¢cient follows from the average value
of · by:

B44v = · ¢ 2C44
!0

¡B44
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5.2.1 Experimental Determination

The ·-values can easily been found when results of free rolling experiments with a model
in still water are available, see …gure 5.2.

Figure 5.2: Time History of a Roll Decay Test

The results of free decay tests can be presented in di¤erent ways:

² Generally they are presented by plotting the non-dimensional damping coe¢cient,
obtained from two successive positive or negative maximum roll angles Áai and Áai+2 ,
by:

· =
1

2¼
¢ ln
(
Áai
Áai+2

)
versus Áa =

¯̄̄̄
Áai + Áai+2

2

¯̄̄̄
² To avoid spreading in the successively determined ·-values, caused by a possible
zero-shift of the measuring signal, double amplitudes can be used instead:

· =
1

2¼
¢ ln
(
Áai ¡ Áai+1
Áai+2 ¡ Áai+3

)
versus Áa =

¯̄̄̄
Áai ¡ Áai+1 + Áai+2 ¡ Áai+3

4

¯̄̄̄
² Sometimes the results of free rolling tests are presented by:

¢Áa
Áa

versus Áa

with the absolute value of the average of two successive positive or negative maximum
roll angles, given by:

Áa =

¯̄̄̄
Áai + Áai+1

2

¯̄̄̄
and the absolute value of the di¤erence of the average of two successive positive or
negative maximum roll angles, given by:

¢Áa =
¯̄
Áai ¡ Áai+1

¯̄
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Then the total non-dimensional roll damping coe¢cient becomes:

· =
1

2¼
¢ ln
8<:2 +

¢Áa
Áa

2¡ ¢Áa
Áa

9=;
The decay coe¢cient · can therefore be estimated from the decaying oscillation by deter-
mining the ratio between any pair of successive (double) amplitudes. When the damping
is very small and the oscillation decays very slowly, several estimates of the decay can be
obtained from a single record. It is obvious that for a linear system a constant ·-value
should be found in relation to Áa.
Note that these decay tests provide no information about the relation between the potential
coe¢cients and the frequency of oscillation. Indeed, this is impossible since decay tests are
carried out at only one frequency: the natural frequency. These experiments deliver no
information on the relation with the frequency of oscillation.
The method is not really practical when º is much greater than about 0.2 and is in any
case strictly valid for small values of º only. Luckily, this is generally the case.
Be aware that this damping coe¢cient is determined by assuming an uncoupled roll motion
(no other motions involved). Strictly, this damping coe¢cient is not valid for the actual
coupled motions of a ship which will be moving in all directions simultaneously.

The successively found values for ·, plotted on base of the average roll amplitude, will
often have a non-linear behavior as illustrated in the next …gure.

Figure 5.3: Roll Damping Coe¢cient

For a behavior like this, it will be found:

· = ·1 + ·2 ¢ Áa



152 CHAPTER 5. VISCOUS DAMPING

while sometimes even a cubic roll damping coe¢cient, ·3 ¢ Á2a, has to be added to this
formula.
This non-linear behavior holds that during frequency domain calculations, the damping
term is depending on the - so far unknown - solution for the transfer function of roll:
Áa=³a. With a known wave amplitude, ³a, this problem can be solved in an iterative
manner. A less accurate method is to use a …xed Áa.

5.2.2 Empirical Formula for Barges

From model experiments with rectangular barges - with its center of gravity, G, in the
water line - it is found by [Journée, 1991]:

· = ·1 + ·2 ¢ Áa
with:

·1 = 0:0013 ¢
µ
B

d

¶2
·2 = 0:50

in which B is the breadth and d is the draft of the barge.

5.2.3 Empirical Method of Miller

According to [Miller, 1974], the non-dimensional total roll damping coe¢cient, ·, can be
obtained by:

· = ·1 + ·2 ¢
p
Áa

with:

·1 = CV ¢ 0:00085 ¢ L
B
¢
r

L

GM
¢
(µ

Fn
Cb

¶
+

µ
Fn
Cb

¶2
+ 2 ¢

µ
Fn
Cb

¶3)

·2 = 19:25 ¢
(
Abk ¢

r
lbk
rb
+ 0:0024 ¢ L ¢B

)
¢ r3b
L ¢B3 ¢ d ¢ Cb

in which:
Abk = lbk ¢ hbk = one sided area of bilge keel (m2)
lbk = length of bilge keel (m)
hbk = height of bilge keel (m)
rb = distance center line of water plane to turn of bilge (m)

(…rst point at which turn of bilge starts, relative to water plane)
L = length of ship (m)
B = breadth of ship (m)
d = draft of ship (m)
Cb = block coe¢cient (-)
GM = initial metacentric height (m)
Fn = Froude number (-)
Áa = amplitude of roll (rad)
CV = correction factor on ·1 for speed e¤ect (-)

(in the original formulation of Miller: CV = 1:0)
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Generally, CV = 1:0 but for slender ships, like frigates, a suitable value for CV seems to
be:

CV = 4:85¡ 3:00 ¢
q
GMFull Scale

5.2.4 Semi-Empirical Method of Ikeda

Because the viscous part of the roll damping acts upon the viscosity of the ‡uid signi…cantly,
it is not possible to calculate the total roll damping coe¢cient in a pure theoretical way.
Besides this, also experiments showed a non-linear behavior of viscous parts of the roll
damping.
Sometimes, for applications in frequency domain, an equivalent linear roll damping coe¢-
cient, B(1)44V , has to be determined. This coe¢cient can be obtained by stipulating that an
equivalent linear roll damping dissipates an identical amount of energy as the non-linear
roll damping. This results for a linearized quadratic roll damping coe¢cient, B(2)44V , into:

B
(1)
44V
¢

TÁZ
0

_Á ¢ _Ádt = B(2)44V ¢
TÁZ
0

j _Áj _Á ¢ _Ádt

or:

B
(1)
44V

=
8

3¼
Áa! ¢B(2)44V

For the estimation of the non-potential parts of the roll damping, use has been made of
work published by [Ikeda et al., 1978]. A few subordinate parts have been modi…ed and
this empiric method is called here the ”Ikeda method”.
The Ikeda method estimates the following linear components of the roll damping coe¢cient
of a ship:

B44S = a correction on the potential roll damping coe¢cient due to forward speed
B44F = the frictional roll damping coe¢cient
B44E = the eddy making roll damping coe¢cient
B44L = the lift roll damping coe¢cient
B44K = the bilge keel roll damping coe¢cient

So, the additional - mainly viscous - roll damping coe¢cient B44V is given by:

B44V = B44S +B44F +B44E +B44L +B44K

Ikeda, Himeno and Tanaka claim fairly good agreements between their prediction method
and experimental results. They conclude that the method can be used safely for ordinary
ship forms, which conclusion has been con…rmed by the author too. But for unusual ship
forms, for very full ship forms and for ships with a very large breadth to draft ratio the
method is not always accurate su¢ciently.
For numerical reasons three restrictions have been made here during the calculations:
- if, local, ¾s > 0:999 then ¾s = 0:999
- if, local, OG < ¡Ds¾s then OG = ¡Ds¾s
- if a calculated component of the viscous roll damping coe¢cient becomes less than

zero, this component will be set to zero.
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Notation

In this description of the Ikeda method the notation of the authors (Ikeda, Himeno and
Tanaka) is maintained as far as possible:

½ = density of water
º = kinematic viscosity of water
g = acceleration of gravity
V = forward ship speed
Rn = Reynolds number
! = circular roll frequency
Áa = roll amplitude
L = length of the ship
B = breadth
D = amidships draft
CM = amidships section coe¢cient
CB = block coe¢cient
SL = L ¢D ¼ lateral area
Sf = wetted hull surface area
OG = distance of centre of gravity

above still water level,
so positive upwards
(sign convention deviates
from the paper of Ikeda)

Bs = sectional breadth water line
Ds = sectional draft
As = sectional area

¾s = sectional area coe¢cient
H0 = sectional half breadth to draft ratio
a1 = sectional Lewis coe¢cient
a3 = sectional Lewis coe¢cient
Ms = sectional Lewis scale factor
rf = average distance between

roll axis and hull surface
LO = distance point of taking represen-

tative angle of attack to roll axis
approximated by LO = 0:3D

LR = distance of centre of action of
lift force in roll motion to roll axis
approximated by LR = 0:5D

hk = height of the bilge keels
Lk = length of the bilge keels
rk = distance between roll axis

and bilge keel
fk = correction for increase of

‡ow velocity at the bilge
Cp = pressure coe¢cient
lm = lever of the moment
rb = local radius of the bilge circle

E¤ect of Forward Speed, B44S

Ikeda obtained an empirical formula for the three-dimensional forward speed correction on
the zero speed potential damping by making use of the general characteristics of a doublet
‡ow model. The rolling ship has been represented by two doublets: one at the stern and
one at the bow of the ship.
With this, semi-theoretically the forward speed e¤ect on the linear potential damping
coe¢cient has been approximated as a fraction of the potential damping coe¢cient by:

B44S = B44¢
n
0:5
h
A2 + 1 + (A2 ¡ 1) tanh (20(¡ 0:3)) + (2A1 ¡ A2 ¡ 1)e¡150(¡0:25)2

i
¡ 1:0

o
with:

B44 = potential roll damping coe¢cient of the ship (about G)

 = !
V

g
= non-dimensional circular roll frequency

»D = !2
D

g
= non-dimensional circular roll frequency squared

A1 = 1:0 + »¡1:2D e¡2»D = maximum value of B44 at  = 0:25

A2 = 0:5 + »¡1:0D e¡2»D = minimum value of B44 at large 
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Frictional Roll Damping, B44F

Kato deduced semi-empirical formulas for the frictional roll damping from experimental
results of circular cylinders, wholly immersed in the ‡uid. An e¤ective Reynolds number
of the roll motion was de…ned by:

Rn =
0:512 ¢ (rfÁa)2!

º

In here, for ship forms the average distance between the roll axis and the hull surface can
be approximated by:

rf =
(0:887 + 0:145 ¢ CB)SfL + 2OG

¼

with a wetted hull surface area Sf , approximated by:

Sf = L(1:7D + CBB)

The relation between the density, kinematic viscosity and temperture of fresh water and
sea water are given in …gure 5.4.
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Figure 5.4: Relation Between Density, Kinematic Viscosity and Temperature of Water

When eliminating the temperature of water, the kinematic viscosity can be expressed into
the density of water by the following relation in the kg-m-s system:

º ¢ 106 = 1:442 + 0:3924 ¢ (½¡ 1000) + 0:07424 ¢ (½¡ 1000)2 m2/s (fresh water)

º ¢ 106 = 1:063 + 0:1039 ¢ (½¡ 1025) + 0:02602 ¢ (½¡ 1025)2 m2/s (salt water)

as given in …gure 5.5.
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Figure 5.5: Kinematic Viscosity as a Function of Density

Kato expressed the skin friction coe¢cient as:

Cf = 1:328 ¢Rn¡0:5 + 0:014 ¢Rn¡0:114

The …rst part in this expression represents the laminar ‡ow case. The second part has
been ignored by Ikeda, but has been included here.
Using this, the quadratic roll damping coe¢cient due to skin friction at zero forward ship
speed is expressed as:

B
(2)
44F0

=
1

2
½r3fSfCf

This frictional roll damping component increases slightly with forward speed. Semi-
theoretically, Tamiya deduced a modi…cation coe¢cient for the e¤ect of forward speed
on the friction component.
Accurate enough from a practical point of view, this results into the following formula for
the speed dependent frictional damping coe¢cient:

B
(2)
44F

=
1

2
½r3fSfCf ¢

µ
1:0 + 4:1 ¢ V

!L

¶
Then, the equivalent linear roll damping coe¢cient due to skin friction is expressed as:

B44F =
8

3¼
Áa! ¢

1

2
½r3fSfCf ¢

µ
1:0 + 4:1 ¢ V

!L

¶
Ikeda con…rmed the use of his formula for the three-dimensional turbulent boundary layer
over the hull of an oscillating ellipsoid in roll motion.



5.2. ROLL DAMPING 157

Eddy Making Damping, B44E

At zero forward speed the eddy making roll damping for the naked hull is mainly caused
by vortices, generated by a two-dimensional separation. From a number of experiments
with two-dimensional cylinders it was found that for a naked hull this component of the
roll moment is proportional to the roll frequency squared and the roll amplitude squared.
This means that the corresponding quadratic roll damping coe¢cient does not depend on
the period parameter but on the hull form only.
When using a simple form for the pressure distribution on the hull surface it appears that
the pressure coe¢cient Cp is a function of the ratio ° of the maximum relative velocity
Umax to the mean velocity Umean on the hull surface:

° =
Umax
Umean

The Cp-° relation was obtained from experimental roll damping data of two-dimensional
models. These experimental results are …tted by:

Cp = 0:35 ¢ e¡° ¡ 2:0 ¢ e¡0:187¢° + 1:5
The value of ° around a cross section is approximated by the potential ‡ow theory for a
rotating Lewis form cylinder in an in…nite ‡uid.
An estimation of the local maximum distance between the roll axis and the hull surface,
rmax, has to be made.
Values of rmax(Ã) have to be calculated for:

Ã = Ã1 = 0:0 and Ã = Ã2 =
0:5

cos
³
a1(1+a3)
4a3

´
The values of rmax(Ã) follow from:

rmax(Ã) = Ms

©
((1 + a1) sin(Ã)¡ a3 sin(3Ã))2+

((1¡ a1) cos(Ã) + a3 cos(3Ã))2
ª1=2

With these two results a value rmax and a value Ã follow from the conditions:
- for rmax(Ã1) > rmax(Ã2) : rmax = rmax(Ã1) and Ã = Ã1
- for rmax(Ã1) < rmax(Ã2) : rmax = rmax(Ã2) and Ã = Ã2

The relative velocity ratio ° on a cross section is obtained by:

° =
f3
p
¼

2Ds

³
¾s +

OG
Ds

´p
H0¾s

¢
µ
rmax +

2Ms

H

p
a2 + b2

¶

with:

H0 =
Bs
2Ds

¾s =
As
BsDs

Ms =
Bs

2(1 + a1 + a3)
=

Ds
1¡ a1 + a3



158 CHAPTER 5. VISCOUS DAMPING

H = 1 + a21 + 9a
2
3 + 2a1(1¡ 3a3) cos(2Ã)¡ 6a3 cos(4Ã)

a = ¡2a3 cos(5Ã) + a1(1¡ a3) cos(3Ã) +
¡
(6¡ 3a1)a23 + (a21 ¡ 3a1)a3 + a21

¢
cos(Ã)

b = ¡2a3 sin(5Ã) + a1(1¡ a3) sin(3Ã) +
¡
(6 + 3a1)a

2
3 + (a

2
1 + 3a1)a3 + a

2
1

¢
sin(Ã)

f3 = 1 + 4e¡1:65¢10
5(1¡¾s)2

With this a quadratic sectional eddy making damping coe¢cient for zero forward speed
follows from:

B
(2)
44E0

0
=

1

2
½D4

s

µ
rmax
Ds

¶2
Cp ¢Ãµ

1¡ f1rb
Ds

¶µ
1 +

OG

Ds
¡ f1rb
Ds

¶
+ f2

µ
H0 ¡ f1rb

Ds

¶2!
with:

f1 = 0:5 ¢ (1 + tanh(20¾s ¡ 14))
f2 = 0:5 ¢ 1 (¡ cos(¼¾s))¡ 1:5 ¢

¡
1¡ e5¡5¾s¢ sin2(¼¾s)

The approximations of the local radius of the bilge circle rb are given as:

rb = 2Ds

r
H0(¾s ¡ 1)
¼ ¡ 4 for: rb < Ds and rb <

Bs
2

rb = Ds for: H0 > 1 and rb > Ds

rb =
Bs
2

for: H0 < 1 and rb > H0Ds

For three-dimensional ship forms the zero forward speed eddy making quadratic roll damp-
ing coe¢cient is found by an integration over the ship length:

B
(2)
44E0

=

Z
L

B
(2)
44E0

0
dxb

This eddy making roll damping decreases rapidly with the forward speed to a non-linear
correction for the lift force on a ship with a small angle of attack. Ikeda has analyzed this
forward speed e¤ect by experiments and the result has been given in an empirical formula.
With this the equivalent linear eddy making damping coe¢cient at forward speed is given
by:

B44E =
8

3¼
¢Áa!B(2)44e0 ¢

1

1 +K2

with:

K =
V

0:04 ¢ !L
Lift Damping, B44L

The roll damping coe¢cient due to the lift force is described by a modi…ed formula of
Yumuro:

B44L =
1

2
½SLV kNLOLR

Ã
1:0 + 1:4 ¢ OG

LR
+ 0:7 ¢ OG

2

LOLR

!
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The slope of the lift curve CL=® is de…ned by:

kN =
CL
®

=
2¼D

L
+ Â

µ
4:1 ¢ B

L
¡ 0:045

¶
in which the coe¢cient Â is given by Ikeda in relation to the amidships section coe¢cient
CM :

CM < 0:92: Â = 0:00

0:92 < CM < 0:97: Â = 0:10

0:97 < CM < 0:99: Â = 0:30

These data are …tted here by:

Â = 106 ¢ (CM ¡ 0:91)2 ¡ 700 ¢ (CM ¡ 0:91)3

with the restrictions:
-if CM < 0:91 then Â = 0:00
-if CM > 1:00 then Â = 0:35

Bilge Keel Damping, B44K

The quadratic bilge keel roll damping coe¢cient is divided into two components:
- a component B(2)44KN due to the normal force on the bilge keels

- a component B(2)44KS due to the pressure on the hull surface, created by the bilge keels.

The coe¢cient of the normal force component B(2)44KN of the bilge keel damping can be
deduced from experimental results of oscillating ‡at plates. The drag coe¢cient CD de-
pends on the period parameter or the Keulegan-Carpenter number. Ikeda measured this
non-linear drag also by carrying out free rolling experiments with an ellipsoid with and
without bilge keels.
This resulted in a quadratic sectional damping coe¢cient:

B
(2)
44KN

0
= ½r3khkf

2
k ¢ CD

with:

CD = 22:5 ¢ hk
¼rkÁafk

+ 2:40

fk = 1:0 + 0:3 ¢ e¡160¢(1:0¡¾s)

The approximation of the local distance between the roll axis and the bilge keel rk is given
as:

rk = Ds

sµ
H0 ¡ 0:293 ¢ rb

Ds

¶2
+

µ
1:0 +

OG

Ds
¡ 0:293 ¢ rb

Ds

¶2
The approximation of the local radius of the bilge circle rb in here is given before.
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Assuming a pressure distribution on the hull caused by the bilge keels, a quadratic sectional
roll damping coe¢cient can be de…ned:

B
(2)
44KS

0
=
1

2
½r2kf

2
k

hkZ
0

Cplmdh

Ikeda carried out experiments to measure the pressure on the hull surface created by bilge
keels. He found that the coe¢cient C+p the pressure on the front face of the bilge keel does
not depend on the period parameter, while the coe¢cient C¡p of the pressure on the back
face of the bilge keel and the length of the negative pressure region depend on the period
parameter.
Ikeda de…nes an equivalent length of a constant negative pressure region S0 over the height
of the bilge keels, which is …tted to the following empirical formula:

S0 = 0:3 ¢ ¼fkrkÁa + 1:95 ¢ hk
The pressure coe¢cients on the front face of the bilge keel, C+p , and on the back face of
the bilge keel, C¡p , are given by:

C+p = 1:20 and C¡p = ¡22:5 ¢
hk

¼fkrkÁa
¡ 1:20

and the sectional pressure moment is given by:

hkZ
0

Cplm ¢ dh = D2
s

¡¡A ¢ C¡p +B ¢ C+p ¢
with:

A = (m3 +m4)m8 ¡m2
7

B =
m3
4

3(H0 ¡ 0:215 ¢m1)
+
(1¡m1)

2(2m3 ¡m2)

6(1¡ 0:215 ¢m1)
+m1(m3m5 +m4m6)

m1 =
rb
Ds

m2 =
¡OG
Ds

m3 = 1:0¡m1 ¡m2

m4 = H0 ¡m1

m5 =
0:414 ¢H0 + 0:0651 ¢m2

1 ¡ (0:382 ¢H0 + 0:0106)m1

(H0 ¡ 0:215 ¢m1)(1¡ 0:215 ¢m1)

m6 =
0:414 ¢H0 + 0:0651 ¢m2

1 ¡ (0:382 + 0:0106 ¢H0)m1

(H0 ¡ 0:215 ¢m1)(1¡ 0:215 ¢m1)

m7 =
S0
Ds
¡ 0:25 ¢ ¼m1 for: S0 > 0:25 ¢ ¼rb

= 0:0 for: S0 < 0:25 ¢ ¼rb
m8 = m7 + 0:414 ¢m1 for: S0 > 0:25 ¢ ¼rb

= m7 + 1:414 ¢m1

µ
1¡ cos

µ
S0
rb

¶¶
for: S0 < 0:25 ¢ ¼rb
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The equivalent linear total bilge keel damping coe¢cient can be obtained now by integrating
the two sectional roll damping coe¢cients over the length of the bilge keels and linearizing
the result:

B44K =
8

3¼
Áa!

Z
Lk

³
B
(2)
44KN

0
+B

(2)
44KS

0´
dxb

Experiments of Ikeda have shown that the e¤ect of forward ship speed on this roll damping
coe¢cient can be ignored.

Calculated Roll Damping Components

In …gure 5.6, an example is given of the several roll damping components, as derived with
Ikeda’s method, for the S-175 container ship design.

Figure 5.6: Roll Damping Coe¢cients of Ikeda

It may be noted that for full scale ships, because of the higher Reynolds number, the
frictional part of the roll damping is expected to be smaller than showed above.
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Chapter 6

Hydromechanical Loads

With an approach as mentioned before, a description will be given here of the determination
of the hydromechanical forces and moments for all six modes of motions.
In the ”Ordinary Strip Theory”, as published by [Korvin-Kroukovsky and Jacobs, 1957]
and others, the uncoupled two-dimensional potential hydromechanical loads in the direction
j are de…ned by:

X 0
hj
=
D

Dt

n
M 0
jj ¢ _³

¤
hj

o
+N 0

jj ¢ _³
¤
hj
+X 0

RSj
(6.1)

In the ”Modi…ed Strip Theory”, as published for instance by [Tasai, 1969] and others, these
loads become:

X 0
hj
=
D

Dt

½µ
M 0
jj ¡

i

!e
N 0
jj

¶
¢ _³¤hj

¾
+X 0

RSj

In these de…nitions of the two-dimensional hydromechanical loads, ³¤hj is the harmonic
oscillatory motion, Mjj and Njj are the two-dimensional potential mass and damping and
the non-di¤raction part XRSj is the two-dimensional quasi-static restoring spring term.
At the following pages, the hydromechanical loads are calculated in the G(xb; yb; zb) axes
system with the centre of gravity G in the still water level, so OG = 0.
Some of the terms in the hydromechanical loads are outlined there. The ”Modi…ed Strip
Theory” includes these outlined terms. When ignoring these outlined terms the ”Ordinary
Strip Theory” is presented.

6.1 Hydromechanical Forces for Surge

The hydromechanical forces for surge are found by an integration over the ship length of
the two-dimensional values:

Xh1 =

Z
L

X 0
h1
¢ dxb

When assuming that the cross sectional hydromechanical force hold at a plane through
the local centroid of the cross section b, parallel to (xb; yb), equivalent longitudinal motions

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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of the water particles, relative to the cross section of an oscillating ship in still water, are
de…ned by:

³¤h1 = ¡x+ bG ¢ µ
_³
¤
h1

= ¡ _x+ bG ¢ _µ ¡ V @bG
@xb

¢ µ
¼ ¡ _x+ bG ¢ _µ

Ä³
¤
h1

= ¡Äx+ bG ¢ Äµ ¡ 2V @bG
@xb

¢ _µ + V 2@
2bG

@x2b
¢ µ

¼ ¡Äx+ bG ¢ Äµ
In here, bG is the vertical distance of the centre of gravity of the ship G above the centroid
b of the local submerged sectional area.
According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a surging cross section in still water is de…ned by:

X 0
h1

=
D

Dt

n
M 0
11 ¢ _³

¤
h1

o
+N 0

11 ¢ _³
¤
h1

= M 0
11 ¢ Ä³

¤
h1
+

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ _³¤h1

According to the ”Modi…ed Strip Theory” this hydromechanical force becomes:

X 0
h1

=
D

Dt

½µ
M 0
11 ¡

i

!e
¢N 0

11

¶
¢ _³¤h1

¾
=

µ
M 0
11 +

V

!2e
¢ dN

0
11

dxb

¶
¢ Ä³¤h1 +

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ _³¤h1

This results into the following coupled surge equation:

½r ¢ Äx¡Xh1 = (½r+ a11) ¢ Äx + b11 ¢ _x + c11 ¢ x
+a13 ¢ Äz + b13 ¢ _z + c13 ¢ z
+a15 ¢ Äµ + b15 ¢ _µ + c15 ¢ µ

= Xw1

with:

a11 = +

Z
L

M 0
11 ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
11

dxb
¢ dxb

¯̄̄̄
¯̄

b11 = +

Z
L

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ dxb + b11V

c11 = 0

a13 = 0
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b13 = 0

c13 = 0

a15 = ¡
Z
L

M 0
11 ¢ bG ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

dN 0
11

dxb
¢ bG ¢ dxb

¯̄̄̄
¯̄

b15 = ¡
Z
L

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG ¢ dxb ¡ b11V ¢BG

c15 = 0

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
A small viscous surge damping coe¢cient b11V , derived from the still water resistance
approximation of [Troost, 1955], has been added here.
After simpli…cation, the expressions for the total hydromechanical coe¢cients in the cou-
pled surge equation become:

a11 = +

Z
L

M 0
11 ¢ dxb

b11 = +

Z
L

N 0
11 ¢ dxb + b11V

c11 = 0

a13 = 0

b13 = 0

c13 = 0

a15 = ¡
Z
L

M 0
11 ¢ bG ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

dN 0
11

dxb
¢ bG ¢ dxb

¯̄̄̄
¯̄

b15 = ¡
Z
L

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG ¢ dxb ¡ b11V ¢BG

c15 = 0

6.2 Hydromechanical Forces for Sway

The hydromechanical forces for sway are found by an integration over the ship length of
the two-dimensional values:

Xh2 =

Z
L

X 0
h2
¢ dxb
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The lateral and roll motions of the water particles, relative to the cross section of an
oscillating ship in still water, are de…ned by:

³¤h2 = ¡y ¡ xb ¢ Ã ¡OG ¢ Á ³¤h4 = ¡Á
_³
¤
h2

= ¡ _y ¡ xb ¢ _Ã + V ¢ Ã ¡OG ¢ _Á _³
¤
h4
= ¡ _Á

Ä³
¤
h2

= ¡Äy ¡ xb ¢ ÄÃ + 2V ¢ _Ã ¡OG ¢ ÄÁ Ä³
¤
h4
= ¡ÄÁ

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a swaying cross section in still water is de…ned by:

X 0
h2 =

D

Dt

n
M 0
22 ¢ _³

¤
h2

o
+N 0

22 ¢ _³
¤
h2

+
D

Dt

n
M 0
24 ¢ _³

¤
h4

o
+N 0

24 ¢ _³
¤
h4

= M 0
22 ¢ Ä³

¤
h2 +

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ _³¤h2

+M 0
24 ¢ Ä³

¤
h4
+

µ
N 0
24 ¡ V ¢

dM 0
24

dxb

¶
¢ _³¤h4

According to the ”Modi…ed Strip Theory” this hydromechanical force becomes:

X 0
h2

=
D

Dt

½µ
M 0
22 ¡

i

!e
¢N 0

22

¶
¢ _³¤h2

¾
+
D

Dt

½µ
M 0
24 ¡

i

!e
¢N 0

24

¶
¢ _³¤h4

¾
=

µ
M 0
22 +

V

!2e
¢ dN

0
22

dxb

¶
¢ Ä³¤h2 +

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ _³¤h2

+

µ
M 0
24 +

V

!2e
¢ dN

0
24

dxb

¶
¢ Ä³¤h4 +

µ
N 0
24 ¡ V ¢

dM 0
24

dxb

¶
¢ _³¤h4

This results into the following coupled sway equation:

½r ¢ Äy ¡Xh2 = (½r+ a22) ¢ Äy + b22 ¢ _y + c22 ¢ y
+a24 ¢ ÄÁ + b24 ¢ _Á + c24 ¢ Á
+a26 ¢ ÄÃ + b26 ¢ _Ã + c26 ¢ Ã

= Xw2

with:

a22 = +

Z
L

M 0
22 ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
22

dxb
¢ dxb

¯̄̄̄
¯̄

b22 = +

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ dxb
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c22 = 0

a24 = +

Z
L

M 0
24 ¢ dxb +OG

Z
L

M 0
22 ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
24

dxb
¢ dxb + V

!2e
¢OG

Z
L

dN 0
22

dxb
¢ dxb

¯̄̄̄
¯̄

b24 = +

Z
L

µ
N 0
24 ¡ V ¢

dM 0
24

dxb

¶
¢ dxb +OG

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ dxb

c24 = 0

a26 = +

Z
L

M 0
22 ¢ xb ¢ dxb +

V

!2e

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

N 0
22 ¢ dxb +

V

!2e

Z
L

dN 0
22

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

b26 = +

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ xb ¢ dxb ¡ 2V

Z
L

M 0
22 ¢ dxb

+

¯̄̄̄
¯̄V 2!2e

Z
L

dN 0
22

dxb
¢ dxb

¯̄̄̄
¯̄

c26 = 0

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
After simpli…cation, the expressions for the total hydromechanical coe¢cients in the cou-
pled sway equation become:

a22 = +

Z
L

M 0
22 ¢ dxb

b22 = +

Z
L

N 0
22 ¢ dxb

c22 = 0

a24 = +

Z
L

M 0
24 ¢ dxb +OG

Z
L

M 0
22 ¢ dxb

b24 = +

Z
L

N 0
24 ¢ dxb +OG

Z
L

N 0
22 ¢ dxb

c24 = 0

a26 = +

Z
L

M 0
22 ¢ xb ¢ dxb +

V

!2e

Z
L

N 0
22 ¢ dxb

b26 = +

Z
L

N 0
22 ¢ xb ¢ dxb ¡ V

Z
L

M 0
22 ¢ dxb
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c26 = 0

So no terms are added for the ”Modi…ed Strip Theory”.

6.3 Hydromechanical Forces for Heave
The hydromechanical forces for heave are found by an integration over the ship length of
the two-dimensional values:

Xh3 =

Z
L

X 0
h3
¢ dxb

The vertical motions of the water particles, relative to the cross section of an oscillating
ship in still water, are de…ned by:

³¤h3 = ¡z + xb ¢ µ
_³
¤
h3 = ¡ _z + xb ¢ _µ ¡ V ¢ µ
Ä³
¤
h3 = ¡Äz + xb ¢ Äµ ¡ 2V ¢ _µ

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a heaving cross section in still water is de…ned by:

X 0
h3

=
D

Dt

n
M 0
33 ¢ _³

¤
h3

o
+N 0

33 ¢ _³
¤
h3
+ 2½g ¢ yw ¢ ³¤h3

= M 0
33 ¢ Ä³

¤
h3
+

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ _³¤h3 + 2½g ¢ yw ¢ ³¤h3

According to the ”Modi…ed Strip Theory” this hydromechanical force becomes:

X 0
h3 =

D

Dt

½µ
M 0
33 ¡

i

!e
¢N 0

33

¶
¢ _³¤h3

¾
+ 2½g ¢ yw ¢ ³¤h3

=

µ
M 0
33 +

V

!2e
¢ dN

0
33

dxb

¶
¢ Ä³¤h3 +

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ _³¤h3 + 2½g ¢ yw ¢ ³¤h3

This results into the following coupled heave equation:

½r ¢ Äz ¡Xh3 = a31 ¢ Äx + b31 ¢ _x + c31 ¢ x
+(½r+ a33) ¢ Äz + b33 ¢ _z + c33 ¢ z

+a35 ¢ Äµ + b35 ¢ _µ + c35 ¢ µ
= Xw3

with:

a31 = 0

b31 = 0

c31 = 0

a33 = +

Z
L

M 0
33 ¢ dxb
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+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
33

dxb
¢ dxb

¯̄̄̄
¯̄

b33 = +

Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ dxb

c33 = +2½g

Z
L

yw ¢ dxb

a35 = ¡
Z
L

M 0
33 ¢ xb ¢ dxb ¡

V

!2e

Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

N 0
33 ¢ dxb ¡

V

!2e

Z
L

dN 0
33

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

b35 = ¡
Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ xb ¢ dxb + 2V

Z
L

M 0
33 ¢ dxb

+

¯̄̄̄
¯̄V 2!2e

Z
L

dN 0
33

dxb
¢ dxb

¯̄̄̄
¯̄

c35 = ¡2½g
Z
L

yw ¢ xb ¢ dxb

The ”Modi…ed Strip Theory Method” includes the outlined terms. When ignoring the
outlined terms the ”Ordinary Strip Theory” is presented.
After simpli…cation, the expressions for the total hydromechanical coe¢cients in the cou-
pled heave equation become:

a31 = 0

b31 = 0

c31 = 0

a33 = +

Z
L

M 0
33 ¢ dxb

b33 = +

Z
L

N 0
33 ¢ dxb

c33 = +2½g

Z
L

yw ¢ dxb

a35 = ¡
Z
L

M 0
33 ¢ xb ¢ dxb ¡

V

!2e

Z
L

N 0
33 ¢ dxb

b35 = ¡
Z
L

N 0
33 ¢ xb ¢ dxb + V

Z
L

M 0
33 ¢ dxb
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c35 = ¡2½g
Z
L

yw ¢ xb ¢ dxb

So no terms are added for the ”Modi…ed Strip Theory”.

6.4 Hydromechanical Moments for Roll
The hydromechanical moments for roll are found by an integration over the ship length of
the two-dimensional values:

Xh4 =

Z
L

X 0
h4
¢ dxb

The roll and lateral motions of the water particles, relative to the cross section of an
oscillating ship in still water, are de…ned by:

³¤h4 = ¡Á ³¤h2 = ¡y ¡ xb ¢ Ã ¡OG ¢ Á
_³
¤
h4
= ¡ _Á _³

¤
h2

= ¡ _y ¡ xb ¢ _Ã + V ¢ Ã ¡OG ¢ _Á
Ä³
¤
h4
= ¡ÄÁ Ä³

¤
h2

= ¡Äy ¡ xb ¢ ÄÃ + 2V ¢ _Ã ¡OG ¢ ÄÁ
According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
moment on a rolling cross section in still water is de…ned by:

X 0
h4

=
D

Dt
f
n
M 0
44 ¢ _³

¤
h4

o
+N 0

44 ¢ _³
¤
h4
+ 2½g ¢

µ
y3w
3
¡ As
2
¢ bG

¶
¢ ³¤h4

+
D

Dt

n
M 0
42 ¢ _³

¤
h2

o
+N 0

42 ¢ _³
¤
h2

= M 0
44 ¢ Ä³

¤
h4 +

µ
N 0
44 ¡ V ¢

dM 0
44

dxb

¶
¢ _³¤h4 + 2½g ¢

µ
y3w
3
¡ As
2
¢ bG

¶
¢ ³¤h4

+M 0
42 ¢ Ä³

¤
h2
+

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
¢ _³¤h2

or the ”Modi…ed Strip Theory” this hydromechanical moment becomes:

X 0
h4

=
D

Dt

½µ
M 0
44 ¡

i

!e
¢N 0

44

¶
¢ _³¤h4

¾
+ 2½g ¢

µ
y3w
3
¡ As
2
¢ bG

¶
¢ ³¤h4

+
D

Dt

½µ
M 0
42 ¡

i

!e
¢N 0

42

¶
¢ _³¤h2

¾
=

µ
M 0
44 +

V

!2e
¢ dN

0
44

dxb

¶
¢ Ä³¤h4 +

µ
N 0
44 ¡ V ¢

dM 0
44

dxb

¶
¢ _³¤h4

+2½g ¢
µ
y3w
3
¡ As
2
¢ bG

¶
¢ ³¤h4

+

µ
M 0
42 +

V

!2e
¢ dN

0
42

dxb

¶
¢ Ä³¤h2 +

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
¢ _³¤h2

This results into the following coupled roll equation:

Ixx ¢ ÄÁ¡ Ixz ¢ ÄÃ ¡Xh4 = a42 ¢ Äy + b42 ¢ _y + c42 ¢ y
+(Ixx + a44) ¢ ÄÁ+ b44 ¢ _Á+ c44 ¢ Á
+(¡Ixz + a46) ¢ ÄÃ + b46 ¢ _Ã + c46 ¢ Ã

= Xw4
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with:

a42 = +

Z
L

M 0
42 ¢ dxb +OG ¢ a22

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
42

dxb
¢ dxb

¯̄̄̄
¯̄

b42 = +

Z
L

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
¢ dxb +OG ¢ b22

c42 = 0 +OG ¢ c22
a44 = +

Z
L

M 0
44 ¢ dxb +OG

Z
L

M 0
42 ¢ dxb +OG ¢ a24

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
44

dxb
¢ dxb + V

!2e
¢OG

Z
L

dN 0
42

dxb
¢ dxb

¯̄̄̄
¯̄

b44 = +

Z
L

µ
N 0
24 ¡ V ¢

dM 0
44

dxb

¶
¢ dxb +OG

Z
L

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
¢ dxb + b44V +OG ¢ b24

c44 = +2½g

Z
L

µ
y3w
3
¡ As
2
¢ bG

¶
dxb

= +½gr ¢GM
a46 = +

Z
L

M 0
42 ¢ xb ¢ dxb +

V

!2e

Z
L

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
¢ dxb +OG ¢ a26

+

¯̄̄̄
¯̄ V!2e

Z
L

N 0
42 ¢ dxb +

V

!2e

Z
L

dN 0
42

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

b46 = +

Z
L

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
¢ xb ¢ dxb ¡ 2V

Z
L

M 0
42 ¢ dxb +OG ¢ b26

+

¯̄̄̄
¯̄V 2!2e

Z
L

dN 0
42

dxb
¢ dxb

¯̄̄̄
¯̄

c46 = 0 +OG ¢ c26
The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory Method” is presented.
A viscous roll damping coe¢cient b44V , derived for instance with the empiric method of
[Ikeda et al., 1978], has been added here.
After simpli…cation, the expressions for the total hydromechanical coe¢cients in the cou-
pled roll equation become:

a42 = +

Z
L

M 0
42 ¢ dxb +OG ¢ a22
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b42 = +

Z
L

N 0
42 ¢ dxb +OG ¢ b22

c42 = 0

a44 = +

Z
L

M 0
44 ¢ dxb +OG

Z
L

M 0
42 ¢ dxb +OG ¢ a24

b44 = +

Z
L

N 0
44 ¢ dxb +OG

Z
L

N 0
42 ¢ dxb + b44V +OG ¢ b24

c44 = +½gr ¢GM
a46 = +

Z
L

M 0
42 ¢ xb ¢ dxb +

V

!2e

Z
L

N 0
42 ¢ dxb +OG ¢ a26

b46 = +

Z
L

N 0
42 ¢ xb ¢ dxb ¡ V

Z
L

M 0
42 ¢ dxb +OG ¢ b26

c46 = 0

So no terms are added for the ”Modi…ed Strip Theory”.

6.5 Hydromechanical Moments for Pitch
The hydromechanical moments for pitch are found by an integration over the ship length
of the two-dimensional contributions of surge and heave into the pitch moment:

Xh5 =

Z
L

X 0
h5
¢ dxb with: X 0

h5
= ¡X 0

h1
¢ bG¡X 0

h3
¢ xb

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
moment on a pitching cross section in still water is de…ned by surge and heave contributions:

X 0
h5

= ¡M 0
11 ¢ bG ¢ Ä³

¤
h1
¡
µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG ¢ _³¤h1

¡M 0
33 ¢ xb ¢ Ä³

¤
h3
¡
µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ xb ¢ _³¤h3 ¡ 2½g ¢ yw ¢ xb ¢ ³¤h3

According to the ”Modi…ed Strip Theory” this hydromechanical moment becomes:

X 0
h5

= ¡
µ
M 0
11 +

V

!2e
¢ dN

0
11

dxb

¶
¢ bG ¢ Ä³¤h1 ¡

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG ¢ _³¤h1

¡
µ
M 0
33 +

V

!2e
¢ dN

0
33

dxb

¶
¢ xb ¢ Ä³¤h3 ¡

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ xb ¢ _³¤h3 ¡ 2½g ¢ yw ¢ xb ¢ ³¤h3

This results into the following coupled pitch equation:

Iyy ¢ Äµ ¡Xh5 = a51 ¢ Äx + b51 ¢ _x + c51 ¢ x
+a53 ¢ Äz + b53 ¢ _z + c53 ¢ z

+(Iyy + a55) ¢ Äµ + b55 ¢ _µ + c55 ¢ µ
= Xw5



6.5. HYDROMECHANICAL MOMENTS FOR PITCH 173

with:

a51 = ¡
Z
L

M 0
11 ¢ bG ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

dN 0
11

dxb
¢ bG ¢ dxb

¯̄̄̄
¯̄

b51 = ¡
Z
L

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG ¢ dxb ¡ b11V ¢BG

c51 = 0

a53 = ¡
Z
L

M 0
33 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

dN 0
33

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

b53 = ¡
Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ xb ¢ dxb

c53 = ¡2½g
Z
L

yw ¢ xb ¢ dxb

a55 = +

Z
L

M 0
11 ¢ bG

2 ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
11

dxb
¢ bG2 ¢ dxb

¯̄̄̄
¯̄

+

Z
L

M 0
33 ¢ x2b ¢ dxb +

V

!2e

Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ xb ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

N 0
33 ¢ xb ¢ dxb +

V

!2e

Z
L

dN 0
33

dxb
¢ x2b ¢ dxb

¯̄̄̄
¯̄

b55 = +

Z
L

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG2 ¢ dxb + b11V ¢BG

2

+

Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ x2b ¢ dxb ¡ 2V

Z
L

M 0
33 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄¡V 2!2e

Z
L

dN 0
33

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

c55 = +2½g

Z
L

yw ¢ x2b ¢ dxb
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The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
After simpli…cation, the expressions for the total hydromechanical coe¢cients in the cou-
pled pitch equation become:

a51 = ¡
Z
L

M 0
11 ¢ bG ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

dN 0
11

dxb
¢ bG ¢ dxb

¯̄̄̄
¯̄

b51 = ¡
Z
L

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG ¢ dxb ¡ b11V ¢BG

c51 = 0

a53 = ¡
Z
L

M 0
33 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

N 0
33 ¢ dxb

¯̄̄̄
¯̄

b53 = ¡
Z
L

N 0
33 ¢ xb ¢ dxb ¡ V

Z
L

M 0
33 ¢ dxb

c53 = ¡2½g
Z
L

yw ¢ xb ¢ dxb

a55 = +

Z
L

M 0
11 ¢ bG

2 ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
11

dxb
¢ bG2 ¢ dxb

¯̄̄̄
¯̄

+

Z
L

M 0
33 ¢ x2b ¢ dxb +

V

!2e

Z
L

N 0
33 ¢ xb ¢ dxb +

V 2

!2e

Z
L

M 0
33 ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

N 0
33 ¢ xb ¢ dxb

¯̄̄̄
¯̄

b55 = +

Z
L

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG2 ¢ dxb + b11V ¢BG

2
+

Z
L

N 0
33 ¢ x2b ¢ dxb

+

¯̄̄̄
¯̄V 2!2e

Z
L

N 0
33 ¢ dxb

¯̄̄̄
¯̄

c55 = +2½g

Z
L

yw ¢ x2b ¢ dxb
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6.6 Hydromechanical Moments for Yaw
The hydromechanical moments for yaw are found by an integration over the ship length of
the two-dimensional contributions of sway into the yaw moment:

Xh6 =

Z
L

X 0
h6
¢ dxb with: X 0

h6
= +X 0

h2
¢ xb

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a yawing cross section in still water is de…ned by sway contributions:

X 0
h6 =

D

Dt

n
M 0
22 ¢ xb ¢ _³

¤
h2

o
+N 0

22 ¢ xb ¢ _³
¤
h2

+
D

Dt

n
M 0
24 ¢ xb ¢ _³

¤
h4

o
+N 0

24 ¢ xb ¢ _³
¤
h4

= M 0
22 ¢ xb ¢ Ä³

¤
h2 +

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ xb ¢ _³¤h2

+M 0
24 ¢ xb ¢ Ä³

¤
h4
+

µ
N 0
24 ¡ V ¢

dM 0
24

dxb

¶
¢ xb ¢ _³¤h4

According to the ”Modi…ed Strip Theory” this hydromechanical force becomes:

X 0
h6 =

D

Dt

½µ
M 0
22 ¡

i

!e
¢N 0

22

¶
¢ xb ¢ _³¤h2

¾
+
D

Dt

½µ
M 0
24 ¡

i

!e
¢N 0

24

¶
¢ xb ¢ _³¤h4

¾
=

µ
M 0
22 +

V

!2e
¢ dN

0
22

dxb

¶
¢ xb ¢ Ä³¤h2 +

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ xb ¢ _³¤h2

+

µ
M 0
24 +

V

!2e
¢ dN

0
24

dxb

¶
¢ xb ¢ Ä³¤h4 +

µ
N 0
24 ¡ V ¢

dM 0
24

dxb

¶
¢ xb ¢ _³¤h4

This results into the following coupled yaw equation:

Izz ¢ ÄÃ ¡ Izx ¢ ÄÁ¡Xh6 = a62 ¢ Äy + b62 ¢ _y + c62 ¢ y
+(¡Izx + a64) ¢ ÄÁ+ b64 ¢ _Á+ c64 ¢ Á
+(+Izz + a66) ¢ ÄÃ + b66 ¢ _Ã + c66 ¢ Ã

= Xw6

with:

a62 = +

Z
L

M 0
22 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
22

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

b62 = +

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ xb ¢ dxb
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c62 = 0

a64 = +

Z
L

M 0
24 ¢ xb ¢ dxb + OG

Z
L

M 0
22 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

dN 0
24

dxb
¢ xb ¢ dxb + V

!2e
¢OG

Z
L

dN 0
22

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

b64 = +

Z
L

µ
N 0
24 ¡ V ¢

dM 0
24

dxb

¶
¢ xb ¢ dxb +OG

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ xb ¢ dxb

c64 = 0

a66 = +

Z
L

M 0
22 ¢ x2b ¢ dxb +

V

!2e

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ xb ¢ dxb

+

¯̄̄̄
¯̄ V!2e

Z
L

N 0
22 ¢ xb ¢ dxb +

V

!2e

Z
L

dN 0
22

dxb
¢ x2b ¢ dxb

¯̄̄̄
¯̄

b66 = +

Z
L

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ x2b ¢ dxb ¡ 2V

Z
L

M 0
22 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄V 2!2e

Z
L

dN 0
22

dxb
¢ xb ¢ dxb

¯̄̄̄
¯̄

c66 = 0

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
After simpli…cation, the expressions for the total hydromechanical coe¢cients in the cou-
pled yaw equation become:

a62 = +

Z
L

M 0
22 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

N 0
22 ¢ dxb

¯̄̄̄
¯̄

b62 = +

Z
L

N 0
22 ¢ xb ¢ dxb + V

Z
L

M 0
22 ¢ dxb

c62 = 0

a64 = +

Z
L

M 0
24 ¢ xb ¢ dxb +OG

Z
L

M 0
22 ¢ xb ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

N 0
24 ¢ dxb ¡

V

!2e
¢OG

Z
L

N 0
22 ¢ dxb

¯̄̄̄
¯̄



6.6. HYDROMECHANICAL MOMENTS FOR YAW 177

b64 = +

Z
L

N 0
24 ¢ xb ¢ dxb + V

Z
L

M 0
24 ¢ dxb +OG

Z
L

N 0
22 ¢ xb ¢ dxb + V ¢OG

Z
L

M 0
22 ¢ dxb

c64 = 0

a66 = +

Z
L

M 0
22 ¢ x2b ¢ dxb +

V

!2e

Z
L

N 0
22 ¢ xb ¢ dxb +

V 2

!2e

Z
L

M 0
22 ¢ dxb

+

¯̄̄̄
¯̄¡V!2e

Z
L

N 0
22 ¢ xb ¢ dxb

¯̄̄̄
¯̄

b66 = +

Z
L

N 0
22 ¢ x2b ¢ dxb

+

¯̄̄̄
¯̄¡V 2!2e

Z
L

N 0
22 ¢ dxb

¯̄̄̄
¯̄

c66 = 0
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.



Chapter 7

Exciting Wave Loads

The …rst order wave potential in a ‡uid - with any arbitrary water depth h - is given by:

©w =
¡g
!
¢ cosh k(h+ zb)

cosh(kh)
¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

in an axes system with the centre of gravity in the waterline.
The velocities and accelerations in the direction j of the water particles have to be de…ned.
The local relative orbital velocities of the water particles in a certain direction follow from
the derivative in that direction of the wave potential. The orbital accelerations of the water
particles can be obtained from these velocities by:

Ä³
0
wj =

D

Dt

n
_³
0
wj

o
with:

D

Dt
=

½
@

@t
¡ V ¢ @

@xb

¾
for: j = 1; 2; 3; 4

With this, the relative velocities and accelerations in the di¤erent directions can be found:

² Surge direction:

_³
0
w1 =

@©w
@xb

= +! ¢ cosh k(h+ zb)
sinh(kh)

¢ cos¹ ¢ ³a cos(!t¡ kxb cos¹¡ kyb sin¹)

Ä³
0
w1 =

@ _³
0
w1

@t

= ¡!2 ¢ cosh k(h+ zb)
sinh(kh)

¢ cos¹ ¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

² Sway direction:

_³
0
w2 =

@©w
@yb

= +! ¢ cosh k(h+ zb)
sinh(kh)

¢ sin¹ ¢ ³a cos(!t¡ kxb cos¹¡ kyb sin¹)

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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Ä³
0
w2 =

@ _³
0
w2

@t

Ä³
0
w2 = ¡!2 ¢ cosh k(h+ zb)

sinh(kh)
¢ sin¹ ¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

² Heave direction:
_³
0
w3 =

@©w
@zb

= ¡! ¢ sinh k(h+ zb)
sinh(kh)

¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

Ä³
0
w3 =

@ _³
0
w3

@t

= ¡!2 ¢ sinh k(h+ zb)
sinh(kh)

¢ ³a cos(!t¡ kxb cos¹¡ kyb sin¹)

² Roll direction:

_³
0
w4 =

@ _³
0
w2

@zb
¡ @

_³
0
w3

@yb
= 0

Ä³
0
w4 = 0

of which the zero solution is obvious, because the potential ‡uid is free of rotation.

The pressure in the ‡uid follows from the linearized equation of Bernoulli:

p = ¡½gzb + ½g ¢ cosh k(h+ zb)
cosh(kh)

¢ ³a cos(!t¡ kxb cos¹¡ kyb sin¹)

= p0 +
@p

@xb
¢ dxb + @p

@yb
¢ dyb + @p

@zb
¢ dzb

with the following expressions for the pressure gradients:

@p

@xb
= +½kg cos¹ ¢ cosh k(h+ zb)

cosh(kh)
¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

= +½!2 cos¹ ¢ cosh k(h+ zb)
sinh(kh)

¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

@p

@yb
= +½kg sin¹ ¢ cosh k(h+ zb)

cosh(kh)
¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

= +½!2 sin¹ ¢ cosh k(h+ zb)
sinh(kh)

¢ ³a sin(!t¡ kxb cos¹¡ kyb sin¹)

@p

@zb
= ¡½g + ½kg ¢ sinh k(h+ zb)

cosh(kh)
¢ ³a cos(!t¡ kxb cos¹¡ kyb sin¹)

= ¡½g + ½! ¢ sinh k(h+ zb)
sinh(kh)

¢ ³a cos(!t¡ kxb cos¹¡ kyb sin¹)
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These pressure gradients can be expressed in the orbital accelerations too:

@p

@xb
= ¡½ ¢ Ä³ 0w1

@p

@yb
= ¡½ ¢ Ä³ 0w2

@p

@zb
= ¡½ ¢ (g + Ä³ 0w3)

7.1 Classical Approach

First the classical approach to obtain the wave loads - according to the relative motion
principle - is given here.

7.1.1 Exciting Wave Forces for Surge

The exciting wave forces for surge on a ship are found by an integration over the ship
length of the two-dimensional values:

Xw1 =

Z
L

X 0
w1 ¢ dxb

According to the ”Ordinary Strip Theory” the exciting wave forces for surge on a restrained
cross section of a ship in waves are de…ned by:

X 0
w1

=
D

Dt

n
M 0
11 ¢ _³

¤
w1

o
+N 0

11 ¢ _³
¤
w1
+X 0

FK1

= M 0
11 ¢ Ä³

¤
w1
+

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ _³¤w1 +X 0

FK1

According to the ”Modi…ed Strip Theory” these forces become:

X 0
w1 =

D

Dt

½µ
M 0
11 ¡

i

!e
¢N 0

11

¶
¢ _³¤w1

¾
+X 0

FK1

=

µ
M 0
11 +

V

!2e
¢ dN

0
11

dxb

¶
¢ Ä³¤w1 +

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ _³¤w1 +X 0

FK1

The Froude-Krilov force in the surge direction - so the longitudinal force due to the pressure
in the undisturbed ‡uid - is given by:

XFK1 = ¡
³Z

¡T

+ybZ
¡yb

@p

@xb
¢ dyb ¢ dzb

= ½

³Z
¡T

+ybZ
¡yb

Ä³
0
w1
¢ dyb ¢ dzb
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Figure 7.1: Wave Pressure Distribution on a Cross Section for Surge

After neglecting the second order terms, this can be written as:

XFK1 = ½Ach ¢ (¡kg cos¹) ¢ ³a sin(!et¡ kxb cos¹)

with:

Ach = 2

0Z
¡T

sin(¡kyb sin¹)
¡kyb sin¹ ¢ cosh k(h+ zb)

cosh(kh)
¢ yb ¢ dzb

When expanding the Froude-Krilov force in deep water with ¸À 2¼ ¢ yw and ¸À 2¼ ¢ T
in series, it is found:

XFK1 = ½ ¢
µ
A+ k ¢ Sy + 1

2
k2 ¢ Iy + :::

¶
¢ (¡kg cos¹) ¢ ³a sin(!et¡ kxb cos¹)

with:

A = 2

0Z
¡T

yb ¢ dzb Sy = 2

0Z
¡T

yb ¢ zb ¢ dzb Iy = 2

0Z
¡T

yb ¢ z2b ¢ dzb

The acceleration term kg cos¹ ¢ ³a in here is the amplitude of the longitudinal component
of the relative orbital acceleration in deep water at zb = 0.
The dominating …rst term in this series consists of a mass and this acceleration.
This mass term ½A is used to obtain from the total Froude-Krilov force an equivalent
longitudinal component of the orbital acceleration of the water particles:

XFK1 = ½A ¢ Ä³
¤
w1

This holds that the equivalent longitudinal components of the orbital acceleration and
velocity are equal to the values at zb = 0 in a wave with a reduced amplitude ³

¤
a1
:

Ä³
¤
w1 = ¡kg cos¹ ¢ ³¤a1 sin(!et¡ kxb cos¹)
_³
¤
w1

=
+kg cos¹

!
¢ ³¤a1 cos(!et¡ kxb cos¹)
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with:

³¤a1 =
Ach
A
¢ ³a

This equivalent acceleration and velocity will be used in the di¤raction part of the wave
force for surge.
From the previous follows the total wave loads for surge:

Xw1 = +

Z
L

M 0
11 ¢ Ä³

¤
w1 ¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
11

dxb
¢ Ä³¤w1 ¢ dxb

¯̄̄̄
¯̄

+

Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

11 ¡ V ¢
dM 0

11

dxb

!
¢ _³¤w1 ¢ dxb

+

Z
L

X 0
FK1

¢ dxb

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.2 Exciting Wave Forces for Sway

The exciting wave forces for sway on a ship are found by an integration over the ship length
of the two-dimensional values:

Xw2 =

Z
L

X 0
w2
¢ dxb

According to the ”Ordinary Strip Theory” the exciting wave forces for sway on a restrained
cross section of a ship in waves are de…ned by:

X 0
w2

=
D

Dt

n
M 0
22 ¢ _³

¤
w2

o
+N 0

22 ¢ _³
¤
w2
+X 0

FK2

= M 0
22 ¢ Ä³

¤
w2
+

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ _³¤w2 +X 0

FK2

According to the ”Modi…ed Strip Theory” these forces become:

X 0
w2

=
D

Dt

½µ
M 0
22 ¡

i

!e
¢N 0

22

¶
¢ _³¤w2

¾
+X 0

FK2

=

µ
M 0
22 +

V

!2e
¢ dN

0
22

dxb

¶
¢ Ä³¤w2 +

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ _³¤w2 +X 0

FK2

The Froude-Krilov force in the sway direction - so the lateral force due to the pressure in
the undisturbed ‡uid - is given by:

XFK2 = ¡
³Z

¡T

+ybZ
¡yb

@p

@yb
¢ dyb ¢ dzb
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Figure 7.2: Wave Pressure Distribution on a Cross Section for Sway

= ½

³Z
¡T

+ybZ
¡yb

Ä³
0
w2
¢ dyb ¢ dzb

After neglecting the second order terms, this can be written as:

XFK2 = ½Ach ¢ (¡kg sin¹) ¢ ³a sin(!et¡ kxb cos¹)
with:

Ach = 2

0Z
¡T

sin(¡kyb sin¹)
¡kyb sin¹ ¢ cosh k(h+ zb)

cosh(kh)
¢ yb ¢ dzb

When expanding the Froude-Krilov force in deep water with ¸À 2¼ ¢ yw and ¸À 2¼ ¢ T
in series, it is found:

XFK2 = ½ ¢
µ
A+ k ¢ Sy + 1

2
k2 ¢ Iy + :::

¶
¢ (¡kg sin¹) ¢ ³a sin(!et¡ kxb cos¹)

with:

A = 2

0Z
¡T

yb ¢ dzb Sy = 2

0Z
¡T

yb ¢ zb ¢ dzb Iy = 2

0Z
¡T

yb ¢ z2b ¢ dzb

The acceleration term kg sin¹ ¢ ³a in here is the amplitude of the lateral component of the
relative orbital acceleration in deep water at zb = 0.
The dominating …rst term in this series consists of a mass and this acceleration.
This mass term ½A is used to obtain from the total Froude-Krilov force an equivalent
lateral component of the orbital acceleration of the water particles:

XFK2 = ½A ¢ Ä³
¤
w2

This holds that the equivalent lateral components of the orbital acceleration and velocity
are equal to the values at zb = 0 in a wave with a reduced amplitude ³

¤
a2
:

Ä³
¤
w2 = ¡kg sin¹ ¢ ³¤a2 sin(!et¡ kxb cos¹)
_³
¤
w2

=
+kg sin¹

!
¢ ³¤a2 cos(!et¡ kxb cos¹)
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with:

³¤a2 =
Ach
A
¢ ³a

This equivalent acceleration and velocity will be used in the di¤raction part of the wave
force for sway.
From the previous follows the total wave loads for sway:

Xw2 = +

Z
L

M 0
22 ¢ Ä³

¤
w2
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
22

dxb
¢ Ä³¤w2 ¢ dxb

¯̄̄̄
¯̄

+

Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

22 ¡ V ¢
dM 0

22

dxb

!
¢ _³¤w2 ¢ dxb

+

Z
L

X 0
FK2

¢ dxb

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.3 Exciting Wave Forces for Heave

The exciting wave forces for heave on a ship are found by an integration over the ship
length of the two-dimensional values:

Xw3 =

Z
L

X 0
w3
¢ dxb

According to the ”Ordinary Strip Theory” the exciting wave forces for heave on a restrained
cross section of a ship in waves are de…ned by:

X 0
w3

=
D

Dt

n
M 0
33 ¢ _³

¤
w3

o
+N 0

33 ¢ _³
¤
w3
+X 0

FK3

= M 0
33 ¢ Ä³

¤
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+

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ _³¤w3 +X 0

FK3

According to the ”Modi…ed Strip Theory” these forces become:

X 0
w3

=
D

Dt

½µ
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33 ¡

i
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¶
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¾
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FK3
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¶
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µ
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¶
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Figure 7.3: Wave Pressure Distriubution on a Cross Section for Heave

The Froude-Krilov force in the heave direction - so the vertical force due to the pressure
in the undisturbed ‡uid - is given by:

X
0
FK3

= ¡
³Z

¡T

+ybZ
¡yb

@p

@zb
¢ dyb ¢ dzb

= ½

³Z
¡T

+ybZ
¡yb

(g + Ä³
0
w3
) ¢ dyb ¢ dzb

After neglecting the second order terms, this force can be written as:

X
0
FK3

= 2½gyw ¢ C3 ¢ ³a cos(!et¡ kxb cos¹)

with:

C3 =
sin(¡kyw sin¹)
¡kyw sin¹ ¡ k

yw

0Z
¡T

sin(¡kyb sin¹)
¡kyb sin¹ ¢ sinh k(h+ zb)

cosh(kh)
¢ yb ¢ dzb

When expanding the Froude-Krilov force in deep water with ¸ À 2¼ ¢ T and in long
waves with ¸À 2¼ ¢ yw in series, it is found:

C3 =
sin(¡kyw sin¹)
¡kyw sin¹ ¡ k

yw

0Z
¡T

sin(¡kyb sin¹)
¡kyb sin¹ ¢ sinh k(h+ zb)

cosh(kh)
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t 1¡ k

yw
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= 1¡ k
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µ
1 + k ¢ zb + k

2

2
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¶
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= 1¡ k¢
µ
A

2yw
+ k ¢ Sy

2yw
+
k2

2
¢ Iy
2yw

+ ::::::

¶
= 1¡ k¢

µ
A

2yw
+ ::::::

¶
= 1¡ kT ¤3
t exp f¡kT ¤3 g

with:

A = 2

0Z
¡T

yb ¢ dzb Sy = 2

0Z
¡T

yb ¢ zb ¢ dzb Iy = 2

0Z
¡T

yb ¢ z2b ¢ dzb

T ¤3 can be considered as the draft at which the pressure in the vertical direction is equal
to the average vertical pressure on the cross section in the ‡uid and can be obtained by.

T ¤3 =
¡ lnC3
k

This holds that the equivalent vertical components of the orbital acceleration and velocity
are equal to the values at zb = ¡T ¤3 :

Ä³
¤
w3

= ¡kg ¢ e¡kT ¤3 ¢ ³a3 ¢ cos(!et¡ kxb cos¹)
= ¡!2 ¢ ¡e¡kT ¤3 ¢ ³a3¢ ¢ cos(!et¡ kxb cos¹)

_³
¤
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=
¡kg
!

¢ e¡kT ¤3 ¢ ³a3 ¢ sin(!et¡ kxb cos¹)
= ¡! ¢ ¡e¡kT ¤3 ¢ ³a3¢ ¢ sin(!et¡ kxb cos¹)
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¤
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=
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!2
¢ e¡kT ¤3 ¢ ³a3 ¢ cos(!et¡ kxb cos¹)

=
¡
e¡kT

¤
3 ¢ ³a3

¢ ¢ cos(!et¡ kxb cos¹)
When expanding the Froude-Krilov force in shallow water with kh! 0 and in long waves
with ¸À 2¼ ¢ yw in series, it is found:
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= 1¡ kh
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with:

A = 2
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¡T

yb ¢ dzb Sy = 2
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¡T

yb ¢ zb ¢ dzb = zB ¢ A

So in shallow water, T ¤3 can be obtained by.

T ¤3 =
¡ lnC3

kh
cosh(kh)

¡
1 + zB

h

¢ ¢ k
This holds that the equivalent vertical components of the orbital acceleration and velocity
are equal to the values at zb = ¡T ¤3 :
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It may be noted that this shallow water de…nition for T ¤3 is valid in deep water too, because:

kh

cosh(kh)
! 1 and

zB
h
! 0 for: h!1

These equivalent accelerations and velocities will be used to determine the di¤raction part
of the wave forces for heave.
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From the previous follows the total wave loads for heave:

X
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The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.4 Exciting Wave Moments for Roll

The exciting wave moments for roll on a ship are found by an integration over the ship
length of the two-dimensional values:

Xw4 =

Z
L

X 0
w4
¢ dxb

According to the ”Ordinary Strip Theory” the exciting wave moments for roll on a re-
strained cross section of a ship in waves are de…ned by:
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According to the ”Modi…ed Strip Theory” these moments become:
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The Froude-Krilov moment in the roll direction - so the roll moment due to the pressure
in the undisturbed ‡uid - is given by:

XFK4 = ¡
³Z

¡T

+ybZ
¡yb

µ
¡ @p
@yb
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0
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´
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Figure 7.4: Wave Pressure Distriubution on a Cross Section for Roll

After neglecting the second order terms, this can be written as:
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k
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k
+ CIz

¶
¢ (¡k2g sin¹) ¢ ³a sin(!et¡ kxb cos¹)

with:
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For deep water, the cosine-hyperbolic expressions in here reduce to exponentials.

From the previous follows the total wave loads for roll:
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The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
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7.1.5 Exciting Wave Moments for Pitch

The exciting wave moments for pitch are found by an integration over the ship length of
the two-dimensional contributions of surge and heave into the pitch moment:
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with:
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w1 ¢ bG¡X 0
w3 ¢ xb

In here, bG is the vertical distance of the centre of gravity of the ship G above the centroid
b of the local submerged sectional area.
From this follows the total wave loads for pitch:
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The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.6 Exciting Wave Moments for Yaw

The exciting wave moments for yaw are found by an integration over the ship length of the
two-dimensional contributions of sway into the yaw moment:

Xw6 =

Z
L

X 0
w6
¢ dxb
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with:
X 0
w6
= +X 0
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From this follows the total wave loads for yaw:

Xw6 = +

Z
L

M 0
22 ¢ xb ¢ Ä³

¤
w2
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
22

dxb
¢ xb ¢ Ä³¤w2 ¢ dxb

¯̄̄̄
¯̄

+

Z
L

¯̄̄̄
!

!e

¯̄̄̄
¢N 0

22 ¡ V ¢
dM 0

22

dxb
¢ xb ¢ _³¤w2 ¢ dxb

+

Z
L

X 0
FK2

¢ xb ¢ dxb

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
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7.2 Equivalent Motions of Water Particles
In the classic relative motion theory, the average (or equivalent) motions of the water
particles around the cross section are calculated from the pressure distribution in the
undisturbed waves on this cross section. An alternative approach - based on di¤raction
of waves - to determine the equivalent accelerations and velocities of the water particles
around the cross section, as given by [Journée and van ’t Veer, 1995], is described now.

7.2.1 Hydromechanical Loads

Suppose an in…nite long cylinder in the still water surface of a ‡uid. The cylinder is forced
to carry out a simple harmonic oscillation about its initial position with a frequency of
oscillation ! and a small amplitude of displacement xja:

xj = xja cos!t for: j = 2; 3; 4

The 2-D hydrodynamic loads X
0
hi in the sway, heave and roll directions i, exercised by the

‡uid on a cross section of the cylinder, can be obtained from the 2-D velocity potentials
and the linearized equations of Bernoulli.. The velocity potentials have been obtained by
using the work of [Ursell, 1949] andN-parameter conformal mapping. These hydrodynamic
loads are:

X
0
hi = 2½gywl

g³ja
¼
[Aij cos (!t+ "Áxj) +Bij sin (!t+ "Áxj)]

in where j is the mode of oscillation and i is the direction of the load. The phase lag "Áxj is
de…ned as the phase lag between the velocity potential of the ‡uid © and the forced motion
xj. The radiated damping waves have an amplitude ³ja and ywl is half the breadth of the
cross section at the waterline. The potential coe¢cients Aij and Bij and the phase lags
"Áxj, expressed in terms of conformal mapping coe¢cients, are given in a previous chapter.
These loads X

0
hi can be expressed in terms of in-phase and out-phase components with the

harmonic oscillations:

X
0
hi =

½aij
!2xja

µ
g³ja
¼

¶2
[(AijQ0j +BijP0j) cos!t+ (AijP0j ¡BijQ0j) sin!t]

with a22 = 2, a24 = 4=ywl, a33 = 2, a44 = 8, a42 = 4ywl and for the terms P0j and Q0j:

P0j = ¡xja
³ja
¼
!2

g
ywl sin "Áxj

Q0j = +
xja
³ja
¼
!2

g
ywl cos "Áxj

The phase lag "Áxj between he velocity potentials and the forced motion is incorporated in
the coe¢cients P0j and Q0j and can be obtained by using:

"Áxj = arctan

µ¡P0j
+Q0j

¶
This equation will be used further on for obtaining wave load phases.



194 CHAPTER 7. EXCITING WAVE LOADS

Generally, these hydrodynamic loads are expressed in terms of potential mass and damping
coe¢cients:

X
0
hi = ¡MijÄxj ¡Nij _xj

= Mij!
2xja cos!t+Nij!xja sin!t

with:

Mij = ½bij
AijQ0j +BijP0j
P 20j +Q

2
0j

Nij = ½bij
AijP0j ¡BijQ0j
P 20j +Q

2
0j

¢ !

with b22 = 2y2wl, b24 = y
3
wl, b33 = 2y

2
wl, b44 = 2y

4
wl and b42 = 2y

3
wl. Note that the phase lag

information "Áxj is vanished here.
[Tasai, 1965] has used the following potential damping coupling coe¢cients in his formu-
lation of the hydrodynamic loads for roll:

N
0
42 =

N
0
44

l0w
and N

0
24 = N

0
22 ¢ l

0
w

in which l
0
w is the lever of the rolling moment.

Because N
0
42 = N

0
24, one may write for the roll damping coe¢cient:

N
0
44 =

¡
N

0
24

¢2
N

0
22

=

¡
N

0
42

¢2
N

0
22

This relation - which has been con…rmed by numerical calculations with SEAWAY - will
be used further on for obtaining the wave loads for roll from those for sway.

7.2.2 Energy Considerations

The wave velocity, cwave, and the group velocity, cgroup, of regular waves are de…ned by:

cwave =
!

k
and cgroup =

cwave
2

¢ 2kh

sinh [2kh]

Consider a cross section which is harmonic oscillating with a frequency ! = 2¼=T and an
amplitude xja in the direction j in previously still water by an oscillatory force X

0
hj in the

same direction j:

xj = xja cos!t for: j = 2; 3; 4

X
0
hj = X

0
hja cos

³
!t+ "

0
hj

´
= X

0
hja cos "

0
hj cos!t¡X

0
hja sin "

0
hj sin!t

The energy required for this oscillation should be equal to the energy radiated by the
damping waves:
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1

T

TZ
0

X
0
hj ¢ _xj dt =

1

T

TZ
0

N
0
jj _xj ¢ _xj dt = 2 ¢

1

2
½g³2a ¢ cgroup

or:
1

2
X

0
hja!xja sin "

0
hj =

1

2
N

0
jj!

2x2ja = ½g³
2
a ¢ cgroup

From the …rst part of this equation follows

X
0
hja sin "

0
hj

³a
= N

0
jj!
xja
³a

From the second part of this equation follows the amplitude ratio of the oscillatory motions
and the radiated waves:

xja
³a
=
1

!

s
2½g ¢ cgroup
N

0
jj

Combining these two last equations provides for the out-phase part - so the damping part
- of the oscillatory force:

X
0
hja sin "

0
hj

³a
=
q
2½g ¢ cgroup ¢N 0

jj for: j = 2; 3; 4

In here, X
0
hja sin "

0
hj is the in-phase with the velocity part of the exciting force or moment.

7.2.3 Wave Loads

Consider now the opposite case: the cross section is restrained and is subject to regular
incoming beam waves with an amplitude ³a. Let xwj represents the equivalent (or average)
oscillation of the water particles with respect to the restrained cross section. The resulting
wave force is caused by these motions, which will be in phase with its velocity (damping
waves). Then the energy consumed by this oscillation is equal to the energy supplied by
the incoming waves.

xwj = xwja cos
³
!t+ "

0
wj

´
for: j = 2; 3; 4

X
0
wj = X

0
wja cos

³
!t+ "

0
wj

´
in which "

0
wj is the phase lag with respect to the wave surface elevation at the center of

the cross section.
This leads for the amplitude of the exciting wave force to:

X
0
wja

³a
=
q
2½g ¢ cgroup ¢N 0

jj for: j = 2; 3; 4

which is in principle the same equation as the previous one for the out-phase part of the
oscillatory force in still water.
However, for the phase lag of the wave force, "

0
wj, an approximation has to be found.
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Figure 7.5: Vector Diagrams of Wave Components for Sway and Heave

Heave Mode

The vertical wave force on a restrained cross section in waves is:

X
0
w3 = X

0
w3a cos

³
!t+ "

0
w3

´
= X

0
w3a cos "

0
w3 cos!t¡X

0
w3a sin "

0
w3 sin!t

of which the amplitude is equal to:

X
0
w3a = ³a

q
2½g ¢ cgroup ¢N 0

33

For the phase lag of this wave force, "
0
w3, an approximation has to be found.

The phase lag of a radiated wave, "
0
wR3
, at the intersection of the ship’s hull with the

waterline, yb = ywl, is

"
0
wR3

= kywl

The phase lag of the wave force, "
0
w3, has been approximated by this phase:

"
0
w3 = "

0
wR3

= kywl

Then, the in-phase and out-phase parts of the wave loads are:

X 0
FK3

+X
0
w31 = +X

0
w3a cos "

0
w3 = +

µ
³a

q
2½g ¢ cgroup ¢N 0

33

¶
cos "

0
w3

X
0
w32 = ¡X 0

w3a sin "
0
w3 = ¡

µ
³a

q
2½g ¢ cgroup ¢N 0

33

¶
sin "

0
w3
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from which the di¤raction terms, X
0
w31 and X

0
w32 follow.

These di¤raction terms can also be written as:

X
0
w31 = M

0
33 ¢ ¹a

0
3

X
0
w32 = M

0
33 ¢ ¹v

0
3

in which ¹a
0
3 and ¹v

0
3 are the equivalent amplitudes of the acceleration and the velocity of

the water particles around the cross section.
Herewith, the equivalent acceleration and velocity amplitudes of the water particles are:

¹a
0
3 =

X
0
w31

M
0
33

¹v
0
3 =

X
0
w32

N
0
33

Sway Mode

The horizontal wave force on a restrained cross section in beam waves is:

X
0
w2 = X

0
w2a cos

³
!t+ "

0
w2

´
= X

0
w2a cos "

0
w2 cos!t¡X

0
w2a sin "

0
w2 sin!t

of which the amplitude is equal to:

X
0
w2a = ³a

q
2½g ¢ cgroup ¢N 0

22

For the phase lag of this wave force, "
0
w2, an approximation has to be found.

The phase lag of an incoming undisturbed wave, "
0
wI2
, at the intersection of the ship’s hull

with the waterline, yb = ywl, is

"
0
wI2

= ¡kywl sin¹
if sin¹ < 0 then: "

0
wI2

= "
0
WI2

+ ¼

In very short waves - so at high wave frequencies ! ! 1 - the ship’s hull behaves like a
vertical wall and all waves will be di¤racted. Then, the phase lag of the wave force, "

0
w2, is

equal to:

"
0
w2 (! !1) = ¡"0wI2

The acceleration and velocity amplitudes of the water particles in the undisturbed surface
of the incoming waves are:

³
a
0
2

´
still water surface

= ¡kg sin¹³
v
0
2

´
still water surface

=
¡a02
!

=
kg sin¹

!
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In very long waves - so at low wave frequencies ! ! 0 - the wave force is dominated by
the Froude-Krylov force and the amplitudes of the water particle motions do not change
very much over the draft of the section. Apparently, the phase lag of the wave force, "

0
w2,

can be approximated by:

"
0
w2 (! ! 0) = ¡ arctan

"
X 0
FK2

+M
0
22 ¢ (¡kg sin¹)

N
0
22 ¢
¡
kg sin¹
!

¢ #

When plotted against !, the two curves "
0
w2 (! ! 0) and "

0
w2 (! !1) will intersect each

other. The phase lag of the wave force, "
0
w2, can now be approximated by the lowest of

these two values:

"
0
w2 = "

0
w2 (! !1)

if "
0
w2 (! ! 0) > "

0
w2 (! !1) then: "0w2 = "

0
w2 (! ! 0)

Because "
0
w2 (! !1) goes to zero in the low frequency region and "0w2 (! ! 0) can have

values between 0 and 2¼, one simple precaution has to be taken:

if "
0
w2 (! ! 0) >

¼

2
then: "

0
w2 (! ! 0) = "

0
w2 (! ! 0)¡ 2¼

Now the in-phase and out-phase terms of the wave force in beam waves are:

X 0
FK2

+X
0
w21 = ¡X 0

w2a sin "
0
w2 = ¡

µ
³a

q
2½g ¢ cgroup ¢N 0

22

¶
sin "

0
w2

X
0
w22 = +X

0
w2a cos "

0
w2 = +

µ
³a

q
2½g ¢ cgroup ¢N 0

22

¶
cos "

0
w2

from which the di¤raction terms, X
0
w21 and X

0
w22 follow.

These terms can also be written as:

X
0
w21 = M

0
22 ¢ ¹a

0
2

X
0
w22 = N

0
22 ¢ ¹v

0
2

in which ¹a
0
2 and ¹v

0
2 are the equivalent amplitudes of the acceleration and the velocity of

the water particles around the cross section.
Then - when using an approximation for the in‡uence of the wave direction - the equivalent
acceleration and velocity amplitudes of the water particles are:

¹a
0
2 =

X
0
w21

M
0
22

¢ jsin¹j

¹v
0
2 =

X
0
w22

N
0
22

¢ jsin¹j
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Roll Mode

The ‡uid is free of rotation; so the wave moment for roll consists of sway contributions
only. However, the equivalent amplitudes of the acceleration and the velocity of the water
particles will di¤er from those of sway.
From a study on potential coe¢cients, the following relation between sway and roll damping
coe¢cients has been found:

N
0
44 =

¡
N

0
24

¢2
N

0
22

=

¡
N

0
42

¢2
N

0
22

The horizontal wave moment on a restrained cross section in beam waves is:

X
0
w4 = X

0
w4a cos

³
!t+ "

0
w4

´
of which the amplitude is equal to:

X
0
w4a = ³a

q
2½g ¢ cgroup ¢N 0

44

= ³a

s
2½g ¢ cgroup ¢

¡
N

0
24

¢2
N

0
22

= ³a

q
2½g ¢ cgroup ¢N 0

22 ¢
¯̄
N

0
24

¯̄
N

0
22

= X
0
w2a ¢

¯̄
N

0
24

¯̄
N

0
22

The in-phase and out-phase parts of the wave moment in beam waves are:

X 0
FK4

+X
0
w41 =

³
X 0
FK2

+X
0
w21

´
¢
¯̄
N

0
24

¯̄
N

0
22

X
0
w42 = X

0
w22 ¢

¯̄
N

0
24

¯̄
N

0
22

from which the di¤raction terms, X
0
w41 and X

0
w42 follow.

These terms can also be written as:

X
0
41 = M

0
24 ¢ ¹a

0
24

X
0
42 = N

0
24 ¢ ¹v

0
24

in which ¹a
0
24 and ¹v

0
24 are the equivalent amplitudes of the acceleration and the velocity of

the water particles around the cross section.
Then - when using an approximation for the in‡uence of the wave direction - the equivalent
acceleration and velocity amplitudes of the water particles are:

¹a
0
24 =

X
0
w41

M
0
24

¢ jsin¹j

¹v
0
24 =

X
0
w42

N
0
24

¢ jsin¹j
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Surge Mode

The equivalent acceleration and velocity amplitudes of the water particles around the cross
section for surge have been found from:

¹a
0
1 =

¹a
0
2

tan¹

¹v
0
1 =

¡¹a01
!
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7.3 Numerical Comparison
Figures 7.6 and 7.7 give a comparison between these sway, heave and roll wave loads on a
crude oil carrier in oblique waves - obtained by the classic approach and the simple di¤rac-
tion approach, respectively - with the 3-D zero speed ship motions program DELFRAC of
Pinkster; see [Dimitrieva, 1994].

Figure 7.6: Comparison of Classic Wave Loads with DELFRAC Data

Figure 7.7: Comparison of Simple Di¤raction Wave Loads with DELFRAC Data
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.



Chapter 8

Transfer Functions of Motions

After dividing the left and right hand terms by the wave amplitude ³a, two sets of six
coupled equations of motion are available.
The variables in the coupled equations for the vertical plane motions are:

Surge: xa
³a
¢ cos "x³ and xa

³a
¢ sin "x³

Heave: za
³a
¢ cos "z³ and za

³a
¢ sin "z³

Pitch: µa
³a
¢ cos "µ³ and µa

³a
¢ sin "µ³

The variables in the coupled equations for the horizontal plane motions are:

Sway: ya
³a
¢ cos "y³ and ya

³a
¢ sin "y³

Roll: Áa
³a
¢ cos "Á³ and Áa

³a
¢ sin "Á³

Yaw: Ãa
³a
¢ cos "Ã³ and Ãa

³a
¢ sin "Ã³

These sets of motions have to be solved by a numerical method. A method which provides
continuous good results, given by [Zwaan, 1977], has been used in the strip theory program
SEAWAY-DELFT.

8.1 Centre of Gravity Motions
From the solutions of these in and out of phase terms follow the transfer functions of the
motions, which is the motion amplitude to wave amplitude ratio, and the phase lags of the
motions relative to the wave elevation at the ship’s centre of gravity:

xa
³a

ya
³a

za
³a

µa
³a

Áa
³a

Ãa
³a

The associated phase lags are:

"x³ "y³ "z³ "µ³ "Á³ "Ã³

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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The transfer functions of the translations are non-dimensional.
The transfer functions of the rotations can be made non-dimensional by dividing the ampli-
tude of the rotations by the amplitude of the wave slope k³a in lieu of the wave amplitude
³a:

xa
³a

ya
³a

za
³a

µa
k³a

Ãa
k³a

Áa
k³a

For motions with a spring term, three frequency regions can be distinguished:

² the low frequency region (!2 ¿ c=(m+a)), with motions dominated by the restoring
spring term,

² the natural frequency region (!2 t c=(m + a)), with motions dominated by the
damping term and

² the high frequency region (!2 À c=a), with motions dominated by the mass term.

An example for heave is given in …gure 8.1.

Figure 8.1: Frequency Regions and Motional Behavior

With the six centre of gravity motions, the harmonic motions in the ship-bound xb, yb and
zb directions - or in the earth bound x, y and z directions - in any point P (xb; yb; zb) on
the ship can be calculated.

8.2 Absolute Displacements
Consider a point P (xb; yb; zb) on the ship in the G(xb; yb; zb) ship-bound axes system. The
harmonic displacements in the ship-bound xb, yb and zb directions - or in the earth bound
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x, y and z directions - in a point P (xb; yb; zb) on the ship can be obtained from the six
centre of gravity motions as presented below.
The harmonic longitudinal displacement is given by:

xP = x ¡ yb ¢ Ã + zb ¢ µ
= xPa ¢ cos(!et+ "xP ³)

The harmonic lateral displacement is given by:

yP = y + xb ¢ Ã ¡ zb ¢ Á
= yPa ¢ cos(!et+ "yP ³)

The harmonic vertical displacement is given by:

zP = z ¡ xb ¢ µ ¡ yb ¢ Á
= zPa ¢ cos(!et+ "zP ³)

Some examples of calculated transfer functions of a crude oil carrier and a containership
are given in the …gures 8.2, 8.3 and 8.4.
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Figure 8.2: Heave and Pitch of a Crude Oil Carrier, V = 0 Knots

Notify the di¤erent speed e¤ects for roll and pitch in …gure 8.4.

8.3 Absolute Velocities
The harmonic velocities in the ship-bound xb, yb and zb directions - or in the earth bound x,
y and z directions - in a point P (xb; yb; zb) on the ship are obtained by taking the derivative
of the three harmonic displacements.
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Figure 8.3: Heave and Pitch of a Crude Oil Carrier, V = 16 Knots
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Figure 8.4: RAO’s of Roll and Pitch of a Containership
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The harmonic longitudinal velocity is given by:

_xP = _x ¡ yb ¢ _Ã + zb ¢ _µ
= ¡!e ¢ xPa ¢ sin(!et+ "xp³)
= _xPa ¢ cos(!et+ " _xp³)

The harmonic lateral velocity is given by:

_yP = _y + xb ¢ _Ã ¡ zb ¢ _Á
= ¡!e ¢ yPa ¢ sin(!et+ "yp³)
= _yPa ¢ cos(!et+ " _yp³)

The harmonic vertical velocity is given by:

_zP = _z ¡ xb ¢ _µ + yb ¢ _Á
= ¡!e ¢ zPa ¢ sin(!et+ "zp³)
= _zPa ¢ cos(!et+ " _zp³)

8.4 Absolute Accelerations
In the earth-bound axes system, the harmonic accelerations on the ship are obtained by
taking the second derivative of the displacements. In the ship-bound axes system, a com-
ponent of the acceleration of gravity has to be added to the accelerations in the horizontal
plane direction.

8.4.1 Accelerations in the Earth-Bound Axes System

In the earth-bound axes system, O(x; y; z), the harmonic accelerations in the x, y and z
direction in a point P (xb; yb; zb) on the ship are obtained by taking the second derivative
of the three harmonic displacements.
Thus:

² Longitudinal acceleration:
ÄxP = Äx ¡ yb ¢ ÄÃ + zb ¢ Äµ

= ¡!2e ¢ xPa ¢ cos(!et+ "xP ³)
= ÄxPa ¢ cos(!et+ "ÄxP ³)

² Lateral acceleration:
ÄyP = Äy + xb ¢ ÄÃ ¡ zb ¢ ÄÁ

= ¡!2e ¢ yPa ¢ cos(!et+ "yP ³)
= ÄyPa ¢ cos(!et+ "ÄyP ³)

² Vertical acceleration:
ÄzP = Äz ¡ xb ¢ Äµ + yb ¢ ÄÁ

= ¡!2e ¢ zPa ¢ cos(!et+ "zP ³)
= ÄzPa ¢ cos(!et+ "ÄzP ³)
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8.4.2 Accelerations in the Ship-Bound Axes System

In the ship-bound axes system, G(xb; yb; zb), a component of the acceleration of gravity g
has to be added to the accelerations in the longitudinal and lateral direction in the earth-
bound axes system. The vertical acceleration does not change. These are the accelerations
that will be ”felt” by for instance the cargo on the ship.
Thus:

² Longitudinal acceleration:

ÄxP = Äx ¡ yb ¢ ÄÃ + zb ¢ Äµ ¡ g ¢ µ
= ¡!2e ¢ xPa ¢ cos(!et+ "xP ³) ¡ g ¢ µa ¢ cos(!et+ "µ³)
= ÄxPa ¢ cos(!et+ "ÄxP ³)

² Lateral acceleration:

ÄyP = Äy + xb ¢ ÄÃ ¡ zb ¢ ÄÁ + g ¢ Á
= ¡!2e ¢ yPa ¢ cos(!et+ "yP ³) + g ¢ Áa ¢ cos(!et+ "Á³)
= ÄyPa ¢ cos(!et+ "ÄyP ³)

² Vertical acceleration:

ÄzP = Äz ¡ xb ¢ Äµ + yb ¢ ÄÁ
= ¡!2e ¢ zPa ¢ cos(!et+ "zP ³)
= ÄzPa ¢ cos(!et+ "ÄzP ³)

8.5 Vertical Relative Displacements

The harmonic vertical relative displacement with respect to the wave surface of a point
P (xb; yb; zb) connected to the ship can be obtained too:

sP = ³P ¡ z + xb ¢ µ ¡ yb ¢ Á
= sPa ¢ cos(!et+ "sP ³)

with:
³P = ³a cos(!et¡ kxb cos¹¡ kyb sin¹)

It may be noted that the sign of the relative motion is chosen here in such a way that a
positive relative displacement implies a decrease of the freeboard.
An oscillating ship will produce waves and these phenomena will change the relative motion.
A dynamical swell up should be taken into account, which is not included in the previous
formulation.
Notify the di¤erent behavior of absolute and relative vertical motioins as given in …gure
8.5.
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Figure 8.5: Absolute and Relative Vertical Motions at the Bow

8.6 Vertical Relative Velocities
The harmonic vertical relative velocity with respect to the wave surface of a certain point
P (xb; yb; zb), connected to the ship, can be obtained by:

_sP =
D

Dt
f³P ¡ z + xb ¢ µ ¡ yb ¢ Ág

= _³P ¡ _z + xb ¢ _µ ¡ V ¢ µ ¡ yb ¢ _Á

in which for the vertical velocity of the water surface itself:

_³P = ¡! ¢ ³a sin(!et¡ kxb cos¹¡ kyb sin¹)
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Chapter 9

Anti-Rolling Devices

Since the disappearence of sails on oceangoing ships, with their stabilising wind e¤ect on
the rolling motions, naval architects have been concerned in reducing the rolling of ships
among waves. With bilge keels they performed a …rst successful attack on the problem
of rolling, but in several cases these bilge keels did not prove to be su¢cient. Since 1880,
numerous other more or less successful ideas have been tested and used.

² Four types of anti-rolling devices and its contribution to the equations of motion are
described here:

² bilge keels
² passive free-surface tanks
² active …n stabilisers
² active rudder stabilisers.

The active …n and rudder stabilisers are not build into the program SEAWAY yet.

9.1 Bilge Keels
Bilge keels can deliver an important contribution to an increase the damping of the
rolling motions of ships. A reliable method to determine this contribution is given by
[Ikeda et al., 1978], as described before.
Ikeda divides the two-dimensional quadratic bilge keel roll damping into a component due
to the normal force on the bilge keels and a component due to the pressure on the hull
surface, created by the bilge keels.
The normal force component of the bilge keel damping has been be deduced from experi-
mental results of oscillating ‡at plates. The drag coe¢cient CD depends on the period para-
meter or the Keulegan-Carpenter number. Ikeda measured the quadratic two-dimensional
drag by carrying out free rolling experiments with an ellipsoid with and without bilge keels.
Assuming a pressure distribution on the hull caused by the bilge keels, a quadratic two-
dimensional roll damping can be de…ned. Ikeda carried out experiments to measure the

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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pressure on the hull surface created by bilge keels. He found that the coe¢cient C+p of
the pressure on the front face of the bilge keel does not depend on the period parameter,
while the coe¢cient C¡p of the pressure on the back face of the bilge keel and the length of
the negative pressure region depend on the period parameter. Ikeda de…nes an equivalent
length of a constant negative pressure region S0 over the height of the bilge keels and a
two-dimensional roll damping component can be found.
The total bilge keel damping has been obtained by integrating these two two-dimensional
roll damping components over the length of the bilge keels.
Experiments of Ikeda showed that the e¤ect of forward speed on the roll damping due to
the bilge keels can be ignored.
The equivalent linear total bilge keel damping has been obtained by linearising the result,
as has been shown in a separate chapter.

9.2 Passive Free-Surface Tanks

The roll damping, caused by a passive free-surface tank, is essentially based on the existence
of a hydraulic jump or bore in the tank. [Verhagen and van Wijngaarden, 1965] give a
theoretical approach to determine the counteracting moments by free-surface anti-rolling
tanks.[Bosch and Vugts, 1966] give extended quantitative information on these moments.

9.2.1 Theoretical Approach

When a tank which contains a ‡uid with a free surface is forced to carry out roll oscillations,
resonance frequencies can be obtained with high wave amplitudes at lower water depths.
Under these circumstances a hydraulic jump or bore is formed, which travels periodically
back and forth between the walls of the tank. This hydraulic jump can be a strongly non-
linear phenomenon. A theory, based on gasdynamics for the shock wave in a gas ‡ow under
similar resonance circumstances, as given by [Verhagen and van Wijngaarden, 1965], has
been adapted and used to describe the motions of the ‡uid. For low and high frequencies
and the frequencies near to the natural frequency, di¤erent approaches have been used.
Observe a rectangular tank with a length l and a breadth b, which has been …lled until a
water level h with a ‡uid with a mass density ½. The distance of the bottom of the tank
above the centre of gravity of the vessel is s. Figure 9.1 shows a 2-D sketch of this tank
with the axis system and notations.

Figure 9.1: Axes System and Notations of an Oscillating Tank
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The natural frequency of the surface waves in a harmonic rolling tank appears as the wave
length ¸ equals twice the breadth b, so: ¸0 = 2b.
With the wave number and the dispersion relation:

k =
2¼

¸
and ! =

p
kg tanh [kh]

it follows for the natural frequency of surface waves in the tank:

!0 =

s
¼g

b
tanh

·
¼h

b

¸
[Verhagen and van Wijngaarden, 1965] have investigated the shallow water wave loads in
a rolling rectangular container, with the centre of rotation at the bottom of the container.
Their expressions for the internal wave loads are rewritten and modi…ed to be useful for
any arbitrary vertical position of the centre of rotation by [Journée, 1997]. For low and
high frequencies and the frequencies near to the natural frequency, di¤erent approaches
have been used. A calculation routine has been made to connect these regions.

Low and High Frequencies

The harmonic roll motion of the tank is de…ned by:

Á = Áa sin(!t)

In the axis-system of …gure 9.1 and after linearisation, the vertical displacement of the
tankbottom is described by:

z = s+ yÁ

and after linearisation, the surface elevation of the ‡uid is described by:

z = s+ h+ ³

Relative to the bottom of the tank, the linearised surface elevation of the ‡uid is described
by:

» = h+ ³ ¡ yÁ
Using the shallow water theory, the continuity and momentum equations are:

@»

@t
+ v

@»

@y
+ »

@v

@y
= 0

@v

@t
+ v

@v

@y
+ g

@»

@y
+ gÁ = 0

In these formulations, v denotes the velocity of the ‡uid in the y-direction and the vertical
pressure distribution is assumed to be hydrostatic. Therefore, the acceleration in the z-
direction, introduced by the excitation, must be small with respect to the acceleration of
gravity g, so:

Áa!
2b¿ g

The boundary conditions for v are determined by the velocity produced in the horizontal
direction by the excitation. Between the surface of the ‡uid and the bottom of the tank,
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the velocity of the ‡uid v varies between vs and vs= cosh kh with a mean velocity: vs=kh.
However, in very shallow water v does not vary between the bottom and the surface. When
taking the value at the surface, it is required that:

v = ¡(s+ h) _Á at: y = § b
2

For small values of Áa, the continuity equation and the momentum equation can be given
in a linearised form:

@»

@t
+ h

@v

@y
= 0

@v

@t
+ g

@»

@y
+ gÁ = 0

The solution of the surface elevation » in these equations, satisfying the boundary values
for v, is:

» = h¡
b!0

n
1 + (s+h)!2

g

o
¼! cos

³
¼!
2!0

´ sin

µ
¼!y

b!0

¶
Á

Now, the roll moment follows from the quasi-static moment of the mass of the frozen liquid
½lbh and an integration of » over the breadth of the tank:

MÁ = ½glbh

µ
s+

h

2

¶
Á+ ½gl

+b=2Z
¡b=2

»y dy

This delivers the roll moment amplitude for low and high frequencies at small water depths:

MaÁ = ½glbh

µ
s+

h

2

¶
Áa

+½glb3
½
1 +

(s+ h)!2

g

¾
¢
½
2
³ !0
¼!

´3
tan

µ
¼!

2!0

¶
¡
³ !0
¼!

´2¾
Áa

For very low frequencies, so for the limit value ! ! 0, this will result into the static
moment:

MÁ = ½gl

½
bh

µ
s+

h

2

¶
+
b3

12

¾
Á

The phase lags between the roll moments and the roll motions have not been obtained
here. However, they can be set to zero for low frequencies and to -¼ for high frequencies:

"MÁÁ = 0 for: ! ¿ !0

"MÁÁ = ¡¼ for: ! À !0

Natural Frequency Region

For frequencies near to the natural frequency !0, the expression for the surface elevation of
the ‡uid » goes to in…nity. Experiments showed the appearance of a hydraulic jump or a
bore at these frequencies. Obviously, then the linearised equations are not valid anymore.
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Verhagen and van Wijngaarden solved the problem by using the approach in gas dynamics
when a column of gas is oscillated at a small amplitude, e.g. by a piston. At frequencies
near to the natural frequency at small water depths, they found a roll moment amplitude,
de…ned by:

MaÁ = ½g
lb3

12

µ
4

¼

¶4r
2Áah

3b
¢
(
1¡ ¼

2b (! ¡ !0)2
32gÁa

)
The phase lags between the roll moment and the roll motion at small water depths are
given by:

"MÁÁ = ¡¼
2
+ ® for: ! < !0

"MÁÁ = ¡¼
2
¡ ® for: ! > !0

with:

® = 2arcsin

8<:
s
¼2b (! ¡ !0)2

24gÁa

9=;
¡ arcsin

(s
¼2b (! ¡ !0)2

96gÁa ¡ 3¼2b (! ¡ !0)2
)

Because that the arguments of the square roots in the expression for "MÁÁ have to be
positive, the limits for the frequency ! are at least:

!0 ¡
r
24gÁa
b¼2

< ! < !0 +

r
24gÁa
b¼2

Comparison with Experimental Data

An example of the results of this theory with experimental data of an oscillating free-surface
tank by [Verhagen and van Wijngaarden, 1965] is given in …gure 9.2.
The roll moments have been calculated here for low and high frequencies and for frequencies
near to the natural frequency of the tank. A calculation routine connects these three
regions.

9.2.2 Experimental Approach

[Bosch and Vugts, 1966] have described the physical behaviour of passive free-surface tanks,
used as an anti-rolling device. Extended quantitative information on the counteracting mo-
ments, caused by the water transfer in the tank, has been provided.
With their symbols, the roll motions and the exciting moments of an oscillating rectangular
free-surface tank, are de…ned by:

' = 'a cos(!t)

Kt = Kta cos(!t+ "t)

and the dimensions of the rectangular free-surface tank are given by:
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Figure 9.2: Comparison between Theoretical and Experimental Data

l = length of the tank
b = breadth of the tank
s = distance of tank bottom above rotation point
h = water depth in the tank at rest
½¤ = mass density of the ‡uid in the tank

A non-dimensional frequency range is de…ned by:

0:00 < ! ¢
s
b

g
< 1:60

In this frequency range, [Bosch and Vugts, 1966] have presented extended experimental
data of:

¹a =
Kta

½¤glb3
and "t

for:

'a = 0.0333, 0.0667 and 0.1000 radians
s=b = -0.40, -0.20, 0.00 and +0.20
h=b = 0.02, 0.04, 0.06, 0.08 and 0.10

An example of a part of these experimental data has been shown for s=b = ¡0:40 and
'a = 0:1000 radians in …gure 9.3, taken from the report of [Bosch and Vugts, 1966].
When using these experimental data, the external roll moment due to an, with a frequency
!, oscillating free surface tank can be written as:

Kt = a4' ¢ Ä' + b4' ¢ _'+ c4' ¢ '
with:

a4' = 0

b4' =

Kta

'a
¢ sin "t
!

c4' =
Kta

'a
¢ cos "t
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Figure 9.3: Experimental Data on Anti-Rolling Free-Surface Tanks

It is obvious that for an anti-rolling free-surface tank, build into a ship, it holds:

Áa = 'a and !e = !

So it can be written:

Á = Áa cos(!et+ "Á³)

Kt = Kta cos(!et+ "Á³ + "t)

Then, an additional moment has to be added to the right hand side of the equations of
motion for roll:

Xtank4 = a44tank ¢ ÄÁ+ b44tank ¢ _Á+ c44tank ¢ Á
with:

a44tank = 0

b44tank =

Kta
Áa
¢ sin "t
!e

c44tank =
Kta

Áa
¢ cos "t
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This holds that the anti-rolling coe¢cients a44tank , b44tank and c44tank have to be subtracted
from the coe¢cients a44, b44 and c44 in the left hand side of the equations of motion for
roll.

9.2.3 E¤ect of Free-Surface Tanks

Figure 9.4 shows the signi…cant reduction of the roll transfer functions and the signi…cant
roll amplitude of a trawler, being obtained by a free-surface tank.
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Figure 9.4: E¤ect of Free-Surface Tanks on Roll

9.3 Active Fin Stabilisers
To determine the e¤ect of active …n stabilisers on ship motions, use has been made here of
reports published by [Schmitke, 1978] and [Lloyd, 1989].
The ocillatory angle of the portside …n is given by:

¯ = ¯a cos(!et+ ²¯Á)

The exciting forces and moments, caused by an oscillating …n pair are given by:

Xfin2 = a2¯ ¢ Ǟ + b2¯ ¢ _̄ + c2¯ ¢ ¯
Xfin4 = a4¯ ¢ Ǟ + b4¯ ¢ _̄ + c4¯ ¢ ¯
Xfin6 = a6¯ ¢ Ǟ + b6¯ ¢ _̄ + c6¯ ¢ ¯

with:

a2¯ = ¡2 sin ° ¢ a¯
b2¯ = ¡2 sin ° ¢ b¯
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c2¯ = ¡2 sin ° ¢ c¯
a4¯ = +2(ybfin cos ° + zbfin sin °) ¢ a¯
b4¯ = +2(ybfin cos ° + zbfin sin °) ¢ b¯
c4¯ = +2(ybfin cos ° + zbfin sin °) ¢ c¯
a6¯ = ¡2xbfin sin ° ¢ a¯
b6¯ = ¡2xbfin sin ° ¢ b¯
c6¯ = ¡2xbfin sin ° ¢ c¯

and:

a¯ =
1

2
½sfin ¢

³cfin
2

´3
¢ ¼

b¯ =
1

2
½V Afin

cfin
2
¢
Ã
¼ +

µ
@CL
@®

¶
fin

¢ C(k)
!

c¯ =
1

2
½V 2Afin ¢

µ
@CL
@®

¶
fin

¢ C(k)

In here:

° = angle of port …nµ
@CL
@®

¶
fin

= lift curve slope of …n

C(k) = circulation delay function

k =
!ecr
2V

= reduced frequency

Afin = projected …n area

sfin = span of …n

cfin = mean chord of …n

xbfin = xb-coordinate of the centroid of …n forces

ybfin = yb-coordinate of the centroid of …n forces

zbfin = zb-coordinate of the centroid of …n forces

The nominal lift curve slope of a …n pro…le in a uniform ‡ow is approximated by:

@CL
@®

=
1:80 ¢ ¼ ¢ (ARE)

1:80 + cos¤ ¢
q

(ARE)2

cos4 ¤
+ 4:0

with:

¤ = sweep angle of …n pro…le

(ARE) = e¤ective aspect ratio of …n pro…le

Of normal …ns, the sweep angle of the …n pro…le is zero, so ¤=0 or cos¤=1.
The …n acts in the boundary layer of the ship, which will reduce the lift. This e¤ect is
translated into a reduced lift curve slope of the …n.
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The velocity distribution in the hull boundary layer is estimated by the following two
equations:

V (±) = V ¢ 7

r
±

±BL
with: ± < ±BL

±BL = 0:377 ¢ xfin ¢R¡0:2x with: Rx =
V ¢ x
º

in which:

V (±) = ‡ow velocity inside boundary layer

V = forward ship speed

± = normal distance from hull

±BL = thickness of boundary layer

xfin = distance aft of forward perpendicular of …n

Rx = local Reynolds number

º = kinematic density of ‡uid

The kinematic viscosity of seawater can be found from the water temperature T in degrees
centigrade by:

º ¢ 106 = 1:78

1:0 + 0:0336 ¢ T + 0:000221 ¢ T 2 m
2/s

It is assumed here that the total lift of the …n can be found from:

1

2
½CL

sfinZ
0

V 2(±) ¢ c(±) ¢ d± = 1

2
½CLfin ¢ V 2 ¢ Afin

where c(±) is the chord at spanwise-location ±.
For rectangular …ns, this is simply an assumption of a uniform loading.
Because:

c(±) = crfin ¡ (crfin ¡ ctfin) ¢
±

sfin
in which:

crfin = root chord of …n

ctfin = tip chord of …n

cfin =
crfin + ctfin

2
mean chord of …n

the correction to the lift curve slope is:

EBL =
crfin
cfin

¢
µ
1¡ 2±BL

9sfin

¶
¡ crfin ¡ ctfin

2cfin
¢
µ
1¡ ±2BL

8sfin

¶
Then the corrected lift curve slope of the …n is:µ

@CL
@®

¶
fin

= EBL ¢ 1:80 ¢ ¼ ¢ (ARE)fin
1:80 +

q
(ARE)2fin + 4:0

Generally a …n is mounted close to the hull, so the e¤ective aspect ratio is about twice the
geometric aspect ratio:

(ARE)fin = 2 ¢ (AR)fin = 2 ¢ sfin
cfin
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9.4 Active Rudder Stabilizers

To determine the e¤ect of rudder stabilizers on ship motions, use has been made of reports
published by [Lloyd, 1989] and [Schmitke, 1978].
The oscillatory rudder angle is given by:

± = ±a cos(!et+ "±Á)

with ± is positive in a counter-clockwise rotation of the rudder.
So, a positive ± results in a positive side force, a positive roll moment and a negative yaw
moment.
The exciting forces and moments, caused by this oscillating rudder are given by:

Xr2 = a2± ¢ Ä± + b2± ¢ _± + c2± ¢ ±
Xr4 = a4± ¢ Ä± + b4± ¢ _± + c4± ¢ ±
Xr6 = a6± ¢ Ä± + b6± ¢ _± + c6± ¢ ±

with:

a2± = +a±

b2± = +b±

c2± = +c±

a4± = ¡zbrudder ¢ a±
b4± = ¡zbrudder ¢ b±
c4± = ¡zbrudder ¢ c±
a6± = +xbrudder ¢ a±
b6± = +xbrudder ¢ b±
c6± = +xbrudder ¢ c±

and:

a± =
1

2
½srudder ¢

³crudder
2

´3
¢ ¼

b± =
1

2
½Vrudder ¢ Arudder ¢ crudder

2
¢
µ
¼ +

µ
@CL
@®

¶
rudder

¢ C(k)
¶

c± =
1

2
½V 2rudder ¢ Arudder ¢

µ
@CL
@®

¶
rudder

¢ C(k)

In here:

Vrudder ¼ 1:125 ¢ V = equivalent ‡ow velocity at rudderµ
@CL
@®

¶
rudder

= lift curve slope of rudder

C(k) = circulation delay function

k =
!e ¢ crudder

2V
= reduced frequency

Arudder = projected area of rudder
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srudder = span of rudder

crudder = mean chord of rudder

xbrudder = xb-coordinate of centroid of rudder forces

zbrudder = zb-coordinate of centroid of rudder forces

The lift curve slope of the rudder is approximated by:µ
@CL
@®

¶
rudder

=
1:80 ¢ ¼ ¢ (ARE)rudder

1:80 +
p
(ARE)2rudder + 4:0

Generally a rudder is not mounted close to the hull, so the e¤ective aspect ratio is equal
to the geometric aspect ratio:

(ARE)rudder = (AR)rudder =
srudder
crudder



Chapter 10

External Linear Springs

Suppose a linear spring connected to point P on the ship.

Figure 10.1: Coordinate System of Springs

The harmonic longitudinal, lateral and vertical displacements of a certain point P on the
ship are given by:

x(P ) = x ¡ yp ¢ Ã + zp ¢ µ
y(P ) = y + xp ¢ Ã ¡ zp ¢ Á
z(P ) = z ¡ xp ¢ µ + yp ¢ Á

The linear spring coe¢cients in the three directions in a certain point P are de…ned by
(Cpx; Cpy ; Cpz). The units of these coe¢cients are N/m or kN/m.

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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10.1 External Loads
The external forces and moments, caused by these linear springs, acting on the ship are
given by:

Xs1 = ¡Cpx ¢ (x¡ yp ¢ Ã + zp ¢ µ)
Xs2 = ¡Cpy ¢ (y + xp ¢ Ã ¡ zp ¢ Á)
Xs3 = ¡Cpz ¢ (z ¡ xp ¢ µ + yp ¢ Á)
Xs4 = ¡Xs2 ¢ zp +Xs3 ¢ yp
Xs5 = +Xs1 ¢ zp ¡Xs3 ¢ xp
Xs6 = ¡Xs1 ¢ yp +Xs2 ¢ xp

10.2 Additional Coe¢cients
After a change of sign, this results into the following coe¢cients ¢cij, which have to be
added to the restoring spring coe¢cients cij of the hydromechanical loads in the left hand
side of the equations of motions.

² Surge:
¢c11 = +Cpx
¢c12 = 0

¢c13 = 0

¢c14 = 0

¢c15 = +Cpx ¢ zp
¢c16 = ¡Cpx ¢ yp

² Sway:
¢c21 = 0

¢c22 = +Cpy
¢c23 = 0

¢c24 = ¡Cpy ¢ zp
¢c25 = 0

¢c26 = +Cpy ¢ xp

² Heave:
¢c31 = 0

¢c32 = 0

¢c33 = +Cpz
¢c34 = +Cpz ¢ yp
¢c35 = ¡Cpz ¢ xp
¢c36 = 0
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² Roll:

¢c41 = 0

¢c42 = ¡Cpy ¢ zp
¢c43 = +Cpz ¢ yp
¢c44 = +Cpy ¢ z2p + Cpz ¢ y2p
¢c45 = ¡Cpz ¢ xp ¢ yp
¢c46 = ¡Cpy ¢ xp ¢ zp

² Pitch:

¢c51 = +Cpx ¢ zp
¢c52 = 0

¢c53 = ¡Cpz ¢ xp
¢c54 = ¡Cpz ¢ xp ¢ yp
¢c55 = +Cpx ¢ z2p + Cpz ¢ x2p
¢c56 = ¡Cpx ¢ yp ¢ zp

² Yaw:

¢c61 = ¡Cpx ¢ yp
¢c62 = +Cpy ¢ xp
¢c63 = 0

¢c64 = ¡Cpy ¢ xp ¢ zp
¢c65 = ¡Cpx ¢ yp ¢ zp
¢c66 = +Cpx ¢ y2p + Cpy ¢ x2p

In case of several springs, a linear superposition of the coe¢cients can be used.

When using linear springs, generally 12 sets of coupled equations with the in and out of
phase terms of the motions have to be solved. Because of these springs, the surge, heave
and pitch motions will be coupled then with the sway, roll and yaw motions.

10.3 Linearized Mooring Coe¢cients

Figure 10.2 shows an example of results of static catenary line calculations, see for instance
[Korkut and Hebert, 1970], for an anchored platform.
Figure 10.2-a shows the platform anchored by two anchor lines of chain at 100 m water
depth. Figure 10.2-b shows the horizontal forces at the suspension points of both anchor
lines as a function of the horizontal displacement of the platform. Finally, …gure 10.2-c
shows the relation between the total horizontal force on the platform and its horizontal
displacement.
This …gure shows clearly the non-linear relation between the horizontal force on the plat-
form and its horizontal displacement.
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Figure 10.2: Horizontal Forces on a Floating Structure as a Function of Surge Displace-
ments

A linear(ized) spring coe¢cient, to be used in frequency domain computations, can be
obtained from …gure 10.2-c by determining an average restoring spring coe¢cient, Cpx, in
the surge displacement region:

Cpx =Mean

½
Total Force
Displacement

¾



Chapter 11

Added Resistances due to Waves

A ship moving forward in a wave …eld will generate ”two sets of waves”: waves associated
with forward speed through still water and waves associated with its vertical relative motion
response to waves. Since both wave patterns dissipate energy, it is logical to conclude that
a ship moving through still water will dissipate less energy than one moving through waves.
The extra wave-induced loss of energy can be treated as an added propulsion resistance.
Figure 11.1 shows the resistance in regular waves as a function of the time: a constant
part due the calm water resistance and an oscillating part due to the motions of the ship,
relative to the incoming regular waves. The time-averaged part of the increase of resistance
is called: the added resistance due to waves, Raw.
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Figure 11.1: Increase of Resistance in Regular Waves

Two theoretical methods have been used for the estimation of the time-averaged added
resistance of a ship due to the waves and the resulting ship motions:

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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² a radiated wave energy method, as introduced by [Gerritsma and Beukelman, 1972],
suitable for head to beam waves.

² an integrated pressure method, as introduced by [Boese, 1970], suitable for all wave
directions.

Because of the added resistance of a ship due to the waves is proportional to the relative
motions squared, its inaccuracy will be gained strongly by inaccuracies in the predicted
motions.
The transfer function of the mean added resistance is presented as:

R00aw =
Raw

³2a

In a non-dimensional way the transfer function of the mean added resistance is presented
as:

R00aw =
Raw

½g³2aB
2=L

in which:

L = length between perpendiculars
B = maximum breadth of the waterline

Both methods will be described here.

11.1 Radiated Energy Method
The radiated wave energy during one period of oscillation of a ship in regular waves is
de…ned by [Gerritsma and Beukelman, 1972] as:

P =

TeZ
0

Z
L

b033 ¢ V ¤z 2 ¢ dxb ¢ dt

in which:

b033 = hydrodynamic damping coe¢cient of the vertical motion of the cross section
V ¤z = vertical average velocity of the water particles, relative to the cross sections
Te = period of vertical oscillation of the cross section

The speed dependent hydrodynamic damping coe¢cient for the vertical motion of a cross
section is de…ned here as shown before:

b033 = N
0
33 ¡ V ¢

dM 0
33

dxb

The harmonic vertical relative velocity of a point on the ship with respect to the water
particles is de…ned by:

Vz = _³
0
w3
¡ D

Dt
fz ¡ xb ¢ µ + yb ¢ Ág

= _³
0
w3
¡
³
_z ¡ xb ¢ _µ + V ¢ µ + yb ¢ _Á

´
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For a cross section of the ship, an equivalent harmonic vertical relative velocity has to be
found.
This equivalent relative velocity is de…ned by:

V ¤z = _³
¤
w3
¡
³
_z ¡ xb ¢ _µ + V ¢ µ

´
= V ¤za ¢ cos(!et+ "V ¤z ³)

With this the radiated energy during one period of oscillation is given by:

P =
¼

!e

Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ V ¤za2 ¢ dxb

To maintain a constant forward ship speed, this energy should be delivered by the ship’s
propulsion plant. A mean added resistance Raw has to be gained.
The energy delivered to the surrounding water is given by:

P = Raw ¢
µ
v ¡ c

cos¹

¶
¢ Te

= Raw ¢ 2¼

¡k cos¹

From this the transfer function of the mean added resistance according to Gerritsma and
Beukelman can be found:

Raw

³2a
=
¡k cos¹
2!e

¢
Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ V

¤
za
2

³2a
¢ dxb

This method gives good results in head to beam waves. However, in following waves this
method fails.
When the wave speed in following waves approaches the ship speed the frequency of en-
counter in the denominator tends to zero. At these low frequencies, the potential sectional
mass is very high and the potential sectional damping is almost zero. The damping mul-
tiplied with the relative velocity squared in the nominator does not tend to zero, as fast
as the frequency of encounter. This is caused by the presence of a natural frequency for
heave and pitch at this low !e, so a high motion peak can be expected. This results into
extreme positive and negative added resistances.

11.2 Integrated Pressure Method

[Boese, 1970] calculates the added resistance by integrating the longitudinal components of
the oscillating pressures on the wetted surface of the hull. A second small contribution of
the longitudinal component of the vertical hydrodynamic and wave forces has been added.
The wave elevation is given by:

³ = ³a cos(!et¡ kxb cos¹¡ kyb sin¹)
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The pressure in the undisturbed waves is given by:

p = ¡½gz + ½g ¢ cosh k(h+ zb)
cosh(kh)

¢ ³

= ¡½gz + ½g ¢ cosh k(h+ zb)
cosh(kh)

¢ ³a cos(!et¡ kxb cos¹¡ kyb sin¹)

The horizontal force on an oscillating cross section is given by:

f(xb; t) =

³Z
¡Ds+zx

p ¢ dzb

= ½g ¢
Ã
¡³2 + (¡Ds + zx)2

2
+

³

tanh [kh]
¢ (³ +Ds ¡ zx)

!
with: zx = z ¡ xbµ.
As the mean added resistance during one period will be calculated, the constant term and
the …rst harmonic term can be ignored. So:

f ¤(xb; t) = ½g ¢
µ¡³2 + z2x

2
+
³ ¢ (³ ¡ zx)
tanh [kh]

¶
The vertical relative motion is de…ned by s = ³ ¡ zx, so:

f¤(xb; t) = ½g ¢
µ¡³2 + z2x

2
+

³ ¢ s
tanh [kh]

¶
The average horizontal force on a cross section follows from:

f ¤(xb) =

TeZ
0

f ¤(xb; t) ¢ dt

=
½g³2a
4

¢
µ
¡1 + z

2
xa

³2a
+
2sa ¢ cos(¡kxb cos¹¡ "s³)

³a ¢ tanh [kh]
¶

The added resistance due to this force is:

Raw1 = 2

Z
L

f ¤(xb) ¢
µ
¡dyw
dxb

¶
¢ dxb

=
½g³2a
2

Z
L

µ
1¡ z

2
xa

³2a
¡ 2sa ¢ cos(¡kxb cos¹¡ "s³)

³a ¢ tanh [kh]
¶
¢ dyw
dxb

¢ dxb

For deep water, this part of the mean added resistance reduces to:

Raw1 =
¡½g
2

Z
L

s2a ¢
dyw
dxb

¢ dxb (as given by Boese for deep water)

The integrated vertical hydromechanical and wave forces in the shipborne axis system
varies not only in time but also in direction with the pitch angle.
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From this follows a second contribution to the mean added resistance:

Raw2 =
¡1
Te

T eZ
0

(Zh(t) + Zw(t)) ¢ µ(t) ¢ dt

=
¡1
Te

T eZ
0

½r ¢ Äz(t) ¢ µ(t) ¢ dt

For this second contribution can be written:

Raw2 =
1

2
½r ¢ !2e ¢ za ¢ µa ¢ cos("z³ ¡ "µ³)

So the transfer function of the total mean added resistance according to Boese is given by:

Raw2
³2a

=
1

2
½r ¢ !2e ¢

za
³a
¢ µa
³a
¢ cos("z³ ¡ "µ³)

+
1

2
½g

Z
L

µ
1¡ z

2
xa

³2a
¡ 2sa ¢ cos(¡kxb cos¹¡ "s³)

³a ¢ tanh [kh]
¶
¢ dyw
dxb

¢ dxb

11.3 Comparison of Results
Figure 11.2 shows an example of a comparison between computed and experimental data.

Figure 11.2: Added Resistance of the S-175 Containership Design



232 CHAPTER 11. ADDED RESISTANCES DUE TO WAVES

.



Chapter 12

Bending and Torsional Moments

The axes system (of which the hydrodynamic sign convention di¤ers from that commonly
used in structural engineering) and the internal load de…nitions are given in …gure 12.1.

Figure 12.1: Axis System and Internal Load De…nitions

To obtain the vertical and lateral shear forces and bending moments and the torsional
moments the following information over a length Lm on the solid mass distribution of the
ship including its cargo is required:

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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m0(xb): distribution over the ship length of the solid mass of the ship
per unit length

z0m(xb): distribution over the ship length of the vertical zb values of the centre of
gravity of the solid mass of the ship per unit length

k0xx(xb): distribution over the ship length of the radius of inertia of the solid mass
of the ship per unit length, about a horizontal longitudinal axis
through the centre of gravity

Figure 12.2: Distribution of Solid Mass

The input values for the calculation of shear forces and bending and torsional moments are
often more or less inaccurate. Mostly small adaptions are necessary, for instance to avoid
a remaining calculated bending moment at the forward end of the ship.
The total mass of the ship is found by an integration of the mass per unit length:

m =

Z
Lm

m0(xb) ¢ dxb

It is obvious that this integrated mass should be equal to the mass of displacement, calcu-
lated from the underwater hull form:

m = ½r
Both terms will be calculated from independently derived data, so small deviations are
possible. A proportional correction of the masses per unit length m0(xb) can be used.
Then m0(xb) will be replaced by:

m0(xb) ¢ ½r
m

The longitudinal position of the centre of gravity is found from the distribution of the mass
per unit length:

xG =
1

m

Z
Lm

m0(xb) ¢ xb ¢ dxb
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Figure 12.3: Mass Correction for Buoyancy

An equal longitudinal position of the ship’s centre of buoyancy xB is required, so:

xG = xB

Again, because of independently derived data, a small deviation is possible.
Then, for instance, m0(xb) can be replaced by m0(xb) + c(xb), with:

c(xb) = ¡c1 ¢ (xb ¡ xA ¡ 0) for: 0 < xb ¡ xA < Lm
4

c(xb) = +c1 ¢
µ
xb ¡ xA ¡ Lm

2

¶
for:

Lm
4
< xb ¡ xA < 3Lm

4

c(xb) = ¡c1 ¢ (xb ¡ xA ¡ Lm) for:
3Lm
4

< xb ¡ xA < Lm

with:

c1 =
32 ¢ ½r ¢ (xB ¡ xG)

L3m

In here:

xA = xb-coordinate of aftmost part of mass distribution
Lm = total length of mass distribution

For relatively slender bodies, the longitudinal gyradius of the mass can be found from the
distribution of the mass per unit length:

k2yy =
1

m

Z
Lm

m0(xb) ¢ x2b ¢ dxb

It can be desirable to change the mass distribution in such a way that a certain required
longitudinal gyradius kyy(new) or kzz(new) will be achieved, without changing the total
mass or the position of its centre of gravity.
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Figure 12.4: Mass Correction for Center of Buoyancy

Then, for instance, m0(xb) can be replaced by m0(xb) + c(xb), with:

c(xb) = +c2 ¢ (xb ¡ xA ¡ 0) for: 0 < xb ¡ xA < Lm
8

c(xb) = ¡c2 ¢
µ
xb ¡ xA ¡ 2Lm

8

¶
for:

Lm
8
< xb ¡ xA < 3Lm

8

c(xb) = +c2 ¢
µ
xb ¡ xA ¡ 4Lm

8

¶
for:

3Lm
8

< xb ¡ xA < 4Lm
8

c(xb) = ¡c2 ¢
µ
xb ¡ xA ¡ 4Lm

8

¶
for:

4Lm
8

< xb ¡ xA < 5Lm
8

c(xb) = +c2 ¢
µ
xb ¡ xA ¡ 6Lm

8

¶
for:

5Lm
8

< xb ¡ xA < 7Lm
8

c(xb) = ¡c2 ¢ (xb ¡ xA ¡ Lm) for:
7Lm
8

< xb ¡ xA < Lm

with:

c2 =
3204 ¢ ½r ¢ ¡k2yy(new)¡ k2yy(old)¢

9L3m

In here:

xA = xb-coordinate of aftmost part of mass distribution
Lm = total length of mass distribution

The position in height of the centre of gravity is found from the distribution of the heights
of the centre of gravity of the masses per unit length:

zG =
1

m

Z
Lm

m0(xb) ¢ z0m(xb) ¢ dxb

It is obvious that this value should be zero. If not so, this value has to be subtracted from
z0m(xb).
So, z0m(xb) will be replaced by z

0
m(xb)¡ zG.
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Figure 12.5: Mass Correction for Radius of Inertia

The transverse radius of inertia kxx is found from the distribution of the radii of inertia of
the masses per unit length:

k2xx =
1

m

Z
Lm

m0(xb) ¢ k02xx(xb) ¢ dxb

If this value of kxx di¤ers from a required value kxx(new) of the gyradius, a proportional
correction of the longitudinal distribution of the radii of inertia can be used:

k0xx(xb; new) = k
0
xx(xb; old) ¢

kxx(new)

kxx(old)

Consider a section of the ship with a length dxb to calculate the shear forces and the
bending and the torsional moments.

Figure 12.6: Loads on a Cross Section
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When the disk is loaded by a load q(xb), this implies for the disk:

q(xb) ¢ dxb = ¡dQ(xb) so:
dQ(xb)

dxb
= ¡q(xb)

Q(xb) ¢ dxb = +dM(xb) so:
dM(xb)

dxb
= +Q(xb)

in which:

Q(xb) = shear force
M(xb) = bending moment

The shear force and the bending moment in a cross section x1 follows from an integration
of the loads from the aftmost part of the ship x0 to this cross section x1:

Q(x1) = ¡
x1Z
x0

dQ(xb)

dxb
¢ dxb

M(x1) = ¡
x1Z
x0

Q(xb) ¢ dxb

= +

x1Z
x0

0@ xbZ
x0

dQ(xb)

dxb
¢ dxb

1A ¢ dxb
So, the shear forceQ(x1) and the bending momentM(x1) in a cross section can be expressed
in the load q(xb) by the following integrals:

Q(x1) = ¡
x1Z
x0

q(xb) ¢ dxb

M(x1) = +

x1Z
x0

q(xb) ¢ (x1 ¡ xb) ¢ dxb

= +

x1Z
x0

q(xb) ¢ xb ¢ dxb ¡ x1 ¢
x1Z
x0

q(xb) ¢ dxb

For the torsional moment an approach similar to the approach for the shear force can be
used.
The load q(xb) consists of solid mass and hydromechanical terms. The ordinates of these
terms will di¤er generally, so the numerical integrations of these two terms have to be
carried out separately.

12.1 Still Water Loads

Consider the forces acting on a section of the ship with a length dxb.
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Figure 12.7: Still Water Loads on a Cross Section

According to Newton’s second law of dynamics, the vertical forces on the unfastened disk
of a ship in still water are given by:

(m0 ¢ dxb) ¢ (¡g) = q3sw(xb) ¢ dxb
with:

q3sw(xb) = ½Asg ¡m0g

So, the vertical shear force Q3sw(x1) and the bending moment Q5sw(x1) in still water in a
cross section can be obtained from the vertical load q3sw(xb) by the following integrals:

Q3sw(x1) = ¡
x1Z
x0

q3sw(xb) ¢ dxb

Q5sw(x1) = +

x1Z
x0

q3sw(xb) ¢ xb ¢ dxb ¡ x1
x1Z
x0

q3sw(xb) ¢ dxb

For obtaining the dynamic parts of the vertical shear forces and the vertical bending
moments in regular waves, reference is given to [Fukuda, 1962]. For the lateral mode and
the roll mode a similar procedure can be followed. This will be shown at the following
pages.

12.2 Lateral Dynamic Loads
Consider the forces acting on a section of the ship with a length dxb.
According to Newton’s second law of dynamics, the harmonic lateral dynamic load per
unit length on the unfastened disk is given by:

q2(xb) = +X 0
h2
(xb) +X

0
w2
(xb)

+½gAsÁ

¡m0(xb) ¢
³
Äy + xb ¢ ÄÃ ¡ z0m ¢ ÄÁ + g ¢ Á

´
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Figure 12.8: Lateral Loads on a Cross Section in Waves

The sectional hydromechanical load for sway is given by:

X 0
h2
= ¡a022 ¢ Äy ¡ b022 ¢ _y ¡ c022 ¢ y

¡a024 ¢ ÄÁ ¡ b024 ¢ _Á ¡ c024 ¢ Á
¡a026 ¢ ÄÃ ¡ b026 ¢ _Ã ¡ c026 ¢ Ã

with:

a022 = +M 0
22

+

¯̄̄̄
V

!2e
¢ dN

0
22

dxb

¯̄̄̄
b022 = +N 0

22 ¡ V ¢
dM 0

22

dxb
c022 = 0

a024 = +M 0
24 +OG ¢M 0

22

+

¯̄̄̄
V

!2e
¢ dN

0
24

dxb
+
V

!2e
¢OG ¢ dN

0
22

dxb

¯̄̄̄
b024 = +N 0

24 ¡ V ¢
dM 0

24

dxb
+OG ¢

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
c024 = 0

a026 = +M 0
22 ¢ xb +

V

!2e
¢
µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
+

¯̄̄̄
V

!2e
¢N 0

22 +
V

!2e
¢ dN

0
22

dxb
¢ xb
¯̄̄̄

b026 = +

µ
N 0
22 ¡ V ¢

dM 0
22

dxb

¶
¢ xb ¡ 2V ¢M 0

22

+

¯̄̄̄
V 2

!2e
¢ dN

0
22

dxb

¯̄̄̄
c026 = 0



12.3. VERTICAL DYNAMIC LOADS 241

The sectional wave load for sway is given by:

X 0
w2

= +M 0
22 ¢ Ä³

¤
w2

+

¯̄̄̄
V

! ¢ !e ¢
dN 0

22

dxb
¢ Ä³¤w2

¯̄̄̄

+

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

22 ¡ V ¢
dM 0

22

dxb

!
¢ _³¤w2

+X 0
FK2

+M 0
24 ¢ Ä³

¤
w4

+

¯̄̄̄
V

! ¢ !e ¢
dN 0

24

dxb
¢ Ä³¤w4

¯̄̄̄
+

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

24 ¡ V ¢
dM 0

24

dxb

!
¢ _³¤w4

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
Then the harmonic lateral shear forces Q2(x1) and the bending moments Q6(x1) in waves in
cross section x1 can be obtained from the horizontal load q2(xb) by the following integrals:

Q2(x1) = Q2a cos(!et+ "Q2³)

= ¡
x1Z
x0

q2(xb) ¢ dxb

Q6(x1) = Q6a cos(!et+ "Q6³)

= +

x1Z
x0

q2(xb) ¢ xb ¢ dxb ¡ x1
x1Z
x0

q2(xb) ¢ dxb

12.3 Vertical Dynamic Loads
Consider the forces acting on a section of the ship with a length dxb.
According to Newton’s second law of dynamics, the harmonic longitudinal and vertical
dynamic loads per unit length on the unfastened disk are given by:

q1(xb) = +X 0
h1(xb) +X

0
w1(xb)

¡m0(xb) ¢
³
Äx ¡ bG ¢ Äµ

´
q3(xb) = +X 0

h3
(xb) +X

0
w3
(xb)

¡m0(xb) ¢
³
Äz ¡ xb ¢ Äµ

´
The sectional hydromechanical load for surge is given by:

X 0
h1
(xb) = ¡a011 ¢ Äx ¡ b011 ¢ _x ¡ c011 ¢ x

¡a013 ¢ Äz ¡ b013 ¢ _z ¡ c013 ¢ z
¡a015 ¢ Äµ ¡ b015 ¢ _µ ¡ c015 ¢ µ
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Figure 12.9: Vertical Loads on a Cross Section in Waves

with:

a011 = +M 0
11

+

¯̄̄̄
V

!2e
¢ dN

0
11

dxb

¯̄̄̄
b011 = +N 0

11 ¡ V ¢
dM 0

11

dxb
+ b011V

c011 = 0

a013 = 0

b013 = 0

c013 = 0

a015 = ¡M 0
11 ¢ bG

+

¯̄̄̄¡V
!2e

¢ dN
0
11

dxb
¢ bG

¯̄̄̄
b015 = ¡

µ
N 0
11 ¡ V ¢

dM 0
11

dxb

¶
¢ bG¡ b011V ¢ bG

c015 = 0

The sectional hydromechanical load for heave is given by:

X 0
h3
(xb) = ¡a031 ¢ Äx ¡ b031 ¢ _x ¡ c031 ¢ x

¡a033 ¢ Äz ¡ b033 ¢ _z ¡ c033 ¢ z
¡a035 ¢ Äµ ¡ b035 ¢ _µ ¡ c035 ¢ µ

with:

a031 = 0

b031 = 0

c031 = 0

a033 = +M 0
33
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+

¯̄̄̄
V

!2e
¢ dN

0
33

dxb

¯̄̄̄
b033 = +N 0

33 ¡ V ¢
dM 0

33

dxb
c033 = +2½g ¢ yw
a035 = ¡M 0

33 ¢ xb ¡
V

!2e
¢
µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
+

¯̄̄̄¡V
!2e

¢N 0
33 ¡

V

!2e
¢ dN

0
33

dxb
¢ xb
¯̄̄̄

b035 = ¡
µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ xb + 2V ¢M 0

33

+

¯̄̄̄
V 2

!2e
¢ dN

0
33

dxb

¯̄̄̄
c035 = ¡2½g ¢ yw ¢ xb

The sectional wave loads for surge and heave are given by:

X 0
w1
(xb) = +M 0

11 ¢ Ä³
¤
w1

+

¯̄̄̄
V

! ¢ !e ¢
dN 0

11

dxb
¢ Ä³¤w1

¯̄̄̄
+

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

11 ¡ V ¢
dM 0

11

dxb

!
¢ _³¤w1

+X 0
FK1

X 0
w3
(xb) = +M 0

33 ¢ Ä³
¤
w3

+

¯̄̄̄
V

! ¢ !e ¢
dN 0

33

dxb
¢ Ä³¤w3

¯̄̄̄

+

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

33 ¡ V ¢
dM 0

33

dxb

!
¢ _³¤w3

+X 0
FK3

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
Then the harmonic vertical shear forces Q3(x1) and the bending moments Q5(x1) in waves
in cross section x1 can be obtained from the longitudinal and vertical load q1(xb) and q3(xb)
by the following integrals:

Q3(x1) = Q3a cos(!et+ "Q3³)

= ¡
x1Z
x0

q3(xb) ¢ dxb

Q5(x1) = Q5a cos(!et+ "Q5³)
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= +

x1Z
x0

q1(xb) ¢ bG(xb) ¢ dxb +
x1Z
x0

q3(xb) ¢ xb ¢ dxb ¡ x1
x1Z
x0

q3(xb) ¢ dxb

Figure 12.10 shows a comparison between measured and calculated distributions of the
vertical wave bending moment amplitudes over the length of the ship.

Figure 12.10: Distribution of Vertical Bending Moment Amplitudes

12.4 Torsional Dynamic Loads

Consider the forces acting on a section of the ship with a length dxb.

Figure 12.11: Torsional Loads on a Cross Section in Waves

According to Newton’s second law of dynamics, the harmonic torsional dynamic load per
unit length on the unfastened disk about an longitudinal axis at a distance z1 above the
ship’s center of gravity is given by:

q4(xb; z1) = +X 0
h4
(xb) +X

0
w4
(xb)

¡m0(xb) ¢
³
k0
2

xx ¢ ÄÁ ¡ z0m ¢ (Äy + xb ¢ ÄÃ + g ¢ Á)
´

+z1 ¢ q2(xb)
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The sectional hydromechanical load for roll is given by:

X 0
h4
(xb) = ¡a042 ¢ Äy ¡ b042 ¢ _y ¡ c042 ¢ y

¡a044 ¢ ÄÁ¡ b044 ¢ _Á¡ c044 ¢ Á
¡a046 ¢ ÄÃ ¡ b046 ¢ _Ã ¡ c046 ¢ Ã

with:

a042 = +M 0
42 +OG ¢ a022

+

¯̄̄̄
V

!2e
¢ dN

0
42

dxb

¯̄̄̄
b042 = +N 0

42 ¡ V ¢
dM 0

42

dxb
+OG ¢ b022

c042 = 0 +OG ¢ c022
a044 = +M 0

44 +OG ¢M 0
42 +OG ¢ a024

+

¯̄̄̄
V

!2e
¢ dN

0
44

dxb
+
V

!2e
¢OG ¢ dN

0
42

dxb

¯̄̄̄
b044 = +N 0

44 ¡ V ¢
dM 0

44

dxb
+OG ¢

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
+ b044V +OG ¢ b024

c044 = +2½g ¢
µ
y3w
3
¡ As
2
¢ bG

¶
a046 = +M 0

42 ¢ xb +
V

!2e

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
+OG ¢ a026

+

¯̄̄̄
V

!2e
¢N 0

42 +
V

!2e
¢ dN

0
42

dxb
¢ xb
¯̄̄̄

b046 = +

µ
N 0
42 ¡ V ¢

dM 0
42

dxb

¶
¢ xb ¡ 2V ¢M 0

42 +OG ¢ b026

+

¯̄̄̄
V 2

!2e
¢ dN

0
42

dxb

¯̄̄̄
c046 = 0 +OG ¢ c026

In here, bG is the vertical distance of the centre of gravity of the ship G above the centroid
b of the local submerged sectional area.
The sectional wave load for roll is given by:

X 0
w4
(xb) = +M 0

44 ¢ Ä³
¤
w4

+

¯̄̄̄
V

! ¢ !e ¢
dN 0

44

dxb
¢ Ä³¤w4

¯̄̄̄

+

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

44 ¡ V ¢
dM 0

44

dxb

!
¢ _³¤w4

+X 0
FK4

+M 0
42 ¢ Ä³

¤
w2
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+

¯̄̄̄
V

! ¢ !e
dN 0

42

dxb
¢ Ä³¤w2

¯̄̄̄

+

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

42 ¡ V ¢
dM 0

42

dxb

!
¢ _³¤w2

+OG ¢X 0
w2

The ”Modi…ed Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
Then the harmonic torsional moments Q4(x1; z1) in waves in cross section x1 at a distance
z1 above the ship’s centre of gravity can be obtained from the torsional load q4(xb; z1) by
the following integral:

Q4(x1; z1) = Q4a cos(!et+ "Q4³)

= ¡
x1Z
x0

q4(xb; z1) ¢ dxb



Chapter 13

Statistics in Irregular Waves

To compare the calculated behaviour of di¤erent ship designs or to get an impression of
the behaviour of a speci…c ship design in a seaway, standard representations of the wave
energy distributions are necessary.
Three well known types of normalised wave energy spectra are described here:

² the Neumann wave spectrum, a somewhat wide wave spectrum, which is sometimes
used for open sea areas

² the Bretschneider wave spectrum, an average wave spectrum, frequently used in open
sea areas

² the Mean JONSWAP wave spectrum, a narrow wave spectrum, frequently used in
North Sea areas.

The mathematical formulations of these normalised uni-directional wave energy spectra
are based on two parameters:

² the signi…cant wave height H1=3
² the average wave period T1, based on the centroid of the spectral area curve.

To obtain the average zero-crossing period T2 or the spectral peak period Tp, a …xed relation
with T1 can be used not-truncated spectra.
From these wave energy spectra and the transfer functions of the responses, the response
energy spectra can be obtained.
Generally the frequency ranges of the energy spectra of the waves and the responses of
the ship on these waves are not very wide. Then the Rayleigh distribution can be used to
obtain a probability density function of the maximum and minimum values of the waves
and the responses. With this function, the probabilities on exceeding threshold values by
the ship motions can be calculated.
Bow slamming phenomena are de…ned by a relative bow velocity criterium and a peak
bottom impact pressure criterium.

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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13.1 Normalized Wave Energy Spectra

Three mathematical de…nitions with two parameters of normalized spectra of irregular
uni-directional waves have been described:

² the Neumann wave spectrum, a somewhat wide spectrum
² the Bretschneider wave spectrum, an average spectrum
² the mean JONSWAP wave spectrum, a narrow spectrum

A comparison of the Neumann, the Bretschneider and the mean JONSWAP wave spectra
is given here for a sea state with a signi…cant wave height of 4 meters and an average wave
period of 8 seconds.

Figure 13.1: Comparison of Three Spectral Formulations

13.1.1 Neumann Wave Spectrum

In some cases in literature the Neumann de…nition of a wave spectrum for open sea areas
is used:

S³(!) =
3832 ¢H2

1=3

T 51
¢ !¡6 ¢ exp

½¡69:8
T 21

¢ !¡2
¾

13.1.2 Bretschneider Wave Spectrum

A very well known two-parameter wave spectrum of open seas is de…ned by Bretschneider
as:

S³(!) =
172:8 ¢H2

1=3

T 41
¢ !¡5 ¢ exp

½¡691:2
T 41

¢ !¡4
¾

Another name of this wave spectrum is the Modi…ed Two-Parameter Pierson-Moskowitz
Wave Spectrum.
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This formulation is accepted by the 2nd International Ship Structures Congress in 1967
and the 12th International Towing Tank Conference in 1969 as a standard for seakeeping
calculations and model experiments. This is reason why this spectrum is also called I.S.S.C.
or I.T.T.C. Wave Spectrum.
The original One-Parameter Pierson-Moskowitz Wave Spectrum for fully developed seas
can be obtained from this de…nition by using a …xed relation between the signi…cant wave
height and the average wave period in this Bretschneider de…nition: T1 = 3:861 ¢

p
H1=3.

13.1.3 Mean JONSWAP Wave Spectrum

In 1968 and 1969 an extensive wave measurement program, known as the Joint North Sea
Wave Project (JONSWAP) was carried out along a line extending over 100 miles into the
North Sea from Sylt Island. From analysis of the measured spectra, a spectral formulation
of wind generated seas with a fetch limitation was found.
The following de…nition of a Mean JONSWAP wave spectrum is advised by the 15th ITTC
in 1978 for fetch limited situations:

S³(!) =
172:8 ¢H2

1=3

T 41
¢ !¡5 ¢ exp

½¡691:2
T 41

¢ !¡4
¾
¢A ¢ °B

with:

A = 0:658

B = exp

8<:¡
Ã

!
!p
¡ 1:0
¾
p
2

!29=;
° = 3:3 (peakedness factor)

!p =
2¼

Tp
(circular frequency at spectral peak)

¾ = a step function of !: if ! < !p then ¾ = 0:07

if ! > !p then ¾ = 0:09

The JONSWAP expression is equal to the Bretschneider de…nition multiplied by the fre-
quency function A ¢ °B.
Sometimes, a third free parameter is introduced in the JONSWAP wave spectrum by
varying the peakedness factor °.

13.1.4 De…nition of Parameters

The n-th order spectral moments of the wave spectrum, de…ned as a function of the circular
wave frequency !, are:

mn³ =

1Z
0

S³(!) ¢ !n ¢ d!

The breadth of a wave spectrum is de…ned by:

" =

s
1¡ m2

2³

m0³ ¢m4³
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The signi…cant wave height is de…ned by:

H1=3 = 4:0 ¢ pm0³

The several de…nitions of the average wave period are:

Tp = peak or modal wave period,

corresponding to peak of spectral curve

T1 = 2¼ ¢ m0³

m1³
= average wave period,

corresponding to centroid of spectral curve

T2 = 2¼ ¢
r
m0³

m2³
= average zero-crossing wave period,

corresponding to radius of inertia of spectral curve

For not-truncated mathematically de…ned spectra, the theoretical relations between the
periods are tabled below:

T1 = 1:086 ¢ T2 = 0:772 ¢ Tp
0:921 ¢ T1 = T2 = 0:711 ¢ Tp
1:296 ¢ T1 = 1:407 ¢ T2 = Tp

9=; for Bretschneider Wave Spectra

T1 = 1:073 ¢ T2 = 0:834 ¢ Tp
0:932 ¢ T1 = T2 = 0:777 ¢ Tp
1:199 ¢ T1 = 1:287 ¢ T2 = Tp

9=; for JONSWAP Wave Spectra

Truncation of wave spectra during numerical calculations, can cause di¤erences between
input and calculated wave periods. Generally, the wave heights will not di¤er much.

Figure 13.2: Wave Spectra Parameter Estimates

In …gure 13.2 and the table below, for ”Open Ocean Areas” and ”North Sea Areas” an
indication is given of a possible average relation between the scale of Beaufort or the wind
velocity at 19.5 meters above the sea level and the signi…cant wave height H1=3 and the
average wave periods T1 or T2.
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Indication of Wave Spectra Parameters

Scale of Wind Speed Open Ocean Areas North Sea Areas
Beaufort at 19.5 m (Bretschneider) (JONSWAP)

above sea

H1=3 T1 T2 H1=3 T1 T2 °
(kn) (m) (s) (s) (m) (s) (s) (-)

1 2.0 1.10 5.8 5.35 0.50 3.5 3.25 3.3
2 5.0 1.20 5.9 5.45 0.65 3.8 3.55 3.3
3 8.5 1.40 6.0 5.55 0.80 4.2 3.90 3.3
4 13.5 1.70 6.1 5.60 1.10 4.6 4.30 3.3
5 19.0 2.15 6.5 6.00 1.65 5.1 4.75 3.3
6 24.5 2.90 7.2 6.65 2.50 5.7 5.30 3.3
7 30.5 3.75 7.8 7.20 3.60 6.7 6.25 3.3
8 37.0 4.90 8.4 7.75 4.85 7.9 7.35 3.3
9 44.0 6.10 9.0 8.30 6.10 8.8 8.20 3.3
10 51.5 7.45 9.6 8.85 7.45 9.5 8.85 3.3
11 59.5 8.70 10.1 9.30 8.70 10.0 9.30 3.3
12 >64.0 10.25 10.5 9.65 10.25 10.5 9.80 3.3

These data are an indication only, a generally applicable …xed relation between wave heights
and wave periods does not exist.

Other open ocean de…nitions for the North Atlantic and the North Paci…c, obtained from
[Bales, 1983] and adopted by the 17th ITTC (1984), are given in the tables below.

The modal or central periods in these tables correspond with the peak period Tp.

For not-truncated spectra, the relations with T1 and T2 are de…ned before.
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Open Ocean Annual Sea State Occurrences of Bales (1983)
of the North Atlantic and the North Paci…c

Sea Signi…cant Sustained Probability Modal
State Wave Height H1=3 Wind Speed 1) of Sea State Wave Period Tp
Number (m) (kn) (%) (s)
(¡)

Range Mean Range Mean Range 2) Most 3)
Probable

North Atlantic

0 - 1 0.0 - 0.1 0.05 0 - 6 3 0 - -
2 0.1 - 0.5 0.3 7 - 10 8.5 7.2 3.3 - 12.8 7.5
3 0.50 - 1.25 0.88 11 - 16 13.5 22.4 5.0 - 14.8 7.5
4 1.25 - 2.50 1.88 17 - 21 19 28.7 6.1 - 15.2 8.8
5 2.5 - 4.0 3.25 22 - 27 24.5 15.5 8.3 - 15.5 9.7
6 4 - 6 5.0 28 - 47 37.5 18.7 9.8 - 16.2 12.4
7 6 - 9 7.5 48 - 55 51.5 6.1 11.8 - 18.5 15.0
8 9 - 14 11.5 56 - 63 59.5 1.2 14.2 - 18.6 16.4
>8 >14 >14 >63 >63 <0.05 18.0 - 23.7 20.0

North Paci…c

0 - 1 0.0 - 0.1 0.05 0 - 6 3 0 - -
2 0.1 - 0.5 0.3 7 - 10 8.5 4.1 3.0 - 15.0 7.5
3 0.50 - 1.25 0.88 11 - 16 13.5 16.9 5.2 - 15.5 7.5
4 1.25 - 2.50 1.88 17 - 21 19 27.8 5.9 - 15.5 8.8
5 2.5 - 4.0 3.25 22 - 27 24.5 23.5 7.2 - 16.5 9.7
6 4 - 6 5.0 28 - 47 37.5 16.3 9.3 - 16.5 13.8
7 6 - 9 7.5 48 - 55 51.5 9.1 10.0 - 17.2 15.8
8 9 - 14 11.5 56 - 63 59.5 2.2 13.0 - 18.4 18.0
>8 >14 >14 >63 >63 0.1 20.0 20.0

Note:
1) Ambient wind sustained at 19.5 m above surface to generate fully-developed seas.
To convert to another altitude h2, apply V2 = V1 ¢ (h2=19:5)1=7.

2) Minimum is 5 percentile and maximum is 95 percentile for periods given wave
height range.

3) Based on periods associated with central frequencies included in Hindcast Clima-
tology.



13.2. RESPONSE SPECTRA AND STATISTICS 253

13.2 Response Spectra and Statistics

The energy spectrum of the responses r(t) of a sailing ship on the irregular waves follows
from the transfer function of the response and the wave energy spectrum by:

Sr(!) =

µ
ra
³a

¶2
¢ S³(!)

or:

Sr(!e) =

µ
ra
³a

¶2
¢ S³(!e)

This has been visualized for a heave motion in …gures 13.3 and 13.4.

Figure 13.3: Principle of Transfer of Waves into Responses

The moments of the response spectrum are given by:

mnr =

1Z
0

Sr(!e) ¢ !ne ¢ d!e with: n = 0; 1; 2; :::

From the spectral density function of a response the signi…cant amplitude can be calculated.
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Figure 13.4: Heave Spectra in the Wave and Encounter Frequency Domain

The signi…cant amplitude is de…ned to be the mean value of the highest one-third part of
the highest wave heights, so:

ra1=3 = 2
p
m0r

A mean period can be found from the centroid of the spectrum by:

T1r = 2¼ ¢ m0r

m1r

An other de…nition, which is equivalent to the average zero-crossing period, is found from
the spectral radius of inertia by:

T2r = 2¼ ¢
r
m0r

m2r

The probability density function of the maximum and minimum values, in case of a spec-
trum with a frequency range which is not too wide, is given by the Rayleigh distribution:

f(ra) =
ra
m0r

¢ exp
½ ¡r2a
2m0r

¾
This implies that the probability of exceeding a threshold value a by the response amplitude
ra becomes:

P fra > ag =

1Z
a

ra
m0r

¢ exp
½ ¡r2a
2m0r

¾
¢ dra

= exp

½ ¡a2
2m0r

¾
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The number of times per hour that this happens follows from:

Nhour =
3600

T2r
¢ P fra > ag

The spectral value of the waves S³(!e), based on !e, is not equal to the spectral value
S³(!), based on !.
Because of the requirement of an equal amount of energy in the frequency bands ¢! and
¢!e, it follows:

S³(!e) ¢ d!e = S³(!) ¢ d!
From this the following relation is found:

S³(!e) =
S³(!)
d!e
d!

The relation between the frequency of encounter and the wave frequency, of which an
example is illustrated in …gure 13.5, is given by:

!e = ! ¡ kV ¢ cos¹

Figure 13.5: Example of Relation Between !e and !

From the relation between !e and ! follows:

d!e
d!

= 1:0¡ V ¢ cos¹
d!
dk

The derivative d!=dk follows from the relation between ! and k:

! =
p
kg ¢ tanh(kh)
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So:

d!

dk
=
g ¢ tanh(kh) + kg

h¢cosh2(kh)
2
p
kg ¢ tanh(kh)

As can be seen in …gure 13.5, in following waves the derivative d!e=d! can approach from
both sides, a positive or a negative side, to zero. As a result of this, around a wave speed
equal to twice the forward ship speed component in the direction of the wave propagation,
the transformed spectral values will range from plus in…nite to minus in…nite. This implies
that numerical problems will arise in the numerical integration routine.
This is the reason why the spectral moments have to be written in the following format:

m0r =

1Z
0

Sr(!e) ¢ d!e =

1Z
0

Sr(!) ¢ d!

m1r =

1Z
0

Sr(!e) ¢ !e ¢ d!e =
1Z
0

Sr(!) ¢ !e ¢ d!

m2r =

1Z
0

Sr(!e) ¢ !2e ¢ d!e =
1Z
0

Sr(!) ¢ !2e ¢ d!

with:

Sr(!) =

µ
ra
³a

¶2
¢ S³(!)

If Sr(!e) has to be known, for instance for a comparison of the calculated response spectra
with measured response spectra, these values can be obtained from this Sr(!) and the
derivative d!e=d!. So an integration of Sr(!e) over !e has to be avoided.
Because of the linearities, the calculated signi…cant values can be presented by:

ra1=3
H1=3

versus T1 or T2

H1=3 = signi…cant wave height

T1; T2 = average wave periods

The mean added resistance in a seaway follows from:

RAW = 2

1Z
0

RAW

³2a
¢ S³(!) ¢ d!

Because of the linearities in the motions, the calculated mean added resistance values can
be presented by:

RAW
H2
1=3

versus T1 or T2



13.3. SHIPPING GREEN WATER 257

13.3 Shipping Green Water

The e¤ective dynamic freeboard will di¤er from the results obtained from the geometric
freeboard at zero forward speed in still water and the calculated vertical relative motions
of a sailing ship in waves.
When sailing in still water, sinkage, trim and the ship’s wave system will e¤ect the local
geometric freeboard. A static swell up should be taken into account.
An empirical formula, based on model experiments, for the static swell up at the forward
perpendicular is given by [Tasaki, 1963]:

fe = f ¡ 0:75 ¢B ¢ L
LE

¢ F 2n

with:

fe = e¤ective freeboard at the forward perpendicular
f = geometric freeboard at the forward perpendicular
L = length of the ship
B = breadth of the ship
LE = length of entrance of the waterline
Fn = Froude number

An oscillating ship will produce waves and these dynamic phenomena will in‡uence the
amplitude of the relative motion. A dynamic swell up should be taken into account.
[Tasaki, 1963] carried out forced oscillation tests with ship models in still water and ob-
tained an empirical formula for the dynamic swell-up at the forward perpendicular in head
waves:

¢sa
sa

=
CB ¡ 0:45

3
¢
s
!2eL

g

with the restrictions:

block coe¢cient: 0:60 < CB < 0:80
Froude number: 0:16 < Fn < 0:29

In this formula sa is the amplitude of the relative motion at the forward perpendicular as
obtained in head waves, calculated from the heave, the pitch and the wave motions.
Then the actual amplitude of the relative motions becomes:

s¤a = sa +¢sa

Then, shipping green water is de…ned by:

s¤a > fe at the forwarde perpendicular

The spectral density of the vertical relative motion at the forward perpendicular is given
by:

Ss¤(!) =

µ
s¤a
³a

¶2
¢ S³(!)
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The spectral moments are given by:

mns¤ =

1Z
0

Ss¤(!) ¢ !ne ¢ d! with: n = 0; 1; 2; :::

When using the Rayleigh distribution the probability of shipping green water is given by:

P fs¤a > feg = exp
½ ¡f2e
2m0s¤

¾
The average zero-crossing period of the relative motion is found from the spectral radius
of inertia by:

T2s¤ = 2¼

r
m0s¤

m2s¤

The number of times per hour that green water will be shipped follows from:

Nhour =
3600

T2s¤
¢ P fs¤a > feg

13.4 Bow Slamming

Slamming is a two-node vibration of the ship caused by suddenly pushing the ship by the
waves. A complete prediction of slamming phenomena is a complex task, which is beyond
the scope of any existing theory.
Slamming impact pressures are a¤ected by the local hull section shape, the relative velocity
between ship and waves at impact, the relative angle between the keel and the water
surface, the local ‡exibility of the ship’s bottom plating and the overall ‡exibility of the
ship’s structure.

13.4.1 Criterium of Ochi

[Ochi, 1964] translated slamming phenomena into requirements for the vertical relative
motions of the ship.
He de…ned slamming by:

² an emergence of the bow of the ship at 10 percentile of the length aft of the forward
perpendiculars

² an exceeding of a certain critical value at the instance of impact by the vertical
relative velocity, without forward speed e¤ect, between the wave surface and the bow
of the ship

Ochi de…nes the vertical relative displacement and velocity of the water particles with
respect to the keel point of the ship by:

s = ³xb ¡ z + xb ¢ µ
_s = _³xb ¡ _z + xb ¢ _µ
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with:

³xb = ³a cos(!et¡ kxb cos¹)
_³xb = ¡!e³a sin(!et¡ kxb cos¹)

So a forward speed e¤ect is not included in the vertical relative velocity.
The spectral moments of the vertical relative displacements and velocities are de…ned by
m0s and m0 _s.
Emergence of the bow of the ship happens when the vertical relative displacement ampli-
tude sa at 0:90 ¢ L is larger than the ship’s draft Ds at this location.
The probability of emergence of the bow follows from:

P fsa > Dsg = exp
½¡D2

s

2m0s

¾
The second requirement states that the vertical relative velocity exceeds a threshold value.
According to Ochi, 12 feet per second can be taken as a threshold value for a ship with a
length of 520 feet.
Scaling results into:

_scr = 0:0928 ¢
p
gL

The probability of exceeding this threshold value is:

P f _sa > _scrg = exp
½¡ _s2cr
2m0 _s

¾
Both occurrences, emergence of the bow and exceeding the threshold velocity, are statis-
tically independent. In case of slamming both occurrences have to appear at the same
time.
So the probability on a slam is the product of the both independent probabilities:

P fslamg = P fsa > Dsg ¢ P f _sa > _scrg
= exp

½¡D2
s

2m0s
+
¡ _s2cr
2m0 _s

¾
13.4.2 Criterium of Conolly

[Conolly, 1974] translated slamming phenomena into requirements for the peak impact
pressure of the ship.
He de…ned slamming by:

² an emergence of the bow of the ship
² an exceeding of a certain critical value by the peak impact pressure at this location.

The peak impact pressure is de…ned by:

p = Cp ¢ 1
2
½ _s2cr

The coe¢cient Cp has been taken from experimental data of slamming drop tests with
wedges and cones, as given in literature.
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Figure 13.6: Peak Impact Pressure Coe¢cients

Some of these data, as for instance presented by [Lloyd, 1989] as a function of the deadrise
angle ¯, are illustrated in …gure 13.6.
An equivalent deadrise angle ¯ is de…ned here by the determination of an equivalent wedge.
The contour of the cross section inside 10 percentile of the half breadth B=2 of the ship
has been used to de…ne an equivalent wedge with a half breadth: b = 0:10 ¢B=2.
The accessory draught t of the wedge follows from the section contour.
In the forebody of the ship, this draught can be larger than 10 percentile of the amidships
draught T . If so, the section contour below 0:10 ¢ T has been used to de…ne an equivalent
wedge: t = 0:10 ¢ T .
If this draught is larger than the local draught, the local draught has been used.
The accessory half breadth b of the wedge follows from the section contour.

Figure 13.7: De…nition of an Equivalent Wedge
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Figure 13.8: Measured Impact Pressures of a 112 Meter Ship

Then the sectional area As below local draught t has to be calculated.
Now the equivalent deadrise angle ¯ follows from:

¯ = arctan
³a
b

´
0 · ¯ · ¼=2

a =
2(b ¢ t¡As)

b

Critical peak impact pressures pcr have been taken from [Conolly, 1974]. He gives measured
impact pressures at a ship with a length of 112 meter over 30 per cent of the ship length
from forward. From this, a lower limit of pcr has been assumed. This lower limit is
presented in …gure 13.8.
These values have to be scaled to the actual ship size. Bow emergence and exceeding of
this limit is supposed to cause slamming.
This approach can be translated into local hull shape-depending threshold values of the
vertical relative velocity too:

_scr =

s
2pcr
½Cp

The vertical relative velocity, including a forward speed e¤ect, of the water particles with
respect to the keel point of the ship is de…ned by:

_s =
D

Dt

©
³xb ¡ _z + xb ¢ µ

ª
= _³xb ¡ _z + xb ¢ µ ¡ V ¢ µ

with:

³xb = ³a cos(!et¡ kxb cos¹)
_³xb = ¡!³a sin(!et¡ kxb cos¹)
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Then:

P fslamg = exp
½¡D2

s

2m0s

+
¡ _s2cr
2m0 _s

¾
Note that, because of including the forward speed e¤ect, the spectral moment of the ve-
locities does not follow from the spectral density of the relative displacement as showed in
the de…nition of Ochi.
The average period of the relative displacement is found by:

T2s = 2¼

r
m0s

m2s
= 2¼

r
m0s

m0 _s

Then the number of times per hour that a slam will occur follows from:

Nhour =
3600

T2s
¢ P fslamg



Chapter 14

Twin-Hull Ships

When not taking into account the interaction e¤ects between the two individual hulls, the
wave loads and motions of twin-hull ships can be calculated easily. Each individual hull
has to be symmetric with respect to its centre plane. The distance between the two centre
planes of the single hulls should be constant. The coordinate system for the equations of
motion of a twin-hull ship is given in …gure 14.1.

Figure 14.1: Coordinate System of Twin-Hull Ships

14.1 Hydromechanical Coe¢cients

The hydromechanical coe¢cients aij, bij and cij in this chapter are those of one individual
hull, de…ned in the coordinate system of the single hull, as given and discussed before.

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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14.2 Equations of Motion
The equations of motion for six degrees of freedom of a twin-hull ship are de…ned by:

Surge: ½rT ¢ Äx ¡XTh1 = XTw1
Sway: ½rT ¢ Äy ¡XTh2 = XTw2
Heave: ½rT ¢ Äz ¡XTh3 = XTw3
Roll: ITxx ¢ ÄÁ¡ ITxz ¢ ÄÃ ¡XTh4 = XTw4
Pitch: ITxx ¢ Äµ ¡XTh5 = XTw5
Yaw: ITzz ¢ ÄÃ ¡ ITzx ¢ ÄÁ ¡XTh6 = XTw6

in which:

rT = volume of displacement of the twin-hull ship
ITij = solid mass moment of inertia of the twin-hull ship
XTh1, XTh2, XTh3 = hydromechanical forces in the x-, y- and z-direction
XTh4, XTh5, XTh6 = hydromechanical moments about the x-, y- and z-axis
XTw1, XTw2 , XTw3 = exciting wave forces in the x-, y- and z-direction
XTw4, XTw5 , XTw6 = exciting wave moments about the x-, y- and z-axis

14.3 Hydromechanical Forces and Moments
The equations of motion for six degrees of freedom and the hydro- mechanic forces and
moments in here, are de…ned by:

¡XTh1 = +2a11 ¢ Äx+ 2b11 ¢ _x+ 2c11 ¢ x
+2a13 ¢ Äz + 2b13 ¢ _z + 2c13 ¢ z
+2a15 ¢ Äµ + 2b15 ¢ _µ + 2c15 ¢ µ

¡XTh2 = +2a22 ¢ Äy + 2b22 ¢ _y + 2c22 ¢ y
+2a24 ¢ ÄÁ+ 2b24 ¢ _Á+ 2c24 ¢ Á
+2a26 ¢ ÄÃ + 2b26 ¢ _Ã + 2c26 ¢ Ã

¡XTh3 = +2a31 ¢ Äx+ 2b31 ¢ _x+ 2c31 ¢ x
+2a33 ¢ Äz + 2b33 ¢ _z + 2c33 ¢ z
+2a35 ¢ Äµ + 2b35 ¢ _µ + 2c35 ¢ µ

¡XTh4 = +2a42 ¢ Äy + 2b42 ¢ _y + 2c42 ¢ y
+2a44 ¢ ÄÁ+ 2b44 ¢ _Á+ 2c44 ¢ Á
+2y2T ¢ a33 ¢ ÄÁ+ 2y2T ¢ b33 ¢ _Á+ 2y2T ¢ c33 ¢ Á
+2a46 ¢ ÄÃ + 2b46 ¢ _Ã + 2c46 ¢ Ã

¡XTh5 = +2a51 ¢ Äx+ 2b51 ¢ _x+ 2c51 ¢ x
+2a53 ¢ Äz + 2b53 ¢ _z + 2c53 ¢ z
+2a55 ¢ Äµ + 2b55 ¢ _µ + 2c55 ¢ µ

¡XTh6 = +2a62 ¢ Äy + 2b62 ¢ _y + 2c62 ¢ y
+2a64 ¢ ÄÁ+ 2b64 ¢ _Á+ 2c64 ¢ Á
+2a66 ¢ ÄÃ + 2b66 ¢ _Ã + 2c66 ¢ Ã
+2y2T ¢ a11 ¢ ÄÃ + 2y2T ¢ b11 ¢ _Ã + 2y2T ¢ c11 ¢ Ã
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In here, yT is half the distance between the centre planes.

14.4 Exciting Wave Forces and Moments
The …rst order wave potential for an arbitrary water depth h is de…ned in the new coordi-
nate system by:

©w =
¡g
!
¢ cosh k(h+ zb)

cosh(kh)
¢ ³a sin(!et¡ kxb cos¹¡ kyb sin¹)

This holds that for the port side (ps) and starboard (sb) hulls the equivalent components
of the orbital accelerations and velocities in the surge, sway, heave and roll directions are
equal to:

Ä³
¤
w1(ps) = ¡kg cos¹ ¢ ³¤a1 sin(!et¡ kxb cos¹¡ kyT sin¹)
Ä³
¤
w1(sb) = ¡kg cos¹ ¢ ³¤a1 sin(!et¡ kxb cos¹+ kyT sin¹)
_³
¤
w1
(ps) =

+kg cos¹

!
¢ ³¤a1 cos(!et¡ kxb cos¹¡ kyT sin¹)

_³
¤
w1
(sb) =

+kg cos¹

!
¢ ³¤a1 cos(!et¡ kxb cos¹+ kyT sin¹)

Ä³
¤
w2
(ps) = ¡kg sin¹ ¢ ³¤a2 sin(!et¡ kxb cos¹¡ kyT sin¹)

Ä³
¤
w2
(sb) = ¡kg sin¹ ¢ ³¤a2 sin(!et¡ kxb cos¹+ kyT sin¹)

_³
¤
w2
(ps) =

+kg sin¹

!
¢ ³¤a2 cos(!et¡ kxb cos¹¡ kyT sin¹)

_³
¤
w2
(sb) =

+kg sin¹

!
¢ ³¤a2 cos(!et¡ kxb cos¹+ kyT sin¹)

Ä³
¤
w3
(ps) = ¡kg ¢ ³¤a3 cos(!et¡ kxb cos¹¡ kyT sin¹)

Ä³
¤
w3
(sb) = ¡kg ¢ ³¤a3 cos(!et¡ kxb cos¹+ kyT sin¹)

_³
¤
w3
(ps) =

+kg

!
¢ ³¤a3 sin(!et¡ kxb cos¹¡ kyT sin¹)

_³
¤
w3
(sb) =

+kg

!
¢ ³¤a3 sin(!et¡ kxb cos¹+ kyT sin¹)

From this follows the total wave loads for the degrees of freedom. In these loads on the
following pages, the ”Modi…ed Strip Theory” includes the outlined terms. When ignoring
these outlined terms the ”Ordinary Strip Theory” is presented.
The exciting wave forces for surge are:

XTw1 = +

Z
L

M 0
11 ¢
³
Ä³
¤
w1
(ps) + Ä³

¤
w1
(sb)

´
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
11

dxb
¢
³
Ä³
¤
w1(ps) +

Ä³
¤
w1(sb)

´
¢ dxb

¯̄̄̄
¯̄

+

Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

11 ¡ V ¢
dM 0

11

dxb

!
¢
³
_³
¤
w1
(ps) + _³

¤
w1
(sb)

´
¢ dxb



266 CHAPTER 14. TWIN-HULL SHIPS

+

Z
L

¡
X 0
FK1

(ps) +X 0
FK1

(sb)
¢ ¢ dxb

The exciting wave forces for sway are:

XTw2 = +

Z
L

M 0
22 ¢
³
Ä³
¤
w2
(ps) + Ä³

¤
w2
(ps)

´
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
22

dxb
¢
³
Ä³
¤
w2
(ps) + Ä³

¤
w2
(sb)

´
¢ dxb

¯̄̄̄
¯̄

+

Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

22 ¡ V ¢
dM 0

22

dxb

!
¢
³
_³
¤
w2
(ps) + _³

¤
w2
(sb)

´
¢ dxb

+

Z
L

¡
X 0
FK2

(ps) +X 0
FK2

(sb)
¢ ¢ dxb

The exciting wave forces for heave are:

XTw3 = +

Z
L

M 0
33 ¢
³
Ä³
¤
w3
(ps) + Ä³

¤
w3
(sb)

´
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
33

dxb
¢
³
Ä³
¤
w3
(ps) + Ä³

¤
w3
(sb)

´
¢ dxb

¯̄̄̄
¯̄

+

Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

33 ¡ V ¢
dM 0

33

dxb

!
¢
³
_³
¤
w3
(ps) + _³

¤
w3
(sb)

´
¢ dxb

+

Z
L

¡
X 0
FK3

(ps) +X 0
FK3(sb)

¢ ¢ dxb
The exciting wave moments for roll are:

XTw4 = +

Z
L

¡
X 0
FK4

(ps) +X 0
FK4(sb)

¢ ¢ dxb
+

Z
L

M 0
42 ¢
³
Ä³
¤
w2
(ps) + Ä³

¤
w2
(sb)

´
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
42

dxb
¢
³
Ä³
¤
w2
(ps) + Ä³

¤
w2
(sb)

´
¢ dxb

¯̄̄̄
¯̄

+

Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

42 ¡ V ¢
dM 0

42

dxb

!
¢
³
_³
¤
w2(ps) +

_³
¤
w2(sb)

´
¢ dxb

+OG ¢XTw2
+yT ¢XTw3
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The exciting wave moments for pitch are:

XTw5 = ¡
Z
L

M 0
11 ¢ bG ¢

³
Ä³
¤
w1
(ps) + Ä³

¤
w1
(sb)

´
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
11

dxb
¢ bG ¢

³
Ä³
¤
w1
(ps) + Ä³

¤
w1
(sb)

´
¢ dxb

¯̄̄̄
¯̄

¡
Z
L

(

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

11 ¡ V ¢
dM 0

11

dxb

!
) ¢ bG ¢

³
_³
¤
w1
(ps) + _³

¤
w1
(sb)

´
¢ dxb

¡
Z
L

¡
X 0
FK1

(ps) +X 0
FK1

(sb)
¢ ¢ bG ¢ dxb

¡
Z
L

M 0
33 ¢ xb ¢

³
Ä³
¤
w3
(ps) + Ä³

¤
w3
(sb)

´
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
33

dxb
¢ xb ¢

³
Ä³
¤
w3(ps) +

Ä³
¤
w3(sb)

´
¢ dxb

¯̄̄̄
¯̄

¡
Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

33 ¡ V ¢
dM 0

33

dxb

!
¢ xb ¢

³
_³
¤
w3
(ps) + _³

¤
w3
(sb)

´
¢ dxb

¡
Z
L

¡
X 0
FK3

(ps) +X 0
FK3

(sb) ¢ xb
¢ ¢ dxb

The exciting wave moments for yaw are:

XTw6 = +

Z
L

M 0
22 ¢ xb ¢

³
Ä³
¤
w2
(ps) + Ä³

¤
w2
(sb)

´
¢ dxb

+

¯̄̄̄
¯̄ V

! ¢ !e

Z
L

dN 0
22

dxb
¢ xb ¢

³
Ä³
¤
w2
(ps) + Ä³

¤
w2
(sb)

´
¢ dxb

¯̄̄̄
¯̄

+

Z
L

Ã¯̄̄̄
!

!e

¯̄̄̄
¢N 0

22 ¡ V ¢
dM 0

22

dxb

!
¢ xb ¢

³
_³
¤
w2
(ps) + _³

¤
w2
(sb)

´
¢ dxb

+

Z
L

¡
X 0
FK2

(ps) +X 0
FK2

(sb)
¢ ¢ xb ¢ dxb

+yT ¢XTw1

14.5 Added Resistance due to Waves
The added resistances can be found easily from the de…nitions of the mono-hull ship by
using the wave elevation at each individual centre line and replacing the heave motion z
by:

z(ps) = z + yT ¢ Á and z(sb) = z ¡ yT ¢ Á
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14.5.1 Radiated Energy Method

The transfer function of the mean added resistance of twin-hull ships according to the
method of [Gerritsma and Beukelman, 1972] becomes:

Raw

³2a
=
¡k cos¹
2!e

¢
Z
L

µ
N 0
33 ¡ V ¢

dM 0
33

dxb

¶
¢ V

¤
za
2(ps) + V ¤za

2(sb)

³2a
¢ dxb

with:

V ¤z (ps) = _³
¤
w3
(ps)¡

³
_z ¡ xb ¢ _µ + V ¢ µ ¡ yT ¢ _Á

´
V ¤z (sb) = _³

¤
w3
(sb)¡

³
_z ¡ xb ¢ _µ + V ¢ µ + yT ¢ _Á

´
_³
¤
w3
(ps) =

+kg

!
¢ ³¤a3 sin(!et¡ kxb cos¹¡ kyT sin¹)

_³
¤
w3
(sb) =

+kg

!
¢ ³¤a3 sin(!et¡ kxb cos¹+ kyT sin¹)

14.5.2 Integrated Pressure Method

The transfer function of the mean added resistance of twin-hull ships according to the
method of [Boese, 1970] becomes:

Raw2
³2a

=

+
1

2
½r!2e

za(ps)

³a
¢ µa
³a
¢ cos("z(ps)³(ps) ¡ "µ³(ps))

+
1

2
½r!2e

za(sb)

³a
¢ µa
³a
¢ cos("z(sb)³(sb) ¡ "µ³(sb))

+
1

2
½g

Z
L

µ
1¡ z

2
xa(ps)

³2a
¡ 2sa(ps) ¢ cos(¡kxb cos¹¡ kyT sin¹¡ "s(ps)³(ps))

³a ¢ tanh(kh)
¶
dyw
dxb

dxb

+
1

2
½g

Z
L

µ
1¡ z

2
xa(sb)

³2a
¡ 2sa(sb) ¢ cos(¡kxb cos¹¡ kyT sin¹¡ "s(sb)³(sb))

³a ¢ tanh(kh)
¶
dyw
dxb

dxb

with:

³(ps) = ³a cos(!et¡ kxb cos¹¡ kyT sin¹)
³(sb) = ³a cos(!et¡ kxb cos¹+ kyT sin¹)
zx(ps) = z ¡ xb ¢ µ + yT ¢ Á
zx(sb) = z ¡ xb ¢ µ ¡ yT ¢ Á
s(ps) = ³(ps)¡ z + xb ¢ µ ¡ yT ¢ Á
s(sb) = ³(sb)¡ z + xb ¢ µ + yT ¢ Á

14.6 Bending and Torsional Moments
According to Newton’s second law of dynamics, the harmonic lateral, vertical and torsional
dynamic loads per unit length on the unfastened disk of a twin-hull ship are given by:

qT1(xb) = +X 0
Th2
(xb) +X

0
Tw2
(xb)
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¡m0
T (xb) ¢

³
Äx¡ bG ¢ Äµ

´
qT2(xb) = +X 0

Th2
(xb) +X

0
Tw2
(xb) + 2½gAs ¢ Á

¡m0
T (xb) ¢

³
Äy + xb ¢ ÄÃ ¡ z0m ¢ ÄÁ+ g ¢ Á

´
qT3(xb) = +X 0

Th3
(xb) +X

0
Tw3
(xb)

¡m0
T (xb) ¢

³
Äz ¡ xb ¢ Äµ

´
qT4(xb; z1) = +X 0

Th4
(xb) +X

0
Tw4
(xb)

¡m0
T (xb) ¢

³
k0
2

Txx ¢ ÄÁ¡ z0m ¢ (Äy + xb ¢ ÄÃ + g ¢ Á)
´

+z1 ¢ qT2(xb)

In here:

m0
T = the mass per unit length of the twin-hull ship

k0Txx = the local sold mass gyradius for roll
As = sectional area of one hull

The calculation procedure of the forces and moments is similar to the procedure given
before for mono-hull ships.



270 CHAPTER 14. TWIN-HULL SHIPS

.



Chapter 15

Numerical Recipes

Some typical numerical recipes, as used in the strip theory program SEAWAY, are described
in more detail here.

15.1 Polynomials

Discrete points can be connected by a …rst degree or a second degree polynomial, see …gure
15.1-a,b.

Figure 15.1: First and Second Order Polynomials Through Discrete Points

15.1.1 First Degree Polynomials

A …rst degree - or linear - polynomial, as given in …gure 15.1-a, is de…ned by:

f (x) = ax+ b

with in the interval xm < x < x0 the following coe¢cients:

0J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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a =
f (x0)¡ f (xm)

x0 ¡ xm
b = f (x0)¡ ax0

and in the interval x0 < x < xp the following coe¢cients:

a =
f (xp)¡ f (x0)

xp ¡ x0
b = f (x0)¡ ax0

Notify that only one interval is required for obtaining the coe¢cients in that interval.

15.1.2 Second Degree Polynomials

A second degree polynomial, as given in …gure 15.1-b, is de…ned by:

f (x) = ax2 + bx+ c

with in the interval xm < x < xp the following coe¢cients:

a =

f(xp)¡f(x0)
xp¡x0 ¡ f(x0)¡f(xm)

x0¡xm
xp ¡ xm

b =
f (xp)¡ f (x0)

xp ¡ x0 ¡ a (xp + x0)
c = f (x0)¡ ax20 ¡ bx0

Notify that two intervals are required for obtaining these coe¢cients, valid in both intervals.

15.2 Integrations
Numerical integrations can be carried out by either the trapezoid rule or Simpson’s general
rule.
SEAWAY uses Simpson’s general rule as a standard. Then, the integrations have to be
carried out over a number of sets of two intervals, see …gure 15.1-b. Numerical inaccuracies
can be expected when x0¡xm ¿ xp¡x0 or xp¡x0 ¿ x0¡xm. In those cases the trapezoid
rule has to be preferred, see …gure 15.1-a.
SEAWAY makes the choice bewteen the use of the trapezoid rule andr Simpson’s rule
automatically, based on the following requirements:

Trapezoid rule if:
x0 ¡ xm
xp ¡ xm < 0:2 or:

x0 ¡ xm
xp ¡ xm > 5:0

Simpson’s rule if: 0:2 <
x0 ¡ xm
xp ¡ xm < 5:0
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15.2.1 First Degree Integrations

First degree integrations - integrations carried out by the trapezoid rule, see …gure 15.1-a
- means the use of a linear function:

f (x) = ax+ b

The integral over the interval xp ¡ x0 becomes:

xpZ
x0

f (x) dx =

xpZ
x0

(ax+ b) dx

=

·
1

2
ax2 + bx

¸xp
x0

with:

a =
f (xp)¡ f (x0)

xp ¡ x0
b = f (x0)¡ ax0

Integration over two intervals results into:
xpZ

xm

f (x) dx =
(x0 ¡ xm) f (xm) + (xp ¡ xm) f (x0) + (xp ¡ x0) f (xm)

2

15.2.2 Second Degree Integrations

Second degree integrations - integrations carried out by Simpson’s rule, see …gure 15.1-b -
have to be carried out over a set of two intervals. At each of the two intervals, the integrand
is described by a second degree polynomial:

f (x) = ax2 + bx+ c

Then the integral becomes:

xpZ
xm

f (x) dx =

xpZ
xm

¡
ax2 + bx+ c

¢
dx

=

·
1

3
ax3 +

1

2
bx2 + cx

¸xp
xm

with:

a =

f(xp)¡f(x0)
xp¡x0 ¡ f(x0)¡f(xm)

x0¡xm
xp ¡ xm

b =
f (xp)¡ f (x0)

xp ¡ x0 ¡ a (xp + x0)
c = f (x0)¡ ax20 ¡ bx0
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Some algebra leads for the integration over these two intervals to:

xpZ
xm

f (x) dx =

(
x0 ¡ xm ¡ xp¡x0

2

x0 ¡ xm f (xm)

+
(xp ¡ xm)2

2 (x0 ¡ xm) (xp ¡ x0)f (x0)

+
xp ¡ x0 ¡ x0¡xm

2

xp ¡ x0 f (xp)

¾
¢ xp ¡ xm

3

15.2.3 Integration of Wave Loads

The wave loads can be written as:

Fw = Fwa cos (!et+ "Fw³)

The in-phase and out-phase parts of the wave loads have to be obtained from longitudinal
integrations:

Fw1 =

Z
L

F
0
w1 (xb) dx =

Z
L

f
0
w1 (xb) cos xb dxb

Fw2 =

Z
L

F
0
w2 (xb) dx =

Z
L

f
0
w2 (xb) sin xb dxb

Direct numerical integrations of F
0
w1 and F

0
w2 over the ship length, L, require integration

intervals, ¢xb, which are much smaller than the smallest wave length, ¢xb 6 ¸min=10.
This means that a large number of cross sections are required.
This can be avoided by writing F

0
w1;2 in terms of f

0
w1;2 (xb) cosxb and f

0
w1;2 (xb) sinxb, in

which the integrands f
0
w1;2 (xb) vary very slow over short wave lengths. These functions

f
0
w1;2 (xb) can be approximated by second degree polynomials:

f (x) = ax2 + bx+ c

When making use of the general integral rules:

Z
cosx dx = +sinxZ
x cosx dx = +cosx+ x sin xZ
x2 cosx dx = +2x cosx+

¡
x2 ¡ 2¢ sin x

and:
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Z
sin x dx = ¡ cosxZ
x sin x dx = +sin x¡ x cosxZ
x2 sin x dx = +2x sinx¡ ¡x2 ¡ 2¢ cosx

the following expressions can be obtained for the in-phase and out-phase parts of the wave
loads, integrated from xm through xp, so over the two intervals x0 ¡ xm and xp ¡ x0:

xpZ
xm

F (x) dx =

xpZ
xm

f (x) cos x dx

=

xpZ
xm

¡
ax2 + bx+ c

¢
cos x dx

= a

xpZ
xm

x2 cosx dx+ b

xpZ
xm

x cosx dx+ c

xpZ
xm

cosx dx

= [+ (f (x)¡ 2a) sin x+ (2ax+ b) cosx]xpxm
xpZ

xm

F (x) dx =

xpZ
xm

f (x) sin x dx

=

xpZ
xm

¡
ax2 + bx+ c

¢
sin x dx

= a

xpZ
xm

x2 sin x dx+ b

xpZ
xm

x sin x dx+ c

xpZ
xm

sinx dx

= [¡ (f (x)¡ 2a) cosx+ (2ax+ b) sin x]xpxm
with coe¢cients obtained by:

a =

f(xp)¡f(x0)
xp¡x0 ¡ f(x0)¡f(xm)

x0¡xm
xp ¡ xm

b =
f (xp)¡ f (x0)

xp ¡ x0 ¡ a (xp + x0)
c = f (x0)¡ ax20 ¡ bx0

15.3 Derivatives
First and second degree functions, of which the derivatives have to be determined, have
been given in …gure 15.2-a,b.
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Figure 15.2: Determination of Longitudinal Derivatives

15.3.1 First Degree Derivatives

The two polynomials - each valid over two intervals below and above x = x0 - are given
by:

for x < x0: f (x) = amx+ bm

for x > x0: f (x) = apx+ bp

The derivative is given by:

for x < x0:
df (x)

dx
= am

for x > x0:
df (x)

dx
= ap

It is obvious that, generally, the derivative at the left hand side of x0 - with index m
(minus) - and the derivative at the right hand side of x0 - with index p (plus) - will di¤er:"µ

df

dx

¶
x=x0

#
m (minus or left of x0)

6=
"µ
df

dx

¶
x=x0

#
p (plus or right of x0)

A mean derivative df
dx
at x = x0 can be obtained by:

µ
df

dx

¶
x=x0

=
(x0 ¡ xm) ¢

h¡
df
dx

¢
x=x0

i
m
+ (xp ¡ x0) ¢

h¡
df
dx

¢
x=x0

i
p

xp ¡ xm

15.3.2 Second Degree Derivatives

The two polynomials - each valid over two intervals below and above x = x0 - are given
by:

for x < x0: f (x) = amx
2 + bmx+ cm

for x > x0: f (x) = apx
2 + bpx+ cp
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A derivative of a second degree function:

f (x) = ax2 + bx+ c

is given by:

df (x)

dx
= 2ax+ b

This leads for x < x0 to:

µ
df

dx

¶
x=xm2

=

· ¡2 (xm1 ¡ xm2) (x0 ¡ xm1) ff (xm1)¡ f (xm2)g
¡ (xm1 ¡ xm2)2 ff (x0)¡ f (xm1)g+ (x0 ¡ xm1)2 ff (xm1)¡ f (xm2)g

¸
(xm1 ¡ xm2) (x0 ¡ xm1) (x0 ¡ xm2)µ

df

dx

¶
x=xm1

=
(xm1 ¡ xm2)2 ff (x0)¡ f (xm1)g+ (x0 ¡ xm1)2 ff (xm1)¡ f (xm2)g

(xm1 ¡ xm2) (x0 ¡ xm1) (x0 ¡ xm2)

µ
df

dx

¶
x=x0

=

·
+2 (xm1 ¡ xm2) (x0 ¡ xm1) ff (x0)¡ f (xm1)g

+(xm1 ¡ xm2)2 ff (x0)¡ f (xm1)g ¡ (x0 ¡ xm1)2 ff (xm1)¡ f (xm2)g
¸

(xm1 ¡ xm2) (x0 ¡ xm1) (x0 ¡ xm2)
and for x > x0 to:

µ
df

dx

¶
x=x0

=

· ¡2 (xp1 ¡ x0) (xp2 ¡ xp1) ff (xp1)¡ f (x0)g
¡ (xp1 ¡ x0)2 ff (xp2)¡ f (xp1)g+ (xp2 ¡ xp1)2 ff (xp1)¡ f (x0)g

¸
(xp1 ¡ x0) (xp2 ¡ xp1) (xp2 ¡ x0)µ

df

dx

¶
x=xp1

=
(xp1 ¡ x0)2 ff (xp2)¡ f (xp1)g+ (xp2 ¡ xp1)2 ff (xp1)¡ f (x0)g

(xp1 ¡ x0) (xp2 ¡ xp1) (xp2 ¡ x0)

µ
df

dx

¶
x=xp2

=

·
+2 (xp1 ¡ x0) (xp2 ¡ xp1) ff (xp2)¡ f (xp1)g

+(xp1 ¡ x0)2 ff (xp2)¡ f (xp1)g ¡ (xp2 ¡ xp1)2 ff (xp1)¡ f (x0)g
¸

(xp1 ¡ x0) (xp2 ¡ xp1) (xp2 ¡ x0)
Generally, the derivative at the left hand side of x0 - with index m (minus) - and the
derivative at the right hand side of x0 - with index p (plus) - will di¤er:"µ

df

dx

¶
x=x0

#
m (minus or left of x0)

6=
"µ
df

dx

¶
x=x0

#
p (plus or right of x0)

A mean derivative df
dx
at x = x0 can be obtained by:µ
df

dx

¶
x=x0

=
dm ¢

h¡
df
dx

¢
x=x0

i
m
+ dp ¢

h¡
df
dx

¢
x=x0

i
p

dm + dp

with:

dm =

¡
x0 ¡ xm1 ¡ xm1¡xm2

2

¢
(x0 ¡ xm2)

3 (x0 ¡ xm1)

dp =

¡
xp1 ¡ x0 ¡ xp2¡xp1

2

¢
(xp2 ¡ x0)

3 (xp1 ¡ x0)
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15.4 Curve Lengths
Discrete points, connected by a …rst degree or a second degree polynomial, are given in
…gure 15.3-a,b.

Figure 15.3: First and Second Order Curves

The curve length follows from:

smp =

xpZ
xm

ds

=

xpZ
xm

p
dx2 + dy2

15.4.1 First Degree Curves

The curve length of a …rst degree curve, see …gure 15.3-a, in the two intervals in the region
xm < x < xp is:

smp =

q
(x0 ¡ xm)2 + (y0 ¡ ym)2 +

q
(xp ¡ x0)2 + (yp ¡ y0)2

15.4.2 Second Degree Curves

The curve length of a second degree curve, see …gure 15.3-b, in the two intervals in the
region xm < x < xp is:

smp = p2

½
p0

q
1 + p20 + ln

·
p0 +

q
1 + p20

¸
¡ p1

q
1 + p21 ¡ ln

·
p1 +

q
1 + p21

¸¾
with:

cos® =
xp ¡ xmq

(xp ¡ xm)2 + (yp ¡ ym)2

sin® =
yp ¡ ymq

(xp ¡ xm)2 + (yp ¡ ym)2
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p0 = ¼ + 2 ¢ (xp ¡ xm) cos®+ (yp ¡ ym) sin®
(xp ¡ x0) cos®+ (yp ¡ y0) sin®

p1 =
(y0 ¡ ym) cos®¡ (x0 ¡ xm) sin®
(x0 ¡ xm) cos®+ (y0 ¡ ym) sin® ¡

(x0 ¡ xm) cos®+ (y0 ¡ ym) sin®
(xp ¡ x0) cos®+ (yp ¡ y0) sin®

p2 =
(xp ¡ x0) cos®+ (yp ¡ y0) sin®

4
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