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Abstract

This report describes in detail the theoretical backgrounds of the six degrees of
freedom ship motions program SEAWAY.

SEAWAY is a frequency-domain ship motions computer code, based on the linear
strip theory, to calculate the wave-induced loads, motions, added resistance and
internal loads for six degrees of freedom of displacement ships, yachts and barges,
sailing in regular and irregular waves. When not taking into account interaction
effects between the two individual hulls, these calculations can be carried out for
twin-hull ships, such as semi-submersibles and catamarans, too. This potential theory
program is suitable for deep water as well as for shallow water. Viscous roll damping,
bilge keels, anti-roll tanks, free surface effects and linear springs can be added. A
dedicated editor takes care for a simple input of data.

This report and other information on the strip theory program SEAWAY can be
found on the Internet at web site http://dutw189.wbmt.tudelft.nl/~johan, which can
also be reached by a link to this site from http://www.shipmotions.nl.

Aditional information can be obtained by e-mail (J.M.J.Journee@wbmt.tudelft.nl)
from the author.

The last revision of this report is dated: 3 July 2001. Remarks and errata are
very welcome!
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Chapter 1

Introduction

This report aims being a guide and an aid for those who want to study the theoretical
backgrounds and the algorithms of a ship motions computer program based on the strip
theory.

The present report describes in detail the theoretical backgrounds and the algorithms of
a six degrees of freedom ship motions personal computer program, named SEAWAY. A
User Manual is given by [Journée, 2001a]. Extensive verifications and validations of this
program have been presented by [Journée, 2001b].

This program, based on the ordinary and the modified strip theory, calculates the wave-
induced loads and motions with six degrees of freedom of mono-hull ships and barges, sailing
in a seaway. When not taking into account interaction effects between the two individual
hulls, these calculations can be carried out for twin-hull ships, such as semi-submersibles
and catamarans, too.

In the past a preliminary description of all algorithms, used in strip theory based ship
motions calculations, has been given by the author, see [Journée, 1992]. Since then, this
program has been extended and adapted considerably, so a revised report is presented here.

Chapter 1, this introduction, gives a short survey of the contents of all chapters in this
report.

Chapter 2 gives a general description of the various strip theory approaches. A general
description of the potential flow theory is given. The derivations of the hydromechanical
forces and moments, the wave potential and the wave and diffraction forces and moments
have been described.

The equations of motion are given with solid mass and inertia terms and hydromechanical
forces and moments in the left hand side and the wave exciting forces and moments in the
right hand side.

The principal assumptions are a linear relation between forces and motions and the va-
lidity of obtaining the total forces by a simple integration over the ship length of the
two-dimensional cross sectional forces.

This includes for all motions a forward speed effect caused by the potential mass, as it has
been defined by [Korvin-Kroukovsky and Jacobs, 1957] for the heave and pitch motions.
This approach is called the ”Ordinary Strip Theory Method”. Also an inclusion of the

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.



2 CHAPTER 1. INTRODUCTION

forward speed effect caused by the potential damping, as for instance given by [Tasai, 1969],
is given. This approach is called the "Modified Strip Theory Method”.
The inclusion of so-called ”End-Terms” has been described.

Chapter 3 describes several conformal mapping methods. For the determination of the
two-dimensional hydrodynamic potential coefficients for sway, heave and roll motions of
ship-like cross sections, these cross sections are conformal mapped to the unit circle. The
advantage of conformal mapping is that the velocity potential of the fluid around an arbi-
trary shape of a cross section in a complex plane can be derived from the more convenient
circular section in another complex plane. In this manner hydrodynamic problems can be
solved directly with the coefficients of the mapping function.

The close-fit multi-parameter conformal mapping method is given. A very simple and
straight on iterative least squares method, used to determine the conformal mapping co-
efficients, has been described. Two special cases of multi-parameter conformal mapping
have been described too: the well known classic Lewis transformation ([Lewis, 1929]) with

two parameters and an Extended-Lewis transformation with three parameters, as given by
[Athanassoulis and Loukakis, 1985].

Chapter 4 describes the determination of the two-dimensional potential mass and damping
coefficients for the six modes of motions at infinite and finite water depths.

At infinite water depths, the principle of the calculation of these potential coefficients is
based on work of [Ursell, 1949] for circular cylinders and [Frank, 1967] for any arbitrary
symmetric cross section.

Starting from the velocity potentials and the conjugate stream functions of the fluid with
an infinite depth as have been given by [Tasai, 1959], [Tasai, 1960], [Tasai, 1961] and
[Jong, 1973] and using the multi-parameter conformal mapping technique, the calcula-
tion routines of the two-dimensional hydrodynamic potential coefficients of ship-like cross
sections are given for the sway, heave and roll motions.

For shallow water, the method of [Keil, 1974] - based on a variation of the theory of
[Ursell, 1949] - has been given.

The pulsating sources method of [Frank, 1967] for deep water has been described too.
Because of using the strip theory approach here, the pitch and yaw coefficients follow
from the moment about the ship’s centre of gravity of the heave and sway coefficients,
respectively.

Approximations are given for the surge coefficients.

Chapter 5 gives some corrections on the hydrodynamic damping due to viscous effects. The
surge damping coefficient is corrected for viscous effects by an empirical method, based on
a simple still water resistance curve as published by [Troost, 1955].

The analysis of free-rolling model experiments and two (semi-)empirical methods pub-
lished by [Miller, 1974] and [Ikeda et al., 1978], to determine a viscous correction of the
roll damping coefficients are described in detail.

Chapter 6 describes the determination of the hydromechanical forces and moments in the
left hand side of the six equations of motion of a sailing ship in deep water for both the
ordinary and the modified strip theory method.

Chapter 7 describes the wave exciting forces and moments in the right hand side of the six
equations of motion of a sailing ship in water with an arbitrarily depth, using the relative
motion concept for both the ordinary and the modified strip theory method.



First, the classical approach has been described. Then, an alternative approach - based on
diffraction of waves - with equivalent accelerations an velocities of the water particles has
been described.

Chapter 8 describes the solution of the equations of motion. The determination of the fre-
quency characteristics of the absolute displacements, rotations, velocities and accelerations
and the vertical relative displacements. The use of a wave potential valid for any arbitrary
water depth makes the calculation method, with deep water coefficients, suitable for ships
sailing with keel clearances down to about 50 percent of the ship’s draft.

Chapter 9 describes some anti-rolling devices. A description is given of an inclusion of
passive free-surface tanks as defined by the experiments of [Bosch and Vugts, 1966] and
by the theory of [Verhagen and van Wijngaarden, 1965]. Active fin stabilizers and active
rudder stabilizers have been described too.

Chapter 10 describes the inclusion of linear spring terms to simulate the behavior of an-
chored or moored ships.

Chapter 11 describes two methods to determine the transfer functions of the added resis-
tances due to waves. The first method is a radiated wave energy method, as published by
[Gerritsma and Beukelman, 1972]. The second method is an integrated pressure method,
as published by [Boese, 1970].

Chapter 12 describes the determination of the frequency characteristics of the lateral and
vertical shear forces and bending moments and the torsional moments in a way as presented
by [Fukuda, 1962] for the vertical mode. Still water phenomena are described too.

Chapter 13 describes the statistics in irregular waves, by using the superposition principle.
Three examples of normalized wave spectra are given: the somewhat wide wave spec-
trum of Neumann, an average wave spectrum of Bretschneider and the more narrow Mean
JONSWAP wave spectrum.

A description is given of the calculation procedure of the energy spectra and the statistics
of the ship motions for six degrees of freedom, the added resistances, the vertical relative
motions and the mechanic loads on the ship in waves coming from any direction.

For the calculation of the probability of exceeding a threshold value by the motions, the
Rayleigh probability density function has been used.

The static and dynamic swell up of the waves, of importance when calculating the proba-
bility of shipping green water, are defined according to [Tasaki, 1963].

Bow slamming phenomena are defined by both the relative bow velocity criterium of
[Ochi, 1964] and the peak bottom impact pressure criterium of [Conolly, 1974].

Chapter 14 describes the additions to the algorithms in case of twin- hull ships, such as
semi-submersibles and catamarans. For interaction effects between the two individual hulls
will not be accounted here.

Chapter 15 shows some typical numerical recipes, as used in program SEAWAY.
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Chapter 2

Strip Theory Method

The ship is considered to be a rigid body floating in an ideal fluid: homogeneous, incom-
pressible, free of surface tension, irrotational and without viscosity. It is assumed that the
problem of the motions of this floating body in waves is linear or can be linearized. As a
result of this, only the external loads on the underwater part of the ship are considered
and the effect of the above water part is fully neglected.

The incorporation of seakeeping theories in ship design has been discussed clearly by
[Faltinsen and Svensen, 1990]. An overview of seakeeping theories for ships were presented
and it was concluded that - nevertheless some limitations - strip theories are the most
successful and practical tools for the calculation of the wave induced motions of the ship,
at least in an early design stage of a ship.

The strip theory solves the three-dimensional problem of the hydromechanical and exciting
wave forces and moments on the ship by integrating the two-dimensional potential solutions
over the ship’s length. Interactions between the cross sections are ignored for the zero-speed
case. So each cross section of the ship is considered to be part of an infinitely long cylinder.

The strip theory is a slender body theory, so one should expect less accurate predictions
for ships with low length to breadth ratios. However, experiments showed that the strip
theory appears to be remarkably effective for predicting the motions of ships with length
to breadth ratios down to about 3.0, or even sometimes lower.

The strip theory is based on the potential flow theory. This holds that viscous effects are
neglected, which can deliver serious problems when predicting roll motions at resonance
frequencies. In practice, for viscous roll damping effects can be accounted fairly by empirical
formulas.

Because of the way that the forced motion problems are solved generally in the strip theory,
substantial disagreements can be found between the calculated results and the experimental
data of the wave loads at low frequencies of encounter in following waves. In practice, these
"near zero frequency of encounter problems” can be solved by forcing the wave loads to go
to zero artificially.

For high-speed vessels and for large ship motions, as appear in extreme sea states, the strip
theory can deliver less accurate results. Then the so-called ”"end-terms” can be important
too.

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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6 CHAPTER 2. STRIP THEORY METHOD

The strip theory accounts for the interaction with the forward speed in a very simple
way. The effect of the steady wave system around the ship is neglected and the free surface
conditions are simplified, so that the unsteady waves generated by the ship are propagating
in directions perpendicular to the centre plane of the ship. In reality the wave systems
around the ship are far more complex. For high-speed vessels, unsteady divergent wave
systems become important. This effect is neglected in the strip theory.

The strip theory is based on linearity. This means that the ship motions are supposed to
be small, relative to the cross sectional dimensions of the ship. Only hydrodynamic effects
of the hull below the still water level are accounted for. So when parts of the ship go out
of or into the water or when green water is shipped, inaccuracies can be expected. Also,
the strip theory does not distinguish between alternative above water hull forms.

Because of the added resistance of a ship due to the waves is proportional to the relative
motions squared, its inaccuracy will be gained strongly by inaccuracies in the predicted
motions.

Nevertheless these limitations, seakeeping prediction methods based upon the strip theory
provide a sufficiently good basis for optimization studies at an early design stage of the
ship. At a more detailed design stage, it can be considered to carry out additional model
experiments to investigate for instance added resistance or extreme event phenomena, such
as shipping green water and slamming.

2.1 Definitions

Figure 2.1 shows a harmonic wave as seen from two different perspectives. Figure 2.1-a
shows what one would observe in a snapshot photo made looking at the side of a (trans-
parent) wave flume; the wave profile is shown as a function of distance z along the flume
at a fixed instant in time. Figure 2.1-b is a time record of the water level observed at one
location along the flume; it looks similar in many ways to the other figure, but time ¢ has
replaced z on the horizontal axis.

N

N

T
¢
a - . Ca | o}
N/ LN 4 ' N~
h '(stnal} shg;‘ 'time history’
= fixe =
sea bed (X ﬁxed)

a b

Figure 2.1: Harmonic Wave Definitions

Notice that the origin of the coordinate system is at the still water level with the positive
z-axis directed upward; most relevant values of z will be negative. The still water level
is the average water level or the level of the water if no waves were present. The z-axis
is positive in the direction of wave propagation. The water depth, h, (a positive value) is
measured between the sea bed (z = —h) and the still water level (z = 0).
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The highest point of the wave is called its crest and the lowest point on its surface is the
trough. If the wave is described by a harmonic wave, then its amplitude ¢, is the distance
from the still water level to the crest, or to the trough for that matter. The subscript ”a”
denotes amplitude, here.

The horizontal distance (measured in the direction of wave propagation) between any two
successive wave crests is the wave length, A\. The distance along the time axis is the wave
period, T'. The ratio of wave height to wave length is often referred to as the dimensionless
wave steepness, 2(,/A.

Since the distance between any two corresponding points on successive sine waves is the
same, wave lengths and periods are usually actually measured between two consecutive
upward (or downward) crossings of the still water level. Such points are also called zero-
crossings, and are easier to detect in a wave record.

Since sine or cosine waves are expressed in terms of angular arguments, the wave length
and period are converted to angles using:

2w
k‘)\ — 2 N k‘:—
s or 3
2T
T = 2 : = — 2.1
w s or W= (2.1)

in which £ is the wave number (rad/m) and w is the circular wave frequency (rad/s).
Obviously, the wave form moves one wave length during one period so that its speed or
phase velocity, ¢, is given by:

(2.2)

Suppose now a sailing ship in waves, with coordinate systems as given in figure 2.2.

A right-handed coordinate system S(zo,yo, 20) is fixed in space. The (x¢, yo)-plane lies in
the still water surface, x is directed as the wave propagation and zj is directed upwards.

Another right-handed coordinate system O(z, y, z) is moving forward with a constant ship
speed V. The directions of the axes are: x in the direction of the forward speed V', y in the
lateral port side direction and z upwards. The ship is supposed to carry out oscillations
around this moving O(z,y, z) coordinate system. The origin O lies above or under the
time-averaged position of the centre of gravity G. The (x,y)-plane lies in the still water
surface.

A third right-handed coordinate system G(zy,ys, 25) is connected to the ship with G at
the ship’s centre of gravity. The directions of the axes are: z; in the longitudinal forward
direction, y, in the lateral port side direction and z, upwards. In still water, the (xy, yp)-
plane is parallel to the still water surface.

If the wave moves in the positive xy-direction (defined in a direction with an angle u relative
to the ship’s speed vector, V'), the wave profile - the form of the water surface - can now
be expressed as a function of both xy and t as follows:

¢ = (,cos(kxy — wt) or: ¢ = (,cos(wt — kxo) (2.3)
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Figure 2.2: Coordinate System

The right-handed coordinate system O(z,y, z) is moving with the ship’s speed V', which
yields:

xg = Vitcospu+ xcosp+ysinp (2.4)
From the relation between the frequency of encounter w, and the wave frequency w:
we =w — kV cos p (2.5)
follows:
¢ = (, cos(wet — kx cos pp — ky sin p) (2.6)

The resulting six ship motions in the O(z,y, z) system are defined by three translations
of the ship’s centre of gravity in the direction of the z-, y- and z-axes and three rotations
about them:

surge T = x4 cos(wet + €4¢)
sway Y = Yo cOs(wet + €4¢)
heave : 2 = 24 co8(wet + €4¢)
roll : ¢ = ¢, cos(wet + €4¢)
pitch : 0 = 6, cos(wet + €o¢)
yaw Y = 1), cos(wet + y¢) (2.7)

The phase lags of these motions are related to the harmonic wave elevation at the origin
of the O(z,y, z) system, the average position of the ship’s centre of gravity:

wave: ¢ = (, cos(wet) (2.8)

The harmonic velocities and accelerations in the O(z,y, z) system are found by taking the
derivatives of the displacements, for instance for surge:

surge displacement : T = Tqco8(wet + €4¢)
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surge velocity : T = —Wekq Sin(wet + €4¢)

surge acceleration : i = —wlz, cos(wet + ) (2.9)

2.2 Incident Wave Potential

In order to use the linear potential theory with waves, it will be necessary to assume that
the water surface slope is very small. This means that the wave steepness is so small
that terms in the equations of motion of the waves with a magnitude in the order of the
steepness-squared can be ignored.

Suppose a wave moving in the z-z plane. The profile of a simple wave with a small steepness
looks like a sine or a cosine and the motion of a water particle in a wave depends on the
distance below the still water level. This is reason why the wave potential is written as:

S, (2, 2,t) = P(z) - sin (kz — wt) (2.10)

in which P(z) is an (as yet) unknown function of z.
The velocity potential ®,,(z, z,t) of the harmonic waves has to fulfill four requirements:
1. Continuity condition or Laplace equation
2. Sea bed boundary condition
3. Free surface dynamic boundary condition
4. Free surface kinematic boundary condition.

These requirements lead to a more complete expression for the velocity potential as will be
explained in the following sections. The relationships presented in these sections are valid
for all water depths, but the fact that they contain so many hyperbolic functions makes
them cumbersome to use. Engineers - as opposed to (some) scientists - often look for ways
to simplify the theory. The simplifications stem from the following approximations for
large and very small arguments, s, as shown in figure 2.3:

for large arguments, s sinh(s) = cosh(s) > s
tanh(s) 1 (2.11)

Q

for small arguments, s  sinh(s) ~ tanh(s)~s
cosh(s)

Q
—

(2.12)

2.2.1 Continuity Condition

The velocity of the water particles (u,v,w) in the three translational directions, or alter-
natively (v,, vy, v;), follow from the definition of the velocity potential, ®,,:

0, 0P, 0P,
'LL:U:BZE 'U:'Uy:a—y 'U):'UZIW (213)
Since the fluid is homogeneous and incompressible, the continuity condition becomes:
ou Ov Gw_o (2.14)

%—Fa—yﬁ-a—
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cosh s //sinh s
7s
/
1 i

/ tanh s
| | ] 0 | | |
3 2 1 0 1 2 3
— S

Figure 2.3: Hyperbolic Functions Limits

2.2.2 Laplace Equation

This continuity condition results in the Laplace equation for potential flows:

0’®, o0*®, 0*0,
52 T ap T am =" (2.15)

Water particles move here in the x-z plane only, so in the equations above:

Vi, =

v=——=0 and —=-——=0 (2.16)

Taking this into account, a substitution of equation 2.10 in equation 2.15 yields a homo-
geneous solution of this equation:

d?P(z)

——~ —KP(x) =0 (2.17)

with as solution for P(z):

P(z) = C1e™ + Che™* (2.18)

Using this result from the first boundary condition, the wave potential can be written now
with two unknown coefficients as:

D, (z, 2, t) = (Cre™ + Coe™?) - sin (kz — wt) (2.19)
in which:
®,(z,2,t) = wave potential (m?/s)
e = Dbase of natural logarithms (-)
C1, Cy = as yet undetermined constants (m?/s)

wave number (1/m)

time (s)

horizontal distance (m)

vertical distance, positive upwards (m)
= wave frequency (1/s)

€ w8 <
I
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2.2.3 Sea Bed Boundary Condition

The vertical velocity of water particles at the sea bed is zero (no-leak condition):

o0,

a5, - 0 for: z = —h (2.20)
Substituting this boundary condition in equation 2.19 provides:
kCre ™ — kCoet™ = 0 (2.21)
By defining:
C =20 ™ = 2Cye " (2.22)
or: o o
C, = Ee%h and  Cy= Ee—kh (2.23)

it follows that P(z) in equation 2.18 can be worked out to:

C
P(Z) _ E (e+k(h+z)+e—k(h+z))

= Ccoshk(h+2) (2.24)

and the wave potential with only one unknown becomes:

b, (z,2,t) = C - coshk (h+ z) - sin (kz — wt) (2.25)

in which C' is an (as yet) unknown constant.

2.2.4 Free Surface Dynamic Boundary Condition

The pressure, p, at the free surface of the fluid, z = (, is equal to the atmospheric pressure,
po- This requirement for the pressure is called the dynamic boundary condition at the free
surface.

The Bernoulli equation for an instationary irrotational flow (with the velocity given in
terms of its three components) is in its general form:

oo, 1
W+§(u2+v2+w2)+g+gz:0 (2.26)
In two dimensions, v = 0 and since the waves have a small steepness (u and w are small),

this equation becomes:

0d, p
i - 2.27
g +p+gz (2.27)
At the free surface this condition becomes:
0,
W+%+9C:O for: z=( (2.28)

The constant value py/p can be included in 0®,,/0t; this will not influence the velocities
being obtained from the potential ®,,. With this the equation becomes:
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% +g(=0 for: z = (2.29)

The potential at the free surface can be expanded in a Taylor series, keeping in mind that
the vertical displacement ( is relatively small:

{Bu(r, 2,0} = {@w(x,z,t)}z_oﬂ.{W} 0+

{aclxw(aa;z,t)}z_C _ {W}z_f()(g) (2.30)

which yields for the linearized form of the free surface dynamic boundary condition:

% +g9¢=0 for: z=10 (2.31)

With this, the wave profile becomes:

1 0%,
(=—=-

P W fOI'Z z=0 (232)

A substitution of equation 2.10 in equation 2.32 yields the wave profile:

(= % - cosh kh - cos (kx — wt) (2.33)
or:
(=¢(,cos(kr—wt) with: (,= we cosh kh (2.34)
g

With this the corresponding wave potential, depending on the water depth h, is given by
the relation:

(,9 coshk(h+ z)
w cosh kh

o, = -sin(kx — wt) (2.35)

or when wt is the first of the sine function arguments, as generally will be used in ship
motion equations:

_ —C,9 coshk(h+ z)
T w cosh kh

o, - sin(wt — kx) (2.36)

In deep water, the expression for the wave potential reduces to:

_ =9
w

o, e - sin(wt — k) (deep water) (2.37)
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2.2.5 Free Surface Kinematic Boundary Condition

So far the relation between the wave period T and the wave length, A, is still unknown.
The relation between T" and A (or equivalently w and k) follows from the boundary condition
that the vertical velocity of a water particle in the free surface of the fluid is identical to the
vertical velocity of that free surface itself (no-leak condition); this is a kinematic boundary
condition.

Using the equation of the free surface 2.34 yields:

d 0 a¢ d
d—j = 8—§ + 8—i . d—f for the wave surface: z = (
a¢ dg
- s} 2.38
ot T dz (2.38)
The second term in this expression is a product of two values, which are both small because
of the assumed small wave steepness. This product becomes even smaller (second order)

and can be ignored, see figure 2.4.

2,0
A ¢
aC

X
/ dx

Figure 2.4: Kinematic Boundary Condition

This linearization provides the vertical velocity of the wave surface:

dz 0C
— == for th face: z = 2.
prialen or the wave surface: z = ( (2.39)
The vertical velocity of a water particle in the free surface is then:
0®, 9I¢
w5 f = 2.40
o o or z=0 (2.40)

Analogous to equation 2.31 this condition is valid for z = 0 too, instead of for z = ( only.
A differentiation of the free surface dynamic boundary condition (equation 2.31) with
respect to ¢t provides:

92d,  OC
or after re-arranging terms:
o 1 92,
—+—- =0 fi =0 2.42
En + PR or z ( )

Together with equation 2.39 this delivers the free surface kinematic boundary condition or
the Cauchy-Poisson condition:
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0z 1 9,

1
o g o

=0 for: z=10 (2.43)

2.2.6 Dispersion Relationship

The information is now available to establish the relationship between w and k (or equiva-
lently 7" and \) referred to above. A substitution of the expression for the wave potential
(equation 2.35) in equation 2.43 gives the dispersion relation for any arbitrary water depth

h:

w? =k g-tanhkh (2.44)

In many situations, w or T" will be know; one must determine k or A. Since k appears in a
nonlinear way in 2.44, that equation will generally have to be solved iteratively.

In deep water (tanh kh = 1), equation 2.44 degenerates to a quite simple form which can
be used without difficulty:

wr=kg (deep water) (2.45)

When calculating the hydromechanical forces and the wave exciting forces on a ship, it
is assumed that © ~ 3, y = y, and 2z = z,. In case of forward ship speed, the wave
frequency w has to be replaced by the frequency of encounter of the waves w.. This leads
to the following expressions for the wave surface and the first order wave potential in the
G(zp, Y, 2p) System:

¢ = (, cos(wet — kxy cos p — kyysin p) (2.46)

and the expression for the velocity potential of the regular waves, ®,,, becomes:

_ —C,9 coshk(h+z) .

P, » cosh (k1) sin(wet — kap cos p — kyp sin p1) (2.47)

2.2.7 Relationships in Regular Waves

Figure 2.5 shows the relation between A\, T', ¢ and h for a wide variety of conditions. Notice
the boundaries A\/h ~ 2 and A/h ~ 20 in this figure between short (deep water) and long
(shallow water) waves.

2.3 Floating Rigid Body in Waves

Consider a rigid body, floating in an ideal fluid with harmonic waves. The water depth is
assumed to be finite. The time-averaged speed of the body is zero in all directions. For
the sake of simple notation, it is assumed here that the O(z, y, z) system is identical to the
S(zo, Yo, 20) system. The z-axis is coincident with the undisturbed still water free surface
and the z-axis and zp-axis are positive upwards.

The linear fluid velocity potential can be split into three parts:

®(2,y,2,1) = D, + Dy + By (2.48)

in which:
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Figure 2.5: Relationships between A\, T', ¢ and h
®, = the radiation potential for the oscillatory motion of the body in still water
®,, = the incident undisturbed wave potential
®, = the diffraction potential of the waves about the restrained body

2.3.1 Fluid Requirements

From the definition of a velocity potential ® follows the velocity of the water particles in
the three translational directions:

99 99 L

Vp = — vV, = — v, = —
ox Y oy 0z

(2.49)

The velocity potentials, & = &, + &, + ¢4, have to fulfill a number of requirements
and boundary conditions in the fluid. Of these, the first three are identical to those in
the incident undisturbed waves. Additional boundary conditions are associated with the
oscillating floating body.

1. Continuity Condition or Laplace Equation
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As the fluid is homogeneous and incompressible, the continuity condition:

vy + % + %
ox dy 0z
results into the equation of Laplace:

o2d 920 0%
= 2.51
ox? + Oy? * 022 0 (251)

—0 (2.50)

V20 =

. Sea Bed Boundary Condition

The boundary condition on the sea bed, following from the definition of the velocity

potential, is given by:
od

5 = 0 for: z = —h (2.52)

. Boundary Condition at the Free Surface

The pressure in a point P(z,y, z) is given by the linearized Bernoulli equation:

P
- —p— — . il - £ 2.
p=—pgs—p9Eor TS (2.53)

At the free surface of the fluid, so for z = ((z,v, z,t), the pressure p is constant.
Because of the linearization, the vertical velocity of a water particle in the free surface

becomes: J 9 oc
z
B 2.54
dt 0z ot ( )
Combining these two conditions provides the boundary condition at the free surface:
9*d 0P

. Kinematic Boundary Condition on the Oscillating Body Surface

The boundary condition at the surface of the rigid body plays a very important role.
The velocity of a water particle at a point at the surface of the body is equal to the
velocity of this (watertight) body point itself. The outward normal velocity, v,, at a
point P(z,y, z) at the surface of the body (positive in the direction of the fluid) is
given by:

0P
T = vn(z, 9, 2, t) (2.56)
Because the solution is linearized, this can be written as:
L :
o= vp(z,y, 2,t) = ;Uj - f; (2.57)

in terms of oscillatory velocities, v;, and generalized direction-cosines, f;, on the
surface of the body, S, given by:

fi = cos(n,z)
fo = cos(n,y)
fs = cos(n,z)
fa = ycos(n,z) —zcos(n,y) =y - fs— 2z fa
fs = zcos(n,z) —xcos(n,z)=z-fl—x- f3

fe = mcos(n,y) —ycos(n,x) =x- fo—y- fi (2.58)
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The direction cosines are called generalized, because f;, f» and f3 have been normal-
ized (the sum of their squares is equal to 1) and used to obtain fy, f5 and fs.
Note: The subscripts 1, 2, ...6 are used here to indicate the mode of the motion. Also
displacements are often indicated in literature in the same way: x1, xs, ...x4.

5. Radiation Condition
The radiation condition states that when the distance R of a water particle to the
oscillating body tends to infinity, the potential value tends to zero:

lim & =0 (2.59)

R—o0

6. Symmetric or Anti-symmetric Condition
Since ships and many other floating bodies are symmetric with respect to its middle
line plane, one can make use of this to simplify the potential equations:

D (—z,y) = —0I(4x,y)  for sway
OO (—z,y) = +0®(4z,y)  for heave
@(4)<_a;7 y) = _q><4>(+g;, Y) for roll (2.60)

in which ®® is the velocity potential for the given direction i.

This indicates that for sway and roll oscillations, the horizontal velocities of the water
particles, thus the derivative 0®/0z, at any time on both sides of the body must have
the same direction; these motions are anti-symmetric. For heave oscillations these
velocities must be of opposite sign; this is a symmetric motion. However, for all three
modes of oscillations the vertical velocities, thus the derivative 9® /0y, on both sides
must have the same directions at any time.

2.3.2 Forces and Moments

The forces F' and moments M follow from an integration of the pressure, p, over the
submerged surface, S, of the body:

F = —//(p~ﬁ)-d5
M = —//p-(Fxﬁ)~dS (2.61)

in which 77 is the outward normal vector on surface dS and 7 is the position vector of
surface dS in the O(z,y, z) coordinate system.

The pressure p - via the linearized Bernoulli equation - is determined from the velocity
potentials by:

_ 0

B oo, 09, 094
= —p< 5 + 5 + (,%)—pgz (2.62)
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which can obviously be split into four separate parts, so that the hydromechanical forces
F' and moments M can be split into four parts too:

= 0o, 0o, 09, .
F_p//<8t+8t+8t+gz)nd8
S

- 0P, 09, 0Py L
M = p//(8t+ T +8t +gz)(r><n)-d5 (2.63)
s

or:

— — — — —

M = M,+ M, + M+ M, (2.64)

2.3.3 Hydrodynamic Loads

The hydrodynamic loads are the dynamic forces and moments caused by the fluid on an
oscillating body in still water; waves are radiated from the body. The radiation potential,
®,., which is associated with this oscillation in still water, can be written in terms, ®;, for
6 degrees of freedom as:

6
S, (z,y,2,t) = Zq)j(x,y,z,t)
j=1

- Z ¢;(,y,2) - v;(t) (2.65)

in which the space and time dependent potential term, ®;(x,y, z,t) in direction j, is now
written in terms of a separate space dependent potential, ¢;(z,y, 2) in direction j, multi-
plied by an oscillatory velocity, v;(¢) in direction j.

This allows the normal velocity on the surface of the body to be written as:

6

9,
and the generalized direction cosines are given by:
=%

With this the radiation terms in the hydrodynamic force becomes:

F = p/g/(a;")ﬁ-ds
= p//(%éfijj)ﬁdS (2.68)

(2.67)
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Moo= p/S/ (8§T)(Fxﬁ)d5
o /(giw) 7 x 7) - dS 2.69)
s j=1

The components of these radiation forces and moments are defined by:

and the moment term:

Fo=(Xp, X0y, X,,)  and M, = (X,,, X, X0p) (2.70)

, 0 <
Xy = P// <E;¢j1}j> fi-dS
< -

0 < o
s —

Since ¢; and ¢,, are not time-dependent in this expression, it reduces to:

with:

6
=X, fork=1,.6 (2.72)
j=1

with:

Xpy = dv] / / i7" %% 45 (2.73)

This radiation force or moment X, . in the direction k is caused by a forced harmonic
oscillation of the body in the direction j. This is generally true for all j and k in the range
from 1 to 6. When j = k, the force or moment is caused by a motion in that same direction.
When j # k, the force in one direction results from the motion in another direction. This
introduces what is called coupling between the forces and moments (or motions).

The above equation expresses the force and moment components, X,, = in terms of still
unknown potentials, ¢;; not everything is solved yet! A solution for this Wlll be found later
in this chapter.

Oscillatory Motion

Now an oscillatory motion is defined; suppose a motion (in a complex notation) given by:
Sj = Sq;e (2.74)

Then the velocity and acceleration of this oscillation are:

G — L —iwt
S§j = Uj = TWWSye

dv; ,
5 = e —iw’s,, e (2.75)
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The hydrodynamic forces and moments can be split into a load in-phase with the acceler-
ation and a load in-phase with the velocity:

X

Tkj

—Mkij — Nkij
o 2 ) . ) —iwt
= (sajw My; + zsaijk]) e

= —8q,;W p//qzﬁ a¢kd5 e Wt (2.76)

So in case of an oscillation of the body in the direction j with a velocity potential ¢;, the
hydrodynamic mass and damping (coupling) coefficients are defined by:

M,; = //@wk .dS and Ny = -9 pw//gzﬁja(bk dS Y (2.77)

In case of an oscillation of the body in the direction k£ with a velocity potential ¢, the
hydrodynamic mass and damping (coupling) coefficients are defined by:

0.
M, = —R //gzﬁk 1.4S and  Nj,=-S PW//%%'dS (2.78)
s

Green’s Second Theorem

Green’s second theorem transforms a large volume-integral into a much easier to handle
surface-integral. Its mathematical background is beyond the scope of this text. It is valid
for any potential function, regardless the fact if it fulfills the Laplace condition or not.
Consider two separate velocity potentials ¢; and ¢;. Green’s second theorem, applied to
these potentials, is then:

/V[/(cbj.v%k—gzsk.v%j) .dv*:/S*/ <¢j%_¢k%¢ > . 45" (2.79)

This theorem is generally valid for all kinds of potentials; it is not necessary that they
fullfil the Laplace equation.

In Green’s theorem, S* is a closed surface with a volume V*. This volume is bounded
by the wall of an imaginary vertical circular cylinder with a very large radius R, the sea
bottom at z = —h, the water surface at z = ( and the wetted surface of the floating body,
S; see figure 2.6.

Both of the above radiation potentials ¢; and ¢, must fulfill the Laplace equation (V2¢j =
V3¢, = 0). So the left hand side of the above equation becomes zero which yields for the
right hand side of this equation:

/ / b5 9 g5+ — / / qﬁk%-dS* (2.80)
o

The boundary condition at the free surface becomes for ® = ¢ - e=**:

2

2
w ¢+gaz

=0 for: z =10 (2.81)
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Figure 2.6: Boundary Conditions

or with the dispersion relation, w?/g = k tanh kh:

ktanh kh - ¢ = % for: z=10 (2.82)

This implies that at the free surface of the fluid one can write:

_ O¢, _ 09 _ 1 O¢
ktanhkh - ¢, = ZF = 3% — O = ammn o
at the free surface

0, 09, _ 1 0¢;
ktanhkh - ¢, = 52 =52 — &, = tmmmn o

When taking also the boundary condition at the sea bed and the radiation condition on
the wall of the cylinder in figure 2.6:

9% _ L m 6 —
I 0 (for: z=—h) and }%ggogb =0 (2.83)

into account, the integral equation over the surface S* reduces to:
8¢k a¢j
k.48 = —Z. 2.84
[[ 65k as = [[ o52as (2.84)
S s

in which S is the wetted surface of the body only.
Note that the ¢; and ¢, still have to be evaluated.

Potential Coefficients

The previous section provides - for the zero forward ship speed case - symmetry in the
coefficients matrices with respect to their diagonals so that:

Mjk = Mkj and Njk = Nkj (285)
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Because of the symmetry of a ship some coefficients are zero and the two matrices with
hydrodynamic coefficients for a ship become:

M11 0 M13 0 M15 0
0 M22 0 M24 O M26
Ms;, 0 Mss 0 Mg O

Hydrodynamic mass matrix: 0 My 0 My 0 M (2.86)
Ms;, 0 Mss 0 DMss O
0 M, 62 0 M, 64 0 M, 66
NH 0 N13 0 N15 0
0 N 22 O N 24 O N 26
Hydrodynamic damping matrix: No o O Nag 0 Ngs 0 (2.87)

0 N42 0 N44 0 N46
N51 O N53 O N55 O
0 N62 0 N64 0 N66

For clarity, the symmetry of terms about the diagonal in these matrices (for example
that My3 = Mjz; for zero forward speed) has not been included here. The terms on the
diagonals (such as M,,, for example) are the primary coefficients relating properties such
as hydrodynamic mass in one direction to the inertia forces in that same direction. Off-
diagonal terms (such as M;3) represent hydrodynamic mass only which is associated with
an inertia dependent force in one direction caused by a motion component in another.

Forward speed has an effect on the velocity potentials itself, but is not discussed here. This
effect is quite completely explained by [Timman and Newman, 1962].

2.3.4 Wave and Diffraction Loads

The wave and diffraction terms in the hydrodynamic force and moment are:

F4J@_g//( a%>(w (2.88)
+m@_¢//< 8%)@xﬁms (2.89)

The principles of linear superposition allow the determination of these forces on a restrained
body with zero forward speed; 0®/0n = 0. This simplifies the boundary condition on the
surface of the body to:

and:

0o 0%, 0ds

The space and time dependent potentials, ®,,(z,y, z,t) and ®4(x,y, 2,t), are written now

in terms of isolated space dependent potentials, ¢, (x,y, z) and ¢4(z,y, z), multiplied by a

normalized oscillatory velocity, v(t) =1 - e
®w(muy7zut) ¢w<$73/7 ) 'eith

q)d<m7y7zut) = ¢d<m7yuz) ' eith (291)
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This results into:
9y _ _0¢4
on  On
With this and the expressions for the generalized direction-cosines it is found for the wave
forces and moments on the restrained body in waves:

Xoo = —ipe ™ [ [ (0,46, uas
S

= —ipe ™t / / (b, + Pa) %dé” for: k=1,...6 (2.93)
S

(2.92)

in which ¢, is the radiation potential.

The potential of the incident waves, ¢,,, is known, but the diffraction potential, ¢,, has
to be determined. Green’s second theorem provides a relation between this diffraction
potential, ¢,;, and a radiation potential, ¢,:

/ / ¢d@ds / / ¢ka¢dds (2.94)

and with d¢,,/On = —0¢,/On one finds:

/ [ ouras - / [ aSpzas (2.95)

This elimination of the diffraction potential results into the so-called Haskind relations:
Xy, = —ipe”" // < 00y + ¢y, 8; ) ds  for: k=1,..6 (2.96)

This limiters the problem of the diffraction potential because the expression for X,, de-
pends only on the wave potential ¢,, and the radiation potential ¢,.

These relations, found by [Haskind, 1957], are very important; they underlie the relative
motion (displacement - velocity - acceleration) hypothesis, as used in strip theory. These
relations are valid only for a floating body with a zero time-averaged speed in all directions.
[Newman, 1962] however, has generalized the Haskind relations for a body with a constant
forward speed. He derived equations which differ only slightly from those found by Haskind.
According to Newman’s approach the wave potential has to be defined in the moving
O(z,y, z) system. The radiation potential has to be determined for the constant forward
speed case, taking an opposite sign into account.

The corresponding wave potential for deep water, as given in the previous section, now
becomes:

o, = - eF* . sin(wt — kx cos p — ky sin p)
w
_ —ZCag . ekz . eik:(mcos,quysin,u)efiwt (297)
w

so that the isolated space dependent term is given by:

qbw _ —iCag . ek:z . 6ik:(xcosu+ysinu) (298)
w
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In these equations is p the wave direction.
The velocity of the water particles in the direction of the outward normal n on the surface

of the body is:
96, 9z (ox ay
o (éwk{an—l—z(ancosu—i-ansm,u)}
= ¢ k{fs +i(ficosp+ fasinp)} (2.99)

With this, the wave loads are given by:

Xoo== ipe [ [ o.nas
S

+  ipe ™k / / G {f3 +i(ficospu+ fasinp)}dS for:k = 1,..(@.100)
S

The first term in this expression for the wave forces and moments is the so-called Froude-
Krilov force or moment, which is the wave load caused by the undisturbed incident wave.
The second term is caused by the disturbance caused by the presence of the (fixed) body.

2.3.5 Hydrostatic Loads

In the notations used here, the buoyancy forces and moments are:

ﬁsng//zﬁ-ds and ]\Zfsng//z(Fxﬁ)-dS (2.101)
S

S

or more generally:
X, = pg// z2fy - dS for: k=1,...6 (2.102)
s

in which the X, are the components of these hydrostatic forces and moments.

2.4 Equations of Motion

The total mass as well as its distribution over the body is considered to be constant with
time. For ships and other floating structures, this assumption is normally valid during a
time which is large relative to the period of the motions. This holds that small effects -
such as for instance a decreasing mass due to fuel consumption - can be ignored.

The solid mass matrix of a floating structure is given below.

oV 0 0 0 0 0
0 oV 0 0 0 0
. 1o 0 v 0 0 o0
Solid mass matrix: m = 0 0 0 L. 0 —IL. (2.103)
0o 0 0 0 I, 0
o o0 0 —-I., 0 I,
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The moments of inertia here are often expressed in terms of the radii of inertia and the
solid mass of the structure. Since Archimedes law is valid for a floating structure:

Ly, = kyyz - pV
L. = k.>-pV (2.104)

When the distribution of the solid mass of a ship is unknown, the radii of inertia can be
approximated by:

kyr =~ 030-Bto0.40-B
for ships: ky, ~ 022-Lto0.28-L (2.105)
k., ~ 022-Lt0028-L

in which L is the length and B is the breadth of the ship. Often, the (generally small)
coupling terms, I, = I,,, are simply neglected.
Bureau Veritas proposes for the radius of inertia for roll of the ship’s solid mass:

—\ 2
kze = 0.289 - B - <1.0+ (2 '§G> ) (2.106)

in which KG is the height of the center of gravity, G, above the keel.

For many ships without cargo on board (ballast condition), the mass is concentrated at
the ends (engine room aft and ballast water forward to avoid a large trim), while for ships
with cargo on board (full load condition) the - more or less amidships laden - cargo plays
an important role. Thus, the radii of inertia, k,, and k,,, are usually smaller in the full
load condition than in the ballast condition for normal ships. Note that the longitudinal
radius of gyration of a long homogeneous rectangular beam with a length L is equal to

about 0.29 - L (: V112 L).
The equations of motions of a rigid body in a space fixed coordinate system follow from

Newton’s second law. The vector equations for the translations of and the rotations about
the center of gravity are given respectively by:

— d — — d yd
F=2(m0) and M= (#) 2.107
dt dt ( )
in which:
F = resulting external force acting in the center of gravity
m = mass of the rigid body
U = instantaneous velocity of the center of gravity
M = resulting external moment acting about the center of gravity
H = instantaneous angular momentum about the center of gravity
t = time

Two important assumptions are made for the loads in the right hand side of these equations:

a. The so-called hydromechanical forces and moments are induced by the harmonic
oscillations of the rigid body, moving in the undisturbed surface of the fluid.
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b. The so-called wave exciting forces and moments are produced by waves coming
in on the restrained body.

Since the system is linear, these loads are added to obtain the total loads. Thus, after
assuming small motions, symmetry of the body and that the x-, y- and z-axes are principal
axes, one can write the following six motion equations for the ship:

d
Surge: 7 (pV - &) =pV-i = Xp, + Xu,
d . .
Sway: = PV -7) =pV i = Xy + Xuy
d
Heave: pm (pV - 2) =pV -2 = Xpy + X
d . . - -
Roll: E(Qf¢—h,¢>:Qf¢—Lm¢;:XM+XW
d .
Pitch: % (Iyy : 9) - I:r:r -0 = Xh5 + Xw5
d . . - .
Yaw: a(jzz,éb_[zxé) _Izz¢_jzx¢ :Xh5+Xw5
(2.108)
in which:
p = density of water
\Y = volume of displacement of the ship
I = solid mass moment of inertia of the ship
Xhy, Xy, Xps = hydromechanical forces in the z-, y- and z-directions respectively
Xhys Xns, Xps = hydromechanical moments about the z-, y- and z-axes respectively
Xuwys Xy, Xuws = exciting wave forces in the z-, y- and z-directions respectively
Xuwsy Xus, Xuwg = exciting wave moments about the z-, y- and z-axes respectively

Generally, a ship has a vertical-longitudinal plane of symmetry, so that its motions can be
split into symmetric and anti-symmetric components. Surge, heave and pitch motions are
symmetric motions, that is to say that a point to starboard has the same motion as the
mirrored point to port side. It is obvious that the remaining motions sway, roll and yaw
are anti-symmetric motions. Symmetric and anti-symmetric motions are not coupled; they
don’t have any effect on each other. For instance, a vertical force acting at the center of
gravity can cause surge, heave and pitch motions, but will not result in sway, roll or yaw
motions.

Because of this symmetry and anti-symmetry, two sets of three coupled equations of motion
can be distinguished for ships:

Surge : pV - @ —Xn, =Xu,
Heave: pV.Z —Xpy = Xus symmetric motions (2.109)
Pitch: I, -6 —Xny = Xus
SW&y : pV : y I:rz w _Xhz = sz
Roll : Iy - ¢ —Xn, = Xu, anti-symmetric motions (2.110)

Yaw: L. -0 —L,-¢ —Xp, = Xug
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Note that this distinction between symmetric and anti-symmetric motions disappears when
the ship is anchored. Then, for instance, the pitch motions can generate roll motions via
the anchor lines.

The coupled surge, heave and pitch equations of motion are:

(,OV + CL11) - X +bll - X +ci1x )
ta13 - Z +biz-Z ez 2
a5 -0 +bis-0 4ci5-0 =X, (surge)

asy - +bgl'i +cC31 X

+<,0V + CL33) . Z +633 . Z +cC33 - 2 S}I/IIlIcl)Itrll(e)flrle (2111)
+ass - 0 +b35 -0 +C35 - 0 = Xw3 (heave)
as, - T +b51 - T +cC51 - X
+CL53 . Z +b53 . Z +C53 Z
+<+Iyy + CL55) -0 +b55 -0 +cCs5 - 6 = Xw5 (pltCh) )
The coupled sway, roll and yaw equations of motion are:
(pV + ags) - Y +bp-y +cm-y )
+ag4 - ¢ +boy - ¢ +cog - @
+ags Y +by - Fc-p =Xy, (sway)
(a2 - y ez - y T2y anti-symmetric
+(+lpp + a) - Abas- ¢ +as- @ - (2.112)
b : motions
H(—Lpe + aag) - Abag- ) +cg-p =X, o (roll)
ac2 Y Fbe2 Yy +cCe2-y
(=L + ags) - ¢ +bga - ¢ +Cpa - @
+(+1oe 4 aes) - +bes -V eV = Xug  (yaw)

In many applications, I, = I, is not known or small; hence their terms are often omitted.
After the determination of the in and out of phase terms of the hydromechanical and the
wave loads, these equations can be solved with a numerical method.

2.5 Strip Theory Approaches

Strip theory is a computational method by which the forces on and motions of a three-
dimensional floating body can be determined using results from two-dimensional potential
theory. Strip theory considers a ship to be made up of a finite number of transverse two-
dimensional slices which are rigidly connected to each other. Each of these slices will have
a form which closely resembles the segment of the ship which it represents. Each slice is
treated hydrodynamically as if it is a segment of an infinitely long floating cylinder; see
figure 2.7.

This means that all waves which are produced by the oscillating ship (hydromechanical
loads) and the diffracted waves (wave loads) are assumed to travel perpendicular to the
middle line plane (thus parallel to the y-z plane) of the ship. This holds too that the
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Figure 2.7: Strip Theory Representation by Cross Sections

strip theory supposes that the fore and aft side of the body (such as a pontoon) does not
produce waves in the x direction. For the zero forward speed case, interactions between
the cross sections are ignored as well.

Fundamentally, strip theory is valid for long and slender bodies only. In spite of this
restriction, experiments have shown that strip theory can be applied successfully for floating
bodies with a length to breadth ratio larger than three, (L/B = 3), at least from a practical
point of view.

2.5.1 Zero Forward Speed

When applying the strip theory, the loads on the body are found by an integration of the
2-D loads:

surge: Xy, = /X,’l1 - dzy Xy = /XI'U1 ~dxy
L L

sway: X, = /X}’L2 - dxy, Xy = /X,[U2 - dxy,
L L

heave: Xy, = /X;L3 - dy, Xy = /X,[U3 - dxy,
L L

roll: Xp, = /X,’l4 - dy, Xy = /X{U4 - dxy,

i3
pitch: X, = —/X,’13 cxp - dxy KXoy = —/X{U3 -y - day
L
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yaw: Xpy = /X,’AL2 cxp - day Xug = /X{UQ -y - day
9 9
(2.113)
in which:

X}, = sectional hydromechanical force or moment
in direction j per unit ship length

X{Uj = sectional exciting wave force or moment
in direction j per unit ship length

The appearance of two-dimensional surge forces seems strange here. It is strange! A more
or less empirical method is used in SEAWAY for the surge motion, by defining an equivalent
longitudinal cross section which is swaying. Then, the 2-D hydrodynamic sway coefficients
of this equivalent cross section are translated to 2-D hydrodynamic surge coefficients by
an empirical method based on theoretical results from three-dimensional calculations and
these coeflicients are used to determine 2-D loads. In this way, all sets of six surge loads can
be treated in the same numerical way in SEAWAY for the determination of the 3-D loads.
Inaccuracies of the hydromechanical coefficients of (slender) ships are of minor importance,
because these coeflicients are relatively small.

Note how in the strip theory the pitch and yaw moments are derived from the 2-D heave
and sway forces, respectively, while the roll moments are obtained directly.

The equations of motions are defined in the moving axis system with the origin at the
average position of the center of gravity, G. All two-dimensional potential coefficients
have been defined so far in an axis system with the origin, O, in the water plane; the
hydromechanical and exciting wave moments have to be corrected for the distance OG.

2.5.2 Forward Ship Speed

Relative to an oscillating ship moving forward in the undisturbed surface of the fluid, the
equivalent displacements, ¢ Zj, velocities, ( ” and accelerations, ¢ By b forward ship speed
V' in the arbitrary direction j of a water particle in a cross section are defined by:

G =) wma G =2 {0} (2.114)

D 0 8
E‘{E_V'a_x} (2.115)

is an operator which transforms the potentials ®(xg, 3o, 20, t), defined in the earth bounded
(fixed) coordinate system, to the potentials ®(z,y, z,t), defined in the ship’s steadily trans-
lating coordinate system with speed V.

Relative to a restrained ship, moving forward with speed V in waves, the equivalent j
components of water particle displacements, Cfvj, velocities, éj;j, and accelerations, &Z)j, in
a cross section are defined in a similar way by:

in which:

G b= e} wmd G =2 {8) (2.116)
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The effect of this operator can be understood easily when one realizes that in that earth-
bound coordinate system the sailing ship penetrates through a ”virtual vertical disk”.
When a ship sails with speed V' and a trim angle, 6, through still water, the relative
vertical velocity of a water particle with respect to the bottom of the sailing ship becomes
V.é.

Two different types of strip theory methods are discussed here:
1. Ordinary Strip Theory Method

According to this classic method, the uncoupled two-dimensional potential hydrome-
chanical loads and wave loads in an arbitrary direction j are defined by:

. D - "
Xy = Dt {M]/J ' C’%‘} + Njj - G, + Ko,

D . o
Xi, = MG} N+ X (2.117)

This in the first formulation of the strip theory that can be found in the literature. It
contains a more or less intuitive approach to the forward speed problem, as published
in detail by [Korvin-Kroukovsky and Jacobs, 1957] and others.

2. Modified Strip Theory Method
According to this modified method, these loads become:

) D P\ .
Xny = oy { (Ma{j - w_eij) ' Chj} + X7,
. D i ,

This formulation is a more fundamental approach of the forward speed problem, as
published in detail by [Tasai, 1969] and others.

In the equations above, M}, and N, are the 2-D potential mass and damping coefficients.
X,’,sj is the two-dimensional quasi-static restoring spring term, generally present for heave,
roll and pitch only. X }kj is the two-dimensional Froude-Krilov force or moment which is
calculated by an integration of the directional pressure gradient in the undisturbed wave
over the cross sectional area of the hull.

Equivalent directional components of the orbital acceleration and velocity, derived from
these Froude-Krilov loads, are used to calculate the diffraction parts of the total wave
forces and moments.

From a theoretical point of view, one should prefer the use of the modified method, but it
appeared from user’s experience that for ships with moderate forward speed (F'n < 0.30),
the ordinary method provides a better fit with experimental data. Thus from a practical
point of view, the use of the ordinary method is advised generally.

2.5.3 End-Terms

From the previous, it is obvious that in the equations of motion longitudinal derivatives of
the two-dimensional potential mass M;; and damping N;; will appear. These derivatives
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have to be determined numerically over the whole ship length in such a manner that the
following relation is fulfilled:

mb(L)Jrf-:d zp(0) P mb(L)d mb(L)Jrf-:d
/ f(iﬁb)dxb _ / f(iﬁb)dber/ f(ﬂfb)dber / f(iﬁb)dxb
dxy, dxy, dxy, dxy,
xp(0)—e zp(0)—e zp(0) zp(L)
wb(L)df( )
Tp
= 0 —— dx, — f(L
o)+ [ L, )
xp(0)
_ 0 (2.119)

with ¢ < L, while f(z3) is equal to the local values of M};(xp) or Nj;(zp); see figure 2.8.

Figure 2.8: Integration of Derivatives

The numerical integrations of the derivatives are carried out in the region z(0) < z;, <
xp(L) only. So, the additional so-called "end terms” are defined by f(0) and f(L).
Because the integration of the derivatives has to be carried out in the region z,(0) — e <
xp < xp(L) + €, some algebra provides the integral and the first and second order moments
(with respect to G) over the whole ship length:

wb(L)-‘rEd

/ UG

d.’l?b
sz([))—a
J:b(L)+adf( ) zp(L)
Ty _ )
/ Qo xp - dxy = f(xy) - dxy
)

zp(0)—e zp(0
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:rb(LHEd zp(L)
/ fd(;)b) cxp - dry = —2 / f(zp) - xp - day, (2.120)
zp(0)—¢ zp(0)

Note that these expressions are valid for the integrations of the potential coefficients over
the full ship length only. They can not be used for calculating local hydromechanical loads.
Also for the wave loads, these expressions can not be used, because there these derivatives
are multiplied with x,-depending orbital motions.

2.6 Hydrodynamic Coefficients

The two-dimensional hydrodynamic sway, heave and roll coefficients can be calculated by
several methods:

1. Methods based on Ursell’s Theory and Conformal Mapping
[Ursell, 1949] derived an analytical solution for solving the problem of calculating the
hydrodynamic coefficients of an oscillating circular cylinder in the surface of a fluid.

(a)

Deep Water Coefficients by Lewis Conformal Mapping

[Tasai, 1959] and [Tasai, 1961] added the so-called Lewis transformation - which
is a very simple and in a lot of cases also more or less realistic method to trans-
form ship-like cross sections to this unit circle - to Ursell’s solution . This
transformation is carried out by using a scale factor and two mapping coeffi-
cients. Only the breadth, the draft and the area of the mapped cross section
will be equal to that of the actual cross section.

Deep Water Coefficients by Close-Fit Conformal Mapping

A more accurate mapping has been added by [Tasai, 1960] too, by using more
than only two mapping coefficients. The accuracy obtained depends on the
number of mapping coefficients. Generally, a maximum of 10 coefficients are
used for defining the cross section. These coefficients are determined in such
a way that the Root Mean Square of the differences between the offsets of the
mapped and the actual cross section is minimal.

Shallow Water Coefficients by Lewis Conformal Mapping

For shallow water, the theory of [Keil, 1974] - based on a variation of Ursell’s
potential theory for circular cylinders at deep water - and Lewis conformal
mapping can be used.

2. Frank’s Pulsating Source Theory for Deep Water
Mapping methods require an intersection of the cross section with the water plane

and,

as a consequence of this, they are not suitable for submerged cross sections,

like at a bulbous bow. Also, conformal mapping can fail for cross sections with very
low sectional area coefficients, such as are sometimes present in the aft body of a
ship. [Frank, 1967] considered a cylinder of constant cross sections with an arbitrar-
ily symmetrical shape, of which the cross sections are simply a region of connected
line elements. This vertical cross section can be fully or partly immersed in a previ-
ously undisturbed fluid of infinite depth. He developed an integral equation method
utilizing the Green’s function which represents a complex potential of a pulsating
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point source of unit strength at the midpoint of each line element. Wave systems
were defined in such a way that all required boundary conditions were fulfilled. The
linearized Bernoulli equation provides the pressures after which the potential coeffi-
cients were obtained from the in-phase and out-of-phase components of the resultant
hydrodynamic loads.

The 2-D potential pitch and yaw (moment) coefficients follow from the previous heave and
sway coefficients and the arm, i.e., the distance of the cross section to the center of gravity

G.

A more or less empiric procedure has followed by the author for the surge motion. An equiv-
alent longitudinal cross section has been defined. For each frequency, the two-dimensional
potential hydrodynamic sway coefficient of this equivalent cross section is translated to
two-dimensional potential hydrodynamic surge coefficients by an empiric method, which is
based on theoretical results of three-dimensional calculations.

The 3-D coefficients follow from an integration of these 2-D coefficients over the ship’s
length. Viscous terms can be added for surge and roll.
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Chapter 3

Conformal Mapping

Ursell’s derivation of potential coefficients is valid for circular cross sections only. For the
determination of the two-dimensional added mass and damping in the sway, heave and
roll mode of the motions of ship-like cross sections by Ursell’s method, the cross sections
have to be mapped conformally to the unit circle. The advantage of conformal mapping is
that the velocity potential of the fluid around an arbitrarily shape of a cross section in a
complex plane can be derived from the more convenient circular section in another complex
plane. In this manner hydrodynamic problems can be solved directly with the coefficients
of the mapping function.

The general transformation formula is given by:

N
z = M; Z (a7(2n71<:2n_1)

n=0
with:
z=x+1y = plane of the ship’s cross section
¢ =ie*e™® = plane of the unit circle
M, = scale factor
a_1 = +1
A2p—1 = conformal mapping coefficients (n =1, ..., N)
N = number of parameters

From this follows the relation between the coordinates in the z-plane (the ship’s cross
section) and the variables in the {-plane (the circular cross section):

N

xr = —M; Z {(—1)”a2n,1e’(2"’1)a sin ((2n — 1)6)}

n=0
N

g o= MY {1 e B cos (20— 1)6))

n=0

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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Bg
z - plane £ 0 z -~ plane
T
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S Z\ !
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constant tant
n constan y

a b

Figure 3.1: Mapping Relation between Two Planes

The contour of the - by conformal mapping approximated - ship’s cross section follows
from putting o = 0 in the previous relations:

N

mo = —M;Y {(~1)"az,_1sin((2n — 1))}

yo = +M,Y {(=1)"az._1cos((2n —1)0)}

n=0

The breadth on the waterline of the approximate ship’s cross section is defined by:
N
bo=2M\,  with: A= g
n=0

with scale factor:

bo
T2,

and the draft is defined by:

N
do = M\,  with: A=Y {(=1)"az1}
n=0

3.1 Lewis Conformal Mapping

A very simple and in a lot of cases also a more or less realistic transformation of the
cross sectional hull form will be obtained with N = 2 in the transformation formula,
the well known Lewis transformation ([Lewis, 1929]). A extended description of the rep-
resentation of ship hull forms by Lewis two-parameter conformal mapping is given by
[Kerczek and Tuck, 1969].
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This two-parameter Lewis transformation of a cross section is defined by:
z=M,-(a1-C+ar- ¢ +az- ()

In here a_;=41 and the conformal mapping coefficients a; and a3 are called Lewis coeffi-
cients, while M, is the scale factor.
Then:

= M- (e"‘ sinf + a1e *sinf — aze 3% sin 39)

= M,- (eo‘ cos @ — are"* cos 8 + aze >* cos 39)
By putting a = 0 is the contour of this so-called Lewis form expressed as:

rg = M- ((1+ay)sinfd — azsin360)
Yo = M,-((1—ay)cosf+ aszcos30)

with the scale factor:

B,/2 D
M, = 8—/ or: My=—">"—
14+a;+as 1—a;+as
in which:
B, = sectional breadth on the load water line
D, = sectional draft

Now the coefficients a; and a3 and the scale factor M, will be determined in such a manner
that the sectional breadth, draft and area of the approximate cross section and of the
actual cross section are identical.

The half breadth to draft ratio Hy is given by:

_BS/2_ 1+CL1+CL3

H, =
0 Ds 1—CL1+CL3

An integration of the Lewis form delivers the sectional area coefficient o,:

A, 7w 1—af—3ad}
"~ B,D,

Os

4' (1+CL3)2—CL%

in which A, is the area of the cross section.
Putting a;, derived from the expression for Hy, into the expression for o, yields a quadratic
equation in ag:

cla§ + coas +c3 =0

4o, 4o, Hy—1\?
= 3 1— .
o= 2 (1222 ()

Cy = 261—6

in which:

c3 = 61—4
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The (valid) solutions for az and a; will become:

—Cl+3—|—\/9—201

C1

Hy—1
g . ]_
aq o+ 1 (ag+1)

Lewis forms with the other solution of a3 in the quadratic equation, with a minus sign

before the square root:
—c1+3—+v9—2¢
(&1

as =

a3 =

are looped; they intersect themselves at a point within the fourth quadrant. Since ships
are "better behaved”, these solutions are not considered.

It is obvious that a transformation of a half immersed circle with radius R will result in
My =R, a; =0 and a3 = 0.

Some typical and realistic Lewis forms are presented in figure 3.2.

BIT=0.5 BIT=1 BIT=2 = BIT=6

Figure 3.2: Typical Lewis Forms

3.1.1 Boundaries of Lewis Forms

In some cases the Lewis transformation can give more or less ridiculous results. The
following typical Lewis hull forms, with the regions of the half breadth to draft ratio H
and the area coefficient o, to match as presented before, can be distinguished:

e re-entrant forms, bounded by:

for Hy < 1.0: o, < ?;)_7; (2 — Hy)
for Hy > 1.0: o, < ?;)_7; (2 — Hio)
e conventional forms, bounded by:
for Hy < 1.0: 2—2(2—]{0) < o, < 2_7;(34_%)
for Hy > 1.0: %(2—%) < o, < %(34_%%)

e bulbous and not-tunneled forms, bounded by:

3m HO
Hy, < 1. d — — — —_—
0 <1.0 an 5 (3+ 1 ) < o, < (3—|— )
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e tunneled and not-bulbous forms, bounded by:

3 1 37 H,
Hy > 1. d — — — —
0>1.0 an 5 (3+4H0> < oy < <3—|— )

e combined bulbous and tunneled forms, bounded by:

3m 1 s 1
fi Hy, < 1.0: — — s — (1 Hy+ —
o= 32(3+4H0) DA 32(0+ 0+Ho)

3r H, T 1
fi > 1.0: — — s — —
or Hy > 1.0 o (3+ 4) < o0, < 3 (IO—i-Hg—l—HO)

e non-symmetric forms, bounded by:

0 < Hy< oo and oy > 1(1+H0+—>

These ranges of the half breadth to draft ratio Hy and the area coefficient o, for the
different typical Lewis forms are shown in figure 3.3.

1.5
asymmetric forms /
bulbous and|tunneled forms /
- 10 bulbous forms tunneled forms

Area Coefficient ¢

\ conventional forms

\//

re-entrant forms

o
3

Aspect Ratio H o

Figure 3.3: Ranges of Hy and o, of Lewis Forms

3.1.2 Acceptable Lewis Forms

Not-acceptable forms of ships are supposed to be the re-entrant forms and the asymmetric
forms. So conventional forms, bulbous forms and tunneled forms are considered to be
valid forms here, see figure 3.3. To obtain ship-like Lewis forms, the area coefficient o is
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bounded by a lower limit to omit re-entrant Lewis forms and by an upper limit to omit
non-symmetric Lewis forms:

3T T 1
f Hy <1.0: — (2 - H R — (1 Hy+ —
or Hy<1.0 32( 0) < s < 32<0+ o—l-HO)
3T 1 78 1
f Hy>1.0: — (2 - — — (1 Hy+ —
or Hy>1.0 32< Ho) < oy < 32<0+ 0+HO)

If a value of o, is outside of this range it has to be set to the value of the nearest border
of this range, to calculate the Lewis coefficients.

Numerical problems, for instance with bulbous or aft cross sections of a ship, are avoided
when the following requirements are fulfilled:

B, B,
5> > vD; and Ds > 77

with for instance v = 0.01.

3.2 Extended Lewis Conformal Mapping

Somewhat better approximations will be obtained by taking into account also the first order
moments of half the cross section about the xo- and yg-axes. These two additions to the
Lewis formulation were proposed by [Reed and Nowacki, 1974] and have been simplified
by [Athanassoulis and Loukakis, 1985] by taking into account the vertical position of the
centroid of the cross section. This has been done by extending the Lewis transformation
to N = 3 in the general transformation formula.

The three-parameter Extended-Lewis transformation is defined by:

Z = My(a_1{ + ar{™" + as¢ % + as( )

in which a_; = +1.
So:

M (e®sinf + aje”*sin § — aze >*sin 30 + aze > sin 50)

x
y = M(e®cos — aje”“cosf + aze >* cos 30 — ase°* cos 50)
By putting a = 0, the contour of this approximate form is expressed as:

rg = M,((1+ay)sinf — azsin36 + a5 sin 56)
Yo = Ms((1—ay)cosb+ ascos3b — ascosbh)

with the scale factor:

B,/2 D,
M, = / or: M, =
1+a+az+as l1—a;+as—as
and:
B, = sectional breadth on the waterline

D, = sectional draft
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Now the coeflicients a;, az and as and the scale factor M, can be determined in such
a manner that, except the sectional breadth, draft and area, also the centroids of the
approximate cross section and the actual cross section of the ship have an equal position.
The half beam to draft ratio is given by:

BS/Q . 1—|—CL1+CL3+CL5
DS n 1—CL1+CL3—CL5

HO ==

An integration of the approximate form results into the sectional area coefficient:

A, 7 1—a?—3a3 — 5d?
O‘S = _— = —_ .
BSDS 4 (1 + CL3)2 — (CLl -+ CL5)2

For the relative distance of the centroid to the keel point a more complex expression has
been obtained by [Athanassoulis and Loukakis, 1985]:

KB i=0 j=0 kZ:o (Aijkazi-102j-1024-1)

K = = 1- 3
3
Hyos Z a1
i=0

Dy

in which:

. 1-2k 1-2% 1= 1—2k
TR AN\3 =20 +j+k) 1-20—j+k) 1-20+j—k) 1—2(—i+j+k)

The following requirements should be fulfilled when also bulbous cross sections are allowed:
e re-entrant forms are avoided when both the following requirements are fulfilled:
1—a; —3a3—5as > 0

14+a;—3a3+5a5 > 0

e existence of a point of self-intersection is avoided when both the following require-
ments are fulfilled:

9aj + 145a; + 10azas + 20Hpas > 0
9a3 + 145a; — 10azas — 20Hpas > 0

Taking these restrictions into account, the equations above can be solved in an iterative
manner.

3.3 Close-Fit Conformal Mapping

A more accurate transformation of the cross sectional hull form can be obtained by using
a greater number of parameters N. A very simple and straight on iterative least squares
method of the author to determine the Close-Fit conformal mapping coefficients will be
described here shortly.
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The scale factor M, and the conformal mapping coefficients as,,_1, with a maximum value
of n varying from N = 2 until N = 10, have been determined successfully from the offsets
of various cross sections in such a manner that the mean squares of the deviations of the
actual cross section from the approximate described cross section is minimized.

The general transformation formula is given by:

=N {a20a¢@ 0}
n=0

in which: a_; = +1.
Then the contour of the approximate cross section is given by:

mo = —M,Y {(=1)"agm-1sin((2n — 1)6)}

yo = +M,Y {(=1)"az._1cos((2n —1)0)}

with the scale factor:

B, /2 D,
M, = —/ or: M,

3 (e} 5 (-1}

The procedure starts with initial values for [M; - as,_1]. The initial values of My, a; and a3
are obtained with the Lewis method as has been described before, while the initial values of
as until agy_1 are set to zero. With these [M;-as,_1] values, a 6;-value is determined for each
offset in such a manner that the actual offset (z;,y;) lies on the normal of the approximate
contour of the cross section in (z¢;, yo;). Now 6; has to be determined. Therefore a function
F(6;), will be defined by the distance from the offset (z;,y;) to the normal of the contour
to the actual cross section through (zo;, yo;), see figure 3.4.

X, X()

M Eyi)

(Xp.¥7)

X4-1-¥i-1)

AR

Figure 3.4: Close-Fit Conformal Mapping
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These offsets have to be selected at approximately equal mutual circumferential lengths,
eventually with somewhat more dense offsets near sharp corners. Then «; is defined by:
+Tip1 — Ti—1
V(@ig1 — i 1)? + Wi — Yi1)?
—Yit1 + Yi—1
V(@i — 2i1)? + (i1 — vio1)?
With this ;-value, the numerical value of the square of the deviation of (z;,y;) from
(20i, Yoi) is calculated:

cosq; =

sino; =

e; = (i — 20:)2 + (Yi — Y0i)2

After doing this for all I + 1 offsets, the numerical value of he sum of the squares of

deviations is known: ,
E=) {e}
i=0

The sum of the squares of these deviations can also be expressed as:
I N 2
E =3, (ml + 3 {(=1)"[M, - azn 1] sin ((2n — 1)9i)}>

+( (yz' — > A(=1)"[M, - g, 1] cos ((2n — 1)91)}>

Then new values of [M - ay,_1] have to be obtained in such a manner that E is minimized.
This means that each of the derivatives of this equation with respect to each coefficients
[M; - asn—1] is zero, so:
oOF
N Msag; 1}

This yields N+1 equations:

=0 for: 7=0,..N

I

Z {—sm (27 —1)6 Z{ "My - agn1]sin((2n — 1)6;)} +

1=0

n=

—cos ((25 — 1)0 Z{ "M + agn—1] cos ((2n — 1)91)}} =

= Z{m sin (25 — 1)6;) — y; cos ((25 — 1)6;)} for: j=0,..N

which are rewritten as:

Mz

[e=]

=0

3
~

{ "M, - ago1] Y {cos (25 — 2n)9i)}} =
{-z

isin (25 — 1)6;) + yicos ((2j — 1)6;)}

-
I

for: j=0,..N
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To obtain the exact breadth and draft, the last two equations are replaced by the equations
for the breadth at the water line and the draft:

{Z {(=1)"[M; - azp1]} > {cos ((2) - Zn)ei)}} _

i=0
I
= Z {—z;sin ((25 — 1)6;) + y; cos ((25 — 1)6,) } for: j=0,..N —2
i=0
N
> {IM,-as]} = Byj2 for: j=N-1
n=0

S {(-1)"[M,-ag, ]} = D, for: j=N

These N + 1 equations can be solved numerically, so that new values for [M; - as, 1] will be
obtained. These new values are used instead of the initial values to obtain new 6;-values of
the I + 1 offsets again, etc. This procedure will be repeated several times and stops when
the difference between the numerical E-values of two subsequent calculations becomes less
than a certain threshold value AFE, depending on the dimensions of the cross section; for
instance:

AE = (I +1) (0.00005 2.+ dgm)
in which:
bmaz = maximum half breadth of the cross section
ez = maximum height of the cross section

Because a_; = +1 the scale factor M, is equal to the final solution of the first coefficient
(n = 0). The N other coefficients as, ; can be found by dividing the final solutions of
[M; - as,—1] by this M,-value.

Reference is also given here to a report of [Jong, 1973]. In that report several other,
suitable but more complex, methods are described to determine the scale factor M, and
the conformal mapping coefficients as, 1 from the offsets of a cross section.

Attention has to be paid to divergence in the calculation routines and re-entrant forms.
In these cases the number N will be increased until the divergence or re-entrance vanish.
In the most worse case a "maximum” value of N will be attained without success.. One
can then switch to Lewis coefficients with an area coefficient of the cross section set to the
nearest border of the valid Lewis form area.

3.4 Comparisons

A first example has been given here for the amidships cross section of a container vessel,
with a breadth of 25.40 meter and a draft of 9.00 meter, with offsets as tabled below:

Ds —y,; i
(m) (m)
0.000 0.000
0.135 4.950
0.270 9.900
0.500 10.960
1.000 11.740
2.000 12.440
3.050 12.700
6.000 12.700
9.000 12.700

R e | s,
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For the least squares method in the conformal mapping method, 33 new offsets at equidis-
tant length intervals on the contour of this cross section can be determined by a second
degree interpolation routine. The calculated data of the two-parameter Lewis and the N-
parameter Close-Fit conformal mapping of this amidships cross section are tabled below.
The last line lists the RMS-values for the deviations of the 33 equidistant points on the

approximate contour of this cross section..

Lewis
Conformal N-Parameter Close Fit Conformal Mapping

Mapping
N (=) 2 2 3 4 5 6 7 8 9 10
2N-1 (=) 3 3 5 7 9 11 13 15 17 19
Mg (m) 12.2400 12.2457 12.2841 12.3193 12.3186 12.3183 12.3191 12.3190 12.3195 12.3194
a_1 (=) +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000 +1.0000
a (=) +0.1511 +0.1511 +0.1640 +0.1634 +0.1631 +0.1633 +0.1633 +0.1632 +0.1632 +0.1632
as (=) -0.1136 -0.1140 -0.1167 -0.1245 -0.1246 -0.1243 -0.1244 -0.1245 -0.1245 -0.1245
as (=) -0.0134 -0.0133 -0.0105 -0.0108 -0.0108 -0.0108 -0.0107 -0.0107
a7 (=) +0.0053 +0.0054 +0.0031 +0.0030 +0.0032 +0.0031 +0.0030
ag (=) -0.0024 -0.0023 -0.0024 -0.0026 -0.0029 -0.0029
ajl (=) +0.0021 +0.0022 +0.0012 +0.0014 +0.0015
a3 (=) +0.0002 +0.0002 +0.0021 +0.0020
als (=) +0.0009 +0.0007 +0.0000
ayr (=) -0.0016 -0.0015
alg (=) +0.0006
RMS (m) 0.181 0.180 0.076 0.039 0.027 0.019 0.018 0.017 0.009 0.008

Another example is given in figure 3.5, which shows the differences between a Lewis trans-
formation and a 10-parameter close-fit conformal mapping of a rectangular cross section
with a breadth of 20.00 meter and a draft of 10.00 meter.

Figure 3.5: Lewis and Close-Fit Conformal Mapping of a Rectangle
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Chapter 4

2-D Potential Coeflicients

This chapter described the various methods, used in the SEAWAY program, to obtain the
2-D potential coefficients:

e the theory of Tasai for deep water, based on Ursell’s potential theory for circular
cylinders and N-parameter conformal mapping

e the theory of Keil for shallow and deep water, based on a variation of Ursell’s potential
theory for circular cylinders and Lewis conformal mapping

e the theory of Frank for deep water, using pulsating sources on the cross sectional
contour.

During the ship motions calculations different coordinate systems, as shown in figure 2.2,
will be used. The two-dimensional hydrodynamic potential coefficients have been defined
here with respect to the O(x,y, z) coordinate system for the moving ship in still water.
However, in this section deviating axes systems are used for the determination of the two-
dimensional hydrodynamic potential coefficients for sway, heave and roll motions. This
holds for the sway and roll coupling coefficients a change of sign. The signs of the uncoupled
sway, heave and roll coefficients do not change.

For each cross section, the following two-dimensional hydrodynamic coefficients have to be
obtained:

M, and Ni, = 2-D potential mass and damping coefficients of sway

M), and NJ, = 2-D potential mass and damping coupling coefficients of roll into sway
M;, and N3, = 2-D potential mass and damping coefficients of heave

Mj;, and N, = 2-D potential mass and damping coefficients of roll

Mj, and Nj, = 2-D potential mass and damping coupling coefficients of sway into roll

The 2-D potential pitch and yaw (moment) coefficients follow from the previous heave and
sway coefficients and the arm, i.e., the distance of the cross section to the center of gravity
G.

Finally, an approximation is given for the determination of the surge coefficients M]; and
N{l .

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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4.1 Theory of Tasai

In this section, the determination of the hydrodynamic coefficients of a heaving, swaying
and rolling cross section of a ship in shallow at zero forward speed is based on work pub-
lished by [Ursell, 1949], [Tasai, 1959], [Tasai, 1960], [Tasai, 1961] and [Jong, 1973]. Tasai’s
notations have been maintained here as far as possible.

4.1.1 Heave Motions

The determination of the hydrodynamic coefficients of a heaving cross section of a ship in
deep and still water at zero forward speed, as described here, is based on work published
by [Ursell, 1949], [Tasai, 1959] and [Tasai, 1960]. Starting points for the derivation these
coefficients here are the velocity potentials and the conjugate stream functions of the fluid
as they have been derived by Tasai and also by [Jong, 1973].

Suppose an infinite long cylinder in the surface of a fluid, of which a cross section is given
in the next figure.

z - plane g - plane
Bg/2
S F X,Xg x
) N v
P Pg
Y»>Yo y

y, - cos{ut+§)

Figure 4.1: Axes System for Heave

The cylinder is forced to carry out a simple harmonic vertical motion about its initial
position with a frequency of oscillation w and a small amplitude of displacement y,:

Y = Yq cos(wt + 8)

in which ¢ is a phase angle.
Respectively, the vertical velocity and acceleration of the cylinder are:

Y = —wygsin(wt+ )
i = —wy,sin(wt + 6)

This forced vertical oscillation of the cylinder causes a surface disturbance of the fluid.



4.1. THEORY OF TASAI 49

Because the cylinder is supposed to be infinitely long, the generated waves will be two-
dimensional. These waves travel away from the cylinder and a stationary state is rapidly
attained.

Two kinds of waves will be produced:

e A standing wave system, denoted here by subscript A. The amplitudes of these waves
decrease strongly with the distance to the cylinder.

e A regular progressive wave system, denoted here by subscript B. These waves dis-
sipate energy. At a distance of a few wave lengths from the cylinder, the waves on
each side can be described by a single regular wave train.. The wave amplitude at
infinity 7, is proportional to the amplitude of oscillation of the cylinder y,, provided
that this amplitude is sufficiently small compared with the radius of the cylinder and
the wave length is not much smaller than the diameter of the cylinder.

The two-dimensional velocity potential of the fluid has to fulfil the following requirements:

1. The velocity potential must satisfy to the equation of Laplace:

o2 T Y

2. Because the heave motion of the fluid is symmetrical about the y-axis, this velocity
potential has the following relation:

from which follows:
o0 _
00

3. The linearized free surface condition in deep water is expressed as follows:

0 for: =0

2 P B
w—@—l—a—:O for: ]a:|275 and y=0

In consequence of the conformal mapping, this free surface condition can be written as:

fb@N m—1 ooy £ 9% 0 fr a>0 and = +%
- Z{(n— asn_1€ } 50 or: o> an =*5
a n=0

in which:

& W’ w?by . .
= =—M, or: {,=—— (non-dimensional frequency squared)
0o g 29
From the definition of the velocity potential follows the boundary condition on the surface
of the cylinder for oo = 0:

0%0(60) _ . Oyo

on Yon

in which n is the outward normal of the cylinder surface.
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Using the stream function ¥, this boundary condition on the surface of the cylinder (a«=0)
reduces to:

—0W,(0) .OYo
90 Yoa

= —gM, Y _{(=1)"(2n — 1)agn_1 cos ((2n — 1)6)}

Integration results into the following requirement for the stream function on the surface of

the cylinder:
N

Uo(0) = gM, > {(—1)"az,—1sin ((2n — 1)6)}
n=0
in which C(t) is a function of the time only.
When defining;:

WE) = 52 = =Y {1 asrsin((2n - 16)

the stream function on the surface of the cylinder is given by:

Wo(6) = i 2h(6) + 011

Because of the symmetry of the fluid about the y-axis, it is clear that:

C(t)=0
So: )
Wy(6) = i 2h(6)

For the standing wave system a velocity potential and a stream function satisfying to the
equation of Laplace, the symmetrical motion of the fluid and the free surface condition has
to be found.

The following set of velocity potentials, as they are given by [Tasai, 1959], [Tasai, 1960]
and [Jong, 1973, fulfil these requirements:

P, = % <mz_1 {Pom@a,, (v, 0) cos(wt) } + mz_l {Qama,,, (. 0) sin(wt)})
in which:
ba, (0, 0) = e~ 2™ cos(2md)

N
gb § : n 2n—1 —(2m+2n—1)a
_0-_ > (—1) magn,le COS ((2m + 2n — 1)9)

The set of conjugate stream functions is expressed as:

Uy =

9N
W

<Z {P2m¢A2m(a, 6) cos(wt)} + Z {Q2m¢A2m (a,0) SiIl(th)})
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in which:

Va,, (0, 0) = e 2™ sin(2m0)

N
€ 2n —1 —(@m+2n—1)a _:
—— —1)'—————a9, e 2 2n —1)0
p 50 (—1) S o — 02 1e sin ((2m +2n —1)0)

These sets of functions tend to zero as a tends to infinity.

In these expressions the magnitudes of the P, and the ()5, series follow from the boundary
conditions as will be explained further on.

Another requirement is a diverging wave train for a goes to infinity. It is therefore necessary
to add a stream function, satisfying the free surface condition and the symmetry about
the y-axis, representing such a train of waves at infinity. For this, a function describing a
source at the origin O is chosen.

[Tasai, 1959], [Tasai, 1960] and [Jong, 1973] gave the velocity potential of the progressive
wave system as:

p = T (65, (@, y) cos(wt) + @, (2, ) sin(wt)
in which:
¢p, = me " cos(vw)
oy vsin(ky) — kcos(ky) _yu
bp, me "sin(v|z|) + / Ry e "dk
0
while: )
v =— (wave number for deep water)

g
Changing the parameters delivers:

9
W

5

(gzﬁBc(a, 0) cos(wt) + ¢p_(a,0) sin(wt))

The conjugate stream function is given by:

U
W

Vp

(¥, (2, y) cos(wt) + ¢ p, (2, y) sin(wt))

in which:

VY, = me "sin(v|z|)

[e.o]

Y, = —7T€_VyCOS(I/$)+/

0

v cos(ky) + ksin(ky)
k? + 12

el gk

Changing the parameters delivers:

Up = f:l‘; (¢, (a,0) cos(wt) + ¥ (a, ) sin(wt))

When calculating the integrals in the expressions for ¢ and ¢ numerically, the conver-
gence is very slowly.
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Power series expansions, as given by [Porter, 1960], can be used instead of these last inte-
grals over k. The summation in these expansions converge much faster than the numeric
integration procedure. This has been shown before for the sway case.

The total velocity potential and stream function to describe the waves generated by a
heaving cylinder are:

b = &y + Pp
v = Uy+V¥p

So the velocity potential and the conjugate stream function are expressed by:

W

B(a,0) — 9 ((fb&(o" ) + Z {Poma,, (c, 9)}) cos(wt)

+ <¢B5 (au 9) + Z {Q2m¢A2m (Oé, 9)}) Siﬂ(bdt))

U(a,0) = 9" <<¢BC<O‘= 6) + Z {Poih 4, (v, 9)}) cos(wt)

W

+ (1#35(047 0)+ > {Qmta,, (a, 9)}) Sin(wt)>

When putting o = 0, the stream function is equal to the expression found before from the
boundary condition on the surface of the cylinder:

vy(9) = Lla ((«AB%(@HZ{sz@%zm(e)}) cos(wt)

W

+ <¢Bos(9) + Z {Qom¥ a0,., (9>}> sin(wt))

in which:
Va0, (0) = sin(2m0)

& v W 2n—1 . )
UG; =1 2m+2n—1a2"*131ﬂ((2m+2n 1)6)

In this expression g, (6) and 1, () are the values of 1 B.(a, ) and 1 B,(c, 0) at the
surface of the cylinder, so for a = 0.
So for each 6, the following equation has been obtained:

(¢Boc(9) + Z {P2m¢A02m(9)}> cos(wt)

+ <¢Bos(9) +> {sz%om(@)}) sin(wt) = —y
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The right hand side of this equation can be written as:

. 7Tu)b0
-y

= Ya e, sin(w
oRh(6) = h(O)Lrgsin(et + 0
= h(0) (Ag cos(wt) + By sin(wt))

in which:
Ay = ﬁﬂfb sin & and By = &Wfl, cos 0

a a

This results for each # into a set of two equations:
Vo, (6) + Z {Pom¥a0,,,(0)} = h(0)Ag
m=1

Vo, (0) + > {Qamtag,, 0)} = h(6)Bo

When putting § = 7/2, so at the intersection of the surface of the cylinder with the free
surface of the fluid where h(f)=1, we obtain the coefficients Ay and By:

Ao = Upo(m/2)+ Y {Pomtoao,,, (7/2)}

m=1

By = g (7/2) + Z {Qam¥ a0, (7/2)}

in which:

Eb m - 2n —1
ann(7/2) = 21" S B |
a n=0

A substitution of Ag and By into the set of two equations for each 6, results for any 6-value
less than 7/2 into a set of two equations with the unknown parameters Py, and Qa,.

So:

V0. (0) = h(0) o (7/2) = Y {fam(0) Pom}

Vp0,(0) = h(O)po, (1/2) = Y {fom(6)Qom}

m=1

in which:
Jom(0) = = a0,,,(0) + h(0)Y a,,, (7/2)

The series in these two sets of equations converges uniformly with an increasing value of
m. For practical reasons the maximum value of m is limited to M.

Each f-value less than 7/2 will deliver an equation for the P,,, and (s, series. For a lot
of f-values, the best fit values of P, and ()5, are supposed to be those found by means
of a least squares method. Note that at least M values of 6, less than 7/2, are required to
solve these equations.

Another favorable method is to multiply both sides of the equations with Af. Then the
summations over 6 can be replaced by integrations.
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Herewith, two sets of M equations have been obtained, one set for P,,, and one set for

Q?m:
w/2 w/2

P2m/f2m(9)f2n(9)d9 = /(%06(9)—}1(9)%00(7?/2)) fon(0)d0 — n=1,..M

0

(= il

/2 /2
Qom / fom(0) fon(0)d6 = / (wBOS(Q) — h(@)w305(7/2)) fon(0)do n=1,..M

Now the P, and ()2, series can be solved by a numerical method.

With these Ps,, and (),,, values, the coefficients Ay and By are known too.

From the definition of these coefficients follows the amplitude ratio of the radiated waves
and the forced heave oscillation:

Na &y

Ya A%+ B}

With the solved P, and Qs,, values, the velocity potential on the surface of the cylinder
(a=0) is known too:

W

Bo(0) — 9Ma <<¢BOC(9) + Z {P2m¢A02m(9)}> cos(wt)

+ <¢B05(9) + Z {QomBao,, (9)}> sin(wt))

m=1

in which:
b 40,,, (0) = cos(2m0)

N
& 2n —1
- —1) ' ——a9,_ 2 2n —1)6
Udng_o (—1) o 2 — 10" 1cos ((2m +2n — 1)6)

In this expression ¢p, (0) and ¢po (0) are the values of ¢p (a,0) and ¢p (o, 0) at the
surface of the cylinder, so for a = 0.

Now the hydrodynamic pressure on the surface of the cylinder can be obtained from the
linearized equation of Bernoulli:

0%0(0)

po) = —p—o

— ((asBos(e) +3° {Q2m¢A02m<e>}) cos(wt)

- <¢Boc(9) + Z { Pom® a0, (9)}> sin(wt))

It is obvious that this pressure is symmetric in 6.
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Heave Coefficients

The two-dimensional hydrodynamic vertical force, acting on the cylinder in the direction
of the y-axis, can be found by integrating the vertical component of the hydrodynamic
pressure on the surface of the cylinder:

+7/2 J
To
—7/2

w/2
d(]?()

0

With this the two-dimensional hydrodynamic vertical force due to heave oscillations can
be written as follows:

F, = Pgbo'la (M cos(wt) — Ny sin(wt))
m

in which:
L N
My = o / 0, (0) Z {(=1)™(2n — 1)ag,_1 cos ((2n — 1)6)} do
I \- e (2n — 1)?
_a'_a mz_:l {(_1) Q2m nz:; { (2m>2 . (2n — 1>2a2n1}}
+%f’; <Q2 + > {(—1)szm i {(2n — 1)a2n1a2m+2n1}}>

and Ny as obtained from this expression for My, by replacing there ¢, (6) by ¢, _(0) and
QZm by P2m~

For the determination of M, and Nj it is advised: M = N.

These expressions coincide with those given by [Tasai, 1960].

With: !
Fz; — P9%a (M cos(wt + 6 — 6) — Nysin(wt + 6 — 0))
T
and: n n
sind = —4 cosd = —2
yar&y " YaEy

the two-dimensional hydrodynamic vertical force can be resolved into components in phase
and out phase with the vertical displacement of the cylinder:

o _ Pgbona
Y 2
T°EpYa

This hydrodynamic vertical force can also be written as:

((MoBy + NoAy) cos(wt + 6) + (MyAy — NoBy) sin(wt + 0))

Fz: = _leagy - Né:a?)
= Miw?y, cos(wt + 6) + Njzwy, sin(wt + 6)

in which:
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M, = 2-D hydrodynamic mass coefficient of heave
Ni; = 2-D hydrodynamic damping coefficient of heave

When using also the amplitude ratio of the radiated waves and the forced heave oscillation,
found before, the two-dimensional hydrodynamic mass and damping coefficients of heave
are given by:

pbg  MoBo + NoAg
2 A%+ B

pb[) M[)A[) — N[)BO )

M}, =
5 2 Af + B§

and  Nj; =
The signs of these two coefficients are proper in both, the axes system of Tasai and the
ship motions O(z,y, z) coordinate system.

The energy delivered by the exciting forces should be equal to the energy radiated by the
waves.

So:

_— pgna
/ Ny - gt = 2

in which T, is the period of oscillation.
With the relation for the wave speed ¢ = g/w, follows the relation between the two-
dimensional heave damping coefficient and the amplitude ratio of the radiated waves and

the forced heave oscillation: )
Pg n
N/ =
BT (.%)

With this amplitude ratio the two-dimensional hydrodynamic damping coefficient of heave
is also given by:
p7rzb2 1

4 A+ B?
When comparing this expression for /Vj; with the expression found before, the following
energy balance relation is found:

!/
N33 W

MOAO - NOBO = 5
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4.1.2 Sway Motions

The determination of the hydrodynamic coefficients of a swaying cross section of a ship in
deep and still water at zero forward speed, is based here on work published by [Tasai, 1961]
for the Lewis method. Starting points for the derivation these coefficients here are the
velocity potentials and the conjugate stream functions of the fluid as they have been derived
by Tasai and also by [Jong, 1973].

Suppose an infinite long cylinder in the surface of a fluid, of which a cross section is given
in figure 4.2.

z - plane ; - plane
Bg/2
— = X,Xg x
AN J e
P Pg
Y:Yo y

y_ . cos(ut+8§)
a

Figure 4.2: Axes System for Sway

The cylinder is forced to carry out a simple harmonic lateral motion about its initial
position with a frequency of oscillation w and a small amplitude of displacement x,:

T = x4 cos(wt + ¢€)

in which ¢ is a phase angle.
Respectively, the lateral velocity and acceleration of the cylinder are:

i =—wz,sin(wt+¢) and i = —w’r, cos(wt + ¢)

This forced lateral oscillation of the cylinder causes a surface disturbance of the fluid.
Because the cylinder is supposed to be infinitely long, the generated waves will be two-
dimensional. These waves travel away from the cylinder and a stationary state is rapidly
attained.

Two kinds of waves will be produced:

e A standing wave system, denoted here by subscript A. The amplitudes of these waves
decrease strongly with the distance to the cylinder.
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e A regular progressive wave system, denoted here by subscript B. These waves dis-
sipate energy. At a distance of a few wave lengths from the cylinder, the waves on
each side can be described by a single regular wave train.. The wave amplitude at
infinity 7, is proportional to the amplitude of oscillation of the cylinder z,, provided
that this amplitude is sufficiently small compared with the radius of the cylinder and
the wave length is not much smaller than the diameter of the cylinder.

The two-dimensional velocity potential of the fluid has to fulfil the following three require-
ments:

1. The velocity potential must satisfy to the equation of Laplace:

2 2
v2q>:8_q)_|_aq)_

o2 T o Y

2. Because the sway motion of the fluid is not symmetrical about the y-axis, this velocity
potential has the following anti-symmetric relation:

CI)<_‘T7 y) = —CI)(—l—:zj’ y)

3. The linearized free surface condition in deep water is expressed as follows:

2 d B
w_q)+8_:0 for: |z > = and y=0
g Oy 2

In consequence of the conformal mapping, this last equation results into:

&@N m—1 ooy £ 9% 0 fn a>0 and §= 4%
- Z {( n—1)ag, 1€ } 50 or: o> an =*5
a n=0

in which:
w
= =—M, or: &= 0 (non-demensional frequency squared)
g

From the definition of the velocity potential follows the boundary condition on the surface
S of the cylinder for a = 0:
8@0(9) . 81‘0

T
on on
in which n is the outward normal of the cylinder surface S.

Using the stream function ¥ this boundary condition on the surface of the cylinder (o = 0)
reduces to:

O%(6) _j;%

00 oo

= —iM,» {(~1)"(2n — 1)ag_1sin ((2n — 1)0)}
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Integration results into the following requirement for the stream function on the surface of
the cylinder:

0) = &M, Z {(=1)"agn_1cos((2n — 1)0)} + C(¢)

in which C(t) is a function of the time only.
When defining;:

N
2 1
90 = 3 = o > (=)o cos (2n = 1)0))
the stream function on the surface of the cylinder is given by:
2o
Wo(6) = i-2g(6) + (1)

For the standing wave system a velocity potential and a stream function satisfying to the
equation of Laplace, the non-symmetrical motion of the fluid and the free surface condition
has to be found.

The following set of velocity potentials, as they are given by [Tasai, 1961] and [Jong, 1973],
fulfil these requirements:

by = ‘ZJZZS <Z { Py, (0, 0)cos(wt)} + Z {Qana,, (o, 0) SiIl(th)})

in which:
Gu, (a,0) = e CmTogin ((2m + 1)0)
2n —1
Z { 27;:—1— 5 an_1e”FMHIe Gy (2m + 2n)9)}

The set of conjugate stream functions is expressed as:

U, = % <Z {Pomi) 4,,, (e, ) cos(wt) } + Z {Qam¥ 4, (,6) sin(wt)})

in which:
Y a,, (. 0) = —e~mHDa cos ((2m 4 1)6)
N
gb n 2n — 1 —(2m+2n)a
+U_a ; (—1) o on 1€ cos ((2m + 2n)0)

These sets of functions tend to zero as a tends to infinity.

In these expressions the magnitudes of the P, and the ()5, series follow from the boundary
conditions, as will be explained further on.

Another requirement is a diverging wave train for a goes to infinity. Therefore it is nec-
essary to add a stream function, satisfying the equation of Laplace, the non-symmetrical
motion of the fluid and the free surface condition, representing such a train of waves at
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infinity. For this, a function describing a two-dimensional horizontal doublet at the origin
O is chosen.

[Tasai, 1961] and [Jong, 1973] gave the velocity potential of the progressive wave system
as:

05 = L2 (6, (2,y) cos(wt) + o, (v, y) sin(wt))

W
in which:
bp.j = —mesin(vla))
_ . [ v cos (ky) + ksin(ky) o—Hla |z]
¢p,-j = me "Ycos(vx) — / 121 dk—l—w
0
while:
= +1 forz>0
= —1 forxz<0
W2
v = — (wave number for deep water)
g
Changing the parameters delivers:
Op = ‘67];1‘; (¢5,(a,0) cos(wt) + ¢, (v, 0) sin(wt))
The conjugate stream function is given by:
9Na
Uy = (b, (2, y) cos(wt) + ¥p, (z,y) sin(wi))
in which:
VYg, = me " cos(vw)
s [v sin(ky) — kcos(ky) . Yy
Y, = me Ysin(v|z|) +/ SR e~ klel g — T

0

Changing the parameters delivers:

Up = f:l‘; (¢, (a,0) cos(wt) + ¥ (a, ) sin(wt))
When calculating the integrals in the expressions for ¢ and ¢ numerically, the conver-
gence is very slowly.
Power series expansions, as given by [Porter, 1960], can be used instead of these last inte-
grals over k:

/VCOS(kigifZSin(ky)e‘k”dk = (Qsin(va) — (S - m) cos(va)) "
0

/ VSin(]le J_r i;os(ky)ek‘”dk = (Qcos(vz) + (S — m)sin(vz)) e ™

0
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in which:

Q = v+In <u\/x2+y2)+i{pncos(n6)}

n=1

S = 643 {pasin(nB))

B = arctan (g)
(/=)

n - n!
v = 0.57721566409...... (Euler constant)

The summation in these expansions converge much faster than the numeric integration
procedure. A suitable maximum value of n should be chosen.
The total velocity potential and stream function to describe the waves generated by a
swaying cylinder are:

d = d,u+ Pp

v = Uy+UYp

So the velocity potential and the conjugate stream function are expressed by:

B(a,0) — 9Ma <<¢Bc(a, 0) + Z {Pornoa, (a, 9)}) cos(wt)

W

+ <¢Bs (aa 9) + Z {Q2m¢A2m (aa 9)}) Sin(Wt)>

W

U(a,0) — 9"a (<¢BC(O" 0) + Z { P4, (a, 9)}) cos(wt)

+ <¢BS(04 0)+ > {Qomta,, (o, 9)}) Sin(wt)>

When putting o = 0, the stream function is equal to the expression found before from the
boundary condition on the surface of the cylinder:

Uo(0) = 9" (<¢Boc(9> + Z {P2m¢A02m(9)}> cos(wt)

W

+ <¢Bos(9) + Z {Q2m¢Aogm (9>}> Sin(‘“))
in which:

m
n 2n—1
{(—1) 2oy oy (2n1 €08 ((2m + 2n)9)}
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In this expression Vg, (0) and Upg,(f) are the values of W («,0) and Vg, (a,d) at the
surface of the cylinder, so for a = 0.
So for each 6-value, the following equation has been obtained:

<¢Boc + Z { Pom 40, ( }) cos(wt)+

(¢BOS<9>+Z{Q%¢AOM<9>}> sinwt) = nbg;‘ng(e)w*(t)

a

When putting § = 7/2, so at the intersection of the surface of the cylinder with the free
surface of the fluid where g() = 0, we obtain the constant C*(¢):

cr(t) = <¢Boc (7/2) + D> { Pomt gy, (/ 2)}) cos(wt) +

<¢Bos (m/2) + Z {Q2m¢A02m (7/2)}> sin(wt)

in which:
ym n—1
W a0y, (7/2) = Z{Qm—i—?n - 1}

A substitution of C*(t) in the equation for each f-value, results for any 6-value less than
/2 into the following equation:

<¢BOC(9> — Vo, (T/2) + Z {Pom (¥ 405, (0) = Y a0, (7/2)) }) cos(wt)+

<¢Bos(9) — Vo, (7/2) + Z {Q2m (¢A02m (0) — ¥ a0,,, (77/2)) }) sin(wt) = @

The right hand side of this equation can be written as:

. wby Zq )
g(@) = g0 (——wg s1nwt—|—€)
0005) — g(6) (~rysintet + )
= ¢g(0) (Pycos(wt) + Qosin(wt))
in which: . .
Py=—"n&sine  and Qg = ——7&,cose

This delivers for any 6-value less than /2 two sets of equations with the unknown para-
meters Py, and Q.
So:

Upo.(0) = ¥po.(7/2) = g(0)P + Z { fom(0) Pam }

Vo, (0) — Vpo,(7/2) = g(0)Qo + Z {fom(0)Q2m }

m=1
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in which:
fam(0) = = 40,,,(0) + VP 4q,,, (7/2)

These equations can also be written as:
Vpo,(0) —¥po (m/2) = Z { fom(6) Pam }
m=0

Vpo,(0) — Vpo,(7/2) = Z {fom(0)Q2m }

in which:

form = O fo(0) = g(0)
form > O0: Jom(0) = = a0, (0) + Y 4, (7/2)

The series in these two sets of equations converges uniformly with an increasing value of
m. For practical reasons the maximum value of m is limited to M.

Each #-value less than 7 /2 will deliver an equation for the P, and Qs,, series. The best fit
values of Py, and ()s,, are supposed to be those found by means of a least squares method.
Note that at least M + 1 values of 0, less than 7 /2, are required to solve these equations.
Another favorable method is to multiply both sides of the equations with Af. Then the
summations over f can be replaced by integrations.

Herewith, two sets of M + 1 equations have been obtained, one set for P, and one set for

Q?m:

0

/2 w/2

Pon [ Fen®)n®@)d8 b = [ (050,06) ~ ¥ (/D) n(®)d0  m=0,..08

0
/2 w/2

34 Qo / Fom(0) fon(0)d0 = / (¥, (0) — o, (7/2)) fon(8)d) 1 =0,.. M

m=0 0

Now the P,,, and ()2, series can be solved with a numerical method. Then P, and @), are
known now and from the definition of these coefficients follows the amplitude ratio of the
radiated waves and the forced sway oscillation:

Na &y,

Ta  VEG A+

With the solved Py, and Qs,, values, the velocity potential on the surface of the cylinder
(o =0) is known too:

W

Do(0) = 9Ma ( ( (CbBOC(Q) + Z {P2m¢A02m(9)}> cos(wt)

+ <¢BOS(9) +> {szchogm(@)}) Sin(wt)>

m=1
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in which:
b 40, (0) = sin ((2m +1)0)

Z { 2 sin (2m 2n)9)}

2m 4+ 2n

In this expression ¢pq (0) and ¢py (0) are the values of ¢p (a,0) and ¢p (o, 0) at the
surface of the cylinder, so for a = 0.

Now the hydrodynamic pressure on the surface of the cylinder can be obtained from the
linearized equation of Bernoulli:

_omy(0)
ot

= _pjna <<¢BOS + Z {Q2m¢A02m )}) COS(C&)t)
<¢BOC + Z {P2m¢A02m }) Sin(‘“))

It is obvious that this pressure is skew-symmetric in 6.

pd) =

Sway Coefficients

The two-dimensional hydrodynamic lateral force, acting on the cylinder in the direction
of the x—axis, can be found by integrating the lateral component of the hydrodynamic
pressure on the surface S of the cylinder:

w/2
—d
o= = [ ) - p-0) = s
S
0
/2

— 9 / (H)ng)de

0

With this the two-dimensional hydrodynamic lateral force due to sway oscillations can be
written as follows:

Fl = ZPgbolly (M cos(wt) — Ny sin(wt))
in which:
a N
M, = - / $p0,(0) >~ {(=1)"(2n — 1)az,_1 sin ((2n — 1)6)} df
- 0N—l "
+4Ua 'mz:l {(=D)"Q2m(2m + 1)agm1}

n=0 =0

3 A (2n — 1)(2i — 1)
=P {<_1) Q22 { (2m + 2i)2 — (2n — 1)2a2”1a2"1}}
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and N as obtained from this expression for My, by replacing there ¢, (6) by ¢, (0) and

QZm by P2m~
For the determination of My and N it is required: M = N.

With: b
F = P9 g (Mo cos(wt + & —¢e) — Nysin(wt + & —¢))
T
and:
. . _TIQPO o _naQU
sine = ——— cCoSe€ = ——
T,mE, T, &,

the two-dimensional hydrodynamic lateral force can be resolved into components in phase
and out phase with the lateral displacement of the cylinder:

_ pgbon;
7T2§bl'a

F! ((MoQo + NoFp) cos(wt + €) + (Mo Py — NoQo) sin(wt + ¢))

This hydrodynamic lateral force can also be written as:

F, = —Mj,i — Ny
= Mjyw’z, cos(wt + €) + Nipwa, sin(wt + €)

in which:

M}, = 2-D hydrodynamic mass coefficient of sway
N}, = 2-D hydrodynamic damping coefficient of sway

When using also the amplitude ratio of the radiated waves and the forced sway oscillation,
found before, the two-dimensional hydrodynamic mass and damping coefficients of sway
are given by:

b2 M, Ny P, b MyP, — N,

My, = P MoQot NoFo g g, — P MoFo = M@y

2 Py + Q% 2 Py + Q%
The signs of these two coefficients are proper in both, the axes system of Tasai and the
ship motions O(z, y, z) coordinate system.
The energy delivered by the exciting forces should be equal to the energy radiated by the
waves.

So:

TOSC

1 . pgnic

Tosc / Né2£L‘ . I‘dt = T
0

in which T, is the period of oscillation.
With the relation for the wave speed ¢ = g/w, follows the relation between the two-
dimensional sway damping coefficient and the amplitude ratio of the radiated waves and

the forced sway oscillation:
2 2
NG, = PO (n_)

w3 \ z,
With this amplitude ratio the two-dimensional hydrodynamic damping coefficient of sway
is also given by:
272
pebg 1
Nyy = : :
SR RN
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When comparing this expression for NV}, with the expression found before, the following
energy balance relation is found:

7'('2

MoFo = NoQo = 5

Coupling of Sway into Roll

In the case of a sway oscillation generally a roll moment is produced. The hydrodynamic
pressure is skew-symmetric in 6.

The two-dimensional hydrodynamic moment acting on the cylinder in the clockwise direc-
tion can be found by integrating the roll component of the hydrodynamic pressure on the
surface S of the cylinder:

w/2

+dx —dy
My = [ ) = (-0 (TG =) s
0

/2

B dxrg dyo
= —2/]0(9) <m0 7 + %o da)dﬁ
0

With this the two-dimensional hydrodynamic roll moment due to sway oscillations can be
written as follows:

b2
My = % (Yg cos(wt) — Xgsin(wt))
in which:
. w/2 N N
YR = 27‘(21 / ¢BOS (9) z% z; {(_1)n+1<22 - ].) cAon—1092i—1 sin ((2n — 22)9)} da
0 n=0 1=
M N N ) )
1 (20 — 1)(2n — 2i)
_— —1)™ Qo 1o
207 m; {( ) anz:o; { @m+ 17— (2n—2)2
e N
b m
_87‘_2 mz_l {( ]') Q?m
al n_m{(—2m+2n—2i—1)(2i—1) }
Z 5 ; © A2n—102;—-10—2m+42n—2i—1
- n—2

N ' .
+ ) Z { ( 2n — 2Z )( ) . a2n—1a2i_1a_2m_2n+2i_l}> }

and X as obtained from this expression for Yz, by replacing there ¢z, () by ¢ (¢) and

Q2m by P2m-
With: 2
My = P9%0Na (Yrcos(wt + & —¢) — Xgsin(wt + ¢ —¢))
T
and: _ _
sine = — e p, cose = —12@,

0
xaﬂ-gb $a7T€b
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the two-dimensional hydrodynamic roll moment can be resolved into components in phase
and out phase with the lateral displacement of the cylinder:

—pgbin?

M, =
R T2&, T,

(YrQo + XgFPy) cos(wt + ¢) + (YrPy — XrQo) sin(wt + ¢€))

This hydrodynamic roll moment can also be written as:

My = —Mj,i— Nyi
= Mypw’z, cos(wt + €) + Njpwz, sin(wt + €)
in which:
M, = 2-D hydrodynamic mass coupling coeflicient of sway into roll

N}, = 2-D hydrodynamic damping coupling coefficient of sway into roll

When using also the amplitude ratio of the radiated waves and the forced sway oscillation,
found before, the two-dimensional hydrodynamic mass and damping coupling coefficients
of sway into roll in Tasai’s axes system are given by:

—pbg ' YrQo + XrFo
2 By + Q5

—pbg YrPy — XpQo

My, =
. 2 Ps + Q3

In the ship motions O(z, y, z) coordinate system these two coupling coefficients will change
sign.
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4.1.3 Roll Motions

The determination of the hydrodynamic coefficients of a rolling cross section of a ship in
deep and still water at zero forward speed, is based here on work published by [Tasai, 1961]
for the Lewis method. Starting points for the derivation these coefficients here are the
velocity potentials and the conjugate stream functions of the fluid as they have been derived
by Tasai and also by [Jong, 1973].

Suppose an infinite long cylinder in the surface of a fluid, of which a cross section is given
in figure 4.3.

z - plane ¢z - plane
B8
y —
Bg/2 =~
-? ° r *s¥o O x
Dg \ To ! e

L /
o~ — s \ P

/ \,7‘{'—‘/ PC

1 ok

<
<
o)
|

Figure 4.3: Axes System for Sway Oscillations

The cylinder is forced to carry out a simple harmonic roll motion about the origin O with
a frequency of oscillation w and a small amplitude of displacement [,,:

B =B, cos(wt +7)

in which v is a phase angle.
Respectively, the angular velocity and acceleration of the cylinder are:

3 = —wp, sin(wt + ) and B = —w?B, cos(wt + )

This forced angular oscillation of the cylinder causes a surface disturbance of the fluid.
Because the cylinder is supposed to be infinitely long, the generated waves will be two-
dimensional. These waves travel away from the cylinder and a stationary state is rapidly
attained.

Two kinds of waves will be produced:

e A standing wave system, denoted here by subscript A. The amplitudes of these waves
decrease strongly with the distance to the cylinder.
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e A regular progressive wave system, denoted here by subscript B. These waves dis-
sipate energy. At a distance of a few wave lengths from the cylinder, the waves on
each side can be described by a single regular wave train.. The wave amplitude at
infinity 7, is proportional to the amplitude of oscillation of the cylinder 3,, provided
that this amplitude is sufficiently small compared with the radius of the cylinder and
the wave length is not much smaller than the diameter of the cylinder.

The two-dimensional velocity potential of the fluid has to fulfil the following three require-
ments:

1. The velocity potential must satisfy to the equation of Laplace:

2 2
vp-22, 9%

o2 o =Y

2. Because the roll motion of the fluid is not symmetrical about the y-axis, this velocity
potential has the following relation:

(I)(—CL', y) = —(I)(—{—LL‘, y)

3. The linearized free surface condition in deep water is expressed as follows:

2 o B,
u}—<I>4—8—:O for: |z|>—=— and y=0
g Oy 2

In consequence of the conformal mapping, this last equation results into:

¢ al 0P T
U—ZCD nz_; {(Qn — l)agn_le_(%_l)a} + 50— 0 for: >0 and 0= j:§
in which:
2 2b
@ = u)—MS or: & = % (non-dimensional frequency squared)
Oq g g

From the definition of the velocity potential follows the boundary condition on the surface
S of the cylinder for a = 0: n
8@0 9 p
on Toﬂg
in which n is the outward normal of the cylinder surface S and r( is the radius from the
origin to the surface of the cylinder.
Using the stream function ¥ this boundary condition on the surface of the cylinder (o = 0)

reduces to: ) )
—0%(6) _ 50 (2 + 5
0s 0s 2

Integration results into the following requirement for the stream function on the surface of
the cylinder:

Wo(0) = ~5(03 4 93) + 011
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in which C(t) is a function of the time only.
The vertical oscillation at the intersection of the surface of the cylinder and the waterline
is defined by:

b
X = Eoﬁ = X, sin(wt +7)
When defining;:

(=) V)

x2 4+ Y,
N(H) = . 2

(%)
= <_%Z{(—1)”a2n_1sin((2n — 1)9)}>

; (%a 3 {(—1)"az1 cos ((2n - 1>9>}>

the stream function on the surface of the cylinder is given by:

Wo(0) = X2u(0) + C(1)

For the standing wave system a velocity potential and a stream function satisfying to the
equation of Laplace, the non-symmetrical motion of the fluid and the free surface condition
has to be found.

The following set of velocity potentials, as they are given by [Tasai, 1961] and [Jong, 1973],
fulfil these requirements:

W

Dy = 9Ma <Z {Pom@a,, (v, 0) cos(wt) } + Z {QomBa,,, (a,0) Sin(‘“)})

in which:

Gu, (a,0) = e Cmiogin ((2m + 1)0)

N
O (L (a1 20
- on—1€ sin ((2m + 2n)0)

@ n=0

The set of conjugate stream functions is expressed as:

W

g, =L <Z {Poh 4, (o, 0) cos(wt)} + Z {Qom¥a,, (e, 0) sin(wt)})

m=1 m=1
in which:
Va,, (@, 0) = —e~@mHtDa o5 ((2m + 1)6)
N
& n 2n—1 miom)a
+U_a nz:; (=1) o on 1€ sin ((2m + 2n)0)

These sets of functions tend to zero as a tends to infinity.
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In these expressions the magnitudes of the P, and the ()5, series follow from the boundary
conditions, as will be explained further on.

Another requirement is a diverging wave train for « goes to infinity. Therefore it is nec-
essary to add a stream function, satisfying the equation of Laplace, the non-symmetrical
motion of the fluid and the free surface condition, representing such a train of waves at
infinity. For this, a function describing a two-dimensional horizontal doublet at the origin
O is chosen.

[Tasai, 1961] and [Jong, 1973] gave the velocity potential of the progressive wave system
as:

dp = I (gzﬁBc(m, y) cos(wt) + ¢p (2, y) sin(wt))

W
in which:
¢p,-j = —me "sin(v|z|)
, . r veos(ky) + ksin(ky) . ||
QSBS-] = Te yCOS(VﬁL‘)—/ S (& g ‘dl{?—i—m
0
while:
+1 forx >0
—1 forx <0
w2
v = — (wave number for deep water)
g

Changing the parameters delivers:

oy =Ll (¢5, (v, 0) cos(wt) + ¢ (a, 8) sin(wt))

W

The conjugate stream function is given by:

97,
Up = T (y, (2,y) cos(wt) + v, (¢, y) sin(wt))
in which:
Yp, = me " cos(vx)
. ooz/sm (ky) — kcos(ky) _j, Yy
¢BS = Te ySln V’$| +/ k2 +I/2 e | |dk,’_ V(x2+y2)
0

Changing the parameters delivers:

9N
W

Up =

(ch(a, 0) cos(wt) + ¢p_(a,0) sin(wt))

When calculating the integrals in the expressions for ¢ and ¢y numerically, the conver-
gence is very slowly.

Power series expansions, as given by [Porter, 1960], can be used instead of these last inte-
grals over k:

The summation in these expansions converge much faster than the numeric integration
procedure. This has been shown before for the sway case.
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The total velocity potential and stream function to describe the waves generated by a
swaying cylinder are:

b = Py+ Pp
v = Uy+UYp

So the velocity potential and the conjugate stream function are expressed by:

B(a,0) — 9 ((fb&(o" ) + Z {Poma,, (c, 9)}) cos(wt)

W

+ <¢B5(a7 0)+ Y {Qunba,, (o, 9)}) Siﬂ(wt)>

U(a,0) = 9Mq <<¢BC<O‘= 6) + Z {Poih 4, (v, 9)}) cos(wt)

W

+ (1#35(047 0)+ > {Qmta,, (a, 9)}) Sin(wt)>

When putting o = 0, the stream function is equal to the expression found before from the
boundary condition on the surface of the cylinder:

To(0) — 9Ma (<¢Boc(9) + Z {P2m¢A02m(9)}> cos(wt)

W

+ <¢Bos<9) + Z {Qom¥ a0, (9)}> Sin(Wt)>

= 20+ o)

4
in which:
Va0, (0) = —cos((2m +1)0)
G5, 21
+0a§ (—1) —2m+2na2n_1cos((2m+2n)9)

In this expression Vg, (0) and Upg, (f) are the values of g («,0) and Vg (a,d) at the
surface of the cylinder, so for a = 0.
So for each 6-value, the following equation has been obtained:

<¢Boc(9> + Z {P2m¢A02m (9>}> cos(wt)+

. 7Tu)b0

<¢Bos<9>+2{c22mmm<e>}> in(wf) = -

w(0) + C*(1)

When putting § = 7/2, so at the intersection of the surface of the cylinder with the free
surface of the fluid where p(f) = 1, we obtain the constant C*(¢):

C(t) = Wpo.(m/2) + Y { Pom oy, (1/2) } cos(wt)
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+ <¢Bos (m/2) + Z {Qam¥ a0, (7/2)}> sin(wt)

1y 7Tu)b0
X
4gn,
in which:
3 N oon—1
y 2) = =b -1 " n—
A02m(7r/ ) Ua( ) z:; 2m+2na2 1

A substitution of C*(t) in the equation for each -value, results for any 6-value less than
7/2 into the following equation:

(%oc(@) ~¥p0.(m/2) + > {Pom (¥40,,,(0) = Y0, (7/2)) }) cos(wt)

+ <¢Bos(9) - ¢Bos(7T/2) + Z {sz (¢A02m () — ¢A02m (77/2)) }) sin(wt)

= —X

The right hand side of this equation can be written as:

. 7Tu)b0

O =1 = (o) ~1) (-G siner +) )

a

= (u(@) — 1) (Pycos(wt) + Qg sin(wt))

in which:

Py = Wxafb sin vy and Qo = ﬂX”gb cos "y
2n 2n

a a

This delivers for any 6-value less than 7/2 two sets of equations with the unknown para-
meters Py, and Qa,.

So:
Vpo,(0) — ¥po (1/2) = (w(0) —1) R+ Z { fom(0) Po }
Vpo,(0) = Vo, (7/2) = (u(0) —1)Qo + Z {fom(0)Q2m}
in which:

fom(0) = =¥ 40,(0) + ¥ 40, (7/2)

These equations can also be written as:
Vo, (0) — ¥po (7/2) = Z { form(0) Pom }
m=0

¥po,(0) = Vg, (7/2) = Z {fom(0)Q2m }
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in which:

form = 0 fo(0) = u(0) — 1
form > O: Jom(0) = = a0, (0) + Y 4q,, (7/2)

The series in these two sets of equations converges uniformly with an increasing value of
m. For practical reasons the maximum value of m is limited to M.

Each 0-value less than 7/2 will deliver an equation for the P,,, and @5, series. The best fit
values of Py, and ()s,, are supposed to be those found by means of a least squares method.
Note that at least M~+1 values of 6, less than 7/2, are required to solve these equations.
Another favorable method is to multiply both sides of the equations with Af. Then the
summations over f can be replaced by integrations.

Herewith, two sets of M + 1 equations have been obtained, one set for P, and one set for

Q?m:
/2 /2

Pom / Fom(0) fan(0)d0 s = / (¥0,(8) — Vo, (7/2)) fon(B)d  n=0,..M

0

M
2
m=0
/2 /2

Z Q?m / f2m(9)f2n(9)d9 = / (@DBOs (9) - ¢BOS (W/Q)) f2n(9>d9 n= Oa M

m=0 0 0

Now the P, and (Qs,, series can be solved with a numerical method. Then P, and (), are
known now and from the definition of these coefficients follows the amplitude ratio of the
radiated waves and the forced sway oscillation:

Na _ &y

Xa 22+ Q2

With the solved Py, and Qs,, values, the velocity potential on the surface of the cylinder
(a=0) is known too:

W

<¢BOS + Z {Q2m¢A02m )}) Sin(Wt)>

m=1

Do(0) = 9Na <(¢BOC 0) + Z {P2m¢A02m(9)}> cos(wt)

in which:
banan (6) = sin<<2m+1>e>

Z { w2 sin((2m+ 2n)9)}

2m~|—2

In this expression ¢p, (0) and ¢p, (0) are the values of ¢p (o, 0) and ¢p (a,0) at the
surface of the cylinder, so for a = 0.
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Now the hydrodynamic pressure on the surface of the cylinder can be obtained from the
linearized equation of Bernoulli:

() = —paq)gfg)
— _Pgna <(¢Bos(9) + Z {Q2m¢A02m(9)}> cos(wt)

_ <¢Boc(9) + Z {Poma,,. (9)}) Sin(wt)>

It is obvious that this pressure is skew-symmetric in 6.

Roll Coefficients

The two-dimensional hydrodynamic moment acting on the cylinder in the clockwise direc-
tion can be found by integrating the roll component of the hydrodynamic pressure on the
surface S of the cylinder:

w/2
, +dx —d
My = [ ) = p(-0) (TG =) s
0
w/2
B dx dyo
= —2/p(9) <:vo 7 + Yo d&)da
0

With this the two-dimensional hydrodynamic moment due to roll oscillations can be written
as follows:

b2
My = pgﬂ(_ma (Yg cos(wt) — Xgsin(wt))
in which:
. w/2 N N
YR = 27‘(21 / ¢BOS (9) z% z; {(_1)n+1<22 - ].) cAon—1092i—1 sin ((2n — 22)9)} da
0 n=0 1=
M N N ) )
1 (20 — 1)(2n — 2i)
- —1)™ ) o Qos
"2 2 {( a2 2 { @m+ 1P — (2o -2
. N
b m
_87‘_2 mz_l {( ]') Q?m
ol n_m{(—2m+2n—2i—1)(2i—1) }
Z 5 ; © A2n—102;—-10—2m+42n—2i—1
- n—2

N ' .
+ ) Z { ( 2n — 2Z )( ) . a2n—1a2i_1a_2m_2n+2i_l}> }

and Xy as obtained from this expression for Yz, by replacing there ¢z, (6) by ¢, (0) and
Q2m by P2m-
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These expressions are similar to those found before for the hydrodynamic roll moment due
to sway oscillations.

With: 2
My = pgﬂ?na (Yr cos(wt +v — ) — Xgsin(wt + v — 7))
and:
: 20 p 21,
siny = cosy = ——Q
7T5b Xa™s

the two-dimensional hydrodynamlc roll moment can be resolved into components in phase
and out phase with the angular displacement of the cylinder:

20gb2n2 .
My, == QU (YaQo + XrPp) cos(wt +7) + (YePy — XrQo) sin(wt + 7))

28X
vXa
This hydrodynamic roll moment can also be written as:
Mp = _Mz/14B - Ni45
= Mw*B,cos(wt +7) + Nywp, sin(wt + )
in which:
M}, = 2-D hydrodynamic mass moment of inertia coefficient of roll

Nj, = 2-D hydrodynamic damping coefficient of roll

When using also the amplitude ratio of the radiated waves and the forced roll oscillation,
found before, the two-dimensional hydrodynamic mass and damping coefficients of roll in
Tasai’s axes system are given by:

Py YrQo + XrPy pby YrPy — XgQo
8 P+ @ 8 P+
The signs of these two coefficients are proper in both, the axes system of Tasai and the
ship motions O(z, y, z) coordinate system.
The energy delivered by the exciting moments should be equal to the energy radiated by

the waves.
So:

My, = and Ny, =

/ Ny - it = P

OSC

in which T, is the period of oscﬂlatlon.
With the relation for the wave speed ¢ = g/w, follows the relation between the two-
dimensional roll damping coefficient and the amplitude ratio of the radiated waves and the

forced roll oscillation: )
Pg Mq
N Ja
44 = CUS (/Ba>

With this amplitude ratio the two-dimensional hydrodynamic damping coefficient of roll
is also given by:
p2by 1

61 P+ "
When comparing this expression for Nj, with the expression found before, the following
energy balance relation is found:

, p—
N44 -

71_2

YrPy — XrQo = 3
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Coupling of Roll into Sway

The two-dimensional hydrodynamic lateral force, acting on the cylinder in the direction
of the x-axis, can be found by integrating the angular component of the hydrodynamic
pressure on the surface S of the cylinder:

w/2
Fo= - / (b(+0) — p(~0)) — L

0
/2

::2/mmﬁW9

0

With this the two-dimensional hydrodynamic angular force due to roll oscillations can be
written as follows:

—pgb
F! = —PI%a (M cos(wt) — Ny sin(wt))
77

in which:

w/2

_aia / Do, (0 Z{ "(2n — 1)agp_1 sin ((2n — 1)0)} do

D)™Qam(2m + 1)agm1}

£ o (2n — 1)(2i — 1)
e mz_:l { Qom Z Z { 2m + 2i)2 — (2n — 1)2“2”‘1“2"‘1}}

a n=0 i=0

and Ny as obtained from this expression for My, by replacing there ¢, (6) by ¢p_ (6) and
QZm by P2m-

For the determination of My and N it is required: M = N.

These expressions are similar to those found before for the hydrodynamic lateral force due
to sway oscillations.

With:

—pgb
Fl = % (M cos(wt + v —v) — Nosin(wt + v — 7))

and:

2 2
siny = la B, cosy = Ta Qo
Xaﬂ-gb Xaﬂ—gb

the two-dimensional hydrodynamic angular force can be resolved into components in phase
and out phase with the angular displacement of the cylinder:

—2pgbon? :
Fy =~ (MoQo + NoFb) cos(wt +7) + (MyPo — NoQo) sn(wt + 7))
bAa
This hydrodynamic angular force can also be written as:
F, = —M§4B - N£45

= Mjw?B, cos(wt + 7) + Nyywf, sin(wt + )

in which:



78 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

M, = 2-D hydrodynamic mass coupling coefficient of roll into sway
N}, = 2-D hydrodynamic damping coupling coefficient of roll into sway

When using also the amplitude ratio of the radiated waves and the forced roll oscillation,
found before, the two-dimensional hydrodynamic mass and damping coupling coefficients
of roll into sway are given by:

—pby  MoQo + No Py

‘ —pb} MoPy — NoQo
8 P§+ Q3

8 P§ + Q3

M, = and Ny, =

In the ship motions O(z, y, z) coordinate system these two coupling coefficients will change
sign.
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4.1.4 Low and High Frequencies

The velocity potentials for very small and very large frequencies are derived and discussed
in the next subsections.

Zero-Frequency Coefficients

The two-dimensional hydrodynamic mass coefficient of sway of a Lewis cross section is
given by [Tasai, 1961]:

2
pT Dy
M3y(w =0) = o> (—1 o ag) ((1 = a1)* + 3a3)

The two-dimensional hydrodynamic mass coupling coefficient of sway into roll of a Lewis
cross section is given by [Grim, 1955]:

Mp(w = 0) = —My(w=0): o= ———-
ar (1 —a; + %ag —a1a3 + %a%) + %ai’v — 1—72a§
(1 —ay)? + 3a?

In Tasai’s axes system M}, will change sign.
The two-dimensional hydrodynamic mass moment of inertia coefficient of roll of a Lewis
cross section is given by [Grim, 1955]:

16p B, 4
M; = 0)=—F. .
u(w == <2(1 +a +a3)>

8 16
<a§(1 + as)* + §a1a3(1 + as) + gag)

The two-dimensional hydrodynamic mass coupling coefficient of roll into sway of a Lewis
cross section is given by [Grim, 1955]:

a1(1 — a1)(1 4 a3) + 2a1a3(1 + ag) + 3as(1 — ar) — a3

a3(1+ a3)? + Saras(1 + ag) + Laj

In Tasai’s axes system M;, will change sign.

All potential damping values for zero frequency will be zero:

Nip(w = 0)=0
Npw = 0)=0
Ni(w = 0)=0
Nylw = 0)=0
Nyy(w = 0)=0
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Infinite Frequency Coefficients

The two-dimensional hydrodynamic mass coefficient of sway of a Lewis cross section is
given by Landweber and de Macagno:

) D, 2 16
=002 (2 ) (1 22

™ \1—a; +as

The two-dimensional hydrodynamic mass coefficient of heave of a Lewis cross section is
given by [Tasai, 1959]:

2
/ P B, 2 2
— _ — —_— 1
Miq(w = 00) 5 (2<1 Fp— a3)> (14 a1)* + 3a3)

The two-dimensional hydrodynamic mass moment of inertia coefficient of roll of a Lewis
cross section is given by [Kumai, 1959]:

Bs >> (a%(l + az)* + 2a§)

Mli4(w = OO) = pm <—2(1 i a1 T s

All potential damping values for infinite frequency will be zero:

Njp(w = 0) 0
Njp(w = 0) = 0
Niz(w = 0) = 0
Ny (w = 0) = 0
Ny (w = 0) = 0
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4.2 Theory of Keil

In this section, the determination of the hydrodynamic coefficients of a heaving, swaying
and rolling cross section of a ship in shallow at zero forward speed is based on work
published by [Keil, 1974]. This method is based on a Lewis conformal mapping of the

ships’ cross section to the unit circle

4.2.1 Notation

His notations have been maintained here as far as possible and references are given here

to the formula numbers in his report.

a
Aindew

Aindew

Hindices
HT
].77

8

k

m77

M, indices
N, index

- TR

<

s QT s

T
m?y?’z

h<

indices

=2

> M

Lewis coefficient

source strength

amplitude ratio

Lewis coefficient

breadth of body

wave velocity

non-dimensional force or moment
non-dimensional exciting force or moment
hydrodynamic force

acceleration of gravity

function (real part)

water depth

function (imaginary part)

fictive moment arm

water depth - draft ratio
hydrodynamic moment of inertia
wave number in z-direction

wave number in y-direction
hydrodynamic mass

hydrodynamic moment
hydrodynamic damping coefficient
pressure

polar coordinates

time or integer value

draft

velocity amplitude of horizontal oscillation
velocity amplitude of vertical oscillation
cross sectional area

space-bound coordinates

transfer functions

Euler constant (= 0.57722)

phase lag

wave amplitude

polar coordinate or pitch amplitude
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A = wave length

7 = wave direction

v=w?/g = wave number at deep water
vo=2m/\ = wave number

p = density of water

© = roll angle

Pindices = part of potential

Dndices = time-dependent potential
Vindices = part of stream function

Windices time-dependent stream function
w = circular frequency of oscillation

In here, the indices - that he used - are:

= related to excitation
horizontal or related to horizontal motions
imaginary part
ordering of potential parts
related to transverse motions
real part
related to roll motions
vertical or related to vertical motions
= related to waves

S<mTOoOsIS T

4.2.2 Basic Assumptions

The following figure shows the 2-D coordinate system as used by Keil and maintained here.
The potentials of the incoming waves are described in Appendix 1.
The wave number vy = 27/, follows from:

2
v= % = 2; tanh @ = vp tanh [voh]

The fluid is supposed to be incompressible and inviscid. The flow caused by the oscillating
body in the surface of this fluid can be described by a potential flow. The problem will
be linearized, i.e., contributions of second and higher order in the definition of the bound-
ary conditions will be ignored. Physically, this yields an assumption of small amplitude
motions.

The space-bound axes system of the sectional contour is given in figure 4.5-a.

Velocities are positive if they are directed in the positive coordinate direction:

0P 0P
— = — =
oy VY 0z °

The value of the stream function increases when - going in the positive direction - the flow
goes in the negative y-direction:

o0d ov
U, <Py — a_y—‘i‘a
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/:VX
v @)
y, U
A
z,V
A
\
G

- \ \

Figure 4.4: Axes System, as Used by Keil

0P ov
Us >0, — az—a—y
o _ o
on  Os
o8 o
ds  On

For the imaginary parts, ¢ and j have been used: i for geometrical variables (potential and
stream function) and j for functions of time.

v
z

Figure 4.5: Definition of Sectional Contour
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4.2.3 Vertical Motions

Boundary Conditions

The two-dimensional velocity potential of the fluid has to fulfil the following requirements:

1. The fluid is incompressible and the velocity potential must satisfy to the Continuity
Condition and the Equation of Laplace:
PP 0?P

2 _ o .
V@—8—y2+w—0 (Kell—l)

2. The linearized free surface condition follows from the condition that the pressure at
the free surface is not time-depending:

Op 0d 9% B
i - | = for: > — = Keil-2/1
5 =P <g 9, op ) 0 or: |y| > 5 and 2z (Keil-2/1)
from which follows:
2 d B
w_q)+8_:0 for: |y > —= and z=
g 0z 2
or: 50 B
vd + 5 = 0 for: |y| > 5 and z = (Keil-2/2)
z

3. The sea bottom is impervious, so the vertical fluid velocity at z = h is zero:

06

5 = 0 for: z=h (Keil-3)

4. The harmonic oscillating cylinder produces a regular progressive wave system, trav-
elling away from the cylinder, which fulfils the Sommerfeld Radiation Condition:

lim {\/@ (a% Re (®) — voIm (@)) } =0 (Keil-4)

y—)
In here, vy = 27/ is the wave number of the radiated wave.

5. The oscillating cylinder is impervious too; thus at the surface of the body is the fluid
velocity equal to the body velocity, see figure 4.5-b. This yields that the boundary
conditions on the surface of the body are given by:

0P
|:%:| body B [Un]bOdy

{8@ dy 0P dz}

- - {@} (Keil-5)
ds body

Two cases have to be distinguished:
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a. The hydromechanical loads, which have to be obtained for the vertically oscillating
cylinder in still water with a vertical velocity equal to:

V=V.ew

The boundary condition on the surface of the body becomes:

_ {@} 7. {@] . giut (Keil-5a/1)
ds body ds body

or:
Upoay (¥, 2,t) = =V - " -y, + C (Keil-5a,/2)

b. The wave loads, which have to be obtained for the restrained cylinder in regular waves
from the incoming undisturbed wave potential ®y, and the diffraction potential ®g:

body

o T TV

0w dy 0Py dz % dy 0Ps dz
N 0z ds Jdy ds 0z ds oy ds body

_ 2w +% (Keil-6/1)
ds ds body
or:
[d\PS (y: Z, t)]body = = [d\IJW (yv Z, t)]body
0Py Oy } )
= dy — dz Keil-6/2
[ Ty ) (Keil-6/2)

The stream function of an incoming wave - which travels in the negative y-direction,
so = 90° - is given in Appendix 1 of this section by:

Uy = j%} - ?WHoY) . (sinh [vgz] — tanh [voh] cosh [voz]) (Keil-A1)

Because only vertical forces have to be determined, only the in y-symmetric part
of the potential and stream functions have to be considered. From this follows the
boundary condition on the surface of the body for beam waves, so wave direction
w = 90°:

(Ps (y, 2, t)]body = —[Uw(y, 2 t)]body (Keil-6a)

= Tw - et . [(sinh [vg2] — tanh [voh] cosh [vgz]) Sin (VoY) |poay

In case of another wave direction, this problem becomes three-dimensional and a
stream function can not be written. However, boundary condition (Keil-6a) provides
us a "quasi stream function” W, i.e., this is the amount of fluid which has to come
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out of the body per unit of length so that totally no fluid of the incoming wave enters
into the body. This function can be used as an approximation of the problem:

Y1 21
) v U
[ ] = 0w Mw, | (Keil-6b)
ody

Vg (x 21,1 dy —
S( 1, Y1, 21, ) b 8Z Yy 8y
0 20 body
_ e 7t . cos(vox cos 1) -
v

{sin psin(voy; sin p) (sinh [vgz1] — tanh [voh] cosh [vz])
Y1

+vo(1 — sin® 1) /cos(yoy sin p) (sinh [vgz| — tanh [voh] cosh [vgz]) dy}
0

Potentials

3-D Radiation Potential Suppose a three-dimensional oscillating cylindrical body in
previously still water. To find the potential of the resulting fluid motions, this body will
be replaced by an oscillating pressure p at the free surface. The unknown amplitude p of
this pressure has to follow from the boundary conditions.

This pressure is not supposed to act over the full breadth of the body; it is supposed to
act - over the full length L of the body - only over a small distance Ay/2 to both sides of
y = 0, so:

p(3773/72 = ZUut) = _j 'ﬁ(x7y7'2:20)€th
or
p(r,y,z2 = 2) =0 for |y| > Ay/2 and |z| > L/2 (Keil-7)

in which zg is the z-coordinate of the fluid surface.
The resulting force P in the z-direction becomes:

+L/2+Ay/2

N
I

p(x,y, 2=2) dydz
—L/2—Ay/2
+L/2
= / P'(z)dz < oo (Keil-7a)

~L)2

Boundary condition (Keil-7) can be fulfilled by a pressure amplitude p(z,y, 2=2¢) which
is found by a superposition of an infinite number of harmonic pressures. From equation
(Keil-Ta) follows that the pressure amplitude p(z) can be integrated, so a Fourier series
expansion follows from:

oo 400

pa) =+ [ [ 5@ cosiute — &) dga

0
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Because the pressure amplitude p depends on two variables, the Fourier series expansion
has to be two-dimensional:

o0 00 +00 +00

B,y =) 1////195, cos [ky(y — )] cos [k (& — €)] dd€ di, d:,

0 0 —oo—

in which £, is the wave number in the z-direction and £, is the wave number in the
y-direction.

According to equation (Keil-7), the pressure amplitude p disappears for |y| > Ay/2 and
|z| = L/2, so for this pressure expression remains:

0o oo +L/24+Ay/2
Bz, 1, 2=20 :Wi/// / 3(6,1m) cos [k, (y — )] cos [k (@ — €)] dipde dhy dk,
0 —L/2 -Ay/2

It is assumed that the value of Ay is small. This means that 7 remains small too, thus one
can safely suppose that:

cos [ky(y —n)] = cos(kyy)
which results in:

1 0o oo +L/2+Ay/2
By, 2=2) = — / / / B(E, ) dn cos [k (z — €)] dE cos(kyy) dk, dk,

™
0 0 —L/2—-Ay/2

00 00 +L/2
1 _
= — cos(kyy) (&) cos [ky(z — €)] dE dk, dk, (Keil-7b)
™ 0/0/ L//2

This pressure definition leads - as a start - to the following initial definition of the radiation
potential:

Qo (z,y,2,1) = e Cl(ky, ky) cos [ky(z — &)] cos(kyy) -
[
cosh [VREF Ry (2= 1] dk, dk, dé (Keil-8)

sinh [\/k2 + k2 - h)
in which the function C'(k,, k) is still unknown.
This expression (Keil-8) for the radiation potential fulfils the Equation of Laplace:
0?P n 0?P n 0?P
ox? Oy 022
Now, the pressure at the free surface p; can be obtained from an integration of the - with
the Bernoulli Equation obtained - derivative to the time of the pressure:

=0

[S el elye o}

8]01 _ ///C ky, ky) cos [ky(z — &)] cos(kyy) -

_ k2 k2 -tanh (/K2 +Kk2-h
.w 9/F2 + & - tanh [\/RZ + K7 }dkxdkydﬁ (Keil-8a)
tanh [/k2 + k2 - h]
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The harmonic oscillating pressure is given by:
Jwt

pl(mayv Z:Z0>t> = _] ']51(£B,y, ZZO) - e

and its amplitude becomes:

ﬁl (LU, Y, Z:ZU) =

€l

fff0%$0% k(2 = &)] cos(kyy) - (Keil-8b)

w — g\/kZ+ k2 -tanh [\/k2 + k2 - h]
/ Y dk, dk, d§
tanh [/kZ + k2 - h]

If this pressure amplitude p; is supposed to be equal to the amplitude p, then combining
equations (Keil-7b) and (Keil-8b) provides the unknown function C'(k, k,):

%) +L/2
p(z,y, z=2) = %/ cos(kyy) / P (&) cos [ky(z — &)] d€ dk, dk,
0 ~L/2

=2)

o0

7 / O ke, ) cos ez — €)]

— /K2 + k2 tanh [w/k2+k2 h}
dk, dk, dé
tanh [Ml@—l—k? h}

Comparing the two integrands provides:

€|b ’B\

o\8 \.N o\g

tanh [« /k;+ k- h} de =

+L/2

= [ POl de

—L/2

[ — VR A+ K h 2 {2
/C ki, ky) cos [ka(2 — €)] = pg v— /R +E tanh [\/EZ+ &} -1
0

or:

T tanh [\/k2 + k2 - h]
C(ky, ky) cos [kp(z — &) d§ = Y .
g/ ! — VEZ+EZ - tanh [\/EZ + K2 - h]

+L/2
'pgwﬂ.z_L//2 ]5'(5) cos [ky(x — §)] d§ (Keil-9)

When defining;:
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and substituting equation (Keil-9) in equation (Keil-8) provides the radiation potential:

+L/2 00
o, (2,9, 2, 1) = Ap(&) [ cosky(x —&)] - (Keil-10)
L]

o0

/ cosh [\/k2 + k2 - (z — h)] cos(kyy) Ok i de
veosh [\/k2+kZ-h] — \/k2+ k2 -sinh [\/k2 + k2 - h] e

This potential fulfills both the radiation conditions at infinity and the boundary conditions
at the free surface.

0

2-D Radiation Potential In case of an oscillating two-dimensional body, no waves are
travelling in the z-direction, so k, = 0 and k, = v. The distribution of A() is constant
over the full length of the body from ¢ = —oo through ¢ = 400 and the radiation potential
- given in equation (Keil-10) - reduces to:

Bor(y, 2, £) = 9 A, / cosh k(z = W __ (k) i (Keil-11)

v cosh [kh| — ksinh [kh]
0

To fulfil also the Sommerfeld Radiation Condition in (Keil-4), a term has to be added to
equation (Keil-11). For this, use will be made here of the value of the potential given in
equation (Keil-11) at a large distance from the body:

iy [ coshlk(z = h)]
o _ ety cos
or(8,2,8) = @A / cosh [lh] — fsinh ] S0y dk
0
= ej“’tAO% / F(k)e™™dk + / F(k)e ™ dk (K-11)
0 0

with:

cosh [k(z — h)]

Bk = o [kh] — K sinh [kA]

(K-11a)

When substituting for & the term u = k+il, the first integral in equation (K-11) integrates
for y > 0 over the closed line I-1I-III-1V in the first quadrant of the complex domain and
the second integral in equation (K-11) integrates for y > 0 over the closed line I-V-VI-VII
in the fourth quadrant. So:
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Figure 4.6: Treatment of Singularities

1. For line I-II-1II-1V:

R

fF(u)e”“ydu = /dk + / codu + / du + / du
0 II 111 v
Jr+Jir+ Jir + Jrv
=0
/F(k)eJrikydk = — Rlim [JH + Jrr + ij]

0

The location of the singular point follows from the denominator in the expression
(K-11a) for F(k):
v cosh [voh| — vg sinh [vgh] = 0

Because limg . [Jr77] = 0 and J;y disappears too for a large y; the singular point
itself delivers a contribution only:

Jir = —im - Residue(vy)
_ —in cosh [vo(z — h)] +ivoy
vhsinh [voh| — sinh [vgh] — voh cosh [voh]
_.cosh[vgh]cosh[vo(z —h)] ;..
B voh + sinh [voh] cosh [voh]
and the searched integral becomes for y — oo:
r cosh [voh] cosh [vo(z = h)] i

/ F(k)e™dk = —ir

0

voh + sinh [voh] cosh [voh]
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2. For line I-V-VI-VII:

R
fF(u)e—i“ydu = /...dk+/...du+/...du+ / .du
0 1% VI VII
Jr+Jv+ Jvi+ Jvir
0
/F(kﬁ)(i_ikydl{? = —}%lm [Jv+JV[+JV[[]

0

Because limg ., [Jy;] = 0 and Jy; disappears too for a large y; the singular point
itself delivers a contribution only:

Jy = +im- Residue(vg)
i cosh [th] cosh [vo(z — h)] ——
voh + sinh [voh] cosh [voh]

and the searched integral becomes for y — oo:

/ F(k)e ™dk = +im

0

cosh [voh] cosh [vo(z — h)] ——
voh + sinh [voh] cosh [vh]

This provides for the potential in equation (Keil-11) for y — oo:
cosh [voh| cosh [vo(z — h)]
voh + sinh [voh] cosh [voh]
The Sommerfeld Radiation Condition in equation (Keil-4) will be fulfilled when:

sin(voy) (Keil-11a)

o, (y, 2,t) = 2 Ay

cosh [voh] cosh [vg(z — h)]
®Voh + sinh [voh] cosh [voh]

eIt Ay cos(voy) — vo Im {Py(y, z,t)} =0

or:
Im {q)0<y7 Z, t)} = @Uj(:% Z, t)

cosh [vgh| cosh [vo(z — h)]
voh + sinh [voh] cosh [voh]

cos(voy)  (Keil-11b)

= ijtA[)T('
With equations (Keil-11a) and (Keil-11b), the radiation potential becomes:

Dor(y, 2,) + 1 Po;(y, 2,t) = €' Ag- (Keil-12)

[ cosh [k(z — h)]
/ v cosh [kh] — ksinh [kA] cos(ky) dk

- cosh [voh| cosh [vo(z — h)]
J voh + sinh [vyh] cosh [voh]

costvan) |
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From this follows for y — oc:

cosh [voh] cosh [vo(z — h)]
voh + sinh [voh] cosh [voh]

—Jjroy

Doy — 00,2,1) =7 - e/ Ao

This means that equation (Keil-12) describes a flow, consisting of waves with an amplitude:

- wT cosh? [voh]
= Ay— Keil-12
¢ "¢ wvoh + sinh [voh] cosh [vh] (Keil-12c)
travelling away from both sides of the cylinder.
From the orthogonality condition:
0d +8\I/
oy Oz
follows the stream function:
Vo, (y, 2, 1) +3W0,(y, 2,t) = —e™'Ag- (Keil-13)

! sinh [k(z — h)] .
/ v cosh [kh] — ksinh [kA] sin(ky) dk

cosh [voh| sinh [vo(z — h)]
voh + sinh [voh] cosh [voh]

sin(l/oy)}

47

For an infinite water depth, equations (Keil-12) and (Keil-13) reduces to:

% —kz
(I)O'roo <y7 Z, t) + j(I)ij(y? Z, t) = ejthO / ‘ L COS(k‘y) dk + jﬂ—eiyz COS<Vy)
V E—
0

(Keil-12a)

o0

—kz
\Ijt)roo(yu Z, t) + j\IJOjoo<y7 Z, t) = ejthO / Ve L Sln(ky) dk + .jﬂ-e_yz Sin(l/y)

0

(Keil-13a)
Now, the potential and stream functions can be written as:
Dy = Poroc + Poraa + jPoj = Ay - (Keil-12-b)
[ ek [ e kn vsinh [kz] — k cosh [kz]
ky) dk k dk
/ —, coshy) dk + / o O TRl — o simb [
0 0

o cosh [vgh| cosh [vo(z — h)]
voh + sinh [voh] cosh [voh]

cos(van) }

Vo = Woreo + Voraa + j¥o; = /" Ap - (Keil-13b)
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o0 o0

ek e Fh v cosh [kz] — k sinh [kz]
/ j, Stnlky) dk - / o7 k) R TRR] = osmb (ko]

cosh [voh] sinh [vg(z — h)]

_jﬂyoh + sinh [voh] cosh [voh] Sln(ng>}

In here, @, is the potential at deep water and ®y,,4 is the additional potential due to
the finite water depth. ®; can be written in the same way.

Alternative Derivation Assuming that the real part of the potential at an infinite water
depth, ®,..,is known, another derivation of the 2-D potential is given by [Porter, 1960].
The additional potential for a restricted water depth, ®,.,4, will be determined in such a
way that it fulfills the free surface condition and - together with ®,., - also the boundary
condition at the sea bed.

As an extension of the additional real potential will be chosen:

Poraa(y, 2,t) = Ay / {C1(k) sinh [kz] + Cy(k) cosh [k(z — h)]} cos(ky)dk

(Keil-14)
From the free surface condition (Keil-2) follows for |y| > B/2:
et Ay / {vCy(k) cosh [kh] + kCy(k) — kCy(k) sinh [kh]} cos(ky)dk = 0
0
The solution of this Fourier integral equation:
[ 0 costreyt = o)
0
is known:
1 oo
1) = [ 9(6)costie)
0
Also will be obtained:
f(k) = kCy(k) 4+ Cy(k) {v cosh [kh] — ksinh [kh]} =0
from which follows:
—k
Calk) = o [kh] — ksinh [kh] Crlk)
With this will be obtained:
, Ji , kcosh [k(z — h)]
— Jwt o
Doraa(y, z,t) = " Ag / C1(k) {smh [kz]  cosh (k1] — frsinh (k] cos(ky) dk
0
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The still unknown function C4(k) follows from the boundary condition at the sea bed:

aq)[)'r‘oo aq)O'r‘ad N
|: 0z " 0z :|z—h —0=

& . —kh =
— et Ay d — / IZG_ - cos(ky) dk + /k01(/€) cosh [kh] cos(ky) dk
0 0
So:
o—kh
Cilk) = (v — k) cosh [kh]
_1.—kh
Oolk) = ke

(v — k) {v cosh [kh] — Ek sinh [kh]} cosh [kh]

With this, the extension of the additional real potential, as given in equation (Keil-12b),
becomes:

o

it A / e kh _vsinh (k2] — k cosh [kz]
°J] v =k wvcosh[kh] — ksinh [kh]

q)Orad(yv 2, t) = COS(ky) dk

0
(Keil-14a)

The imaginary part can be obtained as described before.

2-D Multi-Potential The free surface conditions can not be fulfilled with the potential
(Keil-12b) - and the stream function (Keil-13b) respectively - only. Additional potentials
®,, are required which fulfill the boundary conditions (Keil-1) through (Keil-4) and together
with @ also fulfill the boundary conditions (Keil-5) or (Keil-6):

O(y, z,t) = qu);)(y,z,t)—l—zzéln@;(y,z,t) (Keil-15)

n=1

= AU [q);)roo(yv 2y t) + (I)z)rad(ya 2 t) + Jq);)] (y’ Z, t)}

£ 37 A [ oroc U 208) + By, 2,8) + 12 (0 2,1)|
n=1

Use will be made here of multi-potentials given by [Grim, 1956 and [Grim, 1957], of which
- using the Sommerfeld Radiation Condition - the real part of the additional potential
®,,,qq and the imaginary part potential ®,; will be determined. This results in:

Prroo(y, 2,1) = —l—ej“’tAn/(k—i- V)2 Y=k cos(ky) dk
0
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(Keil-16)
, r o inh [kz] — k cosh [kz]
Brrad(y, 2 t) =+ A, [ (k4 )k Dt 20 ky) dk
aly, 1) = e / e o [RA] — Frsinh [o] <5 (*Y)
0
(Keil-16a)
' 0" h[vo(z — h)]
b B o= ety T cosh [vg
i 21) c cosh [vgh]  voh + sinh [voh] cosh [vgh] cos(voy)
(Keil-16b)
The orthogonality condition provides the stream function:
Uroo(y, 2,1) = +ej‘”tAn/(k:+V)k2(”_1)e_kz sin(ky) dk
0
(Keil-17)
A T T h[kz] — ksinh [kz] .
Upraa(y, 2,8) = —'A, [ (k + )k Dt 222 ky) dk
aly, 1) ¢ / ke ot o] — Fosin [f] S ()
0
(Keil-17a)
: 2n inh [vo(z — h)]
v B o= e T sinh v ,
iy 1) e cosh [vgh]  voh + sinh [voh] cosh [voh] sin(voy)
(Keil-17b)

The potentials ®,,; and ®,,,¢ disappear in deep water.

Total Potentials Only the complex constant A,, with (0 < n < o0) in the potential has
to be determined:

o0

QW 2t) = D [Au + 5 Au] | Vo2, 8) + Voaaly: 2,8) + (3, 2,1)|

n=0

{AnT [(I);Woo + q);v,md} o Anj (I);mj +J [Anj(q);woo + (I);Lrad> + A”TCI)/”J} }

NE

i
o

n

= eth Z {Anr [(pm"oo + (pm‘ad] - Anjgonj + .] [An](gpn'roo + Qpnrad) + A'm"gpnj] }

n=0
(Keil-18)
and
V(Y. 2t) = 3 (At Ang] | Wy 8) + Wiy 2,8) + 505y, 2, )]
n=0

= Z {A’m‘ [\I/nroo + \I/nrad] - Anjqj;Lj +] [Anj(\l/nroo + qj,nrad) + AnT\I/’II’Lji| }

n=0
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= vt Z {An'r [wnroo + wnrad] - Anjwnj +J [A”J (wnroo + wnrad) + An'rwnj} }

(Keil-19)
Summarized, the complex total potential can now be written as:
O(y,2z,t) + iV (y, 2,t) = (Keil-20)
. | [ cos(k[y+i(z— b))
Jot [ 4 . cos (
e Aor + Aoj] / 0 cosh [kh] — Jr s [kh]
0
i cosh [voh] cos (vo [y + i(z — h)])
J voh + sinh [voh] cosh [voh]
" | i kly +i(z = W)
Jwt A A 2\1.2(n—1) COS(
e 2_; Anr A / R oS o] — s k]
n= 0

gt cos{vo(y+i(z —h))}
I cosh [voh] voh + sinh [vh] cosh [voh]

The coefficients A, and A,; with (0 < n < oo) have to be determined in such a way
that the instantaneous boundary conditions on the body surface have been fulfilled. These

coefficients are dimensional and it is very practical to determine them for the amplitude of
the flow velocity V; also if they then have the dimension [L***1]:

. A+ jA;
A+ A = VT v (A + j A )
Then, A, ¢, and A, 1), have the dimensions of a length [L].

Expansion of Potential Parts

The expansion of the potential parts at an infinite water depth is given by Grim.
For vr = vy\/y? + 22 — O:

_ —vz
Porco — € {

arctan =+ Z

zbO'r‘oo = e*VZ {
— [arctan -+ Z

with the Euler constant: v = 0.57722.

v+ In(vr) + Z myr:n! Re{(z + zy)m}] cos(vy)

(z 4+ iy)™ }] sin(uy)} (Keil-21)

m

— Re{(z + zy)m}] sin(vy)

v+ In(vr) + Z my

(z + zy)m}] cos(z/y)} (Keil-21a)
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For vr = vy\/y? 4+ 22 — oc:

% Re{(z+iy)"} + re Vs - sin(vy)

M:

Porco —

m=1 v |y’
o~ (m—1)! y
Voo = o A (2 )"}~ nyzm cos(vy)

1

3
Il

| —

Mind you that % {(z +iy)™} is semi—convergent.

T I {(y +i2) "V}
(Keil-22)

= (~1)"(2n = DIRe {(y+i2) "} + 5

907’1/!‘00

Vproo = (—=1)"(2n — D! Im {(y +iz) "} — 2ny_ 1 Re {(y + Z'Z)*@nfl)}
(Keil-22a)

For the expansion of the remaining potential parts use has been made of the following
relations as derived in Appendix 2:

0 2t

cosh [kz] cos(ky) = Z (];t) Re {(z +iy)*}

0 2t

sinh [kz]sin(ky) = Z (];t)! Im {(z i iy)2t}

sinh [kz] cos(ky) = Z (2];—:1)| Re {(z 4 Z-y)ztﬂ}

> k2t+1

cosh [kz]sin(ky) = Z (QtT Im {(z +1iy)**'}

With these relations follows from equation (Keil-14a):

t=0
oo

e e—kh
Porad / (v — k) (v cosh [kh] — k sinh [kh])dk'
0
A 2t 1 K 2
N .
P i — Re{ (= +iy)?*1) — ’“Z Re{(z+zy) ¥

1 ]{12t+1 —kh
(2t +1)! 0/ (v — k) (v cosh [kh] — k sinh [kh]) k-
. {yRe{ z+ 1y 2”1} — (2t +1)Re {(z + iy)zt}}

-y - G(%—“{ Re {(z + iy)2*1} — (2t + 1) Re {(2 + iy)?}}

Lo (2t +1)!

(Keil-23)
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It is obvious that:

Vorad = ; —% {(2t +1)Im {(z + iy)2t} —uIm {(z n Z-y)2t+1}} (Keil-23a)

The function:

w Lt o—kh
- / (k — v) [ cosh [kh] — k sinh [kh]] dk

will be treated in the next section.
Further, it follows from (Keil-16a):

) k.2(n 1)6—k:h

dk -
(v cosh [kh] — ksinh [kh))

Pnrad

0 k2t+1 2t

VZ CEs Re{(z+zy Y — kz

t=0

Re {(z+ iy)zt}}

8 ,—/HO\g

t=0 0

7 2t+2n+1 o —kh
- (2t +1)! {/ (k — v) (v cosh [kh] — k sinh [kh]) dk

, ® E2t+2n—1,—kh
- 0/ (k= ) (v cosh k] — ks [&R) ™ [
AvRe{(z+iy)* )} — (2t + 1) Re {(z + i)} }
B iG(ZH—Zn—I—l)—VQ-G(ZH-Zn—l) ,

g (2t +1)!
AvRe{(z+iy)*"'} — 2t + 1) Re{(z +iy)*}} (Keil-24)
It is clear that:
G2t +2n+1)—12- Gt +2n—1
77Dn'r‘ad Z ( ) ( ) .

par (2t +1)!
At+ D) Im{(z +1iy)*} —vIm {(z +iy)* "} } (Keil-24a)

For the imaginary parts can be written:

cosh? (voh) .
.= . Keil-25
Poi o voh + sinh [voh] cosh [voh] (Keil-25)
s

{Z z+zy 2t} tanh [voh] Z 2t+ o Re{(z+iy>2t+1}}

0 : t=
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cosh? (voh) ‘
A ' Keil-25
Ve 7Tl/oh + sinh [vgh] cosh [voh] (Keil-25a)
00 I/2t 2t o) V2t+1 o
. Z@Im (z +1iy) }—tanhygh Z—)Im{(z—l-zy) }
t=0
V2n
P =T ; (Keil-26)

I/()h + sinh [voh] cosh [voh]

{Z( 20) i Re {(z +iy)™} — tanh [voh] Z%Re{@—l—iy)%ﬂ}}

t=0 t=

= _Vg(n Y (Vo_ ) Poj

2n
14
Upj = + -

Voh + sinh [voh] cosh [voh]

(Keil-26a)

2t+1

. {Z o0l (z 41y 2'5} — tanh [voh] ;V—l)!lm {(Z+iy)2t+l}}

2(n—1) (Vo . V2) ) woj

= —VO

Function G(t)

The function:

i Lt e—kh
dk ith unit: [L'™
/ ) (v cosh [kh] — ksinh [kh]) with unit: [ L7)
0

has two singular points: £ = v and k = vy. Thus, it is not possible to solve this integral
directly.
First, this integral will be normalized:

G(t) = G(t)-n

_ 7 ue ™ du
/ (u — vh) (vh cosh [u] — wsinh [u])
A substitution of:
w=u+1w = %\/E-ei"
provides:

whe™v

(w — vh) (vh cosh [w] — wsinh [w)])

du—i—/ dw—l—/ dw—l—/ dw—l—/ .dw
T

11T

dw

0\8 o
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Figure 4.7: Singularities in G-Function

du+ J[ + J]I + JIII + JIV

I
(@] 0\8

B (Keil-27a)
From this follows:
7 ute U du=—R {J Y NI S }
(u — vh) (vh cosh [u] — wsinh [u]) = e+ Jir+Jur +Jiv

0
Jr and J;; are imaginary because they are residues and J;;; = 0 for R — oo.

So, it remains:

o0

u‘e™™
du = —
/u—yh ) (vh cosh [u] — wsinh [u]) u Re {Jrv}
0

—w

- / (w— ) (vhrcosh [u] —wsih [w]) "

With the complex function:
(0 — vh) (vh cosh [@] — w sinh [w]) with: @ = %\/5 - e

the nominator of this integral will be made real by removing.

So:

dw

whe™ (w — vh) (vh cosh [w] — w sinh [w])
(w — vh) (0 — vh) (vh cosh [w] — wsinh [w]) (vh cosh [w] — W sinh [@])

(Keil-28)
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tm
= —Ccos— -

4
2 (vh)? { (1 — tan &) (coss +e) + (1 + tan &) sinc}
—4vhs {cos¢ + tan T sin¢ }
< S )t +¢2{(1+tan ) (cos¢ — ) — (1 — tan ) sinc} 4
/ V2 {c? —2wh(c —vh)}- )
0 -{cosh [¢] (2v*h? + ¢*> — 2vhg tanh [¢])
+ (2v%h? — ¢2) cos¢ + 2vhgsing}

Because t is always odd:

Gt = —cos tw 14 (vh)?sing + 22 (cos ¢ — (43*) — 4vhg (coss +sing) (¢ tdg
4 denominator V2
0
fort=1,5,9, ..
tr [ 4 (vh)? (cos¢ + e%) — 2¢%sin¢ — 4vhg (coss —sing) [ ¢ \'
= —Cos— ; — | d¢
4 denominator V2

0
fort =3, 7,11, ...

For t > 1 the function G'(t) becomes finite. However, G'(1) does not converge for vh — 0;
the integral increases monotone with decreasing vh. This will be investigated first.

—u

G1)=60)= / (u—vh) (vh C(l)bseh [u] — usinh [u]) du (Keil-282)

This integral converges fast for small vh values. This will be approximated by:

ue ¥
i = Keil-2
VIAIE}O (1) / (u—vh) (vh — u?) du (Keil-29)
0
This can be written as:
lim Gi(1) = I L[ e d
g T = A 1—vh | u—vh Y
0
L 1 T e ¥ du
2v/vh <\/Vh — 1) , u— Vvh

—Uu

e

1
+2\/E<\/ﬁ+1) /u+\/ﬁdu

0

From:

e > "
duy = —e *- 1
/u—a “ ‘ {7+n’a’+zlm~m!}
0 m=
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follows:

—Vh
lim Gy(1) = lim{

vh—0 vh—0

6—\/1/h

1ny N (Vh)%
+2m<1_m> 7+21 (vh)+ mz_lm.m!]
B eVvh 1 , - B m(uh)%]
Nﬁ(u%) () (h)erZ_l( U

e = (wh)”
N uliglo{l—yh 7+ (vh) +mz_1m m!
(1 + \/Vh) e~ Vvh
_.I_
2vVvh (1 —vh)

7+1 In (vh) +\/_+Z )?]

1—Vvh)eVvh Fl
_(2\/%(12%) 7+;1n vh) — \/_+Z h)m']
o — (vn)"
- ulégo{l—yh 7+ In(vh +Z_1m~m]
sinh |Vvh
+1—1yh cosh [\/ﬁ]— h\/[% h] [er%ln(yh)}
cosh [\/ﬁ] sinh [\/ﬁ]
* 1—vh  1—vh .
i [ fzmﬂi. oy
fz W2 oS Zn]}
= 1- —1n(yh> (Keil-29a)

The imaginary part of integral (Keil-27a) has been treated in Appendix 3.

Hydrodynamic Loads

The hydrodynamic loads can be found from an integration of the pressures on the hull of
the oscillating body in (previously) still water. With a known potential, these pressures

can be found from the linear part of the instationary pressures as follows from the Bernoulli
equation:

od

Pdyn = P — Pstat —PE



4.2. THEORY OF KEIL 103

= —jwpd

The potential is in-phase with the oscillation velocity. To obtain the phase of the pressures
with respect to the oscillatory motion a phase shift of -90° is required, which means a
multiplication with -j. Then the pressure is:

Pdyn = —pw®

The hydrodynamic force on the body is equal to the integrated pressure on the body. This
is - in the two-dimensional case - a force per unit length.
The vertical force becomes:

Fy = Fy, +jFy; = /pdy
5

= pwV [F{/T —i—jF{/]} (Keil-30)

= _pw‘_/ejwt Z/ |:A'/m"90nr - A'Injsanj + j <A'Im"90nj + Alnj@m")} dy
n=0 S

The real part of this force is equal to the hydrodynamic mass coefficient times the oscillatory
acceleration, from which the hydrodynamic mass coefficient follows:

” F Vr F Vr
m = = —
b wV
or non-dimensional:
” F ,
Op=—_ -V (Keil-30a)

T pIB2 pIBWV
The imaginary part of the force must be equal to the hydrodynamic damping coefficient
times the oscillatory velocity, from which the damping coefficient follows:

Instead of this coefficient, generally the ratio between amplitude of the radiated wave ¢
and the oscillatory motion z will be used. The energy balance provides:

52 w? Ny

AZ = — = @ ——
v z? Py 2- Cgroup
wrg sinh [2v4h)]
— . . Ny
pg  2voh + sinh [2v4h)]
V2 cosh? [voh] _

= — . Fy; Keil-30b
pwV  voh + sinh [voh] cosh [voh] V7 (Kei )

In deep water becomes the hydrodynamic mass for v — 0 infinite, because potential
(Keil-21) becomes:
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lir% Coroo =7 + In (vr) (Keil-30c)

and the non-dimensional mass of a circle becomes:

!

m

o0

8 1
= 2|yl -
w2 | n () +;n(4n2 -1

and the amplitude ratio - in this deep water case - becomes:

. dA

lim —~ = B
The hydrodynamic mass for v — 0 in shallow water remains finite. Because the multi-
potentials - just as in deep water - provide finite contributions, the radiation potential

has to be discussed only, which is decisive (infinite mass) in deep water. the borderline
change-over ”deep to shallow” water provides for this radiation potential:

ll/lr% [9007"00 + @Orad] = 7 + 1I1 (VT) - ln (Vh)

n(3)

= n —

TG

It is obvious that equation (Keil-30d) - just as equation (Keil-30c) - provides an infinite
value.

When the contributions of the multi-potentials (which disappear here for the borderline

case v — 0) are ignored, it follows from equation (Keil-12c) for the amplitude ratio in
shallow water:

[
A

_oq e cosh? [voh]
— %9z voh + sinh [voh] cosh [vh]
v cosh? [voh]
wZ  voh + sinh [voh] cosh [voh]
Ay , cosh? [vgh]
V' voh + sinh [voh] cosh [voh]

, vgsinh [voh] cosh [voh]

o voh + sinh [voh] cosh [voh]

o
<
I

Because:

it follows:

vg sinh [voh] cosh [voh]
voh + sinh [voh] cosh [voh]

lim AV =
v—0
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and:

lim @ — lim @
v=0 dv w0 dug
B . 1
= — lim ,
2 vo—0 voh + sinh [voh] cosh [voh]

= o0

Thus, Ay (vB/2) has at vB/2 = 0 a vertical tangent.

The fact that the hydrodynamic mass goes to infinity for zero frequency can be explained
physically as follows. The smaller the frequency becomes, the longer becomes the radiated
wave and the faster travels it away from the cylinder. In the borderline case v = 0 has the
wave an infinite length and it travels away - just as the pressure (incompressible fluid) -
with an infinite velocity. This means that all fluid particles are in phase with the motions
of the body. This means that the hydrodynamic force is in phase with the motion of the
body, which holds too that:

—/

I .
€HT—oo = arctan =—— = arctan —= = 0
Vr Vr

This condition is fulfilled only when F{,j =0or F,, =m"/p= co. However, F{,j is finite:

—/ FV' NV 92 - /_12
pwV  pw  w v

Because lim,,, o Ay = By follows lim,, o F{,j = B2% The term F,, = m'/p has to be
infinite.

The finite value of the hydrodynamic mass at shallow water is physically hard to interpret.
A full explanation is not given here. However, it has been shown here that the result makes
some sense. At shallow water can the wave (even in an incompressible fluid) not travel
with an infinite velocity; its maximum velocity is v/gh In case of long waves at shallow
water, the energy has the same velocity. From that can be concluded that at low decreasing
frequencies the damping part in the hydrodynamic force will increase. This means that:

—/

€HT+400 = arctan Vi £
Vr

So or F,, = m’ /p has to be finite.

‘Wave Loads

The wave forces on the restrained body in waves consists of forces Fj in the undisturbed
incoming waves (Froude-Krylov hypothesis), and the forces caused by the disturbance of
the waves by the body, one part F5 in phase with the accelerations of the water particles
and another part F3 in phase with the velocity of the water particles:

Fp=F +F+ jF;
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These forces will be determined from the undisturbed wave potential ®y, and the dis-
turbance potential ®g. As mentioned before, for u # 90° only an approximation will be
found.

Fp = Fi+F+jF3=
= —pLU/[(I)W—{—(I)S] dy

S
= —pwelt / {%}ejl’o“"s“ (cosh [vgz] — tanh [voh] sinh [vyz]) cos (voy sin p)
S
n=0
In here:
_ pCUZE j(wt—vox cos p) . .
F = ——=2¢ {(cosh [voz] — tanh [voh] sinh [vgz]) cos (voy sin )} dy
v
S
F, = _pwveth Z |:A'/m"90nr - A'/njgpnj} dy
n=0
F3 = _pwveth Z |:A;7,r90n] + A;ngpmﬂ:| dy
n=0

Using V = (w, the non-dimensional amplitudes are:

_ F 1

E, = - / {(cosh [vgz] — tanh [voh] sinh [voz]) cos (voysinp)} dy
pgCB B )

— FQ 14 > ’ /

EZ - ngB - _E Z |:Anr90n'r - Anjgpnj:| dy

i
o

_ Fy
pgcB
In case of u = 90°, so beam waves, the theory of [Haskind, 1957] can be used too to
determine the amplitudes E;, Fy and E;. When @y = ¢y e/t is the potential of the

incoming wave and ®g = @4e/“* is the potential of the disturbance by the body at a large
distance from the body with a velocity amplitude V' = 1, then:

&
I
[
|
SIS
(]2

|:A'Im"90nj + A'/njgpnr] dy

i
o

n

h
, 0 0
Fr = —pwe”“’t/ <<pwa—j — @%) dz (Keil-32)
0
According to equation (Keil-A4) in Appendix 1 is:
(-w

ow = {cosh [vgz] — tanh [voh] sinh [vgz]} cos (voy)

t ‘
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From the previous subsections follows the asymptotic expression for the disturbance po-
tential in still water with V' = 1:

7 cosh? [vh]

Cysoo = Joh & sinh [poh] cosh vofi] (cosh [vgz] — tanh [voh] sinh [vy2]) sin (voy) -
N Ag + i Ay — (5 —7)) (Am ~|—]Anj> 2 1)]
n=1

Substituting this in equation (Keil-32), provides:

2 cosh? [voh]
voh + sinh [voh] cosh [voh]

Fp = —PgéVoejwt

h
/ (cosh [voz] — tanh [voh] sinh [vg2])? dz -
0

Aér +jA£)j - (Vg - Vz)

/ .4l 2(n—1
<An'r +]Anj> VO( )]

s

= —pglmet | Ay, + Ay — (V5 — 7)) <Am + A, ) o 1)]
n=1
Non-dimensional:
_ _ Re {F E} x| L2(n=1) ]
Ei+E, = — L —__ 14 — — A
1+ Lo ngB B i V Z nr?0 |
(Keil-32a)
R N R
Es = B B Ay — (vo—v )ZAnjVO
Solution
The Lewis transformation of a cross section is given by:
y+iz=e" +ae " 4 be " (Keil-33)
Then, the coordinates of the cross section are:
= (14 a)cosf + bcos (30
(
z = (1 —a)sinf — bsin (30) (Keil-33a)
Then:
z4iy=i(y—iz) =i (e +aet? + be™) (Keil-33b)

All calculations will be carried out in the Lewis domain. Scale factors are given in the
table below.
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. . Ship
Ship Lewis Form Tt
Breadth BR 2(14+a+0) BR/{2(1+a+0b)}
Draft TI l—a+b TI/(1—a+0b)

Water depth | HT-T1 | WT =HT-(1—a+0) TI/(1—a+0)
Wave number Vo WF=vy-TI/(1—a+Db) (1—a+10b)/TI
Acceleration g g 1

Forces Fg F (TI/(1—a+b)}?

The yet unknown complex coefficients A,, (0 < n < 00), the source strengths of the by the
flow generated singularity, can be determined by substituting the stream function (Keil-
19) and the coordinates of the cross section in the relevant boundary conditions (Keil-5a)
through (Keil-6b).

N [(y, 2)body ,t} = Upody [(y, 2)body ,t} (Keil-34)

To determine the unknowns A,, an equal number of equations has to be formulated.
Because Lewis forms are used only here, a simple approach is possible.
All stream function parts and boundary conditions can be given as a Fourier series:

W, = Z {Cnm sin [2mb] + dpm cos [(2m + 1) 0]}

m=0

or with

o0

2
2m +1)6 —1——+—§
cos[(2m + 1) 6] R

™

(2m +1)?
(2m +1)°]

sin (2k6)

WY, = ano + Z Ay, S0 [2mM0)

m=1

The solution of the by equating coefficients generated equations provide the unknowns A',.
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4.2.4 Horizontal Motions
Boundary Conditions

The for the vertical motions made first four assumptions are valid for horizontal motions
too. The potential must fulfil the motion-dependent boundary conditions which have
been substituted in the equations (Keil-1) through (Keil-4). However, the fifth boundary
condition needs here a new formulation.
Because two motions (a translation and a rotation) are considered here, follows in still
water from:

l(‘?cb

%:| body = [Un]body

two boundary conditions:

1. For sway:
0P
), = e
28 420 2
0z ds 0Oy ds body
_ _ |
a |:d8:|body
= —Uelvt [%]
ds body
or:

dWhody = Ue** [dz]body

from which follows:

Uhoay (Y, 2, ) = Ul [2]4oay +C (Keil-35a)
2. For roll:
o
on |, dy = [Unlbody
00 dy 00 d:
Oz ds Oy ds]y,,
_ [ﬂ]
ds body
| d
= —pwelt [—rr}
ds body
or: A
AW poay = —pwe’* [rdr],, dy
from which follows:
noay (y: 2,t) = =52 [y + 2], +C (Keil-35b)
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For the restrained body in waves, only the force in the horizontal direction and the moment
about the longitudinal axis of the body will be calculated. One gets in beam waves only
the in y point-symmetric part of the potential and the in y symmetric part of the stream
function of the wave (see Appendix 1), respectively:

= v, " - [(sinh [vgz] — tanh [voh] cosh [vo2]) - cos(voy)] g, (Keil-36a)

[\I/S (y7 2 t)]body v

and in oblique waves:

] CH et - sin(vox cos ) - (Keil-36Db)
body 14
[sin p cos(voyy sin i) « (sinh [vgz1] — tanh [voh] cosh [vg2z1])

Y1

\Ijs (:Ea Y1, 21, t)

—vo(1 — sin® 1) /Sin(yoy sin p) - (sinh [vgz] — tanh [vgh] cosh [vg2]) dy
0 body
Potentials

2-D Radiation Potential In a similar way as equation (Keil-10) for heave, the three
dimensional radiation potential for sway and roll can be derived as:

+L/2 00
o, (z,y, 2, t) = eI Ap(§) [ coslky(x —&)]- (Keil-37)
A

e}

VK2 + K2 cosh [ /K2 + k2. (2 —h .
/ vcosh [ : . i ) sin(k,y)dk, dk, d¢
0

VEZ+E2-h] — \/k2+ k2 -sinh [\/kZ + k] - h]
This becomes for the two-dimensional case:

; [ kcosh [k(z — h)] , )
o =e'A Keil-38
orly, 2,8) = €4y / y cosh (k] — st ] S (F0) A (Kell-38)
0

With the Sommerfeld radiation Condition (Keil-4) and Appendix 3 the total radiation
potential becomes:

Dor(y, 2,t) + jPoj(y, 2,t) = €A (Keil-39)

[ kcosh [k(z — h)] ‘
/ v cosh [kh] — ksinh [kh] Sln(k;y) dk

0
cosh [voh| cosh [vo(z — h)]
voh + sinh [voh] cosh [voh]

+jmrg

sin(z/oy)}

and the stream function becomes:
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Tor(y, 2,t) + jWo;(y, 2,1) = ' Ag- (Keil-40)

[ ksinh[k(z — h)]
' { / > cosh [oh] — s o] Sk dk

sinh [vo(z — h)] cosh [voh]
®Voh + sinh [voh] cosh [voh] c (VOy)}

+jmv

Potential and stream function are separated by:

CI)O = CI)07"00 + CI)[)rad + chOj = eth ’ (Kell_gg_b)

[ ke ) [ ke™™  ysinh [kz] — kcosh [kz] .
' { / o5, Sinlky) dk + / U= vcosh [Fh] — Fsinh (o] S (k) dk

0 0
cosh [vo(z — h)] cosh [voh] .
*Voh + sinh [voh] cosh [voh] sin(voy)

+jmv

Uy = Voroo + Yoraa + j¥o; = ™" - (Keil-40b)

[ ket [ ke v cosh [kz] — ksinh [kz]
. ky) dk . ky) dk
{/ o7 stky) +/ = v cosh [Fh] — Fsinh o] <)

0 0

sinh [vg(z — h)] cosh [voh]
voh + sinh [voh] cosh [voh]

+jmrg

)

2-D Multi-Potential The two-dimensional multi-potential becomes:

(I)m"oo(yVZ?t) - _6jth /k+V kzn 1 Sln(ky) dk
0
(Keil-41)
; [ _ h [kz] — kcosh [kz] .
D, t) = —etA [ (k L2l kn V SN k) dk
A=) ‘ /( ) v cosh [kh] — ksinh [kh] sin(ky)
0
(Keil-41a)
Bpi(y, 2,t) = +eltA,—— vy coshfvo(z=h)] o0
i N "cosh [vph] voh + sinh [vgh] cosh [voh] 0y
(Keil-41b)

The stream function related to it is:

Viroo(y, 2,t) =+ A, /k+v Vk* ek cos(ky) dk
0
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(Keil-42)
A ® - h [kz] — ksinh [kz]
. _ ey 21 ,—kn ¥ COS
nrad(ya 2 t) € n /(k T V>k v cosh []{Ih] k sinh [kh] COS(ky) an
0

(Keil-42a)

Tyl o) = 4eA, A e cos(vau)

nj\Y, %) = "cosh [voh] voh + sinh [voh] cosh [voh] "
(Keil-42b)

Total Potentials With exception of the complex constant A, with (0 < n < c0), the
potential is known:

D(y, 2z, t) +i¥(y, z,t) = (Keil-43)
orthssn) | [
0
e
—e i_o; [Anr 4 Ang] { 7 — kR 1V iilﬁlgi—z (Ijs;?[]k)h] dk
n= 0

B vantt sin{vo (y +i(z —h))}
J COSh [voh] voh + sinh [voh] cosh [oh]

Writing in a similar way as for heave provides:

@(y, 2 t) - ejwt Z {Am" [gpnroo + (pnrad] - Anj(pnj + .] [Anj(gpnroo + Qonrad)] + A”"‘(pnj}
n=0

(Keil-43a)

and

\I’(f% 2 t) = Gth Z {Anr [¢nroo + ¢nrad] - Anj¢nj +] [Anj (¢nroo + ¢nrad>] + Anr¢nj}
(Keil-43D)
with:

A+ A = U[A;+ jA;} for sway

w [A;, + jA;-] for roll

A has the dimension [L?"*2]. Then, A o, and A 1, have for sway the dimension [L] and
for roll the dimension [L?].
The determination of the coefficients A, follow from the conditions at the body contour.
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Expansion of Potential Parts

For vr = vy\/y?> + 22 — O:

Y+ n(r) + Y m”n;ﬂ Re {(z +iy)™}

Porcc — Y +ve * {Siﬂ(l/y)

y2+z2
Yo V"
arctan = +
STl

v —Im {(= + iy)m}] } (Keil-44)

m=1

— cos(vy)

m

z v Cm
— Re{(z +iy)™}

+—
y2 + 22

v+ In(vr) + Z

m=1

m

— Im {(z + iy)m}] } (Keil-44a)

: Y = U
t =
+ sin(vy) [arc an = + mE:1 —

with the Euler constant: v = 0.57722.
For vr = vy/y? + 22 — oc:

M
y 3 (m —1)! e Y
— — + S 7 I + m vz _J_
Porco y2 + 2 Vm:1 pmy2m m{(z Zy) } |y’ COS(Vy)
2 — (m—1)! y
_ s A VR, o\mY —vz Ik
Yoroo +y2 s Vmg_l o Re {(z+iy)"} — 7ve m sin(vy)

Mind you that I(jm;l) {(z +iy)™} is semi—convergent.

mp2m

Prroo = (—=1)""1(2n)! {Re {(y +iz) (2”“)} —I— — Im{ y+iz) 2”}}
(Keil-45)

nree = (=1)"1(20)! {Im{(y+z‘z)‘(2”“’} - %Re{(?/—l—iz)‘zn}}
(Keil-45a)

Corad = ZO{ (2t +3) Im{(z+iy)2t+1}—I/Mhn{(z+iy>2t}}

2\ 2t 1) 20)!
(Keil-46)
Uorad Z { (2t + 3 {(z + iy)2t+1} - V—G((Qst—;—! D) Re {(z + iy)%}}
. (Keil-462)

(G2t +2n+3)—1v? G2t +2n+1
Spmﬂad = Z{ ( ) ( )

2t 1) Im {(z + i)™}

t=0



114 CHAPTER 4. 2-D POTENTIAL COEFFICIENTS

LRI ) m v GREA I ) e iy)zt}}

(2t)!
(Keil-47)
(G2t +2n+3)—12-G2t+2n+1) o
_ R +1
¢mﬂad ; { <2t + 1) S {(Z + Zy) }
— 2. G2t+2n—1
_VG(2t+2n+1) v G2t +2n—1) Re{(z+iy)2t}
(2t)!
(Keil-47a)
cosh? (vgh) )
= : Keil-48
Poj Vo voh + sinh [vyh] cosh [voh] (Keil-48)
{i V2t+1 i
- ———1Im {(z +iy)**'} — tanh [voh] (z +iy)*}
(2t +1)! P
cosh? (voh) :
= Keil-48
bo; Vo voh + sinh [vyh] cosh [voh] (Keil-48a)
{ 00 V2t+1 - i 2
) —Re{(z+z'y) i } tanh [voh] z+zy t}
— (2t +1)! —
i = +V§("71) (vg — %) - Poj (Keil-49)
by = A G 0) (Keik-490)

Zero-Frequency Potential

[Grim, 1956] and [Grim, 1957] give for the horizontal motions at zero frequency the complex
potential:

p+ip = ZA { (y 4 iz)” @ 4 (Keil-50)

[e.9]

> {(y Fiz 4 i2mh) MY L (y 4 iz — i2mh) Y }}

m=1

For Lewis forms this becomes:

otity = ZA”{ i(2n+1) 92 <2n+p) (a 67120_1_66449)10
n=0 p=0

2> { (i2m) .

m=1

i (—1)" 2p+2n+ 1\ (et + ae™ 4 pe=30 2+l
= 2p+1 2mH
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= io:A f: (—1)p - n+p p aP*lblefi(2n+2p+2l+1)6‘
" =0 p !

n=0 p=0
oo 00 2p+1 |

+23 O3 (=P | @mH) PP Y N (Keil-50a)
m=1 p=0 =0 k=0

2n+2p+ 1\ (2p+1\ (1 d—Fpp pi(2p—20-2k+1)0
2p+1 [ Vg

These sums converge as long as:

= <1 Keil-51
om - H om-HT - (1—a+b) (Keil-51)
Because m > 1, it follows:
—i20 —i40
SHT > 14 ae™*" + be
l—a+b
The potential converges too when:
1 b B
oHT > -4+ _ D (Keil-51a)
l—a+b 2T
breadth < 4 x water depth (Keil-51b)

Hydrodynamic Loads

The hydrodynamic force at sway oscillations in still water becomes:

Fo = Fgr +jFgj = —pwUel" . (Keil-52)
n=0 5

and at roll oscillations:

Fr = Fp,+ jFrj = —pw’pe" - (Keil-52a)

’ Z/ [A;Lr(pnr - A;mj(pnj +] (A;Lr(pn] + A'/n](pnr>] dz
n=0 S
The hydrodynamic moment at sway oscillations in still water becomes:

Mg = Mg, + jMg; = —pwlUe™*" - (Keil-53)

: i / [A;W@m, — A iPn; + 7 (A;anj + A;jwm)] [ydy + 2dz]
n=0 S
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and at roll oscillations:

Mg = Mg, + jMp; = —pw’pel’ . (Keil-53a)

i/ [A/mn@m« - A/anOnj +J (A/mn@nj + A;q,j@m«ﬂ [ydy + 2d=]
n=0%

Of course, the coefficients A’ . and A’nj of sway and roll will differ.
Fictive moment levers are defined by:

_ Mo, _ Mo

Ho = —% Hoj = —2
Uwm UNg

_ I W2 _ NpwoB

Hy = —2° Apy = —222
Fr, 2FRj

Non-dimensional values for the sway motions are:

Cy = m__ _For
p5T?  pwUZT?
- e 2 cosh? [voh] _
Ay = Z=——=" : Fo;
y*>  pwU voh + sinh [voh] cosh [voh)

Hg. Mg,

T — T-Fg

Hg; Myg;

LI % (Keil-54)

j
and for roll motions:
I Mg,
Cr = —m = ——
pgT*  puw2pgT?

2o 1§ 42 cosh? [vh] e

B P22 pw2pB? voh + sinh [vh] cosh [voh] Rj
ﬁRr - MRT
T T Fr,
Hrj . Mry (Keil-54a)
T T Fr,

‘Wave Loads

The wave loads are separated in contributions of the undisturbed wave and diffraction:

Fg = Fi+F+jF=
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= —pw/[CI)W+<I>5] dz
S

= —pwelt / {—%uej”o“os“ (cosh [vgz] — tanh [voh] sinh [vgz]) sin (voy sin )
S

i [ nr P = A Pnj + J <Amsom + Anjgomﬂ } dz (Keil-55)

n=0

Mg = M+ My+ jM;=

= —pwej“’t/ {—%}ejl’omos“ (cosh [vgz] — tanh [voh] sinh [vpz]) sin (voy sin )

+UZ [ nrPrr — Anj gonj +7 (A;W@m + An](pnr)] } [ydy + zdz] (Keil-56)

The separate parts are:

-
F = —l—%cej(“’t”o“"s“) / {(cosh [vgz] — tanh [voh] sinh [vyz]) sin (vey sin u)} dz

S
F, = _pWUGth Z |:A'lm"90n'r - A;mj(pn]:| dz
n=0
F, = —pLUUGth Z |:ATLTLPTLJ + Anjspnr] dz
n=0

-
M, = +Mej(“’t_”0“°s“) / {(cosh [voz] — tanh [voh] sinh [vgz]) sin (vey sin p) } -

v
S
- ydy + zdz]
M, = _pWUeth Z |:A'/m"90nr - Alnjgpn]i| [ydy + ZdZ]
n=0
My = —pwUe™>" [A;rsom + An]som] lydy + zdz]
n=0
Dimensionless:
_ F h
E, = Il +tan [voh /{(cosh [voz] — tanh [voh] sinh [vgz]) sin (voy sin p) } dz
ngVUA:r VA:B %
_ Fy tanh [voh] =T ,/ /
E, = = =— A — A, ol d
2 ngV[)A:r Am nz:; [ nrPnr n]gonj] Z
_ Fy tanh [voh] — :
- _ =— A A d Keil-55
ngVOAw Aar; Z[ nrgpn] + njgpnri| & ( o a)

3
Il
=)
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Hyy, M, + M, HWj M

- _ il = — Keil-56
T T -(h+h) T ~ T F (Keil-56a)
The Haskind-Newman relations are valid too here:
_ _ Re {F E} T [ / N a(nel ]
S pgCroAy Ag |7 (o =) ; nrt’0 |
(Keil-55b)
_ Im {FE} T [ / = 2(n—1 ]

Solution

To determine the unknowns A,,, an equal number of equations has to be formulated.
Because Lewis forms are used only here, a simple approach is possible.
All stream function parts and boundary conditions can be given as a Fourier series:

W, = Z {camsin [(2m + 1) 0] + d,, cos [2mb)]}

m=0
or with
16 — m?
ol =1+ —3 in [(2k +1)0
cos [2mé)] +7rkzo(2k+2m+1)(2k—2m+1)(2k+1)Sln[( +1)¢)

n:

Y, = i Anm Sin [(2m + 1) 0]

m=0

The solution of the by equating coefficients generated equations provide the unknowns A’,.
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4.2.5 Appendices

Appendix 1: Undisturbed Wave Potential
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The general expression of the complex potential of a shallow wave, travelling in the negative

y-direction, is:

Oy + 10y =

Yy =

~ veosh [voh]

7 cosh [voh)

Cc- cos{vo(y+i(z—h))+ wt}

) sinh(voh) ”
m)sirf—li(j[u[)lz] {cosh [vg (z — h)] cos (voy + wt)
—isinh [vg (z — h)]sin (voy + wit)}
ﬁw@oh] {cosh [vy (z — h)] cos (voy + wt)
—isinh [vg (2 — h)]sin (voy + wt)}
ﬁw@oh] cosh [vg (z — h)] cos (voy + wt)
ﬁccwejwt . cosh [VO (Z _ h)] ejl/oy

(w

>— ¢! {cosh [vyz] — tanh [voh] sinh [voz]} e/V0Y
Cw sinh [vg (2 — h)] sin (voy + wt)

Cw

e/ . sinh [vg (2 — h)] €Y

j%}ej‘”t {sinh [vgz] — tanh [voh] cosh [voz]} €/*0¥

with: ¢ = — (Keil-Al)

For the vertical motions is the in y symmetrical part of the potential significant. For the
horizontal motions is the in y point symmetrical part - multiplied with j, so a phase shift

of 90° - important.

Oy =
Uy =
Sy =

Yy =

When the wave travels in

G

~—¢/** {sinh [v2] — tanh [voh] cosh [vy2]} cos (voy)

E — e/ {cosh [vgz] — tanh [voh] sinh [192]} cos (voy)
5 ejm {sinh [vgz] — tanh [voh] cosh [voz]} sin (voy)
5 ej“’t {cosh [v2] — tanh [voh] sinh [vp2]} sin (voy)

the z,,-direction, the potential becomes:

(Keil-A2)
(Keil-A2a)
(Keil-A3)

(Keil-A3a)
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Dy = %uej(“’t_”o”w) {cosh [vgz] — tanh [vh] sinh [vyz]}

With:

Ty = T COSW — Yysinp
Yo = xSinpu—+ycospu

the potential becomes:

Oy = C—wej”tej”‘)(ysm’“‘” cost) {cosh [voz] — tanh [voh] sinh [v2]}
v

This results for the vertical motions in:
Dy = +€—wej(‘”t_”°“°5 # {cosh [vgz] — tanh [voh] sinh [oz]} cos (voysinp)  (Keil-A4)
v

and for the horizontal motions in:

Oy = —%uej(“’t_”o“os # {cosh [vyz] — tanh [voh] sinh [voz]} sin (veysinp)  (Keil-Ab)

Appendix 2: Series Expansions of Hyperbolic Functions
With:

. . y
z =+ W = A /y2 + 22 eizarctan Y
= 7r. eilﬂ

the following series expansions can be found.

cosh [kz] cos (ky) = cosh [kz] - cosh [iky]
_ % {cosh [k (z + iy)] + cosh [k (z — iy)]}

= % {Cosh [kre“ﬂ} + cosh [kre_iﬂ} }
1 = (kr)2t +i2t3 = (kr)% —i2tB
- 5{ 2 +§ 2

a (;r 2
= Z (225))! cos (2tf3)

S (’;t)! Re {(z +iy)*}



4.2. THEORY OF KEIL

sinh [kz] cos (ky)

sinh [kz] sin (ky)

cosh [kz] sin (ky)

121

sinh [kz] - cosh [iky]
% {sinh [k (z + iy)] + sinh [k (z — iy)]}

% {sinh [kre“ﬂ } + sinh [kre_w}}

00 2t+1 o] 2t+1
1 (kr) eHi2t+18 | Z o2t
2 — (2t + 1)! — (2t +

—i'sinh [kz] - sinh [iky]
—% {cosh [k (2 + iy)] — cosh [k (2 — iy)]}

—% {cosh [kre“ﬂ] — cosh [kre”ﬂ] }

_ i (kr>2t +i2t - (kr>2t —i2t
-2 {; @0 © ﬁ_; @) " ﬂ}
— Z UW)) sin (2tf3)

= Z( D Im{ z +1y) }

—i'cosh [kz] - sinh [iky]
2t {sinh [k (z +iy)] — sinh [k (z — 1y)]}

—— {smh [kre“ﬂ} sinh [l{:re_w ] }
. ( o (k 2t+1 oo 2t+1
{Z (2 +z(2t+1 Z —i(2t+1)ﬂ}
00 (k;_)oQt-‘rl =
; T sin (2t 4 1) 8)
O p2t+1 o
tz_;(%ﬂ)!lm{(z“y) ;

Appendix 3: Treatment of Singular Points

The determination of ®j; and his terms - which can be added to ®, in equation (Keil-11)
with which the by ®, + j®o; described flow of the waves (travelling from both sides of
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the body away) is given - is also possible in another way. This approach is based on work
carried out by Rayleigh and is given in the literature by [Lamb, 1932] for an infinite water
depth.

In this approach, an viscous force puw will be included in the Euler equations, p is the
dynamic viscosity and w is the velocity. Because the fluid is assumed to be non-viscous,
in a later stage this dynamic viscosity p will be set to zero.

From the Euler equation follows with this viscosity force the with time changing pressure
change:

o _ L[ 00 o6 5w

A R PR T

From this follows the approach as given in a subsection before for the two-dimensional
radiation potential:

(I)Or(y, Z, t) +j(1)0j (ya <, t) =
cosh [k (z — h)]

= ¥4, hn%)/ - - cos (ky) dk
et (V - jﬂgﬂ) cosh [kh] — k sinh [kh]
- ) i 6—kz
= v AO ll}i)l%) / ﬁ%ﬁ_k COS(ky) dk

T okh (V — j“’Tf‘) sinh [kz] — k cosh [k2]
+ / cos(ky) dk

J VI k(= j#) cosh[kh] — ksinh [kh]

= YA, {(@oroo + j%joo) + (900md - j%j“d)}

The first integral leads to equation (Keil-12a) and the second integral can be expanded as
follows:

CI)[)rad +j(1)0jad =

o0

v— j%) sinh [kz] — k cosh [kz]

= lim cos(ky) dk

=0 ) v— = (,, _ jaga) cosh [kh] — k sinh [kA]

BN {[(V_j%) Re{(z+i)™"'} Re{(z+z'y)2t}] _

2t+ 1) (2t)!

efkhk,2t+1
/ (y e k) [(y - jﬂgﬁ) cosh [kh] — ksinh [kh]} &

S wp\ Re{(z+iy)*""}  Re{(z+iy"}
B _ilil%)tzo{ (”‘”7) Qt+1nl (2)! ]

G2t+1)+7H (2t + 1)]}

The function:
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o0 o b Kt
G (t H (t) = 1i ’ dak
(¢) +iH (t) = lim . (V_Z‘HE> [(,,_@'wi) cosh [kh] — ksinh [kA]
0 g g

will be normalized as done before:

G (t)+iH (t) = h7V[G(t) +iH (t)]

% t
. ute ™
= lim du

10 J u - (yh wuh) [(Vh ”"h) cosh [hu] — wsinh [hu]

This is a complex integral and must be solved in the complex domain with w = u + v .
The integrand has singularity for:

h
wy = vh — z% and Wa
g

where wy is the solution of the equation:

<Vh = z%) cosh [w] — wsinh [w] =0

g
see figure 4.8-a.

A"V

P,
A

QA

T 1
vh Voh
© P ? > WL
w‘l w:_
a

Figure 4.8: Treatment of Singularities

R
e~ Yt
li dw = 1li .d ..d d
;}L% (w — wy) (wy coshw — wsinh w) v ulgll) / u+/ w+/ v
0 1
R

= lim dU+J[+J[]

pu—0

o\
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Thus:
7 t,—u
G (t)+iH (t) = lim L du
=0 ;U — (Vh - ZM) [(Vh = ZM) cosh [hu| — wsinh [hu]
g g
- ,uﬂ%lglﬂoo {JI + JII}
Because:
a1 =0
follows:
/ ’ wte_w
t)+:iH (t) = —1i d
G o)+l () st (w — wy) (wy cosh [w] — wsinh [w]) v
I
The real part of this integral:
G (t) = —Re lim/ we ™ dw
B p—0 | (w — wy) (wy cosh [w] — wsinh [w])
I

will be calculated as done before. This integral has no singularity and the boundary p — 0
can be passed before integration; see figure 4.8-b.
The imaginary part of this integral:

, whe™™
H(t)=-1 li d
(*) o uli%/ (w — wy) (wy cosh [w] — wsinh [w]) v
r

can be calculated numerically in an analog way. It is also possible to solve this integral
independently by using another integral path:

wte v
7 dw = lim {Jr;+ Jrr+J
po (w — wy) (wy cosh [w] — w sinh [w]) w ;}L%{ 1+ Jrr + Jiv}

= 2mi liII[l) {Residue (w) + Residue (w2)}
pn—

Jrv disappears for R — oc.
It can be found that:

Re{J} = —Re{Jus}
Im{J;} = +Im{Jur}

Then it follows:
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H(t) = —Im{lim JH}

pu—0

= -7 lin%) {Residue (w,) + Residue (wy)}
pn—

cosh? [voh]

voh + sinh [voh] cosh [voh]

= 7 (voh) { — tanh'™! [Voh]}

and the imaginary additional potential becomes:

- Re{(z+1)*}  Re{(z+1iy)*"
Pojaa = ZH(?tJrl){ {(%)!y }_V {(2t+?i)! }}

_ i - v2t cosh? [voh] L
B voh + sinh [voh] cosh [voh]

' {Re {(z=+ z'y)Qt} VRe {(z+ iy)%ﬂ} }

(20)! 2t + 1)

7 cosh? [voh]

voh + sinh [vyh] cosh [vh]

2t+1

. {Z %Re{(z +iy)*} — tanh [voh)] Z <2ZU+ ol Re{(z+z'y>2t+1}}

t=0 t=0

—me "% cos (vy)

The same will be found as a difference between (Keil-25) and (Keil-12a).
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4.3 Theory of Frank

As a consequence of conformal mapping to the unit circle, the cross sections need to have a
certain breadth at the water surface; fully submersed cross sections, such as at the bulbous
bow, cannot be mapped. Mapping problems can also appear for cross sections with too
high or too low an area coefficient. These cases require another approach: the pulsating
source method of Frank, also called Frank’s Close-Fit Method. The report of [Frank, 1967]
has used here to explain this method.

Hydrodynamic research of horizontal cylinders oscillating in or below the free surface of a
deep fluid has increased in importance in the last decades and has been studied by a number
of investigators. The history of this subject began with [Ursell, 1949], who formulated and
solved the boundary-value problem for the semi-immersed heaving circular cylinder within
the framework of linearized free-surface theory. He represented the velocity potential as
the sum of an infinite set of multi-poles, each satisfying the linear free-surface condition
and each being multiplied by a coefficient determined by requiring the series to satisfy the
kinematic boundary condition at a number of points on the cylinder.

[Grim, 1953] used a variation of the Ursell method to solve the problem for two-parameter
Lewis form cylinders by conformal mapping onto a circle. [Tasai, 1959] and [Porter, 1960],
using the Ursell approach obtained the added mass and damping for oscillating contours
mappable onto a circle by the more general Theodorsen transformation. [Ogilvie, 1963]
calculated the hydrodynamic forces on completely submerged heaving circular cylinders.
Despite the success of the multipole expansion-mapping methods, [Frank, 1967] discusses
the problem from a different view. The velocity potential is represented by a distribution
of sources over the submerged cross section. The density of the sources is an unknown
function (of position along the contour) to be determined from integral equations found by
applying the kinematic boundary condition on the submerged part of the cylinder. The
hydrodynamic pressures are obtained from the velocity potential by means of the linearized
Bernoulli equation. Integration of these pressures over the immersed portion of the cylinder
yields the hydrodynamic forces or moments.

A simpler approximation to the solution of the two-dimensional hydrodynamic problem
was used in the strip theory of ship motions introduced by Korvin-Kroukovsky. The solu-
tion of two-dimensional water-wave problems for ship sections by multipole expansion and
mapping techniques have been applied to this strip theory by several authors to predict
the motions of surface vessels.

The work of [Frank, 1967] has largely been motivated by the desirability of devising a com-
puter program, based on strip theory and independent of mapping techniques, to predict
the response of surface ships moving with steady forward speed in oblique as well as head
or following seas for all six degrees of freedom.
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4.3.1 Notation

The notation of Frank is as follows:

M(m)

(w

(@)

z=x 41y
2 = x; + iyi

oscillation amplitude in the m-th mode

beam of cross section C

submerged part of cross sectional contour in rest position
acceleration of gravity

influence coefficient in-phase with displacement on the i-th midpoint
due to the j-th segment in the m-th mode of oscillation

influence coefficient in-phase with velocity on the i-th midpoint
due to the j-th segment in the m-th mode of oscillation

added mass force or moment for the m-th mode of oscillation

at frequency w

number of line segments defining submerged portion of half section
in rest position

damping force or moment for the m-th mode of oscillation

at frequency w

direction cosine of the normal velocity at i-th midpoint

for the m-th mode of oscillation

Cauchy pricipal value of integral

hydrodynamic pressure in-phase with displacement

for the m-th mode of oscillation

hydrodynamic pressure in-phase with velocity

for the m-th mode of oscillation

source strength in-phase with displacement along the j-th segment
for the m-th mode of oscillation

source strength in-phase with velocity along the j-th segment
for the m-th mode of oscillation

length variable along Cj

7-th line segment

draft of cross section

time

normal velocity component at the ¢-th midpoint

for the m-th mode of oscillation

abscissa of the i-th midpoint

ordinate of the ¢-th midpoint

ordinate of the center of roll

complex field point in region of fluid domain

complex midpoint of i-th segment

angle between ¢-th segment and positive z-axis

complex variable along Cj

j-th complex input point along Cj

ordinate of j-th input point
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v=w?/g = wave number

Vg = k-th irregular wave number for ajoint interior problem
§; = abscissa of the j-th input point

p = density of fluid

o) = velocity potential for th m-th mode of oscillation

radian frequency of oscillation
Wk = k-th irregular frequency for adjoint interior problem
(k-th eigen-frequency)

&
I

4.3.2 Formulation of the problem

Consider a cylinder, whose cross section is a simply connected region, which is fully or
partially immersed horizontally in a previously undisturbed fluid of infinite depth. The
body is forced into simple harmonic motion and it is assumed that steady state conditions
have been attained.

The two-dimensional nature of the problem implies three degrees of freedom of motion.
Therefore, consider the following three types of oscillatory motions: vertical or heave,
horizontal or sway and rotational about a horizontal axis or roll.

To use linearized free-surface theory, the following assumptions are made:

1. The fluid is incompressible and inviscid.
2. The effects of surface tension are negligible.
3. The fluid is irrotational.

4. The motion amplitudes and velocities are small enough that all but the linear terms
of the free-surface condition, the kinematic boundary condition on the cylinder and
the Bernoulli equation may be neglected.

Given the above conditions and assumptions, the problem reduces to the following bound-
ary-value problem of potential theory. The cylinder is forced into simple harmonic motion
A .cos(wt) with a prescribed radian frequency of oscillation w, where the superscript may
take on the values 2, 3 and 4, denoting swaying, heaving and rolling motions, respectively.
It is required to find a velocity potential:

®™(z,y;t) = Re {cb(m)(:v, y) - e”'”t} (Frank-1)
satisfying the following conditions:

1. The Laplace equation:
92pm) 52 (m)
) — +

25 (m —
Ve 52 e 0 (Frank-2)
in the fluid domain, i.e., for y < 0 outside the cylinder;
2. The free surface condition:
H2p(m) AP (m)
+g =0 (Frank-3)

ot? Jy

on the free surface y = 0 outside the cylinder, while g is the acceleration of gravity.
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3. The sea bed boundary condition for deep water:

lim |V®™| = lim

Yy——00 Yy——00

‘aq)—()‘ =0 (Frank-4)

Ay

4. The condition of the normal velocity component of the fluid at the surface of the
oscillating cylinder being equal to the normal component of the forced velocity of
the cylinder. i.e., if v, is the component of the forced velocity of the cylinder in the
direction of the outgoing unit normal vector 7, then

i Vo =, (Frank-5)

this kinematic boundary condition on the oscillating body surface the kinematic
boundary condition being satisfied at the mean (rest) position of the cylindrical
surface.

5. The radiation condition that the disturbed surface of the fluid takes the form of
regular progressive outgoing gravity waves at large distances from the cylinder.

According to Wehausen and Laitone, the complex potential at z of a pulsating point source
of unit strength at the point ¢ in the lower half plane is:

1 - T omik(z—0)
G*(z,(t) = — ln(z—C)—ln(z—C)+2PV/e—dk cos wt
2m v—Fk
0
— {eiil’(zfo} sin wt
(Frank-6)
so that the real point-source potential is:
H(z,y,&,m:t) = Re{G"(2,(; 1)} (Frank-7)
where:
s=wbiy (=&t C=C—in =
Letting:
G L pedl e -3 +2pv | 0
(Z,C) = %Re H(Z—C)—H(Z-C)-{-Q V/ﬁ
0
—iRe {e’i”(z’z)} (Frank-8)
then:

H(z,y,&,m;t) = Re {G(2,() - e ™'} (Frank-9)
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Equation (Frank-9) satisfies the radiation condition and also the equations (Frank-1)
through (Frank-4).
Another expression satisfying all these conditions is:

H(z,y,&,m;t — = Re {iG(z,() - _“"t} (Frank-10)

2w

Since the problem is linear, a superposition of equations (Frank-9) and (Frank-10) results
in the velocity potential:

M (g, y: t /Q —wt. ds (Frank-11)

where Cj is the submerged contour of the cylindrical cross section at its mean (rest) position
and (s) represents the complex source density as a function of the position along Cp.
Application of the kinematic boundary condition on the oscillating cylinder at z yields:

Re{ (i-V) [ Q(s)-G(z,¢)-dsy = 0
/
(Frank-12)

Im (ﬁﬁ)/Q(S)G(Z,C)ds _ A L

where A denotes the amplitude of oscillation and n(™ the direction cosine of the normal
velocity at z on the cylinder. Both A and n™ depend on the mode of motion of the
cylinder, as will be shown in the following section.

The fact that Q(s) is complex implies that equations (Frank-12) represent a set of coupled
integral equations for the real functions Re{Q(s)} and Im{Q(s)}. The solution of these
integral equations and the evaluation of the kernel and potential integrals are described in
the following section and in Appendices B and C, respectively.

4.3.3 Solution of the Problem

Since ship sections are symmetrical, this investigation is confined to bodies with right and
left symmetry.

Take the z-axis to be coincident with the undisturbed free surface of a conventional two-
dimensional Cartesian coordinate system. Let the cross sectional contour Cy of the sub-
merged portion of the cylinder be in the lower half plane, the y-axis being the axis of
symmetry of Cp; see figure 4.9.

Select N + 1 points (;,7n,) of Cy to lie in the fourth quadrant so that (£;,7,) is located
on the negative y-axis. For partially immersed cylinders, ({x.1,7y41) is on the positive
z-axis. For fully submerged bodies, ., = &; and 7y, < 0.

Connecting these IV + 1 points by successive straight lines, N straight line segments are
obtained which, together with their reflected images in the third quadrant, yield an ap-
proximation to the given contour as shown in figure 4.9.
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Figure 4.9: Axes System and Notation, as Used by Frank

The coordinates, length and angle associated with the j-th segment are identified by the
subscript 7, whereas the corresponding quantities for the reflected image in the third quad-
rant are denoted by the subscript —j, so that by symmetry §{_; = —¢; and _; = —n; for
1< N+ 1L

Potentials and pressures are to be evaluated at the midpoint of each segment. The coordi-
nates of the midpoint of the i-th segment are:

x; = % and Y = Bi T T +277¢+1 (Frank-13)
for1 <i<N.
The length of the i-th segment is:
2 2
|si = \/(£i+1 &)+ (M1 — ) (Frank-14)

while the angle made by the i-th segment with the positive x-axis is given by:

a; = arctan {u} (Frank-15)
iy1 — &

The outgoing unit vector normal to the cross section at the i-th midpoint (z;,y;) is:
i, = isino; — jcos o (Frank-16)

where i and j are unit vectors in the directions of increasing x and y, respectively.
The cylinder is forced into simple harmonic motion with radian frequency w, according to
the displacement equation:

S = AM) . coswt (Frank-17)

for m = 2, 3 or 4, corresponding to sway, heave or roll, respectively. The rolling motions
are about an axis through a point (0, %) in the symmetry plane of the cylinder.
In the translational modes, any point on the cylinder moves with the velocity:

sway: 7@ = —{ APusinwt (Frank-18)
heave: 7@ = —7 A®usinwt (Frank-19)
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The rolling motion is illustrated in figure 4.9. Considering a point (z;,y;) on Cj, an
inspection of this figure yields:

R;, = \/.’Eﬂ + (yi — y0)2 and 0, = arctan {yz - yo}

Z;

= arcsin {yl — % }
R;
= arccos { E }

Therefore, by elementary two-dimensional kinematics, the unit vector in the direction of
increasing 6 is:

7, = —isinb; + j cosb;
_ 4%~ yo; ﬂj—*
R; R;

so that:
roll: 7 = R,SW7F,
= wWAW I (i —yo)i — :EJ} sin wt (Frank-20)

The normal components of the velocity v;(™ = 7, - 7™ at the midpoint of the i-th segment
(zi,y:) are:

sway: v;® = —wAP sinq; sinwt
heave: v ¥ = 4wA® cos sinwt (Frank-21)
roll: v, +wAW {(y; — yo) sin oy + x; cos a; } sin wt
Defining:
e
(") —

Am)y sin wt
then, consistent with the previously mentioned notation, the direction cosines for the three
modes of motion are:

sway: ni(2) = —sinqo;
heave: n® = 4cosaq; (Frank-22)
roll: n® = + (y; — Yo) sin a; + x; cos o

Equations (Frank-22) illustrate that heaving is symmetrical, i.e., n_;®® = n;®). Swaying
and rolling, however, are anti-symmetrical modes, i.e., n_;® = —n;® and n_;®* = —n;¥.
Equations (Frank-12) are applied at the midpoints of each of the N segments and it is
assumed that over an individual segment the complex source strength Q(s) remains con-
stant, although it varies from segment to segment. With these stipulations, the set of
coupled integral equations (Frank-12) becomes a set of 2N linear algebraic equations in
the unknowns:

Re {Q - (s;)} = @;™
I {Q - (s;)} = Q™
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Thus, forz =1, 2, ..... , N:

N N
T Z {Qj(m) : Iij(m)} + Z {QN+j(m) : Jij(m)} = 0
Jj=1 j=1
(Frank-23)
N N
_Z {Q] Ty } 3 {QN+j(m) . ]Z.j(m)} — o A
7j=1

where the superscript ™ denotes the mode of motion.

The ”influence coefficients” Iij(m) and Jij(m) and the potential ®(™ (x;,1;;t) are evaluated
in the appendix. The resulting velocity potential consists of a term in-phase with the
displacement and a term in-phase with the velocity.

The hydrodynamic pressure at (z;,y;) along the cylinder is obtained from the velocity
potential by means of the linearized Bernoulli equation:

od(m)
pm™ (i, yi,w;t) = —p - T(m,, Yi,w; t) (Frank-24)
as:
P (@ g wit) = pa™ (i, yi;w) - coswt
+po ™ (4, yi; w) - sinwt (Frank-25)

where p,™ and p,™ are the hydrodynamic pressures in-phase with the displacement and
in-phase with the velocity, respectively and p denotes the density of the fluid.

As indicated by the notation of equations (Frank-24) and (Frank-25), the pressure as well
as the potential is a function of the oscillation frequency w.

The hydrodynamic force or moment (when m = 4) per unit length along the cylinder,
necessary to sustain the oscillations, is the integral of p™ .n(™ over the submerged contour
of the cross section Cj. It is assumed that the pressure at the i-th midpoint is the mean
pressure for the i-th segment, so that the integration reduces to a summation, whence:

N
MM (W) = 2 Zpa(m)(mi, yisw) - ™ sl (Frank-26)

N
N(w) = 2va(m)($i,yi; w) - ;™ - s (Frank-27)

for the added mass and damping forces or moments, respectively.
The velocity potentials for very small and very large frequencies are derived and discussed
in the next section.

4.3.4 Low and High Frequencies

For very small frequencies, i.e., as w — 0, the free-surface condition equation (Frank-3) of
the section formulating the problem degenerates into the wall-boundary condition:

0P

Ty =0 (Frank-49)
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on the surface of the fluid outside the cylinder, whereas for extremely large frequencies,
i.e., when w — oo, the free-surface condition becomes the ”impulsive” surface condition:

®=0 (Frank-50)

on y = 0 outside the cylinder.

Equations (Frank-2), (Frank-4) and (Frank-5) remain valid for both asymptotic cases. The
radiation condition is replaced by a condition of boundedness at infinity:.

Therefore, there is a Neumann problem for the case w — 0 and a mixed problem when
w — 00. The appropriate complex potentials for a source of unit strength at a point ¢ in
the lower half plane are:

Go (2,¢) = % {ln(z — () +In(z — E)} + Ko (Frank-51)
and:
G (2,0) = % {ln(z — () —1In(z — Z)} + Ko (Frank-52)

for the Neuman and mixed problems, respectively, where K, and K, are constants not
yet specified.
Let:

bq (2,9;€,m) = Re {Ga (2,()}

so that the velocity potentials for the m-th mode of motion are:

ol (z,y) = /ng) (8) - g (z,y;€,m) ds (Frank-53)

Co

for a = 0, and a = oo, where Qflm) is the expression for the source strength as a function
of position along the submerged contour of the cross section C.

An analysis similar to the one in the section on formulating the problem leads to the
integral equation:

@ 9) [ Q) 6, (0.3 ds = AT (Frank-54)
Co

which - after application at the N segmental midpoint - yields a set of NV linear algebraic
equations in the N unknown source strengths @);.

It remains to be shown whether these two problems are, in the language of potential theory,
well posed, i.e., whether the solutions to these problems lead to unique forces or moments.
The mixed problem raises no difficulty, since as z — 00, G (2,{) — 0. In fact K, =0,
which can be inferred from the pulsating source-potential equation (Frank-8) by letting
v — Q.

Considering the Neumann problem, note that the constant K, in the Green’s function
equation (Frank-51) yields by integration an additive constant K to the potential. However,
for a completely submerged cylinder the cross sectional contour Cj is a simply closed curve,
so that the contribution of K in integrating the product of the pressure with the direction
cosine of the body-surface velocity vanishes. For partially submerged bodies Cj is no longer
closed. But since n'™ = —n™ for m being even,
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/Kn(m) ds =0
Co

so that the swaying force and rolling moment are unique.
The heaving force on a partially submerged cylinder is not unique for, in this case, n(f’l) =

n§3), so that:

/Kn(3) ds #0
Co

The constant Ky may be obtained by letting v — 0 in the pulsating source-potential
equation (Frank-8).

4.3.5 Irregular Frequencies

[John, 1950] proved the existence and uniqueness of the solutions to the three- and two-
dimensional potential problems pertaining to oscillations of rigid bodies in a free surface.
The solutions were subject to the provisions that no point of the immersed surface of the
body would be outside a cylinder drawn vertically downward from the intersection of the
body with the free surface and that the free surface would be intersected orthogonally by
the body in its mean or rest position.

[John, 1950] also showed that for a set of discrete ”irregular” frequencies the Green’s
function-integral equation method failed to give a solution. He demonstrated that the
irregular frequencies occurred when the following adjoint interior-potential problem had
eigen-frequencies..

Let ¢ (z,y) be such that:

1. 32715 32715 = 0 inside the cylinder in the region bounded by the immersed surface of

the body and the extension of the free surface inside the cylinder;

2. % — vy = 0 on the extension of the free surface inside the cylinder, vy being the

wave number corresponding to the irregular frequency wy, k =1, 2, 3, ...;

3. 1 = 0 on the surface of the cylinder below the free surface.

For a rectangular cylinder with beam B and draft 7', the irregular wave numbers may be
easily obtained by separation of variables in the Laplace equation. Separating variables
gives the eigen-frequencies:

k k
Y, = By sin <%m> sinh [%y] for: k=1,2,3, ...... etc.

where By, are Fourier coefficients to be determined from an appropriate boundary condition.
Applying the free surface condition (Frank-2) on y = T for 0 < x < B, the eigen-wave
numbers (or irregular wave numbers):

(Frank-28)

v, = — coth 5

km krnT
B
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are obtained for k£ = 1, 2, 3, ..., etc. In particular, the lowest such irregular wave number
is given by:
T
ky = %coth [%} (Frank-29)

Keeping T fixed in equation (Frank-29) but letting B vary and setting b = 7/ B, then from
the Taylor expansion:

b (bT)?

|
beoth 0T = b | =
coth [bT] = b | 375 + 5= = 4=

it is seen that as b — 0, which is equivalent to B — oo, v; — 1/T.
Therefore, for rectangular cylinders of draft T

V1= (Frank-30)
a relation that John proved for general shapes complying with the restrictions previously
outlined. For a beam-to-draft ratio of B/T" = 2.5: vy = 1.48, while for B/T = 2: v, = 1.71.
At an irregular frequency the matrix of influence coefficients of equations (Frank-23) be-
comes singular as the number of defining points per cross section increases without limit,
i,e., as N — oo. In practice, with finite IV, the determinant of this matrix becomes very
small, not only at the irregular frequency but also at an interval about this frequency. This
interval can be reduced by increasing the number of defining points N for the cross section.
Most surface vessels have nearly constant draft over the length of the ship and the maximum
beam occurs at or near amidships, where the cross section is usually almost rectangular, so
that for most surface ships the first irregular frequency w; is less for the midsection than
for any other cross section.
For a ship with a 7:1 length-to-beam and a 5:2 beam-to-draft, the first irregular wave
encounter frequency - in non-dimensional form with L denoting the ship length - occurs
at:

=~ 5.09

L
Wi —
9
which is beyond the range of practical interest for ship-motion analysis.

Therefore, for slender surface vessels, the phenomenon of the first irregular frequency of
wave encounter is not too important.

An effective method to reduce the effects of irregular frequencies is, among others, to
"close” the body by means of discretization of the free surface inside the body (putting a
"1id” on the free surface inside the body); see the added mass and damping of a hemisphere
in figure 4.10. The solid line in this figure results from including the ”1id”.

Increasing the number of panels does not remove the irregular frequency but tends to
restrict the effects to a narrower band around it; see for instance [Huijsmans, 1996]. It
should be mentioned that irregular frequencies only occur for free surface piercing bodies;
fully submerged bodies do not display these characteristics.
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Figure 4.10: Effect of ”Lid-Method” on Irregular Frequencies

4.3.6 Appendices
Appendix A: Principle Value Integrals
The real and imaginary parts of the principle value integral:

o

e_ik"(z_z)
PV / L ik
v—k
0

are used in evaluating some of the kernel and potential integrals.
The residue of the integrand at k = v is e=*(*~9 so that:

o0

—zk: i e—zk(z ) .
PV / dk / - dk—me—W<z—<> (Frank-31)
vV —

0 ~0

where the path of integration is the positive real axis indented into the upper half plane
about k = v.

Note that v = w?/g > 0, Im {2z} < 0 and Im {¢} <0

The transformation w =i (k — v) (z — Z) converts the contour integral on the right hand

side of equation (Frank-31) to:

7 fzk(z ] - 7 —w
/ € L iv(zD) / o
v—k w

"o —iv(2—()

S ) P G

_ -0 {7 tn [—iV(Z _ @] (Frank-32)
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S {w<z—2>}” omi w50
—1—2 }+<O forx_€<0>

where v = 0.5772... is the well known Euler-Mascheroni constant and the value of Ej is
defined by Abramowitz and Stegun.
Setting:

Im {—iu(z —/C\)}] .
Re {—z'z/(z - Z)}

the following expression is obtained for equation (Frank-31):

-~

r= ‘—z’y(z — C)‘ and 0 = arctan [

e_lk(Z_C)
PV/ — dk = "W [cosv (x — &) —isiny (x — £)] -
0

y+Inr+ Z %:'19)] (Frank-33)

Separating equation (Frank-33) into its real and imaginary parts yields:

T oky+n) —
e /ek 0 Zoikk(fc 9 dk = "W [C (r,0) cosv (z — £)]
0
+S (r,0)sinv (z — &)

(Frank-34)

z k(y+n) o —
o FESIIEE0 i mannta—
0

=S (r,0) cosv (z — &)

provided that:
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Appendix B: Kernel Integrals

The influence coefficients of equations (Frank-23) are:

(m) . . i _ B _ —~ l e_ik(z_z)
1§ = Red (-9 | [ | 52 (e =0 - nz = Q) + 2PV [ ] ds
s;j 0
(Frank-35)
- 1 . 1 ooe—ik:(z—‘rC)
—(-1) / %(ln(z—irg)—ln(z—l—g))—ir;PV/ — dk | ds
5_j 0 z=2z;
and:
150 =Red (1, 9) | [0 - (- [ eeas (Evank36)
53 5—J z=2z;

Note that in the complex plane with z; on s;:

Re { (7 V) P(2)] _} =Re { [‘ieiai C”;ﬂ :}

Considering the term containing In (z — (), it is evident that the kernel integral is singular
when ¢ = 7, so that the indicated differentiation cannot be performed under the integral
sign. However, in that case one may proceed as follows:

since:

¢ = &+
d¢ = d&+dn
= dscosa; + tdssin a;
eids
for ¢ along the j-th segment.
Therefore, ds = e " d( and:
(
J Cit1
Re ¢ (7, - V) /ln (z—()ds = Re —iei“j% / e “d¢In(z — ¢)
53 z=z; L G z=z;
(
Cit1
= Re —ii / d(Iln(z—()d
B dz ¢
( % z=z;
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Setting ( = (, the last integral becomes:

z2—(;
. d ’ /
Re —i / In¢ d¢ = arg (2 — (;) —arg (2 — ()
Z—Cj+1

Z2=Zj5

= 7 (Frank-37)

If i # j, differentiation under the integral sign may be performed, so that:

(L1) = Re! (@;-V) /m(z—g)ds

55
J z2=z;

(v = &) + (vi—n)
= sin(a; — ;) In i L (Frank-38)
(i = &)+ (% —j11)
+cos (o — o) {arctan Y 7 _ arctan 2Tt
Ti — G Li — §j+1
For the integral containing the In <z — E) term, ds = ' df, so that:
(Ly) = Re{ (- V) /In (z —Z) ds
2 2
i — &4 + i +n.
= sin(a; +a;)In ( gj)z (y: + 1) 5 (Frank-39)
(131' - §j+1) + (yi + 77j+1)

i T 1, i T 1,
+ cos (o + o) [arctan YT arctan 2L
Ti =Gy Ti — £j+1
The kernel integral containing the principal value integrals is:
( 0o R
R e_ik"(zi_C)
(L5) = Re< (1;-V) /ds : PV/ —kdk
V J——
L s;j 0 .
( 4 T e—ik(z-0)
. -~ d —tR(2;—
— Re{ —jeilai+as) / o g / SR/
d¢ v—Fk
\ Ci 0

o

= —l—sin(ai—i-ozj) PV/
0

eFwitn;) cog ke (iEz - 53)

dk
v—k
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[e.9]

_PV/ ek Witn+1) cos k (% - £j+1) dk
v—k
0
k(yrHYj) ink i T S
— cos (a; + o) PV/ : - ]{:(xZ Ej) w et
v —
0
_pv/ ek Witn;11) gin k (ah - §j+1) dk
v—£k
0

The first integral on the right hand side of equation (Frank-36) becomes:

(L7) = Re! (@;-V) /e_i”(z_ods (Frank-41)
= —sin (o +ay) [e"¥ ) cosv (z; — &) — W) cos v (3 — €544
+ cos (; + a) [e"® ) siny (z; — &) — e/ Witni1) sin v (z; — E41)]
The kernel integrals over the image segments are obtained from equations (Frank-38)
through (Frank-41) by replacing §r §ip and oy with £ = —&;, §_(j41) = —§;4 and
a_; = —ayj, respectively.

Appendix C: Potential Integrals

The velocity potential of the m-th mode of oscillation at the i-th midpoint (x;,y;) is:

N ; e
1 ~ —ik(2;—()
j=1

Sj 0
—~ i —ik(2i+()
— (=" / In(z; +¢) —In(z; +¢) + 2PV/ ﬁdkz ds
s_j 0

N
) > ' t
‘R, —W(Zi—C)d — (=1 m —w(zﬁ-()d . Cosw
$;QN+J e /e s—(=1) e S “in i
S5 S_j

(Frank-42)

The integration of the In(z; — {) term is straight forward, yielding:

Re /ln(zi —()ds } = +cosq, [(acZ — Sj) In \/(iﬂz _ gj)2 + (yi — 77j)2 +&— &1
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2

— (= &) I (2 — &)+ (4= 7y0)

Yi — 15 Yi — Mj41
— y; —n,; ) arctan ——= + (y; — 7 arctan 7}
( ]) T — 53 ( J+1) T — gj—&-l

+ sin oy [(y, — nj) In \/(;yZ - @)2 + (yz — nj)2 +n; =N

— (% = nj41) In \/(37@ - 5j+1)2 + (yi — Tij+1)2 (Frank-43)

Yi —n;j Yi ~ 773‘+1]
+ (z; — &) arctan —— — (x; — &, ) arctan ————
( J) x; gj ( J+1) x; §j+1

In the integration of the In(z — E) term, note that n; and 7,,, are replaced by —n; and
—1;41 , respectively.

To evaluate the potential integral containing the principal value integral, proceed in the
following manner. For an arbitrary z in the fluid domain:

Cig k(D) G
/ds-PV/e—dk - PV/ / ~ih(x=0) 4¢
v—Ek
3 0
it 7114:2 Cj+1
o [
0 g,

00 ~
—ikz zk:CJ+1 _ 6iij
= / dk

0

where the change of integration is permissible since only one integral requires a principle
value interpretation.

After dividing by v and multiplying by v — k+ k under the integral sign, the last expression
becomes:

e /Oo@k e”“z—j“k_ " ks Py 70 —6%(22“) dk — Pvf—eik(zzj) dk

v v v—Fk
0 0 0
(Frank-44)
Regarding the first integral in equation (Frank-44) as a function of z:
. ki1 _ pike;
F(z) = / ek (Frank-45)

0
Differentiating equation (Frank-45) with respect to z gives:

o0 o0

F’(z) = —q /6ik(zfj+1)dk_/eik(zfj)dk

0 0
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So:

F(z)=1In (z = @) —1In (z - Zjﬂ) +v (Frank-46)

where v is a constant of integration to be determined presently. Since F'(z) is defined and
analytic for all z in the lower half plane and since by equation (Frank-45), lim, ;. F(2) =
0, it follows from equation (Frank-46) that v = 0.

Therefore:

i —ik(z—C)
(K5) = Re /ds-PV/eVTdk

s;j 0
i€t ~
= Re {— » |:ln(2i —(;) —In(zi — ¢j44)
G*ik(zi*2j+1) eflk(zzfzj)
+PV/ dk — PV/ dk
v—k v—k
0 0

(mi"fj)z*‘(yi*‘nj)Q

5 5 (Frank-47)
(20 = &41) " + (9 +1101)

= —(sing; [In
v

+pv/ ek Witn;41) cog k (:vZ — fjﬂ) g PV/ ek Witn;) cos k (iEl — fj) i

v—k v—£k
0 0
i+ i+ N
+ cos o {arctan Y il — arctan M
Ti =Gy X; — £j+1
T ek witn) gin k (2 — €. T ek witni ) gink (2. — &
e i) sin k (x; e i+1) sin k (x;
+PV/ ( 5J)dk—PV/ ( §f+1)dk
v—k v—£k
0 0

The integration of the potential component in-phase with the velocity over s; gives:

(K7) = Re / e =0 s (Frank-48)
5
1

= - {e”(yi+’7j) sin [v (z; — &) — o] — e Witnit1) gin [v (2 —&541) — 4]}
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4.4 Surge Coefficients

An equivalent longitudinal section, being constant over the ship’s breadth B, is defined by:

sectional breadth B, = ship length L
sectional draught d, = midship draught d
sectional area coefficient Cy;, = block coefficient C'z

By using a Lewis transformation of this equivalent longitudinal section to the unit circle,
the two-dimensional potential mass M, and damping /NJ; can be calculated in an analog
manner as has been described for the two-dimensional potential mass and damping of sway,
M, and NJ,.

With these two-dimensional values, the total potential mass and damping of surge are
defined by:

M11 - BMl*l
N = B-Nj

in which B is the breadth of the ship.

These frequency-dependent hydrodynamic coefficients do not include three-dimensional
effects. Only the hydrodynamic mass coefficient, of which a large three-dimensional effect
is expected, will be adapted here empirically. According to [Tasai, 1961] the zero-frequency
potential mass for sway can be expressed in Lewis-coefficients:

T d, 2
Ma(w=0) = ry <m) (1 —a1)*+ 3a3)

When using this formula for surge, the total potential mass of surge is defined by:
MH(WZO) = BMl*l(w:O)

A frequency-independent total hydrodynamic mass coefficient is estimated empirically by
[Sargent and Kaplan, 1974] as a proportion of the total mass of the ship pV:

M11<S&K) = Q- ,OV

The factor « is depending on the breadth-length ratio B/L of the ship:

a
2—a

1-b° 1+b , B\’

With this hydrodynamic mass value, a correction factor 3 for three-dimensional effects has
been determined:

o =

in which:

. Mll(S&K)
n MH(CU = 0)

The three-dimensional effects for the potential damping of surge are ignored.

&)
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Figure 4.11: Surge Hydrodynamic Mass

So, the potential mass and damping of surge are defined by:

My = B-Mj-p
Ny = B-Nj;

To obtain a uniform approach during all ship motions calculations, the cross sectional two-
dimensional values of the hydrodynamic mass and damping have to be obtained. Based
on the results of numerical 3-D studies with a Wigley hull form, a proportionality of both
the two-dimensional hydrodynamic mass and damping with the absolute values of the
derivatives of the cross sectional areas A, in the xp-direction is assumed:

Ay Ay
1 dxy, 1 dxy,
e e
dxy, b dxy, b
L L
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4.5 Comparative Results

Figure 4.12 compares the calculated coefficients for an amidships cross section of a container
vessel with the three previous methods:

- Ursell-Tasai’s method with 2-parameter Lewis conformal mapping.
- Ursell-Tasai’s method with 10-parameter close-fit conformal mapping.

- Frank’s pulsating source method.
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Figure 4.12: Comparison of Calculated Coefficients

With the exception of the roll motions, the three results are very close. The roll motion de-
viation, predicted with the Lewis conformal mapping method, is caused by the description
of the "bilge” by the simple Lewis transformation.

A disadvantage of Frank’s method can be the large computing time, when compared with
Ursell-Tasai’s method. Generally, it is advised to use Ursell-Tasai’s method with 10 para-
meter close-fit conformal mapping. For submerged sections, bulbous sections and sections
with an area coefficient, o, less than 0.5, Frank’s pulsating source method should be used.



Chapter 5

Viscous Damping

The strip theory is based on the potential flow theory. This holds that viscous effects are
neglected, which can deliver serious problems when predicting roll motions at resonance
frequencies. In practice, viscous roll damping effects can be accounted for by empirical for-
mulas. For surge and roll, additional damping coefficients have to be introduced. Because
of these additional contributions to the damping are from a viscous origin mainly, it is not
possible to calculate the total damping in a pure theoretical way.

5.1 Surge Damping

The total damping for surge Biy; = Bip + Bi1, consists of a potential part, By, and an
additional viscous part, Bii,. At forward ship speed V, the total damping coefficient,
Bi14, can be determined simply from the resistance-speed curve of the ship in still water,
Ry (V):
d{Rsw(V)}
By = By1 + Byjy = ———=
11t 11 1 av

5.1.1 Total Surge Damping

For a rough estimation of the still water resistance use can be made of a modified empiric
formula of [Troost, 1955], in principle valid at the ship’s service speed for hull forms with
a block coefficient Cp between 0.60 and 0.80:

Ryy = Cy - pV3 12

it 0.0152
~ 0. - ith L i t
Cy =~ 0.0036 + Togi (L} + 0.60 (wi in meter)
in which:
V = volume of displacement of the ship in m?
L = length of the ship in m
V= forward ship speed in m/s.

This total resistance coefficient C; is given in figure 5.1 as a function of the ship length.

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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Figure 5.1: Total Still Water Resistance Coefficient of Troost

Then the total surge damping coefficient at forward ship speed V' becomes:

By, = 2C, - pV3V

5.1.2 Viscous Surge Damping

This total damping coefficient includes a viscous part, which can be derived from the
frictional part of the ship’s resistance, defined by the ITTC-line:

1 0.075 VL
Ry(V) = =pV?S. 5 with: Rn = —
2 (In{Rn} — 2) v
in which:
v = kinematic viscosity of seawater
S = wetted surface of the hull of the ship
Rn = Reynolds number

From this empiric formula follows the pure viscous part of the additional damping coeffi-
cient at forward ship speed V:

d{R;(V)}

By, =
1 dV

which can be obtained numerically.

5.2 Roll Damping

In case of pure free rolling in still water (free decay test), the uncoupled linear equation of
the roll motion about the centre of gravity G is given by:

(Imm+A44)'é+<B44+B44v)'¢+C44'¢:O
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with:
Ay = awu+ OG- agp + OG- ay + oG . a9 (potential mass coefficient)
By = by + OG -bys + OG - by + oG- bao (potential damping coefficiernt)
By, = bu, (viscous damping coefficient)
Cu = pgV-GM (restoring term coefficient)
while for zero forward speed:
Qg2 = Q24 and baz = bay
These equations can be rewritten as:
P+20-p+wi =0

in which:
2 = But Buy (quotient of damping and moment of inertia)
Ixac + A44
wi = _Cu (natural roll frequency squared)
Ixac + A44
The non-dimensional roll damping coefficient, , is given by:

v Bys + Bagy

R = — =
wo  2y/(Lyz + Aaa) - Cua
This damping coefficient is written as a fraction between the actual damping coefficient,
By + By, and the critical damping coefficient, Byy.. = 2\/ (L2 + Agy) - Cyg; so for critical
damping: k.. = 1.
Herewith, the equation of motion can be re-written as:
¢+ 2kwo-Pp+wi-9=0

Suppose the vessel is deflected to an initial heel angle, ¢,, in still water and then released.
The solution of the equation of motion of this decay becomes:

v
¢ =g (cos wet + — sin wd)t)
We

Then the logarithmic decrement of the motion is:
(1) }
Vly = kwoly =1In § —————
o { ot +1Ty)

Because wj = wj — v* for the natural frequency oscillation and the damping is small so
that 1* < wg, one can neglect v* here and use w, & wo; this leads to:

w0T¢ = u)¢T¢ =27
The non-dimensional total roll damping is given now by:
1 qb(t) wWo
k=-—Ind ——F= 7%= (Bu+ Buy) ——
2m { Qb(t + T¢> } ( 44 44 ) 2044

The non-potential part of the total roll damping coefficient follows from the average value
of Kk by:
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5.2.1 Experimental Determination

The x-values can easily been found when results of free rolling experiments with a model
in still water are available, see figure 5.2.

- To —— o _‘
| ¢a=¢ai[ e } |
—_— 9., . 0,
(deg) ! A IS—, _
&// — - _\@/— -0
L— — _¢a2

Figure 5.2: Time History of a Roll Decay Test

The results of free decay tests can be presented in different ways:

e Generally they are presented by plotting the non-dimensional damping coefficient,
obtained from two successive positive or negative maximum roll angles ¢,. and ¢

by:
]- qba; -
k=—"-1In : versus ¢, =
2 { gzﬁai+2 }

e To avoid spreading in the successively determined x-values, caused by a possible
zero-shift of the measuring signal, double amplitudes can be used instead:

1 l { ¢ai o ¢ai+1 } versus ¢_ — ‘¢az - ¢ai+1 + ¢ai+2 - ¢ai+3

;427

¢ai + ¢(li+2
2

k=—"-1In
2m ¢ai+2 o ¢ai+3 4

e Sometimes the results of free rolling tests are presented by:

A_(b“ versus ¢,

a

with the absolute value of the average of two successive positive or negative maximum

roll angles, given by:

¢_ — ¢ai + ¢(l2‘+1
“ 2

and the absolute value of the difference of the average of two successive positive or
negative maximum roll angles, given by:

AGy = |ba, = Ga, |
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Then the total non-dimensional roll damping coefficient becomes:

2+ 4%

k=—"-In a_
27‘( 2_A_¢a

o

The decay coefficient « can therefore be estimated from the decaying oscillation by deter-
mining the ratio between any pair of successive (double) amplitudes. When the damping
is very small and the oscillation decays very slowly, several estimates of the decay can be
obtained from a single record. It is obvious that for a linear system a constant k-value
should be found in relation to ¢,.

Note that these decay tests provide no information about the relation between the potential
coefficients and the frequency of oscillation. Indeed, this is impossible since decay tests are
carried out at only one frequency: the natural frequency. These experiments deliver no
information on the relation with the frequency of oscillation.

The method is not really practical when v is much greater than about 0.2 and is in any
case strictly valid for small values of v only. Luckily, this is generally the case.

Be aware that this damping coefficient is determined by assuming an uncoupled roll motion
(no other motions involved). Strictly, this damping coefficient is not valid for the actual
coupled motions of a ship which will be moving in all directions simultaneously.

The successively found values for x, plotted on base of the average roll amplitude, will
often have a non-linear behavior as illustrated in the next figure.

0.04

Product cajrrier, V=0 knotjs

— - — mean linear and cubic damping
mean linear and quadratic damping o
second experiment, negative angles /
second experiment, positive angles

first experiment, negative angles /

first experiment, positive angles /
0.02 ) O
_*

0.01

0.03 |~

[ JoN Q|

roll damping coefficient k (-)

0 1 2 3 4 5 6

mean roll amplitude (deg)

Figure 5.3: Roll Damping Coefficient

For a behavior like this, it will be found:

/€:/€1+K2'¢a
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while sometimes even a cubic roll damping coefficient, x5 - ¢2, has to be added to this
formula.

This non-linear behavior holds that during frequency domain calculations, the damping
term is depending on the - so far unknown - solution for the transfer function of roll:
¢,/Cqa- With a known wave amplitude, (,, this problem can be solved in an iterative
manner. A less accurate method is to use a fixed ¢,.

5.2.2 Empirical Formula for Barges

From model experiments with rectangular barges - with its center of gravity, G, in the
water line - it is found by [Journée, 1991]:

/€:/€1+K2'¢a

B\?2
K1 = 0.0013-<E)

ke = 0.50
in which B is the breadth and d is the draft of the barge.

with:

5.2.3 Empirical Method of Miller

According to [Miller, 1974], the non-dimensional total roll damping coefficient, , can be

obtained by:
K =K1+ Kg- \/gba

L L F, E\° £\*
K1 CV'0.00085~§- ﬁ'{(@)*(@) +2.(Eb)}

lbk T’g
19.25 - < Apr - 4/ — 0024-L-B;, ———
9.25 { bk \/Tb—i-OOO } I B-d.C,

Ay =y - hyr, = one sided area of bilge keel (m?)

with:

Ra

in which:

lw = length of bilge keel (m)
her = height of bilge keel (m)
b = distance center line of water plane to turn of bilge (m)
(first point at which turn of bilge starts, relative to water plane)
L = length of ship (m)
B = breadth of ship (m)
d = draft of ship (m)

Cy = block coefficient (-)

GM = initial metacentric height (m)

F, = Froude number (-)

¢, = amplitude of roll (rad)

Cy = correction factor on k; for speed effect (-)

(in the original formulation of Miller: Cy = 1.0)
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Generally, Cyy = 1.0 but for slender ships, like frigates, a suitable value for Cy seems to

be:
Cy =4.85—3.00 - \/ GM puii Scale

5.2.4 Semi-Empirical Method of Ikeda

Because the viscous part of the roll damping acts upon the viscosity of the fluid significantly,
it is not possible to calculate the total roll damping coefficient in a pure theoretical way.
Besides this, also experiments showed a non-linear behavior of viscous parts of the roll
damping.

Sometimes, for applications in frequency domain, an equivalent linear roll damping coeffi-
cient, nyll)v, has to be determined. This coefficient can be obtained by stipulating that an
equivalent linear roll damping dissipates an identical amount of energy as the non-linear
roll damping. This results for a linearized quadratic roll damping coefficient, Bﬁz/, into:

T T
B, [b-dar =, [1616- bar
0 0

or: <
3_7T¢aw ’ Bg}/

For the estimation of the non-potential parts of the roll damping, use has been made of
work published by [Ikeda et al., 1978]. A few subordinate parts have been modified and
this empiric method is called here the ”Ikeda method”.

The Ikeda method estimates the following linear components of the roll damping coefficient
of a ship:

1
BASAL =

By, = a correction on the potential roll damping coefficient due to forward speed
By, = the frictional roll damping coefficient

By, = the eddy making roll damping coeflicient

By, = the lift roll damping coefficient

By, = the bilge keel roll damping coefficient

So, the additional - mainly viscous - roll damping coefficient By4,, is given by:
Bya, = Basg + Baap + Baay, + Baay + Baay

Ikeda, Himeno and Tanaka claim fairly good agreements between their prediction method
and experimental results. They conclude that the method can be used safely for ordinary
ship forms, which conclusion has been confirmed by the author too. But for unusual ship
forms, for very full ship forms and for ships with a very large breadth to draft ratio the
method is not always accurate sufficiently.
For numerical reasons three restrictions have been made here during the calculations:

- if, local, o, > 0.999 then o, = 0.999

- if, local, OG < —D o4 then OG = —D,0 4

- if a calculated component of the viscous roll damping coefficient becomes less than
zero, this component will be set to zero.
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In this description of the Ikeda method the notation of the authors (Ikeda, Himeno and

Tanaka) is maintained as far as possible:

p = density of water
v kinematic viscosity of water
g acceleration of gravity
V forward ship speed
Rn = Reynolds number
w = circular roll frequency
¢, = roll amplitude
L = length of the ship
B = breadth
D = amidships draft
Cy = amidships section coefficient
Cp = block coefficient
St L - D = lateral area
Sy wetted hull surface area
OG = distance of centre of gravity
above still water level,
so positive upwards
(sign convention deviates
from the paper of Ikeda)
B, = sectional breadth water line
D, = sectional draft
A; = sectional area

Effect of Forward Speed, By

Lp

R,
Ly,
Tk

sectional area coefficient
sectional half breadth to draft ratio
sectional Lewis coefficient
sectional Lewis coefficient
sectional Lewis scale factor
average distance between

roll axis and hull surface
distance point of taking represen-
tative angle of attack to roll axis
approximated by Lo = 0.3D
distance of centre of action of

lift force in roll motion to roll axis
approximated by Lz = 0.5D
height of the bilge keels

length of the bilge keels

distance between roll axis

and bilge keel

correction for increase of

flow velocity at the bilge
pressure coefficient

lever of the moment

local radius of the bilge circle

Ikeda obtained an empirical formula for the three-dimensional forward speed correction on
the zero speed potential damping by making use of the general characteristics of a doublet
flow model. The rolling ship has been represented by two doublets: one at the stern and

one at the bow of the ship.

With this, semi-theoretically the forward speed effect on the linear potential damping
coefficient has been approximated as a fraction of the potential damping coefficient by:

Bu, = B44-{0.5 [Az 414 (Ay — 1) tanh (20(Q — 0.3)) + (24, — Ay — 1)6_150(9_0'25)2} _ 1.0}

with:
By = potential roll damping coefficient of the ship (about G)
Q = w; = non-dimensional circular roll frequency
&p = w2; = non-dimensional circular roll frequency squared
A = 1.0+ 551‘26_25D = maximum value of By at Q = 0.25
Ay = 0.5+ 5151‘06’255’ = minimum value of By at large §2
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Frictional Roll Damping, By,

Kato deduced semi-empirical formulas for the frictional roll damping from experimental
results of circular cylinders, wholly immersed in the fluid. An effective Reynolds number
of the roll motion was defined by:

0512 (rp¢,)°w
v

Rn

In here, for ship forms the average distance between the roll axis and the hull surface can
be approximated by:
(0.887 + 0.145 - Cp) %L + 20G
T
with a wetted hull surface area Sy, approximated by:

Tf—

Sy = L(1.7D + CB)

The relation between the density, kinematic viscosity and temperture of fresh water and
sea water are given in figure 5.4.

1030 2.0
1020 - - - - - - e R
0 R\ [
. 1.5 ‘ ‘
(")A =~
€ > \
> } } 5 Sea Water |
5 o
1010 - - - - - - e - - - - R 2
2 ' ' S
3 2 !
2 'é Fresh: Water ‘
g 10t - - - - - poe el N
I I ! I I
1000 S R
' Fresh Water '
990 0.5
0 10 20 30 0 10 20 30
Temperature (OC) Temperature (OC)

Figure 5.4: Relation Between Density, Kinematic Viscosity and Temperature of Water

When eliminating the temperature of water, the kinematic viscosity can be expressed into
the density of water by the following relation in the kg-m-s system:

v-10° = 1.442 +0.3924 - (p — 1000) + 0.07424 - (p — 1000)* m*/s  (fresh water)

v-10° = 1.063 +0.1039 - (p — 1025) + 0.02602 - (p — 1025)* m*/s  (salt water)

as given in figure 5.5.
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Figure 5.5: Kinematic Viscosity as a Function of Density

Kato expressed the skin friction coeflicient as:
C;=1.328 - Rn~%5 4 0.014 - Rn~ 0114

The first part in this expression represents the laminar flow case. The second part has
been ignored by Ikeda, but has been included here.

Using this, the quadratic roll damping coefficient due to skin friction at zero forward ship
speed is expressed as:

B® —

4F0 -

1
EPT?Sfo

This frictional roll damping component increases slightly with forward speed. Semi-
theoretically, Tamiya deduced a modification coefficient for the effect of forward speed
on the friction component.

Accurate enough from a practical point of view, this results into the following formula for
the speed dependent frictional damping coefficient:

v

1
B = 5P11S1Cs (1.0 +4.1- —)

wlL
Then, the equivalent linear roll damping coefficient due to skin friction is expressed as:

8
3T

v

L 3
Pw - §prSfo . (1.0 +4.1- w_L>

B44F =

Ikeda confirmed the use of his formula for the three-dimensional turbulent boundary layer
over the hull of an oscillating ellipsoid in roll motion.
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Eddy Making Damping, By,

At zero forward speed the eddy making roll damping for the naked hull is mainly caused
by vortices, generated by a two-dimensional separation. From a number of experiments
with two-dimensional cylinders it was found that for a naked hull this component of the
roll moment is proportional to the roll frequency squared and the roll amplitude squared.
This means that the corresponding quadratic roll damping coefficient does not depend on
the period parameter but on the hull form only.

When using a simple form for the pressure distribution on the hull surface it appears that
the pressure coefficient C, is a function of the ratio v of the maximum relative velocity
U, naz to the mean velocity U,,cqn on the hull surface:

. Umam
’Y B Umean

The C),-v relation was obtained from experimental roll damping data of two-dimensional
models. These experimental results are fitted by:

C,=035-¢7—20-¢ %87 1 15

The value of v around a cross section is approximated by the potential flow theory for a
rotating Lewis form cylinder in an infinite fluid.

An estimation of the local maximum distance between the roll axis and the hull surface,
T'maz, Nas to be made.

Values of r,,4,(%) have to be calculated for:

=1, =00  and ¢:¢b:;;(&1_j

ai(1+a3)
das

The values of 7,4, (1) follow from:

Prae(¥) = My {((1+ a1) sin(¢) — azsin(3¢))* +
(1= ay) cos(v) + as cos(31))*}/*

With these two results a value 7,,,, and a value ¢ follow from the conditions:

- for Tmax(¢1) > Tmaw(¢2> Y Tmaz = 7amaac(q/ﬁ) and ¢ =,

- for rmam(¢1) < Tma:r(w2) Y Trmaz = rmam<w2) and w = w2
The relative velocity ratio v on a cross section is obtained by:

2M,
VY= fg\ﬁ_r - (rmw +— va? + b2)
2D5 <O'5 + %) vV H()O'S
with:
B
H = —
0 2D,
Ag
oy =
B,D,
B, Dy
M, =
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H = 1+a?+9a3+2a1(1 — 3as) cos(2y) — 6as cos(4v))

a = —2azcos(5¢) + a1 (1 — az) cos(3¢) + ((6 — 3a1)a; + (ai — 3ar)as + af) cos(v))
b = —2assin(5¢) + a1 (1 — ag)sin(3¢)) + ((6 + 3a1)a; + (ai + 3a1)as + a}) sin()
fs = 1+ Jo—1-6510°(1-05)?

With this a quadratic sectional eddy making damping coefficient for zero forward speed
follows from:
1 /rmax 2
LoD ( ) c,
m, L O0G _ finy firy)”
_ Ho—
(( Ds D. ) + fo ( 0 D.

fi = 0.5-(1+ tanh(200, — 14))
fo = 0.5-1(—cos(no,)) — 1.5 (1 — €*7°7*) sin®(ro)

2) !/
B,

with:

The approximations of the local radius of the bilge circle r, are given as:

Hy(os — 1 B;
r, = 2D, —0(0 ) for: r, < Dy and r, < —
T™—4 2
ry, = D for: Hy > 1 and r, > D,
By
ry, = > for: Hy < 1 and r, > HyD,

For three-dimensional ship forms the zero forward speed eddy making quadratic roll damp-
ing coefficient is found by an integration over the ship length:

2 2) !
B, = [ B, dn
L

This eddy making roll damping decreases rapidly with the forward speed to a non-linear
correction for the lift force on a ship with a small angle of attack. Ikeda has analyzed this
forward speed effect by experiments and the result has been given in an empirical formula.
With this the equivalent linear eddy making damping coefficient at forward speed is given
by:

8 (2) ].
Buy, = 3—7T'¢MB44@0 TT R
with: v
K=—"'
0.04-wL

Lift Damping, By,

The roll damping coefficient due to the lift force is described by a modified formula of
Yumuro:

2
1 oG oG

By, == LoLgr | 1. 14—
447, QPSLV]{IN o) R( 0+ LR +0.7 - LOLR>
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The slope of the lift curve C/a is defined by:

CL
o

27D B
= JL—+XQM.E—00%)

kn =

L

in which the coefficient x is given by Ikeda in relation to the amidships section coefficient
CMI

Chur < 0.92: Y = 0.00
0.92 < Chy < 0.97: ¥ = 0.10
0.97 < Chr < 0.99: v = 0.30

These data are fitted here by:
x = 106 - (Cpr — 0.91)2 — 700 - (Cyy — 0.91)°

with the restrictions:
-if Cyy < 0.91 then y = 0.00
-if C'yy > 1.00 then y = 0.35

Bilge Keel Damping, Bu,

The quadratic bilge keel roll damping coefficient is divided into two components:
- a component BELN due to the normal force on the bilge keels

(2)

4

- a component B, s due to the pressure on the hull surface, created by the bilge keels.

The coefficient of the normal force component Bﬁ)K of the bilge keel damping can be
deduced from experimental results of oscillating flat J\If)lates. The drag coefficient Cp de-
pends on the period parameter or the Keulegan-Carpenter number. Ikeda measured this
non-linear drag also by carrying out free rolling experiments with an ellipsoid with and
without bilge keels.

This resulted in a quadratic sectional damping coefficient:

/
Bﬁ)KN = prihyf7 - Cp

with:

hy,
ﬂ—rk?gbafk:
fe = 1.0+0.3-¢ 1600100

Cp = 225- + 2.40

The approximation of the local distance between the roll axis and the bilge keel ry, is given

as:
2 —— 2
. Ty OG Ty
T = DS\/(HU —0.293 Ds> + (1.0 + D, 0.293 Ds)

The approximation of the local radius of the bilge circle 7, in here is given before.
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Assuming a pressure distribution on the hull caused by the bilge keels, a quadratic sectional
roll damping coefficient can be defined:

h
I e

0
Ikeda carried out experiments to measure the pressure on the hull surface created by bilge
keels. He found that the coefficient C; the pressure on the front face of the bilge keel does
not depend on the period parameter, while the coefficient C of the pressure on the back
face of the bilge keel and the length of the negative pressure region depend on the period
parameter.

Ikeda defines an equivalent length of a constant negative pressure region Sy over the height
of the bilge keels, which is fitted to the following empirical formula:

S[) =0.3- Wfkrkgba +1.95- hk

The pressure coefficients on the front face of the bilge keel, C;7, and on the back face of
the bilge keel, C}, are given by:

h
CHr=120 and C, =-225.-—— —1.20
p p ﬂ—fk}rk' “
and the sectional pressure moment is given by:
hk
/Cplm-dh:Dg(—A-C’p_—l—B-C;“)
0
with:
= (ms +my)mg — m2
m3 (1 —my)?(2ms — my)
B = .
3l = 0215 my) | 6= 0215 my) T almams + mame)
r
m; = Fbs
-0G
m =
2 D,
ms = 1.0—m1—m2
mygy = HO — my
0414 Hy+0.0651 - m? — (0.382 - Hy + 0.0106)m,
o (Hy — 0.215 - my ) (1 — 0.215 - my)
— 0.414 - Hy + 0.0651 - m?2 — (0.382 + 0.0106 - Hy)m,y
o - (Hy — 0.215 - my)(1 — 0.215 - my)
my; = % —0.25 - ™my for: Sg > 0.25 - 7y,
= 0.0 for: Sg < 0.25 - 7y,
mg = my+0.414-m, for: Sg > 0.25 - 7y,

S
= my+1414-my <1 — COS (—O)) for: Sy < 0.25 - 7y,
b
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The equivalent linear total bilge keel damping coefficient can be obtained now by integrating
the two sectional roll damping coefficients over the length of the bilge keels and linearizing

the result: <
2) / 2) /
B44K = 3—7T¢au)/ (B£4)KN + B§4)KS ) dﬂjb
Ly

Experiments of Tkeda have shown that the effect of forward ship speed on this roll damping
coefficient can be ignored.

Calculated Roll Damping Components

In figure 5.6, an example is given of the several roll damping components, as derived with
Ikeda’s method, for the S-175 container ship design.

" Y, = ...
g o -
o 8 w = ... /é—— bilge keel
£ _—
< u'j L A
=% <
: 8 -
/[ lift
eddy
— friction
L wave
0 0.20 0.40
———— F,

Figure 5.6: Roll Damping Coefficients of Ikeda

It may be noted that for full scale ships, because of the higher Reynolds number, the
frictional part of the roll damping is expected to be smaller than showed above.
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Chapter 6

Hydromechanical Loads

With an approach as mentioned before, a description will be given here of the determination
of the hydromechanical forces and moments for all six modes of motions.
In the ”Ordinary Strip Theory”, as published by [Korvin-Kroukovsky and Jacobs, 1957]
and others, the uncoupled two-dimensional potential hydromechanical loads in the direction
j are defined by:
D
X ,’lj = Di

In the ”Modified Strip Theory”, as published for instance by [Tasai, 1969] and others, these

loads become:
X/ _ D Ml Z Nl ¥ X/
n = Dp W\ Mis = 57N ) Gy p F Ks,

In these definitions of the two-dimensional hydromechanical loads, C}"lj is the harmonic
oscillatory motion, M;; and N;; are the two-dimensional potential mass and damping and
the non-diffraction part Xgg, is the two-dimensional quasi-static restoring spring term.
At the following pages, the hydromechanical loads are calculated in the G(xy, yp, 2) axes
system with the centre of gravity G in the still water level, so OG = 0.

Some of the terms in the hydromechanical loads are outlined there. The ”"Modified Strip
Theory” includes these outlined terms. When ignoring these outlined terms the ” Ordinary
Strip Theory” is presented.

{M],‘j : éhj} +Nj;- éhj + Xks, (6.1)

6.1 Hydromechanical Forces for Surge

The hydromechanical forces for surge are found by an integration over the ship length of
the two-dimensional values:

Xh1 = /X,{Ll 'dl‘b
L

When assuming that the cross sectional hydromechanical force hold at a plane through
the local centroid of the cross section b, parallel to (x,yp), equivalent longitudinal motions

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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of the water particles, relative to the cross section of an oscillating ship in still water, are
defined by:

¢, = —z+bG-0

. . obG
~ —i+0bG-0

. oG . 926G
pr— —” -9—2 _.9 2 .

Chl T+ bG V&Eb +V &Ef 0
~ —i+0G-0

In here, bG is the vertical distance of the centre of gravity of the ship G above the centroid
b of the local submerged sectional area.

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a surging cross section in still water is defined by:

D . .
X, = =M GG
. dM! %
= M{1'<h1+<N{1_V' dmll)'Chl
b

According to the ”Modified Strip Theory” this hydromechanical force becomes:

D ? s
X, = o { (M- 2o) -6
V. dNj o dMj 5

This results into the following coupled surge equation:

pV - & — Xy, = (pV+an) & +by1-4¢ +cpp-x
+a13 +Z +biz3-2 +ci3-2
tai5 -0 +byi5-0 +cp5-0

— X,

with:

a;p = —{—/M{ldl'b
L

N/
+ V/d 11'd.’13b

w2
w? dzp

dM
b11 = +/(N{1—V 11)'d$b+bllv
d.’l?b
L

C11
ais = 0
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b13 =
Ciz = 0
aly — —/M{lmdxb
L
—V [dN], —
+ wz /—dZEb bGdl‘b
dMj — -
bis = —/(N{l—V~ 11)-bG~dxb—bnv-BG
dl‘b
Cis = 0

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

A small viscous surge damping coefficient by;,,, derived from the still water resistance
approximation of [Troost, 1955], has been added here.

After simplification, the expressions for the total hydromechanical coefficients in the cou-
pled surge equation become:

a;n = +/M{1dwb
L

bll = + / N{I . dl‘b + bllv
L

C11 = 0
a1z — 0
b13 == 0
Ciz = 0
a5 — —/M{l-@-da:b
L
~V [dN}, —
+ wg / diEb bGdl‘b
L
dMj — S
bis = —/(N{l—V—“)-bG~d:cb—bHV-BG
dwb
Ciy = 0

6.2 Hydromechanical Forces for Sway

The hydromechanical forces for sway are found by an integration over the ship length of
the two-dimensional values:

Xh2 = /‘)(;/12 . dwb
L
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The lateral and roll motions of the water particles, relative to the cross section of an
oscillating ship in still water, are defined by:

G, = —y —a- —0G-¢ Cro=—¢
(pw = —U —apt +V-9p —O0G-¢ Cpy=—0
Cry = —§ —ap-b +2V-p —OG -6 Chy = —0

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a swaying cross section in still water is defined by:

D <k
X;zz = Dt {M22 Chg} + Né? ' Chz
D
+Dt {M£4 Cm} + Ny - Ch4

* dM/ -k
= MéQ.Chg—{_ <N£2_V' d:BZQ) ‘Ch2

. dm’! .
+Myy - G, + <N§4—V- 24) Ch,
dl‘b

According to the ”Modified Strip Theory” this hydromechanical force becomes:

D ) sk
Xf/lz = Dt { (Mé2 we ' Né?) ' Chg}
D ) Lk
+Dt { (Méﬁl we ' Néél) ' Ch4}

V. dN] dM; %
(o ) s (v 25)

w2 dx
Vo dN My, s
b (0t 2 ) G (M- v ) G

This results into the following coupled sway equation:

pV - — Xp, = (PV +ag) -4 +bx- -y +co-y
tase © P +bu- ¢ + o
+ass W +bag Y + o6 VP

= sz

with:

Aoy — —{—\/MéQdiﬂb

V[ dNj,
— -d
* w? / dxy, o

L

dM;,
boy = +/(N§2—V- dxj2)~dmb
L
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022:0

aoqg = +/M£4d$b+m/Mé2d£L‘b
L L

dN, — [ dNj
—l—V/ 24-da:b+z2-OG/ 2 . dxy,
w? dzp
L

w_z d.’l?b
L
dM, — dM,,
by = +/(N§4—V- dmi‘*) -dxb+OG/<N52—V- dm?) - day,
L L
Coyy = 0
V dM;,
= My -ay-dey+— | (Npy =V -—2) .d
Q926 +/ 29 Tp $b+wz/( 22 dl‘b) Tp
L L
V V[ dNj,
+w—z/N52~d.’13b+w—z/ dz, - xp - dxy,
L L
dM;,
by = —1—/(]\%2—‘/- dx22)'l'b'dl'b—2V/Méz'd£Eb
b
L L

V2 [ dN,
A d
* w? / dxy, o

026:0

The ”Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

After simplification, the expressions for the total hydromechanical coefficients in the cou-
pled sway equation become:

oo = +/M£2d.’13b
L

622 = —|—/N52dl‘b
L
0

Ca2 =

Ay = +/M§4~da:b+m/M§2-dxb
L L

by = +/N;4~da:b+m/1\f;2-dxb
L L

Coyy = 0

! V !

L ‘1

bgﬁ = +/N£2'$b'dwb—V/Mé2'd!Eb
L L
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C26:O

So no terms are added for the ”Modified Strip Theory”.

6.3 Hydromechanical Forces for Heave

The hydromechanical forces for heave are found by an integration over the ship length of
the two-dimensional values:

th = /X]{Lg . d$b
L

The vertical motions of the water particles, relative to the cross section of an oscillating
ship in still water, are defined by:

CZS = —Z +513b-9
(g = —% +ap-0 —V-0
(o = —2 4+a-0 —2V-0

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a heaving cross section in still water is defined by:

D P - ,

Xi/zs - E{MéS'CM}+Né3'Ch3+2pg'yw'Ch3
o dM,

= My (p, + (Néza -V dng

)-Ch3+2pg-yw-éi3

According to the ”Modified Strip Theory” this hydromechanical force becomes:
D i L .
Xllzs = E {(Méi% - W_e NéS) '€h3} + 209 * Yw 'Chg

VodNL\ AMlg\ )
= (Mz/a?,"‘ﬁ' dxig)'fhs"‘(]\fés—v' dm23>'€h3+2pg'yw'gh3

This results into the following coupled heave equation:

pV -2 — Xy, = az] &% +b31 T +c31-x
+(pV +as3) -2 +bsz-2 +c33-2
tass 0 +bss-0 +cg5-0

= Xw3

with:

asy 0
bgl =0
C31 — 0

+

aszz =
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+ K/ngg 'dl‘b

w? | dxy
L
dM,
by = N, —V $).4d
33 ‘|‘/< 33 dl‘b ) b
L
C33 = +209/yw'dfﬁb
L
1% dM,
ags = —/Még'ivb'divb—w—g/(Nég—V' dmi?’)'d%
L L
-V V[ dN!
+ 2 /Nés'dmb—w—g/ dmig'wb'd%
dM}
bg5 = —/<Né3—V' 33>'£Bb'd£6b+2V/Mé3'dl'b
diEb
L
/dN§3
L
C35 = —2pg/yw xp - dxy
L

The ”"Modified Strip Theory Method” includes the outlined terms. When ignoring the
outlined terms the ”Ordinary Strip Theory” is presented.

After simplification, the expressions for the total hydromechanical coefficients in the cou-
pled heave equation become:

asy — 0
b31 =0
C31 — 0
ass — +/Mé3 . d.’l?b

L
b33 = +/Né3 . d.’l?b

L
cs3 = +2pg / Y - dTp

L
/ V !
c L
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C35 = —QPg/yw'ZCb'deb
i3

So no terms are added for the ”Modified Strip Theory”.
6.4 Hydromechanical Moments for Roll

The hydromechanical moments for roll are found by an integration over the ship length of
the two-dimensional values:
= / X, - dxy
L

The roll and lateral motions of the water particles, relative to the cross section of an
oscillating ship in still water, are defined by:

Ch4 —¢ Chz = —y—xb-w—m-qﬁ
Chy = —0 Chy = =9 —mpt +V-9p —0G- ¢
Ch4 (15 Chz = —Zj—mb'l‘b +2V'¢—m'€$

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
moment on a rolling cross section in still water is defined by:

Xl/hl = Dt{{M44 Ch4}+Ni4'Ch4+2pg- <?—76G) '€h4
D x
Dt{M42 Ch2}+Niz'Ch2

* dM’ . yi) As _ .
- M4/14'€h4+ (Ni4—V~ dmf) “Chy +2p9 - (3—7-176’) “Chy

+Myy - G, + <N412 -V dmiz) “Chy

or the ”Modified Strip Theory” this hydromechanical moment becomes:

! D / J / ¥ Yuw AS IVal *
Xp, = Dt{(MM " ‘N44)'Ch4}+209 <3 —7'5G)'Ch4

D ) sk
+Dt { (M412 we ' Nﬁi?) ' Chg}

V  dNj -k dM;} %
— (MZM—F—' 44> 'Ch4+ (Nlh_v, dx;l4> '€h4

w?  dxy,
3

Yuw AS 'Val *

+2pg - <? -5 bG) “Chy
Vv ale12 dMj,\ =
(M42 wg dz, Chg Nziz -V dxy ) Chg

This results into the following coupled roll equation:
Imm¢_Imzw_Xh4: a42'§+b42'3)+042'y

+(Im+a44)'&+b44'<'b+044'¢
+(—Imz+a46)'¢+b46 '¢+C46 w
= ){w4
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with:

Qg2 — +/Mi2'dwb+m'a22
L

+ V /dN42 'dlEb

w2
w? dzp

M, S
b42 == +/(N42—Vd 42)'dl’b+OG'bgg
dZEb
L

Cqo = 0—1—@-022
agq = +/M44-dmb+m/M42-dﬂ?b+m'a24
L L

w? | dxy
L

dM] — dM, __
by = +/(N54—V- d44)~d:cb+OG/<N42—V~ d42>-da:b+b44v+OG-b24
L L

N; — [ dNj
+ V/d 44-da:b+K2-OG/d 2 . du,
w? dzy
L

Tp T
3
Yo As =
— 49 Jw 7S
Cas + PQ/ < 3 5 bG> dxy,
L
= +pgV - -GM

1% dM,

= M, -z - — N, —V.—22

Q46 +/ 42 " Tp dxy + wg /( 42 V I,
L L

1% V[ dN]
—l—E/Niz'dxb—i-E/ daf'%'d&?b
L L

dM, —
by = +/(N412_V' 7 42)-ZEb'dl'b—QV/MA;Q'CZZE[)—{-OG'Z)QG
L L

)'dl‘b—Fm'agﬁ

Ty

V2 [ dNj
+ / 12 . diEb

02
w? dxy,
L

Ci6 — O+m-c%

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory Method” is presented.

A viscous roll damping coeflicient bys,,, derived for instance with the empiric method of
[Ikeda et al., 1978], has been added here.

After simplification, the expressions for the total hydromechanical coefficients in the cou-
pled roll equation become:

Qg2 — +/M42'd$b+m'a22
L
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b42 = +/N42dl'b+mbgg

C42:O

Qg = +/M44~d:cb+m/M42-da:ﬁm-am

by = +/N;4~d:cb+m/zv42~dxb+b44v+m-bz4

cua = +pgV - -GM
14 _
age = +/M'2-a:b-d:vb+—/Nig'diBb+OG'a26

b46 = /N42 Ty * d$b /M42 d.’13b+0G b26

Ci6 —

So no terms are added for the ”Modified Strip Theory”.

6.5 Hydromechanical Moments for Pitch

The hydromechanical moments for pitch are found by an integration over the ship length
of the two-dimensional contributions of surge and heave into the pitch moment:

X, = /Xés'dxb with:  X;_ = —X; -bG — X} -y

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
moment on a pitching cross section in still water is defined by surge and heave contributions:

dM7,
Tp

o dM; ¥ .
_M§3‘$b'ch3 - (Nés_v' da:is) Ty Cpy = 209 Yuw * T+ Cpy

X, = MGG, - (M- v ) GG

5

According to the ”Modified Strip Theory” this hydromechanical moment becomes:

V. dNj}\ — = AM!'\ — s

X;Ls B _<M{1+E. dle).bG'Chl_(Nil_V' dmll)bGChl
V. dN; . dM! - .
_<Mé3+w_g' dmi3)~mb~§h3—<N§3—V~ dmjs)'mb'€h3_2pg'yw'xb'gh3

This results into the following coupled pitch equation:

Iy, -0 — X, = as; % +bsy @ des
+ass - Z +bs3-2 + 5302
+(Iyy + ass) -0 +bs5-0 4 c55- 0

= st
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with:

a1 — —/M{l'm'dl‘b

—V/dlh.m.dxb

w? dzxy,
L
dM; — -
b51 = —/<N{1—V'—H>'bG'dl‘b—bllv'BG
dxb
Cs1 =
as3 = —/M§3-:1cb~da:b

_V/dN{,,3 2y - dy

w? dxp
dM/
bss = < 33) - Ty - day
dl‘b
cs3 = —2pg /yw xp - dy
i3

ass = +/M/ m 'd.’l?b

V /lel @2-dmb

T2
w@

1% M
+/M§3-a:§~dxb+ﬁ <N§,3—v-dd 33)~xb~da:b

e Lo
L
V V[ dNj
+E/Né3'$b'dl'b—|—§ ﬁl‘gdibb
dM — —
b55 = +/(N{1_V#)bG2dmb+bllvBG2
7 b
dM;,
+/(N§3—V~ dmi?’)-xf~dmb—2V/M§3~a:b-dxb
L L

~V? [ dN;
+ V/ 33'I'b'dl'b

2
w? dzy

Cs5 = +2P9/yw : 331? ~dxy,
L
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The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

After simplification, the expressions for the total hydromechanical coefficients in the cou-
pled pitch equation become:

a5 — —/M{l-@-da:b
L
-V [dN{, —
—=bG -d
* w? / dxy, o
L
dM; — S
bm::—/(Mrwﬁ—ﬂ)th%—mwBG
dwb
Cy1 = 0
as3 = —/M§3-:Eb-d:cb
L
\%
L
b53 = —/Né3'$b'd.’13b—V/Mé3'd.’13b
L L
Cs3 = —QPQ/yw'ZCb'deb

L

ass — +/M{1E2da:b
L

Ni, —
+K/iﬂwﬁ@%
w? ) dxy

!/ 2 V !/ V2 !
+ Mss'xb'dxb‘i_ﬁ N33':Eb'dxb+§ M33'd$b
L eL eL

-V
+7/Né3'l'b'dl'b
eL

dMj — -
b55 = —|—/(N{1—V?H)bG2d$b+bllvBG2+/Né3$§dwb
b
L

L
V2
+F/Né3.dmb
EL

Cs5 = +2pg/yw'$z'd$b
L
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6.6 Hydromechanical Moments for Yaw

The hydromechanical moments for yaw are found by an integration over the ship length of
the two-dimensional contributions of sway into the yaw moment:

Xp = /X,’16 - dxy with: X =4+X,, -2
L

According to the ”Ordinary Strip Theory” the two-dimensional potential hydromechanical
force on a yawing cross section in still water is defined by sway contributions:
/ D ! ¥ 1 ¥
Xhe = Di {Mzz " Tp Chz} + Noy - Ty - Cp,
D
Dt

= M£2-l‘b.<h2+<N£2_V. 22)‘mb'Ch2

o My G N G

dl‘b

-k dM,, <
Mgy - @ Gy + <Né4 -V da:z4> Ty Cp,

According to the ”Modified Strip Theory” this hydromechanical force becomes:

D i ”
X,{Lﬁ = E{(MQQ_ w_e'Ni) '5’3b'Ch2}
D 1 <k

o (M ) e

V' dN, . dM! x

e

vV dN, . dM! x
_|_(Mé4+ . 24)‘$b‘ch4+<Né4_V' 24>'$b'<h4

w?  dxy dxy

€

This results into the following coupled yaw equation:

Loy =Ly ¢— Xpg = agz Y +be2- Y+ cea-y
(=L + aes) ¢+ boa- ¢+ coa - &
+H(+ L. + ags) - ¥ + bes 1 + cop - ¥

= st

with:

agy = +/M§2-mb-dmb
3

V[ dN
+ wz / d:L‘b Ty Tp

L

dM;,
bz = +/(N§2—V- dxi2>~mb~dmb
L
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062:()

ags = +/M£4'fﬁb'd$b *l-m/Mﬁz'a?b'dmb

dN/ — [ dNj}
+Z/ 24'.’13b'd.’13b+z2'0G/ 22'.’13b'd$b
dwb

2
w? dzp
L

dM S dM,
b64 — —|—/(Né4—v d24>'$b'dl‘b+OG/<Né2_V' d22>‘mb'dl‘b
L

Ty Tp
L

e

cea = 0

V
Qg — +/M£2£L‘l2,dl‘b+w

V[ dN;
/N22 Ty - d.’l?b E/ 2 . -dwb
) L

dM.
bes = —|—/(Né2—V- dx22>-l‘%-d:ﬁb—QV/Méz'l'b'diEb
b
L L

dM;,
. 22) - xp - dxy
dl‘b

2 N!
+ V_ / d 2 Ty - d.’l?b
w? dxy,

066:()

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

After simplification, the expressions for the total hydromechanical coefficients in the cou-
pled yaw equation become:

agy = +/M£2~mb~dxb

-V

e
L

bea = +/N£2~mb~dxb+V/Mé2-da:b

L

06220

ags = +/M£4'$b'd$b+m/M§2‘$b'dxb

Vv | /A
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b@4 = +/N£4£L'bdl'b+V/Mé4d$b+m/N£2$bdmb+Vm/Mé2dmb

cea = 0

ags = /M£2 ;- dzy + —5 /N£2 Ty - dry + — /Mé? day

666 = +/N£2$£d$b

—V?2
° T
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Chapter 7

Exciting Wave Loads

The first order wave potential in a fluid - with any arbitrary water depth h - is given by:

_ —g coshk(h+ 2z)

B, = P o
W oosh(hy | Ce SIR(WE = Ky cos = gy sin )

in an axes system with the centre of gravity in the waterline.

The velocities and accelerations in the direction j of the water particles have to be defined.
The local relative orbital velocities of the water particles in a certain direction follow from
the derivative in that direction of the wave potential. The orbital accelerations of the water
particles can be obtained from these velocities by:

Y D ./ D a a
= : ith — =< ——-V.— for: j=1,2,3,4
Sui = Ty {C’“’J} W D {8t 8:cb} R
With this, the relative velocities and accelerations in the different directions can be found:

e Surge direction:

; 0P,
C;ul = 8_%
= +w-%-COSM-CGC%(wt—l{:mbcosu—kzybsinu)
dul = 8€—;U1
ot
= —w- %&Z;b)- cos i - (, sin(wt — kxy, cos p — kyp sin p)
e Sway direction:
duz = @({;ﬂ
Yo
= H4w- %W~ sin p - €, cos(wt — kxy cos p — kyp sin p)

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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&’ _ 85;2
w2 - 8t
.. h
wa2 = —w?- % -sin p - ¢, sin(wt — kxy, cos pp — kyp sin )

2 0,
Cuz = B2
inh k(h
= —w- W - ( sin(wt — kxp cos p — kyp sin p)
g Ky
w3 T 8t
inh
2. % -, cos(wt — kxy cos p — kyp sin p)
e Roll direction:
. y
<‘.,/ _ a€w2 _ an?) =0
wd 0z Oy
.-/
Cw4 =0

of which the zero solution is obvious, because the potential fluid is free of rotation.

The pressure in the fluid follows from the linearized equation of Bernoulli:

h
p = —pgz,+pg- % -, cos(wt — kxy cos p — kyp sin p)
Jp Oop Jp
= £ .4d £ .4 4
Po + o, Tp + a Yo + 9z 2b

with the following expressions for the pressure gradients:

aa_fb = +pkgcosp - %W - (, sin(wt — kxy, cos p — kyp sin p)
= +pw’cos - %W - ( sin(wt — kxy cos p — kyp sin p)
g—; = +pkgsinp - %W -, sin(wt — kxy cos p — kyp sin p)
= +pw?sinp- %W - ¢, sin(wt — kzy cos u — Ky sin )
g_i = —pg+ pkg - % -, cos(wt — kxy cos p — kyp sin p)
= —pg+pw- sinhk(h + 2) ¢, cos(wt — kxy cos pn — kyp sin )

sinh(kh)
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These pressure gradients can be expressed in the orbital accelerations too:

ap !

G—mb = —p-Cu1

8p o 2!

8yb - p C’LUQ

ap 2!
o P (9 + Cus)

7.1 Classical Approach

First the classical approach to obtain the wave loads - according to the relative motion
principle - is given here.

7.1.1 Exciting Wave Forces for Surge

The exciting wave forces for surge on a ship are found by an integration over the ship
length of the two-dimensional values:

le = /X{Ul 'dl‘b
L

According to the ”Ordinary Strip Theory” the exciting wave forces for surge on a restrained
cross section of a ship in waves are defined by:

D - .
X1,1J1 = E{M{I'Cw1}+N{1'Cw1+XIF'K1
. dM! <
= M{1<w1+<N{1_V dxil)'gw1+X%‘Kl

According to the ”Modified Strip Theory” these forces become:

D i s
X = g { (M- 2 80) -8} o+ X
14 th)

dMji,
W_z dwb Cwl—i_(N{l_V

d.’l?b

= (M{I + > ’ C;km +X§7K1

The Froude-Krilov force in the surge direction - so the longitudinal force due to the pressure
in the undisturbed fluid - is given by:

¢ +yp

0
XFK1 = _//a_ﬂjpbdybde

=T -y
¢ +Yp

= p//é;;l'dyb‘dzb

—T —yp
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Figure 7.1: Wave Pressure Distribution on a Cross Section for Surge

After neglecting the second order terms, this can be written as:
XK, = pAan - (—kgcos 1) - (, sin(wet — kxy cos )

with:

0
A, — 2/ sin(—kyysinp) coshk(h + z) - do

—kypsin p cosh(kh)

When expanding the Froude-Krilov force in deep water with A > 27 -y, and A\ > 27 - T
in series, it is found:

1
Xrg, =p- <A +k-S,+ §k2 1, + ) - (=kgcosp) - ¢, sin(wet — kxyp cos )

with:
0 0 0
AIQ/Z/b'de Sy:2/yb'2b'dzb Iy:2/yb'zl?'d2b
T -T =T

The acceleration term kg cos y - ¢, in here is the amplitude of the longitudinal component
of the relative orbital acceleration in deep water at z, = 0.

The dominating first term in this series consists of a mass and this acceleration.

This mass term pA is used to obtain from the total Froude-Krilov force an equivalent
longitudinal component of the orbital acceleration of the water particles:

Xpw, = pA -y,

This holds that the equivalent longitudinal components of the orbital acceleration and
velocity are equal to the values at z, = 0 in a wave with a reduced amplitude ¢, :

'C'LUI = —kgcosp -y, sin(wet — kxy cos )
. Lk
Cuwy = Thgcosp 21 cos(wet — kxp coS 1)

w
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with: 4
Czl - TCh ’ Ca
This equivalent acceleration and velocity will be used in the diffraction part of the wave
force for surge.
From the previous follows the total wave loads for surge:

Xuy = —|—/M{1-é:;1-dl'b
L

V dN{; -«
/ dtle ' Cwl ) dmb
L

w dM/ P
+/<w—6N{1—V dm:f) ,Cwl.dl‘b

L
L

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.2 Exciting Wave Forces for Sway

The exciting wave forces for sway on a ship are found by an integration over the ship length
of the two-dimensional values:
X, = /X{U2 - dxy
L

According to the ” Ordinary Strip Theory” the exciting wave forces for sway on a restrained
cross section of a ship in waves are defined by:
D L

XTIUQ = Ft {M£2 : sz} + Né? ) sz + X;‘—'Kz

= M£2'€w2+ <N£2_V d$§2) 'Cw2+X%K2

According to the ”Modified Strip Theory” these forces become:

D 7 .
X, = Dt { (Mé2 o Nﬁz) 'sz} + Xrk,
VAN ML,
= (Méfrw—z'd—mb) “Cuy T (NQQ—V- s “Cup + Xrk,

The Froude-Krilov force in the sway direction - so the lateral force due to the pressure in
the undisturbed fluid - is given by:

+yp

¢
0
Xrk, = —//a—p'dyb‘dzb
Yo

—T —up
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Figure 7.2: Wave Pressure Distribution on a Cross Section for Sway

()
../
— o[ [ du-da
=T -y
After neglecting the second order terms, this can be written as:
Xrg, = pAcn - (—kgsin p) - (, sin(wet — kxy cos )
with: .
sin(—kypsin i) cosh k(h + z)
Ach =2 . :
—kypsin p cosh(kh)

“Yp - dzp

-r
When expanding the Froude-Krilov force in deep water with A > 27 -y, and A\ > 27 - T
in series, it is found:

1
Xrg, =p- (A +k-S,+ 5142 1, + ) - (—kgsin p) - ¢, sin(wet — kxp cos )

with:
0 0 0
AZZ/ybde SyZZ/bebde Iy:2/yb2’gdz1)
T =T =T

The acceleration term kgsin - ¢, in here is the amplitude of the lateral component of the
relative orbital acceleration in deep water at z, = 0.

The dominating first term in this series consists of a mass and this acceleration.

This mass term pA is used to obtain from the total Froude-Krilov force an equivalent
lateral component of the orbital acceleration of the water particles:

Xrpk, = pA-Cy,

This holds that the equivalent lateral components of the orbital acceleration and velocity
are equal to the values at z, = 0 in a wave with a reduced amplitude (},:

ek

Cw, = —kgsinp - sin(wet — kay cos )
s kg si
Coy = Thgsmp ay COS(wet — Ky cos 1)

w
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with:

k . Ch .
Cag - A Ca,

This equivalent acceleration and velocity will be used in the diffraction part of the wave
force for sway.
From the previous follows the total wave loads for sway:

L
/ngz
L da
w
+/(_
w

L
+/‘X%‘K2 ° dxb
L

~

e

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.3 Exciting Wave Forces for Heave

The exciting wave forces for heave on a ship are found by an integration over the ship
length of the two-dimensional values:

Xw3 = /XV{U3 . dl‘b
L

According to the ”Ordinary Strip Theory” the exciting wave forces for heave on a restrained
cross section of a ship in waves are defined by:

D x
X’Lll)g = Dt {MéS C } + NéS Cw3 + XFK3
o dM; :
= Mé3 ' ng + <Né3 -V dl‘is) ’ ng XFKS

According to the ”Modified Strip Theory” these forces become:

D <%
X, = Di {(M:/a:a - w_e N:)/,:a) 'ng} + Xk,
Vv dNé3 ok dMég) <k
- (Méi% + E ' dl’b > ' ng + (NéS -V dZCb : Cw3 %‘Kg

€
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A 2 undisturbed
b //’ﬁwave profile

*b

Figure 7.3: Wave Pressure Distriubution on a Cross Section for Heave

The Froude-Krilov force in the heave direction - so the vertical force due to the pressure
in the undisturbed fluid - is given by:

¢ty

' Op
Xrr, = —//8—%'61%'6121;

=T =y
¢ +yp

= p//(ngi;g)'dyb'de

—T —yp
After neglecting the second order terms, this force can be written as:
X;?Kg = 2pqy - C3 - (, cos(wet — kxy cos )

with:

— — . cue - d
Cs —ky,, sin i Y —kyy sin p cosh(kh) Yo @2

0
_ sin(—kywsinp) kK / sin(—kypsinu) sinh k(h + z)

When expanding the Froude-Krilov force in deep water with A > 27 - T and in long
waves with A > 27 - y,, in series, it is found:

0
e : (o i inh
Cy — sin(—kywsinp) k- / sin(—kyp sin ) _sin k(h + zp) Yo+ dzp

—ky, sin i Y —kyp sin cosh(kh)

0

k
1—— / ey - dz

Q

w
0

k K,
= 1-— L+k-2zp+— 2+ ...... “Yp - dzp

Yuw 2
-T
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2Yw 29 2 2y
A
= 1—-k|—+....
(2yw " >
1— kT3
exp {—kT5}
with:
0 0 0
A:Q/yb~d2b Sy:2/yb'2b'dzb Iy:2/yb'zl?'dzb
T -T =T

T3 can be considered as the draft at which the pressure in the vertical direction is equal
to the average vertical pressure on the cross section in the fluid and can be obtained by.
—1In 03

k

This holds that the equivalent vertical components of the orbital acceleration and velocity
are equal to the values at 2z, = =15

Ty =

e

Cuwy = —kg- e M5 . Cas * cos(wet — kap cos )

= —w?. (e‘kTg - Cay) - COS(wet — Ky cos 1)

.k _k *
C’u}g _‘g . efkTS . C
w

= —w- (e .¢,,) - sin(wet — kay cos )

as * Sin(wet — Ky cos 1)

% k .
Cwy = —g ek Cqy - COS(wWet — Ky COS 1)
w

= (e . ¢,,) - cos(wet — kaycos p)

When expanding the Froude-Krilov force in shallow water with kh — 0 and in long waves
with A > 27 - y,, in series, it is found:

0
o - sin(—kywsinp) k- / sin(—kypsin ) sinh k(h + 2)
ST —ky,, sin p Yu —kypsin p cosh(kh)

0
k / sinh k(h + zp)

Yy - dzy

~ 1-— -
Yu cosh(kh) vo dz
B[R ) B ()
+ 2p) + C + ...
Yu cosh(kh) Yo - 42
0 0

T -T
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=1 i k-<A+Sy+ ...... >

~ cosh(kh) 20w h- 2y,
B kh ZB A
— 1 - W * k ° <]. + T + ...... > * %
kh ZB A
= 1—-—(1+—) - k- | —+......
cosh(kh) ( * h ) K <2yw * >

kh ZB
= 1-— (1+3) .k
cosh(kh) ( * h) 3

kh ZB
(142 kT
exp{ cosh(kh) ( * h) 3}

Q

with:

0 0
AZQ/yb'de Sy:2/yb-zb-dzb:zB-A
-T -T

So in shallow water, 75 can be obtained by.

—lnC'3

g (L) -k

Ty =

This holds that the equivalent vertical components of the orbital acceleration and velocity
are equal to the values at 2z, = —15:

g;g = —kg- Sinioiillengg) Cay - COS(wet — Ky cos )

= —u. <Sm§1i£1}zk_h)Tg) -{as) - cos(wet — kay, cos 1)
&= _:jg : Sin?oiil}Zl;z)Tg) Cay - Sin(wet — kap cos p)

- —w- <Sln21ﬁ£?k;fg> -Cas) - sin(wet — kay, cos p)
o= kg sinhk(h — Ty) “Cay * COS(wet — Ky cos 1)

ws w? cosh(kh)
_ (sinhk(h —1T3)
B sinh(kh)

-Ca3) - cos(wet — kxy cos )

It may be noted that this shallow water definition for 7% is valid in deep water too, because:

kh ZB
L | d 20 for h
cosh(kn) ho on e

These equivalent accelerations and velocities will be used to determine the diffraction part
of the wave forces for heave.
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From the previous follows the total wave loads for heave:

Xy = [ My
L

The ”Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.4 Exciting Wave Moments for Roll

The exciting wave moments for roll on a ship are found by an integration over the ship
length of the two-dimensional values:

Xuy = / X! - duy
L

According to the ”Ordinary Strip Theory” the exciting wave moments for roll on a re-
strained cross section of a ship in waves are defined by:

D .k K3 —_—
Xiw = +Xbxo+ 3 {Miz - sz} + Ny - ¢y, + OG- X,

v dM!
= Xpg, + My -Gy, + <N42_V'd—42

Ty 2

)& 00X
According to the "Modified Strip Theory” these moments become:
/ / D / i / ¥ aYal /
X, = TXpg, + Dt My, — w_e "Ny | - Cuy ¢ +0G - X,

= X%‘K4+<M412+E'd—l_b)'gjug+(N412_V

dM;,
Ty

P
) “Cuy TOG - X7,
The Froude-Krilov moment in the roll direction - so the roll moment due to the pressure
in the undisturbed fluid - is given by:
¢ +up

0 0
Xrr, = —// ) - dyy - dz
ayb sz

=T —yp
¢ +yp

= p//(—6;2-zb+(g+é;3)-yb)-dyb-de

=T —yp
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Figure 7.4: Wave Pressure Distriubution on a Cross Section for Roll

After neglecting the second order terms, this can be written as:
C C
Xrr, =p- <—% - % + Clz> : (—k2g sin ) - (, sin(wet — kay cos p)

with:
sin(—kyuw sin )

C - 9. —kyw sin
“ (—kyu sin 12)?

— cos(—kyysinp)
“Yw

0

sin(—kypsin ) coshk(h + z)
Co — 9 . - o d
5y / —kypsin p cosh(kh) Yooz 0%
“r
0 sin(— sin .
o % — cos(—kyy sin p) ~coshk(h+z) - do
2 (—kyp sin p)? cosh(kh) b T

For deep water, the cosine-hyperbolic expressions in here reduce to exponentials.

From the previous follows the total wave loads for roll:

Xw4 - /X}:*K4 'dl‘b

L
L

NI, o
+ V /u . ng . dfl:b
W We dxy,

L

*/(z'%—‘” dxj)-cw2~dxb
J \lwel
+0G - Xy,

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
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7.1.5 Exciting Wave Moments for Pitch

The exciting wave moments for pitch are found by an integration over the ship length of
the two-dimensional contributions of surge and heave into the pitch moment:

with: L
X, =—-X,, -bG— X, -z
In here, bG is the vertical distance of the centre of gravity of the ship G above the centroid

b of the local submerged sectional area.
From this follows the total wave loads for pitch:

Xy, = —/M{1~E~§;~d:cb
L
— dN{, — =:x
- v /—”-bG-Cwl-dmb
W+ We dzxy
L
dM] — .«
—/(i-N{l—V-—”>-bG-Cwl-dmb
We dxy,

L

—/X};Kl'm'dl‘b

L
— | My-ay-C - da
33 " Lb " G b

L

- dN!
+ V/ B2y, - day

- We dxy,
L

M,
dwb

G

e
!/
_/XFKg.mb.dmb
L

Nig —V -

).mb.ézg.d%

The "Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

7.1.6 Exciting Wave Moments for Yaw

The exciting wave moments for yaw are found by an integration over the ship length of the
two-dimensional contributions of sway into the yaw moment:

Xug = / X! - duy
L
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with:
X:UG = —|—X{U2 - Xy

From this follows the total wave loads for yaw:

st = +/M£2$b€:;2d$b
L

/ .ok
Vv /dN22 Ty - sz . d.’l?b

W+ We dzxy
w dM/ *
—| Njy -V . 2 -d
+/ o, 22 dzy T ng Lo

L
+/X1/‘7K2 'ZEb'dZEb
L

The "Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.



7.2. EQUIVALENT MOTIONS OF WATER PARTICLES 193

7.2 Equivalent Motions of Water Particles

In the classic relative motion theory, the average (or equivalent) motions of the water
particles around the cross section are calculated from the pressure distribution in the
undisturbed waves on this cross section. An alternative approach - based on diffraction
of waves - to determine the equivalent accelerations and velocities of the water particles
around the cross section, as given by [Journée and van 't Veer, 1995], is described now.

7.2.1 Hydromechanical Loads

Suppose an infinite long cylinder in the still water surface of a fluid. The cylinder is forced
to carry out a simple harmonic oscillation about its initial position with a frequency of
oscillation w and a small amplitude of displacement z;,:

Tj = Tjq COSwWi for: j =2,3,4

The 2-D hydrodynamic loads X, in the sway, heave and roll directions 7, exercised by the
fluid on a cross section of the cylinder, can be obtained from the 2-D velocity potentials
and the linearized equations of Bernoulli.. The velocity potentials have been obtained by
using the work of [Ursell, 1949] and N-parameter conformal mapping. These hydrodynamic
loads are:

X, = 2pgywl% [A;j cos (wt + €455) + Byjsin (wt + €4q5)]
in where j is the mode of oscillation and 7 is the direction of the load. The phase lag €4, is
defined as the phase lag between the velocity potential of the fluid ® and the forced motion
z;. The radiated damping waves have an amplitude ¢, and ¥, is half the breadth of the
cross section at the waterline. The potential coefficients A;; and B;; and the phase lags
€¢aj> €xpressed in terms of conformal mapping coefficients, are given in a previous chapter.
These loads X ,’n can be expressed in terms of in-phase and out-phase components with the
harmonic oscillations:

2
X;L = & (&) [(AijQOj + Bijpoj) cos wt + (AijPOj — BijQOj) sin wt]

YW, \

with 9o = 2, Aoy = 4/ywl7 as3 = 2, g4 = 8, Qg9 = 4ywl and for the terms P[)j and Q[)jl

2

Tia W
ja .

Py = —=—m—yyusiney,;
Cja
Tja w?

Qoj = =T —Yui COS Egg;
Cja

The phase lag €4,; between he velocity potentials and the forced motion is incorporated in
the coefficients Fy; and ()p; and can be obtained by using:

Espi = arctan <_P0j>
o] +Q0j

This equation will be used further on for obtaining wave load phases.
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Generally, these hydrodynamic loads are expressed in terms of potential mass and damping
coefficients:

! . .
Xhi = —MijZL‘j—NijiEj

= Mijwzmja cos wt + Njjwxjq sin wt

with:

AijQoj + Bij Py,

M;; = pb;
’ ’ P[)2j + Q%j
Ay Py — By Qo
Ny = pb 24 i%0i
’ TP+ Q3

with 622 = 2y12ul7 b24 = yg}l’ b33 = 2y12ul7 b44 = Zyilul and b42 = ng)l Note that the phase lag
information €4,; is vanished here.

[Tasai, 1965] has used the following potential damping coupling coefficients in his formu-
lation of the hydrodynamic loads for roll:

!

’ N / / ’

w

in which [, is the lever of the rolling moment.
Because N, = N,,, one may write for the roll damping coefficient:
7 \2 7 \2
) ()
a4 = = 7
Ny Nay

This relation - which has been confirmed by numerical calculations with SEAWAY - will
be used further on for obtaining the wave loads for roll from those for sway.

7.2.2 Energy Considerations
The wave velocity, cyave, and the group velocity, cgroup, of regular waves are defined by:

w and Cwave 2kh
= — n = .
Cuwave Cgroup 2 sinh [2kh]

k

Consider a cross section which is harmonic oscillating with a frequency w = 27 /T and an
amplitude z;, in the direction j in previously still water by an oscillatory force X ,/lj in the
same direction j:

Tj = Tjqcoswi for: 7 =2,3,4
Xpj = X;Lja cos (wt + 6@)
= X;Lja cos slhj coswt — X,;ja sin glhj sin wt
The energy required for this oscillation should be equal to the energy radiated by the
damping waves:
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T T

1 . 1 b 1

f/th '%‘dt:f/ijij'ffjdt=2'§/)g€3'cgroup
0 0

or:

]. ’ ! !
: _ 2.2 _ 2
Ethawmja siney; = §ijw T, = PYCa * Cgroup

From the first part of this equation follows

X, sing; . , Tig
hj C hj _ ijw%
From the second part of this equation follows the amplitude ratio of the oscillatory motions
and the radiated waves:

% _ 1 2pg * Cgroup

Ca w N]lj
Combining these two last equations provides for the out-phase part - so the damping part
- of the oscillatory force:

’ A ,
Xhja SINEY;
Ca

sin {:“;Lj is the in-phase with the velocity part of the exciting force or moment.

= \/ng-cgmup-N]'-j for: j =2,3,4

!

In here, X,

7.2.3 Wave Loads

Consider now the opposite case: the cross section is restrained and is subject to regular
incoming beam waves with an amplitude (,. Let z,,; represents the equivalent (or average)
oscillation of the water particles with respect to the restrained cross section. The resulting
wave force is caused by these motions, which will be in phase with its velocity (damping
waves). Then the energy consumed by this oscillation is equal to the energy supplied by
the incoming waves.

Twj = Twje COS <wt + &?;Uj) for: 7 =2,3,4
Xy = Ko (a4,

in which s;uj is the phase lag with respect to the wave surface elevation at the center of
the cross section.
This leads for the amplitude of the exciting wave force to:

’

ija / .
T = \/ng * Cgroup * NV for: j =2,3,4
which is in principle the same equation as the previous one for the out-phase part of the
oscillatory force in still water.

However, for the phase lag of the wave force, ¢

’

wj» a0 approximation has to be found.
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XFko §

Xw21 f 7 Ty A

Xw22 Xw31 Xrk3

SWAY HEAVE

Figure 7.5: Vector Diagrams of Wave Components for Sway and Heave

Heave Mode

The vertical wave force on a restrained cross section in waves is:

X, = X;J3a cos (wt + 5;)3>

w3

’

= X34 COS 5;)3 coswt — X;U3a sin 5;)3 sin wt
of which the amplitude is equal to:

leu3a =(, \/Zpg * Cgroup N?’)S

/
w3’

an approximation has to be found.
at the intersection of the ship’s hull with the

For the phase lag of this wave force, &
The phase lag of a radiated wave, ¢,
waterline, v, = Y, 1S

wR3?

I
gwRS - kywl
’

The phase lag of the wave force, ¢,

has been approximated by this phase:

I

’
w3 = Sng = kywl

Then, the in-phase and out-phase parts of the wave loads are:

X}'Kg + leu31 = +X’:u3a COoS 5;,)3 =+ (Ca\/ZPQ * Cgroup * Né3> COS 5;,)3

! . ! ! . !/
KXuzg = —XyzeSine,; = — <Ca\/209 * Cgroup * N33) SINE,,3
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from which the diffraction terms, X, ., and X, 4, follow.
These diffraction terms can also be written as:

Xugi = Maz-ag

Xugy = Msg -0y
in which dg and @; are the equivalent amplitudes of the acceleration and the velocity of
the water particles around the cross section.

Herewith, the equivalent acceleration and velocity amplitudes of the water particles are:

S

= w3l
a =
3 /
l
,D’ . Xw32
3 - ’
NSS

Sway Mode

The horizontal wave force on a restrained cross section in beam waves is:

!

Xps = X;Qa cos (wt + 5;)2>

’

/ / . / .
= X 24 COSEg cOSWt — X o, sine, ,sinwt

of which the amplitude is equal to:

X;u2a =(, \/Zpg * Cgroup * Né2

’

For the phase lag of this wave force, ¢,,, an approximation has to be found.
The phase lag of an incoming undisturbed wave, 5;,”2, at the intersection of the ship’s hull
with the waterline, y, = Y., is

’

Ewz = —hkYwisSinp
if sin p < 0 then: 5;012 = 5;,‘,12 +m
In very short waves - so at high wave frequencies w — oo - the ship’s hull behaves like a
vertical wall and all waves will be diffracted. Then, the phase lag of the wave force, 5;2, is
equal to:

Ew2 (w - OO) = _6w12
The acceleration and velocity amplitudes of the water particles in the undisturbed surface
of the incoming waves are:

! .
<a2> _ = —kgsinpu
still water surface

/ .
o  —ay  kgsinp
still water surface w w
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In very long waves - so at low wave frequencies w — 0 - the wave force is dominated by
the Froude-Krylov force and the amplitudes of the water particle motions do not change
very much over the draft of the section. Apparently, the phase lag of the wave force, ¢’
can be approximated by:

w2

, B Xipgey &+ My - (—kgsin p)
€ua (W — 0) = —arctan — taenn
N22 ’ ( w )

When plotted against w, the two curves ¢, (w — 0) and ¢, (w — 00) will intersect each
other. The phase lag of the wave force, €,,, can now be approximated by the lowest of
these two values:

! !
Cw2 = Ew2 (w - OO)
I

ife ,(w—0)>e,,(w—00) then: £, = &,,(w—0)

Because ¢, (w — 00) goes to zero in the low frequency region and ¢, (w — 0) can have
values between 0 and 27, one simple precaution has to be taken:

if £, (w— 0) > g then: e, (W — 0) =,y (W — 0) — 27

Now the in-phase and out-phase terms of the wave force in beam waves are:

/ ’ o ’ . ’ . , . /
XFK2 + Xw21 - _Xw2a SINEy0 = — <Ca\/2pg " Cgroup N22) SN €0

’

Xuog = +X’:l)2a COS 5;2 =+ (Ca\/ng * Cgroup * Né2> COS 5;2

from which the diffraction terms, X, ,, and X, follow.
These terms can also be written as:

’ ’ 7
Xpz1 = My -ay
!

Xw22

!

! —
Nyy - Uy

in which @, and 7, are the equivalent amplitudes of the acceleration and the velocity of
the water particles around the cross section.

Then - when using an approximation for the influence of the wave direction - the equivalent
acceleration and velocity amplitudes of the water particles are:

! Xw21 :
a == - |SIn
2 Méz | /“L’
X/
W o= D2 sing)
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Roll Mode

The fluid is free of rotation; so the wave moment for roll consists of sway contributions
only. However, the equivalent amplitudes of the acceleration and the velocity of the water
particles will differ from those of sway.

From a study on potential coefficients, the following relation between sway and roll damping
coefficients has been found:

7\ 2 7\ 2
! (N 24) (N 42)
N44 = N’ = N’
22 22
The horizontal wave moment on a restrained cross section in beam waves is:

’

Xps = X;Ma cos (wt + 8;)4>

of which the amplitude is equal to:

’

Xw4a = Ca \/2[)9 ) Cgroup ) NA;A

N/ 2
= Ca\/ng * Cygroup * ( 24)

NéQ
’ | Néél |
= a\/Q * Cgroup * Ny, - 7
C pg Cg 14 22 N22
o [Ny
= Xipe- 224
w2a N22

The in-phase and out-phase parts of the wave moment in beam waves are:

X! X, = (X X! A
FKy T Xpa1 = FKy T X2t ) N
22

, N

Xw42 = Xw22' N,

22

from which the diffraction terms, X, ,, and X, ,, follow.
These terms can also be written as:

Xy = My -ay

Xy = Noyy- 0y
in which @, and o,, are the equivalent amplitudes of the acceleration and the velocity of
the water particles around the cross section.
Then - when using an approximation for the influence of the wave direction - the equivalent

acceleration and velocity amplitudes of the water particles are:

Gy = - [sinpl

Vaa = - [sin
24
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Surge Mode

The equivalent acceleration and velocity amplitudes of the water particles around the cross
section for surge have been found from:

Gy
a, =
tan
!
/ —a
= 1
v, =



7.3. NUMERICAL COMPARISON

7.3 Numerical Comparison

Figures 7.6 and 7.7 give a comparison between these sway, heave and roll wave loads on a
crude oil carrier in oblique waves - obtained by the classic approach and the simple diffrac-
tion approach, respectively - with the 3-D zero speed ship motions program DELFRAC of

Pinkster; see [Dimitrieva, 1994].

Ampl. Wave Load (kN or kNm}

75000¢10%

5.0000¢10°

2.5000¢10*

Figure 7.6:
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Figure 7.7: Comparison of Simple Diffraction Wave Loads with DELFRAC Data
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Chapter 8

Transfer Functions of Motions

After dividing the left and right hand terms by the wave amplitude (,, two sets of six
coupled equations of motion are available.
The variables in the coupled equations for the vertical plane motions are:

Surge: 2”—“ -coseyc  and ”C”—a - sineze
a a

Heave: z—“ ~cose,e  and z—“ -sine,e

Pitch: g—z -cosege  and g—z - sin gg¢

The variables in the coupled equations for the horizontal plane motions are:

Sway: é{—z ~coseyc  and g—: -siney¢
Roll: % ~cosegye  and % - SIn Eg¢
Yaw: % ~coseye  and Z’— - SIn Ey¢

These sets of motions have to be solved by a numerical method. A method which provides
continuous good results, given by [Zwaan, 1977], has been used in the strip theory program
SEAWAY-DELFT.

8.1 Centre of Gravity Motions

From the solutions of these in and out of phase terms follow the transfer functions of the
motions, which is the motion amplitude to wave amplitude ratio, and the phase lags of the
motions relative to the wave elevation at the ship’s centre of gravity:

Yo o 9u Y

Zq Zu
S A

The associated phase lags are:

(¢ Ey¢ €x¢ €o¢ Eo¢ Ey¢

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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The transfer functions of the translations are non-dimensional.
The transfer functions of the rotations can be made non-dimensional by dividing the ampli-
tude of the rotations by the amplitude of the wave slope k¢, in lieu of the wave amplitude
C(l:

La Ya Zq 0, Y, o,

Ca  Ca  Ca KRG KRG RG,

For motions with a spring term, three frequency regions can be distinguished:

e the low frequency region (w? < ¢/(m+a)), with motions dominated by the restoring
spring term,

e the natural frequency region (w? =~ c¢/(m + a)), with motions dominated by the

damping term and

e the high frequency region (w? > c/a), with motions dominated by the mass term.

An example for heave is given in figure 8.1.

3
(2]
- £ .
s > E
z, £ 2
=2 = € o
aF o ©
N & = E
S, o -
3 e o O
= o o o
=t o 2 | @
£ [ [o ©
© A= c =
e 1 (=) O o
T o S -
o [7,] (43
C = =
i) o 2
s 1] o
= = =
0 S—
0 1 2 3

Frequency (rad/s)

Figure 8.1: Frequency Regions and Motional Behavior
With the six centre of gravity motions, the harmonic motions in the ship-bound x, 3, and
2, directions - or in the earth bound z, y and z directions - in any point P(xy,yp, 25) on
the ship can be calculated.

8.2 Absolute Displacements

Consider a point P(xy, yp, 25) on the ship in the G(xy, yp, 25) ship-bound axes system. The
harmonic displacements in the ship-bound =z, 3, and z;, directions - or in the earth bound
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z, y and z directions - in a point P(zs, ys, 25) on the ship can be obtained from the six
centre of gravity motions as presented below.
The harmonic longitudinal displacement is given by:

rp = T —UYp Y + 20
= zp, - cos(wet + €4p¢)

The harmonic lateral displacement is given by:

yp = Y +ap Y — 2@
= yp, - cos(wet + €yp¢)

The harmonic vertical displacement is given by:

zp = 2z —xp b —y- @
= zp, - cos(wet + €2p¢)

Some examples of calculated transfer functions of a crude oil carrier and a containership
are given in the figures 8.2, 8.3 and 8.4.

15 1.5
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V=0kn' © : V=0kn '
Heave ' / \ ' Pitch
o y ' ' -
g s
£ o
o (@]
g &
0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00
Wave Frequency (rad/s) Wave Frequency (rad/s)
0 — ——] 0
90 - - - - - - — 90
pn=90
180 - - - - o - e - 180
j2}
S v 270
‘; w
N S  -360
9 2
@ T -450
e
& -540
-630
-720
0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00
Wave Frequency (rad/s) Wave Frequency (rad/s)

Figure 8.2: Heave and Pitch of a Crude Oil Carrier, V = 0 Knots

Notify the different speed effects for roll and pitch in figure 8.4.

8.3 Absolute Velocities

The harmonic velocities in the ship-bound x, ¥, and z;, directions - or in the earth bound =,
y and z directions - in a point P(zy, ys, 25) on the ship are obtained by taking the derivative

of the three harmonic displacements.
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Crude Oil' Carrier ' ' Crude Oil ‘Carrier
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Figure 8.3: Heave and Pitch of a Crude Oil Carrier, V = 16 Knots
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Figure 8.4: RAQO’s of Roll and Pitch of a Containership
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The harmonic longitudinal velocity is given by:
ip = m'—yb-¢ +Zb~9
= —We-xp, - sin(wet + €4,¢)
= ip, - cos(wet + €4,¢)
The harmonic lateral velocity is given by:
Ip = Ytz —z-0
= —We - Yp, - sin(wet + £4,¢)
= Yp, - cos(wet + €4,¢)
The harmonic vertical velocity is given by:
Zp = z—a:bQ—i—ybgb
= —We - 2p, - sin(wet + €,,¢)

Zp, - cos(wet +€2,¢)

8.4 Absolute Accelerations

207

In the earth-bound axes system, the harmonic accelerations on the ship are obtained by
taking the second derivative of the displacements. In the ship-bound axes system, a com-
ponent of the acceleration of gravity has to be added to the accelerations in the horizontal

plane direction.

8.4.1 Accelerations in the Earth-Bound Axes System

In the earth-bound axes system, O(z,y, z), the harmonic accelerations in the z, y and z
direction in a point P(xy,ys, 25) on the ship are obtained by taking the second derivative

of the three harmonic displacements.
Thus:

e Longitudinal acceleration:

ip = & —yyth +2-0
2

— _we . xPa M COS(W@t + gxpc)

Zp, - cos(wet + €ip¢)
e Lateral acceleration:

ip = G fap-h — 2z

= —w?- yp, - cos(wet + Eypc)

= p, - cos(wet + €4p¢)
e Vertical acceleration:

ipo= 2 —mxp-0 +yp-

= —wg - 2p, - coS(Wet + €5,¢)

= Zp, - cos(wet + €zp¢)
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8.4.2 Accelerations in the Ship-Bound Axes System

In the ship-bound axes system, G(x, yp, 2), & component of the acceleration of gravity g
has to be added to the accelerations in the longitudinal and lateral direction in the earth-
bound axes system. The vertical acceleration does not change. These are the accelerations
that will be "felt” by for instance the cargo on the ship.

Thus:

e Longitudinal acceleration:

ip = & -yt +2-0 —g-0
= —w?-zp,  coS(Wet + €4p¢) — g 04 - cOS(wet + p¢)

= ZIp, - cos(wet + €5,¢)

e Lateral acceleration:

ip =tz —z-b +g-0
= —w? yp, - coS(Wel + Eypc) + - By - cOS(wet + £4¢)
— G, - cos(wet + £4,0)

e Vertical acceleration:

Ppo= i —m0 +yp
—wg - 2p, - coS(Wet + €5,¢)

= Zp, - cos(wet + €zp¢)

8.5 Vertical Relative Displacements

The harmonic vertical relative displacement with respect to the wave surface of a point
P(zxy, yp, 2p) connected to the ship can be obtained too:

sp = Cp—2 +mp-0 —yp- @
= 5p, - cos(wet + €5,¢)

with:
Cp = C,cos(wet — kxp cos p — kyp sin p)

It may be noted that the sign of the relative motion is chosen here in such a way that a
positive relative displacement implies a decrease of the freeboard.

An oscillating ship will produce waves and these phenomena will change the relative motion.
A dynamical swell up should be taken into account, which is not included in the previous
formulation.

Notify the different behavior of absolute and relative vertical motioins as given in figure
8.5.
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Figure 8.5: Absolute and Relative Vertical Motions at the Bow

8.6 Vertical Relative Velocities

The harmonic vertical relative velocity with respect to the wave surface of a certain point
P(zy, ys, 2), connected to the ship, can be obtained by:

D

sp = E{CP_Z +ap-0 —yp- @}

I T
in which for the vertical velocity of the water surface itself:

éP = —w - (,sin(wet — kxy cos pp — kyp sin p)
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Chapter 9

Anti-Rolling Devices

Since the disappearence of sails on oceangoing ships, with their stabilising wind effect on
the rolling motions, naval architects have been concerned in reducing the rolling of ships
among waves. With bilge keels they performed a first successful attack on the problem
of rolling, but in several cases these bilge keels did not prove to be sufficient. Since 1880,
numerous other more or less successful ideas have been tested and used.

e Four types of anti-rolling devices and its contribution to the equations of motion are
described here:

e bilge keels
e passive free-surface tanks
e active fin stabilisers

e active rudder stabilisers.

The active fin and rudder stabilisers are not build into the program SEAWAY yet.

9.1 Bilge Keels

Bilge keels can deliver an important contribution to an increase the damping of the
rolling motions of ships. A reliable method to determine this contribution is given by
[Ikeda et al., 1978], as described before.

Ikeda divides the two-dimensional quadratic bilge keel roll damping into a component due
to the normal force on the bilge keels and a component due to the pressure on the hull
surface, created by the bilge keels.

The normal force component of the bilge keel damping has been be deduced from experi-
mental results of oscillating flat plates. The drag coefficient C'p depends on the period para-
meter or the Keulegan-Carpenter number. Ikeda measured the quadratic two-dimensional
drag by carrying out free rolling experiments with an ellipsoid with and without bilge keels.
Assuming a pressure distribution on the hull caused by the bilge keels, a quadratic two-
dimensional roll damping can be defined. Ikeda carried out experiments to measure the

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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pressure on the hull surface created by bilge keels. He found that the coefficient C, of
the pressure on the front face of the bilge keel does not depend on the period parameter,
while the coefficient C of the pressure on the back face of the bilge keel and the length of
the negative pressure region depend on the period parameter. Tkeda defines an equivalent
length of a constant negative pressure region Sy over the height of the bilge keels and a
two-dimensional roll damping component can be found.

The total bilge keel damping has been obtained by integrating these two two-dimensional
roll damping components over the length of the bilge keels.

Experiments of Ikeda showed that the effect of forward speed on the roll damping due to
the bilge keels can be ignored.

The equivalent linear total bilge keel damping has been obtained by linearising the result,
as has been shown in a separate chapter.

9.2 Passive Free-Surface Tanks

The roll damping, caused by a passive free-surface tank, is essentially based on the existence
of a hydraulic jump or bore in the tank. [Verhagen and van Wijngaarden, 1965] give a
theoretical approach to determine the counteracting moments by free-surface anti-rolling
tanks.[Bosch and Vugts, 1966] give extended quantitative information on these moments.

9.2.1 Theoretical Approach

When a tank which contains a fluid with a free surface is forced to carry out roll oscillations,
resonance frequencies can be obtained with high wave amplitudes at lower water depths.
Under these circumstances a hydraulic jump or bore is formed, which travels periodically
back and forth between the walls of the tank. This hydraulic jump can be a strongly non-
linear phenomenon. A theory, based on gasdynamics for the shock wave in a gas flow under
similar resonance circumstances, as given by [Verhagen and van Wijngaarden, 1965|, has
been adapted and used to describe the motions of the fluid. For low and high frequencies
and the frequencies near to the natural frequency, different approaches have been used.
Observe a rectangular tank with a length [ and a breadth b, which has been filled until a
water level h with a fluid with a mass density p. The distance of the bottom of the tank
above the centre of gravity of the vessel is s. Figure 9.1 shows a 2-D sketch of this tank
with the axis system and notations.

> Yp

Figure 9.1: Axes System and Notations of an Oscillating Tank
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The natural frequency of the surface waves in a harmonic rolling tank appears as the wave
length A\ equals twice the breadth b, so: A\g = 2b.
With the wave number and the dispersion relation:

2w

k_T and w = y/kgtanh [kh]

it follows for the natural frequency of surface waves in the tank:

T mh
wo = \/79 tanh [T}

[Verhagen and van Wijngaarden, 1965] have investigated the shallow water wave loads in
a rolling rectangular container, with the centre of rotation at the bottom of the container.
Their expressions for the internal wave loads are rewritten and modified to be useful for
any arbitrary vertical position of the centre of rotation by [Journée, 1997]. For low and
high frequencies and the frequencies near to the natural frequency, different approaches
have been used. A calculation routine has been made to connect these regions.

Low and High Frequencies

The harmonic roll motion of the tank is defined by:

¢ = ¢, sin(wt)

In the axis-system of figure 9.1 and after linearisation, the vertical displacement of the
tankbottom is described by:
z2=5+yYop

and after linearisation, the surface elevation of the fluid is described by:
z2=5+h+(

Relative to the bottom of the tank, the linearised surface elevation of the fluid is described
by:

§=h+(—-yo
Using the shallow water theory, the continuity and momentum equations are:
0¢ o€ ov
] S —
ot oy oy
ov ov 0&

E—{— dy Jy

In these formulations, v denotes the velocity of the fluid in the y-direction and the vertical
pressure distribution is assumed to be hydrostatic. Therefore, the acceleration in the z-
direction, introduced by the excitation, must be small with respect to the acceleration of
gravity g, so:

pw’b < g

The boundary conditions for v are determined by the velocity produced in the horizontal
direction by the excitation. Between the surface of the fluid and the bottom of the tank,
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the velocity of the fluid v varies between v; and vs/ cosh kh with a mean velocity: v,/kh.
However, in very shallow water v does not vary between the bottom and the surface. When
taking the value at the surface, it is required that:

. b
v=—(s+h)o at:y:j:§
For small values of ¢,, the continuity equation and the momentum equation can be given

in a linearised form:

0 B
= ha—y — 0
811 8§ B

The solution of the surface elevation £ in these equations, satisfying the boundary values
for v, is:

bu)[) {1 + (sth)” }
§=h— d sin (M) 10)
W COS (;—“’) buwo
wo
Now, the roll moment follows from the quasi-static moment of the mass of the frozen liquid

plbh and an integration of & over the breadth of the tank:

+b/2

h
Mgy = pglbh (s+§> ¢ + pgl / Sy dy

—b/2

This delivers the roll moment amplitude for low and high frequencies at small water depths:
h
M,y = pglbh (s + §> ba

o {1 SRy (S0 (22 (2207,

For very low frequencies, so for the limit value w — 0, this will result into the static

moment:
M, — pgl don (s + 2 +E )
¢ = P9 5 12

The phase lags between the roll moments and the roll motions have not been obtained
here. However, they can be set to zero for low frequencies and to -7 for high frequencies:

emgp = 0 for: w <K wy

EMyp = —T for: w > wy

Natural Frequency Region

For frequencies near to the natural frequency wq, the expression for the surface elevation of
the fluid £ goes to infinity. Experiments showed the appearance of a hydraulic jump or a
bore at these frequencies. Obviously, then the linearised equations are not valid anymore.
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Verhagen and van Wijngaarden solved the problem by using the approach in gas dynamics
when a column of gas is oscillated at a small amplitude, e.g. by a piston. At frequencies
near to the natural frequency at small water depths, they found a roll moment amplitude,

defined by:
W (A" [2¢,h 72b (w — wp)?
Mao = P97 (E) V73 VT T 3240,

The phase lags between the roll moment and the roll motion at small water depths are
given by:

EMgp = —5 — O for: w > Wy
with:

72b (w — wp)”
2499,

, 72b (w — wy)”
— arcsin 5
96g9¢, — 3m2b (w — wy)

Because that the arguments of the square roots in the expression for ej7,4 have to be
positive, the limits for the frequency w are at least:

2490, 2490,
Wo — bif <w < wy+ bf:j

Comparison with Experimental Data

o = 2arcsin

An example of the results of this theory with experimental data of an oscillating free-surface
tank by [Verhagen and van Wijngaarden, 1965] is given in figure 9.2.

The roll moments have been calculated here for low and high frequencies and for frequencies
near to the natural frequency of the tank. A calculation routine connects these three
regions.

9.2.2 Experimental Approach

[Bosch and Vugts, 1966] have described the physical behaviour of passive free-surface tanks,
used as an anti-rolling device. Extended quantitative information on the counteracting mo-
ments, caused by the water transfer in the tank, has been provided.

With their symbols, the roll motions and the exciting moments of an oscillating rectangular
free-surface tank, are defined by:

v = p,cos(wt)
K, = K, cos(wt+ g;)

and the dimensions of the rectangular free-surface tank are given by:
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Figure 9.2: Comparison between Theoretical and Experimental Data

= length of the tank

= breadth of the tank

= distance of tank bottom above rotation point
= water depth in the tank at rest

= mass density of the fluid in the tank

A non-dimensional frequency range is defined by:

0.00 <w-\/g< 1.60
9

In this frequency range, [Bosch and Vugts, 1966] have presented extended experimental

data of:
K, d €
= an
Ha p*glbg i
for:
v, = 0.0333, 0.0667 and 0.1000 radians
s/b = -0.40, -0.20, 0.00 and +0.20
h/b = 0.02, 0.04, 0.06, 0.08 and 0.10
An example of a part of these experimental data has been shown for s/b = —0.40 and

¢, = 0.1000 radians in figure 9.3, taken from the report of [Bosch and Vugts, 1966].
When using these experimental data, the external roll moment due to an, with a frequency
w, oscillating free surface tank can be written as:

with:

Kt:a4<p'¢+b4<p'§b+c4<p'(p

Q4p = 0
K .
—la . gin g
b4 _ Pa
v w
— ta
Cap = - COS &
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Figure 9.3: Experimental Data on Anti-Rolling Free-Surface Tanks

It is obvious that for an anti-rolling free-surface tank, build into a ship, it holds:

So it can be written:

Gy = ¥q

and

We = W

¢ = ¢ cos(wet +e4c)
K, = K, cos(wet + ey + &)
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Then, an additional moment has to be added to the right hand side of the equations of

motion for roll:

with:

Xtank4 = Q4dynr ° Cb + b44tank: ' Qb + Cadonr Qb

a44tank

b44tank

C44tank

0
—la .gine
a ¢
We
t
—= . COS €&

Pa
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This holds that the anti-rolling coefficients a4a,,,, , bas,,,, and ca4,,,, have to be subtracted

from the coefficients ay4, by and cyy in the left hand side of the equations of motion for
roll.

9.2.3 Effect of Free-Surface Tanks

Figure 9.4 shows the significant reduction of the roll transfer functions and the significant
roll amplitude of a trawler, being obtained by a free-surface tank.

40 30
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‘ " | |without tank' 25} - - - - - - - - - - Withouttank - -
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Figure 9.4: Effect of Free-Surface Tanks on Roll

9.3 Active Fin Stabilisers

To determine the effect of active fin stabilisers on ship motions, use has been made here of
reports published by [Schmitke, 1978] and [Lloyd, 1989].
The ocillatory angle of the portside fin is given by:

B = B, cos(wet + €34)
The exciting forces and moments, caused by an oscillating fin pair are given by:
Xfing - a2g'B +b2ﬁ'ﬁ +625'ﬁ
Xfin4 = a4/g‘ﬁ +b4ﬁ'ﬂ +C45'ﬁ
Xfing = aﬁg'ﬁ +b6ﬁ'ﬂ +Cﬁg'ﬁ
with:

az, = —2sin7vy-ag

by, = —2sin7y-bg
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C24 —2sin7y - cg
as, = +2(Yb,, COSY + 23, 8IN7Y) - ag
bi, = +2(Ybg,, COSY + 2, 5I07) - b
cay = +2(Yb;,, COSY + 23, SINY) - 3
Ay = —2Tp,,, Siny-ag
bes = —2xp,,,sin7y-bg
Cog = —2Tp,,, SIN7Y-Cp
and:
1 Cfin
00 = 5o ()
1 Cfin 8CL
bg = —pVAp, — C(k
5 5PV Afin=5 ( < 9o ) (k)
1 oCy,
= —pV?Ap, - | = C(k
Cp 5PV Ay <aa )fm (k)
In here:

~v = angle of port fin
(%) = lift curve slope of fin
fin

Oa
C(k) = circulation delay function
k u;e‘ir = reduced frequency

Ayrin = projected fin area

Sfin = span of fin

crin = mean chord of fin

Ty, = Tp-coordinate of the centroid of fin forces
Yvsn = Yp-coordinate of the centroid of fin forces
2y, = #p-coordinate of the centroid of fin forces

The nominal lift curve slope of a fin profile in a uniform flow is approximated by:

8CL . 1.80 7 - (ARE)
da 1.80 + cos A - %4—4.0

with:

A = sweep angle of fin profile
(ARg) = effective aspect ratio of fin profile

Of normal fins, the sweep angle of the fin profile is zero, so A=0 or cos A=1.
The fin acts in the boundary layer of the ship, which will reduce the lift. This effect is
translated into a reduced lift curve slope of the fin.
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The velocity distribution in the hull boundary layer is estimated by the following two
equations:

V) = v with: 6 < 65,
dBL
6pr, = 0377 gy - R;%?  with: R, = VV' -
in which:
V(6) = flow velocity inside boundary layer
V= forward ship speed
6 = mnormal distance from hull
0pr, = thickness of boundary layer
Ty, = distance aft of forward perpendicular of fin

R, = local Reynolds number

v = kinematic density of fluid

The kinematic viscosity of seawater can be found from the water temperature 7" in degrees
centigrade by:
1.7
v-105 = 5 m? /s
1.0 4+ 0.0336 - T'+ 0.000221 - 7%
It is assumed here that the total lift of the fin can be found from:

Sfin

1 1
7PCL / V2(6) - c(é) - ds = 3PCLpn V2 Agin

0

where ¢(6) is the chord at spanwise-location é.
For rectangular fins, this is simply an assumption of a uniform loading.
Because: 5

Sfin

c(6) = Crim — (crfm — thm) .
in which:
Cryin = TOOb chord of fin
Ct;,, = tip chord of fin

Crfin + thzn

5 mean chord of fin

Cfin
the correction to the lift curve slope is:
2
By = am (1 20BLY  Crsn =t () OB
Cfin 9szn 2Cfm, 83fzn
Then the corrected lift curve slope of the fin is:

aCL 1.80 -7 - (ARE)fm
a ), =
fin 1.80 + \/ (ARg)2,, + 4.0

Generally a fin is mounted close to the hull, so the effective aspect ratio is about twice the
geometric aspect ratio:

(ARg)fin = 2 (AR) pin = 2 - ifm
fin
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9.4 Active Rudder Stabilizers

To determine the effect of rudder stabilizers on ship motions, use has been made of reports
published by [Lloyd, 1989] and [Schmitke, 1978].
The oscillatory rudder angle is given by:

6 = 04 cos(wet + €5¢)

with ¢ is positive in a counter-clockwise rotation of the rudder.

So, a positive § results in a positive side force, a positive roll moment and a negative yaw
moment.

The exciting forces and moments, caused by this oscillating rudder are given by:

)(7«2 = CL26'5—|—626'5+026'5
Xr4 = CL46'5 +b46'5 +C46'5
)(7«6 = a66'5—|—b(56'5+066'5

with:
ags, = *as
b2§ - +b§
Cos = TCs
a46 = _Zbrudder " as
b46 = _Zbrudder : b(S
046 = _Zbrudder ' C(S
a66 = +xbrudder " as
b66 = +mb7’udder ’ b(S
066 = +mbrudder ’ 66
and:
1 < Crudder ) 3
a = ZPSrudder *
) 2P dd 5
1 Crudder aCL
b - _‘/ru er'A'ru er \Tm+ | = -C(k
’ 2/) dd “ 2 < < 804 rudder ( )
1 oCy,
cs = —pV?2 - Arudder © | —— -C(k
6 2/) rudder dd < dav )TUdder ( )
In here:

Viwdder = 1.125 -V = equivalent flow velocity at rudder
<%> = lift curve slope of rudder
oo’ rudder

C(k) = circulation delay function
k= We * Crudder

2V
Ayudger = projected area of rudder

= reduced frequency
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Srudder = span of rudder

Crudder = mean chord of rudder

Ty = xp-coordinate of centroid of rudder forces
rudder

Zbruaser = 2b-coordinate of centroid of rudder forces

The lift curve slope of the rudder is approximated by:

<%> - 1.80 -7 - (ARE>rudder
Oax rudder 1.80 + \/(ARE)2 +4.0

rudder

Generally a rudder is not mounted close to the hull, so the effective aspect ratio is equal
to the geometric aspect ratio:

Srudder

(ARE)rudder = (AR)'rudde'r =

rudder



Chapter 10

External Linear Springs

Suppose a linear spring connected to point P on the ship.

Zb

Yb

Figure 10.1: Coordinate System of Springs

The harmonic longitudinal, lateral and vertical displacements of a certain point P on the
ship are given by:

t(P) = © —yp ¥ +2,-0

) +33p'7/] _Zp'¢
2(P) = 2z —xp-0 +yp-0

=
"U
I

The linear spring coefficients in the three directions in a certain point P are defined by
(Cpy» Cp,, Cp.). The units of these coefficients are N/m or kN/m.

YJ.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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10.1 External Loads

The external forces and moments, caused by these linear springs, acting on the ship are
given by:

Xy = —Cp-(x—yp-v+2,-0)
Xsy = —Cp-(Yt+zp-tv—2-9)
Xsy = —Cp - (z—xp- 04y, 0)
Xoy = —Xoy 2p + Xy Up
Xey = +Xg -2 — Xgy-1p
Xeg = —Xg -yp + X5, 1)

10.2 Additional Coefficients

After a change of sign, this results into the following coefficients Ac;;, which have to be
added to the restoring spring coefficients c;; of the hydromechanical loads in the left hand
side of the equations of motions.

e Surge:

ACH = +Cpm

A012 =0

AClg =

Aciy =

A015 = +sz * Zp

Acg = —Cp, -y
e Sway:

ACQl =0

ACQQ = +pr

Ang =0

ACQ4 = —pr * Zp

ACQ5 =0

ACQG = +pr *Tp
e Heave:

ACgl =0

ACgQ =0

Ang = —|—sz

A034 = +sz . yp

A035 = —sz *Tp

ACgG =0
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e Roll:
AC41 =0
AC42 = —pr * Zp
Aciz = +Cp, - yp
Acyy +pr : 212, +C, . yf,
Acys = —Cp -2y Yp
Acsg = —Cp, Tp 2p
e Pitch:
AC51 == +Cpm Zp
AC52 =0
AC53 = —sz *Tp
Acsy = Cp, " Tp - Yp
AC55 = +sz : 212, +C . .’1312)
Acse = —Cp, ~Yp- 2
o Yaw:
Ace1 = —Cp, - Yp
ACGQ = +pr *Tp
A063 =0
Acgs = —Cp, " Tp 2p
Acgs = —Cp, - Yp- 2

2

ACGG = +sz : yi + pr . IEP

In case of several springs, a linear superposition of the coefficients can be used.

When using linear springs, generally 12 sets of coupled equations with the in and out of
phase terms of the motions have to be solved. Because of these springs, the surge, heave
and pitch motions will be coupled then with the sway, roll and yaw motions.

10.3 Linearized Mooring Coefficients

Figure 10.2 shows an example of results of static catenary line calculations, see for instance
[Korkut and Hebert, 1970], for an anchored platform.

Figure 10.2-a shows the platform anchored by two anchor lines of chain at 100 m water
depth. Figure 10.2-b shows the horizontal forces at the suspension points of both anchor
lines as a function of the horizontal displacement of the platform. Finally, figure 10.2-c
shows the relation between the total horizontal force on the platform and its horizontal
displacement.

This figure shows clearly the non-linear relation between the horizontal force on the plat-
form and its horizontal displacement.
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Figure 10.2: Horizontal Forces on a Floating Structure as a Function of Surge Displace-
ments

A linear(ized) spring coefficient, to be used in frequency domain computations, can be
obtained from figure 10.2-c by determining an average restoring spring coefficient, C,,_, in
the surge displacement region:

c, — Mecm{ Total Force }

Displacement



Chapter 11

Added Resistances due to Waves

A ship moving forward in a wave field will generate ”two sets of waves”: waves associated
with forward speed through still water and waves associated with its vertical relative motion
response to waves. Since both wave patterns dissipate energy, it is logical to conclude that
a ship moving through still water will dissipate less energy than one moving through waves.
The extra wave-induced loss of energy can be treated as an added propulsion resistance.
Figure 11.1 shows the resistance in regular waves as a function of the time: a constant
part due the calm water resistance and an oscillating part due to the motions of the ship,
relative to the incoming regular waves. The time-averaged part of the increase of resistance
is called: the added resistance due to waves, R,,.

2500

7:Still water resistance RS‘W
i+ '

:Mean added remstance:RAW Resistancé

2000 - - - - - - - s s s s s s s e e -

w7 N N " %

z

=

3 st : I

% :Stl” water resistance st

® ; ; ;

@ 1000 - - - - s s s s R

o ! , .

500 - - - - - - - - st s s s s s s s s s s s s s s e

0
0 10 20 30

Time (s)

Figure 11.1: Increase of Resistance in Regular Waves

Two theoretical methods have been used for the estimation of the time-averaged added
resistance of a ship due to the waves and the resulting ship motions:

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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e a radiated wave energy method, as introduced by [Gerritsma and Beukelman, 1972],
suitable for head to beam waves.

e an integrated pressure method, as introduced by [Boese, 1970], suitable for all wave
directions.

Because of the added resistance of a ship due to the waves is proportional to the relative
motions squared, its inaccuracy will be gained strongly by inaccuracies in the predicted
motions.

The transfer function of the mean added resistance is presented as:

RG/LU
2
Ca
In a non-dimensional way the transfer function of the mean added resistance is presented
as:

/A
Raw -

/! — Raw
" pg(iB*/L
in which:
L = length between perpendiculars
B = maximum breadth of the waterline

Both methods will be described here.

11.1 Radiated Energy Method

The radiated wave energy during one period of oscillation of a ship in regular waves is
defined by [Gerritsma and Beukelman, 1972] as:

Te
P:// bs - V2 day - dt
0 L

in which:
53 = hydrodynamic damping coefficient of the vertical motion of the cross section
V) = vertical average velocity of the water particles, relative to the cross sections
T, = period of vertical oscillation of the cross section

The speed dependent hydrodynamic damping coefficient for the vertical motion of a cross
section is defined here as shown before:

dM,
d$b

b§3:N§3—V~

The harmonic vertical relative velocity of a point on the ship with respect to the water
particles is defined by:

</

D
Ve = Cuy, —E{Z —xp-0 +yp- O}

</

-, —(g 0 4V -0 +yb-<'b)
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For a cross section of the ship, an equivalent harmonic vertical relative velocity has to be
found.
This equivalent relative velocity is defined by:

< %

= VI - cos(wet + €ys¢)

z

With this the radiated energy during one period of oscillation is given by:

M/
P:i/<Ng3—v-d 33)~‘/';;2-dmb

We dxy,

To maintain a constant forward ship speed, this energy should be delivered by the ship’s
propulsion plant. A mean added resistance R,,, has to be gained.
The energy delivered to the surrounding water is given by:

P = Raw-<v— ¢ >~Te
COS [1

_ Ry, 2
—kcos

From this the transfer function of the mean added resistance according to Gerritsma and
Beukelman can be found:

R —k cos dM;} V2
e . Ny . 2283 ). 2 g
¢ 2we /< =V diﬂb) z

This method gives good results in head to beam waves. However, in following waves this
method fails.

When the wave speed in following waves approaches the ship speed the frequency of en-
counter in the denominator tends to zero. At these low frequencies, the potential sectional
mass is very high and the potential sectional damping is almost zero. The damping mul-
tiplied with the relative velocity squared in the nominator does not tend to zero, as fast
as the frequency of encounter. This is caused by the presence of a natural frequency for
heave and pitch at this low w,, so a high motion peak can be expected. This results into
extreme positive and negative added resistances.

11.2 Integrated Pressure Method

[Boese, 1970] calculates the added resistance by integrating the longitudinal components of
the oscillating pressures on the wetted surface of the hull. A second small contribution of
the longitudinal component of the vertical hydrodynamic and wave forces has been added.
The wave elevation is given by:

¢ = (, cos(wet — kxy cos p — kyysin p)
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The pressure in the undisturbed waves is given by:

coshk(h + z)
cosh(kh)
cosh k(h + z)
cosh(kh)

p = —pgz+pg- ¢

= —pgz+ pg- - (, cos(wet — kxp cos p — kyp sin )

The horizontal force on an oscillating cross section is given by:

¢

flzp, t) = / p-dz

—Ds+2zy

(_CQ + (=Ds + Z:r)2 C
= pg:

2 e O Z“">>

with: z, = 2 — x0.
As the mean added resistance during one period will be calculated, the constant term and
the first harmonic term can be ignored. So:

—C e c~(c—zm))
2 tanh [kh]

[ (@, t) = pg - (
The vertical relative motion is defined by s = ( — z,, so:

. B —¢% 4 22 ¢-s

The average horizontal force on a cross section follows from:

F(:Ez) = /f*(ibb, t) . dt

pgC2 N z%a N 254 - cos(—kxpcos pp — e4¢)
4 ¢ C, - tanh [kh]

The added resistance due to this force is:

Tx dyw
Raw1 = 2/f (l‘b) . (— dZEb) 'dl‘b
L

pgC2 / . 22 284 cos(—kxpcosp—ese)\  dyw p
— _ — — . - dx
2 2 ¢, - tanh [kh] do, "
L
For deep water, this part of the mean added resistance reduces to:
_ A ‘
Row, = % s2 - di - dxy (as given by Boese for deep water)
T

L

The integrated vertical hydromechanical and wave forces in the shipborne axis system
varies not only in time but also in direction with the pitch angle.



11.3. COMPARISON OF RESULTS 231

From this follows a second contribution to the mean added resistance:

Te

/(Zh(t) b Zu(1)) - O(t) - dt

0
T

-1

Rawz - Te

—1

_ Te/pv-é(t)-e(t)-dt

For this second contribution can be written:

1
Row, = §pV w225 0y - cos(.c — €pc)

So the transfer function of the total mean added resistance according to Boese is given by:

Rawg
<=2

1 9 Za
§pV W - T cos(ezc — €oc)

1 22 254 - cos(—kxzpcospt —e5¢)\ Ay

z 1 — S8 ) d
P9 / ( 2 ¢, - tanh [k7] doy T

11.3 Comparison of Results

Figure 11.2 shows an example of a comparison between computed and experimental data.
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Figure 11.2: Added Resistance of the S-175 Containership Design
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Chapter 12

Bending and Torsional Moments

The axes system (of which the hydrodynamic sign convention differs from that commonly
used in structural engineering) and the internal load definitions are given in figure 12.1.

%p

Yb
Xp

Q5 Q2

Qg4 @

Figure 12.1: Axis System and Internal Load Definitions

To obtain the vertical and lateral shear forces and bending moments and the torsional
moments the following information over a length L,, on the solid mass distribution of the
ship including its cargo is required:

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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m/(zp):  distribution over the ship length of the solid mass of the ship
per unit length

2! (xp):  distribution over the ship length of the vertical z, values of the centre of
gravity of the solid mass of the ship per unit length

K. .(xp): distribution over the ship length of the radius of inertia of the solid mass
of the ship per unit length, about a horizontal longitudinal axis
through the centre of gravity

21
—+1250

16 17
Ls‘w 1000

20
- 750

147 15

-+ 500

6.4 10 250

1t T T | T 17730
APP 50 100 150 200 250 300
(m) — & distribution along '
ship length

Figure 12.2: Distribution of Solid Mass

The input values for the calculation of shear forces and bending and torsional moments are
often more or less inaccurate. Mostly small adaptions are necessary, for instance to avoid
a remaining calculated bending moment at the forward end of the ship.

The total mass of the ship is found by an integration of the mass per unit length:

m= /m'(:vb) - dxy
Lm

It is obvious that this integrated mass should be equal to the mass of displacement, calcu-
lated from the underwater hull form:

m = pV

Both terms will be calculated from independently derived data, so small deviations are
possible. A proportional correction of the masses per unit length m’(x;) can be used.

Then m/(x;) will be replaced by:
pV

m'(2s) - g

The longitudinal position of the centre of gravity is found from the distribution of the mass
per unit length:

1
To = —/m'(a:b) - xp - day
m
L,
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Figure 12.3: Mass Correction for Buoyancy

An equal longitudinal position of the ship’s centre of buoyancy xp is required, so:
TG =TB

Again, because of independently derived data, a small deviation is possible.
Then, for instance, m’(x;) can be replaced by m/(xy) + ¢(xp), with:

L

c(zy) = —c1-(xp— 24 —0) for: 0<ap—1T4< Tm
() = + In) g Lm o < 3m
= . — XA — — or: — —
C\Tp C1 Ty T A 5 T 1 Tp T A 1
3L,
c(xzy) = —c1-(xp — T4 — L) for: e <xp—Ta < Ly,
with:
_32-pV - (a5 — 2g)
CcCl = 3
In here:
xa = xp-coordinate of aftmost part of mass distribution
L,, = total length of mass distribution

For relatively slender bodies, the longitudinal gyradius of the mass can be found from the
distribution of the mass per unit length:

1
kr, = — /m/(:vb) - x} - dwy,
Ly,

It can be desirable to change the mass distribution in such a way that a certain required
longitudinal gyradius k,,(new) or k,.(new) will be achieved, without changing the total
mass or the position of its centre of gravity.
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Figure 12.4: Mass Correction for Center of Buoyancy

Then, for instance, m’(x;) can be replaced by m/(xy) + ¢(xp), with:

c(ry) = +cg-(mp— 24 —0) for: 0<a:b—a:14<%n
2Ly, Ly, 3L,
c(ry) = —co- (mb_xA—T) for: ?<xb_mA<T
c(ry) = +C2'<$b—$A—4L—m> for: 3L—m<mb_a;A<4L_m
8 8 8
c(zy) = —co- ($b—$A—M—m) for: 4L—m<xb—:pA<5L—m
8 8 8
6L, 5L, 7L,
c(zy) = +02-<xb—mA—T> for: = ST oA <=
7L,
c(xy)) = —co-(wp— a4 — L) for: 3 <xp—xa < Ly,
with:
3204 - pV - (K2, (new) — k2, (old))
2= 9L
In here:
xa = xp-coordinate of aftmost part of mass distribution

L,, = total length of mass distribution

The position in height of the centre of gravity is found from the distribution of the heights
of the centre of gravity of the masses per unit length:

]' !/ /
6= /m (xp) - 2y, (Tp) - dxp
L,

It is obvious that this value should be zero. If not so, this value has to be subtracted from
So, z! (xp) will be replaced by z!, (zp) — zg.
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Figure 12.5: Mass Correction for Radius of Inertia

The transverse radius of inertia k., is found from the distribution of the radii of inertia of
the masses per unit length:

1
=2 / () - K2 () - day
Lm

If this value of k,, differs from a required value k,,(new) of the gyradius, a proportional
correction of the longitudinal distribution of the radii of inertia can be used:

ko (new)

K (xp, new) = k. _(xy, old) - oo (0ld)

Consider a section of the ship with a length dz; to calculate the shear forces and the
bending and the torsional moments.

TENIE

M Q Q+dQ M-+dM

dxp,

Figure 12.6: Loads on a Cross Section
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When the disk is loaded by a load ¢(x}), this implies for the disk:

q(xp) - dry, = —dQ(xp) so: d%i::b) = —q(x)
Ow)-dzy = +dM(z) o d]‘gif”) — Q)

in which:

Q(zp) = shear force
M (z,) = bending moment

The shear force and the bending moment in a cross section z; follows from an integration
of the loads from the aftmost part of the ship xy to this cross section xi:

Qz1) = —/dQ<$b) - dwy

d.’l?b

M(zy) = —/Q(mb)-da:b

Tp

= _|_/ /%-dmb - dxp

o o
So, the shear force Q(z;) and the bending moment M (x;) in a cross section can be expressed

in the load ¢(z3) by the following integrals:

z1

Q) = — / o(zy) - day

zo
1

M(xy) = —|—/q(a:b) (x1 — xp) - dp

o

1 1
= —l—/q(a:b) cxp - dTy — T - /q(mb) - dxy,
X0 o

For the torsional moment an approach similar to the approach for the shear force can be
used.

The load ¢(z3) consists of solid mass and hydromechanical terms. The ordinates of these
terms will differ generally, so the numerical integrations of these two terms have to be
carried out separately.

12.1 Still Water Loads

Consider the forces acting on a section of the ship with a length dzb.
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Figure 12.7: Still Water Loads on a Cross Section

According to Newton’s second law of dynamics, the vertical forces on the unfastened disk
of a ship in still water are given by:

(m - dxy) - (—g) = g3, (zp) - dzy
with:
43, (1) = pAsg —m'g

So, the vertical shear force @3, (1) and the bending moment @5, (1) in still water in a
cross section can be obtained from the vertical load gs,, (25) by the following integrals:

z1

Qs,, (1) = —/93sw($b)'d$b

Zo

1 1
Qs,,(11) = +/Q3sw($b)'ffb'dwb—fl/q?)sw(ﬂ?b)'dwb
X0 o

For obtaining the dynamic parts of the vertical shear forces and the vertical bending
moments in regular waves, reference is given to [Fukuda, 1962]. For the lateral mode and
the roll mode a similar procedure can be followed. This will be shown at the following

pages.

12.2 Lateral Dynamic Loads

Consider the forces acting on a section of the ship with a length dxzb.
According to Newton’s second law of dynamics, the harmonic lateral dynamic load per
unit length on the unfastened disk is given by:

@) =  +X5,(x) + X, (7p)
+pgAs¢
(@) (5 4wy =2 b+ g0 0)
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Figure 12.8: Lateral Loads on a Cross Section in Waves

The sectional hydromechanical load for sway is given by:

with:

Q99

/
b22

Coo

Aoy

/
by
Coy

Qog

/
b26

Cog

Xi/m: —ahyJ — by Y —Chyy
—a/24'? —b/24‘€? —Cy @
—ahg Y — b h — Cog - Y
+ M,
V. dN,
+ — 2722
w?  dxy
dM,
N/ _V 22
+ 22 dl‘b
0
V. dN;,, V. — dNJ
_ . —.0G =22
* w?  dxmy +w2 dxy,
dM; S dM,
Ny, -V -=—2410G (N}, -V . —2
+ 24 dZCb + 22 dl’b
0
\% dMi,
+Mé2'$b+w—z'(Né2—V' d.’l?b
\% V' dNj
s N/ - 22
+w§ 22+w§ doy, "
dM.
+(N§2—V dm?) — 2V - M},
n V_22 dN5,
w2 dzp
0
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The sectional wave load for sway is given by:
X’L,UQ = +M52 : sz

VNG
wo

*

+

w-we dxp

w dM/ . %
+<_N£2_V 22>'Cw2

We dxy,

+ X7k,

+My, - CZM

Vv dN}, .«
. 24 €w4

w-we dxp
w dM/ .k
+<W_N£4_V 24>'Cw4

e dl‘b
The ”Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.
Then the harmonic lateral shear forces Q2(x1) and the bending moments Qg(x;) in waves in
cross section x; can be obtained from the horizontal load ¢2(z) by the following integrals:

Q2(z1) = @2, cos(wet +€gy¢)
= —/Q2(il?b)'dffb
Qs(x1) = Q:jcos(wet—l—éQﬁC)
— +/q2(mb)-xb-d:nb —a:lfqg(a:b)-dmb

12.3 Vertical Dynamic Loads

Consider the forces acting on a section of the ship with a length dzb.
According to Newton’s second law of dynamics, the harmonic longitudinal and vertical
dynamic loads per unit length on the unfastened disk are given by:

() = +X5, (1) + X, ()
—m/(xy) - (:17 —bG - 9)
@(m) = +Xp, (1) + X, (7)

—m/(xp) - <z — X - 9)
The sectional hydromechanical load for surge is given by:

/ o / . / . /
Xh1($b> = —ap T —by T —cy
/ o / 3 /
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L
Qs Q3. — 9, Q3 +dQ3 |qs5 + dQs : B X

Figure 12.9: Vertical Loads on a Cross Section in Waves

with:

a/n = +M{1

V  dN]

+ — - el 03
w2 dxy
dM!
dy = 0
big = 0
s = 0 o
dyy = —Mj - bG
- — . bG
w?  dxy
dM! — —

The sectional hydromechanical load for heave is given by:

!/ _ / . / . /
Xpy(we) = —ag & —by & —cy-w
/ I / ° /

—ay; -0 _b§5'9 — g5 0

with:
ag, = 0
dy = 0
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VN
w?  dmy |
dM;
byy = +Nzp—V- da:ig
Cé3 = +2pgyw
Vv d M}
ags = —Mzz-xp E'(Nés_v' d:l:Z)S)
-V V' dNi,
+‘W—N—w—d—
!/
by = —<N§3 |4 33)-:Eb+2V-M§3
dl‘b
N G
w?  dxy
Cg5 - _2pg'yw'$b

The sectional wave loads for surge and heave are given by:

s

1% dN7, C*
w-we dxp
+<_€N{1_V dl_b>'€w1
+X1/wK1
X, (z) = +Mis-C,,
Vv dNi, C*
w-we dxy
i / dM?,B ¥
+ (‘we N33 =V 2, Cuvs
—l—X};K3

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined

terms the ”Ordinary Strip Theory” is presented.

Then the harmonic vertical shear forces Q3(z1) and the bending moments Qs(x;) in waves
in cross section x; can be obtained from the longitudinal and vertical load ¢ (x;) and g3(xy)

by the following integrals:

Q3(71) = Qs, cos(wet +€qqc)
= —/Q3(:Bb)-d:vb
Qs(71) = Qs, cos(wet +€qsc)
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x1 T 1

— +/q1(xb) -bG (zp) - day, + /qg(a:b) cxy - dxy — T4 /Q:a(&?b) - dzxy

Zo o o

Figure 12.10 shows a comparison between measured and calculated distributions of the
vertical wave bending moment amplitudes over the length of the ship.
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Figure 12.10: Distribution of Vertical Bending Moment Amplitudes

12.4 Torsional Dynamic Loads

Consider the forces acting on a section of the ship with a length dzb.

Figure 12.11: Torsional Loads on a Cross Section in Waves

According to Newton’s second law of dynamics, the harmonic torsional dynamic load per
unit length on the unfastened disk about an longitudinal axis at a distance z; above the
ship’s center of gravity is given by:
@@y, 21) = +X,(28) + X, ()
s - ) .
() - (K& = 2§+ D+ g-9))
+21 - ga(Ts)



12.4. TORSIONAL DYNAMIC LOADS 245

The sectional hydromechanical load for roll is given by:

X,’M(mb) = _aﬁxz '37_5212'9_0212@
_aim'??_bim'ﬁ?_dm'ﬁs
—ai;e'w—biw'w—dw'w

with:

V. dNj,

w?  dxy,

dMj, ——
diEb

ay, = +My+ OG- M, + OG- d,

V. dNy, V — dNj,
* w?  dxy, +w2.OG. dxy,
dMy, — dM! —
= +Nyu -V dm:4+OG-<N42—V-ﬁ)+bg4v+oa-bg4
3 A, —
Chy = +2pg-<y?w—7s-bG>
Vv dM; —
Ay = +M42-:Eb+w—z<me—V- dm:2>+OG-a'26
Vv V. dNj,
‘i‘w_z'Nb—i‘w—g- a0
dM; S
V2 dNj
+= - 42
w2  dzp

In here, bG is the vertical distance of the centre of gravity of the ship G' above the centroid
b of the local submerged sectional area.
The sectional wave load for roll is given by:

X{U4<$b) = +M414'€Z)4

V_ ANy g
wy

Ww-we dxp

w dM, .k
ZIN' V. 44 .
+ ( oo |V Vv iz, > Cuvg
+ X7k,
+ My, CZ}Q
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VvV dNj, C*
W we dzy ™
w dM, ok
ZIN. V. 421 .
+(we =V da:b> Cuvs
+0G - X,

The ”"Modified Strip Theory” includes the outlined terms. When ignoring the outlined
terms the ”Ordinary Strip Theory” is presented.

Then the harmonic torsional moments Q4(x1, z1) in waves in cross section z; at a distance
z1 above the ship’s centre of gravity can be obtained from the torsional load q4(x, 21) by
the following integral:

Qi(x1,21) = Qu, cos(wet +€0,¢)

z1

= —/Q4(:vb,zl)-d:cb

Zo



Chapter 13

Statistics in Irregular Waves

To compare the calculated behaviour of different ship designs or to get an impression of
the behaviour of a specific ship design in a seaway, standard representations of the wave
energy distributions are necessary.

Three well known types of normalised wave energy spectra are described here:

e the Neumann wave spectrum, a somewhat wide wave spectrum, which is sometimes
used for open sea areas

e the Bretschneider wave spectrum, an average wave spectrum, frequently used in open
sea areas

e the Mean JONSWAP wave spectrum, a narrow wave spectrum, frequently used in
North Sea areas.

The mathematical formulations of these normalised uni-directional wave energy spectra
are based on two parameters:

e the significant wave height H, /3

e the average wave period 77, based on the centroid of the spectral area curve.

To obtain the average zero-crossing period T or the spectral peak period T}, a fixed relation
with 77 can be used not-truncated spectra.

From these wave energy spectra and the transfer functions of the responses, the response
energy spectra can be obtained.

Generally the frequency ranges of the energy spectra of the waves and the responses of
the ship on these waves are not very wide. Then the Rayleigh distribution can be used to
obtain a probability density function of the maximum and minimum values of the waves
and the responses. With this function, the probabilities on exceeding threshold values by
the ship motions can be calculated.

Bow slamming phenomena are defined by a relative bow velocity criterium and a peak
bottom impact pressure criterium.

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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13.1 Normalized Wave Energy Spectra

Three mathematical definitions with two parameters of normalized spectra of irregular
uni-directional waves have been described:

e the Neumann wave spectrum, a somewhat wide spectrum
e the Bretschneider wave spectrum, an average spectrum

e the mean JONSWAP wave spectrum, a narrow spectrum

A comparison of the Neumann, the Bretschneider and the mean JONSWAP wave spectra
is given here for a sea state with a significant wave height of 4 meters and an average wave
period of 8 seconds.

JONSWAP
Hy, = 4 m

T), = 8 sec
sgw)

BRETSCHNEIDER

NEUMANN

(m2s)

Figure 13.1: Comparison of Three Spectral Formulations

13.1.1 Neumann Wave Spectrum

In some cases in literature the Neumann definition of a wave spectrum for open sea areas

is used: )
B 3832 - H1/3 o - ox —69.8 w2
R Pl

SC (w

13.1.2 Bretschneider Wave Spectrum
A very well known two-parameter wave spectrum of open seas is defined by Bretschneider
as:
172.8 - Hf/g . —691.2
= T—14 W . exp T14 cWw

Another name of this wave spectrum is the Modified Two-Parameter Pierson-Moskowitz
Wave Spectrum.

SC (w
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This formulation is accepted by the 2nd International Ship Structures Congress in 1967
and the 12th International Towing Tank Conference in 1969 as a standard for seakeeping
calculations and model experiments. This is reason why this spectrum is also called 1.S.S.C.
or I.T.T.C. Wave Spectrum.

The original One-Parameter Pierson-Moskowitz Wave Spectrum for fully developed seas
can be obtained from this definition by using a fixed relation between the significant wave
height and the average wave period in this Bretschneider definition: 77 = 3.861 - | /H, 3.

13.1.3 Mean JONSWAP Wave Spectrum

In 1968 and 1969 an extensive wave measurement program, known as the Joint North Sea
Wave Project (JONSWAP) was carried out along a line extending over 100 miles into the
North Sea from Sylt Island. From analysis of the measured spectra, a spectral formulation
of wind generated seas with a fetch limitation was found.

The following definition of a Mean JONSWAP wave spectrum is advised by the 15th ITTC
in 1978 for fetch limited situations:

Selw) = 172.8T-14Hf/3 5 exp { —f;)lj.z _w4} AP
with:
A = 0.658
2 10\’

B = expq— (0—\/5>

v = 3.3 (peakedness factor)
wp = % (circular frequency at spectral peak)

o = astep function of w: if w < w, then o = 0.07

if w > w, then o = 0.09

The JONSWAP expression is equal to the Bretschneider definition multiplied by the fre-
quency function A - ~P.

Sometimes, a third free parameter is introduced in the JONSWAP wave spectrum by
varying the peakedness factor ~.

13.1.4 Definition of Parameters

The n-th order spectral moments of the wave spectrum, defined as a function of the circular

wave frequency w, are:
o

Mpe = /Sc(LU) cw" - dw
0
The breadth of a wave spectrum is defined by:
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The significant wave height is defined by:

H1/3 =4.0- v o¢

The several definitions of the average wave period are:

T, =  peak or modal wave period,

corresponding to peak of spectral curve

m .

Ty = 2m- Akt average wave period,

mi¢
corresponding to centroid of spectral curve

m . .

T, = 27 AL average zero-crossing wave period,
ma¢

corresponding to radius of inertia of spectral curve

For not-truncated mathematically defined spectra, the theoretical relations between the
periods are tabled below:

T, = 1.086-T, = 0.772-T,

0921-T, = T, = 0.711-T, for Bretschneider Wave Spectra
1.296-77 = 1.407-1, = T,

Ty = 1.073-Ty, = 0.834-T,
0932-T, = T, = 0.777 -1, for JONSWAP Wave Spectra
1.199-77 = 1.287-15 = T,

Truncation of wave spectra during numerical calculations, can cause differences between
input and calculated wave periods. Generally, the wave heights will not differ much.

12 3 12
Open Ocean Areas North Sea Areas
1 I(Brétschrisider 11 | (JONSWAP)
10 10 -]
d
— 9 //" —_ 9
E //! > E
z2 8 T /// / £Z 8
=) 1 /' S
°og 7 // 28 7 T,
s Wave Period T Lo T
2% 4 E’_“__E,,,a/ 2 25 & |
g P " His g e Wave Pericyy
2% 5 ! =5 5 g 13
&5 %5 /
2> L3> — = S ]
£z 4 £g 4 W/
o i)
%] 3 %] 3 /
Wave Heigh /! Wave Height
2 A 2
—
11 oo 1 /
ot
0 0
0123 456 7 8 9101112 012345678 9101112
Beaufort Beaufort

Figure 13.2: Wave Spectra Parameter Estimates

In figure 13.2 and the table below, for ”Open Ocean Areas” and ”North Sea Areas” an
indication is given of a possible average relation between the scale of Beaufort or the wind
velocity at 19.5 meters above the sea level and the significant wave height H /3 and the
average wave periods 77 or T5.
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Indication of Wave Spectra Parameters
Scale of | Wind Speed || Open Ocean Areas North Sea Areas
Beaufort | at 19.5 m (Bretschneider) (JONSWAP)
above sea
Hys | Th Ty | Hys| Th| Ta| v
(kn) m) | ()| ()| ]| ()] )] ()
1 2.0 1.10 | 5.8 535 050 3.5(3.25](3.3
2 5.0 1.20| 59| 545 | 0.65| 3.8|3.55(3.3
3 8.5 1.40 | 6.0 555 0.80| 4.23.90 3.3
4 13.5 1.70 | 6.1 560 | 1.10| 4.6 |4.30| 3.3
5 19.0 215| 6.5 6.00| 1.65| 5.1|4.75|3.3
6 24.5 290 | 72| 6.65| 250| 5.75.30]3.3
7 30.5 3.75| 78| 7.20| 3.60| 6.7]6.25| 3.3
8 37.0 490 | 84| 7.75| 4.85| 79| 735 3.3
9 44.0 6.10| 9.0| 830 | 6.10| 8.8|8.20| 3.3
10 51.5 745 96| 885 | 745| 9.5|8.85|3.3
11 59.5 8701 10.1| 9.30 | 8.70 ] 10.0{9.30 | 3.3
12 >64.0 10.25 | 10.5 | 9.65 || 10.25 | 10.5 | 9.80 | 3.3

251

These data are an indication only, a generally applicable fixed relation between wave heights
and wave periods does not exist.

Other open ocean definitions for the North Atlantic and the North Pacific, obtained from

[Bales, 1983] and adopted by the 17th ITTC (1984), are given in the tables below.

The modal or central periods in these tables correspond with the peak period Tj,.

For not-truncated spectra, the relations with 77 and 75 are defined before.
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Open Ocean Annual Sea State Occurrences of Bales (1983)
of the North Atlantic and the North Pacific

Sea Significant Sustained Probability Modal
State | Wave Height Hy/3 | Wind Speed 1) | of Sea State Wave Period T),
Number (m) (kn) (%) (s)
(=)
Range Mean | Range | Mean Range 2) | Most 3)
Probable
North Atlantic

0-1 0.0-0.1 0.05 | 0-6 3 0 - -
2 0.1-0.5 03 | 7-10 8.5 7.2 3.3-128 7.5
3 0.50-1.25| 0.88 [11-16| 13.5 224 5.0-14.8 7.5
4 1.25-250| 1.88 | 17-21 19 28.7 6.1-15.2 8.8
5 25-4.0 | 325 |22-27| 245 15.5 83-155 9.7
6 4-6 50 | 28-47| 375 18.7 9.8 -16.2 124
7 6-9 7.5 [48-55| 51.5 6.1 11.8 - 18.5 15.0
8 9-14 11.5 | 56 - 63 | 59.5 1.2 14.2 - 18.6 16.4
>8 >14 >14 >63 >63 <0.05 18.0 - 23.7 20.0

North Pacific

0-1 0.0-0.1 005 | 0-6 3 0 - -
2 0.1-0.5 03 | 7-10 8.5 4.1 3.0-15.0 7.5
3 0.50-1.25| 0.88 [11-16| 13,5 16.9 52-15.5 7.5
4 1.25-250| 1.88 | 17-21 19 27.8 59-15.5 8.8
5 25-4.0 | 325 |22-27| 245 23.5 7.2-16.5 9.7
6 4-6 5.0 | 28-47| 375 16.3 9.3-16.5 13.8
7 6-9 7.5 [48-55| 51.5 9.1 10.0 - 17.2 15.8
8 9-14 11.5 | 56-63 | 59.5 2.2 13.0- 184 18.0
>8 >14 >14 >63 >63 0.1 20.0 20.0

Note:

1) Ambient wind sustained at 19.5 m above surface to generate fully-developed seas.
To convert to another altitude ho, apply Vo = V; - (hy/19.5)Y/7.

2) Minimum is 5 percentile and maximum is 95 percentile for periods given wave
height range.

3) Based on periods associated with central frequencies included in Hindcast Clima-
tology.
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13.2 Response Spectra and Statistics

The energy spectrum of the responses r(t) of a sailing ship on the irregular waves follows
from the transfer function of the response and the wave energy spectrum by:

Sy(w) = (g—) Se(w)
5,(we) = (g—) S (we)

This has been visualized for a heave motion in figures 13.3 and 13.4.

SC (@) S, (®)
A

regular
wave

regular
response

| components

irregular waves irregular responses

time domain

Figure 13.3: Principle of Transfer of Waves into Responses

The moments of the response spectrum are given by:
Moy :/S,,(we) cwl - dwe with: n =10,1,2, ...
0

From the spectral density function of a response the significant amplitude can be calculated.
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Figure 13.4: Heave Spectra in the Wave and Encounter Frequency Domain

The significant amplitude is defined to be the mean value of the highest one-third part of
the highest wave heights, so:
Ta1/3 = 2\/ Moy

A mean period can be found from the centroid of the spectrum by:

Moy
Tlr =27 -

myy

An other definition, which is equivalent to the average zero-crossing period, is found from
the spectral radius of inertia by:

mor

TQT =27
may

The probability density function of the maximum and minimum values, in case of a spec-
trum with a frequency range which is not too wide, is given by the Rayleigh distribution:

o) = e { ‘7”3}

moy 2m0r

This implies that the probability of exceeding a threshold value a by the response amplitude
r, becomes:
P{r,>a} 70 fa i
r, > al = - ex -dr,
moy P 2 Or

—q?
= exp S
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The number of times per hour that this happens follows from:

3600
Nyowr = —— - P{r, > a}
T27"

The spectral value of the waves S¢(w.), based on w,, is not equal to the spectral value
S¢(w), based on w.
Because of the requirement of an equal amount of energy in the frequency bands Aw and
Aw,, it follows:

Se(we) - dwe = S¢(w) - dw

From this the following relation is found:

Se(w
SC(we): i)
dw

The relation between the frequency of encounter and the wave frequency, of which an
example is illustrated in figure 13.5, is given by:

we =w —kV - cos i

(s7Dh)

(s7!) ——— o \

Figure 13.5: Example of Relation Between w, and w

From the relation between w, and w follows:

The derivative dw/dk follows from the relation between w and k:

w = /kg - tanh(kh)
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So:
dw - tanh(kh) + —24—

h-cosh? (kh)

dk ~ 2/kg - tanh(kh)

As can be seen in figure 13.5, in following waves the derivative dw./dw can approach from
both sides, a positive or a negative side, to zero. As a result of this, around a wave speed
equal to twice the forward ship speed component in the direction of the wave propagation,
the transformed spectral values will range from plus infinite to minus infinite. This implies
that numerical problems will arise in the numerical integration routine.

This is the reason why the spectral moments have to be written in the following format:

mo, = /S( - dw, /ST
0 0

miy, = /Sr(we CWe - dwe = /ST We - dw
0 0

Moy = /Sr(we) W dw, = /Sr(w) w? - dw
0 0

with:

Ca

If S, (we) has to be known, for instance for a comparison of the calculated response spectra
with measured response spectra, these values can be obtained from this S,(w) and the
derivative dw,/dw. So an integration of S, (w.) over w, has to be avoided.

Because of the linearities, the calculated significant values can be presented by:

5= (2) i)

r
Y5 versus T, or T
Hys
H,;3 = significant wave height
Ty, T, = average wave periods

The mean added resistance in a seaway follows from:

TR
RAWZQ/ AW
0

Because of the linearities in the motions, the calculated mean added resistance values can
be presented by:

(W) - dw

Raw

Hyjg

versus 17 or T5
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13.3 Shipping Green Water

The effective dynamic freeboard will differ from the results obtained from the geometric
freeboard at zero forward speed in still water and the calculated vertical relative motions
of a sailing ship in waves.

When sailing in still water, sinkage, trim and the ship’s wave system will effect the local
geometric freeboard. A static swell up should be taken into account.

An empirical formula, based on model experiments, for the static swell up at the forward
perpendicular is given by [Tasaki, 1963]:

L
fe:f—0.75~B-L—-F2

n

E
with:

fe = effective freeboard at the forward perpendicular
f = geometric freeboard at the forward perpendicular
L = length of the ship
B = breadth of the ship
Lr = length of entrance of the waterline
F,, = Froude number

An oscillating ship will produce waves and these dynamic phenomena will influence the
amplitude of the relative motion. A dynamic swell up should be taken into account.

[Tasaki, 1963] carried out forced oscillation tests with ship models in still water and ob-
tained an empirical formula for the dynamic swell-up at the forward perpendicular in head

waves:
As, Cp—0.45 w2l
S, 3 g

block coefficient: 0.60 < Cg < 0.80
Froude number: 0.16 < F,, < 0.29

with the restrictions:

In this formula s, is the amplitude of the relative motion at the forward perpendicular as
obtained in head waves, calculated from the heave, the pitch and the wave motions.
Then the actual amplitude of the relative motions becomes:

Sy = Sq + As,
Then, shipping green water is defined by:
se > fe at the forwarde perpendicular
The spectral density of the vertical relative motion at the forward perpendicular is given

by:

*

Sur () = <<‘) 5e(w)
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The spectral moments are given by:
Mipse = /SS*(w) cwl - dw with: n=0,1,2,...
0

When using the Rayleigh distribution the probability of shipping green water is given by:

2m03*

P{s:>fe}:exp{ —Je }

The average zero-crossing period of the relative motion is found from the spectral radius
of inertia by:
mos+

T25* =27
Magx

The number of times per hour that green water will be shipped follows from:

3600
Nhour: 'P{52>fe}
T2s*

13.4 Bow Slamming

Slamming is a two-node vibration of the ship caused by suddenly pushing the ship by the
waves. A complete prediction of slamming phenomena is a complex task, which is beyond
the scope of any existing theory.

Slamming impact pressures are affected by the local hull section shape, the relative velocity
between ship and waves at impact, the relative angle between the keel and the water
surface, the local flexibility of the ship’s bottom plating and the overall flexibility of the
ship’s structure.

13.4.1 Criterium of Ochi

[Ochi, 1964] translated slamming phenomena into requirements for the vertical relative
motions of the ship.
He defined slamming by:

e an emergence of the bow of the ship at 10 percentile of the length aft of the forward
perpendiculars

e an exceeding of a certain critical value at the instance of impact by the vertical
relative velocity, without forward speed effect, between the wave surface and the bow
of the ship

Ochi defines the vertical relative displacement and velocity of the water particles with
respect to the keel point of the ship by:

§ = (g —2+Ty-0

§ = Cp—F+mp-0
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with:

Cpy = CqCOS(wet — kap cOS 1)

<.uﬂﬂb = —welq Sin(wet — kxy cos ,u)

So a forward speed effect is not included in the vertical relative velocity.

The spectral moments of the vertical relative displacements and velocities are defined by
mos and mog.

Emergence of the bow of the ship happens when the vertical relative displacement ampli-
tude s, at 0.90 - L is larger than the ship’s draft D, at this location.

The probability of emergence of the bow follows from:

—D?
P{sa>DS}:eXp{ S}

2m03

The second requirement states that the vertical relative velocity exceeds a threshold value.
According to Ochi, 12 feet per second can be taken as a threshold value for a ship with a
length of 520 feet.

Scaling results into:

Ser = 0.0928 - \/gL
The probability of exceeding this threshold value is:
) i —32
P{$, > $or} = exp {Wf):}

Both occurrences, emergence of the bow and exceeding the threshold velocity, are statis-
tically independent. In case of slamming both occurrences have to appear at the same
time.

So the probability on a slam is the product of the both independent probabilities:

P{slam} = P{sqy > Ds} - P{5, > $or}
_D2 _$2
- o { 21ms * 2mop; }

13.4.2 Criterium of Conolly

[Conolly, 1974] translated slamming phenomena into requirements for the peak impact
pressure of the ship.
He defined slamming by:

e an emergence of the bow of the ship

e an exceeding of a certain critical value by the peak impact pressure at this location.

The peak impact pressure is defined by:

1 .
p= CP' §pszr

The coefficient C), has been taken from experimental data of slamming drop tests with
wedges and cones, as given in literature.
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Figure 13.6: Peak Impact Pressure Coefficients

as for instance presented by [Lloyd, 1989] as a function of the deadrise

angle 3, are illustrated in figure 13.6.

An equivalent deadrise angle 3 is defined here by the determination of an equivalent wedge.
The contour of the cross section inside 10 percentile of the half breadth B/2 of the ship
has been used to define an equivalent wedge with a half breadth: b = 0.10 - B/2.

The accessory draught ¢ of the wedge follows from the section contour.

In the forebody of the ship, this draught can be larger than 10 percentile of the amidships
draught T'. If so, the section contour below 0.10 - T" has been used to define an equivalent
wedge: t =0.10-T.

If this draught is larger than the local draught, the local draught has been used.

The accessory half

breadth b of the wedge follows from the section contour.

] . | -

\\ equivalent wedge

Figure 13.7: Definition of an Equivalent Wedge
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Figure 13.8: Measured Impact Pressures of a 112 Meter Ship

Then the sectional area Ay below local draught ¢ has to be calculated.
Now the equivalent deadrise angle (3 follows from:

B = arctan <%> 0<p<m/2
2(b-t— A,)
b

Critical peak impact pressures p.. have been taken from [Conolly, 1974]. He gives measured
impact pressures at a ship with a length of 112 meter over 30 per cent of the ship length
from forward. From this, a lower limit of p. has been assumed. This lower limit is
presented in figure 13.8.

These values have to be scaled to the actual ship size. Bow emergence and exceeding of
this limit is supposed to cause slamming.

This approach can be translated into local hull shape-depending threshold values of the

vertical relative velocity too:
: 2Per
Ser =
pCyp

The vertical relative velocity, including a forward speed effect, of the water particles with
respect to the keel point of the ship is defined by:

: D :
§ = E{Cmb_z+$b'9}
S Y

with:

Cop = CocOs(wet — Ky cos pu)

émb = —w(,sin(wet — kxp cos )
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Then:

_D2 a2
P {slam} = eXp{ 2+ ﬂ}

2m03 2m03

Note that, because of including the forward speed effect, the spectral moment of the ve-
locities does not follow from the spectral density of the relative displacement as showed in
the definition of Ochi.

The average period of the relative displacement is found by:

mMos mMos
T5, =27 =27
Mag mMos

Then the number of times per hour that a slam will occur follows from:

3600
Nhou'r - T

2s

- P{slam}



Chapter 14

Twin-Hull Ships

When not taking into account the interaction effects between the two individual hulls, the
wave loads and motions of twin-hull ships can be calculated easily. Each individual hull
has to be symmetric with respect to its centre plane. The distance between the two centre
planes of the single hulls should be constant. The coordinate system for the equations of
motion of a twin-hull ship is given in figure 14.1.

Zy
Xy,

Yb G

lo
= | = { = | ==
Pls l s|B
— : \ . y,
Y ‘ -YT

I

Figure 14.1: Coordinate System of Twin-Hull Ships

14.1 Hydromechanical Coefficients

The hydromechanical coefficients a;;, b;; and ¢;; in this chapter are those of one individual
hull, defined in the coordinate system of the single hull, as given and discussed before.

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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14.2 Equations of Motion

The equations of motion for six degrees of freedom of a twin-hull ship are defined by:

Surge:

Sway:

Heave:

Roll:

Pitch:

Yaw:
in which:
Vr
oy

Xrhys XThyy X1hy
XThyy XThsy XThg
XT'LUI’ XTwzv XTws
XTw4> XT’LU5’ XTw6

oV - & — Xrpy, = X1,
,OVT ) - XTh2 = Xng
pVr - Z — X1hy = X7w,
Itge ¢ — Ires -0 — Xrny = Xru,
Ity -0 — Xy = Xrws
Irse ) — Irew & — Xrig = Xrug

volume of displacement of the twin-hull ship

solid mass moment of inertia of the twin-hull ship
hydromechanical forces in the z-, y- and z-direction
hydromechanical moments about the z-, y- and z-axis
exciting wave forces in the z-, y- and z-direction
exciting wave moments about the z-, y- and z-axis

14.3 Hydromechanical Forces and Moments

The equations of motion for six degrees of freedom and the hydro- mechanic forces and
moments in here, are defined by:

—Xr7n,

_XTh2

_XTh5

_XThﬁ

+2a11
+2a13
+2a15
+2a22
+2a94
+2as
+2a3;
+2as3
+2ass
+2a49
+2a44
+2y3
+2a46
+2as51
+2as3
+2ass
+2a62

+2a64 .

+2a66
+2y¢2p

CF 4+ 2byy - &+ 261 -
S5 4 2byg - £+ 2613 -
0+ 2by5 - 0+ 215 -
<9 4 2bgs - Y + 2¢o9 -
<+ 2bgg - b+ 2094 -
< tp + 2o - U + 2¢z6
- T+ 2b3y - & + 2¢31 -
- Z+ 2b33 - 2+ 2c33 -
-0+ 2bss - 0 + 2c35 -
Y 4 2042 - Y + 2¢49 -
c P4 2byy -+ 244 - ¢
'a33'$+2?/%'633'¢5+2y%'033'¢
4+ 2byg - b + 2c46 -

- X+ 2bs1 - T+ 2¢5 - T

<24 2bs3 - 2+ 2¢53 - 2

-0+ 2bs5 - 0 + 255 - 0

4§+ 2062 - Y + 2¢62 - y

¢+ 2bes - ¢ + 2¢1 - ¢

1)+ 2bg6 - ) + 206+ Y

cany 293 by Y+ 205 o Y

@%Nggg\@%(\la
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In here, y7 is half the distance between the centre planes.

14.4 Exciting Wave Forces and Moments

The first order wave potential for an arbitrary water depth h is defined in the new coordi-
nate system by:

—g coshk(h+ zp)

——
w cosh(kh)

- (, sin(wet — kxp cos o — kyp sin )

This holds that for the port side (ps) and starboard (sb) hulls the equivalent components
of the orbital accelerations and velocities in the surge, sway, heave and roll directions are
equal to:

5’:;1 (ps) = —kgcosp -, sin(wet — kxycos pu — kyr sin 1)
é:;l (sb) = —kgcosp-(y,, sin(wet — kwy cos p + kyr sin 1)
L +kg cos . .
Cuy(p8) = % * (g, cos(wet — kxy cos pp — kypsin )
x +kg cos . .
Cu, (80) = % * Cq, cOS(wel — kxy cos p + kyrsin p)
é:m (ps) = —kgsinp -, sin(wet — kxycos p — kyrsin p)
ézjz(sb) = —kgsinp - (;, sin(wet — kxy cos p + kyrsin )
% +kgsinp )
Cuy(PS) = — ‘e cos(wet — kap cos p — kyr sin p)
s +kgsinp )
Cu,(8D) = —n  Ce cos(wet — kap cos p + kyr sin p)
523 (ps) = —kg-(,, cos(wet — kxycos pu — kyr sin )
ézjs (sb) = —kg-(,, cos(wet — kxycos p + kyrsin )
% k
Cus(PS) = Ly (o, Sin(wet — kay cos p — kyr sin p)

w
% k
Cuy(8D) = g (o, Sin(wet — kay cos pu + kyr sin p)

w

From this follows the total wave loads for the degrees of freedom. In these loads on the
following pages, the "Modified Strip Theory” includes the outlined terms. When ignoring
these outlined terms the ” Ordinary Strip Theory” is presented.

The exciting wave forces for surge are:

Xrw = + / My - (€, (p5) + Eoy () - d,

dN{ --*
—— [T (G + b)) -

dZEb
L
+/ ( W_e ’ Nll -V d—ﬂfb> : (Cwl(ps) +€w1(8b)> ' dxb
L
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[ (Kb (99) + X (59) -
L
The exciting wave forces for sway are:

Xrwy = +/M£2- (522(p8>+5;(p8>) - dzy

" Vwe / dé\gf . (CZ’? (ps) + C;kvg (Sb)> - dxy
L
/ ( wi Ny =V - dxf2> ) (é;z(pS) + 622(317)) - dzy
L

+/ Xpk, (ps) + Xpg, (b)) - day
L
The exciting wave forces for heave are:

Xrws = +/M§3' (6123@5) +§;3(Sb)) - dxp

+
w - w

(2

(Xrx, (ps) + Xpg, (sb)) - day

: e L/ % ’ <é;3(ps) + 62;3(3b>> - dxy

dM,
dxb

+ N3z — V-

) (G )

+

S—

The exciting wave moments for roll are:

Xrw, = +/(X};K4(ps)+X}K4(sb)) - dxy
L

My - (o (p5) + (i (50) ) - d
—I—L/ 42< ps) + s) T

+ W - W, / d—ZL‘b : <Cw2(p8) + ng(Sb)> ' dxb
L
w ’ dMéiz ok ok
+/ ( w_e ’ N42 - V : dﬂjb ) : (sz(pS) +Cw2(8b)> ' d.’l:b
L
+0G - X1,

+yr - Xw,
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The exciting wave moments for pitch are:

Xt = —/M{1 G - <C;(ps) ~|—€Zl(sb)> ~dxy
L

o [ TE (€, () + s (oh) -y

W - We dzy

L
[«] a .
_ ((i Ny, -V da:ll,1>> -bG - (Cwl(ps) + Cwl(Sb)) - dzy

(X, (ps) + Xfog, (b)) - bG - day

My - ap - (C; (ps) + &;(35)) - dxy

S— S B

V[ dNi
* w - we/ dxy e (Cws(ps) * Cw3<8b)> oy
L

(Xriy (8) + Xioge, (sb) - w) - day

dM,

N?,)?)_V dl’b

) (8 (p9) + oy (5D) - iy

&

Se—

The exciting wave moments for yaw are:

Xrws = +/M§2 X - <C;2(ps) - 5:02(sb)> ~dzy
L

X /dNé: -z - (é;(pS) +§Z}2(85)) - day
L

dM,
d.’l?b

v B ) - (£ o)

+/ (Xpx, (ps) + Xpg, (b)) - @y - dxy,
L

+yr - X1w,

14.5 Added Resistance due to Waves

The added resistances can be found easily from the definitions of the mono-hull ship by
using the wave elevation at each individual centre line and replacing the heave motion z
by:

z(ps) =z4yr- ¢ and z2(sb) =z—yr- ¢
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14.5.1 Radiated Energy Method

The transfer function of the mean added resistance of twin-hull ships according to the
method of [Gerritsma and Beukelman, 1972] becomes:
w  —k dMjs\ Vi (ps) + Vi3 (sh
Row COSM-/(N{B—V- d33). 2o (p8)2 %a (S)-d:vb
Tp

Ca

& 2w,

a

with:
Vips) = Coylps) = (2 =m0+ V-0 —yr-0)
VEsh) = Coulsh) = (5w B4V 0+ yr8)
o thg

Cuy(PS) = * Qs SiN(wet — kxp cos g — kyp sin )
w

Lk k

Cus (D) = Ry Ch, Sin(wet — by cos p + kyr sin )
w

14.5.2 Integrated Pressure Method

The transfer function of the mean added resistance of twin-hull ships according to the
method of [Boese, 1970] becomes:

Raw2 o

2q(ps) O,
+=pVw2 = =2 coS(E4(ps)c(ps) — E6¢(ps))
2 (. C. (ps)¢(ps) ¢(ps)
0

1 2,(sb) 6, (e . )
pPVWe © = " COS\E4(sb)¢(sb) — €6¢(sb
9 (. ¢, (sb)¢(sb) C(sb)

1 2 25,(ps) - cos(—kxy cos 1 — kyp sin ft — sms)cins)) \ QY
pg/(l_zxa(pS)_ (ps) - cos(—ky cos pu — kyr sin (”)“”)))yda:b

¢ ¢, - tanh(kh) dxy,

L
9 :
—i—%pg/ <1 B Z%C(Zsb) B 25,(sb) - COS(_kaS(.)Stgn;(IZ% sin pu — é?s(sb)g(sb))) il;j: iz
with:
((ps) = (,cos(wet — kxpcos u — kyp sin )
((sb) = (,cos(wet — kxycos p + kyrsin p)
2:(ps) = z—xp-0+yr-o
z(sh) = z2—ap-0—yr-¢
s(ps) = C(ps) —z+ao-0—yr-¢
s(sb) = ((sb)—z+xp-0+yr-¢

14.6 Bending and Torsional Moments

According to Newton’s second law of dynamics, the harmonic lateral, vertical and torsional
dynamic loads per unit length on the unfastened disk of a twin-hull ship are given by:

qri(zy) = +X7p, (26) + Xy, (20)
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—mip(xy) - (a: —bG - 9)

ar2(y) = +Xpn, () + X, (23) + 2094, - &
—mip(as) - (i + 2% = 24 B+ 9+ 0)

qrs(zs) = +Xip, (T6) + Xipu, ()
—mip(xy) - <z — - 9)

gra(ze, 1) = +Xip, (23) + Xy, ()

(1) - (Was - & — 2 (G + 205+ 9+ 6)
+21 - qra(Tp)

In here:
m/. = the mass per unit length of the twin-hull ship
k... = the local sold mass gyradius for roll
A, = sectional area of one hull

The calculation procedure of the forces and moments is similar to the procedure given
before for mono-hull ships.
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Chapter 15

Numerical Recipes

Some typical numerical recipes, as used in the strip theory program SEAWAY, are described
in more detail here.

15.1 Polynomials

Discrete points can be connected by a first degree or a second degree polynomial, see figure
15.1-a,b.

— —
f(Xo) f(Xo)
/) A ixm)
a b
Xm XO Xp Xm XO Xp
First Degree Polynomial Second Degree Polynomial

Figure 15.1: First and Second Order Polynomials Through Discrete Points

15.1.1 First Degree Polynomials

A first degree - or linear - polynomial, as given in figure 15.1-a, is defined by:

fz)=ax+b

with in the interval z,, < z < x( the following coefficients:

9J.M.J. Journée, ”Theoretical Manual of SEAWAY, Release 4.19”, Report 1216a, February 2001, Ship
Hydromechanics Laboratory, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
For updates see web site: http://dutw189.wbmt.tudelft.nl/~johan or http://www.shipmotions.nl.
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f (o) = [ (@m)

To — Tm

b = f(xg) —ax

and in the interval zy < = < z,, the following coefficients:

f(zp) — f(x0)

b = f(zg) — axg

a =

NUMERICAL RECIPES

Notify that only one interval is required for obtaining the coefficients in that interval.

15.1.2 Second Degree Polynomials

A second degree polynomial, as given in figure 15.1-b, is defined by:

f(x)=ar*+br+c

with in the interval z,, < z < x, the following coefficients:

fap)—flxo)  flzo)—f(zm)

Tp—To To—Tm
a —_=
Tp — Ty
b — f<$p)—f<$0) —a(l'p—FiEo)
Tp — To
c = f(wo)— azj— bxg

Notify that two intervals are required for obtaining these coefficients, valid in both intervals.

15.2 Integrations

Numerical integrations can be carried out by either the trapezoid rule or Simpson’s general

rule.

SEAWAY uses Simpson’s general rule as a standard. Then, the integrations have to be
carried out over a number of sets of two intervals, see figure 15.1-b. Numerical inaccuracies
can be expected when z¢ —z,, < x, —x or T, —x¢ <K To— Ty, In those cases the trapezoid

rule has to be preferred, see figure 15.1-a.

SEAWAY makes the choice bewteen the use of the trapezoid rule andr Simpson’s rule

automatically, based on the following requirements:

Ty — T x
Trapezoid rule if: 202 o =
Ty — T, T
Ty — T
Simpson’s rule if: 02< 2" <50

Tp — Ty

—Im 50

_mm
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15.2.1 First Degree Integrations

First degree integrations - integrations carried out by the trapezoid rule, see figure 15.1-a
- means the use of a linear function:

f(zx)=ax+b

The integral over the interval x, — xy becomes:

wo/f(m)dx = wo/(am—l—b)da:

= {—a:f + b:v}
with:

[ (xp) = f (o)

b = f(zo)— axg

Integration over two intervals results into:

a =

i (@0 — ) F (@) + (@ — 2) £ (@0) + (2 — 20) f ()
/ f (2) d = :

15.2.2 Second Degree Integrations

Second degree integrations - integrations carried out by Simpson’s rule, see figure 15.1-b -
have to be carried out over a set of two intervals. At each of the two intervals, the integrand
is described by a second degree polynomial:

f(x)=ar*+br+c

Then the integral becomes:

/f(a:) dr = /(a:v2~|—ba:+c) dz
1 1 o
— [gaa:?’ + bez + cm} N
with:
f@p)—f(zo) _ flzo)—f(zm)
a = Tp—T0 T0—Tm
Ty — Ty
b = I (2p) = f (20) —a(zp+ zo)
Tp — Zo

c = f(xo)— axi — bxg
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Some algebra leads for the integration over these two intervals to:

[ 5 de= {%_xm_%?_mof(w

To — Tm
(xp - mm)2
+ T
2(xg — ) (zp — :E())f( 0)
I'p — Ty — @;_mm mp — T
+ ﬂjp — T f (mp)} 3

15.2.3 Integration of Wave Loads

The wave loads can be written as:
Fw - Fwa COs (wet + 5ng‘)

The in-phase and out-phase parts of the wave loads have to be obtained from longitudinal
integrations:

F, = /F,L'U1 (zp) do = /f{ul () cos zp dy
L L

Fupo = /F;;z (2b) dm:/f;w (p) sin p dizy
L L

Direct numerical integrations of F, ; and F,, over the ship length, L, require integration
intervals, Az, which are much smaller than the smallest wave length, Az, < Ayin/10.
This means that a large number of cross sections are required.
This can be avoided by writing F,:UL2 in terms of f,:um (xp) cos zp, and f,:um (xp) sinxp, in
which the integrands f;m (xp) vary very slow over short wave lengths. These functions
f{um (zp) can be approximated by second degree polynomials:

f(x)=ar*+bx+c

When making use of the general integral rules:

/COSCEdZE = +sinx
/a:cosmda: = 4cosx+xsinz

/m2cosmda: = +2a:cosx+(m2—2)sinm

and:
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/Sinxdm = —cosz
/xsinxdm = +4sinx —xcosx

/mzsinmda: = +2xsinx—(m2—2) COS T

the following expressions can be obtained for the in-phase and out-phase parts of the wave
loads, integrated from z,, through z,, so over the two intervals xy — z,,, and x, — zo:

/F(ZE) dex = /f(m)cosmdm
= /(a$2+bm+0) cosz dx
= a/m2cosmdm—i—b/:lccosxd:c—{—c/cosmdx
= [+ (f(x) — 2a)sinz + (2az + b) cosm]ifﬂ

F(z)de = /f(:c)sinxda:

= /(am2 +bm+c) sinz dx

Im
Tp Tp Tp
= a/mZSinmdm—i—b/msina:dm—i—c/sinmda:
Tm Tm Tm

= [=(f(z) —2a)cosz + (2ax + D) sinz];”
with coefficients obtained by:

fap)—flxo) _ flzo)—f(zm)

Tp—To TO—Tm
a =
Tp — Ty
h — f(x;D)_f(xO) —a<$p+$0)
Tp — To
c = f(xo)— axi — bxg

15.3 Derivatives

First and second degree functions, of which the derivatives have to be determined, have
been given in figure 15.2-a,b.
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/‘/.MQP) / f(xm1) f(Xp1)
f(Xm2)

a b f(Xp2)

Figure 15.2: Determination of Longitudinal Derivatives

15.3.1 First Degree Derivatives

The two polynomials - each valid over two intervals below and above x = z( - are given
by:

forx < o f(x) = amx + by,
forx > xo: f(xz)=apz+0,
The derivative is given by:
d
forz < xo: f () = am
dz
df (z)
forx > xq: I =ay

It is obvious that, generally, the derivative at the left hand side of xy - with index m
(minus) - and the derivative at the right hand side of =, - with index p (plus) - will differ:

(©) ] @) ]

A mean derivative % at x = xg can be obtained by:

m (minus or left of xg) (plus or right of xo)

p

( i ) o) (), om0 ()]
dz ) .4,

Tp — Ty

15.3.2 Second Degree Derivatives

The two polynomials - each valid over two intervals below and above x = z( - are given
by:

forx < f(7) = amz® + bpx + cm

forx > x: f(z) =a,x® + bz +c,
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A derivative of a second degree function:

f(x)=ar*+br+c

is given by:
df () _
e 2ax + b
This leads for x < xq to:
[ —2§$m1 — Zm2) (To — Tm1) { f (Tm1) S f(@ma)} }
(ﬂ) _ — (@m1 — p2)” {f (@0) = [ (@)} + (@0 = T1)” {f (@m1) — f (Tm2) }
dz ), . ., (Tm1 — Tm2) (To — Tm1) (To — Tma)

(ﬂ) (@m1 = Zm2)* {f (20) = f (1)} + (@0 = @1)” {f (@m1) — f (2m2)}

dx (:Bm1 - Imz) (ZEO - ZEml) (ZCO - $m2)

[ +2 (Tt — Tma) (2o — Tm1) {f (20) — f (Tm1)} }

(ﬁ) _ + (Tm1 — $m2>2 {f (o) = f (zm1)} — (w0 — $m1)2 {f (@m1) = [ (Tma)}
dz ) o (Tm1 — Tm2) (Zo — Tm1) (To — Tma)

and for z > xq to:

l 2 (@p1 — o) (wp2 — 1) {f (Tp1) -/ (o) } }
<ﬁ) _ L@ = 20) {f (3p0) = F(@p)} + (@0 — @) {f (21) — f (20)}
Ly - (@p1 — @o) (Tp2 — Tp1) (T2 — 20)
<ﬁ) _ (Tp1 — 550)2 {f (@p2) — f(zp1)} + (22 — :Up1>2 {f (@p) — [ (z0)}
Ly — (#p1 — o) (p2 — 2p1) (2p2 — o)

[ +2 (IEpl — IEU) (ﬂpr — mpl) {f (mp2) - f (xpl)} :|
<df) L@ = 20)* {f (@p2) = f ()} — (2 — 1) {f (1) — f (20)}

B (@p1 — o) (Tp2 — Tp1) (Tp2 — To)

Generally, the derivative at the left hand side of zy - with index m (minus) - and the
derivative at the right hand side of xy - with index p (plus) - will differ:

(©) ] @) )

A mean derivative Ed{; at x = xg can be obtained by:

m (minus or left of xg) (plus or right of xo)

(@) - (e P (R

dx dy, + d,
with:
4. — (mo — Tm1 — W) (T0 — Tm2)
" 3(zo — Tm1)
(#p1 — 20 — 55" (wp2 — w0)

3 (Tp1 — T0)
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15.4 Curve Lengths

Discrete points, connected by a first degree or a second degree polynomial, are given in

figure 15.3-a,b.
/ Yp / o

/ yO / yo
— —

Ym a Ym b

Xm Xo Xp Xm Xo Xp

Figure 15.3: First and Second Order Curves

The curve length follows from:

Tp

Smp = /ds

Tm

= /\/da:2 + dy?

15.4.1 First Degree Curves

The curve length of a first degree curve, see figure 15.3-a, in the two intervals in the region
Ty < T < Ty 18:

Sp = (20— )+ (0 — 9)® + /(2 — 20)° + (5 — 30)?

15.4.2 Second Degree Curves

The curve length of a second degree curve, see figure 15.3-b, in the two intervals in the
region T, < r < x, is:

Smp = D2 {po\/l—l—p%%—ln [po+ \/1—|—p3} —pl\/l*l-p% —In [pl + \/1+pﬂ}

with:
cosa = Tp — T
2 2
\/(mp - mm) + (yp - ym)
sina = Yp — Ym

V@ = 20 + (0 — y)?
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(xp — Tp) cOsSa + (Yp — Ym) sin v

(xp — xp) cosa + (yp — yo) sin o

(Yo — Ym) cOsa — (g — Tp)sina  (Tg — &) cOS @ + (Yo — Ym) sin
(xo — xm) cosa+ (Yo — Ym)sina  (x, — x9) cosa + (Y, — Yo) sin
(p — x0) cos o + (yp — Yo) sina

4

po = m+2-
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