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PART 1 : Introduction

Church in Dubrovnik



E5003 - Ship Structures |
© C.G. Daley



E5003 - Ship Structures |
© C.G. Daley

Topic 1: Introduction to Ship Structures

Cruise Ship Structure
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The course i1s intended to develop the student’s
knowledge of ship structures. The focus is on
various types of intact structural behavior,
building upon concepts from mechanics of
materials. The course project will involve the
design, assessment, drawing and reporting on the
mid-ship scantlings (hull girder design) of a large
vessel. The follow-on course (6003) will
move from the consideration of intact
behavior to the mechanics of structural
failure.

One of the aims of the course is for the
students to develop the ability to make an
educated guess. Such guesses are not wild
or random. Educated guesses are based on
sound reasoning, careful approximation
and simplification of the problem. In most
cases the 'guess' starts by forming an idea of the
problem in its essential form, or in 'bounding'
forms. Basic laws of mechanics are considered to
determine what fundamental principle might
govern the outcome. Most problems are governed
by simple conservation laws, such as of forces,
moments, momentum and/or energy.

A related aim of the project is for the students to
develop the ability to sketch the problem at hand,
by hand and clearly. Sketching is a form of
symbolic communication, no less valuable than the
alphabet or algebra.

Background

Humans have been constructing structures for a
long time. A structure is a tool for carrying
(carrying what is in or on the structure). Ship
structures have evolved like all other types of
structures (buildings, aircraft, bridges ...). Design
was once purely a craft. Design is evolving as we
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understand more about the structure itself and the
environment that we subject it to.

Traditional Design

e built by tradition (prior example)

e changes based primarily on experience
(some analysis)

e essentially a builders “Craft”

e QA by proof test and use

Gondolas in Venice

Engineering Design

e incorporates analysis based on math/physics

e common designs are codified (building code,
class rules..)

e new designs should follow the “Engineering
Method”

e design, analysis, construction and
regulation are separate specialties

e design practice is evolving: In the 1950
tabulated requirements were found in Class
Rules. By the 70s all codes had changed to
include prescriptive algebra. New trend are
towards "LRFD - load and resistance
factored design", "risk based design" and
"goal based design". Current practice in
large (novel) projects make extensive use of
"scenario based" design, with HAZIDs

early Finnish icebreaker (public domain - Wikipedia) (hazard identification and mitigation)'

e The future of design will be "design by
simulation" in which the many interacting
process and systems will be simulated
numerically. In some ways this will
represent a return to the idea of proving a
design by a "proof test", except it will be a
numerical proof test and will simulate the
life of the design.
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Purpose of Ship Structures

The structure of a ship or ocean platform has 3 principal functions:
% Strength (resist weight, environmental forces — waves + )
% Stiffness (resist deflections — allow ship/equipment to function)
% Water tight integrity (stay floating)

Warship (public domain - Wikipedia) Bulk Carrier FLARE (from TSB report )
There are two other important functions
% provide subdivision (tolerance to damage of 1,3 above)
% support payloads

the beach at Chittagong (Naquib Hossain - Wikipedia)

These functions are all interrelated, but should be considered somewhat separately.
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Structural Arrangement

The particular arrangement of the structure is done to suit a variety of demands;
Hull is shaped (reduce resistance, reduce motions, reduce ice forces, increase
ice forces, reduce noise)

holds are arranged for holding/loading cargo

holds are arranged for holding/installing engines

superstructure is arranged for accommodation/navigation

all structure is arranged for build-ability/maintainability

all structure is arranged for safety

all structure is arranged for low cost

¢

eeeeee

Cruise ship ifeboat

Types of Structural Work

Ship structural specialists are involved in a variety of work;
% Design
% Analysis
% Construction
% Maintenance
% Repair
% Regulation

While almost all Naval Architects get involved in structural issues, as with most
professions, a few focus on the area and tend to be involved in any advanced work.
This course aims to have you develop your ‘feel’ as well as your knowledge of
structures. In other words, you should work at developing you “Engineering
Judgment” in the area of ship structures.
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Structural Behavior

Ship structural behavior, as with all structural behavior is essentially very simple.
Structures are an assemblage of parts. This distinguishes them from objects. A
beam or plate is a structural element, but only a collection of structural elements is
called a structure. The theory of structures builds upon the field of ‘mechanics of
materials’ (also called mechanics of solids, or strength of materials), by considering
the interactions and combined behaviors of collections of structural components. So,
much of this course will focus on techniques for understanding collections of
structural elements. We will also review and expand, somewhat, on the mechanics

of individual elements.

Structural Scales
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Structural Hierarchy

Primary Structure

hull girder

Secondary Structure

double bottom

-

Tertiary Structure
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Newton's 3rd Law:
action = reaction
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Levels of Structure

As a structure, a ship is an assemblage of
components. At the largest scale a ship is a simple
beam, carrying weight and supported by buoyancy.
The behavior or the whole ship as a single beam is
referred to as the behavior of the primary
structure.

The primary structure is referred to as the hull
girder. The strength and stiffness of the hull
girder depend on the properties of the cross
sections of the ship. The key section is the midship
section.

Within the hull, as integral components of the
hull, are large structural components that are
themselves make of individual structural
members, and yet act as individual systems. These
are called secondary structure. For example, the
whole double bottom, between bulkheads, is a unit
that acts as a sandwich panel, behaving somewhat
like a plate.

Locally a ship is comprised of frames and plate.
These are called tertiary structure. The tertiary
structure are individual structural members.

Ships are a class of structure called "semi-
monocoque". In a pure monocoque, all the
strength comes from the outer shell ("coque" in
french). To contrast, in "skin-on-frame"
construction, the loads are all borne a structure of
framing under the skin. In ships, the skin is
structurally integral with the framing which
supports it, with the skin providing a substantial
portion of the overall strength.

All the various parts and levels of a ship structure
interact. Ships are "all-welded" structures,
meaning that it is all one single, complex, solid
elastic body. The main thing that structures (and
all parts of structures) do is “push back”. i.e.
across any interface (across every patch of every
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Preliminary Structural Design
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** main components, bulkhead spacing, tank sizes, frame spacing

*** rule, special rule, direct, mix

plane, everywhere in the universe, always!) the
force acts in both ways. This powerful idea is the
key to following what happens in a structure.

Structural Design

The process of ship structural design varies
depending on the specific issues. Structural design
occurs after the mission is set and a general
arrangement 1s determined. The general
arrangement allows us to determine both the
environmental loads and the distribution of
hull/outfit/cargo weights. The establishment of
scantlings (structural dimensions) is iterative. We
assume that a preliminary set of dimensions is
settled upon from experience or by other choice.
The loads will cause a set of responses (stresses,
deflections). The response criteria are then
compared to the responses. For any inadequacies
we modify the structural dimensions and repeat
the response analysis. When all responses are
satisfactory, we are finished.

In cases where we wish to satisfy additional
constraints (cost, performance..) we add checks for
these items after we have checked the structural
response. Again we loop until we have met the
constraints, and reached optimal values for some
measure.

As stated above, the structural design can only
occur after the overall vessel concept and
arrangement is set, which is done during the
preliminary design stage. The structural design
itself is a process that is comparable to the overall
design. Just as the vessels has a mission and a
concept to satisfy that mission, so too does the
structure have a mission and concept to satisfy the
mission. Prior to deciding on the structural sizes
(scantlings) , the designer must decide on the
overall structural concept and arrangement. In
rule based design (Classification Society rules), the
loads and response criteria have been combined
into standard scantling requirements formulae.
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The user can use these formulae to determine
minimum dimensions for members and
components. There can then be the need to check
additional criteria (e.g buckling, alternate loads).
When this is complete the user has a complete
structural design, but not yet a final detailed
design. The final structural drawings also include
detailed design features (e.g. bracket and weld
specifications). The image at left is taken from a
structural drawing of a web frame in an offshore
supply vessel.

Load Types

We will define four general types of structural
loads.
e Static Loads (e.g. fixed weights)
e Low Frequency Dynamic Loads (e.g. quasi
static load, wave loads)
e High Frequency Dynamic Loads (e.g.
vibrations)
e Impact Loads (e.g., blast, collisions)

With both static and quasi-static loads, we do not
need to take inertial or rate effects into account in
the structural response. With high frequency
loads we need to consider structural vibrations
which includes inertial effects and damping. For
impact loads, we have both transient inertial
effects and rate effects in material behavior. It is
important to distinguish between loads affecting
vessel rigid body motions and elastic structural
response. Wave forces may cause the vessel as a
whole to respond with inertial effects (heaving
motions), but will seldom cause anything but
quasi-static response of the structure. The
important determinant is the relative frequency of
the load and response. Local structure will
respond elastically at frequencies in the 100hz to
3000hz range. The hull girder will flex at around
the 1 hz rate. The vessel will heave and roll at
around the 0.1 hz range. (large vessels/structures
will respond more slowly).
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In this course we will examine the structural
response to quasi-static loads. The hull girder is
sized to resist the combination of self weights and
wave forces.

Topic 1: Problems

1.1 Longitudinal strength is a primary concern during the design of a ship. Describe the
steps in the ship design process (in general terms) that must occur prior to consideration of
the longitudinal strength.

1.2 What is the difference between “low frequency dynamic” and “high frequency dynamic”
loads? Give examples.

1.3 Describe the types of loads that you would be concerned with during the launch of a
vessel on a slipway.

1.4 Loads on ships

The following is a table of load types. Identify each load as static, quasi-static, dynamic or
transient. Place a check mark v' to indicate which categories apply to each load type. If
more than one type applies, explain why in the comments column.

static quasi- dynamic transient comments
LOAD static
Dry cargo
Liquid cargo
Engine
Propeller
Ice

Waves
Other:
Other:

1.5 In preliminary design, when can the preliminary structural calculations be made?
1.6 List 5 purposes of structure in a ship.

1.7 When is a load considered to be quasi-static?
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Topic 2: Ship Structural Features

lifeboat on the Battleship Texa‘;\‘

Introduction

In this Chapter we will
Name and describe ships structural components.
Discuss some structural features and challenges for various vessels,

Boats are made from a variety of materials, including wood, fiberglass,
composites, aluminum, steel and cement. Ships are built mainly from steel. In this
Chapter we will name and discuss the main structural features of steel ships. Ships
are much longer than they are wide or deep. They are built this way in order to
minimize resistance (fuel consumption), and yet maintain adequate stability and
seaworthiness. This geometry results in the ship being a girder (a beam built from
compound parts). The figures below show sketches of the structural details of the
midship section of a bulk carrier.
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Figure 1.

This type of vessel is very common, and has many problems. Single side shell
vessels are being replaced with double hull vessels. The FLARE had this type of
construction.

BRITTLE FRACTURE OF
Wi MAIN DECK & SIDE SHELL
PLATING AT FRAME 112

Figure 2. Bow of Bulk Carrier FLARE -
Bulk Carrier FLARE (from TSB report)
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Figure 3 shows a 3D representation of the same x-section as show in Figure 1.
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Double
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Single Side - Double Bottom Bulk Carrier
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y

Figure 4 Rhino Sketch of section of longitudinaiy framed double hull Container
vessel.
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Ship Structural Photos

L

Terra Nova FPSO — Floating Production, Storage and Oﬂoadig vessel (from Wikipeda)-

Terra Nova Hull Frafning Terra Nova Structural Connection Details

This structure is above the waterline, and so is quite light.
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Terra Nova flat bar frames Terra Nova Flare tower

Terry Fox — Icebreaker
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The Terry Fox is ~7000 tons displacement and capable of ramming thick old ice. It has
never been damaged

Local ice damage | | CPF superstructure plating
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Topic 2: Problems

2.1 Read the SSC Case Study V and name all the parts of the Rhino sketch shown below.

2.2 What was the basic cause of the “Recurring Failure of Side Longitudinal” in the SSC
report?

2.3 Sketch a X-section of a ship at mid-ships and label all features/elements.

2.4 Sketch, free hand, the structure in the double bottom of a ship. Keep it neat and label
the elements
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Topic 3: Material Behavior

plastic frame respon'se to ice load test

Introduction
In this Chapter we will
% outline the material behavior models that are necessary to the
analysis of structures.

uniaxial stress Hooke's Law
F
A ,_f_,_i AL g Hooke's law is a very simple idea. It just states
—, 1 ) M - that there is a linear relationship between force F
E and deflection AL in an elastic body;
l T ﬂ AL
T 3 F=kAL
force - deflection where kis the 'spring constant' or the 'stiffness’

stress - strain

F e_%:.

For a uni-axial state of stress we can also write
Hooke's law in terms of stress ( g: normalized
force) and strain ( &: non-dimensional deflection);

oc=Fc¢

stress - strain

E: Young's Madulus where % is Young's Modulus.
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This law may seem to be too simple to deserve the
term 'law'. However, this idea was not easily
found. The world, especially in the time of Hooke
and before, was so full of variability, inaccuracy
and non-linearity that this idea was not obvious.
Many things were made from natural materials
(stone and wood) and the idea of linear behavior
was radical. Hooke was a contemporary, and rival,
of Newton. He developed a coil spring for use in a
pocket watch. In 1678 he published a discussion of
the behavior of his spring, saying: "ut tensio, sic
vis' meaning "as the extension, so the force'".
Hooke worked in many fields (architecture,
astronomy, human memory, microscopy,
palaeontology), but it is only in mechanics that his
name is associated with a fundamental law.

How important is Hooke's contribution? For
structural analysis it is the fundamental idea, as
1mportant to structural analysis as is Newton's
2nd law (F = ma) to the field of dynamics.

Hooke's law is important because linearity of
behavior permits the use of superposition. And
only with the idea of superposition can we divide
problems up into parts, solve the parts and add
them back together to get a total solution. The
whole field of structural analysis depends on
Hooke's law.

Hooke's law can be expanded to describe 2D and
3D behavior. Consider a 2D sample of elastic
material. When a force is applied in one direction
(x) the material stretches in that direction and
contracts in the lateral direction(y). So for a stress
in the x direction we get strains in x and y. This is
Hooke's law in 2D for the case of uni-axial stress;

O-X
“=F
O-X
Sy -V —=
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2D - general case
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When we consider a general state of stress,
comprised of a combination of x and y direction
stresses (0y,0y), as well as shear stress (7,,) we
can write the relationship amoung the stresses
and strains Hooke's law in 2D for the general case;

Sx 1 1 -V O O-X
vl Elo 0 200 +w)lltey

or equivalently;

1 v 0
0. &
al__E v 1 o ||S
y T 1—y2 1—v y
Txy 0 0 Vxy

2

The above equations are used to describe isotropic
materials (materials that are similar in all
directions, such as steel), which have the same
value of E and n in all directions.

Note: Anisotropic materials, such as wood and
fiberglass have different values of E for each axis.
Hooke's laws for anisotropic materials have many
more terms.

Hooke's law can be expressed in 3D as well, but 2D
1s sufficient for the problems that we will examine.

state of stress in 2D

Consider a small element of material with normal
and shear stresses on vertical and horizontal
planes. We refer to these stresses as engineering
stresses, 0y, 0y, Ty, . Now consider what the
stresses would be on any other plane, so one that
is rotated by the angle 6, from the vertical (from
the plane for o, stress). Mohr showed that the
stresses on all planes, when plotted, will form a
circle in 7 vs. o coordinates.

The stresses on the vertical plane, o, and 7,,, are

plotted on the Mohr's circle (point A). The stresses
on the horizontal plane, g, and —1,,, are plotted at
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stresses on any plane
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point B. These two planes are physically 90
degrees from each other, but are 180 degrees apart
on the Mohr’s circle.

The line joining A, B is a baseline. To find the
stresses on a cut plane at angle 6 from the vertical
plane (the plane of A), we must move 20 from the
'A" direction around the Mohr’s circle. This lands
us at point C, where the stresses are , g, and ..

The general equations to find the stresses on a
plane at angle 6 from the plane of g, are;

1 1 )
Op = > (ax + ay) + > (ax - ay)cosze + TyySin26

1
Tp = —3 (ax — ay)sinZH + Ty, C0526

principal stresses

You can see from the drawing of Mohr's circle, that
the largest value of ¢ occurs where 7 is zero. The
largest and smallest values of ¢ are called o, and
0,. They are sufficient to define the circle, and are
called the principal stresses.

We do not need to solve for o1 and o2 graphically.
We can use the following equations:

_ 12
o, to o, +o
y X y

2 2
oy + 0y [ ox + 0y71°
0y =~ —\/ax— > + 1%,

or



E5003 - Ship Structures |
© C.G. Daley

stress - strain (for structural steel)

(e)
Gu.ft n
Oyiald
A _ G&”g=F/A'i:r\.le
— Geng= F/Aﬂ
€

A: elastic range

B: yield plateau, strain hardening
C: necking

D: rupture

biaxial stresses

Gyj—» T Xy *0'2
T~a
—] TTX = Q\
A 51

biaxial yield surface

von Mises
yield condition

624

Gyield

\

e actual biaxial stress

o equivalent stress g,

25
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large strain behaviors

At low strains steel is a linear elastic material.
However, when steel is strained to large levels, the
linear behaviour ends. Typical ship steels will
follow a stress-strain curve as shown at the left.
After yielding the stress plateaus while the strains
increase significantly. At larger strains the stress
begins to rise again, in a phenomenon called
'strain hardening'. At even larger strains the
material starts to meck' and eventually ruptures.
Typical yield stresses are in the range 225 to 400
MPa. Typical ultimate stresses are in the 350 to
550 MPa range.

The initial slope is the Young's modulus which is
about 200,000 MPa (200 GPa). So the strain at
yield is about 1200 to 2000 x10°6 strain (u-strain).
Rupture occurs at around 25% strain (300,000 p-
strain).

yield criteria and equivalent stresses

In ships structures, made almost entirely of plate
steel, most stress states are essentially biaxial. In
this case we need to have a criteria for any 2D
state of stress.

The 2D von Mises criteria is plotted at left. The
curve is normally represented in terms of principal
stresses and forms an oval. The oval crosses the
axes ay the uniaxial yield stress gy;.4. The
equation for the yield condition is;

012 — 0102 t (722 = O-jgield

The criteria can also be expresses in terms of
engineering stresses;

2 2 2 _ 2
Ox — 0x0y + 0y + 375, = Oyield

To show whether a general 2D stress is at yield,
the concept of an equivalent stress is used (the
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von-mises equivalent stress). The equivalent stress
1s a uniaxial stress that represents the same % of
yield as the biaxial stress. In this way any 2 states
of stress can be compared. The equivalent stress
1s;

— 2 2
Oeqv = \/01 — 0,0, + 0y

or

Oeqv = \/a,? — 0,0y, + 0 + 313,

We will make use of equivalent stresses in the
ANSYS labs.
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Topic 3: Problems

3.1 A column is made of steel pipe with OD of 8", and ID of 7". It is 8 feet tall. The column
supports a weight of 300kips (300,000 1b). How much does the column shorten under load?
(E for steel is 29,000,000 psi)

3.2 A 2D state of stress (oy, 0y, Tyy) is (200, -20, 45) MPa. What are the strains (g, £y, Vxy)?

Oy=-20

0, =200

3.3 For a 2D state of stress (o, 0y, Tyy) of (180, -25, 40) MPa, plot the Mohr's circle. What

are the principal stresses (04,0,) ?
Gy=25
y

fxy=40

!
G, =180

-

3.4 For a 2D state of stress (o, 0y, Txy) of (100, -100, 60) MPa, what is the von-mises
equivalent stresses oeqy ?

Oy =100
Ty =60
a, =100

-

3.5 For a 2D state of stress (o, 0y, Txy) of (150, 100, 30) MPa, what is the von-mises
equivalent stresses Geqy ?

Gy =100

a

xy=5o

Oy =150

-

3.6 For a small cube of material with (o, = 100,05, = 100) what is the maximum shear on

any plane?
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PART 2 : Longitudinal Strength

St. John's Harbour



E5003 - Ship Structures |
© C.G. Daley

30



E5003 - Ship Structures | 31
© C.G. Daley

Topic 4: Longitudinal Strength: Buoyancy & Weight

Pompei

Introduction

In this Chapter we will
% Discuss Still water bending moments, bonjean curves, Prohaska’s
method and a similar method for non-parallel midbodys

I I I I I I I ) ) ) ) o ) ) o ) ) o

Overview

Structural design starts from:
Principal Dimensions -  L,B,T
Hull Form - Cs, Cwp, Cum

General Arrangement — decks and bulkheads

Which is called preliminary design:

Preliminary Design ‘

lake coal lo Newcaslle,

ecion 4+ .
Mission + Constraints & tiles back to ltaly

GA, Principal Dimensions

U

Structural Considerations

Strength
Stiffness
Watertightness its not a boat if is doesn't float
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The first strength consideration is the longitudinal strength of the hull girder. The
hull girder feels vertical forces due to weight and buoyancy. For any floating body
the total weight must equal the total buoyancy, and both forces must act along the
same line of action. However, at each location along the ship, the weight will not
normally equal the buoyancy.

The weights are set by the combination of lightship and cargo weights. The
locations of the weights are fixed (more or less). The buoyancy forces are determined
by the shape of the hull and the location of the vessel in the water (draft and trim).
The net buoyancy will adjust itself until is exactly counteracts the net weight force.
However, this does not mean that each part of the vessel has a balance of weight
and buoyancy. Local segments of the vessel may have more or less weight than the
local buoyancy. The difference will be made up by a transfer of shear forces along
the vessel.

oYL
. ) _l_
weght LT Ll I
bonjean curves
_,'"_\ T
WL (trim) — _/"____,i____
Buoyancy L T T [T T Il T[T T 7
N

total buoyancy

local buoyancy
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Bending Moment Calculations

The ‘design’ bending moment is the combination of Stillwater bending and wave
bending. To calculate these values we will make the following assumptions;
1. Ship is a beam
Small deflection theory
Response is quasi-static
Lateral loading can be superimposed

> 0N

A~~~ I~~~

Still Water Bending Moment (SWBM)

The still water bending moment is calculated from the effect of the weights and
buoyancy in calm water. The buoyancy force is a line load (e.g. kN/m). The local
buoyancy per meter is found from the x-sectional area of the hull at each location.
The x-sectional area depends on the local draft and are found from the ‘bonjean’

curves.

Hull form + draft + trim —> buoyancy forces

bonjean a waterline
curves
X

—

L .a[x.} alx) alx
F'.F‘\

aix): x-section area at x

x bix): buoyancy line load at x,
— b(x) =a(x)p g
H= bifx) _.....--f"ii

e —— buoyancy force curve
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Bonjean Curves — Calculating the Buoyancy Distribution

Bonjean curves show the relationship between local draft and submerged cross-
sectional area. There is one bonjean curve for each station. There are typically 21
stations from the FP to the AP, with 0 being the FP. This divides the Lbp into 20

segments.
A\ /
\ o /
\“‘*-a-.\
20191817 1615141342 1110 9 8 7 6 5 4 3 2 1 0 station
AP FP

At each station we can draw a bonjean curve of the x-section area;

. bonjean curve at station |
draft

a(T) Area x-section at station |

Bonjeans are drawn on the profile of the vessel. With these curves, we can find the
distribution of buoyancy for any waterline (any draft, any trim).

= AR S SR B e ey

__any waterline

bonjean curves

0 18 16 14 12 10 8 G d 2 0

For hydrostatic calculations we need to know the distribution of buoyancy along the
ship. We need to be able to find this for every possible draft/trim. If we had a wall
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sided vessel, it would be relatively easy to solve for the draft/trim (as in Assignment
#1). With shaped hulls, there is a non-linear relationship between buoyancy and

position. We use bonjean curves to find the buoyancies as follows.

For the typical 21 station ship, we divide the ship into 21 slices, each extending fore
and aft of its station. Using the bonjean curve for each station we calculate the total

displacement at our draft/trim;

/ bonjean curves

waterline

For example, the displacement for station 3 is;

L
V, = A 'Z;BP [m3]

The buoyant line load for station 3 is;
Ay =V,-p-g [N/m]

(assuming that area is in m2, g=9.81 m/s2 and p = 1025 kg/m?3)

The above will provide a way of calculating the buoyant forces at each station. We

will now discuss the weights.



E5003 - Ship Structures | 36
© C.G. Daley

Calculating the Weight Distribution
We will discuss three methods for determining weighs.

If the weight distribution is known (even preliminarily), we use them directly. The
steps to follow are;

o Calculate the weight at each station (+- half station)

o (optionally) find the c.g. of weights for each segment

o (optionally) place the weights at the c.g.

station

A A A~ A~

If the weight distribution is unknown and we need to estimate the distribution, we
can use the Prohaska method. Prohaska proposed a method for a ship with parallel
middle body (i.e. most cargo vessels). The weight distribution is a trapezoid on top of
a uniform distribution, as follows;

= o
,_..-"""-" b ———
b
-

>

L3 L3 L3

L
The weights are distributed according to the pattern above. With the average

. 7 = Vot
weight/meter of the hull : VW = L the values of a and b are ;

a b
W | W

Tankers 715 11125

Full Cargo Ships b5 ]11.225

Fine Cargo Ships 45 1 1.275

Large Passenger Ships 30 11.35
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Note that the values of a and b are related, so that the average is W . This gives

b 452,
W oW

To move the position of the center of weight (the lcg) the fore and aft ends of the
load diagram are adjusted by equal (and opposite) amounts.

Aleg

leg

Alcg 54
X=——
’ L= 7

~NA A~~~

If the weight distribution is unknown and we have a vessel without a parallel
middle body (i.e. most sail yachts), we need a smoother distribution. The method
below uses a parabolic distribution on top of a uniform distribution. The two parts

each have half the weight.

W, -
34 W=b

12 W

[
=2
h
o
.
L]
X!
-— .

The equation for the weight is;

+%w (1—(2—LX—1)2)

w=2
2

To shift the total center of weight by x’ we shift the c.g. of the parabola by 2x. This
1s done by ‘shearing’ the curve, so that the top center, ‘D’, shifts by 5x. All other

points shift proportionally.

W, B ——
L —_—— W
/f-ﬁf/_g Cy 2 Ca T W
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Topic 4: Problems

4.1.  For the three station profiles shown below, draw the bonjean curves in the space
provided.

d station body lines Z bonjeans
6 6
5 5
/
4 / 4
=
// I |
3 3
[m] - [m]
b 4
2 +Hf 2
b
/
1 = 1
-
| et
Oflﬂ" y 0 A
0 1 2 [3] 4 5 6 0 10 20 30 40 50 60
m

[m]
4.2.  For avessel with 4 stations, the bonjean curves are given at the 3 half stations. Lbp is
60m.
for the vessel to float level (no trim), at a 4.5 m draft, where is the C.G.?
What would the Prohaska distribution of weight be to achieve this? (plot)
If the C.G is at midships, and the draft (at midships) is 4.5 m, what is the trim?

Z bonjeans
6
T Bt
5 Y
A S| A
p AP
4 , ot
’, /' e
Ed ’/,/ 2 1? 1 1/2 1/2
3 4 | | I
[m] A A I l l
l' J/ / | | |
2 //,/‘/ : ‘x :
/ /I // [ | |
B /f /// 3 2 1 0
1 h / % AP FP
A
I" "//
’/
0 A
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4.3.  For the vessel body plan shown below (left), sketch the corresponding bonjean curves (on
the right).

Z station body lines Zz bonjeans
6 6
5 5
y
/
4 7 4
pd
I'
3 3
[m] a [m]
2 2
\
/
y L ="
0 He—, y 0 A
0 1 2 3 4 5 6 0 10 20 30 40 50 60
[m] [m]

4.4.  For the bonjean shown below (right), sketch the corresponding vessel body plan curve
(on the left).

. Z station body lines 5 Zz bonjeans

o 1 2 3 4 5 6 0 10 20 30 40 50 60
[m]
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4.5. Bonjean Curves The following figure shows 5 potential Bonjean curves. Some of them
are impossible. Identify the curves that can not be Bonjean curves and explain why. For the
feasible Bonjeans, sketch the x-section that the Bonjean describes.

y y y y y

- |

A A A A A

(a) (b) (c) (d) (e)

4.6.  For the two ship stations shown below, sketch the corresponding bonjean curves on the
grid below.

) 20 m . 5 20m R
12m
145 m?
(a) (b)
12
10
z[m] 8
6
4
2
0

0 50 100 150 200
Area [m2]
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4.7.  You are supervising a preliminary ship design project. You have asked one of your team
to produce a net load (weight-buoyancy) diagram, so that bending moments can be
calculated. The diagram you are given is ;

Net Load Curve
20

D

-20 ‘ ‘
AP Ya o0, ¥, EP

why is this diagram impossible? Justify your answer. (hint: use SFD and/or BMD)

4.8.  For the three station profiles shown below, sketch the corresponding bonjean curves

Draft (m)

14
1m grid

12

10

<

0O 10 20 30 40 50 60 70

Area (m?)
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Topic 5: Longitudinal Strength: Murray’s Method

Battleship TEXAS

Introduction

In this chapter we will
% Discuss Murray’s Method to estimate still water bending moments

o o 0 ) I ) o ) o o ) o ) o o ) ) o )

Murray’s Method

Murray’s method is based on the idea that forces and moments in a ship are self-
balancing (no net force or moment is transferred to the world). Any set of weight
and buoyancy forces are in balance.

Ly

'}f2¢ L ) L3 '}l'a ::i ?F'Iq_
?F'I1 X T'}"ﬁ

Also, for any cut at x, the moment at the cut can be determined in two ways;

BM (X)ZY1L1_YZL2 i

]
in
Y
—
tn

Murray applied this idea to a ship: 2 moments are equal

=Y.l -y, -vy,L, ¢ i):(ﬁ #
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Aft Fwd
Weight Weight

W, W,
=y
i Y
|

Y

A i 4

|-¢— ga —hlq—gf —:-|

|
Az [V} 5f
Aft Fwd
Displacement Displacement

where
fr,fa are the distances from the I to the centers of weight (fore and aft)
gf,ga are the distances from the Ul to the centers of buoyancy (fore and aft)

The bending moment at midships is;
BMg=W, f, —A,g

or
BMg=W, f, —A, g,

a

These are two ‘estimates’ of the maximum bending moment. We can combine the
two, and increase our accuracy, by taking the average of the two;

BMQQ:%(VVa fa +Wf ff)_%(Aaga +Afgf)

=BM,, — BM,
weight - buoyancy
To find the buoyancy part, Murray suggested

BM, :%(Aaga +Afgf)=%A-x

where X = average moment arm

Murray suggested a set of values for X, as a function of the ship length, block
coefficient and the ratio of draft to length;

X =L(a-C, +b)
where
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T/L |a b

.03 1.209 |.03

.04 |.199 |.041

.05 |.189 |.0562

.06 |.179 ].063

This table for a and b can be represented adequately by the equation;
a=.239-T/L
b=.1.1T /L-.003

Example using Murray’s Method

Ship: Tanker L=278m, B=37m, Cp=0.8

Assume wave bending moment is;
WBM;az = 583800 t-m
WBMhog = 520440 t-m

The vessel weights, and weight bending moments are as follows;

I TEM Weight lcg Moment
(1) (m) (t-m)
Fwd
car go 62000 40 2480000
fuel & water 590 116 68440
steel 12000 55.6 667200
| 3,215,640 |
Aft
car go 49800 37 1842600
machinery 3400 125 425000
outfit 900 120 108000
steel 12000 55.6 667200
> 140690 t | 3,042,800 |
BM, = 3,129,220

w

To find the buoyancy moment we need the draft;

W=A=C,-L-B-T-y

45
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T__ A 140690
C,-L-B-y 0.8-278-37-1.025
=16.68 m
T _1668 06

L 278

Murray’s table gives;
a=0.179, b=0.063

X = 278(.179-0.8+.063) =57.32 m

BM, ==A-X

N |-

=—140690-57.32 = 4,032,428 t-m

NP

SWBM = BMy-BMg
hog sag
=3129,220-4,032,428
=-903,145 t-m (- is sag)

we need to add the wave bending moment in sag

Total BM = 903,145 + 583,800
= 1,486,945 t-m (sag)

Note that in this case the ship will never get in the hogging condition, because the
SWBM is so large.
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Topic 5: Problems

5.1.  Longitudinal strength is a primary concern during the design of a ship. Briefly explain the
idea behind Murray’s Method.

5.2. Thereisa ‘rectangular’ shaped block of wood, as shown in the image below. The block
weighs 200 N and has uniform density. It is 1 m long and 0.20 m wide. It is 20 cm thick and
is floating in fresh water.

%’5/ | 1x0.2 x 0.2 m block
weighs 200N

a) draw the shear force and bendi}ig moment diagrams for the block.

Now consider the addition of a small 50 N weight on the top of the block, at a
distance 2/3m from one end. (hint - a right triangle has its centroid at 2/3 of its
length)

After the block settles to an equilibrium position -
b) Draw the bending moment and shear force diagrams
¢) What is the max. bending stress on the transverse plane at the middle of the block (ie at 0.5 m from the
end)?

5.3.  Thereis a ‘diamond’ shaped block of wood, as shown in the image below. The block
weighs 5.4 kg. and has uniform density. It is 60 cm long and 30 cm wide. It is 12 cm thick
and is floating in fresh water. Resting on the block are 2 weights, each small blocks of steel

weighing 1 kg. They are symmetrically placed and are 55cm apart.
What is the midship bending moment in units of N-cm ?
What is the maximum bending stress in the wooden block?
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Draw the bonjean curve for a cross section of the wooden block at a point 15cm from the end. (show actual
units).
What is the block coefficient for the block?

1 kg steel block

5.4 kg block of wood

1 kg steel block

ANS: a) 171.5 N-cm (hog) b) 23.8 MPa c¢) Straight and then vertical d) 0.5

5.4.  Consider a 100m vessel resting in sheltered fresh waters (see below). The CG of all
weights fwd of midships is 23m fwd of midships (ff=23m). The CG of all weights aft of
midships is 25m aft of midships (fa=25m). The weights fwd and aft are 4200 and 4600 t
respectively. Two bonjean curves are given. Assume each refers to the average x-section area
for 50m of ship (fore and aft). The (fore and aft) buoyancy forces act at the bonjean
locations, which are 18m fwd and 20 aft (of midships). The buoyancy force aft is 4650 t.

Z bonjeans

9
8
Wa = 4600 t W= 4200 t 7 e
<25m | 23m, T
6 =t
S / Draft [m] pig T T
raft [m i<
] o S ml 4 A bl
k 20m, | 18m 3 v
4
2 A
Da Df P
(see bj1) (see bj2) 11/
0 A

0 20 40 60 80 100 120
Area (m?)
Using the bonjeans, find
The vessel drafts at the two bonjeans.
The buoyancy force fwd.
The still-water bending moment at midships
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5.5. Murray's Method Consider a 100m long vessel resting in sheltered waters. The CG of
all weights fwd of midships is 20m fwd of midships (ff=20m). The CG of all weights aft of
midships is 25m aft of midships (fa=25m).

- Describe how you would use Murray’s Method to determine the still water
bending moment for this vessel.

- What other info, if any do you need?

Note: you don’t need to remember the specific values for terms suggested by
Murray.

5.6.  Hull girder strength The hull girder can be viewed as a beam. When floating in still
water, is the beam statically determinate or statically indeterminate? Provide reasons for your
answer.

5.7.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the
lightship plus the weight of cargo in two holds. The ship has stranded itself on a submerged
rock. Draw the various curves of load and response for the vessel (weight, buoyancy, net
load, shear, moment, slope and deflection) that are compatible with the information given.
The numerical values don’t matter. The intention is to draw a set of curves that are logical for
the ship as shown.

superstruciure cargo empty
machinery ‘ 5 l R__ /X_

5.8.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the
lightship plus the weight of cargo in two holds. The forward cargo hold is empty. Draw the
various curves of load and response for the vessel (weight, buoyancy, net load, shear,
moment, slope and deflection) that are compatible with the information given. The numerical
values don’t matter. The intention is to draw a set of curves that are logical for the ship as
shown.

Superstructure cargo f empty
machunery ;. —

5.9.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the
lightship plus the weight of ballast in 4 tanks. The cargo holds are empty. Draw the various
curves of load and response for the vessel (weight, buoyancy, net load, shear, moment, slope
and deflection) that are compatible with the information given. The numerical values don’t
matter. The intention is to draw a set of curves that are logical for the ship as shown.
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superstructure
empty

J¢—

ballast water ‘

machinery.

5.10. Calculate the still water bending moment (in N-cm) for the solid block of plastic sketched

below. Assume the block has density as given and is floating in fresh water (density also
given). Is the moment hogging or sagging?

solid block of plastic with density of 0.72 g/cm’

30.0

10.0

top view

50

o front view
side view

dimensions in em
water density is Tg/cm?

5.11. For the example of Murray’s method in the Chapter, remove the cargo weight and add

4000 t of ballast, with a cg of 116m fwd of midship. Re-calculate the maximum sag and hog
moments (both still water and wave).

5.12. For the example of Murray’s method in the Chapter, instead of using the weight locations
as given, assume that the weights are distributed according to Prohaska. Re-calculate the
SWBM.

5.13. Consider a 100m long tanker resting on an even keel (same draft fore and aft) in sheltered
waters. The CG of all weights is at midships and is 8000 tonnes.
Use Murray’s Method and Prohaska’s values to determine the still water

bending moment for this vessel (i.e. get both the weight and buoyancy BMs
about midships).
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Topic 6: Longitudinal Strength: Wave Bending Moments

Cape Spear

Introduction
In this Chapter we will
e Discuss the shape of ocean design waves
e The moments caused by waves

o o 0 ) i ) o ) o o ) o ) o o ) o o )

Design Waves

Design wave forces are considered to be quasi-static. As a wave passes by a vessel,
the worst hogging moment will occur when the midbody is on the crest of a wave
and the bow and stern are in the troughs. The worst sagging moment will happen
when the bow and stern are on two crests, with the midbody in the trough between.

hogging - tension in the deck

w

Whether for sagging or hogging, the worst condition will occur when the wavelength
1s close to the vessel length. If the waves are much shorter,
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A A

L —

or much longer than the vessel, the bending moments will be less than if the
wavelength equals the ship length.

Consequently, the design wave for any vessel will have a wavelength equal to the
vessel length. The wave height is also constrained. Waves will have a limited height
to length ratio, or they will break. This results in a standard design wave of 1/20. In
other words the wave height (peak to trough) is 1/20th of the wave length.

Trochoidal Wave Profile

Note that the waves sketched above did not look like sinusoids. Waves at sea tend
to be trochoidal shaped, rather than simple sine waves. This has the feature that
the crests are steeper and the troughs are more rounded.

A trochoidal wave is constructed using a rolling wheel.

Wave Height
H, =2r

water surface

Wave Length L, = 2zR

In the case of the design wave;

Lw = Lpp for now we assume that this length and
Hw = Lpr/20 height or wave is possible

We can see that;

Lw=2rR
Hwv=2r
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Which gives;

R = Li r = Li
21’ 40

r_-=

R 20

To construct a plot of the wave, we start with a coordinate system at the crest of the
wave.

X =R@-rsn

2 —r(1—cos 6) } 6 = rolling angle

This is a parametric equation ( 0 is a parameter). We can write;

X :LQ—Lsin 1)
2 40

L
Z=—->(1-cos @
40( )

To plot the wave, it is a simple matter to calculate x and z as a function of 6 and
then plot z vs x. This is done in the spreadsheet below.

L 100
H 5
0 X z
0 0 0

10 2.343657 -0.03798
20| 4.700505 -0.15077
30 7.083333| -0.33494
40| 9.504142 -0.58489
50 11.97378| -0.89303
60 14.5016 -1.25 0 50 X 100 150 200
70 17.09521| -1.64495
80 19.7602| -2.06588
90 22.5 -2.5
100, 25.31576 -2.93412
110 28.20632 -3.35505
120 31.16827 -3.75

N SN S
N—

V4
ORrNON
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1.1/L Wave

L/20 waves have been found to be too conservative for large vessels, esp. for vessels
>500 ft. A more modern version of the 1.1+/L wave. In this case;
as before, Lw = Lpp

H, =1.1/L,, (n feet)

w

or
H, =0.607 /L, (in meters)

For trochoidal waves this gives;

R = , r =.55]JL, (feet) or r =.303,/L, (meters)

Calculating Wave Bending Moments

We can now calculate the wave bending moments by placing the ship on the design
wave. We can use the bonjean curves to determine the buoyancy forces due to the
quasi-static effects of the wave;

e WIS
—\

20 18 16 14 12 i0 B B 4 2 ]
AP FP

i i
i / —f——E— bonjean curves

?'D‘i;"\
=
[,

wave profile

The steps to determine the wave bending moment are;

1. Obtain bonjeans

2. at each station determine the still water buoyancy forces, using the design
draft. Fisw = Aisw i pPg

3. at each station determine the total buoyancy forces, using the local draft in
that portion of the wave. Fiwt = Aiwt 1i pg

4. The net wave buoyancy forces are the difference between wave and still
water. Fiwave=Fiwt-Fisw
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This gives us a set of station buoyancy forces due to the wave (net of still water).
These forces should be in equilibrium (no net vertical force). We can calculate the
moment at midships from either the net effect of all forces forward, or all forces aft
(the two moments will balance).

net wave forces (self-balancing)

N~

I S
v Cov

[\Ii} net wave forces (self-balancing)

dwl

-

midship moment
(balancing the effects of the forward forces)

There are other ways to do this kind of calculation. 3D cad programs such as Rhino
can be used to find the still water and wave bending moments. Assuming that we
have a hull modeled in Rhino, we can find the still water buoyancy forces for the
fore and aft halves of the vessel by finding the volume and location of the centroids
of the two submerged volumes.

The procedure would be as follows;

1. Produce solid model of hull

2. Cut the model at both the centerline and waterlines.
3. Find the volumes and centroids of the two halves.

4. Calculate the buoyant moments about midships.

A similar procedure would determine the wave values. The only difference would be
the need to draw the trochoidal wave as a surface.

The example below shows use of Rhino to calculate the Bouyant BM for a large
vessel. The centroids of the two half volumes are shown.

BMs = 109,000 x 1.025 x 53.97 (m3 x t/m3 x m = t-m)

=6,029,798 t-m

or

BM;g = 123,000 x 1.025 x 58.58 (m3 x t/m3 x m = t-m)
=17,385,473 t-m

average: BMsg = 6,707,376 t-m (sag)
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The difference between this and the weight moment (hog) will give the SWBM.

[Perspecive |

Rhino model, showing slices and centroids

Topic 6: Problems

6.1.  Using a spreadsheet, plot the design trochoidal wave for a 250m vessel, for the L/20
wave.

6.2.  Using a spreadsheet, plot the design trochoidal wave for a 250m vessel, for the 1.1 L°
wave.
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Topic 7: Longitudinal Strength: Inclined Bending / Section
Modulus

a breaking wave in Lisbon

Introduction

In this Chapter we will
e Discuss the calculation of bending of an inclined vessel
e General calculation of hull section modulus/inertia

o o 0 ) I ) o ) o o ) o ) ) o ) o o )

Inclined and Lateral Bending

When a ship rolls the weight and buoyancy forces cause lateral as well as vertical

bending. Normally the bending moment vector is aligned with the ship’s y axis. My
1s the bending moment that results from buoyancy and weight forces.

When the vessels rolls by an angle q, the moment vector remains horizontal. This is
because the buoyancy and gravity forces are always vertical. This means that the
bending moment is no longer aligned with the y,z axis of the vessel;
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Moments are vectors, adding in the same way that force vectors do.
A
p

M, =M, sin & lateral bending ]

M, =M, cos & vertical bending

Stresses in the Vessel

Both My and Mz cause bending stresses in the x (along ship) direction.

Note: Sign convention: R.H.R., moment acting on +x cut face, compression is

positive.
+x cut face -x cut face

-—
X

In this case a +My causes tension () on the +z part of the vessel. A +Mz causes
compression (+) on the +y side of the vessel.

The total axial stress at any point on the vessel is the sum of the stresses caused by
the two directions of bending.

oy =0y to, = + |
NA CL
_—szcose+MWy sn 6
INA ICL
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When we have bending moments in both y and z, there will be a line of zero axial
stress that we call the heeled neutral axis. This is not necessarily aligned with the
total moment. To find the heeled neutral axis we solve for the location of zero stress;

_—szcos¢9+MWy sin 6

oy, =0

2
I NA I CL
solving for z in terms of y , we get;

|
7z = —NA tan Qy,
ICL

where we define’ tan y = ! a tan 4
CL

z=tan y-y

v 1s the angle of the heeled neutral axis from the y axis;

- waterplane
.Y

Y1 h
T y eeled neytrg axis
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Peak Stresses

The highest stresses will occur @ y=VB/2 , Z=Zdeck

There are 2 section modulus values;

I I
_ N __la
Zn = v Lo =

Zdeck B/2

So that we can write;

(cos 6 sn GJ
Crex =M, +
ZNA ZCL

This leads to the question: What is the worst angle of heel (0cr)?

To find it we use;

do . _0-M,
do

which gives;

tan 0, = Zn
CL

Typically z,, /Z,, =0.5 so 0, =26.6°

: —-sin 26.6 26 .6
For example, if 5, , = Mw  then Cprs =M, il L Los
Zxa Z\a 2-Zy,
M., 1.12

NA

1.e. for this vessel, there is a 12% increase in stress during the worst roll.
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Section Modulus Calculations
Ships are largely built of plates. This means that the moment or inertia and section

modulus calculations normally involve a collection of rectangular parts. For any
individual plate:

+t
+_____________4__E'.'_ Ina=1/12b t3
! b N =1/12 a t2

Ina=1/12tb3
=1/12 a b2

Ina = 1/12 a d2
=1/12 t b3 cos20

~NA A~~~

For compound sections we need to be able to find the inertia about other axes. We
use the transfer of axis theorem:
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a=bt
n.a.

Izz =Ina + a c2

z il
The overall neutral axis (NA) is found by equating 2 expressions for the 1st moment

of area;
AhNA=2 ajhj

The total area A is just the sum of areas.
A=2ai

This gives:;
hNA=2 aihi / 2 ai=(al hl + a2 h2)/(al+a2)

The overall NA goes through the centroid of the compound area.

al.

——]—— g —

L] az L _L

h1
Pran h2

z L : z hbaseline

Moment of Inertia Calculation
Izz =2 aj hi2 + X Inaj

INA = Izz - A hNAZ
or

INA = 2(Inai + ai (hi = hNa)2)

A simple spreadsheet, as shown below, can be used to find the moment of inertia of
a ship;
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item  scantlings area height 1stmom 2nd mom local 2nd

(desc.) (desc.) a h ah ah? ina
1
2
n
A=Y a T ah T ah? Ti
e o
o * ah - lzz

NAT T A
IN.ﬂ = lzz- ﬂhNAE

See Assignment #2 for an application.

Section Modulus for Material Combinations
(e.g. Steel Hull, Al Superstructure)

Consider a section with 2 materials

b
mI E2

h
h2 E1

When the section bends the sections remain plane, meaning that the strain field is
linear.
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/ & \
-
F4
Clﬂp E,
E1
dh
E2
Epot E,
strain madulus stress Force /dh

To determine the stress/strain/deflection relationships, we convert the x-section to
an equivalent section. The idea is to modify the section so that it is all made of one
material, but retains the distribution of axial force (and bending stiffness). We do
this by adjusting the width of one of the materials, in accordance with the ratio of
Young’s Modulus. For example, Aluminum is converted to steel, but made thinner
by Ea/Est.

b,=b E,JE,
tep

0 /

/| /

Epot E,
strain modulus stress Force /dh

correct wrong wrong correct

For the modified section, Itr is calculated in the usual way. The strains and
deflections for any vertical bending moment will be correct.

lLe.v” =
EITR

The only error will be the stresses in the transformed region. The stresses in the
unmodified region will be correct, but the modified region will be wrong by the ratio
of modulii. We can correct this as follows;

My :>O_l:|\/|y and o, =—2

TR TR 1 I TR
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Topic 7: Problems

7.1.  Find the moment of inertia of this compound section:

—

é}

\.

-

‘ 10 x 90

| 110x2%0  dimensions in mm

A box steel hull is 4m x 1m with a shell thickness of 10mm. It is inclined at 15 degrees,
and subject to a vertical bending moment of 2 MN-m. Find the bending stress at the emerged

deck edge.

.
\

7.2.

7.3.  For acomposite beam (Steel plate with Aluminum web/Flange) loaded as show below

a) find the central deflection.
b) find the maximum stress in the Aluminum

¢1OO kN ¢1OO kN

Steel 200x30
I — —
%—""ﬁ — )
o - il ;57 H Aluminum
Vinax E_steel: 200 GPa 140x15, 50x20
« al ~  E_A:70 GPa dimensions: mm
B x section
side view

7.4.  Consider a compound steel-aluminum beam, shown below. Calculate the deflection d

(show steps)
1kN
20 mm l
5mm Al (E= .7e11 Pa) = 8 2
[ | =
= F~~__ __---0 d= —
5mm // // steel (E= 2e11 Pa) ——____ :_g ________ — T

Ans: 0.112m
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PART 3: Beams and Indeterminate structures
| s 7} oy = il P

-‘j‘f - = '. — o __ﬁ*ﬁ _‘ s : } .
M R S o ity ¥ e
ooy yli D" -:’,_j’ f‘" | 4 [ /
; } ,;‘1"'.‘}' BT a1 1] : | - L
| A o = 9

i - : : b
i pn e
3 [T

Sintra Tile Mo§éic
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Topic 8: Beam Theory

69

Introduction
In this Chapter we will

e Develop the elastic behavior of beams
o Show the relationship among load, shear, bending, slope and

deflection

o o 0 ) I ) o ) o o ) o ) ) o ) o o )

Coordinate System and Sign Convention

The standard coordinate system has the x axis

along the neural axis of the beam. The positive y
axis is pointed up. The sign convention for force
and moment vectors follows the right hand rule;

+ Forces and deflections follow the axes.

+ Moments and rotations follow the curl of the
fingers (on the right hand) when the thumb is
pointing along the axis.

Shear strain: T J, l T
Bending moment:
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f
—M{:-cjl\.

Q(x)

-

L:Ix=

M(x) + dM

{Q(x) +dQ}

in SI units:
P N/m
Q:N
M : Nm
dx: m

70

To determine the equations for beam bending we
take a small section of the beam (which represents
any part) as a free body. We look at all the forces
and moments on the section and assuming that
the net force and net moment are zero (Newton!)
we derive the equations.

At this point we haven’t specified P,Q or M. They
can have any values. We will examine equilibrium
conditions and see how these result in
relationships among P,Q,M.

We start by summing vertical forces, which must
sum to zero for equilibrium;

Q) —(Q(x) +dQ) +p(x) dx =0

[N]
which is simplified to;
dQ = p(x)dx
and rearranged to give;
() =22
pix) = dx

This is a differential equation that states that the
line load on a beam is equal to the rate of change
(slope) of the shear force. Next we sum moments
about the right hand end, which must also sum to
zero to show equilibrium of the free body.

—M(x) — Q(x)dx — p(x)dxdz—x +Mx)+dM) =0

which is simplified to;

2
—Q(x)dx — p(x)d%+ dM = 0

note that dxis not just small, it is vanishingly
small, so that dx?1s vanishingly small by
comparison (i.0.w. we can remove the second order
terms, in this case with no loss of accuracy).
Therefore;

—Q(x)dx+dM =0
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or;
dM
Qx) = Tx
X
This is our second (related) differential equation,
which states that the shear in a beam is the rate of
change (slope) of the bending moment.

We now have two differential equations;

10]
p(x) = E
and
am
Q(x) = TIx

We can re-express these relationships as integral
equations. The shear is;

Q0 = f p(x)dx

In the form of a definite integral with a constant of
integration the shear is;

X

Q) = + [ PG
0
In words, this equation means: shear is the sum of

all loads from the start to x. Similarly, the
moment is;

M(x) = f 00x)dx

which becomes:

M(x) = M, + fo(x)dx

Aside: The shear difference between any two
points on a beam will be exactly equal to the load
applied to the beam between these two points, for
any pattern of load. This leads to a very easy and
accurate way to measure force;

F=] p(X)dx = Q5 — 0,

This principle has been used to design load cells,
and to instrument ship frames to measure contact
loads from ice or slamming.
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Adding Deformations

So far we have differential equations for
load/shear/bending relationships. Now we add
deformations.

The shear force and bending moments are causing
stresses and strains in the beam. We make the
assumption that we can ignore the shear
deformations (this is part of what we call simple
beam theory), so that only the bending moments
cause distortions. This means that only consider
the shortening of the compression side of the beam
and the lengthening of the tension side. When this
happens, the beam deforms from being straight to
being a curve. The curve shape for any short
length is an arc of a circle, with a radius R. The
local radius, as we can show, turns out to depend
only on the local bending moment. The figure
below show a short length of a bending beam. The
curved shape is also presented in differential form,
meaning essential or limit shape for a very small

value of dx.
i
—dx
do = R
do do
R A=ydb
__.____‘\/dof |.‘/_\.,| y
d0
7 e(y) = (ﬁ =y 5%
- dx i C i

curved bar differential geometry
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The neutral axis (NA) does not stretch or contract.
The upper and lower parts of the beam compress
and/or stretch. We can use the two ‘known’
relationships, the stress-moment equation;

_ My
7=

and 1D Hooke's law;
o = Ee

For the top fiber (in the figure above) we see that
the strain is;

A de
€= dx y dx
from the above we have;
_ My dé
T TV

which can be re-arranged to give;

e M
dx EI
or

do="4
TR

We also have

de_dx
"R

do 1

dx R

Where R is the 'radius of curvature' and x is called
the 'curvature' (note the odd naming).

Note also that d6 is both the change in relative
angle of two cross sections separated by dx and

also the change in slope between two points
separated by dx along the beam. 8(x) is the slope of
the beam.
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This gives us;

For prismatic sections, EI is constant, so;
X
0=0,+ ! j Md
= — X
o T El
0

Similarly, to find deflections v, we use the
relationship, assuming small deflections;

dv _
dx
and
dv = 0 dx

which lets us write;
v(x) = f 0(x) dx
and;
X
v(x) =v, + j 0(x)dx
0

This completes the development of the differential
and integral equations for beams.
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P
/
| Z
Al x B
Loads
v+++++v)MB
Rs
Shear
Q(x)
Q(x)=-px B
slope- -p “Ne
=-p [_/
Moment
M(x)
M(’E\
2/
_pL
Mmax—%
3
_plL
i _é% W
0(x) Slope
V%) Deflection
ol
Y
El 3
L °x
)= Tt Bt ;Zlil
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Beam Example 1: Cantilever beam with left end
free

The cantilever beam is sketched at the left. The
left end is free and the right end is fixed. The
shear force is found by integrating the load. In this
case the initial shear is zero, because there is no
reaction at the left had end (it's a free end) ;

000 = Qo + f p(x)dx
0

X

Q(x)=0+f —p dx

0

Q(x) = —px

The bending moment is similarly found by
integrating the shear. And again there is no initial
value of moment because the boundary condition
has no moment;

M(x) =M, + fo(x)dx
0

X
M(x)=0+j—pxdx
0
2
__px
M@ =—

The shear is a straight line. We did not solve for
the right hand vertical reaction R, butitispL
and it opposes the shear in the end of the beam
(which we can see is —p L). The moment is a
quadratic function with a maximum value of

—p L?/2 as is easily found from summing moments
about the right hand end.

Next we solve the equation for the slope.

0(x) = 8, +—] M(x)dx

by inserting the expression for bending moment
we get ;

1 X —p xZ
0(x) =6, +— I j 5 dx

which becomes;

px

6(x) =86, <El



E5003 - Ship Structures | 76
© C.G. Daley

At this point we can either carry forward the
unknown initial slope or solve for it. We know the
slope at L is zero, so we can write;

p L’

9(L)=0=90—m

which can be solved to get;
pL®
0, = —
6E]

therefore the complete equation for slope is;

pl* px?
o(x) == B
(%) = GET ~ 6EI

Now we can find the deflection. The integral
equation is;

v(x) =v, + jxé?(x)dx

which becomes:

( ) B N xp L3 p x3 d
V=V | 6Bl T 6ET
which becomes;
B pL3x px*
v(¥) =V + T Er T 2aE

The deflection at L is zero, letting us write;

pLl* plL*
v(L)=0=v, + CEI ~ 24EI
which gives;
pL*
Vy = —@

so the total equation for the deflection 1is;

—-pL* pL¥x px*
v(x) = —
8EI 6E1 24E1

which completes the solution.
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sl

A l B
X
Loads
Y Y Y VY VY Y Y
Ra Re
Shear
Ra ~Q(x)= Ra-px = pL/2-px
Q(x)
[ — __R
slope = -p B
Quex = -p L/2
Moment
M
(x) ] L2/ 7 i
- ey
_1(-p> pL® px®
Slope
0() -
—  o.-pL
24E]
o Deflection
4
( Vinax = :5| L
v(x)= 'PLAHD—LK{M P64 E
24El 12El 24El
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Example 2: Pinned-pinned beam

In this case the initial value of shear is the
reaction at the left end. We can solve for this from
static equilibrium at the start. So the shear is;

Q) = Qo + f p(x)dx
0

Qo) = pL/2 + ] —p dx

0
pL

2

Qx) =

The bending moment is;

M(x) = M, + fo(x)dx

xpL
M(x)=0+ f 7—'pxdx
0

The plot at the left shows the shear and bending
solutions. In this case, we were able to use statics
to solve for one unknown at the start, which
simplified the problem.

Next we solve the equation for the slope, as before,
by inserting the expression for bending moment
we get ;

1 (*pLx px?
0(x) =0, +— | — —
D =0+g) 2 2
which becomes;
1 pLx? px3
0(x) =0, + - (——— )

At this point we can either carry forward the
unknown initial slope or solve for it. We know,
from symmetry, that the slope at x = L/2 is zero,
SO we can write;

oL/D=0=6,+ LPL_PL
/2)=0=60+5Gg ~2g)
which can be solved to get;

—p L3
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therefore the complete equation for slope is;

1<—pL3 pLx? 'px3>

0(x) = —
(x) 24E] T 4 6

El

Now we can find the deflection. The integral
equation is;

v(x) =v, + jxé?(x)dx

which becomes;
1 (*—plLl® pLx* px3
= v, +— -2 4
V=Vt ) aEr T T e

which becomes;
—p L3x N pLx® px*
24E] 12E1 24E]

v(x) =v, +

The deflection at L is zero, letting us write;

—p L3x N pLx® px*
24E1 12E1 24EI

v(x) =

which completes the solution.
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Topic 8: Problems

8.1.  Consider a beam made of steel joined to aluminum. The steel is 10 x 10 mm, with 5 x 10
mm of Aluminum attached. Egee = 200,000 MPa, E4 = 80,000 MPa. The beam is fixed as a
simple cantilever, with a length of 200mm and a vertical force at the free end of 2 kN.

E = 80,000 MPa ¢
AT
| \

E = 200,000 MPa

AN

convert the section to an equivalent section in steel and calculate the equivalent

moment of inertia.
What is the deflection of the end of the beam (derive from 1st principles).
What is the maximum bending stress in the Aluminum at the support?

8.2.  For elastic beam bending, derive the equation:

do M

dx ElI
where 0 1s the slope of the deflected shape, M is the moment, E is Young's Modulus,
I is the moment of inertia. You can assume the c=¢E and c=My/I. Use at least one
sketch.

8.3.  Find and draw the shear force and bending moment diagrams for the following beam.
Find the values at supports and other max/min values.

P(x)=-p

TP YTOYYOYTOTOYTTOYTYE YT

| ]
a O |

I

L T
8.4.  There is a 3m beam. The shear force diagram is sketched below.
Sketch the load, moment, slope and deflection diagrams (9)
What are the boundary conditions and discuss whether there can be more than one option for the boundary
conditions.(6)

} 3000 mm 'J|

200

100 \
Shear(N) \
-100 \

-200
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8.5.  For elastic beam bending, complete Figure 1. The shear force diagram is sketched. You
need to infer from the shear what the load (including support reactions) may be, as well as an
estimate of the bending moment diagram, the slope diagram and the deflected shape. Draw
the support conditions and the applied load on the beam, and sketch the moment, slope and

deflection is the areas given.

Beam with
load and
supports

Shear 0 e

Force 4

Bending
Moment 0

Slope

Deflection 0

8.6. Beam Mechanics. For the beam sketch below:

El=constant 0=20 kN/m
A B A R
\ =, >
¢-l'—2m—h+ll—21n—h-|
'l‘ll

a) sketch by hand the shear, moment, slope and deflection diagrams
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b) Assuming the beam is a 10cm x 10cm square steel bar, solve the problem to find
the bending stress at the fixed support. Use any method you like.

8.7.  There is a length of steel that is 3.1416 m long, 50mm wide. It has a yield strength of
500 MPa (N/mm?), and a Young’s Modulus of 200 GPa. If the steel is thin enough it can be
bent into a perfect circle without yielding.

a) What is the maximum thickness 't' for the steel to be bent elastically (and not yield)?

b) If the steel thickness is 1mm, what is the stress when it is bent into a 1m Dia circle.
c) What would the shear force diagram look like?

(Hint ‘this relates directly to the derivation of the differential equations for beam
bending)

‘ steel: oy= 500 MPa
3.1416 m 50 mm 1
———
#
v
=t _—

8.8.  Sketch the shear, bending, slope and deflection patterns for the four cases shown below.
No numerical values are required.

(a) symetrical parabolic (b) ramp &
N 1" Dﬁ:
1 | 1 |
pel 2 2 2

(c) point moment at center (d) inclined force off center
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Topic 9: Solving Beam Equations

A Train Station in Lisbon

Introduction
In this Chapter we will
¢ Review the differential equation set derived in the last Chapter and
discuss solutions using Macaulay functions and Maple.

I I I I I I I ) o ) ) o ) ) o ) ) o

Family of Differential Equations

Simple beam behavior considers only the
deflections due to bending, and only in 2
dimensions. Torsion, shear and other elastic
distortions are neglected (for now).

Consider a beam between two supports. We
describe the deflections with the variable v(x).
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The analysis of bending in Chapter 8, developed
the following differential equations;

p(x) = ’ gix)
o = 10
M) = 12 Zix)

These can be re-expressed into a set of related (not
coupled) differential equations, of increasingly
higher order;

v(x) = deflection|m]

0(x) = dl;ix) — v/ (x) = slope [rad]
M(x) = EI dz;(f ) _ E1v"(x) = moment [Nm]
06 = E1 29 _ b1 o) = shear[N]
dx3
p(x) = El dz;(f ) B (x) = load [N /m]

Seen in this way, the key behavior is deflection,
with all other quantities being derived from it.
There is a similar set of equations, expressed in
integral form, starting from load;

p(x) = load [N/m]

Qx) =Q,+ f p(x)dx = shear force [N]

0

M(x) =M, + fo(x)dx = moment [Nm]
0
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Boundary Conditions
(e.g. at x=0)
(‘ T Fixed ¥(0)=0, q(0)=0
no deflection or
M Q no rotation ~ ¥(0)=0,v(0)=0
7@9 Pinned v(0)=0, M(0)=0
no deflection or
t nomoment  ¥(0)=0,v(0)=0
Q
0 Roller v(0)=0, M(0)=0
no deflection o
no moment ¥(0)=0.v'(0)=0
Q
e - M(0)=0, Q(0)=0
or
Q :2 :hc;n;int V'(0)=0,v"(0)=0
v Guided q(0)=0, Q(0)=0
Q no shear or
M no rotation v(0)=0,v"(0)=0

85

X
1
0 =0, +ﬁf M dx = slope [rad]
0

v(x) =v, + jxe(x)dx deflection [m]

The set of derivative equations show that if the
deflected shape is known, all other quantities can
be determined. In such a case there is no need for
any boundary conditions. (to do: think of a
situation where the deflected shape is fully known,
while other quantities are not.)

Normally we would not know the deflected shape.
Instead we would know the load and would want
to determine the deflected shape. In that case we
would employ the integral equations. One
significant issue with the integral equations is
that the 'constants of integration' must be found.
These are found from the boundary conditions. All
types of end conditions can be represented as some
derivative of deflection being zero. More
specifically, two of the derivatives will be zero at
each end of the beam. This gives four known
boundary conditions for any beam (2 ends!), and so
the four integral equations can be solved.

At this level of consideration, there is no difference
between a determinate and an indeterminate
beam. All beams have 4 integral equations and 4
boundary equations (or it could be said that all
beams are represented by a fourth order ordinary
differential equation with four boundary condition
equations, regardless of the type or loading or
supports).

In the previous chapter we solved two beams by
progressively solving the integral equations. Those
cases were relatively simple, both because they
were determinant systems, and they had simple
load patterns, and in one case was symmetric.
Solving non-symmetric cases of indeterminate
beams with discontinuous loads (patch loads) can
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A B
|

M
Loads A( T
|
RA r :
|
R Q(x) Qs

Al ! Q(x)
Shear Q(x) _‘\pc Qu(x)

Moment.  M(x) ) :

\MB |

My ﬁ/ :

Slope  0(x) 1 :9
6i(x) | 000 ‘ 05(x)

Deflection  v(x) l 3

v.(x)m e

va(x)
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involve a lot of algebra. We will solve one such
system in three different ways; 1) directly with the
integral equations, 2) with Macaulay functions
and 3) with the help of the Maple program.

Example 3: Solving Piecewise Beam Equations

The beam sketched at left is fixed on the left end,
guided on the right and with the loading and
properties shown. A qualitative sketch of the
solution is plotted, indicating that the solution is
in three parts. The load is a patch load, so the
solution must be in parts. The points labeled 'B'
and 'C' represent break points in the solution. The
various quantities at these points represent
ending values for the partial solution to the left of
the point and starting values for the solution to
the right of that point.

The boundary conditions create a set of unknown
loads on the ends of the beam, which are sketched
in the 'Loads' diagram. For a fixed end we know
that the deflection and rotation are zero. For a
guided end we know that the shear (reaction) and
rotation are zero. These conditions give two
unknown loads at the left end of the beam. There
are two known movements (deflection and slope
are zero) at the left end of the beam. At the right
end the moment and deflection are unknown while
the shear and slope are both zero (recall that there
are always 2 known and 2 unknown values at each
end, in some combination of loads and
displacements). In this particular beam we know
that R, 1s the only vertical support and must
balance all the applied load (which is 4x5=20). We
also know that there is no shear in the right end of
the beam (the vertical force must be zero because
the roller has released it). So the shear solution is
as follows;

part 1-
Q:1(x) =20
part 2°
Q(x) =C—-5x
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Q,2)=C—-52=20 =>C=30
Q,(x) =30—-5x

part 3-
Q3(x) =0
The moment solution is;
part 1-
X
M;(x) = M, + f 20 dx
0
My(x) =M, +20x
My = M, + 40
part 2-
X
M,(x) = Mg + f (30 = 5x) dx
2
M,(x) = My, — 10 + 30x —gxz
My = My(6) = M, + 80
part 3-

X
M3(.X):Mc+ f de:MA‘l‘SO
6

The slope solution is;

part 1-
1 X
01(X) = 9A +_j- MA + ZOxdx
ET ),
0:(x) =0+ (Myx+10x%)107°
93 = 01(2) = (2 MA + 4‘0)10_6
part 2-

1 r* 5
0,(x) = 0g +Ef2 MA—10+30x—§x2 dx
20 5
0,(x) = (?+ Myx — 10 x + 15 x? —gx3)10‘6
920
6c = 0:(6) = (6 My +—5-)107°

part 3°
1 X
93(36) =ec+_j MA+80 dx
EI ),

520 .
03(x) = (—T+ M,x + 80 x)10°°

1880
6p = 05(10) = 0 = (10 My +——)10"°

Therefore
188

A7 3
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520 52
93(36) = (—T + ?X)10_6

The deflection solution is;
part 1-

mm=m+f(

—188
7% +10x2) 10~ % x dx

—94 10
v (x) = (sz +? x3)107°
—94 10 —296
Vg = 171(2) = (sz + ? x3) 1076 = T 107°
part 2°
v, (x)

_—296

3
*20 218

+ | ——— x+15x?
, 3 3

5
— gx3 dx) 107°

@) = —10+20 109 2 453 5 1106
vy(x) = ( 3 3 X 3 X X 24x )
—1384
vg = 1,(6) = (—5—)107°
part 3-
@) = —1384 N fx 520 N 52 dx) 10-6
v3(x) = ( 3 ) 3 3 x dx)
) = 800 520 N 26 10-6
v3(x) = ( 3 3 X 3 x%)
vp = v3(10) = (—600) 107°
Summary of solution-
20 0<x<2
Qx) = { 30—5x 2<x<6
0 6<x<10
—62.67 + 20x 0<x<?2
M(x) = {—72.67 +30x—25x% 2<x<6
17.33 6<x<10
—62.67x + 10x?2 0<x<2
0(x) =107° { 6.67 —72.67x + 15x2 —.83x% 2<x<6
17.33x —173.3 6<x<10
v(x) =
—31.33x2% + 3.33x3 0<x<2
107 { —3.33+6.67x —36.33x%+5x3—-.208x* 2<x<6
266.7 — 173.3 x + 8.67 x? 6<x<10

Ry =20 M, =—-62.67 M,=1733 v, = (—600) 10~°
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Macaulay Functions
y (x)

unit point moment at x=a

<x-a>?

2

y() <x-a>”

unit point force at x=a

Q) p—

N (x) <x-a>’

unit step at x=a

y (%) <x-a>'

unit ramp at x=a 1' I

y () <x-a>?

quadratic at x=a I

89

This completes the manual integration method for
solving example 3. To check this we will be solving
the same problem in 2 other ways.

Macaulay Functions

Macaulay functions (also called singularity
functions) are simply a generalization of the idea
of a step function. These functions provide a
convenient way of describing point forces,
moments and piece-wise continuous functions. And
when a few special rules of integration are
employed, it becomes very easy to use Macaulay
functions to solve beam problems.

The fundamental Macaulay functions are shown
on the left. Each function in the sequence
represents the integral of the previous function
(with the small exception noted later). Any of the
functions can be multiplied to a constant to change
the magnitude.

For example, a unit moment at x = a 1s described
as:;

<x—a>"?
and a moment of magnitude M at x = a is;

M<x—a>?
Similarly, a point for of magnitude F at x = a 1s;
F<x—a>"1

The triangular brackets are just a way of saying
that the function is meant to be seen as "one
sided". In simple terms :
F(x—a)" ifx=a
g ST =

F<x—-—a> { 0 if x <a
Two examples of how Macaulay functions can be
combined to describe various piecewise curves are
shown below;
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patch pressure:
p=2 from x=2 to 5

y () 2<x=2>% 2<x-5>°

. lro
% : 142

90

triangle patch:
p=4 from x=1to0 2

Y () 2<x-15"- 2<x-3>' - 4<x-3>°

2 <x-2>0

- 2
I
2 5
p— 5 X
2 |
-2

-2 <x-5>°

Integrating Macaulay Functions

<x-a>2dx = <x-a>"
l<x-a>"dx = <x-a>*
l<x-a>%dx = <x-a>'
l<x-a>'dx = L<x-a>?
{<x-a>? dx = L<x-as®

etc.

y (%)

like a moment

.ﬂ ,
|

Ty ()

like a force

SS)’ ®) like a step

iV

¥y () 1
X === 1+2+d

| 1 3

_ 2<x-1>"1 i

T e X
1

— 5 X
- -2<x-9>' "\
S

= -4 <x-5>°

Integrating Macaulay Functions

The integration of Macaulay functions is very
similar to normal functions with an exception. If
the exponent is positive then the normal rules of
integration apply. If the exponent is negative, then
we just add one to the exponent. The rules are
shown at the left.

So for example;

j<x—a>_2=<x—a>_1

but
a1 3
<x—a> =§<x—a>

It likely makes sense to the reader that the
integral of a point force is a step and the integral
of a step 1s a ramp. Does it make sense that the
integral of a point moment is a force? To explore
this idea, consider the functions sketched at the
left. In the first case we have function with a small
patch of load in one direction followed by a small
patch of load in the opposite direction we have no
net force but we do create a small point moment
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(in the limit). When we integrate this we get a
small triangle, which when integrated again gives

To Illustrate Macaulay functions, we start with an
example of a pinned-pinned beam with a central

Load(x)[N/m] = Ra<x-0>" - F<x-L/2>" + Ra<x-L>"

Load(x) = F/2<x-0>" - Fex-L/2>" + F/2<x-L>"

We will leave out terms with <x-L> as they show no useful info

S " -
Shear Q(x)[N] = F/2<x-0>° - Fex-L/25°

1 2
Moment  M(x)[Nm] =26)+F/2<x-0>' - F<x-L/2>'

Slope  B(x)[Nm?/Nm?= rad] = 0(0)+V/EI(F/4<x-0>? - F/2<x-L/2>?
From symmetry: 6(L/2)=0 6(0)=- F L¥/(16 EI) (ok)
1 2 3

—_— e~  —
B(x)[Nm?/Nm?= rad] = 1/EI(- F L?16 + F/4<x-0>? - F/2<x-L/2>* )
Deflection 1 2 3
V(x)[Nm3/Nm?=m] =87+ 1/EI(- F L?/16 x + FN2<x-0>® - F/6<x-L/25>?)
From symmetry: v(L/2) =V,

© C.G. Daley
a step.
force:
l F
[ | From statics: Ry=Rs=F/2
T 7
- L >
* F
}RA RB
Q(x) " 1
I—— 1+2
_____ -1
M(x) 142
13-2 "
/— e 1+2+3
0(x) e = :
Y 1+2
v(x) T rzes
1

Vo = = F L2/(32 El)+ F(L/22/(12 EI) = FLY(48 EI) (oK)
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Problem
Loads (actions and reactions)

2 .. 4
T 2o e
I . D_ﬁ MAQ'O > P)i"o

k.

vertical forces point moments

AN

—
Load(x)[N/m] = Ru<x-0>" - 5<x-2>° + B<x-6>° ( -Ma<x-0>2- Mp<x-10>2)
Shear Q(x)[N] = Ra<x-0>° - 5<x-2>" + 5<x-6>' (integrate just the vertical forces)
Moment M(X)[Nm] = -Ma<x-0>%+Ra<x-05" - 2.5<x-25% + 25<x-6>? - Mp<x-10>°(now include the moments)
Slope  O(x)[Nm#/Nm?= rad] = BEOTHI/EI(-Ma<x-0>"+Ra/2<%-052 - 5/6<x-2>% + B/6<x-6> - Mp<x-10>")
Deflection  v(x)[Nm3/Nm?=m] = sfOT+BOT+1/EI(-Mu/2<x-0>2 +R /B <x-0>? - 5/24<x-2>* + B/24<x-6>* - Mp/2<x-10>?

verical reaction can be found from force equilibrium (statics): % Fy, 4 R-B*4=0 > R,=20
Q(x) = 20<x-0>° - B<x-2>! + 5<x-6>'

20 ) el

I_\ 1
=l 14243

Shear Plot (and breakdown)

with Ry, Moment and Slope can be simplified to:
Moment M(x) =-Ma<x-052+20<x-0>" - 2.5<x-2>% + 25<%-6>? - Mp<x-105°
Slope  6(x) = VEI(-Ma<x-0>'+20/2<x-0>* - 5/6<x-2>* + B/6<x-6> - Mp<x-10>")
unfortunately, equating initial slope to zero doesn’t help. It will always be 0=0, regardless of the magnitude of M,

To find M,, we equate final slope to zero (guided support) :
0(10)=0= EI(-Ms<105'+20/2<1052 - B/6<85> + 5/6<4>® - Mp<057)

solve for M,:
My=<10>2 - 5/60<8>* + 5/60<4>°= 62.67

s0:
Moment M(x) =-62.67<x-0>°+20<x-0>' - 25<x-2>? + 2.5<x-6>?

Mo = -62.67+20<105' - 25<852 + 25<4>2 = 17.33
Mp=1733 M)

Moment M(x) o~

My=-62.67 Moment Plot (and breakdown)

with M., Slope and deflection can be solved:
Slope  O(x) = VEI(-62.67<x-0>'+20/2<x-0>? - 5/6<x-2>% + 5/6<x-6>° )

Deflection v(x) = VEI(-62.67/2<x-0>2+20/6<x-05? - B/24<x-25* + B/24<x-6>*)
vo=v(10) = 10°%(-62.67/2<10>?+20/6<10>? - 5/24<E6>* + 5/24<4>*)=-600 - 10°
M (x)

Deflection v(x) -
Ve ~
Vo T 1+2+3+4

e %
9 1+2

Deflection Plot (and breakdown) Y 10043




E5003 - Ship Structures |

© C.G. Daley

/]
Problem /]

\(X),
RA'M @s(¥)
Shear Q(x)

Moment M(x)

Ma

Slope 0(x)

Deflection  v(x)

Mo

Vo
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Solving Example 3 using Maple

Maple is a computer program that is capable of
solving a wide variety of mathematical problems,
including differential equations.

Here is a very simple example of Maple’s ability to
solve and plot differential equations. This is the
solution of a cantilever beam (EI=1, L=10) under
uniform load (p=-1).

The basic differential equation;

d*v(x)
dx*

p(x) = EI = EIV'"" (x) = load [N/m]

The boundary conditions are;

v(x=0)=0

vV(x=0)=0

vV(x=L)=0
vV''(x=L)=0

Below is the full Maple input and result, showing
the shape of a deflected cantilever;
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Example 3 using MAPLE 14 to solve differential equations for beam
by: Claude Daley

2

-—h--t—4|-
F=-5
| | F’Ehms

A B c DE

=10 g
> restart;

The following aliases simplify the definition of loads.

> dist_load := (w,a,b) -> w*Heaviside(x-a)- w*Heaviside(x-b): # distributed force
Length, Stiffness, Load at "a", Load at end, Location of "a"

> L = 10: EI := 10M6:

> wa:=5:we:=5:a:=2: b:=6:

> loads := -dist_load(wa,a,b)-(x-a)/(b-a)*dist_load(we-wa,a,b);

loads := -5 Heaviside(x — 2) + 5 Heaviside(x — 6)

> plot(loads,x=0..L,title="LOADS™, color=blue);

LoAny

0 T T T T T T T 1
3 4 f 2 10

M

-3

-5

> supports := {y(0)=0, D(y)(0) = 0, D(y)(L) =0, D(D(D(Y)))(L)=0}:
> de = EI*diff(y(x),x$4) = loads; # Form differential equation

4
de := 1000000 [d—4y(x)] = -5 Heaviside(x — 2) + 5 Heaviside(x
dx

—6)
> dsolve({de}union supports ,y(x)): # Solve boundary value problem
> yy = rhs(%): # Extract deflection
> th = diff(yy,.x): # Extract slope
> m = EI*diff(yy,x$2): # Extract moment
> v = EI*diff(yy,x$3): # Extract shear
> plot(v,x=0..L,title="Shear~, color=blue);
Shear
20 -
10 -
0 r T T T T T T T T 1
0 2 4 f 2 10
X
> plot(m,x=0..L,title="Bending Moment™, color=blue);
Bending Moment
10
2 7 4 & g 1
-20 X
-40
-0

\%

plot(th,x=0..L,title="Beam Slope~, color=blue);
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Eaam Slope

0 . T . T . ; .

-0.00003 2 o8 :
-0.00006

-0.00002

> plot(yy,x=0..L,title="Beam Deflection™, color=blue);

Eeam Deflection

10

0
-0.0002
-0.0004
-0.0006

> evalf(subs(x=0,m));evalf(subs(x=L,m));evalf(subs(x=L,yy));
-62.66666667

17.3333333

-0.0006000000000

The manual, Macaulay and Maple solutions are all
the same, as expected.
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Topic 9: Problems

9.1.  Solve the following beam by direct integration. What is the maximum deflection (mm)?
What is the maximum stress (MPa) ?

200 400
T T T 77 1 P =1000 N/mm
| A A T A i 200%30
A00x20
L=1000 frame x-section
I E = .2%x10% Nimm?
dimensions in mm | = 61752381 mmd
¢=162.86 mm

Ze = 379174 mm3
ANS: .000136mm, 140 Pa

9.2.  Solve the following beam using Macaulay functions. What is the maximum deflection
(mm)? What is the maximum stress (MPa) ?

200 600
B T e 2 -
T | P=1000 N/mm

1T | | |
P=500N/mm —] | | | | |

L S S S 180x25

500x20
L=1400 frame x-section

dimensions in mm

ANS: .000484mm, 253 Pa
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Topic 10: Indeterminate Beams — Force Method

part of the superstructure on an FPSO

Introduction

In this chapter we will
¢ Review the idea of indeterminate beams and one way to solve them

U o 0 ) I ) o ) o o o o ) ) o ) o o )

Transverse and Local Strength
Most of the local structure in a ship exists to resist lateral loads.
Example: The sketch below shows a bulkhead between the deck and inner bottom,

supported by one intermediate deck. The bulk cargo (liquid or granular) will exert a
lateral pressure on the bulkhead.

main deck I~
B
; ._\_.I - intermediate deck
cargo ! [T~ bulkhead
[/ \ T~ empty space
inner bottom |/ '\ 2l /AR S
—_— ] — .‘_' | - \./';'_'_'-;_-._'"

botfbm .

Deck

Int. Deck

load due 1™ Frame
e

Eoscargo ~~Bulkhead

" Inner Bottom
Bottom
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We can model the bulkhead frame as a pinned frame over 3 supports, subject to a
lateral load;
me

To solve this type of structure we need a method to solve indeterminate structures.

What does indeterminate mean? Determinate structures have a simple set of
supports, such that the support reactions can be found from considerations of rigid
body equilibrium alone. This means that there are just enough supports for
equilibrium to exist. This is normally 3 for 2D structures and normally 6 for 3D
structures. The number of supports is also the number of equilibrium conditions
that need to be satisfied.

The sketch below illustrates the difference between determinate and indeterminate
for a 2D beam.

Determinate Indeterminate
[ | |
Q @) O
® Find the Reactions O Find-the Reaetions
® Then find the deflections @ Thenfind the-deflections
Reactions don’t depend on deflections The reactions depend on the deflections
® Equations for Reactions Equations for Reactions

’U‘ ﬂU‘ coupled

Equations for Deflections Equations for Deflections
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There are two approaches for solving indeterminate systems. Both approaches use
the principle of superposition, by dividing the problem into two simpler problems,
soling the simpler problems and adding the two solutions.

The first method is called the Force Method (also called the Flexibility Method).
The idea for the force method is;

step ©
step @

step @

step ®@a

step @

release internal forces® or external reactions until we have one or more
determinate systems

solve each determinate system, to find all reactions and deflections. Note
all incompatible deflections

re-solve the determinate structures with only a set of self-balancing
internal unit forces* (at internal releases) or unit reaction forces at
removed reactions. This solves the system for the internal or external
forces removed in @©. Observe the magnitude of incompatible deflections
that occur per unit force.

scale the unit forces to cause the opposite of the incompatible deflections
noted in @

Add solutions (everything: loads, reactions, deflections...) from @ and ®a.
Note that this will result in no incompatible deflections.

*note: forces include both forces and moments

Overview of Force Method

The structure: a beam over multiple supports:

I |
O O O

step @ cut the structure to have one or more determinate systems

SENETE

o
O
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step @ solve each system. Note Ap — an incompatible deflection.

e
MM

e B

Bending
Moment
'Ad)
Slope — 1 T
Deflection

step ® re-solve the cut structures with self-balancing internal unit forces®

step @a scale these forces (moments) to cause the opposite of the incompatible
deflections noted in @
M=1 M=-1

e
y

SFD + +

Deflection e T~
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step @  Add solutions (everything: loads, reactions, deflections...) from @ and
®a. Note that this will result in no incompatible deflections.

Mgy o
AR

M=1 M=-1
f |

e

Example of the FORCE Method:

Manual Solution

w
1- Find M4, R4, Rpin terms of w, EI, L

— i
MAQAN' o == 73; 2 — Find maximum displacement

Solution:
Part 1 — solve with My released (denoted ’ ). The

w reason we do this is because the structure is
statically determinate.

— 2 F/
~~~~~~~ ok The line load function is:
-
w x
Ry R T
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|
f 1
QUx)
h
SN
diagram
Mi(x)
bending

moment
diagram
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Reactions are found from static equilibrium:

R,_le_WL
473 2 7 6
R,_ZWL_WL
B73 2 7 3

The moment M'(x) is found by integrating the shear:
L
M'(x) = M) +f Q'(x)dx
0

wLx wx3

6 6L

The slope ¢'(x) is found by integrating the moment:
1 L
B0 = 9+ o | MG dx
0

B ,+1 wLx? wx*
= a EI\ 12 24L

And finally the deflection y'(x) is found by
integrating the slope:

L
ym=m+]¢@wx

o +1 wlLx®  wx®
= Pyx El

36  120L

This leaves us with one left unknown to find, ¢,

which 1s the slope at A . We use the boundary
condition:

L) =0 = ’L+1 wl*  wl?
y ) =0=9sl+5r |\ 36~ 120

which is solved to give;

7 wlL3

b1 = "360E
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slope

¢(x)

deflection

Yx)

*AQ ps e —— - ‘7«5:5/
]
A B

shear
force
diagram
Q(x)
MG ending
moment
diagram

103

Substituting back gives;

Slope:

) 1 —7WL3+WLXZ wx?
¢ =z {380 12 24L

Deflection:

) 1 (=7wl3x wLx® wx®
YO =g < 360 ' 36 120L>

The gives us the first half of the solution. Now we
need to ‘correct’ the solution, by removing the
rotation at A (in Part 2). This is done by applying a
moment at A, of just sufficient magnitude to cause
—¢, . This moment will be the true reaction moment
at A. All other responses in Part 2 are added to the
Part 1 responses (deflections, shear, moments, etc).
Responses can be added because the systems are
linear (superposition holds).

Part 2 — solve with just M; (the * denotes the
corrective solution ). M; will cause a rotation opposite
to ¢, , which when added to the results of Part 1 will
create a ‘fixed’ condition (no rotation) at 4. Initially
M}, is unknown.

Reactions are found from static equilibrium:

SMy=0 RyL—M;=0

M,

R, =—-2

BT
YF, =0 R;+R;=0
R = Ma

AT L

M} is negative, so Ry is negative. R} is positive.

The shear Q*(x) is found by:
L M
Q*(x) = Ry +f —w(x)dx = _TA

0
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The moment M*(x) is found by integrating the shear:
L
M*(x) = M; +f Q*(x)dx
0
My x

=M — ==
4 L

The slope ¢*(x) is found by integrating the moment:

1 L
¢*<x>=¢z+—f M (x) dx
EI J,
. M x2
-_ A+E(x_ﬂ>

And finally the deflection y’(x) is found by integrating

(A;} 7§I; the slope: .
} | Y = i + fo b () dx

. My (x* xP
g5l | St 7 e
P

To fine ¢*4 and M*4, we use:

7 wlL3

V(x) . $a= =2 =350 5T
deflection M; (L? L2>

Yy =0=¢il+- |5 - ¢

7 wL4+M;L2
" 360 EI  EI 3
-7

M= ——wiI?
4= 120"

Substituting back gives;

Reactions:

Ri=Mi_ 7 (pushes up)
A= —120w pushes up
Re=Ma_ =7 lisd

B=T =170V (pulls down)
Shear:
7
Q"(0) = 755wl

120
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105
Moment:
7
M*(x) —mWL(x—L)
Slope:
*()—1(7 L+~ witx 4= L2>
¢ = 1 3eo Wl T 1o WE X g Wi
Deflection:
1,7 7 7
* Y 3 - 2.2 - 3
Y (x)_51<360WL X = oa0 WX +720WL")

This gives us the second half of the solution.

Now we sum the two parts together for the complete
solution:

Ry = twi s wi =20 w1
A=W T 0" T 120"
Re = swl— L= 1
B=3WE T 0" T 120"
M, = Mt = w1
4= Ma= 150"
1
check forces R4+ Rp = EWL OK
check moment about A
R VL2 oy
B 23 - A
3B, A0S T, ox
1207 T120™% T T120%

This 1s the answer to the first question. The
maximum deflection is found where the slope is zero.
The full expression for the slope is:

¢(x) = ¢'(x) + ¢*(x)

27 7 wx4>

1
r =— |—wlL 2 _ LZ _
P =g (240”’ 120" T 24
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We can create a new normalized variable z, which
ranges between 0 and 1. This gives us slope in a
simpler form:

3

240 EI

d'(x) = (272z% — 14z — 10z*)

where
x
z=-
L
To find the location of zero slope we set the

term 1nside the brackets above to zero, which can be
simplified to:

27z —-14—-1023 =0

The solution of this equation will be the location of
maximum deflection. One way to solve this (which
can be done without derivatives or computers) is to
solve the equation for z iteratively. This can be done
on any hand-held calculator. We pick one of the z
terms (the first term here), and express z as a
function of z:

14 + 10 z3

=77

This iterative equation might be expressed as:

177 14+ 10z}
Ziv1 T T o5

27

Recall, z ranges from 0 to 1. So any value between 0
and 1 is a possible starting value. We can guess that

“oie 05 os osa os os 06 o the maximum deflection will be at z >.5, so we could

start with a guess of 0.6. It doesn't really matter,
except that the better the initial guess, the quicker
the solution will converge. Starting with z =0.6, we
iterate to 0.5975 in 7 iterations.



E5003 - Ship Structures | 107
© C.G. Daley

Note: there is another possible iterative version of

the z equation;
31272, — 14
Zw = [ T10

Unfortunately, it won’t converge to an answer in the
0-1 range.

The equation for deflection is:

y(x) =y'(x) +y*(x)
wlt (27 s 7, z5
EI \720 240 120

The final step in the solution, is to find y,,,, , Wwhich
isat z = 0.5975:

w L* ( 27 7 0.59755>

=2~ (£l 059758 — —— 059752 —
Ymax = "\ 720 240 120

w L*
El

Vinax = —00305

This answer can be checked in Roark, which gives
the same answer. This completes the problem.
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Topic 10: Problems

10.1. Solve the below by removing the reaction RB (as shown). This creates ‘cut’ problem that
is a cantilever beam.

10.2. Force Method.
- p=2kN/m
AN Bl‘ v Jr 1‘ v Jr{“
7 i 777
#I 2 2m—|

v

a) Sketch 3 alternative approaches to solving this indeterminate problem
using the force method. For each approach, you will need two sketches of the

auxiliary systems.

b) Using one of the approaches sketched in a) , solve the system to find the
reaction at B (in kN)
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Topic 11: Indeterminate Beams — Displacement Method

Cruise Ship in Adriatic

Introduction

In this chapter we will
e introduce the displacement method used to solve structural problems
e introduce the standard stiffness components for a beam in 2D and 3D

o o 0 I I ) o ) o o ) o ) ) o ) o o )

Indeterminate Problem

We start by considering the indeterminate beam as shown below. This could be
described as a fixed-pinned beam or a cantilever with a pinned end.

i
A T:i“c_—_::ﬂ Find Mx Ry and R

To solve this problem with the displacement (stiffness) method we create two sub-
problems, each simpler than the whole problem. Rather than removing a support
(removing a force or moment), we remove a movement (i.e we completely fix the
structure). This becomes the problem marked * below. To the * problem, we add a
second problem, the ** problem, that fixes any errors that we created with the *
problem. In this case we have a moment Mg* that should not exist, while we have a
Op* that should not be zero. So, in the ** problem, we impose 0z**, (and only a 0g**)
sufficiently large to cause a moment Mg** that is equal and opposite to Mg*.

s + \
e %
M.ET L. E,I Tﬁg Q E, M

RA Rg Ry Rg"
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o fixed-fixed beam 0 applied moment at pin
0 known solution o0 the moments and forces can be
0 Ma*=- Mg*=pL?/12 found from the “stiffness” terms, as
0 Ra*=Rg*=pL/2 shown below:
0 Mg**= 0g** 4EI/L
0 Ma**= 0g** 2EI/L
0 Rg**=- 0g** 6EI/L?
0 Ra**= 0g** BEI/L?

To solve the problem we use;
Mg**+ Mg*=
which gives;
0s** 4EI/L - pL%/12 =0

from this we can solve for 0g**;
0s** = pL*(48 EI) = 0

from this we can find all other ** terms;
Ma**= pL%/(48 EI) 2EI/L = 1/24 pL?
Rg**= - pL°/(48 EI) 6EI/L* = - 1/8 pL
Ra**= pL3/(48 EI) 6EI/L? = 1/8 pL

from this we can find the reactions;
Ma =Ma* + Ma** = pL%/12 + pL%/24 = 1/8 pL?
Rg = Rg* + Rg** = - pL/8 + pL/2 = 3/8 pL
Ra = Ra* + Rp** = pL/8 + pL/2 =5/8 pL

The terms used to find Mg**, Ma**, Rg** and Ra** are called stiffness terms because
the are an ‘action per unit movement’, such as a force per unit displacement or
moment per unit rotation. They can also be a kind of ‘cross stiffness’ such as a force
per unit rotation or a moment per unit displacement. In the case of the example
above, with the equations;

Mg**= 0g** 4EI/L
Ma**= 0g** 2EI/L
Rg**= - 0g** 6EI/L>
Ra**= 0g** 6EI/L?

The stiffness terms 4EI/L, 2EI/L, -6EI/L? and 6EI/L? are forces and moment ‘per
unit rotation’. We will define these stiffness terms in the next section.

Stiffness Terms
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When using the stiffness method, we always need to find a set of forces and
moments that occur when we impose a movement at a support. The
movement will correct a situation that involved the suppression of a
movement at a support. In our case here, the structure is a beam, and the
supports are at the ends of the beam. The supports prevent the ends of the
beam from moving. There are 3 possible movements at a support for a 2D
problem, and 6 for a 3D problem. Because of this we will define a standard
set of ‘degrees of freedom’ for a beam. A ‘degree of freedom’ can have either a
force or displacement, or a rotation or moment. The standard 2D degrees of
freedom for a beam are shown below;

t

2
y !
T_; nl—-:l I%"*‘- 2D beam = 6 degrees of freedom
3

B

The degrees of freedom follow the Cartesian system, with the right-hand rule.
These are essentially x, y, rotation (called rz). In general, to impose a unit
movement in one (and only one) of these degrees of freedom, we need to also
1impose a set of forces/moments, The forces/moments must be in equilibrium.
These forces/moments will be ‘stiffnesses’.

The mechanics are linear. This means that the set of forces/moments
corresponding to each movement can be added to those of any other
movement. A general solution for any set of movements of the degrees of
freedom can be found by superposition.

For now we will just consider the 2D case and derive the stiffness terms.
There are 6 degrees of freedom. For each degree of freedom, there are
potentially 6 forces or moments that develop. This means that there are a
total of 36 stiffness terms. Any single term would be labeled k;j, meaning the
force/moment at 1 due to a displacement/rotation at j. For example;

ki1 = force at 1 due to unit displacement at 1
k41 = moment at 4 due to unit displacement at 1

kog = force at 2 due to unit rotation at 6

All the terms can be written in matrix form as;
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kll k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

K = k31 k32 k33 k34 k35 k36
k41 k42 k43 k44 k45 k46

k5l k52 k53 k54 k55 k56

_k61 k62 k63 k64 k65 k66

We will now derive these 36 terms. Luckily they are not all unique.

Axial Terms

The axial terms are found by asking what set of forces is required to create a
unit displacement at d.o.f. #1 (and only #1);

2
T d.o.f. #1 released ET

s

NN

%]“‘“ 1 LAE 6
F1:k11—L;‘T L <— Fy=ky,
® ﬁ1=1 ©

unit movement at d.o.f. #1

For axial compression, the deflection under load is;

s FL_ R, _AE
AE 5, L

the force at d.o.f. #4 is equal and opposite to the force at #1;

F - AE
F4:_F1:>5_::k41 = L

There are no other forces (at #2, 3, 5, 6), so we have;

F,
5—=k21 =0 and k, =k, =kg =0
1
A displacement at 4 would require a similar set of forces, so that we can also

write;
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AE - AE

, ko =k, =k, =k, =0

This has given us 12 terms, 1/3 of all the terms we need. Next we will find the
terms for the #2 and #5 direction.

Shear Terms

The shear terms are found from the set of forces is required to create a unit
displacement at d.o.f. #2 (and only #2);

ZT d.o.f. #2 released

&Eﬁ

on
LA .

-

LAE 6

51 | \ijﬁ

Fo=kzy
+

unit movement at d.o.f. #2

For shear of this type, the deflection is;

3
5o Fol' 1 F_, _RE

12 El 5, L®

Note: to derive this easily, think of the beam as two cantilevers, each L/2
long, with a point load at the end, equal to Fa.

The force at d.o.f. #5 1s equal and opposite to the force at #2;

F ~12El
Fo =—F, :>5—:=k52 ==

Following from the double cantilever notion, the end moments (Ms, Ms) are ;
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L 6 El
M3:M6:F2§:>k32 :k62 =L—2

There are no axial forces, so;

k12 :k42 =0

A displacement at #5 require a similar set of forces, so that we can also write;

12 El -12El — 6El
k55 :L—3’ kZSZT’ k35 :k65 :L—za

This has given us 12 more terms, for 2/3 of all the terms we need. Next we
will find the terms for the #3 and #6 direction.

k15 :k45 =0

Rotary Terms

The rotary terms are found from the set of forces/moments required to create
a unit rotation at d.o.f. #3 (and only #3);

ET d.o.f. #3 released 5'[‘

g‘k_ﬁ »:?—-4

& :lFS
My=kyz Uﬁﬂ
ﬁ
Q 3 Mg
*
T
F-  unit movement at d.o.f. #3

For illustration and to find these stiffness terms we will solve the system. We
can draw the shear force, moment, slope and deflection diagrams as below;
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. lF

MEL 3'“5

Fa

Q T ; Q) =F,

M L////; M(X):_M3+F2'X
3] o(x) =6 +i -M x+F~X—2
- Y3 El 3 2 2

o 2 3
& /,.—-""'___'—‘-—ﬁ_,____‘___ 5(X):52+03X+é[—M3X—+ FZ.%J

2

We can use the boundary conditions (85=1, 82=0, 5(L)=0, 6(1.)=0) to find M3
and Fs.

0(L)—0—1+i —M.L+F L
El =772

1 L2 L3
o(L)=0=0+L+—| -M;—+F, - —
(L) EI[ s+ F 6}

These two equations can be solved to get;

4El 6El
Mo=" P
from these we can find;
2El — 6El
M ¢ =—L , Fg = X
This allows to find the stiffness terms:;
4El 2El 6El — 6El
k33 :T> k63 :Tkzs :L—2: k53 :L—Z » ki =k, =0
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A rotation at #6 require a similar set of forces, so that we can also write;

4E| 2El 6El —6El
k66=T, kae=T kzesZ?, kSGZT » Ky =kge =0
We can collect all these terms in the matrix;
E 0 0 ﬂ 0 0
L L
0 12El 6EIl 0 —12El 6El
L3 L2 L3 L2
0 6El 4E| 0 —6El 2El
K = L2 L L2 L
—AE 0 0 AE 0 0
—12El —6El 0 12El —6El
L3 LZ L3 L2
0 6EIl 2El 0 —6El 4E]|
i L2 L L2 L |

Note that the matrix is symmetrical. This means that terms such as kss
(moment at #3 due to displacement at #5) is equal to kss (force at #5 due to
rotation at #3). This may seem quite odd that these two items would be equal.
We will examine this in the next Chapter.

The standard 3D degrees of freedom for a beam are shown below;

3D beam = 12 degrees of freedom

The K matrix for a 3D beam is a 12x12 (144 terms).
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Topic 11: Problems

11.1. Solve the pinned-pinned beam by using the displacement method as sketched below. The
solution for the fixed-fixed beam is the same as above. Then it is necessary to show that
Mg*+Mg**+Mg***=0 and Ma*+Ma**+Ma***=0. Note: Ma** =¥ Mg**, and Mg*** =
1 MA***-

] ¢p

BT
QMJ‘FQMMH'Q?:*%

R;; F{‘B R,1k Ra' R,a RE"

11.2. Describe how you would solve the beam shown below by using the displacement method.

el

()
Ma ! L.E, I 1 t Mc
Ra Rg Re

11.3. For the simple beam shown below, derive the shear stiffness terms (i.e k15 t0 Kgs)

simple cantilever:

==

_.'.q—
||
|-n

11.4. Solve the beam shown below using the stiffness method. Find the reactions at A and B,
and the deflection at B.
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P = 5000 N/m

Vor bbb

A B

El =107 Nm2

L=10 m
ANS: MA= 166667 N-m, MB = 83333N-m AB =-.2082m

11.5. Stiffness method .

sketch a 2D beam and show the degrees of freedom.

Describe the meaning of the terms (any, all) in the 6x6 stiffness matrix for a 2D
beam, and give 2 examples.

11.6. Explain the difference between the “Force” method, and the “Displacement” method.

11.7. In the stiffness method for a 2D beam, the standard value for the k22 stiffness term is;

El
kzz = 12F

Derive this equation (Table 1 in appendix may be useful).



E5003 - Ship Structures |
© C.G. Daley

119

Topic 12! Energy Methods in Structural Analysis

Introduction

In this chapter we will

Coliseum

e Discuss application of energy methods in structural analysis
¢ Show how conservation of energy conservation to the symmetry of

structural stiffness
Energy Methods
fForce

A
Energy
F ar
Wark
. » distance

terms

Structural analysis is concerned with forces,
deflections, stresses and strains. All these involve
energy. An analysis of energy can be a way to
simplify structural analysis. Energy is a scalar,
and must be conserved, somehow. In some cases
the mechanical work done by a force is converted
to heat by friction:

Work = Energy = F-x

- action does work on block

X
£ F= ; - block does work on ground
|
—hﬂ : - ground absorbed work as heat
|
et > — = from friction

reaction
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In some cases the mechanical work done by a force is converted to elastic

potential energy in a spring. Potential energy (in a spring or in a

gravitational field) can later be recovered:

Force
Work = Energy = [Fdx =kixdx = 1/2kx*
= Energy F action - action does work on spring
F=kx “ o . - ground feels force but doss not
Work F=ky -[ mave so absorbes no wark
j » distance - 5pring sbsorbes work 35
X ¢ elastic potential energy
F reaction

Consider a body subject to a simple axial load:

F=0 £

=7 T Al wm»:%

all parts are under the
— - same stress o
same strain &

with
aog=stress=F/A F=aA4

g =strain=AL /L Al =gl

we can wirite:
oAel o Vol

Work = Energy = > =75
with o©=¢£
e=a/E

we cah write:
Work = Energy =4\ o & dvol
- ke

=;:_f_r Sazﬁvc'f

F=rAL

Al

The above 1s correct for situations where axial stresses dominate, as in
column compression or simple beam bending. This does not take shear strain

energy into account.
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Example: derive formula for Cantilever beam deflection using energy
methods.

Consider a simple cantilever with rectangular cross section.
X 4—‘

< P
— Lo
= "“uj-ﬂu\—f_'% 'I& h l_

\"“‘x_____ |=1§ w h
T cross section

Start with Energy Balance equation:

External Work (EW) done by the applied load P is balanced by the elastic
potential energy (EPE) stored in the beam;

EW = EPE

1
1/, Pa= °F f a2 dvol

Vol

In this case we assume that the stress is the result of bending and we find the
stress from;

_ My
7=
and
M = Px
which lets us write;
o P2x2y?
12
~avol = wdx dy
i {
.
A= i x%y? dvol I_j dyﬁ
Vol \ ”

We can re-write dvo/ as wdxdy and use:
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P 2 2
=T x“dx | wy“dy
L h

The last part of the above equation is the moment of inertia:

fwyzdy=l
h

This simplifies the problem to:

A x? dx

~El
L
P x31"

A= ——
El 3
0

Which gives the final and correct answer:
A= PL3
~ 3EI

Betti-Maxwell Reciprocal Theorem

The Betti-Maxwell theorem states that for any linear elastic body (also called a
Hookean body), that the movement at a d.o.f. A, caused by the application of a
force/moment F at a d.o.f. B, is exactly the same as the movement at a d.o.f. B,

caused by the application of a force/moment F at a d.o.f. A. In the sketch below, A;;
refers to the movement at i due to the application of a force at . So we can write the

Betti-Maxwell theorm as;

FA12= FAZl
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I
I
I
|
I
I
I

L — — — s

System 7 System 2

Proof:
As a linear system, superposition will hold. The structure will assume the same

final position regardless of the order of application of the forces. This means that
the same stored elastic energy will exist in either case. These are ‘conservative’
systems, meaning that all work done by the loads is converted to elastic potential
energy (and is ‘conserved’ to be recovered later). We will apply F to the structure in
two places, and compare the work done when we change the order in which we

apply the forces.

When Fis applied at both 7 and 2, the total deflection at 1 and 2 will be;
A= A11 + Ay
A= Bp1 + Ay,

If we imagine applying F at 1 first, and then at 2, the work done will be;

FA, FAy,
2 * 2

Work Done = +F A,

If we imagine applying F at 2 first, and then at 1, the work done will be;

Fhy FA

Work Done =

The work done will be the same, so;

FA12= FAZI

Hence Betti-Maxwell is proven.
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Example 1 of Betti-Maxwell

—————— ——r VY
- XE -
F
A,
1
== y |
=1 ~
- Xf -
System 1
F
q |
) - -0
Aﬂ A 1
Xo—X
System 2
F
q !
==
A =<
12
Ago

For a simple cantilever, the deflection at x> caused by
a force F at x;should be the same as the deflection at
x;when Fis applied at xz:

Solution:
The beam deflection tables (see Appendix) can be
used to find A;g and A27.

To find Az we first find the deflection at x;. The
beam to the right of x; has no shear or bending.

Consequently it is perfectly straight. It slopes
downward at the same angle as the slop at x;, which

is 07;. The addition deflection past 1is just equal to
the slope angle times the distance. The total
deflection at x> found as follows:

Fxf_I_Fxlzx2 Fx3
3EI 2EI 2EI

F x?
= 6E1(3x2_x1)

To find A4;,we use the general equation for the
deflections in a cantilever of length x> and solve for
the deflection at x;.

F x?
A = m(:g Xy — X1)

The two results are identical, as Betti-Maxwell
predicted.
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Example 2 of Betti-Maxwell

F=1
l. 8‘_2;
= 1
B = %7
- | [P
- |_ -
Ao =
- _fIE—P-
- L -

For a simply supported beam, the rotation at the
right hand end caused by a unit vertical force F in

the center should be the same as the vertical
deflection at the center caused by a unit moment at
the right hand end:

Solution:
The beam deflection tables (see Appendix) can be
used to find Aand 6.
The rotation 65 isas follows:
_FI?
021 =177

LZ
16 El

To find A4;,we use the general equation for the

deflections in a simply supported beam with an end
moment and solve for the deflection at /2.

Ayp = M (L% = x%)
6EIL
L2
S LA
2
=1zm VY
LZ
~ 16 EI

The two results are identical, as Betti-Maxwell
predicted.
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Topic 12: Problems
[]1is a maximt

12.1. Find the location of the force F so that
of Betti-Maxwell.

Farrd

E.l L

12.2. llustrate the Betti-Maxwell theorem using the beam load cases shown below. Use the
deflection table on pg 8 at the end of the paper.
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Topic 13: The Moment Distribution Method

Venice

Introduction

In this chapter we will describe the moment distribution method for solving
indeterminate beams

o I 0 ) s ) o ) o o o o ) ) o o ) o ) ) o ) o o o o o o o [ o o o o o ) )

Overview

The moment distribution method is a type of
displacement (stiffness) method because it makes
use of the stiffness terms we derived earlier. It is
particularly useful for solving problems involving
beams over multiple supports, and frames with
moment connections. It is what can be termed a
‘relaxation’ method. This refers to the iterative
way that errors are ‘relaxed’. The method can be
solved manually on paper with a simple calculator,
and was once the dominant method used in
professional practice. These days it can easily be
solved with a spreadsheet, but is seldom used
professionally. Its current value is in helping
students develop an understanding of structural
behavior. The essence of structures is the
interconnected behavior of structural elements.
The moment distribution method is all about the
way neighboring elements interact.

Hardy Cross (Wikipedia) The method was developed by Prof. Hardy Cross in
the 1920s and 30s. Cross studied at MIT and
Harvard, taught at Brown, Illinois and Yale and
consulted extensively.

Prof. Hardy Cross described his procedure as follows:
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fixed end moments
- acting on supports
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" The method of moment distribution is this:

1. Imagine all joints in the structure held so that they
cannot rotate and compute the moments at the ends of
the members for this condition;

2. At each joint distribute the unbalanced fixed-end
moment among the connecting members in proportion to
the constant for each member defined as "stiffness";

3. Multiply the moment distributed to each member at a
joint by the carry-over factor at the end of the member
and set this product at the other end of the member;

4. Distribute these moments just "carried over";

5. Repeat the process until the moments to be carried over
are small enough to be neglected; and

6. Add all moments - fixed-end moments, distributed
moments, moments carried over - at each end of each
member to obtain the true moment at the end.”

Description of Method

The moment distribution method is a way to solve
indeterminate structures comprised of beams. The
method works for continuous beams over multiple
supports and for frames. In its basic form it does
not consider joint translation. All joints are only
assumed to rotate, as would occur at a pin or roller
support, or at a frame connection (beams to
column) where sway is prevented. Subsidence of a
support can easily be handled. An extended
version can treat sway of a frame system.

Fixed End Moments — FEM : To start the procedure,
all joint are considered fixed and all fixed-end
moments are calculated. One example of fixed end
moments is shown below for a beam with a central
point force. The moments are expressed as true
moments acting on the supports. This is an
important point. Note that both end moments in
the sketch cause concave downward bending, and
would this have the same sign in a bending
moment diagram. But here they have opposite
true senses (clockwise on left and counterclockwise
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M.....appled to the joint

is divided into My, M, and M5

to be appled to each connecting
beam end.

- ’4 Total
(E! El
\ My
Mz
£
EN,
My= o Mrotar
o T
&,
action reaction
Mer\E) M2 = MTXCO
El is constant =05M,;
( same sign)

129

on right) and so have opposite signs. And we keep
tract of the moments acting from the beam, not the
reactions by the support.

Moment Distribution factors - a: At each joint where
two or more beams connect, each beam provides
part of the rotary stiffness. When an external
moment is applied to the joint, it rotates as a unit,
with each of the connecting beams resisting part of
the total moment. The portion of the total is called
the moment distribution factor - a. For each beam
the moment will be :

M; = k33i Gjoint
where k33 is beam end rotation stiffness (see
Ch10);

4El; .
ki3, = — for beam i
i L

The moment distribution factor is;

M;  k33;0joine  _ (EI/L);
Mtotal  Ojoint Xatrkss;  Zau(EI/L)

a; =

Carry-Over factors - CO: As we saw earlier, when one
end of a bean is rotated, the other end of the beam
experiences a moment as well. This is the kgs
moment. In other words, when a moment is
applied to one end of a beam, and the far end is
fixed, that other end experiences a moment.
Because kgs is half of k35, the far end moment is
always half of the near end moment. Therefore the
carry over factor is always 0.5.
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sketch problem, number nodes
and beam ends

plan solution strategy (ie note any
simplifications, types of supports,
possibility of sway)

calculate the moment distribution
factors a

calculate fixed-fixed moments
(for each beam end)

find net moment at each node
and find the required correction

l

B« @« @<« O« @« @« @@« @06

add the correcting moment to
each node, distributed on each
beam end according to

add carry-over moments at
each ‘far end’

update the end moment with
® and @(for each beam end)

f

return to ® or stop iterating
when errors are small

using the end moments, solve

for reactions, shear, moments,
stresses and deflections

sketch problem w
number the joints ﬁﬂﬂjﬂ:ﬂ
g El 2| er 3 %\T
Lz

EY
4

|<— Lq —»4—L2—>|

number the beam ends

12 21 23 32
24

ends 21, 22 and 23
all connect
at node 2 42
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Steps in the Moment-Distribution Method

The steps in the MDM are shown on the left.
The steps are discussed in more detail below.

Step 1: sketch the structure:

Sketch the structure, show the loads and number
the joints. In the case of two or more members
connected at a joint, there is one 'end' for each
beam. Any correcting moment applied to the joint
1s divided among the ends according to the
moment distribution factor.
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examples of sway or no sway

sway no sway
symmetry

=
| \| [ :
\ | '
‘\ /J7 I| /;17
\ |
| |
777 777
sway no sway
not symm due to supports
redundant parts

)
¥ - =)
;‘> J7

examples of o

Ecl

N [aq][ap]
™ Jrem =<
[P SN - S
By Elo _ Mo

5 T %
o= 444
ap = 555

I A PY

N oo
3 ~= |
El j
2
Q=72 =324
oy = 405

az= .27

M=Fa
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Step 2: plan the solution strategy and determine if
the structure will sway

In the standard type of problem the joints do not
translate, they only rotate. Axial and shear
deformations are ignored. Only bending
deformations are considered. If the model supports
permit one or more joints to translate, and the
load 1s such that it will cause such a movement,
we need to consider sway. The example structures
at the left show both types (no-sway and sway).

Note: And 'imposed' joint movement, as would
occur when a support 'settles' a fixed amount, is
not a sway problem. Imposed movements are just
as easy to solve as are applied loads.

In cases where there are redundant parts of the
structure (a determinant sub-structure), such as
cantilever portions as shown at left, these should
be removed and replaced with the moments or
forces that they cause on the remaining structure.

Step 3: Find moment distribution factors o :

For each joint we find the set of moment
distribution factors. In general;

),
Y Yau(EI/L)

The moments will tend to be larger in the stiffer
members, where rotary stiffness is EI/L. Thus the
shorter members will tend to have the higher

a factors.
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examples of fixed-end moments

p——se—dp—
F=3
e T L0000

N ~=

_-fL _+FL
M=FL M=tE
=3X2_ 187
_—wL2 _+WL‘2
M= M=z
2x16
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Step 4: Find fixed-end moments:

In this step, we find the fixed end moments for
each beam end. In the example at left, we have 3
beams connected in a frame. The top two have
loads and so have fixed-end moments. The vertical
beam (the column) is unloaded so its FEM are
Zero.

Steps 5, 6, 7, 8, 9: Perform iterative calculation to
correct end moments. The fixed-end moments
found in step 4 are the first estimate of the
solution. The moments are in equilibrium with the
external loads, with the only problem being that
some of the joints are incorrectly fixed, when they
should be free to rotate. We will set up a
calculation table that will allow us to add a
correcting moment to each joint. We will perform
the corrections iteratively and the solution will
converge to the correct answer.

The table with the solution is shown on the next
page. With two beam, there are 4 end and so there
are 4 columns in the table. The first row contains
the moment distribution factors. The second
contains a note describing the target moment (this
is an extra feature normally not included). The
third row contains the fixed end moments. The
fourth row shows the total correction (later
ignored), with the fifth row dividing the correction
among the beam ends. The sixth row adds the
carry-over moments from the neighboring ends.
And then the seventh row add the third, fifth and
sixth row terms to get a new estimate for the end
moments.

The whole process 1s repeated until the solution is
sufficiently converged.
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Example showing the Moment Distribution method

(1) sketch problem
label the joints

@ moment distribution factors

@ fixed end moments

location

moment distribution factors
target moment

fixed end moments
correction needed
correction applied

carry over moment
estimated end moment

repeat

repeat

final end moments:

a
™
FEM
cn
corr
co
eEM
ch
corr
co
eEM

g

0.1647 _ 03294 -0.3294 responses
Yo o) PORSES:
end moment reactions: .ﬁcﬂjﬂ]] w2
-0.1647 03294 03204 F eq=3
¢ I—“' r ) (T ------- "I equilibrium.
Riz Ra1 Roz R32
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w=3
N2 21 23 ;?2
El 2 El ™
2 ]
-t 5 ‘;I‘Tb
= 3
3 2 s
T T & O23=%5
3,
2 2
Wl !
M=% Maz=35
= -0.40 = 060
2 21 23 32
0 @[ 04 [ 06 7
any @ net O || nhet O 0
0 @[ o |-040 0.60
0 ® +0.40 -0.60
0 A | +016 || +0.24 | -0.60
9 <
+0.06+ (% o0 |-030 +0.12
+0.08 +0.16 || -046 +0.12
0 +0.30 -0.12
o | +0.12 || +0.18 L 012
006Kk 0 [-006 P +0.09
+0.14 026 || -0.34 +0.09
0.1647 0.3294|-0.3294 0.0000

Steps 10: Solve for the other reactions and beam

Once the end moments on a beam are known, the
vertical reactions can be found from static

Remember that the end moments found in the

find reactions on bear 1:

= My Rpyx 3+ (~1647 - 3294) = 0
?) Rpy= ig‘ﬂ = 01647
to these.
IFy Ryp =-0.1647

+

find reactions on beam 2:

I M2 Rzox2+-3x1.33 +.3284 = 0
) Rap=%" *2254 =1.6353
IRy Rpz+Rap -3=0

+A Roz = 11647

continue solution ...

MDM are moments acting "on" the supports.
Moment reactions "from" the supports are opposite

Once the vertical reactions are found, all other
responses (distribution of shear, bending, slope
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Example #2
@ problem
F=4 =2
FITTrTrrrrr™s
2 vy a1z 32,
ET v
7 ’27 = 3
|<T—b: 2 ‘;!

2 _ 1.
(@ afactors @y = ;. = oz= 3

M,y =FL _wi

@ fem “=p =g
=-05 = -0.667

Mzz = 05 Mzz = 0.667
location 72 21 25 32
® al o0 05 | 05 0
@ TM| any net O | net O any
@ FEM| -05 05 ||-0667| |o.e67
® enlo +0.167 -0.667
® corr| o 0.083 || 0.083 0

@ coloos2¥ T o0 0 ¥4o0
eEM | -0458| | 0583 |-0583| | 0708

ch |+0458 +0.0 -0.708
corr (o] L 0 0 0
o | @ <€, o p

eEM | -0.458 0583 ||-0563 0.706

errors are zero, so the solution is converged
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deflection, stress) can be found using normal beam
theory.

Example 2: Here is a simple case that solves fully
in 1 iteration. This will happen when there is only
one joint that needs to rotate to bring the problem
into equilibrium.

Also note that this example shows a case of
different EI values.
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Example #3 Example 3: Here is a case that shows a frame with
(@ problem allE ], no sway two columns. This is a relatively complex case,
| 1om | 20m | though without sway.
<
w=8 kN/m
T L L T
2z 2
A 2ok Px Ed
125m
20m
5457
allEl
i 942
— 4 <8\
o Yo Lz0
Joint 2 ay = =05 Ogz= =025 0y,=025
® Y5070 Y5070
L2o
joint3  @s,= = 03846 Q= (1-3846) = 6154
2" Jas+la
@ fem M, - Mys =2 - 267
2 =75 = 667 =T =
Mz = 667 Mag = 267
location 12 21 23 24 42 32 35 53
@ a1 05 ][ 025 | 025 0 0.385|[ 0.615 0
@ ™| o0 net O ||net O || net O any net O || net 0 any
) FEM | -66.7 667 ||-2667| 0 0 2667| o© 0
® cn 667 +200 N . -266.7 0
® corr| 667 | | 100 | 50 B0 0 .. | 102.6 | -164.1 0
@ co| 50 %33 | 512" 0 |t 25 | K25 | 0 | ke
eEM | 50 200 |-267.9 ||50 25 1891 || -164.1 -82.1
cn |-50 +17.9 25 -25 821
corr | -50 9 45 45 0 9.6 | 154 0
co| 45 -25 -4.8 0 22 22 0 77
eEM | 45 184.0 ||-268.3 ||54.5 272 1817 |-1795 -89.7
& | o 196 || 260 || 64 32 184 || -184 -92
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solution for end moments

196 184
P AR e R
g2 = v 184
b :
|| 5 -92
N 32
4 <X~
7 2
I—T Dio6
Fiay Fay
M =0
Fag Fayx10 - 8x10 x 5 -196 =

Foy = 59.6

> Fy =O Fqu = 20.4
t+

solution for moment reactions
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with the end moments solved, the full set of
horizontal and vertical reactions can be found
using force and moment equilibrium.

2M=0
2
Fon—3 5“— Fas +
i 64 Fax125= (-184-93)
=-22
32 -92
~—F,  Far> Fax x 20 = (64+32)
5 -5
F4-2x =-5 Fg\a,‘ =22
Fia 1 2 I
T — —
Fou=5 Faoe = -22
Z Fx =O F|2, = 17
—
8
kL VEEkd bl
2 3
260(‘l 1)135
Fazy Faay
2 M2 =O
0

+3
Fagy = 76.2

SFy=0 Fu =858
I+ Foy = 762

Fazy x 20 - 8x20 x10 -163+260 = 0

Finy = 83.6+59.6=143.4

solution for force reactions

17
i — )
”"" I 2 ‘.
204 : |
1
" A o
M 76.2
.
143.4
check

L Fy=204+1434+762=240 OK
ZFx=17+5-22=0 OK
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With the reactions found, the shear force and

bending moment diagrams can be sketched as
follows:

combining end moments and reaction forces

83.6
196 184
ﬂ}%“ Q }f'?(zh _(: 3 20.4|\
e L
b G i N -59.6 762
1 1
204 \ 1 5 shear force diagram [kN]
5 I — 8 8
N 32
- }\4 76.2 .
143.4
0 &4 184
o) o4
260
bending moment [kN-m] o
32

76.2
The bending moments above are drawn on the
compression side of the beam. Deflections can be

found by double integration of the moment
diagram.

Exercise: What is the slope at joint #3?
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Topic 13: Problems
13.1. Moment distribution method

E I=1 2m 2m
2N/m\ | >

_.,:r:r_‘IIE]ﬂj:I/ D]:D l,
72 A N s

| <~ -

| 6m 5m 4m

13.2. Moment distribution method

2m 1
2 N/m | .”1

TS (1 L
A Elk2 A EH N pi2

| | -~ -

ém 5m 4m

13.3.  Moment distribution method. For the case shown on the attached page (Figure 1), fill in
the first two cycles of the MD calculations.

8/3N
2 N/m
l CITTTTTT]

El=st 2 E =2 N

e

3m em

N

13.4. For the statically indeterminate beam shown below, with the loads, properties and end
conditions as given,

a) Solve using the moment distribution method.

b) What is the vertical reaction at the middle support

5N 2 N/m

1 I][[[Illlf
El=1 A El=2

| 6m

3m
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13.5. A 3 bar frame is shown below.

Solve for the moments using the moment distribution method.
Sketch the deformed shape.
Find the vertical reaction at the pin (the right hand end).

1F=2 (centered)

L=4 eca

El =1 (all beams)

13.6. Solve the frame using the MDM method (suggest you use a spreadsheet).

RRLLY

§)] El=8

- I —

= S g ] ——
= 5 -
F=10
@ |
El=8 @ E=8 @A |

El=2 El=2 2
) ® '
AN
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13.8. For the case shown below, set up and fill in the first two cycles of the Moment

Distribution calculations.
4m 1m | F=5kN

El=2 5 i
R\. e —

El=1T1

£

rigid bar

4m
lateral pressur

p=4kMN/m 7-’7

13.9. A 2 bar structure is shown below.
a) Solve for the moments using the moment distribution method.
b) Find the vertical reaction at the pin A (the left).

- 3 m >
4 kKN/m 6 kN 5
- m——
A B 1 C
O o 2EI :

- 3m > - 4m >
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Topic 14: The Moment Distribution Method with Sway

Introduction

In this chapter we will
extend the application of the moment distribution
method for solving frames with sway

o s 0 0 s ) ) ) ) o ) ) ) o o ) ) o ) o ) o o ) o o o ) o o e o ) o o

In the previous chapter we dealt with beams and
frames in which joints could not translate due to
bending. In this chapter we all add the possibility of
sway motion. For simplicity we will only consider one
sway motion.

a Quadrant
MDM problem with sway The solution of a sway
F=4 problem takes two parts. In
5 l 5 the first part a unit sway
1 sway 1s imposed on the
, J_s structure (call this the *
1 4 problem). The imposed motion
1 causes initial fixed end
77
"T’I moments, which relax as the
solution progresses, just as
Step 1: set up two problems, one with imposed unit sway (*) and one with happens with applied forces.
sway fixed (f). Apply the general loads to the ‘f ' system. The force required to impose
.y Fr=4 the unit sway _can.be found.
s . 5 5 once the solution is found, just

like the other reactions. In the
Mt example at left this 1s F%,.
1 1 In the second problem (the 'f
problem) the sway is
prevented, and the problem
solved.

Step 2: solve both problems for moments using MDM

A=1 eM?%;s eM,
NE 3

i eM*
eM 21 34 eMr,

eM*,s
4
eM*; 1 eM
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Step 3: solve both problems for reactions including the reaction at the imposed
(and fixed) joint (joint 2 in this example)

Fr=4
T
Fr 2 3 FEX_“ < a
4 F*, 4
Ff F fz'x
1 ’-:1»1 x 1
-

Step 4: The next step is to scale the * problem so that the force at the sway joint
(joint 2 in this example) is corrected (to zero in this case, or possibly to the
applied load at 2 if there were an applied load - see {note a}). Call this the ** solution.

A=-Fi,/F*

{note a}
in the case of no load at joint 2:
M +Fh =0 => F*, =-Fh,
in the case of a load at joint 2:
Mo+ Fly= Foe => F™ =FopF

Scale all moments and reactions from
the * problem by the scale factor A = F**./F*,
°F A= P
eM**@,: 2. BM*AJ
**4)(= Z F*4x

Step 5: Add the ™" problem with the ‘f* problem, to get the
complete solution.

add all values from ** and f’

to get complete solution:

eg, 2 5
eMp=eM™; +eMi;

Fu ; 1

Step 6: Check that the solution makes sense
eg. in this case Fy + F5. = 0, eMyz = 1/2 eMs, ete.

142

To get the total
solution we need to
scale the * problem
by A (we call this the
** problem) and add
it to the 'f ' problem.

How large is A ?

A 1s chosen so that the
conditions at the
"false" sway support
are corrected.

If there 1s no direct
force at the false
support, (as in the
example at left), we
want:

}\JF*2>< =-F 1C2><

If there 1s a direct
force at the false
support, we would
want:

XF*ZX = I:2>< -F f2><
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_10m

20m -

222212

1222221222214

<z

20m

25m
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Example of MDM with Sway

To illustrate the moment distribution method with
sway, we will use a problem similar to Example 3
in Topic 13. In this case the problem has a roller
on the left, instead of a pin. As a result the frame
can sway.

To solve the problem we need to split the problem
into two component problems. The first problem
has sway prevented (by a pin on the left support).
The complementary problem has an imposed sway
which will create a reaction of opposite magnitude
to the first problem.

AAAARARAALI:

—

3
‘|

\
[ ’ + \
|
]

AN TN

Force to reverse

Pinned against sway

3.84

Moments due to
imposed sway

the pin reaction

The first problem was solved in Example 3
above. The reaction at the left hand pin was (see

pg. 130);
F,. = 17.1kN

Now we solve the second problem with a unit
displacement A applied to the roller. For the
1mposed unit displacement, we have the initial
fixed end moments as shown at the left. For
example the moments in the right column are;

6EIA  6-100 -1
M= =

o =~y = 384kNm

Once we have solved the second problem, and
found the reaction at the roller, we scale the whole
solution to match the reaction with the 17.1 kN we
need. The final answer 1s the sum of the scaled
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solution of second problem and the solution of the
first problem. All the solutions needed are
presented below in the form of spreadsheets.

The solution of Problem #1:

Problem 1
Joint
111 2 3 4 [ 5 1]
A B [+ D E F G H

L 10 20 20 20 12.5
afla 1 0.5 0.25 025 0384515 0615385 1 1
FEM -65.6666T7  66.56667 -2656.6567 266.6667 0 0
am 66.67 200.00 -266.67 000 0.00
koo 66,67 100.00 50.00 50,00 -102.56 -164.10 0.0o 0.00
= 50,00 33.33 -51.28 25.00 2500 -B2.05
EST 50.00 200,00 -267.95 50.00 189.10  -164.10 25.00 —H2.05
cly -50.00 17.95 -25.00 ooo 0.00
oo -50.00 B.ar 4.48 4.489 -8.62 -15.38 0.0o 0.00
= 4.49 -26.00 -4.81 224 224 -7.69
EST 448 183.97  -28B8.27 54.49 1B1.73  -17D48 2724 £0.74
cly .49 2.8 -2.24 ooo 0.00
koo 449 14.890 T.45 745 -0.86 -1.38 000 0.00
= 745 -2.24 0.43 a73 a73 -0.59
EST 745 19663  -261.25 61.94 1B4.59  -1B0.8T a0a7 -80.43
-T45 268 -373 ooo 0.00

0.00

.M
EST 0.00 19604 -260.08 64.03 18380 -18380 3201 -81.90
clu 0.00 om 0.00 oo 0.00
=il 0.00 om 0.00 0.00 0.00 0.00 oo 0.00
=s 0.00 0.00 0.00 0.00 0.0o 0.00
EST 0.00 196.05 -260.08 64.03 18380 -18B380 3201 -81.90

This is the solution of Problem #2:
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This 1s the solution of Problem #2,

#1 (call this #2a):

Problem 2
Jaoint
| I 2 | 3 4 [ 5 |

A B c o E F G H
L 10.0 20.0 20.0 200 12,5
afla 1.000 0.500 0.250 0.250 0.385 0.615 1.000 1.000
FEM - - - 1.500 - 3.840 1.500 3.840
clis - - 1.500 - 3.840 - -
oo - - 0.750 - 0375 - 0375 - 1477 - 2363 - -
ICO - 0.375 - - 0.738 - 0.188 0.1B8 - 1.182
EST - 0376 - 0.750 - 1.113 1.125 - 1664 1477 1.313 2658
b 0.375 0.738 0.188 - -
boarr 0.375 0.369 0.185 0.185 0.072 0.115 - -
e 0.185 0.188 0.036 0.082 0.092 0.058
EST 0.185 - 0.193 - 0.883 1.310 - 1.500 1.582 1.405 2718
e - 0.185 - 0.224 - 0.082 - -
=l - 0.185 - 012 - 0.056 - 0.056 - 0.036 - 0.057 - -
ico - 0058 - 0.oaz - 0.018 - 0.028 0.028 - 0.028
EST - 0.056 - 0.397 - 0.966 1.254 - 1.563 1.536 1.377 2688
L 0.056 0.110 0.028 - -

0.058 0.055 0.028 0.028 0.011 0.017 - -

rommn

—————————— e —
EST 0.000 - 0.336 - 0.941 1276 - 1.548 1.546 1.388 2683
ch = 0.000 = 0.000 = 0.000 - -
oo - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - -
co - 0.000 - 0.000 - 0.000 - 0.000 0.000 - 0.000
EST - 0.000 - 0.336 - 0.941 1276 - 1.548 1.546 1.388 2683

Prablem 2 Scaled

scaled to counteract the pin force from problem

Joint
I 2 1 3 L4 [ s
A B c D E F G H

L 10.0 20,0 200 200 125
afla 1.000 0.500 0.250 0250 0385 0615 1.000 1.000
FEM - - - 54 307 - 139.027 54,307 139.027
o 0.0o 0.00 -54.31 0.0o -138.03 0.00 0.00 0.00
=l 0.00 -Zr.15 -13.58 -13.08 -03.47 -B5.55 0.00 0.00
CO -13.58 0.00 -26.74 0.00 5.79 0.00 579 -42.78

0.00 0.00 0.00 0.00 0.00 0.00 000 0.00
EST -13.58 -27.15 -40.31 40.73 -60.26 53.47 47 52 05 .25
| cLu 13.58 0.00 26.74 0.00 6.79 0.00 000 0.00
=l 13.58 13.37 6.68 6.68 2.81 4.18 000 0.00
CO G.68 678 1.3 0.00 334 0.00 334 2.08

0.oo 0.00 0.00 0.oo 0.00 0.00 0,00 0.00
EST 6.68 -7.00 -32.32 47.41 -54.31 57.65 50,86 BE.34
cl -5.68 0.00 -B.08 0.00 -3.34 0.00 0.00 0.00
=l -5.68 -4.05 -2.02 -2.02 -1.28 -2.06 0.00 0.00
CO -2.02 -3.34 -0.54 0.00 -1.01 0.00 -1.01 -1.03

0.00 0.00 0.00 0.00 0.00 0.00 000 0.00
EST -2.02 -14.38 -34.99 45.39 -56.60 5558 489 85 a7

202 0.00 398 0.00 1.01 0.00 000 0.00

1.88 —-n

iCo .00 0.00 ; oo oo o=t

0.00 0.00 0. 0.00 0.00 0.00 000 0.00
EST 0.00 -12.15 -34.06 46.21 -55 .56 55.97 5026 8750
cl 0.oo 0.00 0.00 0.oo 0.00 0.00 0.00 0.00
koo 0.0o 0.00 0.00 0.0o 0.00 0.00 0.00 0.00
CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EST 0.00 -12.158 -34.06 46.21 -5 .96 55.956 5026 a7.50
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This 1s the sum of Problem #1 + #2a, which is the frame with roller solution. The
values are moments at the locations indicated.

I 2 3 4 5

A B c D E F G H
MDM 00 | 18389 | 29413 | 11024 | 127.84 | -127.84 | 82.27 | 559
BEAM3D | 0.0 183.8 -294.4 1106 | 1273 | -127.3 | 839 | 6.47

To confirm these values independently, the same problem was analyzed in the DnV
program BEAMS3D. The values shown above correspond very well with the MDM
results. The plots from BEAM3D are shown below;

bending moment diagram, and reactions.
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il

w

]

L LI T T T T T 1T

o A A

il

shear force (red), bending moment and deflections (exaggerated)
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Topic 14: Problems

14.1. Solve the frame using the MDM method (suggest you use a spreadsheet).

- b ra—— ] ——=
= 5 -
F=10
|@| 1
EI=8 @ E=8 @% |

El=2 El=2 2
) ® '
AR,

14.2. A 3 bar frame is shown below.
Solve for the moments using the moment distribution method.
Sketch the deformed shape.
Find the vertical reaction at the pin (the right hand end).

F L.El

=

L.EI
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Topic 15: Matrix Structural Analysis

Introduction

In this chapter we will
e Discuss a very general method to analyze structures, to give bending

moments and axial forces in general frame structures.

I I I I I I I ) ) I ) ) ) ) ) ) )

The behavior of a structure can be expressed in
matrix form as;

/{' F}=[K]{d}
forces . deflections
&reactions Stiffness  imposed or resulting
matrix

This type of equation is 'discrete'. It represents a
each point has set of relationships among a finite set of degrees of
degrees of freedom freedom (dof).

For a general structure or arbitrary shape, the

in this case sachhas 3 y)0havior can be adequately described by
for a total of 21
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describing the behavior of a set of points. In such a
case, all forces would have to be applied at the
points and all responses would be determined at
the points. Actions and responses at other points
can be considered, as long as there is a way to
gather actions to points and to interpolate
response to locations between points.

We might define arbitrary degrees of freedom, for
which we could write;

E L7 O
2 - kz} . 62
Fs kse| |85

But how would we find the £jj terms? For an
arbitrary body (a violin, a rock, a teapot ...) the jf

terms would be hard to find. There would be no
table of standard values.

The kj/ terms could be found by experiment.

nin
1

- apply a test force at dof "1", measure all

e

displacements at dofs "

F;

But is it even possible to apply a force at "i" and
only "1" ? Remember that F; includes reactions as
well as applied forces (there is no difference as far
as the structure is concerned!)

Determining k;; experimentally is not practical.
The best one can do is to attempt to validate the
k;; matrix experimentally by measuring responses
and comparing to predictions.

To make the determination of a structural
stiffness matrix practical, we normally describe a
structure using regularly shaped parts, with
standard degrees of freedom.
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Example: a 3 bar frame with a lateral load

E 4, 2A, L, 0=0°
F =10 —>»
E, I
E I '
AL Al
g é 0° 6=-20°
Degrees of Freedom
Local
2 5
f 1 beam 2 4 4
X
4 73 6
5 o} 6 Syer—» 2
1
§ 3
®© o
-0 3
1 W
24—@5 6 Aot »5

Global

5
(I:j' beam 2 |(I’—>7

beam 1
¢ wesq

2
1 10
£ 1

In this problem the force is applied
at dof #4

and movement is prevented at
dofs # 1,2,3,10,11,12
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For the 3 bar frame at left, we can define the
define local degrees of freedom for each member
using the same standard approach that was
described in Chapter 11. We will start from the
local element stiffness matrices and assemble the
full structural global stiffness matrix, just to
1llustrate the process.

The local degrees of freedom follow the individual
members, while the global degrees of freedom are
all aligned to the Cartesian (x-y) system. The
other aspect is that global degrees of freedom refer
to nodes of a structure, rather than to ends of
members. This means that several member ends
can share a single set of degrees of freedom.

The matrices below show the local and global
versions of the stiffness matrix for beam 1. The
difference is the way the degrees of freedom are
defined. In this case the global degrees of freedom
are just versions of the local dofs.
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rotate
\2 1 1\5 4 b;; :
1
3 6 3
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Beam 1 2, 5
4
ﬁg»
local k matrix (‘5 6
4 o0 o 4 o o
12El GEI -12El 6EI
O La Lz O La L2
-6El 4FE| -6El 2E]|
K 0 Tz 1 9 = I
local — 'A—E 0 0 ATE 0 0
0 -12 El -6 El 0 12El -6El
La LZ LD Lz
6El 2El -6El 4F|
| @ T L ? TFE T
3
global k matrix <1 2 =, °
local [ 2 ] 3 5 4 6 |
global 1 2 3 4 5 6
_ _ 9
12 El 0 6 El -12El 0 6 El 12
12 JiZ L2 s
o 4 o o AE o |2
-6 El -6 El 2El
R i e e v |
= | = -6 El
K giobal 2 o, BH 2H o ©Hlls
0 'A_LE 0o 0 A_LE o |I°*
6 El 2El -6El 4 E| 6 6
I T |

ie ki 2 koo koo = iyL diagonal terms - k; - are always
. — — T
local global local global ~ Positive: +force always
causes a + displacement, directly
jiz_s, > :_’fg but may cause a - displacement, indirectly
local global

Aside: There is a general way to find the global
stiffnesses for a rotated bar. The rotation matrix
can be used to find the stiffness terms for a rotated
beam. In a rotated beam dof 1 is partly axial and
5 partly shear, as is dof 2. But as
4 superposition holds, any movement
© along dof 1 can be expresses as some

a axial and some shear, and the resulting

axial and shear forces can be resolved
back into the 1 and 2 directions.

The matrix below and the matrix operation
expresses the mix of effects in a concise way.
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(suggestion: derive the rotation matrix using
vector algebra).

the rotation matrix is:

[cosa sina 0 0 O O]
-sinc cosa 0 O (O 0O
A = o o 1 0 0 O
0 0 O cosa sina O
0 0 O -sina cosa O
0

L o 00 0 1|
K] =AT (K11
global local

In the case of a 90 degree rotation, the rotation
matrix has the effect of doing row-column swaps.
For other angles the effect is more complicated.

—

o 1 0 0 0 0
4 0 0 0 0 o0
A(90°)=| 0 ©0 1.0 0 0
0o 0 00 1 0
0 0 0 -1 0 O
©c o0 0 0 0 1|

707 707 0 0 0 01
-707 707 0 0 0 0O

A(45°)=| 0 0 10 0 0
0 0.707 .707 0

0
0 0 0-707 .707 0
0o 0 0 0 0 1|

Beam 2 has a local [k] that is similar to beam 1
except that area i1s 2A and modulus is 41. The
global [k] looks similar to the local [k], except that
the numbering is shifted.
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Beam 2 ( 4 7
6

global k matrix
global 4 5 6 7 8 9

g
[246 o o 2 p p |+
48EI 24El , -4BEI24El| ,
L2 L2
16 El 24 El BEI
i B =1 | "
Kgloba.‘= 28 9 o |7
e 48 ElI -24E| &
L5 LZ
16El| o
L

Beam 3 has a local [k] that is the same as beam 1.
The global [k] also looks similar to the global [kI,
of beam 1 because a rotation of +90 produces a
similar effect to -90. The only change is that the
numbering is shifted.

B 3 7 1
eam 5*—\#‘

global k matrix e i
global 7 8 9 10 n 12 "
[12 GEl -12El 1]
AE -AE

L 0 0 ' 0 8
4El -6El 5 2E |

K L L= L
= 12 El -6El| 10

global o = 0 Iz
Y AE n

L

4 El 12

L
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The structural stiffness matrix is just the sum of
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the global versions of the member stiffness

matrices. Where two terms share a dof, the two

values are added. This is again reflecting the
simple idea of superposition in linear systems that

structural K matrix

global 1 2 3 4 5 2] 7 8 9 o N 12
(12El 6El -12El 6 El
r 9 & D g L2
AE -AE
£ o o ! 0 0
4El -6El 0 2EL
L L2 L
Kglobalz 2a,2E o BH 2 o 0
AL AE 48El 24El 0 48El 24El
L3 L2 [ L?
EEn -24El  B8E
L L2 L
12 El , 2AE 6El -12El GEl
75 tL 0 Iz = 0 -
%5+4f551 24 El -AE o
symm L2 L
Y 20EI -6El o 2E
T L2 L
-6 El
L o
A
0 symm GG
4El
C

Hooke first saw.

Stiffness matrices are symmetrical. This is a
curious property, especially when you think about

the off-diagonal terms. Some of the terms refer to

forces per unit rotation and moments per unit
translation.

( Terms add
= \ 1 i
B \ =z
global — 3
B 0

12x1

1F} = [Kour] {5}

12x12 12x

1

With the whole stiffness matrix assembled, we
have a single equation that relates all actions
(forces and moments) with all movements
(translation and rotations):
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To solve the system of twelve by twelve equations
we need to identify the twelve unknowns. It is
(almost) never the case that we would know twelve
deflections and want to know twelve forces. Nor
would we know twelve forces and look for the
deflections. Typically we know some forces (mostly
zero) and some

deflections (zero at supports):

F o
unknown LH [ F o [0 )
base reactions If;— 2 g LH base supports
3
j 0.
applied force ——= 100 - [ K str} 654
0 l2x1z O unknown deflections
0 67
unloaded dofs 0 0
0 89
roller release = 0 1o
unknown RH Fiy 0 }
RH base supports
base reactions { k Fio ) k 0 ] PP
12%1 12x%1
forces and reactions deflections and supports

reactions
forces
— —
- -
L] -
A “A forces
reactions

We should have some combination of unknown
loads and deflections that adds up to twelve. If we
don't, we can't solve the system.

Note that the structure does not know what is an
applied force and what is a reaction. All the
structure know is whether it is in equilibrium.

There are a variety of ways of solving matrix
equations like:

F} =[x 8
12x1 12x12 12x1

There are various numerical strategies used in
linear algebra that are used to solve such systems.
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Gaussian elimination is one common method. We
can assume that if we have N equations in N
unknowns that we can solve it.

To solve these in Maple (see 3bar_frame.pdf or
3bar_frame.mw), we would just expand the matrix
expression into a set of 12 simultaneous equations;

eqfﬂ F; = k11 61 + k12 62 Fuei

3qn2 Fz = kzy 61 b o kzz 62 Foee
eqns = {egnl, egn2, ... eqniz}

Maple will solve these equations in either
numerical or algebraic form, giving expressions for
all results in terms of the variable. For example,
for this problem, Maple will give;

5, =10 p _ _40L(AL*-48)
CT9El BT 9(25AL2+961)El

Q1: With the above solution for force and
deflections at the nodes (the dofs), how would we
find the stresses in each member?

AT To find the stresses we have to return to the
individual beams. We use the global stiffness
matrix of a single member. For example, for the
cross beam in the previous example (beam 2), we
find the member forces as follows;

these are not from the
solution of the structure

these are from the
Qsolu‘tion of the structure

Fs| Beam2 |85

< ffi >= [kgtobafH gi >

Fe 6x6 |8,
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F=10 =

/\ Beam 2
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The forces are not the same as found above. They
are only the forces that act on the individual

member.
The beam forces are found as follows:

from solution of

the whole structure
(F,) [ 198)

Fs Beam 2 | .099

7= s { o ¢

Fa 6x6 [-099
o ) 172 )
Ex1 6xl1
(F) ( o)
Fs -80 -8 +f5
F -2.70
6\ = —ﬁ> ) .
< F7 } < 0 > 7S P2
Fs 80 Beam 2
kFQ J \ 1.9 J

solution of just Beam 2

Note that there is no axial force (would be £, £, in
Beam 2. This is because the roller at bottom of
beam 3 releases all horizontal force. The applied
load of 10 must all be transmitted to ground
through Beam1. With these forces and moments
we can find the shear force and bending moment
diagrams, along with the axial, shear and bending
stresses:
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problem with loads along members

l

159
-8 +.8
Beam 2 | — | 1.9
-2.7< ‘)
sfd
'.8\
bmd 05 |
-2.7 /"
‘ /
\ /
\\\ F/’/
M c shear
Obend = —— Oaxial =
bend I el Ashsar

Fax' | (happens to be zera in this case)

o-axr'al = A

Because there was no load along the member, the
maximum stresses in the above case occurred at
the ends of the beam.

Q2 How are loads along a beam dealt with?

A2 Loads that are act between dofs are dealt
with in three steps. In step 1, the fixed end forces
and stresses that the loads cause are found. In
step 2, the fixed end actions are placed on a full
structural model and solved. All responses,
including deflection, stresses, strains, for the full
structure (including the beam where the loads
acted) can be found for the whole structure.

The complete solution comes from adding the two
solutions (stepl + step2):
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step 1: fixed end responses
force

fixed end
l actions

step 1 stresses

step 2: fixed end actions and any other
dof loads are applied to total structure
and solved

| |

—_—

step 3: add all response from steps 1and 2

—_—
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Topic 15: Problems

15.1 Frame Structures can be analyzed by "Matrix Structural Analysis" or by solution of sets of
continuous differential equations. Compare and contrast these two approaches.

15.2 The stiffness matrix for a 2D beam is said to have axial, shear and rotary terms. Give
examples of each of the 3 types of stiffness (i.e. 3 examples of the individual k;j; terms), with a
sketch of the terms.

15.3 Describe what is meant by the “rotary stiffness terms” in the stiffness matrix of a beam.
Explain which terms in the matrix are rotary terms and how they are derived.

15.4 For the 4-bar frame shown below, the 2D solution is found by solving 12 equations in
matrix form shown beneath. For the case of the loads and boundary conditions as shown, fill in
the 14 columns (there is 1 column for forces, 1 for displacements and 12 in the stiffness matrix),
with any known values. In the force and displacement vectors, write in a zero (0) for known zero
values and the letter X or variable name for other unknown values. In the stiffness matrix write a
0 for the zero terms and the letter K for a non-zero stiffness terms. You only need to fill in the
upper half of the stiffness matrix. You don’t need any equations or numbers (other than 0).

Fr=[Kl{A}
Fa B 1/
. — -
4N — f=—Fb o o
2 — ([~ o
o Sym —
2 o o
b | - -
X, Z - i

15.5 A 2 part frame is shown below.
a) Construct the full structural stiffness matrix for the structure. Describe the steps you take
to do so.
b) Write the force-deflection equation for the structure in matrix format, showing all terms
(ie include all terms in the matrices or vectors). Explain which, if any, terms are

unknown.
F L.El

=

LEl
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15.6 Assuming that you are using a program that performs matrix structural
analysis, explain concisely how the global stiffness terms for the joint circled in the
sketch below are determined. You don’t have to solve this frame.
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Topic 16 Overview of Finite Element Theory

Introduction
In this chapter we will
e introduce the 2D finite element called the constant stress triangle
(cst)
show how to derive the element stiffness and all output values from
energy considerations

o o 0 ) I ) o ) o o o o ) ) o ) o o )

Finite element method

da Recall that for a beam, we can relate the end loads
by a stiffness equation in matrix form;

dg
—
F4

11
re= e, (FI=KIK

.|T F5

F2
—
FI  ds dy 5?

hiexITiL

= . 6 We can find the Kterms for a beam by solving the
Lo iES beam bending equation for various end
yT s My By . .
e movements. To find the displacement of some

point along the beam (at x) we could solve the
system for the displaced shape. We would find that
the displacements would be;

dx = dl +X (d4 - dl) (why so simple?)

and
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@ — Uy
3

V3
yT T—b-ua

—x @

® T_. @?_.
)
@) |

A ® 3
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dy =d, +f(x,d,d,,d;)
complex?)

For this beam element, we made use of what is
called ‘beam theory’, to solve for the loads and
deflections under certain loading conditions.

(why is this more

However, in the case of most finite elements, such
as 2D planar elements, plate elements, and solid
elements, we will not start from some general
analytical solution of a loaded membrane, plate or
solid. These solutions are too complex and will not
give practical results. Instead, we assume some
very simple behaviors, highly idealized, but which
satisfy the basic requirements for equilibrium G.e.
forces balance, energy is conserved). With this
approach, the single element does not really model
the behavior or a comparable real solid object of
the same shape. This is ok, because the aggregate
behavior of a set of these simple elements will
model the behavior quite well. This is something
like modeling a smooth curve as a series of
straight lines (even horizontal steps). This is
locally wrong, but overall quite accurate.

Constant Stress Triangle

To illustrate the way that finite elements are
formulated, we will derive the full description of
an element called the constant stress triangle (cst).
This is a standard 2D element that is available in
most finite element models.

Consider a 2D element which is only able to take
in-plane stress. The three corners of the triangle
can only move in the plane.

For this element the force balance is;
F =K*®
{6x1} = [6x6]{6x1}

We want to determine the element stiffness matrix

K¢, and we want it to be valid for any triangle;
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So, while we have six degrees of freedom, as we
did in the beam case, we don't have any hand
analytical solutions. To create a general solution
that will apply to all triangles we will make some
very simple assumptions which will allow us to
model 2D stress problems (such as a web in shear,
or stresses in plane around a cutout in a web. .

We will follow the outline in Hughes (p. 245-253).
Step 1 - select a suitable displacement function.
Consider the movement of a general triangle. Each
corner moves differently, and every point inside
moves.

movement of a The movement in xis defined as u and the

corner node of  movement is yis defined a v. Both zand v
are functions of x and y;

A movement of a point

in the element vs the element

Ax = u
Ay = v

u = fu(x,y)
v=fox,y)

—» U
® . Assuming that the material in the triangle is

Xq X X X isotropic (no preferred direction), then we
would expect the two displacement functions
fu(x,¥) and f,(x,y) to look similar.

The functions for u and v can only depend on the 6
nodal displacements (that all the info that we have
to define movement), so we can have no more than
6 unknown coefficients for both functions.

A trial function;
a) lets try: u = c;x + cy + c3(x +y)

1s this ok? No! Why? Because it means that at
(0,0) (the origin) there is no movement. It would be

as if all elements are pinned to the origin.

b) lets try: u = c;x + ¢y + c3(xy)
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1s this ok? No! Why? same problem.

The simplest viable functions for u and v that has
6 coefficients is;
u=c +cx+c3y
V=2C4+ CsX +Cgy

Occam's razor, in latin: "lex parsimoniae" (the
law of simple), is a principle that says: from among
alternative explanations, the one that works, but
makes the fewest new assumptions is usually
correct. The concept is central to rational thought.
William Occam was a 14th century English Friar
and writer.

This provides a very simple but viable general
description of the displacement field. We can re-
write the displacement function in matrix form;

(&)
s ==l 5 31 2 Hla
Cs

Ce
6(x,y)=HC

Now we have the displacement function.
Step 2 - Find the constants in C

at the corners we can write;
(1 x;, y;, 0 0 0]

6, = 5(351,3’1) = 0 0 01 x4 » C
1 x 0 0 07

§=0(y)=|y o yg L x, y,|€
[1 «x 0 0 0]

63 = 5@3:3’3) = 0 03 yg 1 x5 ys C

The total displacement of the corners can be
written;
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Uy 1 x; y, 0 0 07
|(v1\| 0 0 0 1 x (Cz\
6:4112}: 1 xZ }’2 O O O JC:;L

UZ 0 0 0 1 xZ yz C4

lugj 1 x3 y; 0 0 0]]cs

U3 0 0 0 1 x3 y31 \Ce

or N\ -~ J
0=AC

A is called the connectivity matrix. It contains the
geometric information, the coordinates of the
nodes of the triangle. The terms in the C vector
can be found;

C=A"16
A1 is a 6x6 matrix;
X2y3 — X3y, O
1 Y2—Y3

A=
2 A123

where 2 A;,5 1s the determinant of the 3x3
coordinate matrix;

1 x »n
2 Aiy3 = det [1 Xy, Y
1 x3 y3
where:
1 x »n
2 Aqp3 = det [1 Xz Y2 = X2¥3 — Y2X3 + X3Y1 —
1 x3 y3

X1Y3 + X1Y2 — X1

which happens to be 2x the area of the triangle (ie
A3 is the area of the triangle).

We can now go back to;
5(x,y) =H(x,y) C
which we can re-write as;

5(x,y) =H(x,y) A"l 6
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where §(x,y) is the displacement of any point in
the triangle, A~! contains information on the
geometry of the triangle and 8 contains the
displacements of the corner nodes of the triangle.
This lets of find the displacement anywhere by
just tracking the displacements of the nodes.
Remember that the finite element method lets us
model a continuum by modeling a discrete system
of connected nodes.

Step 3 - Find the strain in the element

We need to find the stress and strain in the
element so that we can determine the stiffness of
the element.

The (2D) strains at any point in the element have

3 components;
gx
e(x,y) = {‘Sy }

Yxy

where the strains are found from the partial
derivatives of the displacement field:

_Ou

= ox

ov
Ey=a

du Jv
Yoy = oy T ox
recall that;
U=cy+cx+c3y
V=2cC4+ CsX +Cgy

so that we have;
ou

= gx T

C2
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v
Sy:@:CG
du Jv
]/xy=@+a=C3+C5

which allows us to write;

C2
e(x,y)={ Ce }

C3 + Cs
Note that the strains in the triangle are just
constants, and do not vary with xand y. This is
the reason that this element is called the CS7T or
constant stress triangle.
We can write the strains in matrix form;

C1
(c2]
C3

0100 00

0000 0 1]5,
4

001010

Cs

e(x,y) =

and simplified to be;
e(x,y)=GC

We can substitute for C to get;

e=G A6
This is the strain fully described in terms of nodal
coordinates and nodal displacements. We can
collect terms;

B=G A1
where Bis called the strain coefficient matrix, and
so write;

e§=Béd

G'1s a 3x6 matrix. A7 1s a 6x6, so Bis a 3x6 matrix
that relates the 3 strains to the 6 nodal
displacements.

Step 4 - Find the element stresses (and forces)

Start by defining the stresses;



E5003 - Ship Structures | 170

© C.G. Daley
Oy
Txy

We can write Hooke's law in matrix form as;

Sx 1 1 -V O O-X
Txy
1 v 0

Vxy 0 0 2(1+v)

Ox E [v 1 o |[(™
oy b = — 1—2li®
Txy V1o o 5 Vxy

In simpler form we write the stresses as;

or 1n terms of stress;

o=D¢

where Dis called the elasticity matrix. Now we
can use € = B § to let us write;

oc=DB6
or
o=S56

where § = D B and is called the stress matrix.
Step 5 - Obtain the Element Stiffness Matrix

element with 6 nodal forces Idea: To obtain the element stiffness we will use
the principle of virtual work. The principle of
virtual work states that for a body in equilibrium,
the virtual work done by real forces fi acting
through any viable pattern of virtual
displacements &* will be zero. In our case we wish
fs to equate the work done by the real nodal forces
@T%% with the work done to distort the element.

fa
@ T—» f3

O

element undergoing 6 virtual displacements
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The external work done for a set of 6 virtual
displacements will be;

Wext = &7 f
or

Wew =161 8 83 6i 65 8]

\fs/
Note that, for example, f3 only does work when 83*
moves. And the work 1s the full amount of, f5 3s*,
as f3 i1s fully active during the whole of 83* .
Remember that f3 does not cause 83*. We just
imagine that 83* occurs even as the nodal forces
stay acting.

The internal work done is equal to the integral of
the stress time the strain over the volume;

Wit = f € o dvol
Vol

which in the case of the virtual work done one
element becomes:;

Wine = | [0, 0] o(x,y) dvol
Vol

which when making use of the strain coefficient
matrix and the elasticity matrix can be written as;

Wi = j [B &6*]" DB & dvol
Vol

In this equation &* refers to virtual displacements
, while & refers to real (existing) displacements.

Wine = j BT 8T DB § dvol
Vol
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So if we say;
Wext = Wine
we can obtain;

6*Tf=6*T<f B'DB dvol) 5
Vol

which simplifies to;

f= (BTDBf dvol) s
Vol

f = (BT DB(4;,3t)) &
where t is the element thickness and A;,5 is the
element area. The term in the brackets is the
element stiffness;

K¢ = (B" D B(4;;3t))

and;

K€ is a 6x6 matrix (BT DB is 6x3 x 3x3 x 3x6 =
6x6)

y E = 200,000 MPa Numerical Example: Consider this triangular

:=oO£351 element with properties shown.
= 0.0I'm

$6

3] @<s

y location [m] o For this case the matrices are;
2

1
a1 0
o AzL
lo

O T T | | T ’X
o 4 2 3 4 5 [1

0

N |
0 O
.5 .2
0 O
1 .3
0 O

x location [m]

1162 0 —-25 0 —375 0 ]
125 0 25 0 -125 0
g-1-| -5 0 0 0 5 0
0 162 0 —25 0 —375
0 -125 0 25 0 -125
L0 -5 0 0 0 5
A1z = .08
010000
¢G=[0 0 0 0 0 1]
001010
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B=G A
—-1.25 0 25 0 —-1.25 0
= 0 -5 0 0 0 5
-5 —-125 0 2.5 5 —1.25
220000 65900 0
D = 65900 220000 0
0 0 100000
—1.25 0 —5 7
0 -5 —=1.25
T _| 25 0 0
B" = 0 0 25
—-1.25 0 2
0 5 —1.25
K¢ = (B" D B(A23t))
Ke
r 4540 1660 —1100 —-2000 —3460
1660 9060 —1320 —499 341
_|{—1100 -1320 2210 0 —-1100
—2000 —499 0 1000 2000
—3460 —-341 —1100 2000 4540
L 341 —8540 1320 —499 -1660

This 1s the stiffness matrix for a specific CST

element.

341 7
—8540

1320
—499

—1660
9060 -
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Topic 16: Problems

16.1 The displacement functions of the constant stress triangular element are:
ux,y) =C1+C2x+C3y
vix,y)=C4+C5x+C6y

where u represents the x-translation of any point (x,y) and v represents the y-
translation of the point.

16.2 A beam has only one coordinate (x). However, most beam models would allow
a point on the beam to rotate as well as translate. So, construct 3 simple
displacement functions;

u(x),

v(x),

0(x),

of a ‘beam element’, using the same logic as was used to create the displacement
functions of the constant stress triangular element.
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Topic 17: Hull Girder Shear Stresses

Introduction

In this Chapter we will

Italian Stone

¢ Examine vertical shear in a ship
e Describe the idea of shear flow.

I I I I I I I I I I ) I

Ships are made of steel plate. This means that
ships are thin walled shells. Even for the local
components such as individual frames the width of
a plate is much greater than its thickness;

L>t

Overall, the cross section of a ship contains long
sections of connected plate. Such sections transfer
shear very effectively. Ships are generally very
stiff in shear, and need to be.

We wish to be able to determine the shear forces
and stresses everywhere in the cross section of a
ship. We will start by examining the shear that is
associated with the vertical bending stress. In a
later chapter we will examine torsion.
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Q+dQ  Q As"iﬂ""
<\M+dM(¢|:|T‘M § [
—» X -
side view x-section

O = bending stress

dx T =shear stress
no shear on horizontal cut
= shear stress
on vertical cut
—_  shear must act
iI:hl equally on faces
at right angles
dx
NA_ 1L
cut — 1"
M o= !M+dM Yy
O = _|M S i [
i = \
GA GB

- cut

Op

bending stress (acts in x direction)
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Recall from beam theory that shear is the slope of
the bending moment:

dM = Q dx
Q =dM/ dx

There is significant shear is a ship. How is it
distributed in the cross section? Shear is not just
in the vertical plates. There is shear in all parts of
the vessel. The average shear stress can be found
by dividing the shear force by the cross-section
area;

Tavg = Q/Ashear

How is Q distributed around the x-section of the
ship? Is the shear stress uniform? Is it only in
vertically oriented members? To find the pattern
of stress, we construct a free body diagram of a
part of a slice of the ship's cross section.

To find the shear on the cross section, we cut the
section longitudinally and note that the shear
stress on the cut must be the same as the shear
stress on the cross section at that point. We can
assume;

e there is no shear on the centerline
e the shear force on the cutis vt dx

We find the force on the cut by integrating all
horizontal forces on out slice atarting from the
centerline (keel). We integrate along the shell
plating, using the path variable 's'.



E5003 - Ship Structures |
© C.G. Daley

side shell

_ | T,=20 MPa
t1—20 mm ] 1

™~ >
£5=10 mm - T2 =40 MPa
i i
q=400 kN/m shear stress
shear flow
!

shear flow diagram
(no jump)
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Ttdx=

ol_—"2wn

S
oat ds - Scst ds
o]

=Mﬁgytds
1

= #Sytds

Tt = dMil Sytds

xytds

g

Define:
S
m = Sy tds (for1/2 section)
0

m : 1st moment of area, about the neutral axis, of
all the material from the start to the cut at S
(where 1 is determined)

Define:
q=Tt <= shear flow

The units of shear flow is N/m.

There is an analogy between shear flow and fluid
flow. At an abrupt change in section, the shear
flow remains constant, while the stress abruptly
changes. This is analogous to water flow where at
a change in pipe size the mass flow rate (kg/s)
would stay constant while the velocity would
abruptly change.

We can combine the above concepts into one
equation;
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local path

s
Tt =QTSytdS
{} o]

shear flow
equation

Q, | <entire section
m < local path
q < local path

178
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M
Q = shear
=1 413
y |—12th
h T i s=0-=h
Q y=s-h/2
" s=y+h/2

-‘zero shear

t
1t

0
O m—pp

quadratic equation

=2
T =g

avg

shearflow =q=Tt

Y
( at
+

T

can’t exist

because
these dont exist
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Shear Flow Example 1: a rectangular steel bar
subject to a shear force Q.

shear flow:
Q
q==7
S
0
S
~lz@t S( -h/2) ds
ERE of
_12Q 1s?
]
_12a [(y+h/2) h (y+h/2)}
[
_ 6Q 2 h2_ _ 2
‘h_a[y+yh+7 vh- 4]
_ Bl [y h#
T R3 [y T]
Tt =-24 [1-(2—3/]2]
2K h
_.2Q [ 2y
L= 2th [1 ( h ) }
2
T =-§51‘avg[‘l-(%) } quadratic equation

@ONAy=0 T =3T,,

P A——

@ top, bot, y=+-h/2 T =0

Summary:

Shear flow acts along the cross section of a plate.
There can be no significant shear across a thin
plate, because there is no shear on the inner and
outer surfaces. The shear flow is found by
determining the value of 'm' (a path integral)
along with Q (the total shear force) and I (the
moment of inertia);

S
q=Q_rn m=Sytds

0
s = path coordinate
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«— B/2=10m—

! s

tp =10mm

nha

—| |=1tg=12mm

H=12m

tg =12mm
L

4

— 5

g=6.76

o

m(s1) = h tp &

m(B/2) = 0.786 m3
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Example 2: Shear Flow in a simple box-girder.

Consider the simple box girder with the
dimensions as show below. This is like a simple
barge without the frames. The overall vertical
shear Q is 20 MN. To find the pattern of shear
flow and then the shear stresses we first calculate
the location of the neutral axis, and 1.

g and h are the distances from the deck and
bottom to the neutral axis;

_Yay .010-10-12+ .012-12-6+0 _ 2.064

h = = =
Ya .010-10+.012-12 +.015-10 .394

=5.24m
g =12—-524=6.76m

The moment of inertia about the base can be
approximated by;

B 1
Ibase EtDEHZ‘}‘g t_s"]']3
=21.31m*  (half ship)

The moment of inertia about the neutral axis is;
Ing = 2 (Ugasg — Ah?) =21 m* (whole ship)

Now we can determine m
Ing =2~ (gasp — Ah?) =21m*

Next we find m. We will start at the centerline on
the bottom, where s; starts;

S1 S1
m=jyt3 ds=ht3j ds =ytgs;
0 0

B B
@51=§ m=ytso = 0.786 m3
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Next we find m on the side shell, The initial value
for the side is the same as the final value for the
bottom. The shear flow continues around the
corner. We integrate along s, (note: y =h - s2) ;

55<_|

S2
I 0.677 m3 m(s;) = m(s; = B/2) + f yts ds
| m(s2) ts 522 0
g=676| =.786 + htg sz - 2\ )
i 2
| i = 0.786 + f (h—s,) ts ds
¢ | 0
0.951 md 2
i v ts 3
h=5.24 y = 0.786 + h ts s, —
tpg =12mm sp
0‘766 ma . . . . . .
04 'y This is a quadratic equation in s2. To find the
—> s 67&6 3 location of the maximum value, we set its

derivative to zero;

Sz = h
This shows that the maximum shear flow is
occurring at the neutral axis;

ts h?
m(SZ = h) = 0.786 + hZ tS - 2
.012 5.24%
= (0.786 + R — = 0.951 m3

Continuing the integral to the deck gives;

TTI(SE;) =677 +gtpssz 2

R m(s, = H) = 0.786 +

¥ 0.677 m3

t H
S —0.677m3

Next we continue the integral along the deck,

g=6.76 along s3, to the centerline;
S3

m(s;) = 0.677 + j ytp ds =.677+ g tp s3
0

4 i 0.951 m3
Yy
h=5.24 55212,“,“ o m(s3) = 0.677 — 6.76 - 0.01 - s,
B
lo . T aeem @s; =7 m=0677-676 -0.01-10 = 0 m?3
e 0.786 md

With the shear force of 20 MN (about 2000 tonnes)
The maximum shear stress is;
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_Qm _20-0951
fmax =T T 510012 M
Branching Shear:

At a T junction, the shear flow branches. As long
as there are no closed loops between the points of
zero shear (ie. pts A, B and C in the sketch at left)
the shear flow can be found easily. Such situations
are statically determinate.
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Topic 17: Problems

17.1 An open section is shown below. This is the cross section of a long folded steel
plate. The cross section is subject to a shear force of 2 MN

Solve the shear flow, plot it and then also show the shear stress values.
If this is a section of a long cantilever (fixed at one end and free at the other)
explain what types of deformations would you expect to see.

2m

&
L

Q=2 MN
1im

I EESE—
1m

all plate = 20mm

17.2 An open section is shown below. This is the cross section of transverse frame
in a ship. The shear force of 200kN.

Solve the shear flow, plot it and then also show the shear stress values.

The web 1s welded to the shell plate. What shear force must be resisted at this joint?

tw=1.5cm
web
hw =20 cm
shell plating tp=2cm
L ]
< S=30cm »

transverse frame cross section
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Topic 18: Shear Stresses in multi-cell sections

Croatian Coast

Introduction
In this Chapter we will
e Discuss indeterminate shear flow
e C(Calculate shear slip in a cut section.
e Do an example of shear flow in a ship

o o 0 ) I ) o ) o o ) o ) ) o ) ) o )
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Shear in Multi-cell Sections

Consider a tanker with two longitudinal
bulkheads;

| this region where shear flow can loop
around is statically indeterminate

na

There is no known starting point where
the shear flow is zero

£ L. ,
‘A ,__—-—-"—_——] ‘ - _ - 2
L1:hese parts
are statically determinate
a There will likely be two spots in the cell where

s m=0. The shear flow will look something like the
sketch to the left.

To solve the statically indeterminate problem, we
apply the same kind of technique that we used in
the Force Method to solve indeterminate beams.

We will cut the structure, releasing the shear force

F and allowing shear deflection (called 'slip'). We will
* ) - i then determine how much shear we have to apply
CR—— G 5 Problem 4 the cell to remove the slip.
E = = . L . .
* 0, This is qualitatively similar to the correction of

movements in the force method.

For any case where the loops are not adjacent, the
steps in the solution process are;

1) Make n cuts to make the problem into a
statically determinate problem.

2) Solve the statically determinate problem.
3) Find the N incompatible deflections (slips).

2
=/ I3

non-adjacent loops
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4) Apply N internal forces (actually torsions) to
reverse the incompatible deflections

5) Add #2 and #4(s) to get the solution

The above steps are sketched below;

cut to make apply torsion to
the problem determinate fix the slip
=M \'*ﬂ = ==
! | b | | f
TR _ 4 d+ QI
' 7 . . | f
I i | I N t
~— =l > < Nye= iy L
problem cut correct
q = q* + qc

The cuts and the slip at the cuts are in the
longitudinal direction;

~J1——

F>— —

[}
-~ < =« <« <

LT -— -— -— =—

- -

obl. view
front view top view

The shear flow occurs on the cross section, which
1s a transverse vertical plane. The shear stresses
on this plane will also occur on a longitudinal
plane at right angles to the transverse plane. The
longitudinal plane may be horizontal or vertical or
inclined. The stressed plate will respond to the
shear by distorting into a 'diamond' with relative
movement in the longitudinal direction, which
creates a differential slip over a small part of the
cross section.
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~—

L

differential slip

The total slip is found by integrating the slip over
the whole loop from one side of a cut to the other.
If the loop 1s symmetrical , the fore and aft slip
will cancel out and result in no slip. In an
unsymmetrical section there is a net slip.

i slip = 3€ yds
| s = the path variable (length) around any
loop

#Q y = shear strain y = t/G

| ¢ =a cyclic or loop integral

|

; .’ q The slip can be found from the shear flow;
= 1

¢ sli'pzir/Gds:Equ/tds

To correct the slip in a cut loop, we 1impose a
correcting shear flow q¢ , such that;

1 1
Zoat Zoqgc =
ngq/tds+63gq/tds 0

—— Vo q¢ is a constant so we can find it as;
q q° *
—¢L ds
c _ t
=71
gﬁ?ds

q¢ 1s constant around the loop and zero elsewhere.
q" 1s a determiate solution, found in the usual way.
The total solution is;

q=q+q°
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Shear Flow Example #2

€
le— 10m —| t=30mm Find the shear stresses in the section below. The
il dca ¥ total shear is 10MN (5 MN on the half section.
4
# = \ } [ First we find the section properties:
| 10 MN T 10m .
| e na_ | . Item Desc. w h lo a y ay ay2
T_ 1 deck 10 .03 * D 10 d 30
‘i 2 | wtpl 4 | 23| 17 | & 126 109
| | 5 side 10 25 D 5 1.5 75
' 4 bot. 10 .03 * 3 0 0 0
z 273 | 107 586 4838
The centroid and moment of inertias are (for half
section) ;
_Yay 586 5 48
“TTA T1o07_>M
Iyase =X 10+ X ay2 =2.73+48.38 =51.1 m*
L =lpase — A c?>=51.1—-1.07 -5.48% = 19.0 m*
The shear flow and stress in the half section can
be found from;
_Qm
=77
q =.2634m
= Qm = > = 8.78
=7t T19.003 T
[—>$1

here
~1 s
s3 s2 m:fyt ds
0

I So to find 1, we just need to find m. To find m we
- need to integrate along the 5 branches of the
problem.

S5+ Because we have a loop, the problem is

indeterminate and we need to cut the loop, find
the slip and add a correcting shear flow.



E5003 - Ship
© C.G. Daley

plot of m* [m?]

€ 514

04—

Structures |

1357

1658
L2086

hax=2.09

- 1.64

The solution to the cut problem is called q*. The

correcting flow is called qe.

For s1 (along deck);
S1
m=0+ f ytds
0

y=10-5.48=4.52, y t = 0.1357
m=.1357 s1

=0.814 (@ s1=6)

=1.357 (@ s1=10)

For sz (side shell above wing tank);

S2
m=1.357+f ytds
0

y=4.52 - s2,
m=1.357+.03 (4.52 s2- s22/2)
=1.357 +.1357 s2 - .015 s92
=1.658 (@ s2 = 4) (at wing tank plate)

For s3 (inclined plate of wing tank);
S3
m=0+ f ytds
0

y=4.52-83N2, s3=0->42

m= .03 (4.52 s3- s32/2V2)

1357 s3-.0106 s32

428 (@ s3 = 4V2) ( at side shell)

For s4 (side shell below wing tank);

Sa
m=.428+1.658+f ytds
0

y=052-54,84=0->6

m= 2.086+ .03 (0.52 s4 - s42/2)

2.086 + .0156 s4 - .015 s42

1.64 (@ s4=6) (at bottom)

2.09 (@ s4=.52) (max value at n.a.)

For s5 (along bottom);

m=1.64+]

0

Ss

yt ds

y=-548,s5=0->10
m= 1.64-.164 ss5
=0 (@ s5=10) (at centerline) ok
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Now we can calculate the corrective shear needed
to close the slip that occurs at the wing tank cut;

slip* + slipt =0
1L s + L aras =
cPa/tds + =Pq°/tds =

c

q¢ 1is a constant so we can find it as;
—¢L ds
c _ t
=7
gﬁ?ds

In this case ¢is a constant so;

¢ _ —¢$q*ds

1 S

where S is the length around the loop. S = 8 + 412.
We can use the definition of shear flow to get;

_______ >89
N o
= = ——=0m"ds
€ 1 1S
I 2
E = —.019293€m* ds

m*deck: 814 +.1357 s
m*ige=1.857+ .03 (4.52 53 - 22/2)
m*:= .03(4.52 s3- s32/2V2)
$m*ds = [(814 +.1357s)ds

+ [(1357 + .03 (4525 —s%/2))ds

¢ 21357 s — 0106 52) ds

0
1756 = 4.34+6.188 - 1.53

=9.00
%H Note that the m*wt part is subtracted beacuse we
L

are integrating in the reverse direction. With m*
we can calculate ¢
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q€=-0.1736 [MN/m]

* C
plot of g* and q [MN/m] We have m* and q°.

2144 o 5 1% q=q*+q¢=0.2364 m*+q¢
‘E O 36
JI We can plot ¢*(solid lines) and ¢ (dashed lines);
APz
\ D
1756 5405
| J —max=.5505
| 2865
1129
e 4232

lot of T [MPa .
P [FFa] o ansys vame  20d we can plot the shear stress 7

7.5
t a6 \/1 56 612
/)L/"I %
0 L 702
( \ 8.75
5.78 /;1%216
941 —max=18.35
955
— 177
-@ ‘/,
. L 144

The values of shear stress have been checked
against an ANSYS model, and show good, though
not perfect, agreement. A sketch of the ANSYS
model is shown below.

bending
and shear
s

shell elements f
meshed on all planes P

pure shear

end moved vertically
(adjusted to create 10MN
shear force reaction)

See next page for ANSYS results.
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A: Static Structural [ANSYS)
Shear Stress 2
Type: Shear Stress X0V Plane ) - Top/Bottam
Unit; P
Solution Caordinate Systerm
Tirme: 1
LL/2172010 1:08 PM
1.9079e7 Max
16353e7
136287
109027
8.1766e8

5.4511ef

272556

-2.7255e6
-5.4511ef
-B.1766e6
-1.0a02e7
-L3628e7
-1.6353e7

-1.9079e7 Min

image from ANSYS
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Topic 18: Problems

18.1 Solve the shear flow in the following section of a tanker. Ignore the radius of
the bilge.

m - 10m .
1m &
'
=l=<—15mm (all)
10m T
5 MM
L ™ i

18.2 Solve the shear flow in the following section of a tanker.

<~ 10m ——| t-25mm

3

Yy

18.3 Solve the shear flow in the following section of a tanker.

<« 12m —b‘

t =15 mm }
¢- T =20 mm

Q=20 MN 10

t =30 mm
A
t =35 mm 2{“

—
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18.1 Solve the shear flow in the following frame section. What are the shear forces
transferred through the welds in details A and B (in kN/m)?

’4— 2m —b‘

t =20 mm I

Q=1MN$ 2m

_é;rﬁ/ detail A
ARoT

Iwg\/

detail B
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Topic 19: Shear Flow in adjacent Closed Cells

ot

In a double sided or double bottom vessel there are
often many adjacent closed cells. Adjacent close
cells present an added complexity when solving
shear flow. The complexity is that the corrective
shear flow in once cell causes a corrective slip in
the adjacent cell, because of the common side.

+ +
O] 91" 1o
cut + correct; + correct,
slip,” slipy® slipy*
Sl ipz* S | iP2_1G S l I'PZ,Z‘:

When we add a corrective shear flow in one loop
we can't help but get some flow and slip in
adjacent loops.

Consequently, in order to ensure that we have no
net slip at each and all cuts we need to satisfy a
set of coupled equations. For example, in the case
of two adjacent loops we have;

* cl c2
jéq—ds+ jéq—ds+ jéq—ds=0
t t t

cell1 cell1 cell1
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* cl c2
fq—ds+ qu—ds+ qu—dszo
t t t

cell 2 cell 2 cell 2

q‘! and ¢“? are unknown constants. q* is the
determinate shear flow in the cut section. For N
adjacent closed cells, we have to solve N
simultaneous equations.

Topic 19: Problems

19.1 Solve the shear flow in the following section of a tanker. Ignore the radius of
the bilge.

m 10m
im *
5m 15mm (all)
Sm 5MN
. v

19.2 Solve the shear flow in the following section of a tanker.

|[«<— 10m —"‘ t =30 mr

S
‘ 3

} &m
Q=19 MN

| )

| 2m

i Yy

| |1§nl‘-|

19.3 Solve the shear flow in the following section of a tanker.

< 10m "i t =30 mm

—
i i
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Topic 20: Torsion in ships

Ships as a whole and many individual members
within ships experience torsion.

/ Bo

The overall design torsional moment is given in
various classification society rules;
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Torsion — GL Rules

Torsion — NK Rules

200

Chapter 1 Section 5 C  Longitudinal Strength
Page 5-8

3.5 Torsional moments

The maximumn wave induced torsional moment 1s to
be determined as follows:

Myrmaxy =tL-B -Cg-cy-cp

-[0.11+\/a_3+0,01z] [kNm]

. T ox-Zg
L B
Amin = 01
o = gseel3d
g = distance [m] between shear centre and a
level at
0.2 B-H
T
above the basis
ClassNK Guidelines for Hull Givder Torsional Strength Assessment

2.4  Torsional Moment
2.4.1 Still Water Torsional Moment

The torsional moment in stll water, My, due to unbalanced loading of contamers 1s estimated using the
equation given below as a standard. The distribution of the torsional moment in the longitudinal direction
of the ship 1s to be taken similar to the distribution in waves as given m 2.4.2.

M =023IN W, (EN-m1)
Ny : Maximum number of rows ef cargo containers loaded in the cargo hold
We: Mean weight of a 20ff contamer to be loaded.  Usually taken as L00kV

2.4.2 Wave-induced Torsional Moment
Wave-induced torsional moment can be determined from the equation given below.
Mz =My - Cry
Mz =Myr -Cpy
Myr =13C Ld ,Cy -(0.65d ; +e) + 02C,LB*C,

€=€ -

o (3D, —dydyt; + (D —dy)’t,
Y 3dy, +2(D, —d))t, + Bty 13

dy:  Height of double bottom {n7)
d,: Breadth of double side (m)

dy
Dy =Ds——
2
By=B-d
tay b By : Mean thickness of deck. side shell and bottom shell plating (m)

respectively.  The range of each is given in Fig. 2.2.  The mean
plating thickness may also be determined after mcluding the
longitudinal strength members within each range.
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WeD e Local structural torsion can be found throughout

p———" ships. Bending of a frame can result in a torsion in
a supporting frame.

(NN

Torsion Review

Consider a solid circular shaft subject to a
torsional moment. The longitudinal axis of the
cylinder x axis. A torsion is a moment about the x
axis. In such a case we get an ideal torsional
response. Every circular cross section remains
plane and remains centered on the x axis. Each
plane rotates slightly in comparison to its
neighboring cross sections. Assume that two
planes (1 and 2) are separated by a distance dx. In
comparison to their original orientations, the
planes are rotated

d0=91_02
M,
d9—G—]dx
or
Mo = G do
x = ]dx

original plane note similarity to the deq. for bending: M, = E I %
twisted plans

(no longer planar) Torque M,

For solid sections like the circular shaft shown at
left, the shear stress 1s;

M,r
T:
i
mrt
J=—
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L

open closed
section section
orig OK X
Yy
z
P
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Thin Walled Torsion

Torsion in thin walled sections differs greatly
between ‘open’ and ‘closed’ sections.

To examine the difference between open and
closed sections we first make some simplifying
assumptions;

e sections are prismatic

e no in-plane deformation (cross sections only
rotate)

e small out of plane deformations (warping)

Thin Walled Torsion — Open Sections

Consider an open section, built-in at its base and
subject to a torsion at the free end.

Wp y

o
V
P

center of twist
or
shear center

The section rotates about a point called the shear
center. Point ‘p’ moves in the y and z direction due
to rotation and in the x direction due to ‘warpage’.

The displacements of point ‘p’

warpage function

p = Wn(y:Z) o' o' = dg/dx

small rigid body rotations
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\\\C)

Mx = Torsion

torsion in an open section causes
no shear along the midplane

ds -]
’EX

torsion in a closed section causes
shear over the entire section

da= swept area

Mx = Torsion

dsds—
T

uniform shear over the thickness

203

For ideal open sections with no warping restraint;
M= do
x=G] I

J = St. Venant torsional constant

For an open section;
1 b
=—| t3ds
=3

For example, for a pipe of thickness t, radius r, cut
longitudinally;
b = 2nr

2nr 27T7‘t3
]=—f t3ds = =2.097t3
0 3

"E PE——— _ -

— - . - 3
shear couple torsior
stress

Thin Walled Torsion — Closed Sections

Closed sections carry torsion in an entirely
different way from open sections. Because the loop
1s closed, shear can flow around the loop. The
shear stress 1s uniform over the full thickness of
the wall. The shear flow is also constant over the
full loop. Once again;

M= dé
x=G] I
We can also write;

2wr
szf Tt rds
0

2wr
=f 2q da
0

note: tt=gq, rds =2da



E5003 - Ship Structures | 204
© C.G. Daley

As q is constant we can write;

2wr
Mx=2qf da
0
=2qA

where;
© A = enclosed area of the loop

For a pipe (a circle);
M,=2qmr?

Using the general formula for torsion;

M, r o M, c
T= (similar to o =
]closed Ina
We can use this to find J.pseq
M,r 2qmr3
Jclosea = T = =2mtr’

Compare this to /,pen

=—qrtd
jopen 3

For example, consider a pipe of 1m dia., with a
10mm wall thickness;

Jctosea = 2ntr3=2m -0.01 -13 = 0.062m*

2 2
Jopen = 3 Trtd = 3 m-1-0.01%= 2x107% m*
]open — ]closed — 29,600
]open

The difference is so dramatic that it is easily
1llustrated by seeing what happens when a
cardboard tube (eg paper coffee cup) is cut open
longitudinally.
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Thin Walled Torsion — warpage restraint

Warpage is the term to describe axial
displacements due to torsion. In a closed circular
section the axial symmetry prevents all warpage.
In an open circular section, the warpage is
unrestrained (ie. The section is free to warp), so no
warpage stresses arise.

In sections with corners such as a box section, the
twist of one face 1is, to a degree, incompatible with
the twist of the connecting face. Each face wants to
warp differently, but is constrained at the corner.
This results in stresses on both faces. The
treatment of these effects requires the use of
warpage functions. This topic will not be
considered any further here. We will limit our
attention to simple torsion theory.
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Topic 20: Problems

20.1 A hollow closed section is made of plate of uniform thickness ‘t’. A torsional
moment of 80 MN-m is applied. To have the maximum shear stress equal to 135
MPa, what value should ¢be?

- Sm -
| fem
. ) BOMN-m | 4m
| lem

3m
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Topic 21: Shear Center and Shear Lag in Ship Structures

Topsides supports on an FPSO

Introduction
In this Chapter we will
e Discuss the idea of the shear center of a frame
e Describe the idea of shear lag and the notion of effective width.
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ey, 9y Consider a channel section. A channel is a common
4 t =10mm . . .

o structural profile, but one that is asymmetric on
| 4 one axis. The center of area (centroid) and the
‘shear center’ are not at the same location.

- -

|1

eu
_,.|

What is the centroid? For one thing, it is a
na_  200mm property of the cross sectional area. But what does
it mean for the channel section? If we were to
want to use the section as a column and apply an
axial force that would only compress (and not
bend) the column, we would apply the force at the
l centroid ‘g’. This is because a uniform stress in
<«— 100 mm 4.‘ the cross section would have a ‘center of force’ at

[P

g.

To find ‘g’ we use the standard formulations;

_Zay 18005+ 2000 - 50

_ =287
9y =74 3800 mm

If the end of the column had an end cap, the load
would naturally find its way to the centroid.

However if the end were connected with a bold
through the web, the load would be applied off the
centroid and the axial load would cause bending.
In this case the end load would not only cause
bending, but the bending deflection would increase
the moment arm to further increase the bending.
This is a kind of self-excited response called the
p-delta effect, and is the subject of a special
analysis.

The above discussion is about axial loads. What is
the connection to shear? The connection is the idea
of the shear center. When a load is applied at the
shear center of a beam, the load will only cause
shear and bending, and no torsion. If the load is

armdepends  applied anywhere else, a torsion will result.
on deflection

initial
= moment actual moment

arm
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Consider a shear force Q =10000 N applied to the
channel section on the previous page.

y
= 22,927,000 mm*

1
L, = v (100 -200% — 90 - 1803)

. 81—y We will need Q/I
Q
. A — =0.0004362
3217 L,
T Now we find the values of m. On the top flange;
_Cl, [|@ na
N2 5
my =f ytds =950s,
0
D IS E
ql = gml = 04‘14‘4‘ 51
L,

So at B;
gs = 0.4144 - 95 = 39.36 N/m

The force on the top flange is;

95
Fr =] g1 ds
0

1
or = EqB 95
= 1870 N

In the web;
Q (%
qz = 39.36+—f ytds
L, Jo

S2
= 39.36 +.0004362 - 10 f (95 —s,)ds
0

2
s
= 39.36 +.0004362 - 10 (95 s, — 72)

The force on the web 1is;

190
E, =] q, ds
0

= 39.36-190 + .004362 <95

190% 1903
6

= 9978 (= 10,000) OK
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I 1870 N
l — ||| 10000 N
l 1670 N
—— |
—

o

\U{Q

18670 N

10000 N

18670 N

1870N

10000 N

PN
)
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The lower flange is symmetrical with the upper
and will have a shear flow of the same magnitude
but opposite in direction.

The shear flow as drawn shows the directions of
shear in the direction of the applied force. If we
think instead of the reaction to the applied force,
we have the sketch at left.

In this case the applied force is shown pushing
directly down on the web. In this case the vertical
forces oppose each other and produce no moment.
However, the horizontal forces, while equal in
magnitude, are separated by 190mm and produce
a couple of 1879 x 190 = 355300 N-mm. This couple
1s a torsion acting on the section.

In order to eliminate the torsion, we would need to
apply the load Q at the shear center ‘e’ to the left
of the web. We can find the location of ‘e’ as
follows;
Fir -190 35530
=70 T 10000
= 35.53 mm (to cent.of web)

General formula for shear centers of channels

The following derivation is only valid for
symmetrical channels with constant wall
thickness.

t = constant, < a

2

I = 11:b3+2 t<b>
12 at\2

S1
qlzgf ytds
I'Jy

Q
:T}’t51

The force in the top flange;
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_ Q a
F: = — t—
f 1a Iy 2a

Qba®t

41
Now we can find ‘e’ by setting the sum of the
torsional moments to zero. The flange forces create
one couple and the applied load, opposed by the
reaction in the web, creates another couple. The
two couples will sum to zero when the load is
applied at the shear center.

Q e = Fs b (balance moments)

_Qba’t b b*a’t

T 741 Q7 4l
ezbzzzt : 1 2
ﬁtb3+2at(g)
a
ezz(%+ 1)

For the previous example
a = 95, b =190

95
e= = 35.6 mm

190
2(6 o5+ 1

(Q? — why would there be a slight difference
between the above result and the previous
example? )

Shear Lab / Effective Width

We normally assume that bending in a frame of a
ship or the hull girder can be modeled with what
we call ‘simple beam theory’. This means that we
assume that as the beam bends, plane sections
remain plane. When we make this assumption, we



E5003 - Ship Structures | 212
© C.G. Daley

are implicitly assuming that the flange is

Mo ; : |l w M uniformly compressed (or stretched), and that the
( i i % ‘) compressive or tensile stresses are uniform in the
~~plane x-sections flanges. Recall that ‘standard’ formula;

(==
T

This formula says that all stresses at the same
value of y will be the same (i.e. all stresses in the
flange are the same!).

uniformj While the simple beam assumption is ok for beams

stress . . . .
with relatively narrow flanges, the assumption is
not valid for sections with wide flanges such as are
sometimes found in ships.

: > 1 1 1

or

10)
o= My @1

In the case of very wide flanges, the compressive
stresses drop off away from the web.

T T T

frame

A
\d

n I hull
I | i | girder
A A
Um?Lu: ‘‘‘‘ g To find the true pattern of flexural stress in a wide
beff flange beam, and the consequent effective width, is

a complex analysis, easily done in a finite element
model, but difficult to obtain analytically. The idea
of the behavior 1s presented below.
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tries to shorten flange

Q r top of flange shortens

/=
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When we a lateral load (a bending load) to a beam
or ship frame, the web carries the load and tends
to bend. The flange is attached at the edges of the
web and as the web bends, its edge shortens (or
lengthens) and tends to pull the flange with it. To
pull on the flange, a shear stress of applied to the
edge of the flange. As shown in the sketch, the
flange is acted upon along its edge. Its as if the
flange is pinched along its edge, causing the flange
to compress more near the web and less away from
the web.

Unfortunately there are no general analytical
solutions for shear lag and effective width. Certain

approximate solutions have been postulated (see
PNA, VI, pp 247-250)

Shear lag and diminished effective width are most
important in cases of ;

wide flanges (large b)

short frames (small L/b)

proximity to free ends

proximity to concentrated loads

Finite element programs, when shell or brick
elements are used to model the frames, will
naturally show the shear lag effects.

There have been experiments on hull girder
models that have shown not only a variation in
deck stresses, but actual stress reversals. This
means that even when the average deck stress is
compressive, there may be a part of the deck (at
center) where the stresses are tensile, with the
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deck edges in exaggerated compression. (PNA p
250)

Classification society rules have various
approaches to account for effective width. We will
consider deck plate buckling in the next ship
structures course (6003). In that case we will
consider another type of effective width of plating,
but one that describes a buckled plate’s reserve
capacity.

. ANSYS

NODAL SOLUTION
NoV 18 zZ004

HIRE=L 14:20:22
SUE =4

TIME=.855715
=4 (AVE)
RaEvE=0

DME =9. 408 very little shear lag

SMN =-290.897 ;
SME =206.566 in narrow flange

Shear Lag in wide

-290.897 -180.349 -69.802 40.745 151.292
“235.623 -125.076 =14.5289 96.019 Z06.566

L2

ANSYS analysis results
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Topic 21: Problems

21.1 The following figure shows 4 x-sections. Identify the location of the shear
center in each case (i.e. which letter?). You should sketch the shear flow to help
identify the location.

Ees
D Die D
Ae Be
C A e (0: Be f (0: ? '& ? sE
E
IC— |

(a) (b) (c) (d)

21.2 When the vertical force F is applied to this section, how will the cantilever
beam deform? Explain

o
F
|
—— | . . I
. . side view F
perspective view
top view

21.3 Where is the shear center of a 300 x 150 x 15fl x 10w mm ?

1

I

channel
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Topic 22: Plate Bending

Wexford Ireland

Introduction
In this chapter we will
e Discuss the mechanics of plate bending

U o 0 ) I ) o ) o o ) o ) ) o ) o o )
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Plates are the essential structural components in
ships. Almost all the structural weight in ships is
from the shell plating, the bulkheads, decks and
webs of large frames.

This section will examine the lateral deformation
of a single plate panel subject to a uniform
pressure. We will limit our problem as follows;

e rectangular plate
constant thickness (t<<a, b)
simple edge conditions (fixed, pinned, free)
linear elastic material behavior
steel material (isotropic, homogeneous)
pressure normal to surface
no membrane stresses (no in-plane stress)
0, K 0y, 0y

boundary conditions

applied pressure
normal to surface

Recall that with beams we describe the
deformation and strains as follows;

deflection = w

dw

l = 9:—
slope P

1 dé d*w

curvature = ===
Px rn, dx dx?
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Ex
s
¥ K
Y top view

ﬁ side view

(. edges are straight
curvature at 45°

/

dy

/ dex 2
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Plates can bend in 3 ways;
e x-bending
e y-bending
o twist

X and y bending are similar to beam bending.

Recall that there are no membrane stresses,
therefor no x and y stresses at the mid-plane.
Stresses only arise from bending, and are equal,
opposite and maximum on the bottom and top of
the plate.

Twist is a behavior that does not occur in beams,
although it is something like torsion.

Twist causes a shear strain in the top (and bottom)
of the plate, and results in curvature on 45°
diagonals. When we twist a dx x dy portion of a
plate we get;

po By dy_db dx
2 2 2 2

therefore

do, do, d (dW)_ d (dW)_ d*w
dx dy dx\dy) dy\dx) dxdy

The above equation can be stated as;
the change in x-slope with change in y
= the change in y-slope with change in x

d*w

~dxdy
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\ fr\ \

J2 dx ?Ey\

dx

-

: d945 !
[ —a
—_— P
é‘-’fg . |A
. I
d0x
! | 2 top view

original position

X

dx

—‘u(z) =0z
EO
z

— cjeflectcd positior
—
I w
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What about the curvature on 45° diagonals?

dbys A
2 N2

de, A
l

A do,
7 =V2y=v2==

db,s = V2de, (= V2d6,)

Consider a view of the plate normal to the 45°
diagonal.
V2 dy =1, d8,45 = 15, V2 d6,
1 do, [ db,
Ty Cdy \ dx
_d (dW) _d*w
~ dy\dx/) dxdy

We now have a variety of relationships for
deflection, curvature and strain.

The x direction movement "u' is the result of

bending deflection w in the y direction.

_ dw
u= de

We can find the strain from derivatives of the
movement,
_du d?w
& T ax T TP axe

In the y direction the movement is called 'v';

_ dw
vV=—2z 0y
_dv d*w
gy e z 07
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g When v and v vary in x and y we can get shear
X .
du _--""\dv du___--7 strains.

: F 7 7 ! du N dv
y |/ /o - | i y=—+—
! K e v dy dx

—du —dv du , dv

Y dy Y » Y= E 3 Fy

CONCEPT: displacement field

In solid mechanics it is useful to describe how all points move relative to their
original positions as a 'displacement field'. In the example below we just consider
how points along an x axis move. We call the movement in the x direction u. A point
at some original position x, moves to a displaced position x;. The displacement
u=x4 —x,. we describe u as a function of x, or u(x). We could also write this as
u(x,) because we think of the displacement as dependent on the original position.

If all points move the same amount, then u(x) = constant. In such case the
derivative of the displacement field is zero and there is no strain anywhere. We call
this 'rigid body movement'. If the movement is a linear function of the x coordinate,
(such as (x) = ¢ + k x ) then the derivative of the displacement field is k and the
strain is k everywhere. The sketch below illustrates the concept. The concept can be
extended to 2D and 3D problems.

01234567 8291
[ [ 1 [ T T 1

no movim't | original position x, ) 0 e-du_g
u(x) = X%, = ===
nostrain | Y Y Y deformed position x, i dx
RBmovt [ R [ [ T K T T T T wriginal position X, 3
no strain N _ X deformed position x, () =xx=1 &= dax =0
A LT
unif. stretch |__original position x, _du _
u(x) = %%, =25x &=7—=25
unif. strain | 3' X \ deformed position x, ) dx
u(l) =25 u(10) =25 Xg =X + U(%)
0 2 24 567 891 il i
: original position X,
var, ST.FS‘FC"I | | [ 1 L\ [ . [ | [ . |\i P N U(X) = %% =022 €= CEIU =04 x
var.strain | Y deformed position x

u(m) =-O2 .u(5] =.5.o - IUUO)' =2 X4 = Xo + U(Xo)
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AN SYS analysis results

For
du dv

—_— + R
dy dx
we can use our definitions of u and v to get;

_d( dw>+d( dW)
y_dy de dx Zdy

'}/=

- d*w
B dedy
or
5 1
Yy =—24Z—
Tyy
d*w 1
Sx=—ZW=—Za
B dzw_ 1
&y = Zdyz_ Zry

We can use the 2D version of Hooke's Law to get

the stresses.
E
Oy =—(1—v2) (ex+ vey)

E d2W+ d*w
TP a v \dx? dez
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E
Oy =(1_—vz)(€y+ VEx)

3 E d2W+ d?*w
B Z(l—vz) dy? Vidx?

_E B E d*w
Txy_(1+v)yxy_ Z(1+v)dxdy

Clearly when z = 0 (middle of plate), all stresses
vanish. Also, there are no average in-plane
stresses, only bending moments and torsion.

t/2
M, = oy zdz
-t/2

t/2
M, = f Oy zdz

-t/2

t/2
M,, = j Tyy ZdZ
—t/2
By using the expressions for o, , 0, and 7,, we can
write;

d*w d*w
My =-D W-}'V d_yz

d*w

dx dy

My, = My, = —=D(1—v)
where
E t3

D= —
12 (1 —v?)

The derivation of these equations is as follows;

t/2
M, = oy zdz

~t/2
3 E d?w N d’w jt/z 2 4
(1 -v2)\dy? Vidx? zaz

—t/2




E5003 - Ship Structures |
© C.G. Daley

224
E (dzw d2W> z? t/2
= + v PR
— 2 2 2
(1—-v?)\dy dx 3 —t/2
B Et3 d*w N d*w
121 —-v) \dy? Vidx?

So far we have expressions for stress and strain (2
axial and shear) and for moments (2 bending and
torsion) expressed as the derivatives of the
deflection w.

We now want to derive the differential equation
relating the deflection to load. The load is a
pressure acting normal to the plate. Consider a
small section of the plate subject to a uniform
pressure p.

Summing the vertical forces ;
L Fyere =0

p dx dy + (sz + szx)dy - szdy
+ (Qzy + dQ,y)dx — Q,ydx =0

pdx dy + dQdy + dQ,,dx =0

dQz  dQzy _

dx dy 0

Summing moments about x axis (about center of
plate) ;
IM,=0

dM,, dy + dM,dx — Q,,dx dy =0

now divide by dy;
X

dM
dey + de - szdx =0

and by dx;

dM,, dM,
_ =0
dx T dy Qzy

which gives;
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dM dM
sz = - + .
dx dy
Using the previous expressions for M,, and M, we
can write;

_d D(1—7) d*w +d b d2W+ d*w
oy = dx V) dx dy) dy dy? v dx?

_d b d*w D d*w N d Ddzw D d*w
oy = dx dx dy Vidx dy | dy dy? v dx?

d3w d3w d3w d3w

=-D D ~Do— DV ———
Qzy dx? dy oV dx2dy dy3 v dx2dy
- d3w d3w
Qzy dx? dy dy3
Similarly;
__p d3w b d3w
Qux dx dy? dx3
Now, using
dQ szy
p+ I + 4y 0

we can write;

d d3w d3w
p +E<_D dx dy? -b dx3>
d d3w d3w
+E<—D T7dy P dy3> =0

which simplifies to;

p d*w d*w d*w d*w
== +——+ +
D dx?dy? dx* dx?dy? dy*

and can be written in the short hand got a general
4th derivative in 2 dimensions;

%=A4W
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Note the similarity to the differential equation for

a beam of p = EI w''"". Now we need to solve

p = D A*w for the appropriate boundary conditions
to get w(x,y) and the other results (stress, moments
etc.)

Example #1:
A long plate, simply supported with a pressure in

the shape of a half sine wave.

applied pressure
normal to surface
p= posin(lg’—)

Check the pressure equation;

p(y=0)=0 (atedge) OK

s
p(y =b/2) = p, sin (E) =p, (atcenter) OK

Note that nothing varies along the x axis, so all
derivatives of x are zero. Therefore, the differential
equation becomes;

assume the solution has the form;

w(y) = C sin (%)
SO
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I
]

posin(2) = 7z (c sin ()

which becomes:

posin(5) =€ (5) (sn ()

and lets us solve for C;
Bl
D \m
which gives the deflection as;
4
_Dbo(b\ . my
wo) =2 (2) sn(5)

po (b\"
Wmaxzﬁ ;

with

The stress can be found using;

B E d2W+ d’w
%= Z(l—vz) dy? Vix?

which simplifies to;

E d*w
YEN =T\ @2
The stress at the top of the plate, @ z=1t/2;
t E d*w
O-y,top()’) = - E (1 _ Vz) dyz
_t E Do (b *om\2om y
=35 o) G )
2

= () an ()

The stress as the edge is;

Oy,top (0)=0



E5003 - Ship Structures |

© C.G. Daley

—_t
A
\
boundary conditions
at edges

applied pressure
normal to surface

p = f(xy)

228

The stress in the center is;

2

6 (b
Oy top (b/Z) = F (?) Po

Similarly, we can find;

v 6 (b\°
ax,top(b/z) = ﬁ(?) Do

General Plate Problems

The solution for a general plate problem requires
the solution of the 4th order partial differential
equation;

p(x,y)
D

= Aw(x,y)

Such solutions can be complex, even for simple
load patterns. Even in the case;

p(x,y) =p, (i.e uniform pressure)

The solution is found by expressing the load as a
Fourier equation;

p(x,y) =p, = i i QAmn SIN (m;rx) sin (m;ty)

m=1n=1

where
_16p, m=135..
" mmn n=135..

amn

AQmn =0 morn =even

For this load pattern and simply supported edges,
the deflected shape can be derived as;
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w(x, y)

n4D ZZ(nZ a2>sm( a )Si“( b )

m=1n=1

Note that a sine pattern of load has been shown to
produce a sine pattern of response. So a group of
sine shaped loads will produce a group of sine
shaped responses. Hence the Fourier approach
should work. It all depends on the elegance of
super-position (hurray for Hooke!)

We will leave the general solution of more complex
problems to a specialized course in palates and
shells. See Hughes for solutions to some typical
problems.
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Topic 22: Problems
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Appendix

Fixed End Moments

231
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Deflection and Slopes of Beams

Loading Deflection Slope
P Px2
X V= ZE (3L - x)
N "
N e B X o ﬂZ) 0 P_Lz
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—
v
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Typical spreadsheet to solve Moment Distribution problems.
Moment Distribution Method
table of values Example #3 x a M p
param. | value units @ problem allEl, noswéy [ b E | e I m
L 10 m 10m |0 20mm__|0 m
L2 20 m |‘—’| |
s | 20 | T e - ’
L4 12.5 m 2 22125 15 &2 P
EN 1 rel A ,;}'7 2" 24 4 3 35 “A 5
EI2 1 rel
E3 1 rel 25m 2
El4 1 rel 20m 0 m 53 3
W 8 kN/m 5
allEl I E
X P z
el2 e21 e23 e24 e42 e32 e35 e53
o 1.0 0.5 0.250 | 0.250 0.0 0.3846 | 0.6154 0.0
FEM| -66.7 66.7 | -266.7 | 0.0 0.0 266.7 0.0 0.0
net| 66.7 200.0 0.0 -266.7 0.0
dist | 66.7 100.0 | 50.0 50.0 0.0 -102.6 | -164. 0.0
co | 50.0 33.3 -51.3 0.0 25.0 25.0 0.0 -82.1
eEM| 50.0 200.0 | -267.9 | 50.0 25.0 189.1 | -164.1 -82.1
net| -50.0 17.9 -25.0 -25.0 82.1
dist | -50.0 9.0 45 45 0.0 -9.6 -15.4 0.0
co | 45 -25.0 -4.8 0.0 2.2 2.2 0.0 -7.7
eEM[ 45 184.0 | -268.3 | 54.5 27.2 181.7 | -1795 -89.7
net| -4.5 29.8 -27.2 2.2 89.7
dist | -4.5 14.9 75 75 0.0 -0.9 1.4 0.0
co 7.5 -2.2 -0.4 0.0 3.7 3.7 0.0 -0.7
eEM[ 0.0 196.0 | -260.1 | 64.0 320 | | 1836 | -183.8 -91.9
F2ly  59.6  Fl2y 20.4 F42x 5 F53x -22
F42y 1434 F53y  83.8
F23y 83.8 F32y 76.2
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