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PART 1 : Introduction 

 
Church in Dubrovnik 
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Topic 1: Introduction to Ship Structures 
 
 
The course is intended to develop the student’s 
knowledge of ship structures. The focus is on 
various types of intact structural behavior, 
building upon concepts from mechanics of 
materials. The course project will involve the 
design, assessment, drawing and reporting on the 
mid-ship scantlings (hull girder design) of a large 

vessel. The follow-on course (6003) will 
move from the consideration of intact 
behavior to the mechanics of structural 
failure.  
 
One of the aims of the course is for the 
students to develop the ability to make an 
educated guess. Such guesses are not wild 
or random. Educated guesses are based on 
sound reasoning, careful approximation 
and simplification of the problem. In most 

cases the 'guess' starts by forming an idea of the 
problem in its essential form, or in 'bounding' 
forms. Basic laws of mechanics are considered to 
determine what fundamental principle might 
govern the outcome. Most problems are governed 
by simple conservation laws, such as of forces, 
moments, momentum and/or energy.     
 
A related aim of the project is for the students to 
develop the ability to sketch the problem at hand, 
by hand and clearly. Sketching  is a form of 
symbolic communication, no less valuable than the 
alphabet or algebra.   

 
Background 

 
Humans have been constructing structures for a 
long time. A structure is a tool for carrying 
(carrying what is in or on the structure). Ship 
structures have evolved like all other types of 
structures (buildings, aircraft, bridges ...). Design 
was once purely a craft. Design is evolving as we 

Cruise Ship Structure 

hand drawn sketch 
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understand more about the structure itself and the 
environment that we subject it to.  
 
Traditional Design  
 

• built by tradition (prior example) 
• changes based primarily on experience 

(some analysis) 
• essentially a builders “Craft” 
• QA by proof test and use 

 
 
 
 
 
Engineering Design 

• incorporates analysis based on math/physics 
• common designs are codified (building code, 

class rules..) 
• new designs should follow the “Engineering 

Method” 
• design, analysis, construction and 

regulation are separate specialties 
• design practice is evolving: In the 1950 

tabulated requirements were found in Class 
Rules. By the 70s all codes had changed to 
include prescriptive algebra. New trend are 
towards "LRFD - load and resistance 
factored design", "risk based design" and 
"goal based design". Current practice in 
large (novel) projects make extensive use of 
"scenario based" design, with HAZIDs 
(hazard identification and mitigation).  

• The future of design will be "design by 
simulation" in which the many interacting 
process and systems will be simulated 
numerically. In some ways this will 
represent a return to the idea of proving a 
design by a "proof test", except it will be a 
numerical proof test and will simulate the 
life of the design.   

 
 

Gondolas in Venice 

early Finnish icebreaker (public domain - Wikipedia) 
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Purpose of Ship Structures 
 
The structure of a ship or ocean platform has 3 principal functions:  

 Strength (resist weight, environmental forces – waves + ) 
 Stiffness (resist deflections – allow ship/equipment to function) 
 Water tight integrity (stay floating) 

 

   
Warship (public domain - Wikipedia)            Bulk Carrier FLARE (from TSB report ) 

 
There are two other important functions 

 provide subdivision (tolerance to damage of 1,3 above) 
 support payloads  

 

  
the beach at Chittagong  (Naquib Hossain - Wikipedia) 

 
These functions are all interrelated, but should be considered somewhat separately.  
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Structural Arrangement 
 
The particular arrangement of the structure is done to suit a variety of demands; 

 Hull is shaped (reduce resistance, reduce motions, reduce ice forces, increase 
ice forces, reduce noise) 

 holds are arranged for holding/loading cargo 
 holds are arranged for holding/installing engines 
 superstructure is arranged for accommodation/navigation 
 all structure is arranged for build-ability/maintainability 
 all structure is arranged for safety 
 all structure is arranged for low cost 

 

 
Cruise ship Lifeboat 

 
Types of Structural Work 
 
Ship structural specialists are involved in a variety of work; 

 Design 
 Analysis 
 Construction 
 Maintenance 
 Repair 
 Regulation 

  
While almost all Naval Architects get involved in structural issues, as with most 
professions, a few focus on the area and tend to be involved in any advanced work. 
This course aims to have you develop your ‘feel’ as well as your knowledge of 
structures. In other words, you should work at developing you “Engineering 
Judgment” in the area of ship structures.  
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Structural Behavior 
 
Ship structural behavior, as with all structural behavior is essentially very simple. 
Structures are an assemblage of parts. This distinguishes them from objects. A 
beam or plate is a structural element, but only a collection of structural elements is 
called a structure. The theory of structures builds upon the field of ‘mechanics of 
materials’ (also called mechanics of solids, or strength of materials), by considering 
the interactions and combined behaviors of collections of structural components. So, 
much of this course will focus on techniques for understanding collections of 
structural elements. We will also review and expand, somewhat, on the mechanics 
of individual elements.  
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Levels of Structure 
 
As a structure, a ship is an assemblage of 
components. At the largest scale a ship is a simple 
beam, carrying weight and supported by buoyancy.  
The behavior or the whole ship as a single beam is 
referred to as the behavior of the primary 
structure.   
 
The primary structure is referred to as the hull 
girder. The strength and stiffness of the hull 
girder depend on the properties of the cross 
sections of the ship. The key section is the midship 
section.  
 
Within the hull, as integral components of the 
hull, are large structural components that are 
themselves make of individual structural 
members, and yet act as individual systems. These 
are called secondary structure. For example, the 
whole double bottom, between bulkheads, is a unit 
that acts as a sandwich panel, behaving somewhat 
like a plate.     
 
Locally a ship is comprised of frames and plate. 
These are called tertiary structure. The tertiary 
structure are individual structural members.  
 
Ships are a class of structure called "semi-
monocoque".  In a pure monocoque, all the 
strength comes from the outer shell ("coque" in 
french). To contrast, in "skin-on-frame" 
construction, the loads are all borne a structure of 
framing under the skin. In ships, the skin is 
structurally integral with the framing which 
supports it, with the skin providing a substantial 
portion of the overall strength.  
 
All the various parts and levels of a ship structure 
interact. Ships are "all-welded" structures, 
meaning that it is all one single, complex, solid 
elastic body. The main thing that structures (and 
all parts of structures)  do is “push back”. i.e. 
across any interface (across every patch of every 

Newton's 3rd Law: 
action = reaction 
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plane, everywhere in the universe, always!) the 
force acts in both ways. This powerful idea is the 
key to following what happens in a structure.  
 
Structural Design  
 
The process of ship structural design varies 
depending on the specific issues. Structural design 
occurs after the mission is set and a general 
arrangement is determined. The general 
arrangement allows us to determine both the 
environmental loads and the distribution of 
hull/outfit/cargo weights. The establishment of 
scantlings (structural dimensions) is iterative. We 
assume that a preliminary set of dimensions is 
settled upon from experience or by other choice. 
The loads will cause a set of responses (stresses, 
deflections). The response criteria are then 
compared to the responses. For any inadequacies 
we modify the structural dimensions and repeat 
the response analysis. When all responses are 
satisfactory, we are finished.  
 
In cases where we wish to satisfy additional 
constraints (cost, performance..) we add checks for 
these items after we have checked the structural 
response. Again we loop until we have met the 
constraints, and reached optimal values for some 
measure.  
 
As stated above, the structural design can only 
occur after the overall vessel concept and 
arrangement is set, which is done during the 
preliminary design stage. The structural design 
itself is a process that is comparable to the overall 
design. Just as the vessels has a mission and a 
concept to satisfy that mission, so too does the 
structure have a mission and concept to satisfy the 
mission. Prior to deciding on the structural sizes 
(scantlings) , the designer must decide on the 
overall structural concept and arrangement. In 
rule based design (Classification Society rules), the 
loads and response criteria have been combined 
into standard scantling requirements formulae. 
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The user can use these formulae to determine 
minimum dimensions for members and 
components.  There can then be the need to check 
additional criteria (e.g buckling, alternate loads). 
When this is complete the user has a complete 
structural design, but not yet a final detailed 
design. The final structural drawings also include 
detailed design features (e.g. bracket and weld 
specifications).  The image at left is taken from a 
structural drawing of a web frame in an offshore 
supply vessel.  
 
Load Types 
 
We will define four general types of structural 
loads.  

• Static Loads (e.g. fixed weights) 
• Low Frequency Dynamic Loads (e.g. quasi 

static load, wave loads) 
• High Frequency Dynamic Loads (e.g. 

vibrations) 
• Impact Loads (e.g., blast, collisions) 

 
With both static and quasi-static loads, we do not 
need to take inertial or rate effects into account in 
the structural response. With high  frequency 
loads we need to consider structural vibrations 
which includes inertial effects and damping. For 
impact loads, we have both transient inertial 
effects and rate effects in material behavior. It is 
important to distinguish between loads affecting 
vessel rigid body motions and elastic structural 
response. Wave forces may cause the vessel as a 
whole to respond with inertial effects (heaving 
motions), but will seldom cause anything but 
quasi-static response of the structure. The 
important determinant is the relative frequency of 
the load and response. Local structure will 
respond elastically at frequencies in the 100hz to 
3000hz range. The hull girder will flex at around 
the 1 hz rate. The vessel will heave and roll at 
around the 0.1 hz range. (large vessels/structures 
will respond more slowly).   
 

launch of MEXOIL, by John N. Teunisson, 
14 February 1918 (wikipedia) 
 

adapted for illustration from a design by Rolls Royce Marine 
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In this course we will examine the structural 
response to quasi-static loads. The hull girder is 
sized to resist the combination of self weights and 
wave forces.  

 
 

 
Topic 1: Problems 
 
1.1 Longitudinal strength is a primary concern during the design of a ship. Describe the 
steps in the ship design process (in general terms) that must occur prior to consideration of 
the longitudinal strength.  
 
1.2  What is the difference between “low frequency dynamic” and “high frequency dynamic” 
loads? Give examples.  
 
1.3 Describe the types of loads that you would be concerned with during the launch of a 
vessel on a slipway.   
 
1.4 Loads on ships 
The following is a table of load types. Identify each load as static, quasi-static, dynamic or 
transient. Place a check mark  to indicate which categories apply to each load type. If 
more than one type applies, explain why in the comments column. 
 

 
LOAD 

static quasi-
static 

dynamic transient comments 

Dry cargo      
Liquid cargo      
Engine      
Propeller      
Ice      
Waves      
Other: ______      
Other:______      

 
1.5  In preliminary design, when can the preliminary structural calculations be made?  
 
1.6 List 5 purposes of structure in a ship.  
 
1.7 When is a load considered to be quasi-static?  
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Topic 2: Ship Structural Features 
 

 

 
 lifeboat on the Battleship Texas 

 
Introduction 

In this Chapter we will  
Name and describe ships structural components.  
Discuss some structural features and challenges for various vessels, 

~~~~~~ 
Boats are made from a variety of materials, including wood, fiberglass, 

composites, aluminum, steel and cement. Ships are built mainly from steel. In this 
Chapter we will name and discuss the main structural features of steel ships. Ships 
are much longer than they are wide or deep. They are built this way in order to 
minimize resistance (fuel consumption), and yet maintain adequate stability and 
seaworthiness. This geometry results in the ship being a girder (a beam built from 
compound parts). The figures below show sketches of the structural details of the 
midship section of a bulk carrier.  
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Figure 1.   
 
This type of vessel is very common, and has many problems. Single side shell 

vessels are being replaced with double hull vessels. The FLARE had this type of 
construction.   

Figure 2. Bow of Bulk Carrier FLARE  
  Bulk Carrier FLARE (from TSB report)  



E5003 - Ship Structures I  15 
© C.G. Daley 
 

 

 
Figure 3 shows a 3D representation of the same x-section as show in Figure 1.  
 

 
Figure 3.  
 

 
Figure 4 Rhino Sketch of section of longitudinally framed double hull Container 
vessel. 
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Ship Structural Photos 
 

 
Terra Nova FPSO – Floating Production, Storage and Offloading vessel       (from wikipedia) 
 
 

     
Terra Nova Hull Framing Terra Nova Structural Connection Details 
 
This structure is above the waterline, and so is quite light.  
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Terra Nova Stringer with web stiffener bracket 

 
 
 

  
Terra Nova Longitudinal angle frames        Transverse flat bar frames through stringer 
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Terra Nova flat bar frames                                    Terra Nova Flare tower 

 
 
 

    
Terry Fox – Icebreaker Bow framing in Terry Fox (photo by R. Frederking) 
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The Terry Fox is ~7000 tons displacement and capable of ramming thick old ice. It has 
never been damaged.  

         
Bow of Supply Boat Reduta Ordona          (Photo credit: Andrew Kendrick). 
 

    
Local ice damage CPF superstructure plating 
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Topic 2: Problems 
 
2.1 Read the SSC Case Study V and name all the parts of the Rhino sketch shown below.  

 
 2.2 What was the basic cause of the “Recurring Failure of Side Longitudinal” in the SSC 
report?   
 
2.3 Sketch a X-section of a ship at mid-ships and label all features/elements.  
 
2.4 Sketch, free hand, the structure in the double bottom of a ship. Keep it neat and label 
the elements 
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Topic 3: Material Behavior 
 

 
plastic frame response to ice load test 

 

Introduction 
In this Chapter we will  

 outline the material behavior models that are necessary to the 
analysis of structures.  

 
Hooke's Law 
 
Hooke's law is a very simple idea. It just states 
that there is a linear relationship between force 𝐹 
and deflection ∆𝐿 in an elastic body; 
 

𝐹 = 𝑘 ∆𝐿 
 where k is the 'spring constant' or the 'stiffness' 
 
For a uni-axial state of stress we can also write 
Hooke's law in terms of stress ( 𝜎: normalized 
force) and strain ( 𝜀: non-dimensional deflection); 
 

𝜎 = 𝐸 𝜖 
 
where E  is Young's Modulus.  
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This law may seem to be too simple to deserve the 
term 'law'. However, this idea was not easily 
found. The world, especially in the time of Hooke 
and before, was so full of variability, inaccuracy 
and non-linearity that this idea was not obvious. 
Many things were made from natural materials 
(stone and wood) and the idea of linear behavior 
was radical. Hooke was a contemporary, and rival, 
of Newton. He developed a coil spring for use in a 
pocket watch. In 1678 he published a discussion of 
the behavior of his spring, saying: "ut tensio, sic 
vis" meaning "as the extension, so the force". 
Hooke worked in many fields (architecture, 
astronomy, human memory, microscopy, 
palaeontology), but it is only in mechanics that his 
name is associated with a fundamental law.  
 
How important is Hooke's contribution? For 
structural analysis it is the fundamental idea, as 
important to structural analysis as is Newton's 
2nd law (𝐹 = 𝑚𝑎) to the field of dynamics.  
 
Hooke's law is important because linearity of 
behavior permits the use of superposition. And 
only with the idea of superposition can we divide 
problems up into parts, solve the parts and add 
them back together to get a total solution. The 
whole field of structural analysis depends on 
Hooke's law.  
 
Hooke's law can be expanded to describe 2D and 
3D behavior. Consider a 2D sample of elastic 
material. When a force is applied in one direction 
(x) the material stretches in that direction and 
contracts in the lateral direction(y). So for a stress 
in the x direction we get strains in x and y. This is 
Hooke's law in 2D for the case of uni-axial stress; 
 

𝜀𝑥 =  
𝜎𝑥
𝐸

 
 

𝜀𝑦 = −𝜈 
𝜎𝑥
𝐸

 
 

http://en.wikipedia.org/wiki/Robert_Hooke 
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When we consider a general state of stress, 
comprised of a combination of x and y direction 
stresses (𝜎𝑥,𝜎𝑦), as well as shear stress (𝜏𝑥𝑦) we 
can write the relationship amoung the stresses 
and strains Hooke's law in 2D for the general case;  
 

�
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

� =
1
𝐸
�

1 −𝜈 0
−𝜈 1 0
0 0 2(1 + 𝜈)

� �
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

� 

 
or equivalently; 
 

�
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

� =
𝐸

1 − 𝜈2
�

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

� �
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

� 

 
The above equations are used to describe isotropic 
materials (materials that are similar in all 
directions, such as steel), which have the same 
value of E and n in all directions.  
Note: Anisotropic materials, such as wood and 
fiberglass have different values of E for each axis. 
Hooke's laws for anisotropic materials have many 
more terms.  
 
Hooke's law can be expressed in 3D as well, but 2D 
is sufficient for the problems that we will examine.    
 
state of stress in 2D 
 
Consider a small element of material with normal 
and shear stresses on vertical and horizontal 
planes. We refer to these stresses as engineering 
stresses, 𝜎𝑥,𝜎𝑦, 𝜏𝑥𝑦 .  Now consider what the 
stresses would be on any other plane, so one that 
is rotated by the angle 𝜃𝑐 from the vertical (from 
the plane for 𝜎𝑥 stress).  Mohr showed that the 
stresses on all planes, when plotted, will form a 
circle in 𝜏 vs. 𝜎 coordinates.      
 
The stresses on the vertical plane, 𝜎𝑥 and 𝜏𝑥𝑦, are 
plotted on the Mohr's circle (point A). The stresses 
on the horizontal plane, 𝜎𝑦 and −𝜏𝑥𝑦, are plotted at 
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point B. These two planes are physically 90 
degrees from each other, but are 180 degrees apart 
on the Mohr’s circle.  
 
The line joining A, B is a baseline. To find the 
stresses on a cut plane at angle θ from the vertical 
plane (the plane of A), we must move 2θ from the 
'A' direction around the Mohr’s circle. This lands 
us at point C, where the stresses are , 𝜎𝑐 and 𝜏𝑐. 
 
The general equations to find the stresses on a 
plane at angle 𝜃 from the plane of 𝜎𝑥  are; 
 

𝜎𝑛 =
1
2
�𝜎𝑥 + 𝜎𝑦� +

1
2
�𝜎𝑥 − 𝜎𝑦�𝑐𝑜𝑠2𝜃 + 𝜏𝑥𝑦𝑠𝑖𝑛2𝜃 

 
𝜏𝑛 = −

1
2
�𝜎𝑥 − 𝜎𝑦�𝑠𝑖𝑛2𝜃 + 𝜏𝑥𝑦𝑐𝑜𝑠2𝜃 

 
 
 
 
principal stresses 
 
You can see from the drawing of Mohr's circle, that 
the largest value of 𝜎  occurs where 𝜏 is zero. The 
largest and smallest values of 𝜎  are called 𝜎1 and 
𝜎2. They are sufficient to define the circle, and are 
called the principal stresses.  
 
We do not need to solve for σ1 and σ2 graphically. 
We can use the following equations: 
 

σ1 =
𝜎𝑥 + 𝜎𝑦

2
+ ��𝜎𝑥 −

𝜎𝑥 + 𝜎𝑦
2

�
2

+ 𝜏𝑥𝑦2  

 

σ2 =
𝜎𝑥 + 𝜎𝑦

2
−��𝜎𝑥 −

𝜎𝑥 + 𝜎𝑦
2

�
2

+ 𝜏𝑥𝑦2

 
 
or 

σ1 = σ + r 
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σ2 = σ − r 
 
large strain behaviors 
 
At low strains steel is a linear elastic material. 
However, when steel is strained to large levels, the 
linear behaviour ends. Typical ship steels will 
follow a stress-strain curve as shown at the left. 
After yielding the stress plateaus while the strains 
increase significantly. At larger strains the stress 
begins to rise again, in a phenomenon called 
'strain hardening'. At even larger strains the 
material starts to 'neck' and eventually ruptures. 
Typical yield stresses are in the range 225 to 400 
MPa. Typical ultimate stresses are in the 350 to 
550 MPa range.  
The initial slope is the Young's modulus which is 
about 200,000 MPa (200 GPa). So the strain at 
yield is about 1200 to 2000 x10-6 strain (µ-strain). 
Rupture occurs at around 25% strain (300,000 µ-
strain). 
 
 
yield criteria and equivalent stresses  
 
In ships structures, made almost entirely of plate 
steel, most stress states are essentially biaxial. In 
this case we need to have a criteria for any 2D 
state of stress.  
 
The 2D von Mises criteria is plotted at left. The 
curve is normally represented in terms of principal 
stresses and forms an oval. The oval crosses the 
axes ay the uniaxial yield stress 𝜎𝑦𝑖𝑒𝑙𝑑. The 
equation for the yield condition is; 

𝜎12 − 𝜎1𝜎2 + 𝜎22 = 𝜎𝑦𝑖𝑒𝑙𝑑2  
 
 The criteria can also be expresses in terms of 
engineering stresses; 
 

𝜎𝑥2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦2 + 3𝜏𝑥𝑦2 = 𝜎𝑦𝑖𝑒𝑙𝑑2  
 
To show whether a general 2D stress is at yield, 
the concept of an equivalent stress is used (the 
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von-mises equivalent stress). The equivalent stress 
is a uniaxial stress that represents the same % of 
yield as the biaxial stress. In this way any 2 states 
of stress can be compared.  The equivalent stress 
is; 
 

𝜎𝑒𝑞𝑣 = �𝜎12 − 𝜎1𝜎2 + 𝜎22 
or 

𝜎𝑒𝑞𝑣 = �𝜎𝑥2 − 𝜎𝑥𝜎𝑦 + 𝜎𝑦2 + 3𝜏𝑥𝑦2  

 
We will make use of equivalent stresses in the 
ANSYS labs. 
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Topic 3: Problems 
 
3.1 A column is made of steel pipe with OD of 8", and ID of 7". It is 8 feet tall. The column 
supports a weight of 300kips (300,000 lb).  How much does the column shorten under load? 
(E for steel is 29,000,000 psi)  
 
3.2  A 2D state of stress (𝜎𝑥,𝜎𝑦, 𝜏𝑥𝑦)  is (200, -20, 45) MPa.  What are the strains (𝜀𝑥 , 𝜀𝑦,𝛾𝑥𝑦)? 
 

 
 

3.3  For a 2D state of stress (σx,σy, τxy)  of (180, -25, 40) MPa, plot the Mohr's circle.  What 
are the principal stresses (σ1,σ2) ? 

 
 

3.4  For a 2D state of stress (σx,σy, τxy)  of (100, -100, 60) MPa, what is the von-mises 
equivalent stresses σeqv ?  

 
 

3.5  For a 2D state of stress (σx,σy, τxy)  of (150, 100, 30) MPa, what is the von-mises 
equivalent stresses σeqv ?  

 
3.6 For a small cube of material with  (σx, = 100,σy = 100) what is the maximum shear on 
any plane? 
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PART 2 : Longitudinal Strength 

 
St. John's Harbour 
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Topic 4: Longitudinal Strength: Buoyancy & Weight 
 

 
Pompei 

Introduction 
In this Chapter we will  

 Discuss Still water bending moments, bonjean curves, Prohaska’s 
method and a similar method for non-parallel midbodys  

~~~~~~~~~~~~~~~~~~~~ 
Overview 
 
Structural design starts from: 
 
Principal Dimensions -      L,B,T 
Hull Form -        CB, CWP, CM  
General Arrangement – decks and bulkheads 
 
Which is called preliminary design: 
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The first strength consideration is the longitudinal strength of the hull girder. The 
hull girder feels vertical forces due to weight and buoyancy. For any floating body 
the total weight must equal the total buoyancy, and both forces must act along the 
same line of action. However, at each location along the ship, the weight will not 
normally equal the buoyancy. 
 
The weights are set by the combination of lightship and cargo weights. The 
locations of the weights are fixed (more or less). The buoyancy forces are determined 
by the shape of the hull and the location of the vessel in the water (draft and trim). 
The net buoyancy will adjust itself until is exactly counteracts the net weight force. 
However, this does not mean that each part of the vessel has a balance of weight 
and buoyancy. Local segments of the vessel may have more or less weight than the 
local buoyancy. The difference will be made up by a transfer of shear forces along 
the vessel.   
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Bending Moment Calculations 
 
The ‘design’ bending moment is the combination of Stillwater bending and wave 
bending. To calculate these values we will make the following assumptions; 

1. Ship is a beam 
2. Small deflection theory 
3. Response is quasi-static 
4. Lateral loading can be superimposed  

 
~~~~~~~~ 
 
Still Water Bending Moment (SWBM) 
 
The still water bending moment is calculated from the effect of the weights and 
buoyancy in calm water. The buoyancy force is a line load (e.g. kN/m). The local 
buoyancy per meter is found from the x-sectional area of the hull at each location. 
The x-sectional area depends on the local draft and are found from the ‘bonjean’ 
curves. 
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Bonjean Curves – Calculating the Buoyancy Distribution 
 
Bonjean curves show the relationship between local draft and submerged cross-
sectional area. There is one bonjean curve for each station. There are typically 21 
stations from the FP to the AP, with 0 being the FP. This divides the Lbp into 20 
segments.  
 

 
 
 

At each station we can draw a bonjean curve of the x-section area; 
 
 

 
 
 

Bonjeans are drawn on the profile of the vessel. With these curves, we can find the 
distribution of buoyancy for any waterline (any draft, any trim). 

 

 
 
 
For hydrostatic calculations we need to know the distribution of buoyancy along the 
ship. We need to be able to find this for every possible draft/trim. If we had a wall 
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sided vessel, it would be relatively easy to solve for the draft/trim (as in Assignment 
#1). With shaped hulls, there is a non-linear relationship between buoyancy and 
position. We use bonjean curves to find the buoyancies as follows.  
 
For the typical 21 station ship, we divide the ship into 21 slices, each extending fore 
and aft of its station. Using the bonjean curve for each station we calculate the total 
displacement at our draft/trim; 
 

∇= ��𝑎𝑖(Ti) ∗
𝐿𝐵𝑃
20

�    [m3]

20

𝑖=0

 

 

 
 
For example, the displacement for station 3 is; 
 

2033
BPLA ⋅=∇    [m3] 

 
The buoyant line load for station 3 is; 
 

g⋅⋅∇=∆ ρ33    [N/m] 
 
(assuming that area is in m2, g=9.81 m/s2 and ρ = 1025 kg/m3) 
 
The above will provide a way of calculating the buoyant forces at each station. We 
will now discuss the weights. 
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Calculating the Weight Distribution 
 
We will discuss three methods for determining weighs.  
 
If the weight distribution is known (even preliminarily), we use them directly. The 
steps to follow are; 

o Calculate the weight at each station (+- half station) 
o (optionally) find the c.g. of weights for each segment 
o (optionally) place the weights at the c.g.  

 

 
 
~~~~~~~ 
If the weight distribution is unknown and we need to estimate the distribution, we 
can use the Prohaska method. Prohaska proposed a method for a ship with parallel 
middle body (i.e. most cargo vessels). The weight distribution is a trapezoid on top of 
a uniform distribution, as follows; 
 

 
The weights are distributed according to the pattern above. With the average 

weight/meter of the hull : L
WW hull=  the values of a and b are ; 

 
 

W
a

 W
b

 

Tankers .75 1.125 
Full Cargo Ships .55 1.225 
Fine Cargo Ships .45 1.275 
Large Passenger Ships .30 1.35 
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 Note that the values of a and b are related, so that the average is W . This gives 

W
a

W
b

2
5.1 −= .  

To move the position of the center of weight (the lcg) the fore and aft ends of the 
load diagram are adjusted by equal (and opposite) amounts.  
 

 
 

54
72Lxlcg ⋅=∆   or,           7

54
2L

lcgx ∆
=     

 
~~~~~~ 
If the weight distribution is unknown and we have a vessel without a parallel 
middle body (i.e. most sail yachts), we need a smoother distribution. The method 
below uses a parabolic distribution on top of a uniform distribution. The two parts 
each have half the weight.    

 
 

 
 

The equation for the weight is; 
 

))12(1(
4
3

2
2−−+=

L
xWWW  

 
To shift the total center of weight by ‘x’ we shift the c.g. of the parabola by 2x. This 
is done by ‘shearing’ the curve, so that the top center, ‘D’, shifts by 5x. All other 
points shift proportionally. 
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Topic 4: Problems 
 
4.1.  For the three station profiles shown below, draw the bonjean curves in the space 

provided.  
 

 
4.2.  For a vessel with 4 stations, the bonjean curves are given at the 3 half stations. Lbp is 

60m.  
for the vessel to float level (no trim), at a 4.5 m draft, where is the C.G.?  
What would the Prohaska distribution of weight be to achieve this? (plot) 
If the C.G is at midships, and the draft (at midships) is 4.5 m, what is the trim?  
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4.3.  For the vessel body plan shown below (left), sketch the corresponding bonjean curves (on 
the right).  

 

 
4.4.  For the bonjean shown below (right), sketch the corresponding vessel body plan curve 

(on the left).  
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4.5.  Bonjean Curves  The following figure shows 5 potential Bonjean curves. Some of them 

are impossible. Identify the curves that can not be Bonjean curves and explain why. For the 
feasible Bonjeans, sketch the x-section that the Bonjean describes.  

 
 

 
 
 
 
4.6.  For the two ship stations shown below, sketch the corresponding bonjean curves on the 

grid below.  
 

  
    (a)     (b) 
 

  
 
 

145 m

20 m

12 m

20 m

2

0
0 150 20010050

2
4
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8
6

Area [m2]

z [m]
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4.7.  You are supervising a preliminary ship design project. You have asked one of your team 
to produce a net load (weight-buoyancy) diagram, so that bending moments can be 
calculated. The diagram you are given is ; 

 

  
 
why is this diagram impossible? Justify your answer. (hint: use SFD and/or BMD) 
 
4.8.  For the three station profiles shown below, sketch the corresponding bonjean curves 
 

 

 
  

AP

20

0

-20
¼ FP

Net Load Curve

¾
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Topic 5: Longitudinal Strength: Murray’s Method 
 

 
Battleship TEXAS 

Introduction 
In this chapter we will  

 Discuss Murray’s Method to estimate still water bending moments  
~~~~~~~~~~~~~~~~~~~~ 
Murray’s Method 
 
Murray’s method is based on the idea that forces and moments in a ship are self-
balancing (no net force or moment is transferred to the world). Any set of weight 
and buoyancy forces are in balance.  
 

      
 

Also, for any cut at x, the moment at the cut can be determined in two ways; 

 
443355

2211)(

LyLyLy

LyLyxBM

−−=

−=
 

 
Murray applied this idea to a ship: 
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where  
ff,fa are the distances from the  to the centers of weight (fore and aft) 
gf,ga are the distances from the  to the centers of buoyancy (fore and aft) 
 
The bending moment at midships is; 
 
          aaaa gfW ∆−=  
or 
          ffff gfW ∆−=  
 
These are two ‘estimates’ of the maximum bending moment. We can combine the 
two, and increase our accuracy, by taking the average of the two; 
 
         ( ) ( )ffaaffaa ggfWfW ∆+∆−+=

2
1

2
1  

         BW BMBM −=  
          weight - buoyancy 
To find the buoyancy part, Murray suggested  
 

( ) xggBM ffaaB ⋅∆=∆+∆=
2
1

2
1  

where  x  =  average moment arm 
 
 
Murray suggested a set of values for x , as a function of the ship length, block 
coefficient and the ratio of draft to length; 
 

)( bCaLx B +⋅=  
where 
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T/L a b 
.03 .209 .03 
.04 .199 .041 
.05 .189 .052 
.06 .179 .063 
  
This table for a and b can be represented adequately by the equation; 

LTa /239. −=  
003./1.1. −= LTb  

 
 
Example using Murray’s Method 
 
Ship: Tanker L=278m, B=37m, CB=0.8 
 
Assume wave bending moment is; 
WBMsag = 583800 t-m 
WBMhog = 520440 t-m 
 
The vessel weights, and weight bending moments are as follows; 

I TEM Weigh t lcg Moment
( t) ( m) ( t-m)

Fwd
   car go 62000 40 2480000
   fuel &  water 590 116 68440
   steel 12000 55.6 667200

3,215,640    
Aft
   car go 49800 37 1842600
   mach iner y 3400 125 425000
   ou tfi t 900 120 108000
   steel 12000 55.6 667200

Σ 140690 t 3,042,800    

BM w = 3 ,129 ,220   
 
 
To find the buoyancy moment we need the draft; 
 

γ⋅⋅⋅⋅=∆= TBLCW B  
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025.1372788.0
140690

⋅⋅⋅
=

⋅⋅⋅
∆

=
γBLC

T
B

 

                     68.16=   m 
 

06.0
278

68.16
==

L
T  

 
Murray’s table gives; 
 
a=0.179, b=0.063 
 

32.57)063.8.0179(.278 =+⋅=x  m 
 

xBM B ⋅∆=
2
1  

         428,032,432.57140690
2
1

=⋅=  t-m 

 
SWBM = BMW-BMB 
                  hog   sag 
             428,032,4220,129,3 −=  
             145,903−=  t-m  (- is sag) 
 
we need to add the wave bending moment in sag  
 
Total BM = 903,145 + 583,800 
                 = 1,486,945  t-m  (sag) 
 
Note that in this case the ship will never get in the hogging condition, because the 
SWBM is so large.   
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Topic 5: Problems 
 
5.1.  Longitudinal strength is a primary concern during the design of a ship. Briefly explain the 

idea behind Murray’s Method.    
 
5.2.  There is a ‘rectangular’ shaped block of wood, as shown in the image below.    The block 

weighs 200 N and has uniform density. It is 1 m long and 0.20 m wide. It is 20 cm thick and 
is floating in fresh water.  

 

 
a) draw the shear force and bending moment diagrams for the block.  

 
Now consider the addition of a small 50 N weight on the top of the block, at a 
distance 2/3m from one end. (hint - a right triangle has its centroid at 2/3 of its 
length)  
 

 
After the block settles to an equilibrium position -   

b) Draw the bending moment and shear force diagrams   
c) What is the max. bending stress on the transverse plane at the middle of the block (ie at 0.5 m from the 

end)?   
 
5.3.  There is a ‘diamond’ shaped block of wood, as shown in the image below. The block 

weighs 5.4 kg. and has uniform density. It is 60 cm long and 30 cm wide. It is 12 cm thick 
and is floating in fresh water. Resting on the block are 2 weights, each small blocks of steel 
weighing 1 kg. They are symmetrically placed and are 55cm apart.  

What is the midship bending moment in units of N-cm ?   
What is the maximum bending stress in the wooden block?   
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Draw the bonjean curve for a cross section of the wooden block at a point 15cm from the end. (show actual 
units).    
What is the block coefficient for the block?  
 

 
ANS: a) 171.5 N-cm (hog)  b) 23.8 MPa  c) Straight and then vertical  d) 0.5 
 
5.4.  Consider a 100m vessel resting in sheltered fresh waters (see below). The CG of all 

weights fwd of midships is 23m fwd of midships (ff=23m). The CG of all weights aft of 
midships is 25m aft of midships (fa=25m).  The weights fwd and aft are 4200 and 4600 t 
respectively. Two bonjean curves are given. Assume each refers to the average x-section area 
for 50m of ship (fore and aft). The (fore and aft) buoyancy forces act at the bonjean 
locations, which are 18m fwd and 20 aft (of midships).  The buoyancy force aft is 4650 t.  

 

 
Using the bonjeans, find 
The vessel drafts at the two bonjeans.  
The buoyancy force fwd. 
The still-water bending moment at midships 
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5.5.  Murray's Method Consider a 100m long vessel resting in sheltered waters. The CG of 
all weights fwd of midships is 20m fwd of midships (ff=20m). The CG of all weights aft of 
midships is 25m aft of midships (fa=25m).   
- Describe how you would use Murray’s Method to determine the still water 
bending moment for this vessel. 
- What other info, if any do you need? 
Note: you don’t need to remember the specific values for terms suggested by 
Murray. 

 
5.6.  Hull girder strength The hull girder can be viewed as a beam. When floating in still 

water, is the beam statically determinate or statically indeterminate? Provide reasons for your 
answer.  

 
5.7.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the 

lightship plus the weight of cargo in two holds. The ship has stranded itself on a submerged 
rock. Draw the various curves of load and response for the vessel (weight, buoyancy, net 
load, shear, moment, slope and deflection) that are compatible with the information given. 
The numerical values don’t matter. The intention is to draw a set of curves that are logical for 
the ship as shown.   
 

  
 
5.8.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the 

lightship plus the weight of cargo in two holds. The forward cargo hold is empty. Draw the 
various curves of load and response for the vessel (weight, buoyancy, net load, shear, 
moment, slope and deflection) that are compatible with the information given. The numerical 
values don’t matter. The intention is to draw a set of curves that are logical for the ship as 
shown.  
 

  
 
5.9.  You see below a sketch of a ship that is 200 m long. The displacement is made up of the 

lightship plus the weight of ballast in 4 tanks. The cargo holds are empty. Draw the various 
curves of load and response for the vessel (weight, buoyancy, net load, shear, moment, slope 
and deflection) that are compatible with the information given. The numerical values don’t 
matter. The intention is to draw a set of curves that are logical for the ship as shown. 
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5.10.  Calculate the still water bending moment (in N-cm) for the solid block of plastic sketched 

below. Assume the block has density as given and is floating in fresh water (density also 
given). Is the moment hogging or sagging?  

   

  
 
5.11.  For the example of Murray’s method in the Chapter, remove the cargo weight and add 

4000 t of ballast, with a cg of 116m fwd of midship. Re-calculate the maximum sag and hog 
moments (both still water and wave).  

 
5.12.  For the example of Murray’s method in the Chapter, instead of using the weight locations 

as given, assume that the weights are distributed according to Prohaska. Re-calculate the 
SWBM. 

5.13.  Consider a 100m long tanker resting on an even keel (same draft fore and aft) in sheltered 
waters. The CG of all weights is at midships and is 8000 tonnes.   
Use Murray’s Method and Prohaska’s values to determine the still water 
bending moment for this vessel (i.e. get both the weight and buoyancy BMs 
about midships). 
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Topic 6: Longitudinal Strength: Wave Bending Moments 
 

 
Cape Spear 

Introduction 
In this Chapter we will  

• Discuss the shape of ocean design waves 
• The moments caused by waves 

~~~~~~~~~~~~~~~~~~~~ 
Design Waves  

 
Design wave forces are considered to be quasi-static. As a wave passes by a vessel, 
the worst hogging moment will occur when the midbody is on the crest of a wave 
and the bow and stern are in the troughs. The worst sagging moment will happen 
when the bow and stern are on two crests, with the midbody in the trough between. 
 

 

 
  

 
Whether for sagging or hogging, the worst condition will occur when the wavelength 
is close to the vessel length. If the waves are much shorter,  
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or much longer than the vessel, the bending moments will be less than if the 
wavelength equals the ship length.  
 

 
 
Consequently, the design wave for any vessel will have a wavelength equal to the 
vessel length. The wave height is also constrained. Waves will have a limited height 
to length ratio, or they will break. This results in a standard design wave of L/20. In 
other words the wave height (peak to trough) is 1/20th of the wave length.  
 
Trochoidal Wave Profile  
 
Note that the waves sketched above did not look like sinusoids. Waves at sea tend 
to be trochoidal shaped, rather than simple sine waves. This has the feature that 
the crests are steeper and the troughs are more rounded.  
 
A trochoidal wave is constructed using a rolling wheel.  
 

 
 

In the case of the design wave; 
LW = LBP 
HW = LBP/20     
 
We can see that; 
 
LW = 2 π R 
HW = 2 r 

for now we assume that this length and 
height or wave is possible } 
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Which gives; 
 

π2
BPLR = ,  

40
BPLr =  

 

20
π

=
R
r  

 
To construct a plot of the wave, we start with a coordinate system at the crest of the 
wave. 
 

θθ sinrRx −=  
)cos1( θ−= rz  

 
This is a parametric equation ( θ is a parameter). We can write; 
 

θθ
π

sin
402
LLx −=  

)cos1(
40

θ−=
Lz  

To plot the wave, it is a simple matter to calculate x and z as a function of θ and 
then plot z vs x. This is done in the spreadsheet below. 
 
L 100
H 5

θ x z
0 0 0

10 2.343657 -0.03798
20 4.700505 -0.15077
30 7.083333 -0.33494
40 9.504142 -0.58489
50 11.97378 -0.89303
60 14.5016 -1.25
70 17.09521 -1.64495
80 19.7602 -2.06588
90 22.5 -2.5

100 25.31576 -2.93412
110 28.20632 -3.35505
120 31.16827 -3.75

-6
-4
-2
0
2

0 50 100 150 200x

z

 
 
 
 
 
 

θ = rolling angle } 
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1.1  L  Wave  
 
L/20 waves have been found to be too conservative for large vessels, esp. for vessels 
>500 ft. A more modern version of the  L1.1  wave. In this case; 
 
 
as before, LW = LBP 
 

BPw LH 1.1=     (in feet) 
or 

BPw LH 607.0=   (in meters) 
 
For trochoidal waves this gives; 
 

π2
BPLR = ,      BPLr 55.=  (feet)   or  BPLr 303.=   (meters) 

 
Calculating Wave Bending Moments 
 
We can now calculate the wave bending moments by placing the ship on the design 
wave. We can use the bonjean curves to determine the buoyancy forces due to the 
quasi-static effects of the wave; 
 

 
 
The steps to determine the wave bending moment are; 

1. Obtain bonjeans 
2. at each station determine the still water buoyancy forces, using the design 

draft.  Fisw = Aisw li ρg 
3. at each station determine the total buoyancy forces, using the local draft in 

that portion of the wave. Fiwt = Aiwt li ρg 
4. The net wave buoyancy forces are the difference between wave and still 

water.  Fiwave=Fiwt-Fisw 
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This gives us a set of station buoyancy forces due to the wave (net of still water). 
These forces should be in equilibrium (no net vertical force). We can calculate the 
moment at midships from either the net effect of all forces forward, or all forces aft 
(the two moments will balance).  
 

 
 

 
 
There are other ways to do this kind of calculation. 3D cad programs such as Rhino 
can be used to find the still water and wave bending moments. Assuming that we 
have a hull modeled in Rhino, we can find the still water buoyancy forces for the 
fore and aft halves of the vessel by finding the volume and location of the centroids 
of the two submerged volumes.  
The procedure would be as follows; 
 

1. Produce solid model of hull 
2. Cut the model at both the centerline and waterlines. 
3. Find the volumes and centroids of the two halves. 
4. Calculate the buoyant moments about midships. 

 
A similar procedure would determine the wave values. The only difference would be 
the need to draw the trochoidal wave as a surface.  
 
The example below shows use of Rhino to calculate the Bouyant BM for a large 
vessel. The centroids of the two half volumes are shown.  
 
BMB = 109,000 x 1.025 x 53.97 (m3 x t/m3 x m = t-m) 
       = 6,029,798 t-m  
or  
BMB = 123,000 x 1.025 x 58.58 (m3 x t/m3 x m = t-m) 
       = 7,385,473 t-m  
 
average:   BMB = 6,707,376 t-m (sag) 
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The difference between this and the weight moment (hog) will give the SWBM. 
 

 
Rhino model, showing slices and centroids  
 
 
 
 
 
 
 
Topic 6: Problems 
 
6.1.  Using a spreadsheet, plot the design trochoidal wave for a 250m vessel, for the L/20 

wave.  
 
6.2.  Using a spreadsheet, plot the design trochoidal wave for a 250m vessel, for the 1.1 L.5 

wave. 
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Topic 7: Longitudinal Strength: Inclined Bending / Section 
Modulus 

 
a breaking wave in Lisbon 

Introduction 
In this Chapter we will  

• Discuss the calculation of bending of an inclined vessel 
• General calculation of hull section modulus/inertia 

~~~~~~~~~~~~~~~~~~~~ 
Inclined and Lateral Bending  
 
When a ship rolls the weight and buoyancy forces cause lateral as well as vertical 
bending. Normally the bending moment vector is aligned with the ship’s y axis. My 
is the bending moment that results from buoyancy and weight forces. 
 

  
 
 
When the vessels rolls by an angle q, the moment vector remains horizontal. This is 
because the buoyancy and gravity forces are always vertical.  This means that the 
bending moment is no longer aligned with the y,z axis of the vessel; 
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Moments are vectors, adding in the same way that force vectors do.  
 
 

θsinwz MM =     lateral bending   
θcoswy MM =     vertical bending 

 
  
 
Stresses in the Vessel  
 
Both My and Mz cause bending stresses in the x (along ship) direction. 

 

NA

y
V I

zM−
=σ       

CL

z
H I

yM
+=σ  

 

 
 
Note: Sign convention: R.H.R., moment acting on +x cut face, compression is 
positive. 

 
In this case a +My causes tension (-) on the +z part of the vessel. A +Mz causes 
compression (+) on the +y side of the vessel. 
 
The total axial stress at any point on the vessel is the sum of the stresses caused by 
the two directions of bending.  
 

CL

z

NA

y
HVX I

yM
I

zM
+

−
=+= σσσ  

                     
CL

w

NA

w

I
yM

I
zM θθ sincos

+
−

=  
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When we have bending moments in both y and z, there will be a line of zero axial 
stress that we call the heeled neutral axis. This is not necessarily aligned with the 
total moment. To find the heeled neutral axis we solve for the location of zero stress; 
 

CL

w

NA

w
X I

yM
I
zM θθσ sincos0 +

−
== , 

 
solving for z in terms of y , we get; 

y
I
Iz

CL

NA ⋅= θtan ,      

where we define: θψ tantan
CL

NA

I
I

=  

yz ⋅= ψtan  
 
ψ is the angle of the heeled neutral axis from the y axis; 
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Peak Stresses  
 
The highest stresses will occur @ y=∀B/2 , Z=Zdeck 
 
There are 2 section modulus values; 
 

deck

NA
NA z

IZ = , 
2B

IZ CL
CL =  

 
So that we can write; 









+=

CLNA
w ZZ

M θθσ sincos
max  

 
This leads to the question: What is the worst angle of heel (θcr)?  
 
To find it we use; 
 









+

−
==

CL

cr

NA

cr
w ZZ

M
d

d θθ
θ

σ cossin0max ,  

 
which gives; 

CL

NA
cr Z

Z
=θtan  

 
Typically 5.0≅CLNA ZZ   so  6.26=crθ  
 

For example, if 
NA

w

Z
M

==0θσ    then 







⋅

+
−

==
NANA

w ZZ
M

2
6.26cos6.26sin

6.26θσ  

           12.1
NA

w

Z
M

=  

 
i.e. for this vessel, there is a 12% increase in stress during the worst roll.  
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Section Modulus Calculations  
 
Ships are largely built of plates. This means that the moment or inertia and section 
modulus calculations normally involve a collection of rectangular parts. For any 
individual plate: 
 

    
 
 

  
 
 

 
    
~~~~~~ 
For compound sections we need to be able to find the inertia about other axes. We 
use the transfer of axis theorem: 
 

  Ina = 1/12 b t3 

= 1/12 a t2 

  Ina = 1/12 t b3 

= 1/12 a b2 

  Ina = 1/12 a d2 

= 1/12 t b3  cos2θ 
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The overall neutral axis (NA) is found by equating 2 expressions for the 1st moment 
of area; 
A hNA = Σ ai hi 
 
The total area A is just the sum of areas. 
A = Σ ai  
 
This gives; 
hNA = Σ ai hi / Σ ai = (a1 h1 + a2 h2)/(a1+a2) 
 
The overall NA goes through the centroid of the compound area.  
 

    
 
Moment of Inertia Calculation 
 
Izz = Σ ai hi2  + Σ Inai  
 
INA = Izz -  A hNA2 
or 
INA = Σ(Inai +  ai (hi - hNA)2) 
 
A simple spreadsheet, as shown below, can be used to find the moment of inertia of 
a ship; 
 

  Izz = Ina + a c2 
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See Assignment #2 for an application.  
 
 
 
 
Section Modulus for Material Combinations  
(e.g. Steel Hull, Al Superstructure) 
 
Consider a section with 2 materials 
 

 
 
When the section bends the sections remain plane, meaning that the strain field is 
linear.  
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To determine the stress/strain/deflection relationships, we convert the x-section to 
an equivalent section. The idea is to modify the section so that it is all made of one 
material, but retains the distribution of axial force (and bending stiffness). We do 
this by adjusting the width of one of the materials, in accordance with the ratio of 
Young’s Modulus. For example, Aluminum is converted to steel, but made thinner 
by Eal/Est. 
 

 
 
For the modified section, ITR is calculated in the usual way. The strains and 
deflections for any vertical bending moment will be correct.  
 
i.e. 

TREI
Mv =′′  

 
The only error will be the stresses in the transformed region. The stresses in the 
unmodified region will be correct, but the modified region will be wrong by the ratio 
of modulii. We can correct this as follows; 
 

TRTR I
My

I
My

=⇒≠ 1σσ  and 
TRI

My
E
E

1

2
2 =σ
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Topic 7: Problems 
 
7.1.  Find the moment of inertia of this compound section: 

 

      dimensions in mm 
7.2.   A box steel hull is 4m x 1m with a shell thickness of 10mm. It is inclined at 15 degrees, 

and subject to a vertical bending moment of 2 MN-m. Find the bending stress at the emerged 
deck edge. 
  

  
 
7.3.  For a composite beam (Steel plate with Aluminum web/Flange) loaded as show below 

a) find the central deflection.  
b) find the maximum stress in the Aluminum   
 

 
 

7.4.  Consider a compound steel-aluminum beam, shown below. Calculate the deflection d 
(show steps)   

  
Ans: 0.112m  
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PART 3: Beams and Indeterminate structures 

 
Sintra Tile Mosaic 
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Topic 8: Beam Theory 
 

 
Test Grillage at Memorial University 

Introduction 
In this Chapter we will  

• Develop the elastic behavior of beams 
• Show the relationship among load, shear, bending, slope and 

deflection 
~~~~~~~~~~~~~~~~~~~~ 
Coordinate System and Sign Convention 
 
The standard coordinate system has the x axis 
along the neural axis of the beam. The positive y 
axis is pointed up.  The sign convention for force 
and moment vectors follows the right hand rule;  
 
+ Forces and deflections follow the axes. 
+ Moments and rotations follow the curl of the 
fingers (on the right hand) when the thumb is 
pointing along the axis. 
 

Shear strain:          
 

Bending moment:    
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To determine the equations for beam bending we 
take a small section of the beam (which represents 
any part) as a free body. We look at all the forces 
and moments on the section and assuming that 
the net force and net moment are zero (Newton!) 
we derive the equations.  
 
At this point we haven’t specified P,Q or M. They 
can have any values. We will examine equilibrium 
conditions and see how these result in 
relationships among P,Q,M. 
 
We start by summing vertical forces, which must 
sum to zero for equilibrium; 
     
𝑄(𝑥) − (𝑄(𝑥) + 𝑑𝑄) + 𝑝(𝑥) 𝑑𝑥 = 0   
 [N] 
which is simplified to; 

𝑑𝑄 = 𝑝(𝑥)𝑑𝑥 
 
and rearranged to give; 

𝑝(𝑥) =
𝑑𝑄
𝑑𝑥

 
 
This is a differential equation that states that the 
line load on a beam is equal to the rate of change 
(slope) of the shear force. Next we sum moments 
about the right hand end, which must also sum to 
zero to show equilibrium of the free body. 
 

−𝑀(𝑥) − 𝑄(𝑥)𝑑𝑥 −  𝑝(𝑥)𝑑𝑥
𝑑𝑥
2

+ (𝑀(𝑥) + 𝑑𝑀) = 0
  

which is simplified to; 

−𝑄(𝑥)𝑑𝑥 −  𝑝(𝑥)
𝑑𝑥2

2
+ 𝑑𝑀 = 0 

 
note that dx is not just small, it is vanishingly 
small, so that dx2 is vanishingly small by 
comparison (i.o.w. we can remove the second order 
terms, in this case with no loss of accuracy). 
Therefore; 
 

−𝑄(𝑥)𝑑𝑥 + 𝑑𝑀 = 0 

in SI units: 
P : N/m 
Q : N 
M : Nm 
dx: m 
 



E5003 - Ship Structures I  71 
© C.G. Daley 
 

 

or; 

𝑄(𝑥) =
𝑑𝑀
𝑑𝑥

 
This is our second (related) differential equation, 
which states that the shear in a beam is the rate of 
change (slope) of the bending moment. 
 
We now have two differential equations; 

𝑝(𝑥) =
𝑑𝑄
𝑑𝑥

 
  and  

𝑄(𝑥) =
𝑑𝑀
𝑑𝑥

 
We can re-express these relationships as integral 
equations. The shear is; 
 

𝑄(𝑥) = �𝑝(𝑥)𝑑𝑥 
In the form of a definite integral with a constant of 
integration the shear is; 
 

𝑄(𝑥) = 𝑄𝑜 +  � 𝑝(𝑥)𝑑𝑥
𝑥

0
 

 In words, this equation means: shear is the sum of 
all loads from the start to x.  Similarly, the 
moment is; 
 

𝑀(𝑥) = �𝑄(𝑥)𝑑𝑥 
which becomes; 

𝑀(𝑥) = 𝑀𝑜 +  � 𝑄(𝑥)𝑑𝑥
𝑥

0
 

 
Aside: The shear difference between any two 
points on a beam will be exactly equal to the load 
applied to the beam between these two points, for 
any pattern of load. This leads to a very easy and 
accurate way to measure force; 

𝐹 = � 𝑝(𝑥)𝑑𝑥
𝑥2

x1
= 𝑄2 − 𝑄1 

This principle has been used to design load cells, 
and to instrument ship frames to measure contact 
loads from ice or slamming.  
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Adding Deformations 
 
So far we have differential equations for 
load/shear/bending relationships. Now we add 
deformations. 
 
The shear force and bending moments are causing 
stresses and strains in the beam. We make the 
assumption that we can ignore the shear 
deformations (this is part of what we call simple 
beam theory), so that only the bending moments 
cause distortions. This means that only consider 
the shortening of the compression side of the beam 
and the lengthening of the tension side. When this 
happens, the beam deforms from being straight to 
being a curve. The curve shape for any short 
length is an arc of a circle, with a radius R. The 
local radius, as we can show, turns out to depend 
only on the local bending moment. The figure 
below show a short length of a bending beam. The 
curved shape is also presented in differential form, 
meaning essential or limit shape for a very small 
value of dx.  
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The neutral axis (NA) does not stretch or contract. 
The upper and lower parts of the beam compress 
and/or stretch. We can use the two ‘known’ 
relationships, the stress-moment equation; 
 

𝜎 =
M y

I
 

 
and 1D Hooke's law; 

𝜎 = Eε 
 
 For the top fiber (in the figure above) we see that 
the strain is; 

𝜀 =
∆

dx
= y

dθ
dx

 
 
from the above we have; 

𝜀 =
M y
EI

= y
dθ
dx

 
 
which can be re-arranged to give; 
 

dθ
dx

=
M
EI

 
or 

dθ =
M
EI

dx 
 
We also have  

dθ =
dx
R

 
 

dθ
dx

=
1
R

= κ 
 
Where  is the 'radius of curvature' and  is called 
the 'curvature' (note the odd naming).  
 
Note also that dθ is both the change in relative 
angle of two cross sections separated by dx and 
also the change in slope between two points 
separated by dx along the beam. θ(x) is the slope of 
the beam.  
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This gives us; 

θ = θ0 + �
M
EI

x

0

dx 

 
For prismatic sections, EI is constant, so; 
 

θ = θ0 +
1
EI
�M
x

0

dx 

 
Similarly, to find deflections v, we use the 
relationship, assuming small deflections; 
 

dv
dx

= θ 
and 

dv = θ dx 
 
which lets us write; 

v(x) = �θ(x) dx 
and; 

𝑣(𝑥) = 𝑣𝑜 +  � 𝜃(𝑥)𝑑𝑥
𝑥

0
 

This completes the development of the differential 
and integral equations for beams.  
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Beam Example 1: Cantilever beam with left end 
free 
The cantilever beam is sketched at the left. The 
left end is free and the right end is fixed. The 
shear force is found by integrating the load. In this 
case the initial shear is zero, because there is no 
reaction at the left had end (it's a free end) ; 

𝑄(𝑥) = 𝑄𝑜 + � 𝑝(𝑥)𝑑𝑥
𝑥

0
 

𝑄(𝑥) = 0 + � −𝑝  𝑑𝑥
𝑥

0
 

𝑄(𝑥) = −𝑝𝑥 
                 
The bending moment is similarly found by 
integrating the shear. And again there is no initial 
value of moment because the boundary condition 
has no moment; 

𝑀(𝑥) = 𝑀𝑜 +  � 𝑄(𝑥)𝑑𝑥
𝑥

0
 

𝑀(𝑥) = 0 +  � −𝑝 𝑥 𝑑𝑥
𝑥

0
 

𝑀(𝑥) =
−𝑝𝑥2

2
 

The shear is a straight line. We did not solve for 
the right hand vertical reaction 𝑅𝐵 , but it is 𝑝 𝐿 
and it opposes the shear in the end of the beam 
(which we can see is −𝑝 𝐿). The moment is a 
quadratic function with a maximum value of 
−𝑝 𝐿2/2 as is easily found from summing moments 
about the right hand end. 
 
Next we solve the equation for the slope.   
 

𝜃(𝑥) = 𝜃𝑜 +
1
𝐸𝐼

 � 𝑀(𝑥)𝑑𝑥
𝑥

0
 

by inserting the expression for bending moment 
we get ; 

𝜃(𝑥) = 𝜃𝑜 +
1
𝐸𝐼

 �
−𝑝 𝑥2

2
𝑑𝑥

𝑥

0
 

which becomes; 

𝜃(𝑥) = 𝜃𝑜 −
𝑝 𝑥3

6𝐸𝐼
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At this point we can either carry forward the 
unknown initial slope or solve for it. We know the 
slope at L is zero, so we can write; 

𝜃(𝐿) = 0 = 𝜃𝑜 −
𝑝 𝐿3

6𝐸𝐼
 

 
which can be solved to get; 

𝜃𝑜 =
𝑝 𝐿3

6𝐸𝐼
 

 
therefore the complete equation for slope is; 
 

𝜃(𝑥) =
𝑝 𝐿3

6𝐸𝐼
−
𝑝 𝑥3

6𝐸𝐼
 

 
Now we can find the deflection. The integral 
equation is; 

𝑣(𝑥) = 𝑣𝑜 +  � 𝜃(𝑥)𝑑𝑥
𝑥

0
 

which becomes; 

𝑣(𝑥) = 𝑣𝑜 +  �
𝑝 𝐿3

6𝐸𝐼
−
𝑝 𝑥3

6𝐸𝐼
𝑑𝑥

𝑥

0
 

which becomes; 

𝑣(𝑥) = 𝑣𝑜 +  
𝑝 𝐿3𝑥
6𝐸𝐼

−
𝑝 𝑥4

24𝐸𝐼
 

 
The deflection at L is zero, letting us write; 
 

𝑣(𝐿) = 0 = 𝑣𝑜 + 
𝑝 𝐿4

6𝐸𝐼
−
𝑝 𝐿4

24𝐸𝐼
 

which gives; 

𝑣𝑜 = −
𝑝 𝐿4

8𝐸𝐼
 

so the total equation for the deflection is; 
 

𝑣(𝑥) =
−𝑝 𝐿4

8𝐸𝐼
+  
𝑝 𝐿3𝑥
6𝐸𝐼

−
𝑝 𝑥4

24𝐸𝐼
 

 
which completes the solution. 
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Example 2: Pinned-pinned beam 
 
In this case the initial value of shear is the 
reaction at the left end. We can solve for this from 
static equilibrium at the start. So the shear is;  
 

𝑄(𝑥) = 𝑄𝑜 +  � 𝑝(𝑥)𝑑𝑥
𝑥

0
 

𝑄(𝑥) = 𝑝𝐿/2 +  � −𝑝  𝑑𝑥
𝑥

0
 

𝑄(𝑥) = 𝑝𝐿
2

 
 
The bending moment is;  

𝑀(𝑥) = 𝑀𝑜 +  � 𝑄(𝑥)𝑑𝑥
𝑥

0
 

𝑀(𝑥) = 0 +  �
𝑝𝐿
2
− 𝑝 𝑥 𝑑𝑥

𝑥

0
 

𝑀(𝑥) =
𝑝𝐿𝑥

2
−
𝑝𝑥2

2
 

 
The plot at the left shows the shear and bending 
solutions. In this case, we were able to use statics 
to solve for one unknown at the start, which 
simplified the problem.  
Next we solve the equation for the slope, as before, 
by inserting the expression for bending moment 
we get ; 

𝜃(𝑥) = 𝜃𝑜 +
1
𝐸𝐼

 �
𝑝𝐿𝑥

2
−
𝑝𝑥2

2
𝑑𝑥

𝑥

0
 

which becomes; 

𝜃(𝑥) = 𝜃𝑜 +
1
𝐸𝐼

(
𝑝𝐿𝑥2

4
−
𝑝𝑥3

6
)   

 
At this point we can either carry forward the 
unknown initial slope or solve for it. We know, 
from symmetry, that the slope at 𝑥 = 𝐿/2 is zero, 
so we can write; 

𝜃(𝐿/2) = 0 = 𝜃𝑜 +
1
𝐸𝐼

(
𝑝𝐿3

16
−
𝑝𝐿3

48
)   

 
which can be solved to get; 

𝜃𝑜 =
−𝑝 𝐿3

24𝐸𝐼
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therefore the complete equation for slope is; 
 

𝜃(𝑥) =
1
𝐸𝐼
�
−𝑝 𝐿3

24𝐸𝐼
+
𝑝𝐿𝑥2

4
−
𝑝𝑥3

6
�  

 
Now we can find the deflection. The integral 
equation is; 

𝑣(𝑥) = 𝑣𝑜 +  � 𝜃(𝑥)𝑑𝑥
𝑥

0
 

which becomes; 

𝑣(𝑥) = 𝑣𝑜 +
1
EI

 �
−𝑝 𝐿3

24𝐸𝐼
+
𝑝𝐿𝑥2

4
−
𝑝𝑥3

6
𝑑𝑥

𝑥

0
 

which becomes; 

𝑣(𝑥) = 𝑣𝑜 +  
−𝑝 𝐿3𝑥
24𝐸𝐼

+
𝑝𝐿𝑥3

12𝐸𝐼
−
𝑝 𝑥4

24𝐸𝐼
 

 
The deflection at L is zero, letting us write; 
 

𝑣(𝑥) =  
−𝑝 𝐿3𝑥

24𝐸𝐼
+
𝑝𝐿𝑥3

12𝐸𝐼
−
𝑝 𝑥4

24𝐸𝐼
 

 
which completes the solution. 
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Topic 8: Problems 
 
8.1.  Consider a beam made of steel joined to aluminum. The steel is 10 x 10 mm, with 5 x 10 

mm of Aluminum attached.  Esteel = 200,000 MPa, EAl = 80,000 MPa.  The beam is fixed as a 
simple cantilever, with a length of 100mm and a vertical force at the free end of  2 kN.   

 

   
  
convert the section to an equivalent section in steel and calculate the equivalent 
moment of inertia.  
What is the deflection of the end of the beam (derive from 1st principles).  
What is the maximum bending stress in the Aluminum at the support? 
   
8.2.  For elastic beam bending, derive the equation:  

 EI
M

dx
d

=
θ

 
where θ is the slope of the deflected shape, M is the moment, E is Young's Modulus, 
I is the moment of inertia. You can assume the σ=εE and σ=My/I.  Use at least one 
sketch. 
 
8.3.  Find and draw the shear force and bending moment diagrams for the following beam. 

Find the values at supports and other max/min values. 
 

    
8.4.  There is a 3m beam. The shear force diagram is sketched below.  

Sketch the load, moment, slope and deflection diagrams (9) 
What are the boundary conditions and discuss whether there can be more than one option for the boundary 
conditions.(6) 

 

 



E5003 - Ship Structures I  80 
© C.G. Daley 
 

 

 
8.5.  For elastic beam bending, complete Figure 1. The shear force diagram is sketched. You 

need to infer from the shear what the load (including support reactions) may be, as well as an 
estimate of the bending moment diagram, the slope diagram and the deflected shape. Draw 
the support conditions and the applied load on the beam, and sketch the moment, slope and 
deflection is the areas given. 

 

  
 
8.6.  Beam Mechanics. For the beam sketch below: 

 
a) sketch by hand the shear, moment, slope and deflection diagrams  
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b) Assuming the beam is a 10cm x 10cm square steel bar, solve the problem to find 
the bending stress at the fixed support. Use any method you like.     

 
8.7.  There is a length of steel that is 3.1416 m long, 50mm wide.  It has a yield strength of 

500 MPa (N/mm2), and a Young’s Modulus of 200 GPa. If the steel is thin enough it can be 
bent into a perfect circle without yielding.   
a) What is the maximum thickness 't' for the steel to be bent elastically (and not yield)?   
b) If the steel thickness is 1mm, what is the stress when it is bent into a 1m Dia circle.  
c) What would the shear force diagram look like?  

(Hint :this relates directly to the derivation of the differential equations for beam 
bending)  
 

 
 
8.8.  Sketch the shear, bending, slope and deflection patterns for the four cases shown below. 

No numerical values are required.  
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Topic 9: Solving Beam Equations 

 
A Train Station in Lisbon 

 

Introduction 
In this Chapter we will  

• Review the differential equation set derived in the last Chapter and 
discuss solutions using Macaulay functions and Maple. 

~~~~~~~~~~~~~~~~~~~~ 
Family of Differential Equations 
 
Simple beam behavior considers only the 
deflections due to bending, and only in 2 
dimensions. Torsion, shear and other elastic 
distortions are neglected (for now).  
 
Consider a beam between two supports. We 
describe the deflections with the variable v(x). 
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The analysis of bending in Chapter 8, developed 
the following differential equations; 

𝑝(𝑥) =
𝑑 𝑄(𝑥)
𝑑𝑥

 
 

𝑄(𝑥) =
𝑑 𝑀(𝑥)
𝑑𝑥

 
 

𝑀(𝑥) = 𝐸𝐼
𝑑 𝜃(𝑥)
𝑑𝑥

 
 

𝜃(𝑥) =
𝑑 𝑣(𝑥)
𝑑𝑥

 
 
These can be re-expressed into a set of related (not 
coupled) differential equations, of increasingly 
higher order; 
 

𝑣(𝑥) = 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝑚] 
 

𝜃(𝑥) =
𝑑𝑣(𝑥)
𝑑𝑥

= 𝑣′(𝑥) = 𝑠𝑙𝑜𝑝𝑒 [𝑟𝑎𝑑] 
 

𝑀(𝑥) = 𝐸𝐼 
𝑑2𝑣(𝑥)
𝑑𝑥2

= 𝐸𝐼 𝑣′′(𝑥) =  𝑚𝑜𝑚𝑒𝑛𝑡 [𝑁𝑚] 
 

𝑄(𝑥) = 𝐸𝐼 
𝑑3𝑣(𝑥)
𝑑𝑥3

= 𝐸𝐼 𝑣′′′(𝑥) = 𝑠ℎ𝑒𝑎𝑟[𝑁] 
 

𝑝(𝑥) = 𝐸𝐼 
𝑑4𝑣(𝑥)
𝑑𝑥4

= 𝐸𝐼𝑣′′′′ (𝑥) = 𝑙𝑜𝑎𝑑 [𝑁/𝑚] 
 
Seen in this way, the key behavior is deflection, 
with all other quantities being derived from it.  
There is a similar set of equations, expressed in 
integral form, starting from load; 
 

𝑝(𝑥) = 𝑙𝑜𝑎𝑑 [𝑁/𝑚] 
 

𝑄(𝑥) = 𝑄𝑜 +  � 𝑝(𝑥)𝑑𝑥 = 𝑠ℎ𝑒𝑎𝑟 𝑓𝑜𝑟𝑐𝑒 [𝑁]
𝑥

0
 

 

𝑀(𝑥) = 𝑀𝑜 + � 𝑄(𝑥)𝑑𝑥 = 𝑚𝑜𝑚𝑒𝑛𝑡 [𝑁𝑚]
𝑥

0
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θ = θ0 +
1
EI
�M
x

0

dx = slope [rad] 

 

𝑣(𝑥) = 𝑣𝑜 +  � 𝜃(𝑥)𝑑𝑥 = 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 [𝑚]
𝑥

0
 

 
The set of derivative equations show that if the 
deflected shape is known, all other quantities can 
be determined. In such a case there is no need for 
any boundary conditions. (to do: think of a 
situation where the deflected shape is fully known, 
while other quantities are not.) 
 
Normally we would not know the deflected shape. 
Instead we would know the load and would want 
to determine the deflected shape. In that case we 
would employ the integral equations. One 
significant issue with the integral equations is 
that the 'constants of integration' must be found. 
These are found from the boundary conditions. All 
types of end conditions can be represented as some 
derivative of deflection being zero. More 
specifically, two of the derivatives will be zero at 
each end of the beam. This gives four known 
boundary conditions for any beam (2 ends!), and so 
the four integral equations can be solved.  
 
At this level of consideration, there is no difference 
between a determinate and an indeterminate 
beam. All beams have 4 integral equations and 4 
boundary equations (or it could be said that all 
beams are represented by a fourth order ordinary 
differential equation with four boundary condition 
equations, regardless of the type or loading or 
supports).  
 
In the previous chapter we solved two beams by 
progressively solving the integral equations. Those 
cases were relatively simple, both because they 
were determinant systems, and they had simple 
load patterns, and in one case was symmetric. 
Solving non-symmetric cases of indeterminate 
beams with discontinuous loads (patch loads) can 
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involve a lot of algebra.  We will solve one such 
system in three different ways; 1) directly with the 
integral equations, 2) with Macaulay functions 
and 3) with the help of the Maple program.  
  
Example 3: Solving Piecewise Beam Equations 
 
The beam sketched at left is fixed on the left end, 
guided on the right and with the loading and 
properties shown.  A qualitative sketch of the 
solution is plotted, indicating that the solution is 
in three parts. The load is a patch load, so the 
solution must be in parts. The points labeled 'B' 
and 'C' represent break points in the solution. The 
various quantities at these points represent 
ending values for the partial solution to the left of 
the point and starting values for the solution to 
the right of that point.  
 
The boundary conditions create a set of unknown 
loads on the ends of the beam, which are sketched 
in the 'Loads' diagram.  For a fixed end we know 
that the deflection and rotation are zero. For a 
guided end we know that the shear (reaction) and 
rotation are zero. These conditions give two 
unknown loads at the left end of the beam. There 
are two known movements (deflection and slope 
are zero) at the left end of the beam. At the right 
end the moment and deflection are unknown while 
the shear and slope are both zero (recall that there 
are always 2 known and 2 unknown values at each 
end, in some combination of loads and 
displacements). In this particular beam we know 
that RA  is the only vertical support and must 
balance all the applied load (which is 4x5=20). We 
also know that there is no shear in the right end of 
the beam (the vertical force must be zero because 
the roller has released it). So the shear solution is 
as follows; 
 
part 1: 

𝑄1(𝑥) = 20 
part 2: 

𝑄2(𝑥) = 𝐶 − 5 𝑥 
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𝑄2(2) = 𝐶 − 5  2 = 20 => 𝐶 = 30 
𝑄2(𝑥) = 30 − 5 𝑥 

part 3: 
𝑄3(𝑥) = 0 

The moment solution is; 
part 1: 

𝑀1(𝑥) = 𝑀𝐴 + � 20 𝑑𝑥
𝑥

0
 

𝑀1(𝑥) = 𝑀𝐴 + 20 𝑥 
𝑀𝐵 = 𝑀𝐴 + 40 

part 2:  
𝑀2(𝑥) = 𝑀𝐵 + � (30 − 5 𝑥) 𝑑𝑥

𝑥

2
 

𝑀2(𝑥) = 𝑀𝐴 − 10 +  30𝑥 −
5
2
𝑥2 

𝑀𝐶 = 𝑀2(6) = 𝑀𝐴 + 80 
part 3:  

𝑀3(𝑥) = 𝑀𝐶 +  � 0 𝑑𝑥
𝑥

6
= 𝑀𝐴 + 80 

 
The slope solution is; 
part 1: 

𝜃1(𝑥) = 𝜃𝐴 +
1
𝐸𝐼
� 𝑀𝐴 + 20 𝑥 𝑑𝑥
𝑥

0
 

𝜃1(𝑥) = 0 +  (𝑀𝐴𝑥 + 10 𝑥2) 10−6 
𝜃𝐵 = 𝜃1(2) = (2 𝑀𝐴 + 40)10−6 

part 2: 
𝜃2(𝑥) = 𝜃𝐵 +

1
𝐸𝐼
� 𝑀𝐴 − 10 + 30 𝑥 −

5
2
𝑥2  𝑑𝑥

𝑥

2
 

𝜃2(𝑥) = (
20
3

+ 𝑀𝐴𝑥 − 10 𝑥 + 15 𝑥2 −
5
6
𝑥3)10−6 

𝜃𝐶 = 𝜃2(6) = (6 𝑀𝐴 +
920

3
)10−6 

part 3: 
𝜃3(𝑥) = 𝜃𝐶 +

1
𝐸𝐼
� 𝑀𝐴 + 80  𝑑𝑥
𝑥

6
 

𝜃3(𝑥) = (−
520

3
+ 𝑀𝐴𝑥 + 80 𝑥)10−6 

𝜃𝐷 = 𝜃3(10) = 0 = (10 𝑀𝐴 +
1880

3
)10−6 

Therefore 
𝑀𝐴 = −

188
3
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𝜃3(𝑥) = (−
520

3
+

52
3
𝑥)10−6 

 
The deflection solution is; 
part 1: 

𝑣1(𝑥) = 𝑣𝐴 + � (
−188

3
𝑥 + 10 𝑥2) 10−6 𝑥 𝑑𝑥

𝑥

0
 

𝑣1(𝑥) = (
−94

3
𝑥2 +

10
3

 𝑥3) 10−6 

𝑣𝐵 = 𝑣1(2) = �
−94

3
𝑥2 +

10
3

 𝑥3�10−6 =
−296

3
  10−6 

 
part 2: 

𝑣2(𝑥)

= (
−296

3
+ �

20
3
−

218
3

 𝑥 + 15 𝑥2
𝑥

2

−
5
6
𝑥3  𝑑𝑥) 10−6 

𝑣2(𝑥) = (
−10

3
+

20
3

 𝑥 −
109

3
𝑥2 + 5 𝑥3 −

5
24

𝑥4)10−6 

𝑣𝐶 = 𝑣2(6) = (
−1384

3
)10−6 

part 3: 
𝑣3(𝑥) = (

−1384
3

+ � −
520

3
+

52
3

 𝑥  𝑑𝑥) 10−6
𝑥

6
 

𝑣3(𝑥) = (
800

3
−

520
3

 𝑥 +
26
3
𝑥2)10−6 

𝑣𝐷 = 𝑣3(10) = (−600) 10−6 
 
Summary of solution: 
 
𝑄(𝑥)  =  �

20             0 ≤ 𝑥 < 2
30 − 5𝑥   2 ≤ 𝑥 < 6

   0               6 ≤ 𝑥 < 10
�  

𝑀(𝑥)  =  �
−62.67 + 20𝑥                      0 ≤ 𝑥 < 2
−72.67 + 30𝑥 − 2.5 𝑥2    2 ≤ 𝑥 < 6
   17.33                                 6 ≤ 𝑥 < 10

�  

𝜃(𝑥)  = 10−6  �
−62.67𝑥 + 10𝑥2                               0 ≤ 𝑥 < 2
6.67 − 72.67𝑥 + 15 𝑥2 − .83 𝑥3    2 ≤ 𝑥 < 6

   17.33 𝑥 − 173.3                                  6 ≤ 𝑥 < 10
�  

𝑣(𝑥)  =

10−6  �
−31.33𝑥2 + 3.33𝑥3                                                0 ≤ 𝑥 < 2
−3.33 + 6.67𝑥 − 36.33 𝑥2 + 5 𝑥3 − .208𝑥4    2 ≤ 𝑥 < 6

   266.7 − 173.3 𝑥 + 8.67 𝑥2                                  6 ≤ 𝑥 < 10
�  

 
𝑅𝐴 = 20   𝑀𝐴 = −62.67  𝑀𝐷 = 17.33  𝑣𝐷 = (−600) 10−6 
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This completes the manual integration method for 
solving example 3. To check this we will be solving 
the same problem in 2 other ways.  
 
Macaulay Functions 
 
Macaulay functions (also called singularity 
functions) are simply a generalization of the idea 
of a step function. These functions provide a 
convenient way of describing point forces, 
moments and piece-wise continuous functions. And 
when a few special rules of integration are 
employed, it becomes very easy to use Macaulay 
functions to solve beam problems.   
 
The fundamental Macaulay functions are shown 
on the left. Each function in the sequence 
represents the integral of the previous function 
(with the small exception noted later). Any of the 
functions can be multiplied to a constant to change 
the magnitude. 
 
For example, a unit moment at 𝑥 = 𝑎 is described 
as; 

 < 𝑥 − 𝑎 >−2 
and a moment of magnitude M at  𝑥 = 𝑎 is; 
 

𝑀 < 𝑥 − 𝑎 >−2 
 
Similarly, a point for of magnitude 𝐹 at  𝑥 = 𝑎 is; 
 

𝐹 < 𝑥 − 𝑎 >−1 
 
The triangular brackets are just a way of saying 
that the function is meant to be seen as "one 
sided". In simple terms : 

𝐹 < 𝑥 − 𝑎 >𝑛 =  �𝐹 (𝑥 − 𝑎)𝑛   𝑖𝑓 𝑥 ≥ 𝑎
0                    𝑖𝑓 𝑥 < 𝑎

� 
 
Two examples of how Macaulay functions can be 
combined to describe various piecewise curves are 
shown below;   
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Integrating Macaulay Functions 
 
The integration of Macaulay functions is very 
similar to normal functions with an exception. If 
the exponent is positive then the normal rules of 
integration apply. If the exponent is negative, then 
we just add one to the exponent. The rules are 
shown at the left.  
 
So for example; 
 

 � < 𝑥 − 𝑎 >−2= < 𝑥 − 𝑎 >−1   
but 

� < 𝑥 − 𝑎 >2=
1
3

< 𝑥 − 𝑎 >3   
 
It likely makes sense to the reader that the 
integral of a point force is a step and the integral 
of a step is a ramp. Does it make sense that the 
integral of a point moment is a force?  To explore 
this idea, consider the functions sketched at the 
left. In the first case we have function with a small 
patch of load in one direction followed by a small 
patch of load in the opposite direction we have no 
net force but we do create a small point moment 



E5003 - Ship Structures I  91 
© C.G. Daley 
 

 

(in the limit). When we integrate this we get a 
small triangle, which when integrated again gives 
a step.     
To Illustrate Macaulay functions, we start with an 
example of a pinned-pinned beam with a central 
force: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3: Solved with Macaulay Equations 
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Solving Example 3 using Maple  
 
Maple is a computer program that is capable of 
solving a wide variety of mathematical problems, 
including differential equations.  
 
Here is a very simple example of Maple’s ability to 
solve and plot differential equations. This is the 
solution of a cantilever beam (EI=1, L=10) under 
uniform load (p=-1).  
 
The basic differential equation; 
 

𝑝(𝑥) = 𝐸𝐼 
𝑑4𝑣(𝑥)
𝑑𝑥4

= 𝐸𝐼𝑣′′′′ (𝑥) = 𝑙𝑜𝑎𝑑 [𝑁/𝑚] 
 
The boundary conditions are; 

𝑣(𝑥 = 0) = 0 
𝑣′(𝑥 = 0) = 0 
𝑣′(𝑥 = 𝐿) = 0 
𝑣′′′(𝑥 = 𝐿) = 0 

 
Below is the full Maple input and result, showing 
the shape of a deflected cantilever; 
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Example 3 using MAPLE 14 to solve differential equations for beam 
by: Claude Daley 
 

 
> restart; 
The following aliases simplify the definition of loads. 
> dist_load := (w,a,b) -> w*Heaviside(x-a)- w*Heaviside(x-b):  # distributed force 
Length,       Stiffness,       Load at "a",  Load at end,  Location of  "a" 
> L := 10:  EI := 10^6: 
> wa:=5:we:=5:a:=2: b:=6: 
> loads := -dist_load(wa,a,b)-(x-a)/(b-a)*dist_load(we-wa,a,b);  

 

> plot(loads,x=0..L,title=`LOADS`, color=blue); 

       
> supports := {y(0)=0, D(y)(0) = 0, D(y)(L) =0, D(D(D(y)))(L)=0}: 
> de := EI*diff(y(x),x$4) = loads;    # Form differential equation    

 

> dsolve({de}union supports ,y(x)):    # Solve boundary value problem 
>     yy := rhs(%):                      # Extract deflection 
>     th := diff(yy,x):                  # Extract slope 
>     m := EI*diff(yy,x$2):              # Extract moment 
>     v := EI*diff(yy,x$3):              # Extract shear 
> plot(v,x=0..L,title=`Shear`, color=blue); 

           
> plot(m,x=0..L,title=`Bending Moment`, color=blue); 

         
> plot(th,x=0..L,title=`Beam Slope`, color=blue); 
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> plot(yy,x=0..L,title=`Beam Deflection`, color=blue); 

   
> evalf(subs(x=0,m));evalf(subs(x=L,m));evalf(subs(x=L,yy)); 

 
 

 
 

The manual, Macaulay and Maple solutions are all 
the same, as expected.  
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Topic 9: Problems 
 
9.1.  Solve the following beam by direct integration. What is the maximum deflection (mm)? 

What is the maximum stress (MPa) ?  
 

 
ANS: .000136mm, 140 Pa 
 
9.2.  Solve the following beam using Macaulay functions. What is the maximum deflection 

(mm)? What is the maximum stress (MPa) ?  
 

 
ANS: .000484mm, 253 Pa 
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Topic 10: Indeterminate Beams – Force Method 
 

 
part of the superstructure on an FPSO 

Introduction 
In this chapter we will  

• Review the idea of indeterminate beams and one way to solve them 
~~~~~~~~~~~~~~~~~~~~ 
Transverse and Local Strength 
 
Most of the local structure in a ship exists to resist lateral loads. 
 
Example:  The sketch below shows a bulkhead between the deck and inner bottom, 
supported by one intermediate deck. The bulk cargo (liquid or granular) will exert a 
lateral pressure on the bulkhead.  
  

 

⇓ 
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We can model the bulkhead frame as a pinned frame over 3 supports, subject to a 
lateral load; 

 
 
To solve this type of structure we need a method to solve indeterminate structures.  
 
What does indeterminate mean? Determinate structures have a simple set of 
supports, such that the support reactions can be found from considerations of rigid 
body equilibrium alone. This means that there are just enough supports for 
equilibrium to exist. This is normally 3 for 2D structures and normally 6 for 3D 
structures. The number of supports is also the number of equilibrium conditions 
that need to be satisfied.  
 
The sketch below illustrates the difference between determinate and indeterminate 
for a 2D beam. 
 

Determinate Indeterminate 

  
  Find the Reactions   Find the Reactions 

⇓ ⇓ 
  Then find the deflections   Then find the deflections 

 
Reactions don’t depend on deflections 

 
 
 
 
 

The reactions depend on the deflections 
  
 Equations for Reactions Equations for Reactions 

⇓ ⇑⇓ coupled 
 Equations for Deflections Equations for Deflections 
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There are two approaches for solving indeterminate systems. Both approaches use 
the principle of superposition, by dividing the problem into two simpler problems, 
soling the simpler problems and adding the two solutions.  
 
The first method is called the Force Method (also called the Flexibility Method).  
The idea for the force method is; 
 
step   release internal forces* or external reactions until we have one or more 

determinate systems 
step   solve each determinate system, to find all reactions and deflections. Note 

all incompatible deflections 
step   re-solve the determinate structures with only a set of self-balancing 

internal unit forces* (at internal releases) or unit reaction forces at 
removed reactions. This solves the system for the internal or external 
forces removed in . Observe the magnitude of incompatible deflections 
that occur per unit force.  

step a  scale the unit forces to cause the opposite of the incompatible deflections 
noted in   

step   Add solutions (everything: loads, reactions, deflections…) from  and a. 
Note that this will result in no incompatible deflections.   

*note: forces include both forces and moments 
 
 
Overview of Force Method 
 
The structure: a beam over multiple supports: 

 

 
 
step  cut the structure to have one or more determinate systems 
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step  solve each system. Note ∆φ – an incompatible deflection.  
 

 
 

step   re-solve the cut structures with self-balancing internal unit forces*  
step a  scale these forces (moments) to cause the opposite of the incompatible 

deflections noted in   
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step   Add solutions (everything: loads, reactions, deflections…) from  and 
a. Note that this will result in no incompatible deflections.   

 

 
 
 
Example of the FORCE Method:  
Manual Solution 
 

 
Problem: 
     1 - Find MA, RA, RB in terms of w, EI, L 
     2 – Find maximum displacement 
 
 
 
Solution: 
Part 1 – solve with MA released (denoted ’ ). The 
reason we do this is because the structure is 
statically determinate. 
 
The line load function is: 
 

𝑤(𝑥) =
𝑤 𝑥
𝐿
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 Reactions are found from static equilibrium: 
 

𝑅𝐴′ =
1
3

 
𝑤 𝐿

2
=
𝑤 𝐿

6
  

 
𝑅𝐵′ =

2
3

 
𝑤 𝐿

2
=
𝑤 𝐿

3
 

 
The shear 𝑄′(𝑥) is found by integrating the line load:   
 

𝑄′(𝑥) = 𝑅𝐴′ + � −𝑤(𝑥)
𝐿

0
𝑑𝑥                                       

=
𝑤𝐿
6
−
𝑤
𝐿

 � 𝑥
𝐿

0
𝑑𝑥 =

𝑤𝐿
6
−
𝑤 𝑥2

2𝐿
 

         
The moment 𝑀′(𝑥) is found by integrating the shear:  

𝑀′(𝑥) = 𝑀𝐴
′ + � 𝑄′(𝑥)

𝐿

0
𝑑𝑥      

=
𝑤𝐿𝑥

6
−
𝑤𝑥3

6𝐿
   

 
 The slope 𝜙′(𝑥) is found by integrating the moment: 

𝜙′(𝑥) = 𝜙𝐴′ +
1
𝐸𝐼
� 𝑀′(𝑥)
𝐿

0
𝑑𝑥                      

= 𝜙𝐴′ +
1
𝐸𝐼

 �
𝑤𝐿𝑥2

12
−
𝑤𝑥4

24𝐿
�  

          
And finally the deflection 𝑦′(𝑥) is found by 
integrating the slope: 

𝑦′(𝑥) = 𝑦𝐴′ + � 𝜙′(𝑥)
𝐿

0
𝑑𝑥                                

= 𝜙𝐴′ 𝑥 +
1
𝐸𝐼

 �
𝑤𝐿𝑥3

36
−
𝑤𝑥5

120𝐿
�  

     
This leaves us with one left unknown to find, 𝜙𝐴′  
which is the slope at A  . We use the boundary 
condition:  

𝑦′(𝐿) = 0 = 𝜙𝐴′ 𝐿 +
1
𝐸𝐼

 �
𝑤𝐿4

36
−
𝑤𝐿4

120
�  

which is solved to give; 

𝜙𝐴′ = −
7

360
𝑤𝐿3

𝐸𝐼 
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Substituting back gives; 
 
Slope:  

𝜙′(𝑥) =
1
𝐸𝐼

 �
−7𝑤𝐿3

360
+
𝑤𝐿𝑥2

12
−
𝑤𝑥4

24𝐿
� 

 
Deflection:   

𝑦′(𝑥) =
1
𝐸𝐼

 �
−7𝑤𝐿3𝑥

360
+
𝑤𝐿𝑥3

36
−
𝑤𝑥5

120𝐿
� 

 
The gives us the first half of the solution. Now we 
need to ‘correct’ the solution, by removing the 
rotation at A (in Part 2). This is done by applying a 
moment at A, of just sufficient magnitude to cause 
 −𝜙𝐴′  . This moment will be the true reaction moment 
at A. All other responses in Part 2 are added to the 
Part 1 responses (deflections, shear, moments, etc). 
Responses can be added because the systems are 
linear (superposition holds). 
 
 
Part 2 – solve with just 𝑀𝐴

∗ (the * denotes the 
corrective solution ). 𝑀𝐴

∗ will cause a rotation opposite 
to  𝜙𝐴′  , which when added to the results of Part 1 will 
create a ‘fixed’ condition (no rotation) at A. Initially 
𝑀𝐴
∗ is unknown. 

 
Reactions are found from static equilibrium: 
 

Σ𝑀𝐴 = 0        𝑅𝐵∗ 𝐿 − 𝑀𝐴
∗ = 0                           

𝑅𝐵∗ =
𝑀𝐴
∗

𝐿
       

 
Σ𝐹𝑉 = 0        𝑅𝐴∗ + 𝑅𝐵∗ = 0                           

𝑅𝐴∗ = −
𝑀𝐴
∗

𝐿
      

 
𝑀𝐴
∗ is negative, so 𝑅𝐵∗  is negative. 𝑅𝐴∗ is positive. 

 
The shear 𝑄∗(𝑥) is found by:   

𝑄∗(𝑥) = 𝑅𝐴∗ + � −𝑤(𝑥)
𝐿

0
𝑑𝑥 = −

𝑀𝐴
∗

𝐿
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The moment 𝑀∗(𝑥) is found by integrating the shear:   

𝑀∗(𝑥) = 𝑀𝐴
∗ + � 𝑄∗(𝑥)

𝐿

0
𝑑𝑥 

= 𝑀𝐴
∗ −

𝑀𝐴
∗ 𝑥
𝐿

 
The slope 𝜙∗(𝑥) is found by integrating the moment: 
 

𝜙∗(𝑥) = 𝜙𝐴∗ +
1
𝐸𝐼
� 𝑀∗(𝑥)
𝐿

0
𝑑𝑥             

=  𝜙𝐴∗ +
𝑀𝐴
∗

𝐸𝐼
�𝑥 −

𝑥2

2𝐿
�    

          
And finally the deflection y’(x) is found by integrating 
the slope: 

𝑦∗(𝑥) = 𝑦𝐴∗ + � 𝜙∗(𝑥)
𝐿

0
𝑑𝑥                                

= 𝜙𝐴∗𝑥 +
𝑀𝐴
∗

𝐸𝐼
 �
𝑥2

2
−
𝑥3

6𝐿
�  

              
To fine φ*A and M*A , we use:  

𝜙𝐴∗ = −𝜙𝐴′ =
7

360
𝑤𝐿3

𝐸𝐼
  

𝑦∗(𝐿) = 0 =  𝜙𝐴∗𝐿 +
𝑀𝐴
∗

𝐸𝐼
 �
𝐿2

2
−
𝐿2

6
� 

0 =  
7

360
𝑤𝐿4

𝐸𝐼
+
𝑀𝐴
∗

𝐸𝐼
𝐿2

3
 

 
𝑀𝐴
∗ =  

−7
120

𝑤𝐿2 
 
Substituting back gives; 
 
Reactions: 

𝑅𝐴∗ =
−𝑀𝐴

∗

𝐿
=

7
120

𝑤𝐿           (𝑝𝑢𝑠ℎ𝑒𝑠 𝑢𝑝)       

𝑅𝐵∗ =
𝑀𝐴
∗

𝐿
=
−7
120

𝑤𝐿              (𝑝𝑢𝑙𝑙𝑠 𝑑𝑜𝑤𝑛) 
                  
Shear:    

𝑄∗(𝑥) =
7

120
𝑤𝐿 
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Moment:      
𝑀∗(𝑥) =

7
120

𝑤𝐿(𝑥 − 𝐿) 
 
Slope:           

𝜙∗(𝑥) =
1
𝐸𝐼
�

7
360

𝑤𝐿3 +
−7
120

𝑤𝐿2𝑥 +
7

240
𝑤𝐿𝑥2�    

 
Deflection:    

𝑦∗(𝑥) =
1
𝐸𝐼
�

7
360

𝑤𝐿3𝑥 −
7

240
 𝑤𝐿2𝑥2 +

7
720

𝑤𝐿𝑥3� 
 
This gives us the second half of the solution.  
 
Now we sum the two parts together for the complete 
solution: 

𝑅𝐴 =
1
6
𝑤𝐿 +

7
120

𝑤𝐿 =
27

120
𝑤𝐿 

 
𝑅𝐵 =

1
3
𝑤𝐿 −

7
120

𝑤𝐿 =
33

120
𝑤𝐿 

 
𝑀𝐴 = 𝑀𝐴

∗ =  
−7
120

𝑤𝐿2 
 
𝑐ℎ𝑒𝑐𝑘 𝑓𝑜𝑟𝑐𝑒𝑠                𝑅𝐴 + 𝑅𝐵 =

1
2
𝑤𝐿                          𝑂𝐾 

𝑐ℎ𝑒𝑐𝑘 𝑚𝑜𝑚𝑒𝑛𝑡 𝑎𝑏𝑜𝑢𝑡 𝐴 
 

                𝑅𝐵𝐿 −
𝑤𝐿
2

2
3
𝐿 = 𝑀𝐴                                

33
120

𝑤𝐿2 −
40

120
𝑤𝐿2 =  −

7
120

𝑤𝐿2              𝑂𝐾 
 
 
This is the answer to the first question. The 
maximum deflection is found where the slope is zero. 
The full expression for the slope is:  
 

𝜙(𝑥) = 𝜙′(𝑥) + 𝜙∗(𝑥) 
 

𝜙′(𝑥) =
1
𝐸𝐼

 �
27

240
𝑤𝐿𝑥2 −

7
120

𝑤𝐿2𝑥 −
𝑤𝑥4

24𝐿
� 
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We can create a new normalized variable 𝑧, which 
ranges between 0 and 1. This gives us slope in a 
simpler form: 
  

𝜙′(𝑥) =
𝑤𝐿3

240 𝐸𝐼
 (27𝑧2 − 14𝑧 − 10𝑧4) 

where 
𝑧 =

𝑥
𝐿

 
 
           To find the location of zero slope we set the 
term inside the brackets above to zero, which can be 
simplified to: 
 
                  27𝑧 − 14 − 10𝑧3 = 0 
 
The solution of this equation will be the location of 
maximum deflection. One way to solve this (which 
can be done without derivatives or computers) is to 
solve the equation for z iteratively. This can be done 
on any hand-held calculator. We pick one of the z 
terms (the first term here), and express z as a 
function of z:                    

𝑧 =
14 + 10 𝑧3

27
 

 
This iterative equation might be expressed as: 
 

𝑧𝑖+1  =
14 + 10 𝑧𝑖3

27
 

                    
Recall, z ranges from 0 to 1. So any value between 0 
and 1 is a possible starting value. We can guess that 
the maximum deflection will be at z >.5, so we could 
start with a guess of 0.6. It doesn't really matter, 
except that the better the initial guess, the quicker 
the solution will converge. Starting with z =0.6, we 
iterate to 0.5975 in 7 iterations.  
 
 
 
 
 

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62
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Note: there is another possible iterative version of 
the z equation; 

𝑧𝑖+1  = �27𝑧𝑖 − 14
10

3
 

 Unfortunately, it won’t converge to an answer in the 
0-1 range.  
 
The equation for deflection is: 
 

𝑦(𝑥) = 𝑦′(𝑥) + 𝑦∗(𝑥)                                        
 

       =  
𝑤 𝐿4

𝐸𝐼
�

27
720

𝑧3 −
7

240
 𝑧2 −

𝑧5

120
� 

 
The final step in the solution, is to find 𝑦𝑚𝑎𝑥 , which 
is at 𝑧 = 0.5975 : 
 

𝑦𝑚𝑎𝑥 =
𝑤 𝐿4

𝐸𝐼
�

27
720

0.59753 −
7

240
 0.59752 −

0.59755

120
� 

 

𝑦𝑚𝑎𝑥 = −.00305 
𝑤 𝐿4

𝐸𝐼
 

 
This answer can be checked in Roark, which gives 
the same answer.  This completes the problem. 
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Topic 10: Problems 
 
10.1.  Solve the below by removing the reaction RB (as shown). This creates ‘cut’ problem that 

is a cantilever beam.   
 

 
 
 
10.2.  Force Method.  

 

  
 

a) Sketch 3 alternative approaches to solving this indeterminate problem 
using the force method. For each approach, you will need two sketches of the 
auxiliary systems.   
 
b) Using one of the approaches sketched in a) , solve the system to find the 
reaction at B (in kN) 
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 Topic 11: Indeterminate Beams – Displacement Method 
 

Cruise Ship in Adriatic 

 
 
Introduction 

In this chapter we will  
• introduce the displacement method used to solve structural problems  
• introduce the standard stiffness components for a beam in 2D and 3D 

~~~~~~~~~~~~~~~~~~~~ 
Indeterminate Problem 
 
We start by considering the indeterminate beam as shown below. This could be 
described as a fixed-pinned beam or a cantilever with a pinned end.  
 

 
 
 To solve this problem with the displacement (stiffness) method we create two sub-
problems, each simpler than the whole problem. Rather than removing a support 
(removing a force or moment), we remove a movement (i.e we completely fix the 
structure). This becomes the problem marked * below. To the * problem, we add a 
second problem, the ** problem,  that fixes any errors that we created with the * 
problem. In this case we have a moment MB* that should not exist, while we have a 
θB* that should not be zero. So, in the ** problem, we impose θB**, (and only a θB**) 
sufficiently large to cause a moment MB** that is equal and opposite to MB*.  
 

 

Find MA RA and RB 
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o fixed-fixed beam 
o known solution 
o MA*=- MB*=pL2/12 
o RA*=RB*=pL/2 

 

 
o applied moment at pin 
o the moments and forces can be 

found from the “stiffness” terms, as 
shown below: 

o MB**= θB** 4EI/L  
o MA**= θB** 2EI/L  
o RB**= - θB** 6EI/L2  
o RA**= θB** 6EI/L2  

 
To solve the problem we use;  

MB**+ MB*=0 
which gives; 

θB** 4EI/L - pL2/12 = 0 
 
from this we can solve for θB**; 

θB** = pL3/(48 EI) = 0 
 
from this we can find all other ** terms; 

MA**= pL3/(48 EI) 2EI/L = 1/24 pL2 
RB**= - pL3/(48 EI) 6EI/L2 = - 1/8 pL 

RA**= pL3/(48 EI) 6EI/L2 = 1/8 pL 
 
from this we can find the reactions; 

MA =MA* + MA** = pL2/12 + pL2/24 = 1/8 pL2 
RB = RB* + RB** =  - pL/8 + pL/2 = 3/8 pL 
RA = RA* + RA** = pL/8 + pL/2 = 5/8 pL 

 
The terms used to find MB**, MA**, RB** and RA** are called stiffness terms because 
the are an ‘action per unit movement’, such as a force per unit displacement or 
moment per unit rotation. They can also be a kind of ‘cross stiffness’ such as a force 
per unit rotation or a moment per unit displacement. In the case of the example 
above, with the equations; 
 

MB**= θB** 4EI/L 
MA**= θB** 2EI/L 

RB**= - θB** 6EI/L2 
RA**= θB** 6EI/L2 

 
The stiffness terms 4EI/L, 2EI/L, -6EI/L2 and 6EI/L2 are forces and moment ‘per 
unit rotation’. We will define these stiffness terms in the next section.   
 
Stiffness Terms 
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When using the stiffness method, we always need to find a set of forces and 
moments that occur when we impose a movement at a support. The 
movement will correct a situation that involved the suppression of a 
movement at a support. In our case here, the structure is a beam, and the 
supports are at the ends of the beam. The supports prevent the ends of the 
beam from moving. There are 3 possible movements at a support for a 2D 
problem, and 6 for a 3D problem. Because of this we will define a standard 
set of ‘degrees of freedom’ for a beam. A ‘degree of freedom’ can have either a 
force or displacement, or a rotation or moment. The standard 2D degrees of 
freedom for a beam are shown below; 
 

    
 
The degrees of freedom follow the Cartesian system, with the right-hand rule. 
These are essentially x, y, rotation (called rz). In general, to impose a unit 
movement in one (and only one) of these degrees of freedom, we need to also 
impose a set of forces/moments, The forces/moments must be in equilibrium. 
These forces/moments will be ‘stiffnesses’.  
 
The mechanics are linear. This means that the set of forces/moments 
corresponding to each movement can be added to those of any other 
movement. A general solution for any set of movements of the degrees of 
freedom can be found by superposition.  
 
For now we will just consider the 2D case and derive the stiffness terms. 
There are 6 degrees of freedom. For each degree of freedom, there are 
potentially 6 forces or moments that develop. This means that there are a 
total of 36 stiffness terms. Any single term would be labeled kij, meaning the 
force/moment at i due to a displacement/rotation at j. For example; 
 
k11 = force at 1 due to unit displacement at 1 
k41 = moment at 4 due to unit displacement at 1 
k26 = force at 2 due to unit rotation at 6 
 
All the terms can be written in matrix form as; 
 

2D beam = 6 degrees of freedom 
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

























=

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

kkkkkk
kkkkkk
kkkkkk
kkkkkk
kkkkkk
kkkkkk

K  

We will now derive these 36 terms. Luckily they are not all unique.  
Axial Terms 
 
The axial terms are found by asking what set of forces is required to create a 
unit displacement at d.o.f. #1 (and only #1);  
 

 
 
For axial compression, the deflection under load is; 
 

L
AEkF

AE
LF

==⇒== 11
1

11
1 1

δ
δ  

 
the force at d.o.f. #4 is equal and opposite to the force at #1; 
 

L
AEkFFF −

==⇒−= 41
1

4
14 δ  

 
There are no other forces (at #2, 3, 5, 6), so we have; 
 

021
1

2 == kF
δ   and  0615131 === kkk  

A displacement at 4 would require a similar set of forces, so that we can also 
write; 
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L
AEk =44 , 

L
AEk −

=14 , 064543424 ==== kkkk  

 
This has given us 12 terms, 1/3 of all the terms we need. Next we will find the 
terms for the #2 and #5 direction. 
 
 
 
 
Shear Terms 
 
The shear terms are found from the set of forces is required to create a unit 
displacement at d.o.f. #2 (and only #2);  
 

 
 
 
For shear of this type, the deflection is; 
 

322
2

2
3

2
2

121
12 L

EIkF
EI
LF

==⇒==
δ

δ  

 
Note: to derive this easily, think of the beam as two cantilevers, each L/2 
long, with a point load at the end, equal to F2.  
 
The force at d.o.f. #5 is equal and opposite to the force at #2; 
 

352
2

5
25

12
L

EIkFFF −
==⇒−=

δ  

 
Following from the double cantilever notion, the end moments (M3, M6) are ; 
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26232263
6

2 L
EIkkLFMM ==⇒==    

There are no axial forces, so; 
04212 == kk  

 
A displacement at #5 require a similar set of forces, so that we can also write; 

355
12

L
EIk = ,  325

12
L

EIk −
= ,  26535

6
L

EIkk −
== ,   04515 == kk  

This has given us 12 more terms, for 2/3 of all the terms we need. Next we 
will find the terms for the #3 and #6 direction. 
 
Rotary Terms 
 
The rotary terms are found from the set of forces/moments required to create 
a unit rotation at d.o.f. #3 (and only #3);  
 

 
 
For illustration and to find these stiffness terms we will solve the system. We 
can draw the shear force, moment, slope and deflection  diagrams as below; 
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We can use the boundary conditions (θ3=1, δ2=0, δ(L)=0, θ(L)=0) to find M3 
and F2. 











⋅+−+==

2
110)(

2

23
LFLM

EI
Lθ  











⋅+−++==

62
100)(

3

2

2

3
LFLM

EI
LLδ  

 
These two equations can be solved to get; 
 

L
EIM 4

3 = , 22
6
L
EIF =  

from these we can find;  
 

L
EIM 2

6 = , 25
6
L

EIF −
=  

 
This allows to find the stiffness terms; 

L
EIk 4

33 = ,  
L
EIk 2

63 = 223
6
L
EIk = , 253

6
L

EIk −
=   ,   04313 == kk  

2)( FxQ =

xFMxM ⋅+−= 23)(











⋅+−+=

2
1)(

2

233
xFxM

EI
x θθ











⋅+−++=

62
1)(

3

2

2

332
xFxM

EI
xx θδδ
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A rotation at #6 require a similar set of forces, so that we can also write; 

L
EIk 4

66 = ,  
L
EIk 2

36 = 226
6
L
EIk = , 256

6
L
EIk −

=   ,   04616 == kk  

 
We can collect all these terms in the matrix; 
 







































−

−−−

−

−

−

−

=

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
AE

L
AE

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
EI

L
AE

L
AE

K

460260

61206120

0000

260460

61206120

0000

22

2323

22

2323

 

 
Note that the matrix is symmetrical. This means that terms such as k35 
(moment at #3 due to displacement at #5) is equal to k35 (force at #5 due to 
rotation at #3). This may seem quite odd that these two items would be equal. 
We will examine this in the next Chapter.  
 
The standard 3D degrees of freedom for a beam are shown below; 
 

 
 
The K matrix for a 3D beam is a 12x12 (144 terms).  
 
  

3D beam = 12 degrees of freedom 
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Topic 11: Problems 
 
11.1.  Solve the pinned-pinned beam by using the displacement method as sketched below. The 

solution for the fixed-fixed beam is the same as above. Then it is necessary to show that 
MB*+MB**+MB***=0 and   MA*+MA**+MA***=0. Note:  MA** = ½ MB**, and MB*** = 
½ MA***.  

 

 
 
11.2.  Describe how you would solve the beam shown below by using the displacement method.  
 

 
 
11.3.  For the simple beam shown below, derive the shear stiffness terms (i.e k15  to k65) 
 

 
 
11.4.  Solve the beam shown below using the stiffness method. Find the reactions at A and B, 

and the deflection at B.  
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ANS: MA= 166667 N-m,  MB = 83333N-m   ∆B = -.2082m 
 
11.5.  Stiffness method  .   
sketch a 2D beam and show the degrees of freedom.  
Describe the meaning of the terms (any, all) in the 6x6 stiffness matrix for a 2D 
beam, and give 2 examples. 
 
11.6.   Explain the difference between the “Force” method, and the “Displacement” method.  
 
11.7.  In the stiffness method for a 2D beam, the standard value for the k22 stiffness term is; 

𝒌𝟐𝟐 = 𝟏𝟐
𝑬𝑰
𝑳𝟑

 
 
Derive this equation (Table 1 in appendix may be useful).  
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Topic 12: Energy Methods in Structural Analysis 
 

 
Coliseum 

 
Introduction 

In this chapter we will  
• Discuss application of energy methods in structural analysis   
• Show how conservation of energy conservation to the symmetry of 

structural stiffness terms 
~~~~~~~~~~~~~~~~~~~~ 
Energy Methods 

Structural analysis is concerned with forces, 
deflections, stresses and strains. All these involve 
energy. An analysis of energy can be a way to 
simplify structural analysis. Energy is a scalar, 
and must be conserved, somehow.   In some cases 
the mechanical work done by a force is converted 
to heat by friction: 
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In some cases the mechanical work done by a force is converted to elastic 
potential energy in a spring. Potential energy (in a spring or in a 
gravitational field) can later be recovered: 
 

 
 
Consider a body subject to a simple axial load: 
 

 
 
 

 
 
The above is correct for situations where axial stresses dominate, as in 
column compression or simple beam bending. This does not take shear strain 
energy into account.  
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Example:  derive formula for Cantilever beam deflection using energy 
methods.  
 
Consider a simple cantilever with rectangular cross section.  
 

 
 
 
Start with Energy Balance equation: 
 
External Work (EW) done by the applied load P is balanced by the elastic 
potential energy (EPE) stored in the beam; 
  

𝐸𝑊 = 𝐸𝑃𝐸 
 

1
2� 𝑃∆=

1
2𝐸

� 𝜎2

𝑉𝑜𝑙

𝑑𝑣𝑜𝑙 

 
In this case we assume that the stress is the result of bending and we find the 
stress from; 

𝜎 =
𝑀𝑦
𝐼

 
and 

𝑀 = 𝑃𝑥 
which lets us write; 
  

𝜎2 =
𝑃2𝑥2𝑦2

𝐼2
 

 

∆=
𝑃
𝐸𝐼2

� 𝑥2𝑦2

𝑉𝑜𝑙

𝑑𝑣𝑜𝑙 

 
We can re-write dvol  as w dx dy and use : 
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   =
𝑃
𝐸𝐼2

� 𝑥2𝑑𝑥 � 𝑤 𝑦2𝑑𝑦
ℎ𝐿

 

 
The last part of the above equation is the moment of inertia: 

� 𝑤 𝑦2𝑑𝑦
ℎ

= 𝐼 

 
This simplifies the problem to: 

∆=
𝑃
𝐸𝐼
� 𝑥2

𝐿

𝑑𝑥 

∆= � 𝑃
𝐸𝐼
𝑥3

3
�
0

𝐿

 

 
Which gives the final and correct answer: 

∆=
𝑃𝐿3

3𝐸𝐼
 

 
 
 
Betti-Maxwell Reciprocal Theorem 
 
The Betti-Maxwell theorem states that for any linear elastic body (also called a 
Hookean body), that the movement at a d.o.f. A, caused by the application of a 
force/moment F at a d.o.f. B, is exactly the same as the movement at a d.o.f. B, 
caused by the application of a force/moment F at a d.o.f. A. In the sketch below, ∆𝑖𝑗 
refers to the movement at 𝑖 due to the application of a force at  . So we can write the 
Betti-Maxwell theorm as; 
 

𝐹 ∆12= 𝐹 ∆21  
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Proof:  
As a linear system, superposition will hold. The structure will assume the same 
final position regardless of the order of application of the forces. This means that 
the same stored elastic energy will exist in either case. These are ‘conservative’ 
systems, meaning that all work done by the loads is converted to elastic potential 
energy (and is ‘conserved’ to be recovered later). We will apply F to the structure in 
two places, and compare the work done when we change the order in which we 
apply the forces.   
 
When F is applied at both 1 and 2, the total deflection at 1 and 2 will be; 
   

 ∆1=  ∆11 +  ∆12 
 

 ∆2=  ∆21 +  ∆22 
 

If we imagine applying F at 1 first, and then at 2, the work done will be; 
 

𝑊𝑜𝑟𝑘 𝐷𝑜𝑛𝑒 =
𝐹 ∆11

2
+
𝐹 ∆22

2
+ 𝐹 ∆12 

 
If we imagine applying F at 2 first, and then at 1, the work done will be; 
 

𝑊𝑜𝑟𝑘 𝐷𝑜𝑛𝑒 =
𝐹 ∆22

2
+
𝐹 ∆11

2
+ 𝐹 ∆21 

 
The work done will be the same, so; 
  

𝐹 ∆12= 𝐹 ∆21 
 

Hence Betti-Maxwell is proven.  
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Example 1 of Betti-Maxwell 

  
 
 
For a simple cantilever, the deflection at x2 caused by 
a force F at x1 should be the same as the deflection at 
x1 when F is applied at x2 : 
      
 
 
Solution: 
The beam deflection tables (see Appendix) can be 
used to find ∆12 and ∆21 .  
To find  ∆21  we first find the deflection at x1 . The 
beam to the right of x1  has no shear or bending. 
Consequently it is perfectly straight. It slopes 
downward at the same angle as the slop at x1 , which 
is θ11 .   The addition deflection past  is just equal to 
the slope angle times the distance.  The total 
deflection at x2  found as follows:  
 

𝛥11 =
𝐹 𝑥13

3 𝐸𝐼
               𝜃11 =

𝐹 𝑥12

2 𝐸𝐼
 

  
𝛥21 = 𝛥11 + 𝜃11 ∙ (𝑥2 − 𝑥1) 
 

        =  
𝐹 𝑥13

3 𝐸𝐼
+
𝐹 𝑥12𝑥2

2 𝐸𝐼
−
𝐹 𝑥13

2 𝐸𝐼
  

 

        =  
𝐹 𝑥12

6 𝐸𝐼
(3 𝑥2 − 𝑥1) 

  
To find  ∆1 2 we use the general equation for the 
deflections in a cantilever of length x2  and solve for 
the deflection at x1 .  

𝛥12 =  
𝐹 𝑥12

6 𝐸𝐼
(3 𝑥2 − 𝑥1) 

 
 The two results are identical, as Betti-Maxwell 
predicted.  
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Example 2 of Betti-Maxwell 

  
For a simply supported beam, the rotation at the 
right hand end caused by a unit vertical force F  in 
the center  should be the same as the vertical 
deflection at the center  caused by a unit moment at 
the right hand end : 
      
 
Solution: 
The beam deflection tables (see Appendix) can be 
used to find ∆12 and θ21 .  
The rotation  θ21   is as follows:  

𝜃21 =
𝐹 𝐿2

16 𝐸𝐼
 

 

        =
𝐿2

16 𝐸𝐼
 

 
  
To find  ∆1 2 we use the general equation for the 
deflections in a simply supported beam with an end 
moment and solve for the deflection at L/2 .  
 
𝛥12 =

𝑀 𝑥
6 𝐸𝐼 𝐿

 (𝐿2 − 𝑥2) 
 

        =
𝐿/2 

6 𝐸𝐼 𝐿
 (𝐿2 − 𝐿2/4) 

 

        =
𝐿2

12 𝐸𝐼
 (1 − 1/4) 

 

        =
𝐿2

16 𝐸𝐼
 

 
The two results are identical, as Betti-Maxwell 
predicted.  
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Topic 12: Problems 
 
12.1.  Find the location of the force F so that  is a maximu         

of Betti-Maxwell. 
 

 
 
12.2.  Illustrate the Betti-Maxwell theorem using the beam load cases shown below. Use the 

deflection table on pg 8 at the end of the paper.  
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Topic 13: The Moment Distribution Method 
 

 
Venice 

Introduction 
 
In this chapter we will describe the moment distribution method for solving 
indeterminate beams 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Overview 
 

The moment distribution method is a type of 
displacement (stiffness) method because it makes 
use of the stiffness terms we derived earlier. It is 
particularly useful for solving problems involving 
beams over multiple supports, and frames with 
moment connections. It is what can be termed a 
‘relaxation’ method. This refers to the iterative 
way that errors are ‘relaxed’.  The method can be 
solved manually on paper with a simple calculator, 
and was once the dominant method used in 
professional practice. These days it can easily be 
solved with a spreadsheet, but is seldom used 
professionally. Its current value is in helping 
students develop an understanding of structural 
behavior. The essence of structures is the 
interconnected behavior of structural elements. 
The moment distribution method is all about the 
way neighboring elements interact. 
 
The method was developed by Prof. Hardy Cross in 
the 1920s and 30s. Cross studied at MIT and 
Harvard, taught at Brown, Illinois and Yale and 
consulted extensively.  
 
 

Prof. Hardy Cross described his procedure as follows:  

Hardy Cross (Wikipedia) 
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" The method of moment distribution is this: 
1. Imagine all joints in the structure held so that they 

cannot rotate and compute the moments at the ends of 
the members for this condition; 

2. At each joint distribute the unbalanced fixed-end 
moment among the connecting members in proportion to 
the constant for each member defined as "stiffness"; 

3. Multiply the moment distributed to each member at a 
joint by the carry-over factor at the end of the member 
and set this product at the other end of the member; 

4. Distribute these moments just "carried over"; 
5. Repeat the process until the moments to be carried over 

are small enough to be neglected; and 
6. Add all moments - fixed-end moments, distributed 

moments, moments carried over - at each end of each 
member to obtain the true moment at the end." 

 
 
 
Description of Method 
 

The moment distribution method is a way to solve 
indeterminate structures comprised of beams. The 
method works for continuous beams over multiple 
supports and for frames. In its basic form it does 
not consider joint translation. All joints are only 
assumed to rotate, as would occur at a pin or roller 
support, or at a frame connection (beams to 
column) where sway is prevented. Subsidence of a 
support can easily be handled. An extended 
version can treat sway of a frame system.  

 
Fixed End Moments – FEM : To start the procedure, 
all joint are considered fixed and all fixed-end 
moments are calculated. One example of fixed end 
moments is shown below for a beam with a central 
point force. The moments are expressed as true 
moments acting on the supports. This is an 
important point. Note that both end moments in 
the sketch cause concave downward bending, and 
would this have the same sign in a bending 
moment diagram. But here they have opposite 
true senses (clockwise on left and counterclockwise 
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on right) and so have opposite signs. And we keep 
tract of the moments acting from the beam, not the 
reactions by the support.  

 
Moment Distribution factors - α: At each joint where 
two or more beams connect, each beam provides 
part of the rotary stiffness. When an external 
moment is applied to the joint, it rotates as a unit, 
with each of the connecting beams resisting part of 
the total moment. The portion of the total is called 
the moment distribution factor - α. For each beam 
the moment will be : 
 
𝑀𝑖 = 𝑘33𝑖  𝜃𝑗𝑜𝑖𝑛𝑡   
 
where 𝑘33 is beam end rotation stiffness (see 
Ch10); 
  
𝑘33𝑖 =  4 𝐸𝐼𝑖

𝐿𝑖
  for beam i 

 
The moment distribution factor is; 
 
𝛼𝑖 =  𝑀𝑖

𝑀𝑡𝑜𝑡𝑎𝑙
=

𝑘33𝑖  𝜃𝑗𝑜𝑖𝑛𝑡
𝜃𝑗𝑜𝑖𝑛𝑡 ∑ 𝑘33𝑗𝑎𝑙𝑙

= (𝐸𝐼 𝐿)⁄ 𝑖
∑ (𝐸𝐼 𝐿⁄ )𝑎𝑙𝑙

 𝛼2 =

 (𝐸𝐼 𝐿)⁄ 2
(𝐸𝐼 𝐿)⁄ 1+(𝐸𝐼 𝐿)⁄ 2+(𝐸𝐼 𝐿)⁄ 3

 
Carry-Over factors - CO: As we saw earlier, when one 
end of a bean is rotated, the other end of the beam 
experiences a moment as well. This is the 𝑘63  
moment. In other words, when a moment is 
applied to one end of a beam, and the far end is 
fixed, that other end experiences a moment. 
Because 𝑘63 is half of 𝑘33, the far end moment is 
always half of the near end moment. Therefore the 
carry over factor is always 0.5.  
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Steps in the Moment-Distribution Method 
 
The steps in the MDM are shown on the left.  
The steps are discussed in more detail below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 1: sketch the structure: 
 
Sketch the structure, show the loads and number 
the joints. In the case of two or more members 
connected at a joint, there is one 'end' for each 
beam. Any correcting moment applied to the joint 
is divided among the ends according to the 
moment distribution factor.    
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Step 2: plan the solution strategy and determine if 
the structure will sway 
 
In the standard type of problem the joints do not 
translate, they only rotate. Axial and shear 
deformations are ignored. Only bending 
deformations are considered. If the model supports 
permit one or more joints to translate, and the 
load is such that it will cause such a movement, 
we need to consider sway. The example structures 
at the left show both types (no-sway and sway).     
 
Note: And 'imposed' joint movement, as would 
occur when a support 'settles' a fixed amount, is 
not a sway problem. Imposed movements are just 
as easy to solve as are applied loads.  
 
 
In cases where there are redundant parts of the 
structure (a determinant sub-structure), such as 
cantilever portions as shown at left, these should 
be removed and replaced with the moments or 
forces that they cause on the remaining structure.   
 
 
Step 3: Find moment distribution factors α : 
 
For each joint we find the set of moment 
distribution factors. In general; 
 

𝛼𝑖 =
(𝐸𝐼 𝐿)⁄ 𝑖

∑ (𝐸𝐼 𝐿⁄ )𝑎𝑙𝑙
 

 
The moments will tend to be larger in the stiffer 
members, where rotary stiffness is 𝐸𝐼/𝐿. Thus the 
shorter members will tend to have the higher   
𝛼 factors.  
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Step 4: Find fixed-end moments: 
 
In this step, we find the fixed end moments for 
each beam end. In the example at left, we have 3 
beams connected in a frame. The top two have 
loads and so have fixed-end moments. The vertical 
beam (the column) is unloaded so its FEM are 
zero.   
 
 
 
 
 
 
Steps 5, 6, 7, 8, 9: Perform iterative calculation to 
correct end moments. The fixed-end moments 
found in step 4 are the first estimate of the 
solution. The moments are in equilibrium with the 
external loads, with the only problem being that 
some of the joints are incorrectly fixed, when they 
should be free to rotate. We will set up a 
calculation table that will allow us to add a 
correcting moment to each joint. We will perform 
the corrections iteratively and the solution will 
converge to the correct answer.  
 
The table with the solution is shown on the next 
page. With two beam, there are 4 end and so there 
are 4 columns in the table. The first row contains 
the moment distribution factors. The second 
contains a note describing the target moment (this 
is an extra feature normally not included). The 
third row contains the fixed end moments. The 
fourth row shows the total correction (later 
ignored), with the fifth row dividing the correction 
among the beam ends. The sixth row adds the 
carry-over moments from the neighboring ends. 
And then the seventh row add the third, fifth and 
sixth row terms to get a new estimate for the end 
moments.  
 
The whole process is repeated until the solution is 
sufficiently converged.  
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Steps 10: Solve for the other reactions and beam 
responses.  
 
Once the end moments on a beam are known, the 
vertical reactions can be found from static 
equilibrium.  
 
Remember that the end moments found in the 
MDM are moments acting "on" the supports. 
Moment reactions "from" the supports are opposite 
to these.  
 
Once the vertical reactions are found, all other 
responses (distribution of shear, bending, slope 
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deflection, stress) can be found using normal beam 
theory.  
 
 
Example 2: Here is a simple case that solves fully 
in 1 iteration. This will happen when there is only 
one joint that needs to rotate to bring the problem 
into equilibrium. 
  
Also note that this example shows a case of 
different EI values.  
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Example 3: Here is a case that shows a frame with 
two columns. This is a relatively complex case, 
though without sway.  
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with the end moments solved, the full set of 
horizontal and vertical reactions can be found 
using force and moment equilibrium.  
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With the reactions found, the shear force and 
bending moment diagrams can be sketched as 
follows:  

 

The bending moments above are drawn on the 
compression side of the beam. Deflections can be 
found by double integration of the moment 
diagram.  
 
Exercise: What is the slope at joint #3?  
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Topic 13: Problems 
 
13.1.  Moment distribution method 

 

 
 
13.2.  Moment distribution method 
 

 
 
 
13.3.  Moment distribution method. For the case shown on the attached page (Figure 1), fill in 

the first two cycles of the MD calculations.   
 

 
 
13.4.  For the statically indeterminate beam shown below, with the loads, properties and end 

conditions as given,  
a) Solve using the moment distribution method. 
b) What is the vertical reaction at the middle support  
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13.5.  A 3 bar frame is shown below.   

Solve for the moments using the moment distribution method.  
Sketch the deformed shape. 
Find the vertical reaction at the pin (the right hand end).  

 

 
 
 
13.6.  Solve the frame using the MDM method (suggest you use a spreadsheet). 
 

 
 
13.7.  Solve the frame using the MDM method (suggest you use a spreadsheet). 
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13.8.  For the case shown below, set up and fill in the first two cycles of the Moment 

Distribution calculations.  

 
 
13.9.  A 2 bar structure is shown below.   

a) Solve for the moments using the moment distribution method.  
b) Find the vertical reaction at the pin A (the left).  
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Topic 14: The Moment Distribution Method with Sway 
 
Introduction 
 
In this chapter we will  
extend the application of the moment distribution 
method for solving frames with sway 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

In the previous chapter we dealt with beams and 
frames in which joints could not translate due to 
bending.  In this chapter we all add the possibility of 
sway motion. For simplicity we will only consider one 
sway motion.  

 
 
 
 

The solution of a sway 
problem takes two parts. In 
the first part a unit sway 
sway is imposed on the 
structure (call this the * 
problem). The imposed motion 
causes initial fixed end 
moments, which relax as the 
solution progresses, just as 
happens with applied forces. 
The force required to impose 
the unit sway can be found 
once the solution is found, just 
like the other reactions. In the 
example at left this is F*2x . 
   
In the second problem (the 'f' 
problem) the sway is 
prevented, and the problem 
solved.   
 
 
 
 
 

a Quadrant 
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To get the total 
solution we need to 
scale the * problem 
by λ (we call this the 
** problem) and add 
it to the 'f ' problem.  
  
How large is λ ?      
 
λ is chosen so that the 
conditions at the 
"false" sway support 
are corrected.  
 
If there is no direct 
force at the false 
support, (as in the 
example at left), we 
want: 
 λF*2x = -F f2x 
 
If there is a direct 
force at the false 
support, we would 
want: 
 λF*2x = F2x - F f2x 
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Example of MDM with Sway 
 
To illustrate the moment distribution method with 
sway, we will use a problem similar to Example 3 
in Topic 13. In this case the problem has a roller 
on the left, instead of a pin. As a result the frame 
can sway.  
 
 To solve the problem we need to split the problem 
into two component problems. The first problem 
has sway prevented (by a pin on the left support). 
The complementary problem has an imposed sway 
which will create a reaction of opposite magnitude 
to the first problem. 

 
 
    The first problem was solved in Example 3 
above. The reaction at the left hand pin was (see 
pg. 130); 

𝐹1𝑥 = 17.1 𝑘𝑁 
 
Now we solve the second problem with a unit 
displacement ∆ applied to the roller. For the 
imposed unit displacement, we have the initial 
fixed end moments as shown at the left. For 
example the moments in the right column are;  
 

𝑀 =
6 𝐸𝐼 Δ
𝐿2

=  
6 ∙ 100 ∙ 1

12.52
= 3.84 𝑘𝑁𝑚 

 
Once we have solved the second problem, and 
found the reaction at the roller, we scale the whole 
solution to match the reaction with the 17.1 kN we 
need. The final answer is the sum of the scaled 
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solution of second problem and the solution of the 
first problem.  All the solutions needed are 
presented below in the form of spreadsheets.  
 
The solution of Problem #1: 
 

 
This is the solution of Problem #2: 
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This is the solution of Problem #2, scaled to counteract the pin force from problem 
#1 (call this #2a): 
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This is the sum of Problem #1 +  #2a, which is the frame with roller solution. The 
values are moments at the locations indicated. 

 
 1  2  3  4 5 
 A B C D E F G H 

MDM 0.0 183.89 -294.13 110.24 127.84 -127.84 82.27 5.59 
BEAM3D 0.0 183.8 -294.4 110.6 127.3 -127.3 83.9 6.47 

 
To confirm these values independently, the same problem was analyzed in the DnV 
program BEAM3D. The values shown above correspond very well with the MDM 
results. The plots from BEAM3D are shown below; 
 

 

 
bending moment diagram, and reactions. 
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shear force (red), bending moment and deflections (exaggerated) 
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Topic 14: Problems 
 
14.1.  Solve the frame using the MDM method (suggest you use a spreadsheet). 
 

 
14.2.  A 3 bar frame is shown below.   

Solve for the moments using the moment distribution method.  
Sketch the deformed shape. 
Find the vertical reaction at the pin (the right hand end).  
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Topic 15: Matrix Structural Analysis 
 

 
 
Introduction 

In this chapter we will  
• Discuss a very general method to analyze structures, to give bending 

moments and axial forces in general frame structures.  
~~~~~~~~~~~~~~~~~~~ 

The behavior of a structure can be expressed in 
matrix form as; 
 

 
 
This type of equation is 'discrete'. It represents a 
set of relationships among a finite set of degrees of 
freedom (dof). 
 
For a general structure or arbitrary shape, the 
behavior can be adequately described by 
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describing the behavior of a set of points. In such a 
case, all forces would have to be applied at the 
points and all responses would be determined at 
the points. Actions and responses at other points 
can be considered, as long as there is a way to 
gather actions to points and to interpolate 
response to  locations between points.  
 
We might define arbitrary degrees of freedom, for 
which we could write; 
 

        
 
 
But how would we find the kij  terms?  For an 
arbitrary body (a violin, a rock, a teapot ...) the kij  
terms would be hard to find. There would be no 
table of standard values.  
 
The kij  terms could be found by experiment.  
- apply a test force at dof "i", measure all 
displacements at dofs "j": 
 

𝑘𝑖𝑗 =  𝐹𝑖 𝛿𝑗�  

But is it even possible to apply a force at "i" and 
only "i" ? Remember that 𝐹𝑖 includes reactions as 
well as applied forces (there is no difference as far 
as the structure is concerned!)  
 
Determining  𝑘𝑖𝑗 experimentally is not practical. 
The best one can do is to attempt to validate the 
𝑘𝑖𝑗 matrix experimentally by measuring responses 
and comparing to predictions.  
 
To make the determination of a structural 
stiffness matrix practical, we normally describe a 
structure using regularly shaped parts, with 
standard degrees of freedom.  
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For the 3 bar frame at left, we can define the 
define local degrees of freedom for each member 
using the same standard approach that was 
described in Chapter 11. We will start from the 
local element stiffness matrices and assemble the 
full structural global stiffness matrix, just to 
illustrate the process.  
 
The local degrees of freedom follow the individual 
members, while the global degrees of freedom are 
all aligned to the Cartesian (x-y) system.  The 
other aspect is that global degrees of freedom refer 
to nodes of a structure, rather than to ends of 
members. This means that several member ends 
can share a single set of degrees of freedom.  
 
The matrices below show the local and global 
versions of the stiffness matrix for beam 1. The 
difference is the way the degrees of freedom are 
defined. In this case the global degrees of freedom 
are just versions of the local dofs.   
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Aside: There is a general way to find the global 
stiffnesses for a rotated bar. The rotation matrix 
can be used to find the stiffness terms for a rotated 
beam.  In a rotated beam dof 1 is partly axial and 

partly shear, as is dof 2. But as 
superposition holds, any movement 
along dof 1 can be expresses as some 
axial and some shear, and the resulting 
axial and shear forces can be resolved 
back into the 1 and 2 directions.     

 
The matrix below and the matrix operation 
expresses the mix of effects in a concise way. 
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(suggestion: derive the rotation matrix using 
vector algebra). 
 

 
 
In the case of a 90 degree rotation, the rotation 
matrix has the effect of doing row-column swaps. 
For other angles the effect is more complicated.   
 

 
 
 
Beam 2 has a local [k] that is similar to beam 1 
except that area is 2A and modulus is 4I. The 
global [k] looks similar to the local [k], except that 
the numbering is shifted.    
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Beam 3 has a local [k] that is the same as beam 1.  
The global [k] also looks similar to the global [k], 
of beam 1 because a rotation of +90 produces a 
similar effect to -90. The only change is that the 
numbering is shifted.    
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The structural stiffness matrix is just the sum of 
the global versions of the member stiffness 
matrices. Where two terms share a dof, the two 
values are added. This is again reflecting the 
simple idea of superposition in linear systems that 

Hooke first saw.  
 
Stiffness matrices are symmetrical. This is a 
curious property, especially when you think about 
the off-diagonal terms. Some of the terms refer to 
forces per unit rotation and moments per unit 
translation.  
 
With the whole stiffness matrix assembled, we 
have a single equation that relates all actions 
(forces and moments) with all movements 
(translation and rotations): 
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To solve the system of twelve by twelve equations 
we need to identify the twelve unknowns. It is 
(almost) never the case that we would know twelve 
deflections and want to know twelve forces. Nor 
would we know twelve forces and look for the 
deflections. Typically we know some forces (mostly 
zero) and some  
deflections (zero at supports): 
 

We should have some combination of unknown 
loads and deflections that adds up to twelve. If we 
don't, we can't solve the system.  
 
Note that the structure does not know what is an 
applied force and what is a reaction. All the 
structure know is whether it is in equilibrium.  
 
There are a variety of ways of solving matrix 
equations like: 
 

          
 
There are various numerical strategies used in 
linear algebra that are used to solve such systems. 
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Gaussian elimination is one common method. We 
can assume that if we have N equations in N 
unknowns that we can solve it.  
 
To solve these in Maple (see 3bar_frame.pdf or 
3bar_frame.mw), we would just expand the matrix 
expression into a set of 12 simultaneous equations; 
 

 
 
Maple will solve these equations in either 
numerical or algebraic form, giving expressions for 
all results in terms of the variable. For example, 
for this problem, Maple will give;  
 

 
 
Q1:  With the above solution for force and 
deflections at the nodes (the dofs), how would we 
find the stresses in each member?   
 
A1:  To find the stresses we have to return to the 
individual beams. We use the global stiffness 
matrix of a single member. For example, for the 
cross beam in the previous example (beam 2), we 
find the member forces as follows; 
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The forces are not the same as found above. They 
are only the forces that act on the individual 
member.    
The beam forces are found as follows: 
 

 
 
Note that there is no axial force (would be F4, F7) in 
Beam 2. This is because the roller at bottom of 
beam 3 releases all horizontal force. The applied 
load of 10 must all be transmitted to ground 
through Beam1. With these forces and moments 
we can find the shear force and bending moment 
diagrams, along with the axial, shear and bending 
stresses: 
 



E5003 - Ship Structures I  159 
© C.G. Daley 
 

 

 
 
Because there was no load along the member, the 
maximum stresses in the above case occurred at 
the ends of the beam.  
   
Q2:  How are loads along a beam dealt with?    
 
A2:  Loads that are act between dofs are dealt 
with in three steps. In step 1, the fixed end forces 
and stresses that the loads cause are found. In 
step 2, the fixed end actions are placed on a full 
structural model and solved. All responses, 
including deflection, stresses, strains, for the full 
structure (including the beam where the loads 
acted) can be found for the whole structure.  
The complete solution comes from adding the two 
solutions (step1 + step2):  
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Topic 15: Problems 
 

15.1 Frame Structures can be analyzed by "Matrix Structural Analysis" or by solution of  sets of 
continuous differential equations. Compare and contrast these two approaches.  
 
15.2 The stiffness matrix for a 2D beam is said to have axial, shear and rotary terms. Give 
examples of each of the 3 types of stiffness (i.e. 3 examples of the individual kij terms), with a 
sketch of the terms.   
 
15.3  Describe what is meant by the “rotary stiffness terms” in the stiffness matrix of a beam. 
Explain which terms in the matrix are rotary terms and how they are derived.  
 
15.4   For the 4-bar frame shown below, the 2D solution is found by solving 12 equations in 
matrix form shown beneath. For the case of the loads and boundary conditions as shown, fill in 
the 14 columns (there is 1 column for forces, 1 for displacements and 12 in the stiffness matrix), 
with any known values. In the force and displacement vectors, write in a zero (0) for known zero 
values and the letter X or variable name for other unknown values. In the stiffness matrix write a 
0 for the zero terms and the letter K for a non-zero stiffness terms. You only need to fill in the 
upper half of the stiffness matrix. You don’t need any equations or numbers (other than 0).   

       
 
15.5   A 2 part frame is shown below.   

a) Construct the full structural stiffness matrix for the structure. Describe the steps you take 
to do so.  

b) Write the force-deflection equation for the structure in matrix format, showing all terms 
(ie include all terms in the matrices or vectors). Explain which, if any, terms are 
unknown. 
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15.6   Assuming that you are using a program that performs matrix structural 
analysis, explain concisely how the global stiffness terms for the joint circled in the 
sketch below are determined. You don’t have to solve this frame.  
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Topic 16 Overview of Finite Element Theory 
 

 
 
Introduction 

In this chapter we will  
• introduce the 2D finite element called the constant stress triangle 

(cst) 
• show how to derive the element stiffness and all output values from 

energy considerations 
~~~~~~~~~~~~~~~~~~~~ 

Finite element method 
 
Recall that for a beam, we can relate the end loads 
by a stiffness equation in matrix form;  
 
{ } [ ]{ }xKF =  
 
We can find the K terms for a beam by solving the 
beam bending equation for various end 
movements. To find the displacement of some 
point along the beam (at x ) we could solve the 
system for the displaced shape. We would find that 
the displacements would be; 
 

)( 141 ddxddx −+=                 (why so simple?) 
and 
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),,,( 6532 dddxfddy +=      (why is this more 
complex?) 
For this beam element, we made use of what is 
called ‘beam theory’, to solve for the loads and 
deflections under certain loading conditions.   
 
However, in the case of most finite elements, such 
as 2D planar elements, plate elements, and solid 
elements, we will not start from some general 
analytical solution of a loaded membrane, plate or 
solid. These solutions are too complex and will not 
give practical results. Instead, we assume some 
very simple behaviors, highly idealized, but which 
satisfy the basic requirements for equilibrium (i.e. 
forces balance, energy is conserved). With this 
approach, the single element does not really model 
the behavior or a comparable real solid object of 
the same shape. This is ok, because the aggregate 
behavior of a set of these simple elements will 
model the behavior quite well. This is something 
like modeling a smooth curve as a series of 
straight lines (even horizontal steps). This is 
locally wrong, but overall quite accurate.  
 
 
Constant Stress Triangle 
 
To illustrate the way that finite elements are 
formulated, we will derive the full description of 
an element called the constant stress triangle (cst). 
This is a standard 2D element that is available in 
most finite element models.  
Consider a 2D element which is only able to take 
in-plane stress. The three corners of the triangle 
can only move in the plane.  
 
For this element the force balance is; 
   δeKF =  
{ } [ ]{ }166616 xxx =  
 
We want to determine the element stiffness matrix 
Ke , and we want it to be valid for any triangle; 
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So, while we have six degrees of freedom, as we 
did in the beam case, we don't have any hand 
analytical solutions. To create a general solution 
that will apply to all triangles we will make some 
very simple assumptions which will allow us to 
model 2D stress problems (such as a web in shear, 
or stresses in plane around a cutout in a web. .  
 
We will follow the outline in Hughes (p. 245-253). 
 
Step 1 - select a suitable displacement function. 
 
Consider the movement of a general triangle. Each 
corner moves differently, and every point inside 
moves.  
 

The movement in x is defined as u and the 
movement is y is defined a v. Both u and v 
are functions of x and y ; 
 
∆𝑥 =  𝑢  
∆𝑦 =  𝑣  
 
𝑢 = 𝑓𝑢(𝑥,𝑦)  
𝑣 = 𝑓𝑣(𝑥,𝑦)  
 
Assuming that the material in the triangle is 
isotropic (no preferred direction), then we 
would expect the two displacement functions  

𝑓𝑢(𝑥,𝑦) and 𝑓𝑣(𝑥,𝑦) to look similar.  
 
The functions for u and v can only depend on the 6 
nodal displacements (that all the info that we have 
to define movement), so we can have no more than 
6 unknown coefficients for both functions.   
 
A trial function; 
a) lets try:   𝑢 = 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3(𝑥 + 𝑦) 
 
is this ok?  No! Why?  Because it means that at 
(0,0) (the origin) there is no movement. It would be 
as if all elements are pinned to the origin.  
 
b) lets try:   𝑢 = 𝑐1𝑥 + 𝑐2𝑦 + 𝑐3(𝑥𝑦) 
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is this ok?  No! Why?  same problem. 
 
 
The simplest viable functions for u and v that has 
6 coefficients is; 

𝑢 = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑦 
𝑣 = 𝑐4 + 𝑐5𝑥 + 𝑐6𝑦 

 
Occam's razor,  in latin: "lex parsimoniae " (the 
law of simple), is a principle that says: from among 
alternative explanations, the one that works, but 
makes the fewest new assumptions is usually 
correct. The concept is central to rational thought. 
William Occam was a 14th century English Friar 
and writer. 
   
This provides a very simple but viable general 
description of the displacement field. We can re-
write the displacement function in matrix form; 

𝛿(𝑥, 𝑦) = �𝑢𝑣� = �1 𝑥 𝑦   
0 0 0  

0 0 0
1 𝑥 𝑦�

⎩
⎪
⎨

⎪
⎧
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5 
𝑐6⎭
⎪
⎬

⎪
⎫

 

𝛿(𝑥, 𝑦) = 𝑯 𝑪 
 
Now we have the displacement function. 
 
Step 2 -  Find the constants in C 
at the corners we can write; 

𝛿1 = 𝛿(𝑥1,𝑦1) = �1 𝑥1 𝑦1   
0 0 0  

0 0 0
1 𝑥1 𝑦1

� 𝑪 
 

𝛿2 = 𝛿(𝑥2,𝑦2) = �1 𝑥2 𝑦2   
0 0 0  

0 0 0
1 𝑥2 𝑦2

� 𝑪 
 

𝛿3 = 𝛿(𝑥3,𝑦3) = �1 𝑥3 𝑦3   
0 0 0  

0 0 0
1 𝑥3 𝑦3

� 𝑪 
 
The total displacement of the corners can be 
written; 
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𝜹 =

⎩
⎪
⎨

⎪
⎧
𝑢1
𝑣1
𝑢2
𝑣2
𝑢3
𝑣3⎭
⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎡1 𝑥1 𝑦1
0 0 0

0 0 0
1 𝑥1 𝑦1

1 𝑥2 𝑦2
0 0 0

0 0 0
1 𝑥2 𝑦2

1 𝑥3 𝑦3
0 0 0

0 0 0
1 𝑥3 𝑦3⎦

⎥
⎥
⎥
⎥
⎤

 

⎩
⎪
⎨

⎪
⎧
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
𝑐6⎭
⎪
⎬

⎪
⎫

 

 
or 

𝜹 = 𝑨 𝑪 
A is called the connectivity matrix. It contains the 
geometric information, the coordinates of the 
nodes of the triangle.  The terms in the C vector 
can be found; 

𝑪 = 𝑨−𝟏 𝜹  
 
𝑨−𝟏  is a 6x6 matrix; 
 

𝑨−𝟏 =
1

2 𝐴123
⎣
⎢
⎢
⎢
⎡𝑥2𝑦3 − 𝑥3𝑦2 0

𝑦2 − 𝑦3

… 
⎦
⎥
⎥
⎥
⎤

 

 
where 2 𝐴123 is the determinant of the 3x3 
coordinate matrix; 
 

2 𝐴123 = 𝑑𝑒𝑡 �
1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

� 

where: 

2 𝐴123 = 𝑑𝑒𝑡 �
1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

� =  𝑥2𝑦3 − 𝑦2𝑥3 + 𝑥3𝑦1 −

𝑥1𝑦3 + 𝑥1𝑦2 − 𝑥2𝑦1    
 
which happens to be 2x the area of the triangle (ie  
𝐴123 is the area of the triangle). 
 
We can now go back to; 
 

𝛿(𝑥,𝑦) = 𝑯(𝑥, 𝑦) 𝑪 
 
which we can re-write as; 
 

𝛿(𝑥,𝑦) = 𝑯(𝑥,𝑦) 𝑨−𝟏 𝜹 
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where 𝛿(𝑥,𝑦) is the displacement of any point in 
the triangle,   𝑨−𝟏 contains information on the 
geometry of the triangle and 𝜹 contains the 
displacements of the corner nodes of the triangle. 
This lets of find the displacement anywhere by 
just tracking the displacements of the nodes. 
Remember that the finite element method lets us 
model a continuum by modeling a discrete system 
of connected nodes.  
 
 
 
Step 3 -  Find the strain in the element    
 
We need to find the stress and strain in the 
element so that we can determine the stiffness of 
the element.  
The (2D) strains at any point in the element have 
3 components; 
 

𝜀(𝑥,𝑦) = �
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

� 

 
where the strains are found from the partial 
derivatives of the displacement field: 
 

𝜀𝑥 =
𝜕𝑢
𝜕𝑥

 
 

𝜀𝑦 =
𝜕𝑣
𝜕𝑦

 

 

𝛾𝑥𝑦 =
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

 

recall that;  
𝑢 = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑦 
𝑣 = 𝑐4 + 𝑐5𝑥 + 𝑐6𝑦 

 
so that we have; 

𝜀𝑥 =
𝜕𝑢
𝜕𝑥

= 𝑐2 
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𝜀𝑦 =
𝜕𝑣
𝜕𝑦

= 𝑐6 

 

𝛾𝑥𝑦 =
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

= 𝑐3 + 𝑐5 

 
which allows us to write; 

𝜀(𝑥,𝑦) = �
𝑐2
𝑐6

𝑐3 + 𝑐5
� 

Note that the strains in the triangle are just 
constants, and do not vary with x and y.  This is 
the reason that this element is called the CST or 
constant stress triangle.  
We can write the strains in matrix form; 

𝜀(𝑥,𝑦) = �
0 1 0
0 0 0
0 0 1

0 0 0
0 0 1
0 1 0

�

⎩
⎪
⎨

⎪
⎧
𝑐1
𝑐2
𝑐3
𝑐4
𝑐5
𝑐6⎭
⎪
⎬

⎪
⎫

 

and simplified to be; 
𝜀(𝑥,𝑦) = 𝑮 𝑪 

 
We can substitute for C  to get; 
 

𝜺 = 𝑮   𝑨−𝟏 𝜹 
 
This is the strain fully described in terms of nodal 
coordinates and nodal displacements. We can 
collect terms; 

𝑩 = 𝑮   𝑨−𝟏 
 
where B is called the strain coefficient matrix, and 
so write; 

𝜺 = 𝑩 𝜹 
 
G is a 3x6 matrix. A-1 is a 6x6, so B is a 3x6 matrix 
that relates the 3 strains to the 6 nodal 
displacements. 
 
Step 4 - Find the element stresses (and forces) 
 
Start by defining the stresses; 
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𝝈 = �
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

� 

 
We can write Hooke's law in matrix form as; 
 

�
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

� =
1
𝐸
�

1 −𝜈 0
−𝜈 1 0
0 0 2(1 + 𝜈)

� �
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

� 

 
or in terms of stress; 
 

�
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

� =
𝐸

1 − 𝜈2
�

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈2

2

� �
𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

� 

In simpler form we write the stresses as; 
 

𝝈 = 𝑫 𝜺 
 
where D is called the elasticity matrix. Now we 
can use 𝜺 = 𝑩 𝜹 to let us write;  
 

𝝈 = 𝑫 𝑩 𝜹 
or 

𝝈 = 𝑺 𝜹 
 
where 𝑺 = 𝑫 𝑩 and is called the stress matrix. 
 
Step 5 - Obtain the Element Stiffness Matrix 
 
Idea: To obtain the element stiffness we will use 
the principle of virtual work. The principle of 
virtual work states that for a body in equilibrium, 
the virtual work done by real forces fi acting 
through any viable pattern of virtual 
displacements δ* will be zero. In our case we wish 
to equate the work done by the real nodal forces 
with the work done to distort the element.      
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The external work done for a set of 6 virtual 
displacements will be; 
 

𝑾𝒆𝒙𝒕 = 𝜹∗𝑻 𝒇 
or  

𝑾𝒆𝒙𝒕 = [𝛿1∗ 𝛿2∗ 𝛿3∗ 𝛿4∗ 𝛿5∗ 𝛿6∗]  

⎩
⎪
⎨

⎪
⎧

f1
f2
f3
f4
f5
f6⎭
⎪
⎬

⎪
⎫

 

Note that, for example, f3 only does work when δ3* 
moves. And the work is the full amount of, f3 δ3*, 
as f3 is fully active during the whole of δ3* . 
Remember that f3 does not cause δ3*. We just 
imagine that δ3* occurs even as the nodal forces 
stay acting.  
 
The internal work done is equal to the integral of 
the stress time the strain over the volume; 
    

𝑾𝒊𝒏𝒕 = � 𝜀 𝜎 𝑑𝑣𝑜𝑙
𝑉𝑜𝑙

 

 
which in the case of the virtual work  done one 
element becomes; 
 

𝑾𝒊𝒏𝒕 = � [𝜀∗(𝑥, 𝑦)]𝑇 𝜎(𝑥,𝑦) 𝑑𝑣𝑜𝑙
𝑉𝑜𝑙

 

 
which when making use of the strain coefficient 
matrix and the elasticity matrix can be written as; 
 

𝑾𝒊𝒏𝒕 = � [𝑩 𝜹∗]𝑇 𝐃 𝐁 𝛅  𝑑𝑣𝑜𝑙
𝑉𝑜𝑙

 

 
In this equation 𝜹∗ refers to virtual displacements 
, while  𝜹 refers to real (existing) displacements.  
 

𝑾𝒊𝒏𝒕 = � 𝑩𝑻 𝜹∗𝐓 𝐃 𝐁 𝛅  𝑑𝑣𝑜𝑙
𝑉𝑜𝑙
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So if we say;  

𝐖𝐞𝐱𝐭 = 𝑾𝒊𝒏𝒕 
we can obtain; 

𝜹∗𝑻 𝒇 = 𝜹∗𝐓 �� 𝑩𝑻 𝐃 𝐁  𝑑𝑣𝑜𝑙
𝑉𝑜𝑙

�    𝛅  

 
which simplifies to; 

𝒇 = �𝑩𝑻 𝐃 𝐁� 𝑑𝑣𝑜𝑙
𝑉𝑜𝑙

�    𝛅 

and; 
𝒇 = (𝑩𝑻 𝐃 𝐁(𝐴123𝑡))   𝛅 

where t is the element thickness and 𝐴123 is the 
element area. The term in the brackets is the 
element stiffness; 

𝑲𝒆 = (𝑩𝑻 𝐃 𝐁(𝐴123𝑡)) 
 
𝑲𝒆 is a 6x6  matrix ( 𝑩𝑻 𝐃 𝐁 is 6x3  x  3x3  x 3x6  = 
6x6) 
 
Numerical Example: Consider this triangular 
element with properties shown.  
 
For this case the matrices are; 
 

𝑨 =

⎣
⎢
⎢
⎢
⎢
⎡
1 . 1 . 1
0 0 0

0 0 0
1 . 1 . 1

1 . 5 . 2
0 0 0

0 0 0
1 . 5 . 2

1 . 1 . 3
0 0 0

0 0 0
1 . 1 . 3⎦

⎥
⎥
⎥
⎥
⎤

  

 

𝑨−𝟏 =

⎣
⎢
⎢
⎢
⎢
⎡

1.62 0 −.25
−1.25 0 2.5
−5 0 0

0 −.375 0
0 −1.25 0
0 5 0

0 1.62 0
0 −1.25 0
0 −5 0

−.25 0 −.375
2.5 0 −1.25
0 0 5 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
𝐴123 =  .08 

 

𝑮 = �
0 1 0
0 0 0
0 0 1

0 0 0
0 0 1
0 1 0

� 
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𝑩 = 𝑮   𝑨−𝟏

= �
−1.25 0 2.5

0 −5 0
−5 −1.25 0

0 −1.25 0
0 0 5

2.5 5 −1.25
� 

 

𝑫 = �
220000 65900 0
65900 220000 0

0 0 100000
� 

 

𝑩𝑻 =

⎣
⎢
⎢
⎢
⎢
⎡
−1.25 0 −5

0 −5 −1.25
2.5 0 0

0 0 2.5
−1.25 0 2

0 5 −1.25 ⎦
⎥
⎥
⎥
⎥
⎤

 

 
𝑲𝒆 = (𝑩𝑻 𝐃 𝐁(𝐴123𝑡)) 

 
𝑲𝒆

=

⎣
⎢
⎢
⎢
⎢
⎡

4540 1660 −1100
1660 9060 −1320
−1100 −1320 2210

−2000 −3460 341
−499 −341 −8540

0 −1100 1320
−2000 −499 0
−3460 −341 −1100

341 −8540 1320

1000 2000 −499
2000 4540 −1660
−499 −1660 9060 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
This is the stiffness matrix for a specific CST 
element.   
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Topic 16: Problems 
 
16.1  The displacement functions of the constant stress triangular element are:   
      u(x,y) = C1 + C2 x + C3 y 
     v(x,y) = C4 + C5 x + C6 y 
 
where u represents the x-translation of any point (x,y) and v represents the y-
translation of the point.  
 
16.2  A beam has only one coordinate (x). However, most beam models would allow 
a point on the beam to rotate as well as translate. So, construct 3 simple 
displacement functions; 
u(x),  
v(x),  
θ(x), 
of a ‘beam element’, using the same logic as was used to create the displacement 
functions of the constant stress triangular element.  
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Topic 17: Hull Girder Shear Stresses 
 
 
 

 
Italian Stone  

 
Introduction 

In this Chapter we will  
• Examine vertical shear in a ship 
• Describe the idea of shear flow. 

~~~~~~~~~~~~~~ 
 
Ships are made of steel plate. This means that 
ships are thin walled shells. Even for the local 
components such as individual frames the width of 
a plate is much greater than its thickness; 
 
 𝐿 ≫ 𝑡 
 
Overall, the cross section of a ship contains long 
sections of connected plate. Such sections transfer 
shear very effectively. Ships are generally very 
stiff in shear, and need to be.   
 
We wish to be able to determine the shear forces 
and stresses everywhere in the cross section of a 
ship. We will  start by examining the shear that is 
associated with  the vertical bending stress. In a 
later chapter we will examine torsion.  
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Recall from beam theory that shear is the slope of 
the bending moment:     
 

𝑑𝑀 = 𝑄 𝑑𝑥 
 

𝑄 = 𝑑𝑀/ 𝑑𝑥 
 
There is significant shear is a ship. How is it 
distributed in the cross section?  Shear is not just 
in the vertical plates. There is shear in all parts of 
the vessel.  The average shear stress can be found 
by dividing the shear force by the cross-section 
area;  
 

𝜏𝑎𝑣𝑔 = 𝑄/𝐴𝑠ℎ𝑒𝑎𝑟  
 
How is Q distributed around the x-section of the 
ship? Is the shear stress uniform? Is it only in 
vertically oriented members?  To find the pattern 
of stress, we construct  a free body diagram of a 
part of a slice of the ship's cross section.  
 
To find the shear on the cross section, we cut the 
section longitudinally and note that the shear 
stress on the cut must be the same as the shear 
stress on the cross section at that point.  We can 
assume; 
   

• there is no shear on the centerline 
• the shear force on the cut is 𝜏 𝑡 𝑑𝑥 

 
We find the force on the cut by integrating all 
horizontal forces on out slice atarting from the 
centerline (keel). We integrate along the shell 
plating, using the path variable 's'.   
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Define: 

 
 

m : 1st moment of area, about the neutral axis, of 
all the material from the start to the cut at S 
(where τ is determined)  
 
 
 
 
Define: 

 
 

The units of shear flow is N/m.   
There is an analogy between shear flow and fluid 
flow. At an abrupt change in section, the shear 
flow remains constant, while the stress abruptly 
changes. This is analogous to water flow where at 
a change in pipe size the mass flow rate (kg/s) 
would stay constant while the velocity would 
abruptly change.  
 
 
 
We can combine the above concepts into one 
equation;  
 



E5003 - Ship Structures I  178 
© C.G. Daley 
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Shear Flow Example 1: a rectangular steel bar 
subject to a shear force Q.  
 

 
 

 
 

 
Summary:  
 
Shear flow acts along the cross section of a plate. 
There can be no significant shear across a thin 
plate, because there is no shear on the inner and 
outer surfaces.  The shear flow is found by 
determining the value of 'm'  (a path integral)  
along with Q (the total shear force) and I (the 
moment of inertia);   
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Example 2: Shear Flow in a simple box-girder. 
 
Consider the simple box girder with the 
dimensions as show below. This is like a simple 
barge without the frames. The overall vertical 
shear Q is 20 MN.  To find the pattern of shear 
flow and then the shear stresses we first calculate 
the location of the neutral axis, and I.  
  
g and h are the distances from the deck and 
bottom to the neutral axis; 
 

ℎ =
∑𝑎𝑦
∑𝑎

=
. 010 ∙ 10 ∙ 12 +  .012 ∙ 12 ∙ 6 + 0
. 010 ∙ 10 + .012 ∙ 12 + .015 ∙ 10

=
2.064
. 394

 
 

= 5.24 m                               
 

g = 12 − 5.24 = 6.76 m 
 
The moment of inertia about the base can be 
approximated by; 
  

𝐼𝑏𝑎𝑠𝑒 ≅ 𝑡𝐷 ∙
𝐵
2
∙ 𝐻2 +

1
3

 𝑡𝑆 ∙ 𝐻3 
    = 21.31 𝑚4       (ℎ𝑎𝑙𝑓 𝑠ℎ𝑖𝑝) 

 
The moment of inertia about the neutral axis is; 
 
𝐼𝑛𝑎 = 2 ∙ (𝐼𝐵𝐴𝑆𝐸 −  𝐴 ℎ2) = 21 𝑚4   (whole ship)  
 
Now we can determine m 

𝐼𝑛𝑎 = 2 ∙ (𝐼𝐵𝐴𝑆𝐸 −  𝐴 ℎ2) = 21 𝑚4 
 
Next we find m. We will start at the centerline on 
the bottom, where s1  starts; 

𝑚 = � 𝑦 𝑡𝐵  𝑑𝑠
𝑠1

0
= ℎ  𝑡𝐵 � 𝑑𝑠

𝑠1

0
= 𝑦 𝑡𝐵 𝑠1  

 
@ 𝑠1 =

𝐵
2

     𝑚 = 𝑦 𝑡𝐵
𝐵
2

 = 0.786 𝑚3 
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Next we find m on the side shell,  The initial value 
for the side is the same as the final value for the 
bottom. The shear flow continues around the 
corner. We integrate along s2  (note: y = h - s2 ) ; 
 

𝑚(𝑠2) = 𝑚(𝑠1 = 𝐵 2⁄ ) + � 𝑦 𝑡𝑆  𝑑𝑠
𝑠2

0
  

 
= 0.786 + � (ℎ − 𝑠2) 𝑡𝑆  𝑑𝑠

𝑠2

0
 

= 0.786 + ℎ 𝑡𝑆 𝑠2 −  
𝑡𝑆 𝑠22

2
 

 
This is a quadratic equation in s2. To find the 
location of the maximum value, we set its 
derivative to zero; 
 

𝑑𝑚
𝑑𝑠2

= ℎ 𝑡𝑆 −  𝑡𝑆 𝑠2 = 0 

𝑠2 = ℎ 
This shows that the maximum shear flow is 
occurring at the neutral axis; 

𝑚(𝑠2 = ℎ) = 0.786 + ℎ2 𝑡𝑆  −  
𝑡𝑆 ℎ2

2
 

= 0.786 + 
. 012 5.242

2
= 0.951 𝑚3 

 
Continuing the integral to the deck gives; 

𝑚(𝑠2 = 𝐻) = 0.786 +  
𝑡𝑆 𝐻2

2
= 0.677 𝑚3 

 
Next we continue the integral along the deck, 
along s3, to the centerline; 

𝑚(𝑠3) = 0.677 + � 𝑦 𝑡𝐷  𝑑𝑠 = .677 +  𝑔 𝑡𝐷 𝑠3
𝑠3

0
 

 
𝑚(𝑠3) = 0.677 − 6.76 ∙ 0.01 ∙ 𝑠3 

@ 𝑠3 =
𝐵
2

     𝑚 = 0.677 − 6.76 ∙ 0.01 ∙ 10 = 0 𝑚3 
 
With the shear force of 20 MN (about 2000 tonnes) 
The maximum shear stress is; 
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𝜏𝑚𝑎𝑥 =
𝑄 𝑚
𝐼 𝑡

 =
20 ∙  0.951
21 ∙  0.012

= 75.5 𝑀𝑃𝑎 
Branching Shear: 
 
At a T junction, the shear flow branches. As long 
as there are no closed loops between the points of 
zero shear (ie. pts A, B and C in the sketch at left) 
the shear flow can be found easily. Such situations 
are statically determinate. 
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Topic 17: Problems 
 
17.1 An open section is shown below. This is the cross section of a long folded steel 
plate. The cross section is subject to a shear force of 2 MN 
 
Solve the shear flow, plot it and then also show the shear stress values.  
If this is a section of a long cantilever (fixed at one end and free at the other) 
explain what types of deformations would you expect to see.  
 

 
 
17.2   An open section is shown below. This is the cross section of transverse frame 
in a ship. The shear force of 200kN.   
Solve the shear flow, plot it and then also show the shear stress values.  
The web is welded to the shell plate. What shear force must be resisted at this joint?  
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Topic 18: Shear Stresses in multi-cell sections 

 
Croatian Coast  

 
Introduction 

In this Chapter we will  
• Discuss indeterminate shear flow 
• Calculate shear slip in a cut section. 
• Do an example of shear flow in a ship 

~~~~~~~~~~~~~~~~~~~~ 
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Shear in Multi-cell Sections 
 
Consider a tanker with two longitudinal 
bulkheads; 
 

 
 
There will likely be two spots in the cell where 
m=0.  The shear flow will look something like the 
sketch to the left.  
 
To solve the statically indeterminate problem, we 
apply the same kind of technique that we used in 
the Force Method to solve indeterminate beams.  
 
We will cut the structure, releasing the shear force 
and allowing shear deflection (called 'slip'). We will 
then determine how much shear we have to apply 
to the cell to remove the slip.  
 
This is qualitatively similar to the correction of 
movements in the force method.  
 
For any case where the loops are not adjacent, the 
steps in the solution process are; 
 
1) Make n cuts to make the problem into a 
statically determinate problem. 
2) Solve the statically determinate problem. 
3) Find the N incompatible deflections (slips). 
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4) Apply N internal forces (actually torsions) to 
reverse the incompatible deflections 
5) Add #2 and #4(s) to get the solution  
The above steps are sketched below; 
 

 
 
The cuts and the slip at the cuts are in the 
longitudinal direction; 
 
 

         
 
The shear flow occurs on the cross section, which 
is a transverse vertical plane. The shear stresses 
on this plane will also occur on a longitudinal 
plane at right angles to the transverse plane. The 
longitudinal plane may be horizontal or vertical or 
inclined.  The stressed plate will respond to the 
shear by distorting into a 'diamond' with relative 
movement in the longitudinal direction, which 
creates a differential slip over a small part of the 
cross section.  
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The total slip is found by integrating the slip over 
the whole loop from one side of a cut to the other.  
If the loop is symmetrical , the fore and aft slip 
will cancel out and result in no slip.  In an 
unsymmetrical section there is a net slip.  

 
𝑠𝑙𝑖𝑝 = �𝛾 𝑑𝑠 

 
s = the path variable (length) around any 
loop 
𝛾 = shear strain  𝛾 =  𝜏/𝐺 
∮  = a cyclic or loop integral 
 
The slip can be found from the shear flow; 
 

𝑠𝑙𝑖𝑝 = �𝜏/𝐺 𝑑𝑠 =
1
𝐺
�𝑞/𝑡 𝑑𝑠 

 
To correct the slip in a cut loop, we impose a 
correcting shear flow 𝑞𝑐 , such that;  
  

1
𝐺
�𝑞∗/𝑡 𝑑𝑠 + 

1
𝐺
�𝑞𝑐/𝑡 𝑑𝑠 = 0 

 
𝑞𝑐  is a constant so we can find it as; 
 

𝑞𝐶 =  
−∮𝑞

∗

𝑡 𝑑𝑠

∮ 1
𝑡 𝑑𝑠

 

𝑞𝑐  is constant around the loop and zero elsewhere.  
𝑞∗ is a determiate solution, found in the usual way. 
The total solution is; 
 

𝑞 = 𝑞∗ +  𝑞𝑐 
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Shear Flow Example #2 
 
Find the shear stresses in the section below. The 
total shear is 10MN (5 MN on the half section.  
 
First we find the section properties: 
 
Item Desc. w h Io a y ay a y2 

1 deck 10 .03 * .3 10 3 30 
2 w.t pl.  4 .23 .17 8 1.36 10.9 
3 side  10 2.5 .3 5 1.5 7.5 
4 bot. 10 .03 * .3 0 0 0 
Σ    2.73 1.07  5.86 48.38 

 
The centroid and moment of inertias are (for half 
section) ;  

𝑐 =  
Σ ay

A
=

5.86
1.07

= 5.48 m 
 

𝐼𝑏𝑎𝑠𝑒 = Σ 𝐼𝑜 +  Σ 𝑎 𝑦2 = 2.73 + 48.38 = 51.1 m4 
 
𝐼𝑛𝑎 = Ibase −  𝐴 ∙ 𝑐2 = 51.1 − 1.07 ∙ 5.482 = 19.0 m4  

 
The shear flow and stress in the half section can 
be found from; 
  

𝑞 =
𝑄 𝑚
𝐼 

  
𝑞 = .2634 𝑚  

 

𝜏 =
𝑄 𝑚
𝐼 𝑡 

 =
5

19 ∙ 0.03
∙ 𝑚 = 8.78 ∙ 𝑚 

 
where 

𝑚 = � 𝑦 𝑡  𝑑𝑠
𝑠

0
 

So to find τ, we just need to find m. To find m we 
need to integrate along the 5 branches of the 
problem. 
 
Because we have a loop, the problem is 
indeterminate and we need to cut the loop, find 
the slip and add a correcting shear flow. 
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The solution to the cut problem is called q*. The 
correcting flow is called qc.  
  
For s1 (along deck); 

𝑚 = 0 +  � 𝑦 𝑡  𝑑𝑠
𝑠1

0
 

y = 10 - 5.48 = 4.52, y t = 0.1357 
m = .1357 s1 
    = 0.814 (@ s1 = 6) 
    = 1.357  (@ s1 = 10) 
 
For s2 (side shell above wing tank); 

𝑚 = 1.357 +  � 𝑦 𝑡  𝑑𝑠
𝑠2

0
 

y = 4.52 - s2 ,  
m = 1.357 + .03 (4.52 s2 -  s22 / 2 ) 
    = 1.357 + .1357 s2 - .015 s22 
    = 1.658  (@ s2 = 4) ( at wing tank plate) 
 
For s3 (inclined plate of wing tank); 

𝑚 = 0 +  � 𝑦 𝑡  𝑑𝑠
𝑠3

0
 

y = 4.52 - s3/√2 ,  s3 = 0 -> 4√2  
m =  .03 (4.52 s3 -  s32 / 2√2 ) 
    =  .1357 s3 - .0106 s32 
    = .428  (@ s3 = 4√2) ( at side shell) 
 
For s4 (side shell below wing tank); 

𝑚 = .428 + 1.658 +  � 𝑦 𝑡  𝑑𝑠
𝑠4

0
 

y = 0.52 - s4 , s4 = 0 -> 6  
m =  2.086+ .03 (0.52 s4 -  s42 / 2 ) 
    =  2.086 + .0156 s4 - .015 s42 
    = 1.64  (@ s4 = 6) ( at bottom) 
    =  2.09  (@ s4 = .52) (max value at n.a.) 
 
For s5 (along bottom); 

𝑚 = 1.64 + � 𝑦 𝑡  𝑑𝑠
𝑠5

0
 

y = -5.48 , s5 = 0 -> 10  
m =  1.64 - .164 s5  
    = 0  (@ s5 = 10) ( at centerline)   ok 
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Now we can calculate the corrective shear needed 
to close the slip that occurs at the wing tank cut;  
 

𝑠𝑙𝑖𝑝∗ +  𝑠𝑙𝑖𝑝𝐶 = 0 
 

1
𝐺
�𝑞∗/𝑡 𝑑𝑠 + 

1
𝐺
�𝑞𝑐/𝑡 𝑑𝑠 = 0 

 
𝑞𝑐  is a constant so we can find it as; 
 

𝑞𝐶 =  
−∮𝑞

∗

𝑡 𝑑𝑠

∮ 1
𝑡 𝑑𝑠

 

 
In this case t is a constant so; 
 

𝑞𝐶 =  
−∮𝑞∗ 𝑑𝑠

S
 

 
where S is the length around the loop. S = 8 + 4√2. 
We can use the definition of shear flow to get; 
 

𝑞𝐶 =  −
Q1
2

I1
2

 S
�𝑚∗ 𝑑𝑠 

      =  −.01929�𝑚∗ 𝑑𝑠 
 
m*deck = .814 +.1357 s 
m*side = 1.357 + .03 (4.52 s2 -  s22 / 2 ) 
m*wt =  .03 (4.52 s3 -  s32 / 2√2 ) 
 ∮𝑚∗ 𝑑𝑠 =  ∫ (.814 + .1357 s)4

0 𝑑𝑠   
                  + ∫ (1.357 + .03 (4.52 s − s2/2 ))4

0 𝑑𝑠  

                  −∫ (.1357 s − .0106 s2)4√2
0 𝑑𝑠  

               = 4.34 + 6.188 - 1.53 
               = 9.00 
Note that the m*wt part is subtracted beacuse we 
are integrating in the reverse direction. With m* 
we can calculate qC;  
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qC = -0.1736 [MN/m] 
 
We have m* and qC.  
 
q = q* ± qC = 0.2364 m* ± qC 
 

We can plot q* (solid lines) and q (dashed lines); 
 
 
 
 
 
 
 
 
and we can plot the shear stress τ;  
 
 
 
 
 
 
 
 
 
The values of shear stress have been checked 
against an ANSYS model, and show good, though 
not perfect, agreement. A sketch of the ANSYS 
model is shown below. 
 

 
 
See next page for ANSYS results.  
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image from ANSYS 
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image from ANSYS Workbench   
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Topic 18: Problems 
 
18.1  Solve the shear flow in the following section of a tanker. Ignore the radius of 
the bilge. 
 

 
 
 
18.2  Solve the shear flow in the following section of a tanker.  
 

 
18.3  Solve the shear flow in the following section of a tanker.  
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18.1  Solve the shear flow in the following frame section. What are the shear forces 
transferred through the welds in details A and B (in kN/m)?  
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Topic 19: Shear Flow in adjacent Closed Cells 
 

 
 
 

In a double sided or double bottom vessel there are 
often many adjacent closed cells. Adjacent close 
cells present an added complexity when solving 
shear flow. The complexity is that the corrective 
shear flow in once cell causes a corrective slip in 
the adjacent cell, because of the common side.    
 

 
 
When we add a corrective shear flow in one loop 
we can't help but get some flow and slip in 
adjacent loops.  
 
Consequently, in order to ensure that we have no 
net slip at each and all cuts we need to satisfy a 
set of coupled equations. For example, in the case 
of two adjacent loops we have; 
 

�
𝑞∗

𝑡
𝑑𝑠

𝑐𝑒𝑙𝑙 1

 +  �
𝑞𝑐1

𝑡
𝑑𝑠

𝑐𝑒𝑙𝑙 1

 +  �
𝑞𝑐2

𝑡
𝑑𝑠

𝑐𝑒𝑙𝑙 1

= 0 
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�
𝑞∗

𝑡
𝑑𝑠

𝑐𝑒𝑙𝑙 2

 +  �
𝑞𝑐1

𝑡
𝑑𝑠

𝑐𝑒𝑙𝑙 2

 +  �
𝑞𝑐2

𝑡
𝑑𝑠

𝑐𝑒𝑙𝑙 2

= 0 

 
𝑞𝐶1 and 𝑞𝐶2 are unknown constants. 𝑞∗ is the 
determinate shear flow in the cut section. For N 
adjacent closed cells, we have to solve N 
simultaneous equations.    
 
 

Topic 19: Problems 
 
19.1   Solve the shear flow in the following section of a tanker. Ignore the radius of 
the bilge. 
 

 
 
19.2   Solve the shear flow in the following section of a tanker.  
 

 
 
19.3   Solve the shear flow in the following section of a tanker.  
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Topic 20: Torsion in ships 

 
 
 

Ships as a whole and many individual members 
within ships experience torsion.  
 
 

 
 
 
 
The overall design torsional moment is given in 
various classification society rules; 
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Local structural torsion can be found throughout 
ships. Bending of a frame can result in a torsion in 
a supporting frame.  
 
 
 
 
Torsion Review 
 
Consider a solid circular shaft subject to a 
torsional moment. The longitudinal axis of the 
cylinder x axis. A torsion is a moment about the x 
axis. In such a case we get an ideal torsional 
response. Every circular cross section remains 
plane and remains centered on the x axis. Each 
plane rotates slightly in comparison to its 
neighboring cross sections.  Assume that two 
planes (1 and 2) are separated by a distance dx.  In 
comparison to their original orientations, the 
planes are rotated  

𝑑𝜃 = 𝜃1 − 𝜃2 
 

𝑑𝜃 =
𝑀𝑥

𝐺 𝐽
 𝑑𝑥 

or 
 

𝑀𝑥 = 𝐺 𝐽 
𝑑𝜃
𝑑𝑥

  

note similarity to the deq. for bending:  𝑀𝑦 = 𝐸 𝐼 𝑑𝜃
𝑑𝑥

 
 
For solid sections like the circular shaft shown at 
left, the shear stress is; 
 

τ =  
𝑀𝑥𝑟
𝐽

 

 

 𝐽 =  
𝜋 𝑟4

2
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Thin Walled Torsion 
 
Torsion in thin walled sections differs greatly 
between ‘open’ and ‘closed’ sections.  
 
To examine the difference between open and 
closed sections we first make some simplifying 
assumptions; 
 

• sections are prismatic 
• no in-plane deformation (cross sections only 

rotate) 
• small out of plane deformations (warping) 

 
 
 
Thin Walled Torsion – Open Sections 
 
Consider an open section, built-in at its base and 
subject to a torsion at the free end.  
 

 
 
The section rotates about a point called the shear 
center.  Point ‘p’ moves in the y and z direction due 
to rotation and in the x direction due to ‘warpage’.  
 
The displacements of point ‘p’  
 

𝑥:                 𝑢𝑝 = 𝑤𝑛(𝑦, 𝑧)�����
𝑤𝑎𝑟𝑝𝑎𝑔𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝜃′          𝜃′ = 𝑑𝜃
𝑑𝑥�  

 

�
𝑦:             𝑣𝑝 = −𝜃 𝑧𝑝  

𝑧:             𝑤𝑝 =  𝜃 𝑦𝑝   
  � 𝑠𝑚𝑎𝑙𝑙 𝑟𝑖𝑔𝑖𝑑 𝑏𝑜𝑑𝑦 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠 
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For ideal open sections with no warping restraint; 
 

𝑀𝑥 = 𝐺 𝐽 
𝑑𝜃
𝑑𝑥

 
 
J = St. Venant torsional constant 
 
For an open section; 

𝐽 =
1
3
� 𝑡3 𝑑𝑠
𝑏

0
 

 
For example, for a pipe of thickness t, radius r, cut 
longitudinally; 

𝑏 = 2𝜋𝑟 
 

𝐽 =
1
3
� 𝑡3 𝑑𝑠
2𝜋𝑟

0
=

2𝜋 𝑟 𝑡3

3
= 2.09 𝑟 𝑡3 

 

 
 

 
Thin Walled Torsion – Closed Sections 
 
Closed sections carry torsion in an entirely 
different way from open sections. Because the loop 
is closed, shear can flow around the loop. The 
shear stress is uniform over the full thickness of 
the wall. The shear flow is also constant over the 
full loop.  Once again; 

𝑀𝑥 = 𝐺 𝐽 
𝑑𝜃
𝑑𝑥

 
 
We can also write; 
 

𝑀𝑥 = � 𝜏 𝑡 ∙ 𝑟 𝑑𝑠
2𝜋 𝑟

0
 

   = � 2𝑞 𝑑𝑎
2𝜋 𝑟

0
 

𝑛𝑜𝑡𝑒:  𝜏 𝑡 = 𝑞,   𝑟 𝑑𝑠 = 2 𝑑𝑎 
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As q is constant we can write; 
 

𝑀𝑥 = 2 𝑞� 𝑑𝑎
2𝜋 𝑟

0
 

    = 2 𝑞𝐴           
where; 
A = enclosed area of the loop 
 
For a pipe (a circle); 

𝑀𝑥 = 2 𝑞 𝜋 𝑟2 
 
Using the general formula for torsion; 
 

𝜏 =  
𝑀𝑥 𝑟
𝐽𝑐𝑙𝑜𝑠𝑒𝑑

        (𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝜎 =  
𝑀𝑦 𝑐
𝐼𝑛𝑎

 )  

 
We can use this to find 𝐽𝑐𝑙𝑜𝑠𝑒𝑑 
 

𝐽𝑐𝑙𝑜𝑠𝑒𝑑 =  
𝑀𝑥 𝑟
𝜏

=
2 𝑞 𝜋 𝑟3

𝜏
= 2 𝜋 𝑡 𝑟3 

 
Compare this to 𝐽𝑜𝑝𝑒𝑛; 
 

𝐽𝑜𝑝𝑒𝑛 =
2
3

 𝜋 𝑟 𝑡3 
 
For example, consider a pipe of 1m dia., with a 
10mm wall thickness; 
 

𝐽𝑐𝑙𝑜𝑠𝑒𝑑 = 2 𝜋 𝑡 𝑟3 = 2 𝜋 ∙ 0.01 ∙ 13 =   0.062 𝑚4 
 

𝐽𝑜𝑝𝑒𝑛 =
2
3

 𝜋 𝑟 𝑡3 =
2
3

 𝜋 ∙ 1 ∙ 0.013 =  2𝑥10−6   𝑚4 
 

𝐽𝑜𝑝𝑒𝑛 =
𝐽𝑐𝑙𝑜𝑠𝑒𝑑
𝐽𝑜𝑝𝑒𝑛

=  29,600 

 
The difference is so dramatic that it is easily 
illustrated by seeing what happens when a 
cardboard tube (eg paper coffee cup) is cut open 
longitudinally.  
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Thin Walled Torsion – warpage restraint 
 
Warpage is the term to describe axial 
displacements due to torsion. In a closed circular 
section the axial symmetry prevents all warpage. 
In an open circular section, the warpage is 
unrestrained (ie. The section is free to warp), so no 
warpage stresses arise.  
 
In sections with corners such as a box section, the 
twist of one face is, to a degree, incompatible with 
the twist of the connecting face. Each face wants to 
warp differently, but is constrained at the corner. 
This results in stresses on both faces. The 
treatment of these effects requires the use of 
warpage functions. This topic will not be 
considered any further here. We will limit our 
attention to simple torsion theory.  
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Topic 20: Problems 
 
20.1   A hollow closed section is made of plate of uniform thickness ‘t’ . A torsional 
moment of 80 MN-m is applied. To have the maximum shear stress equal to 135 
MPa, what value should t be? 
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Topic 21: Shear Center and Shear Lag in Ship Structures 
 

 
Topsides supports on an FPSO 

Introduction 
In this Chapter we will  

• Discuss the idea of the shear center of a frame 
• Describe the idea of shear lag and the notion of effective width. 
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Consider a channel section. A channel is a common 
structural profile, but one that is asymmetric on 
one axis. The center of area (centroid) and the 
‘shear center’ are not at the same location.   
 
What is the centroid? For one thing, it is a 
property of the cross sectional area. But what does 
it mean for the channel section?  If we were to 
want to use the section as a column and apply an 
axial force that would only compress (and not 
bend) the column, we would apply the force at the 
centroid ‘g’.  This is because a uniform stress in 
the cross section would have a ‘center of force’ at 
‘g’.  
 
To find ‘g’ we use the standard formulations; 
  

𝑔𝑦 =
Σ 𝑎 𝑦
𝐴

=  
1800 ∙ 5 + 2000 ∙ 50

3800
= 28.7 𝑚𝑚 

 
If the end of the column had an end cap, the load 
would naturally find its way to the centroid.  
 
 
However if the end were connected with a bold 
through the web, the load would be applied off the 
centroid and the axial load would cause bending. 
In this case the end load would not only cause 
bending, but the bending deflection would increase 
the moment arm to further increase the bending. 
This is a kind of self-excited response called the   
p-delta effect, and is the subject of a special 
analysis.  
 
 The above discussion is about axial loads. What is 
the connection to shear? The connection is the idea 
of the shear center. When a load is applied at the 
shear center of a beam, the load will only cause 
shear and bending, and no torsion. If the load is 
applied anywhere else, a torsion will result.  
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Consider a shear force Q =10000 N applied to the 
channel section on the previous page.  
 

𝐼𝑦 =
1

12
 (100 ∙ 2003 − 90 ∙ 1803) 

= 22,927,000  𝑚𝑚4                
 
We will need Q/I; 

𝑄
𝐼𝑦

= 0.0004362  

Now we find the values of m. On the top flange; 
 

𝑚1 = � 𝑦 𝑡 𝑑𝑠
𝑠1

0
= 950 𝑠1 

 
𝑞1 =

𝑄
𝐼𝑦
𝑚1 = 0.4144 𝑠1 

So at B; 
𝑞𝐵 = 0.4144 ∙ 95 = 39.36 𝑁/𝑚 

 
The force on the top flange is; 
 

𝐹𝑡𝑓 = � 𝑞1 𝑑𝑠
95

0
  

or      =
1
2
𝑞𝐵 95  

= 1870 𝑁 
 
In the web; 

𝑞2 = 39.36 +
𝑄
𝐼𝑦
� 𝑦 𝑡 𝑑𝑠
𝑠2

0
 

= 39.36 + .0004362 ∙ 10 � (95 − 𝑠2)𝑑𝑠
𝑠2

0
   

= 39.36 + .0004362 ∙ 10 (95 𝑠2 −
𝑠22

2
)   

The force on the web is; 

𝐹𝑤 = � 𝑞2 𝑑𝑠
190

0
  

= 39.36 ∙ 190 + .004362 �95
1902

2
−

1903

6
� 

 
= 9978   (≅ 10,000 )  𝑂𝐾 
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The lower flange is symmetrical with the upper 
and will have a shear flow of the same magnitude 
but opposite in direction.  
 
 
 
The shear flow as drawn shows the directions of 
shear in the direction of the applied force. If we 
think instead of the reaction to the applied force, 
we have the sketch at left. 
 
In this case the applied force is shown pushing 
directly down on the web. In this case the vertical 
forces oppose each other and produce no moment. 
However, the horizontal forces, while equal in 
magnitude, are separated by 190mm and produce 
a couple of 1879 x 190 = 355300 N-mm.  This couple 
is a torsion acting on the section.  
 
In order to eliminate the torsion, we would need to 
apply the load Q at the shear center ‘e’ to the left 
of the web. We can find the location of ‘e’ as 
follows; 

𝑒𝑦 =
𝐹𝑡𝑓  ∙ 190

𝑄
 =

35530
10000

 

= 35.53 𝑚𝑚 (𝑡𝑜 𝑐𝑒𝑛𝑡. 𝑜𝑓 𝑤𝑒𝑏) 
 
General formula for shear centers of channels 
 
The following derivation is only valid for 
symmetrical channels with constant wall 
thickness. 
 

𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,≪ 𝑎 
 

𝐼 =
1

12
𝑡 𝑏3 + 2 𝑎 𝑡 �

𝑏
2
�
2

 
 

𝑞1 =
𝑄
𝐼
� 𝑦 𝑡 𝑑𝑠
𝑠1

0
 

=
𝑄
𝐼
𝑦 𝑡 𝑠1 

 
The force in the top flange; 
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𝐹𝑓 = 𝑞1��� 𝑎 =
𝑄
𝐼
𝑦 𝑡

𝑎
2

 𝑎 
 

=  
𝑄 𝑏 𝑎2 𝑡

4 𝐼
 

Now we can find ‘e’ by setting the sum of the 
torsional moments to zero. The flange forces create 
one couple and the applied load, opposed by the 
reaction in the web, creates another couple. The 
two couples will sum to zero when the load is 
applied at the shear center. 
 

𝑄 𝑒 = 𝐹𝑓 𝑏   (𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑚𝑜𝑚𝑒𝑛𝑡𝑠)  
 

𝑒 =  
𝑄 𝑏 𝑎2 𝑡

4 𝐼
 
𝑏
𝑄

=
𝑏2𝑎2𝑡

4 𝐼
 

 

𝑒 =
𝑏2𝑎2𝑡

4
 

1
1

12 𝑡 𝑏
3 + 2 𝑎 𝑡 �𝑏2�

2 

 
𝑒 =

𝑎

2 � 𝑏6𝑎 +  1�
    

 
For the previous example  
 

𝑎 = 95, 𝑏 = 190    
 

𝑒 =
95

2 � 190
6 ∙ 95 +  1�

 = 35.6 𝑚𝑚   

 
(Q? – why would there be a slight difference 
between the above result and the previous 
example? ) 
 
 
Shear Lab / Effective Width  
 
We normally assume that bending in a frame of a 
ship or the hull girder can be modeled with what 
we call ‘simple beam theory’. This means that we 
assume that as the beam bends, plane sections 
remain plane. When we make this assumption, we 
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are implicitly assuming that the flange is 
uniformly compressed (or stretched), and that the 
compressive or tensile stresses are uniform in the 
flanges. Recall that ‘standard’ formula; 
 

𝜎 =
𝑀 𝑦
𝐼

 
 
This formula says that all stresses at the same 
value of y will be the same (i.e. all stresses in the 
flange are the same!).  
 
While the simple beam assumption is ok for beams 
with relatively narrow flanges, the assumption is 
not valid for sections with wide flanges such as are 
sometimes found in ships.  
 

 
 
In the case of very wide flanges, the compressive 
stresses drop off away from the web.  
 

 
 
To find the true pattern of flexural stress in a wide 
flange beam, and the consequent effective width, is 
a complex analysis, easily done in a finite element 
model, but difficult to obtain analytically. The idea 
of the behavior is presented below. 
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When we a lateral load (a bending load) to a beam 
or ship frame, the web carries the load and tends 
to bend. The flange is attached at the edges of the 
web and as the web bends, its edge shortens (or 
lengthens) and tends to pull the flange with it. To 
pull on the flange, a shear stress of applied to the 
edge of the flange. As shown in the sketch, the 
flange is acted upon along its edge. Its as if the 
flange is pinched along its edge, causing the flange 
to compress more near the web and less away from 
the web.  
 

 
 
 
Unfortunately there are no general analytical 
solutions for shear lag and effective width. Certain 
approximate solutions have been postulated (see 
PNA, VI, pp 247-250)  
 
Shear lag and diminished effective width are most 
important in cases of ; 

• wide flanges (large b) 
• short frames (small L/b) 
• proximity to free ends 
• proximity to concentrated loads 

 
Finite element programs, when shell or brick 
elements are used to model the frames, will 
naturally show the shear lag effects.  
There have been experiments on hull girder 
models that have shown not only a variation in 
deck stresses, but actual stress reversals. This 
means that even when the average deck stress is 
compressive, there may be a part of the deck (at 
center) where the stresses are tensile, with the 
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deck edges in exaggerated compression. (PNA p 
250) 
 
Classification society rules have various 
approaches to account for effective width. We will 
consider deck plate buckling in the next ship 
structures course (6003). In that case we will 
consider another type of effective width of plating, 
but one that describes a buckled plate’s reserve 
capacity.  
 

 
ANSYS analysis results  
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Topic 21: Problems 
 
21.1 The following figure shows 4 x-sections. Identify the location of the shear 
center in each case (i.e. which letter?). You should sketch the shear flow to help 
identify the location.   
 

 
 
21.2  When the vertical force F is applied to this section, how will the cantilever 
beam deform? Explain  

 
21.3  Where is the shear center of a 300 x 150 x 15fl x 10w mm ? 
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Topic 22: Plate Bending 
 

 
Wexford Ireland 

 
Introduction 

In this chapter we will  
• Discuss the mechanics of plate bending 

~~~~~~~~~~~~~~~~~~~~ 
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Plates are the essential structural components in 
ships. Almost all the structural weight in ships is 
from the shell plating, the bulkheads, decks and 
webs of large frames.  
 
This section will examine the lateral deformation 
of a single plate panel subject to a uniform 
pressure. We will limit our problem as follows; 

• rectangular plate 
• constant thickness (t<<a, b) 
• simple edge conditions (fixed, pinned, free) 
• linear elastic material behavior 
• steel material (isotropic, homogeneous) 
• pressure normal to surface 
• no membrane stresses (no in-plane stress) 
• 𝜎𝑧 ≪  𝜎𝑥,𝜎𝑦 

 

 
 
 

Recall that with beams we describe the 
deformation and strains as follows; 
 
 

𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑤  
 

𝑠𝑙𝑜𝑝𝑒 =  𝜃 =
𝑑𝑤
𝑑𝑥

   
 

𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =  𝜌𝑥 =
1
𝑟𝑥

=
𝑑𝜃
𝑑𝑥

=
𝑑2𝑤
𝑑𝑥2
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Plates can bend in 3 ways; 
• x-bending 
• y-bending 
• twist 

 
X and y bending are similar to beam bending.  
 
Recall that there are no membrane stresses, 
therefor no x and y stresses at the mid-plane. 
Stresses only arise from bending, and are equal, 
opposite and maximum on the bottom and top of 
the plate.    
 
Twist is a behavior that does not occur in beams, 
although it is something like torsion.  
 
Twist causes a shear strain in the top (and bottom) 
of the plate, and results in curvature on 45° 
diagonals.  When we twist a dx x dy portion of a 
plate we get;  
 

Δ =
𝑑𝜃𝑦

2
∙
𝑑𝑦
2

=
𝑑𝜃𝑥

2
∙
𝑑𝑥
2

 
therefore 
 

𝑑𝜃𝑦
𝑑𝑥

=
𝑑𝜃𝑥
𝑑𝑦

=
𝑑
𝑑𝑥

�
𝑑𝑤
𝑑𝑦

� =
𝑑
𝑑𝑦

�
𝑑𝑤
𝑑𝑥

� =
𝑑2𝑤
𝑑𝑥 𝑑𝑦

 

 
The above equation can be stated as; 
  the change in x-slope with change in y 
= the change in y-slope with change in x 

=
𝑑2𝑤
𝑑𝑥 𝑑𝑦
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What about the curvature on 45° diagonals? 
 

𝑑𝜃𝑥
2

=
Δ
𝑙

     ,    
𝑑𝜃45

2
=

Δ
𝑙/√2

= √2
Δ
𝑙

= √2
𝑑𝜃𝑥

2
 

 
𝑑𝜃45 =  √2 𝑑𝜃𝑥  �=  √2 𝑑𝜃𝑦� 

 
 
Consider a view of the plate normal to the 45° 
diagonal.  
 

√2 𝑑𝑦 = 𝑟𝑥𝑦 𝑑𝜃45 =  𝑟𝑥𝑦 √2 𝑑𝜃𝑥  
 

1
𝑟𝑥𝑦

=
𝑑𝜃𝑥
𝑑𝑦

  �=
𝑑𝜃𝑦
𝑑𝑥

� 

 

=   
𝑑
𝑑𝑦

�
𝑑𝑤
𝑑𝑥

� =
𝑑2𝑤
𝑑𝑥 𝑑𝑦

  

 
We now have a variety of relationships for 
deflection, curvature and strain.  
 
The x direction movement 'u' is the result of 
bending deflection w in the y direction.  

𝑢 = −𝑧
𝑑𝑤
𝑑𝑥

  
 
 
We can find the strain from derivatives of the 
movement;  

𝜀𝑥 =
𝑑𝑢
𝑑𝑥

= −𝑧
𝑑2𝑤
𝑑𝑥2

  
 
In the y direction the movement is called 'v'; 
 

𝑣 = −𝑧
𝑑𝑤
𝑑𝑦

  

 

𝜀𝑦 =
𝑑𝑣
𝑑𝑦

= −𝑧
𝑑2𝑤
𝑑𝑦2
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When u and v vary in x and y we can get shear 
strains.  

𝛾 =
𝑑𝑢
𝑑𝑦

+
𝑑𝑣
𝑑𝑥

 

 
 
 

 
 
CONCEPT: displacement field 
 
In solid mechanics it is useful to describe how all points move relative to their 
original positions as a 'displacement field'. In the example below we just consider 
how points along an x axis move. We call the movement in the x direction u. A point 
at some original position 𝑥𝑜 moves to a displaced position 𝑥𝑑. The displacement 
𝑢 = 𝑥𝑑 − 𝑥𝑜. we describe  𝑢 as a function of 𝑥, or 𝑢(𝑥). We could also write this as  
𝑢(𝑥𝑜) because we think of the displacement as dependent on the original position.  
If all points move the same amount, then 𝑢(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  In such case the 
derivative of the displacement field is zero and there is no strain anywhere. We call 
this 'rigid body movement'. If the movement is a linear function of the 𝑥 coordinate, 
(such as (𝑥) = 𝑐 + 𝑘 𝑥 ) then the derivative of the displacement field is 𝑘 and the 
strain is 𝑘 everywhere.  The sketch below illustrates the concept. The concept can be 
extended to 2D and 3D problems.  
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ANSYS analysis results  

 
For 

𝛾 =
𝑑𝑢
𝑑𝑦

+
𝑑𝑣
𝑑𝑥

 

we can use our definitions of u and v to get; 
 

𝛾 =
𝑑
𝑑𝑦

�−𝑧
𝑑𝑤
𝑑𝑥

� +
𝑑
𝑑𝑥

�−𝑧
𝑑𝑤
𝑑𝑦

� 

 

=  −2 𝑧
𝑑2𝑤
𝑑𝑥 𝑑𝑦

 

or 
𝛾 = −2 𝑧

1
𝑟𝑥𝑦

 

𝜀𝑥 = − 𝑧
𝑑2𝑤
𝑑𝑥2

= −𝑧
1
𝑟𝑥

 

 

𝜀𝑦 = − 𝑧
𝑑2𝑤
𝑑𝑦2

= −𝑧
1
𝑟𝑦

 

 
We can use the 2D version of Hooke's Law to get 
the stresses. 

𝜎𝑥 =
𝐸

(1 − 𝜈2) �𝜀𝑥 +  𝜈 𝜀𝑦�

= −𝑧
𝐸

(1 − 𝜈2)�
𝑑2𝑤
𝑑𝑥2

+ 𝜈
𝑑2𝑤
𝑑𝑦2

� 
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𝜎𝑦 =
𝐸

(1 − 𝜈2) �𝜀𝑦 +  𝜈 𝜀𝑥�

= −𝑧
𝐸

(1 − 𝜈2)�
𝑑2𝑤
𝑑𝑦2

+ 𝜈
𝑑2𝑤
𝑑𝑥2

� 

 

𝜏𝑥𝑦 =
𝐸

(1 + 𝜈) 𝛾𝑥𝑦 = −𝑧
𝐸

(1 + 𝜈)
𝑑2𝑤
𝑑𝑥 𝑑𝑦

 

 
Clearly when z = 0 (middle of plate), all stresses 
vanish. Also, there are no average in-plane 
stresses, only bending moments and torsion.   
 

𝑀𝑥 = � 𝜎𝑦 𝑧 𝑑𝑧 
𝑡/2

−𝑡/2
  

 

𝑀𝑦 = � 𝜎𝑥 𝑧 𝑑𝑧 
𝑡/2

−𝑡/2
 

 

𝑀𝑥𝑦 = � 𝜏𝑥𝑦 𝑧 𝑑𝑧 
𝑡/2

−𝑡/2
 

By using the expressions for 𝜎𝑥 , 𝜎𝑦 and 𝜏𝑥𝑦 we can 
write; 
 

𝑀𝑥 = −𝐷 �
𝑑2𝑤
𝑑𝑦2

+ 𝜈 
𝑑2𝑤
𝑑𝑥2

�  

𝑀𝑦 = −𝐷 �
𝑑2𝑤
𝑑𝑥2

+ 𝜈 
𝑑2𝑤
𝑑𝑦2

� 

𝑀𝑥𝑦 = 𝑀𝑦𝑥 = −𝐷(1 − 𝜈) 
𝑑2𝑤
𝑑𝑥 𝑑𝑦

 

where 

𝐷 =  
𝐸 𝑡3

12 (1 − 𝜈2)
 

 
The derivation of these equations is as follows;  
 

𝑀𝑥 = �  𝜎𝑦 𝑧 𝑑𝑧
𝑡/2

−𝑡/2

=  
𝐸

(1 − 𝜈2)�
𝑑2𝑤
𝑑𝑦2

+ 𝜈
𝑑2𝑤
𝑑𝑥2

�  � −𝑧2 𝑑𝑧
𝑡/2

−𝑡/2
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=  
𝐸

(1 − 𝜈2)�
𝑑2𝑤
𝑑𝑦2

+ 𝜈
𝑑2𝑤
𝑑𝑥2

�     �−
𝑧2

3
 �
𝑡/2

−𝑡/2
 

=  −
𝐸 𝑡3

12 (1 − 𝜈2)�
𝑑2𝑤
𝑑𝑦2

+ 𝜈
𝑑2𝑤
𝑑𝑥2

�  

 
So far we have expressions for stress and strain (2 
axial and shear) and for moments (2 bending and 
torsion) expressed as the derivatives of the 
deflection w. 
 
We now want to derive the differential equation 
relating the deflection to load. The load is a 
pressure acting normal to the plate. Consider a 
small section of the plate subject to a uniform 
pressure p. 
  
Summing the vertical forces ; 
 

Σ 𝐹𝑣𝑒𝑟𝑡 = 0 
 

𝑝 𝑑𝑥 𝑑𝑦 + (𝑄𝑧𝑥 +  𝑑𝑄𝑧𝑥)𝑑𝑦 − 𝑄𝑧𝑥𝑑𝑦 
+ �𝑄𝑧𝑦 +  𝑑𝑄𝑧𝑦�𝑑𝑥 − 𝑄𝑧𝑦𝑑𝑥 = 0 

 
𝑝 𝑑𝑥 𝑑𝑦 + 𝑑𝑄𝑧𝑥𝑑𝑦 + 𝑑𝑄𝑧𝑦𝑑𝑥 = 0 

 

𝑝 +
𝑑𝑄𝑧𝑥
𝑑𝑥

 +
𝑑𝑄𝑧𝑦
𝑑𝑦

= 0 

 
Summing moments about x axis (about center of 
plate) ; 

Σ 𝑀𝑥 = 0 
 

𝑑𝑀𝑥𝑦𝑑𝑦 + 𝑑𝑀𝑥𝑑𝑥 −  𝑄𝑧𝑦𝑑𝑥 𝑑𝑦 = 0 
 
now divide by dy; 

𝑑𝑀𝑥𝑦 +
𝑑𝑀𝑥

𝑑𝑦
𝑑𝑥 −  𝑄𝑧𝑦𝑑𝑥 = 0 

and by dx; 
𝑑𝑀𝑥𝑦

𝑑𝑥
+
𝑑𝑀𝑥

𝑑𝑦
−  𝑄𝑧𝑦 = 0 

which gives; 
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𝑄𝑧𝑦 =
𝑑𝑀𝑥𝑦

𝑑𝑥
+
𝑑𝑀𝑥

𝑑𝑦
 

Using the previous expressions for 𝑀𝑥𝑦 and 𝑀𝑥 we 
can write; 
 

𝑄𝑧𝑦 =
𝑑
𝑑𝑥

�−𝐷(1 − 𝜈) 
𝑑2𝑤
𝑑𝑥 𝑑𝑦

� +
𝑑
𝑑𝑦

�−𝐷 �
𝑑2𝑤
𝑑𝑦2

+ 𝜈 
𝑑2𝑤
𝑑𝑥2

�� 

 

𝑄𝑧𝑦 =
𝑑
𝑑𝑥

�−𝐷 
𝑑2𝑤
𝑑𝑥 𝑑𝑦

+ 𝐷 𝜈 
𝑑2𝑤
𝑑𝑥 𝑑𝑦

 � +
𝑑
𝑑𝑦

� −𝐷
𝑑2𝑤
𝑑𝑦2

− 𝐷 𝜈 
𝑑2𝑤
𝑑𝑥2

� 

 

𝑄𝑧𝑦 = −𝐷 
𝑑3𝑤
𝑑𝑥2 𝑑𝑦

+ 𝐷 𝜈
𝑑3𝑤
𝑑𝑥2𝑑𝑦

− 𝐷 
𝑑3𝑤
𝑑𝑦3

− 𝐷 𝜈 
𝑑3𝑤
𝑑𝑥2𝑑𝑦

 

 

𝑄𝑧𝑦 = −𝐷 
𝑑3𝑤
𝑑𝑥2 𝑑𝑦

− 𝐷 
𝑑3𝑤
𝑑𝑦3

 

Similarly; 

𝑄𝑧𝑥 = −𝐷 
𝑑3𝑤
𝑑𝑥 𝑑𝑦2

− 𝐷 
𝑑3𝑤
𝑑𝑥3

 

 
Now, using  

𝑝 +
𝑑𝑄𝑧𝑥
𝑑𝑥

 +
𝑑𝑄𝑧𝑦
𝑑𝑦

= 0 

we can write; 
 

𝑝 +
𝑑
𝑑𝑥

�−𝐷 
𝑑3𝑤
𝑑𝑥 𝑑𝑦2

− 𝐷 
𝑑3𝑤
𝑑𝑥3

�

+
𝑑
𝑑𝑦

�−𝐷 
𝑑3𝑤
𝑑𝑥2 𝑑𝑦

− 𝐷 
𝑑3𝑤
𝑑𝑦3

� = 0 

 
which simplifies to; 
 

𝑝
𝐷

=
𝑑4𝑤

𝑑𝑥2 𝑑𝑦2
+  
𝑑4𝑤
𝑑𝑥4

+
𝑑4𝑤

𝑑𝑥2 𝑑𝑦2
+  
𝑑4𝑤
𝑑𝑦4

 
 
and can be written in the short hand got a general 
4th derivative in 2 dimensions; 
 

𝑝
𝐷

= 𝛥4𝑤 
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Note the similarity to the differential equation for 
a beam of 𝑝 = 𝐸𝐼 𝑤′′′′. Now we need to solve 
𝑝 = 𝐷 𝛥4𝑤 for the appropriate boundary conditions 
to get w(x,y) and the other results (stress, moments 
etc.) 
 
Example #1: 
A long plate, simply supported with a pressure in 
the shape of a half sine wave. 
 

 
Check the pressure equation; 
 

𝑝(𝑦 = 0) = 0     (𝑎𝑡 𝑒𝑑𝑔𝑒)        𝑂𝐾 
𝑝(𝑦 = 𝑏/2) = 𝑝𝑜 sin �

𝜋
2
� = 𝑝𝑜     (𝑎𝑡 𝑐𝑒𝑛𝑡𝑒𝑟)    𝑂𝐾 

 
Note that nothing varies along the x axis, so all 
derivatives of x are zero. Therefore, the differential 
equation becomes; 
 

𝑝
𝐷

=  
𝑑4𝑤
𝑑𝑦4

 

 
assume the solution has the form; 
 

𝑤(𝑦) = 𝐶 sin �
𝜋 𝑦
𝑏
� 

so  
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𝑝𝑜 sin �
𝜋𝑦
𝑏
� = 𝐷 

𝑑4

𝑑𝑦4
�𝐶 sin �

𝜋 𝑦
𝑏
�� 

 
which becomes; 
 

𝑝𝑜 sin �
𝜋𝑦
𝑏
� = 𝐷 𝐶 �

𝜋
𝑏
�
4
�sin �

𝜋𝑦
𝑏
�� 

 
and lets us solve for C; 
 

𝐶 =
𝑝𝑜
𝐷
�
𝑏
𝜋
�
4

 
 
which gives the deflection as; 
 

𝑤(𝑦) =
𝑝𝑜
𝐷
�
𝑏
𝜋
�
4

sin �
𝜋 𝑦
𝑏
� 

with  

𝑤𝑚𝑎𝑥 =
𝑝𝑜
𝐷
�
𝑏
𝜋
�
4

 
 
The stress can be found using; 
 

𝜎𝑦 = −𝑧
𝐸

(1 − 𝜈2)�
𝑑2𝑤
𝑑𝑦2

+ 𝜈
𝑑2𝑤
𝑑𝑥2

� 

 
which simplifies to; 
 

𝜎𝑦(𝑧,𝑦) = −𝑧
𝐸

(1 − 𝜈2)�
𝑑2𝑤
𝑑𝑦2

� 

The stress at the top of the plate ,  @ z = t/2 ; 
  

𝜎𝑦,𝑡𝑜𝑝(𝑦) = −
𝑡
2

𝐸
(1 − 𝜈2)�

𝑑2𝑤
𝑑𝑦2

�

=
𝑡
2

𝐸
(1 − 𝜈2) 

𝑝𝑜
𝐷
�
𝑏
𝜋
�
4

�
𝜋
𝑏
�
2

sin �
𝜋 𝑦
𝑏
�     

=
6
𝜋2

�
𝑏
𝑡
�
2

𝑝𝑜 sin �
𝜋 𝑦
𝑏
�       

 
The stress as the edge is; 
 

𝜎𝑦,𝑡𝑜𝑝(0) = 0 
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The stress in the center is; 
 

𝜎𝑦,𝑡𝑜𝑝(𝑏/2) =
6
𝜋2

�
𝑏
𝑡
�
2

𝑝𝑜 
 
Similarly, we can find; 
 

𝜎𝑥,𝑡𝑜𝑝(𝑏/2) =
𝜈 6
𝜋2

�
𝑏
𝑡
�
2

𝑝𝑜 
 
General Plate Problems 
 
The solution for a general plate problem requires 
the solution of the 4th order partial differential 
equation; 
 

𝑝(𝑥,𝑦)
𝐷

= 𝛥4𝑤(𝑥,𝑦) 
 
Such solutions can be complex, even for simple 
load patterns. Even in the case; 
 

𝑝(𝑥,𝑦) = 𝑝𝑜    (𝑖. 𝑒  𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒) 
 
The solution is found by expressing the load as a 
Fourier equation; 
 

𝑝(𝑥,𝑦) = 𝑝𝑜 =  � �𝑎𝑚𝑛

∞

𝑛=1

∞

𝑚=1

sin �
𝑚𝜋𝑥
𝑎

�  sin �
𝑚𝜋𝑦
𝑏

�  

 
where  

𝑎𝑚𝑛 =
16 𝑝𝑜
𝜋2 𝑚 𝑛

      𝑚 = 1,3,5 …
𝑛 = 1,3,5 …  

 
𝑎𝑚𝑛 = 0       𝑚 𝑜𝑟 𝑛 = 𝑒𝑣𝑒𝑛 

 
For this load pattern and simply supported edges, 
the deflected shape can be derived as; 
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𝑤(𝑥,𝑦)

=
1

𝜋4𝐷
 � �

𝑎𝑚𝑛

�𝑛
2

𝑏2 + 𝑚2

𝑎2 �

∞

𝑛=1

∞

𝑚=1

sin �
𝑚𝜋𝑥
𝑎

�  sin �
𝑚𝜋𝑦
𝑏

� 

Note that a sine pattern of load has been shown to 
produce a sine pattern of response. So a group of 
sine shaped loads will produce a group of sine 
shaped responses. Hence the Fourier approach 
should work. It all depends on the elegance of 
super-position (hurray for Hooke!) 
 
We will leave the general solution of more complex 
problems to a specialized course in palates and 
shells. See Hughes for solutions to some typical 
problems. 
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Topic 22: Problems 
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Appendix  
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Typical spreadsheet to solve Moment Distribution problems. 

 

Moment Distribution  Method
table of  values

param. value un its
L1 10 m 
L2 20 m
L3 20 m 
L4 12.5 m
EI1 1 rel
EI2 1 rel
EI3 1 rel
EI4 1 rel
w 8 kN/ m

e12 e21 e23 e24 e42 e32 e35 e53
α 1 .0 0 .5 0 .250 0 .250 0 .0 0 .3846 0.6154 0 .0
FEM -66.7 66.7 -266.7 0 .0 0 .0 266.7 0 .0 0 .0
net 66.7 200 .0 0 .0 -266.7 0 .0
dist 66.7 100 .0 50 .0 50 .0 0 .0 -102.6 -164.1 0 .0
CO 50 .0 33.3 -51 .3 0 .0 25.0 25.0 0 .0 -82.1
eEM 50 .0 200 .0 -267.9 50 .0 25.0 189.1 -164.1 -82.1
net -50 .0 17 .9 -25.0 -25.0 82.1
dist -50 .0 9.0 4.5 4.5 0 .0 -9.6 -15.4 0 .0
CO 4.5 -25.0 -4.8 0 .0 2.2 2.2 0 .0 -7 .7
eEM 4.5 184.0 -268 .3 54.5 27.2 18 1 .7 -179.5 -89.7
net -4.5 29.8 -27.2 -2.2 89.7
dist -4 .5 14 .9 7 .5 7 .5 0 .0 -0 .9 -1 .4 0 .0
CO 7.5 -2.2 -0 .4 0 .0 3.7 3.7 0 .0 -0 .7

eEM 0.0 196.0 -260 .1 64.0 32.0 183.8 -183.8 -91 .9

F21y 59.6 F12y 20 .4 F42x 5 F53x -22
F42y 143.4 F53y 83.8

F23y 83.8 F32y 76.2

w=8 kN/mw = 8  

problemp r o b l e m

11 22 33

all E Ia l l  E  

20m2 0 m10m1 0 m

11

121 2212 1232 3 323 2

Example #3E x a m p  

12.5 m1 2 .  

20m2 0 m

44

535 3

353 5

55

242 4

424 2

all E I,  no swaya l l  E  I ,    
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