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PREFACE

For a structure as large and as complex as a ship
there are three levels of structural design, the second
and most central of which is the subject of this
book. Concept design deals with the topology or
overall geometry of the structure; preliminary design
establishes the scantlings (structural dimensions) of
all principal structural members; and detail design
is concerned with local aspects such as joints,
openings, and reinforcements. Overall structural
geometry is generally determined by overall design
requirements rather than by structural requirements,
while detail design is largely guided and constrained
by fabrication methods and requirements. Also, since
local structural details are numerous and basically
similar among various structures they lend themselves
to standardization and to design from handbooks and
structural codes. Thus, it is in preliminary design
where the structural designer has the largest number
of significant decisions and options, and the greatest
scope for optimizing the structure so that it best
fulfills the objectives and satisfies all of the various
constraints and requirements.

Rationally-based design is design from first prin-
ciples using the tools of modern engineering science:
computers and the methods of structural analysis and
optimization which computers have made possible.
Thus, the rationally-based approach is ideally suited
for preliminary structural design, and it is this approach
and this level of design that is the subject of this book.
As shown by some examples in Section 1.3, this type
of design offers substantial benefits to all parties
concerned: owner, designer, builder, and operator.

Designing from first principles requires two sepa-
rate and very extensive analyses: a response analysis to
ascertain the true and complete response of the struc-
ture to all loads and load combinations, and a limit
state analysis to ascertain all of the possible limit or
failure values of these responses. Taken together these

two analyses are by far the dominant part of rationally-
based design, and this is reflected in this text in which
15 of the 17 chapters are devoted to various aspects of
analysis. Because of this predominance of analysis,
rationally-based design is necessarily computer based
and this is the key to many of its benefits: speed,
accuracy, thoroughness, economy, easy modification,
and so forth. Also, as explained in Section 1.3, the
necessary computer programs are already available and
the hardware and software costs are quite moderate.

Of the many different topics and aspects in pre-
liminary structural design some are an inherent part of
rationally-based design (e.g., the aspects pertaining to
response analysis and limit analysis) while others are
more distinct and external (e.g., the selection of mate-
rials) or are simply constraints in the optimization pro-
cess (e.g., the avoidance of some natural frequency).
One of the advantages of the rationally-based approach
is that it unifies and coordinates these many different
aspects. Even for the more distinct or external aspects
the rationally-based approach provides a framework
by which each can be better coordinated with the other
aspects.

PREREQUISITES, LEVELS OF STUDY, AND
TIME REQUIREMENTS

The material in this book is suitable for either graduate
or undergraduate study, or a combination of both. The
methods and practices presented in this book will
also be useful for practicing engineers and engineers-
in-training. The only prerequisites are knowledge of
mechanics of solids, strength of materials, and the
basic aspects of matrix algebra and of statistics. If
necessary, the latter two could be covered in a few
introductory classes or in outside reading. The total
time required to cover all of the topics in this book is
about nine semester hours.
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CHAPTER

ONE

RATIONALLY-BASED STRUCTURAL DESIGN

Owen Hughes
Professor, Virginia Tech
Blacksburg, VA, USA

Hans G. Payer
Germanischer Lloyd, Hamburg, Germany (ret)

1.1 INTRODUCTION

Throughout history, shipping has played a central role
in transportation and trade. Even today, about 95% of
internationally traded goods is carried by ships. The
remarkable expansion of world trade and manufactur-
ing over the past 50 years with distributed manufac-
turing, just-in-time delivery, and other features of our
modern world was possible only with a reliable and
dependable shipping network distributing all kinds of
goods throughout the world, from basic commodities
and semiproducts to finished goods.

Simultaneously, with the growth in demand for
ships and an increase in their complexity, ship struc-
tural design and calculation procedures have advanced
considerably. Earlier, ships were designed and dimen-

sioned solely on the basis of prescriptive rules from
classification societies, which were themselves largely
based on experience and feedback from ships in serv-
ice; in the final quarter of the last century, rational anal-
ysis and design methods were introduced. The
development and introduction of the finite element
method brought completely new possibilities to deal
with complex structural tasks. Just as it would not have
been possible to design and construct the drastically
new jumbo aeroplane, the Boeing 747, in the 1960s
without detailed rational analyses, many of the new
ship types introduced during the past 40 or 50 years
would not exist without the extensive calculation pro-
cedures and analysis possibilities mostly based on the
finite element method. This includes liquefied natural
gas carriers, modern containerships, large passenger
ships, as well as large fast ferries with catamaran or
trimaran hull forms. The structural design and analysis
of modern naval ships, too, is quite different today.
The history of the containership is a suitable
example. Figure 1.1 is an example of a finite ele-

Figure 1.1 Finite element model of a 9200 TEU containership.

1-1



1-2 RATIONALLY-BASED STRUCTURAL DESIGN

ment model of a medium-sized containership. The
evolution from the first container carriers with large
deck openings of the 1960s, with a carrying capacity
of up to 1000 twenty-foot equivalent units (TEU), to
the ultralarge container carriers of today, with a carry-
ing capacity of beyond 13,500 TEU, was possible
only because of the ever increased analysis possibili-
ties of classification societies and design offices.
Improvements of each new class of this ship type
were always worked out close to the technically fea-
sible. Ships of that size are characterized by specific
aspects that need special technical attention. This
involves their static and fatigue strength, their struc-
tural flexibility, as well as their behaviour in waves.
But it is not the big ships alone that have to be care-
fully designed and analyzed. Modern container feeder
ships, too, are optimized to efficiently carry a maxi-
mum number of containers for their individual size,
and so careful design and analysis is also needed for
these smaller vessels. Similar aspects can be observed
for cruise ships, bulk carriers and tankers.

The complexities of modern ships and the demand
for greater reliability, efficiency, and economy
require a scientific, powerful, and versatile method
for their structural design. In the past, ship structural
design was largely empirical, based on accumulated
experience and ship performance and expressed in
the form of structural design codes or “rules” pub-
lished by various ship classification societies. These
rules provide simplified and easy-to-use formulas
for structural dimensions, or scantlings,* of a ship.
This approach saves time in the design process and
is still the basis for the preliminary structural design
of most ships.

There are, however, several disadvantages and
risks to a completely “rulebook” approach to design.
First, the modes of structural failure are numerous,
complex, and interdependent, and with such simpli-
fied formulas the margin against failure remains
unknown. Thus, one cannot distinguish between
structural adequacy and overcapacity. Therefore,
such formulas cannot give a truly efficient design. In
some cases, the extra steel may represent a signifi-
cant cost penalty throughout the life of the ship.

Second, these formulas only aim to avoid struc-
tural failure, but there are usually several ways of
achieving this, and the particular implied in the for-
mulas may not be the most suitable regarding spe-
cific goals of the ship owner over the life of the ship
or its particular purpose or economic environment.
A true design process must be capable of accepting

*Scantlings is an old but still useful naval architecture
term that refers to all local structural sizes, such as
thicknesses, web heights, flange breadths, bracket
sizes, etc.

an objective, of actively moving toward it, and of
achieving it to the fullest extent possible.

Third, and most important, these formulas involve
a number of simplifying assumptions. They can be
used only within certain limits. Outside of this
range, they may be inaccurate. The history of struc-
tural design abounds with examples of structural
failures—in ships, bridges, and aircraft—that
occurred when a standard, time-honored method or
formula was used, unknowingly, beyond its limits of
validity.

For these reasons, there has been a general trend
toward “rationally-based” structural design ever
since the 1970s or 1980s, which may be defined as a
“design directly and entirely based on structural the-
ory and computer-based methods of structural anal-
ysis and optimization to achieve an optimum
structure based on a designer-selected measure of
merit.” Thus, a complete rationally-based design
involves a thorough and accurate analysis of all fac-
tors affecting safety and performance of the struc-
ture throughout its life and a synthesis of this
information, together with the goal or objective the
structure is intended to achieve. The aim is to pro-
duce the design that best achieves this objective and
that provides adequate safety. This process involves
far more calculation than conventional methods and
can only be achieved by extensive use of computers.
For this reason, rationally-based structural design is
necessarily a computer-based and often semiauto-
mated design.

Rationally-based design was first developed and
applied for aircraft and aerospace structures. It con-
tinues to have its greatest application in these areas
because of the predominant economic significance
of structural weight, and hence structural efficiency,
coupled with the obvious need for high structural
reliability. In land-based structures, the move toward
this approach was given strong impetus in the 1970s
by a series of structural failures of steel box girder
bridges. These failures showed that for larger and
more slender bridges, the existing empirically-based
design codes were inadequate. In the ocean environ-
ment, an elementary form of this approach has been
used for the design of offshore structures from the
beginning, partly because there was little or no pre-
vious experience on which to rely and partly because
of the high economic stakes and risks in case of fail-
ure. In this area, as well as in ship structures, the
classification societies encouraged and contributed
greatly to the development of rationally-based meth-
ods. Since first publication of this book, analysis
methods of classification societies have changed and
moved considerably towards what may be called
rationally-based design.
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Rationally-based ship structural design is defi-
nitely not fully automated design, that is, a “black
box” process, where the designer’s only role is to sup-
ply the input data and whereupon the process presents
the designer with a finished design. This type of
design would require that all design decisions—
objectives, criteria, priorities, constraints, and so
on—must be made before the design commences.
Many of these decisions would have to be built into
the program, making it difficult for the designer to
even be aware of the influence of the objectives, much
less to have control over them. Rather, of its very
nature rationally-based design must be interactive.
The designer must always remain in charge and be
able to make changes and decisions—with regard to
objectives, criteria, constraints, priorities, and so
on—in light of intermediate results. Therefore, a
rationally-based design process should allow the
designer to interrupt, go back, make changes, call for
more information, skip some steps if they are not rel-
evant at the time, and so forth.

Rationally-based design gives the designer much
more scope, capability, and efficiency than ever
before. But it does require a basic knowledge of struc-
tures and structural analysis (e.g., fundamentals of
finite element analysis and basic types of structural
failure) together with some experience in structural
design. Given these requirements, the deciding factor
in choosing the rationally-based approach is whether
and to what extent a product and/or a performance
(economic, operational, or both) is desired that goes
beyond what is obtainable from the rule-based
approach. The latter is simpler, but it may not be opti-
mal and is nonadaptable. Thus, the two approaches
are complementary, and a good designer will use
whichever is more appropriate for a given situation.

1.1.1 Preliminary Design and Detail Design

As in most structures, the principal dimensions of a
ship design are usually not determined by structural
considerations, but rather by more general require-
ments, such as beam and draft limitations, required
cargo capacity, and so on. For this reason, structural
design usually begins with the principal dimensions
already established. The designer must determine
the complete set of scantlings that provide adequate
strength and safety for least cost (or whatever other
objective is chosen). Structural design consists of
two distinct levels:

1. Preliminary design to determine location, spac-
ing, and scantlings of principal structural members*

*For naval vessels, this is termed “contract design.”

2. Detail design to determine geometry and scant-
lings of local structures (brackets, connections, cut-
outs, reinforcements, etc.)

Of these two levels, the rationally-based approach has
more relevance and more potential benefits regarding
preliminary design because of the following.

e This level has the greatest influence on structural
design and, hence, offers large potential savings.

e This level provides the input to detail design.
Benefits of good detail designs are strongly depend-
ent on the quality of this input.

In fact, rationally-based preliminary design offers
several kinds of potential benefits. The economic
benefits are illustrated by the tanker example quoted
in Section 1.3, in which the rationally-based
approach gives a 6% savings in ship structural cost
compared with current standard designs (which, for
a large tanker, represents a savings of over 1 million
dollars) and an even greater amount of extra revenue
from increased cargo capacity arising from weight
savings. Naval vessels can obtain greater mission
capability by a reduction of weight. Ship designers
gain a large increase in design capability and effi-
ciency and are able to concentrate more on the con-
ceptual and creative (and more far-reaching and
rewarding) aspects of design. And finally, there are
also substantial benefits to be gained in ship struc-
tural safety and reliability.

This is not meant to imply that detail design is
less important than preliminary design; it is equally
important for obtaining an efficient, safe, and relia-
ble ship. Also, there are many benefits to be gained
by applying modern methods of engineering sci-
ence, but the applications are different from prelimi-
nary design and the benefits are likewise different.
Since the items being designed are much smaller, it
is possible to do full-scale testing and, since they are
more repetitive, it is possible to obtain benefits of
mass production, standardization, methods engi-
neering, and so on. In fact, production aspects are of
importance primarily in detail design.

Also, most of the structural items that come under
detail design are similar from ship to ship, and so
in-service experience provides a sound basis for
their design. In fact, because of the large number of
such items, it is inefficient to attempt to design all of
them from first principles. Instead, it is generally
more efficient to use design codes and standard
designs proven by experience. In other words, detail
design is an area where a rule-based approach is
appropriate, and rules published by various ship
classification societies contain a great deal of useful
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information on the design of local structures, struc-
tural connections, and other structural details.

1.1.2 Aims and Scope of the Book

Now that we have defined the term “rationally-based”
and noted the distinction between preliminary
design and detail design, we can give a specific
statement of the two aims of this book:

e To present structural analysis theory required
for rationally-based preliminary ship structural
design in a complete and unified treatment that
assumes only basic engineering subjects, such as
mechanics and strength of materials

* To present a method for rationally-based design
that is practical, efficient, and versatile and that has
already been implemented in a computer program
and that has been tested and proven

This book is entirely self-sufficient and self-con-
tained; that is, it covers all basic aspects of ration-
ally-based design required by a designer. Even basic
aspects such as the finite element method, column
buckling, and plate buckling are included. This has
been done for two reasons.

First, because this book is intended primarily as a
textbook, and in the field of ship structures such
books are few and far between. Because of the
greater complexity and sophistication of ration-
ally-based design, lack of a unified and com-
prehensive text would constitute a correspondingly
greater difficulty for students and a serious obstacle
to further progress in this field.

The second reason is that rationally-based design,
both in general and in the particular method pre-
sented here, is radically different from the traditional
rule-based method and, although many of its fea-
tures are familiar to experienced designers (such as
finite element analysis and elastic buckling), other
features are either relatively new (such as nonlinear
finite element theory and statistical prediction of
wave loads) or totally new (such as new techniques
for structural modeling and new methods for ulti-
mate strength analysis of a stiffened panel and of an
entire hull girder).

For this reason, the book is also intended for prac-
ticing designers who wish to become more familiar
with this alternative method of design. In fact, the
book’s role is of particular importance because ration-
ally-based design of its very nature requires at least a
basic knowledge of its underlying theory and meth-
ods. Once this is acquired, the method’s enormous
capability (some of which is demonstrated in Section
1.3 and in the references given there) becomes avail-

able to the designer. Moreover, the method’s breadth
of application and the benefits gained from its use
increase in proportion to the knowledge presented
here. It is the authors’ hope that the presentation of the
underlying theory and analysis methods in this text
will assist designers to obtain the maximum possible
benefits from this new approach.

Also, the authors emphasize that the design method
presented herein is not the only possible method, at
least not regarding the particular component methods
for achieving the basic tasks, such as structural mod-
eling techniques and methods of member limit analy-
sis. The methods presented herein were selected or
developed on the basis of their suitability for ration-
ally-based design, but this type of design involves so
many different areas that there are bound to be some
particular methods and techniques that are as good or
better than those given here. Moreover, as further
progress is made in such areas as structural theory,
numerical methods, and computer hardware and soft-
ware, still better methods will be developed. But the
important point is that now, as the result of many
years of effort by many persons and organizations
both inside and outside of the field of ship structures,
all of the required ingredients for rationally-based
design are available.

1.1.3 Applicability to Naval Design

The design method presented herein applies equally
well to naval vessels and commercial vessels. Because
basic classification rules are intended for commercial
vessels and are not suitable for warships, various
navies and naval design agencies developed their own
methods of structural design. Like classification rules,
these methods evolved over a long period and many
of them were systematized and codified into some
form of design manual—a sort of naval counterpart to
the rules. Recently, some classification societies in
cooperation with a Navy developed rules for naval
vessels. Because of the need for greater structural
efficiency and other special requirements, naval
design methods are generally more thorough and rig-
orous than rule-based design methods of commercial
ships, and they show a stronger trend toward a ration-
ally-based approach. Thus, in addition to design man-
uals many current methods of naval design already
include some of the basic features of rationally-based
design.

Section 1.2 gives a brief overview of basic features
of rationally-based design, including a discussion of
the different aims, measures of merit, and design cri-
teria in commercial ships and naval ships. Section 1.3
considers capabilities, applications, and some sample
results. Once these aspects are treated, it becomes
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apparent that the method presented herein applies
equally well to both ship types and that it matches the
needs and challenges of naval designs particularly
well. Because commercial vessels are more numer-
ous, most of the explanations and figures in this text
refer to this type. Therefore, it seems desirable at this
point to briefly consider why the rationally-based
method presented herein is so well suited for naval
design, even though a full appreciation can only be
obtained after covering Sections 1.2 and 1.3.

Naval ship structures are subject to many special
requirements and constraints. For example, they
must be capable of withstanding specified levels of
blast, shock, and other special loads. Also, they must
be damage tolerant, that is, capable of sustaining
some structural damage without loss of main func-
tions. Since rationally-based design considers each
limit state explicitly, it can accommodate these spe-
cial constraints. As discussed in Section 1.2, mission
requirements of naval vessels make it extremely
important to minimize the weight and vertical center
of gravity (VCG) of the structure to the extent
allowed by the various constraints (such as cost,
adequate strength and safety, and damage toler-
ance). Hence, there is a paramount need for struc-
tural optimization, which is one of the basic features
of rationally-based design.

Finally, it is worth noting that the ability of ration-
ally-based design to deal with both commercial and
naval ships can also help to unify the field of ship
structural design, which until now has been largely
split into two separate areas.

1.1.4 Applicability to Other Types of
Structure

In this text, the rationally-based approach is described
purely in terms of ships. However, because this
approach represents the most fundamental and most
general type of engineering design, the material pre-
sented herein is also applicable to a wide variety of
other steel structures, both fixed and floating.* All of
the basic principles and most of the analysis methods
for other steel structures are the same as for ships, and
the scope of this text could have been extended to
include these other structures without requiring fun-
damental change of approach. However, this would
have required the extension of the consideration to
the specifics of other structures, such as of additional
types of loads and failure modes, plus some new
examples to illustrate these other applications. This
would have increased the book’s length unduly.

*For example, in Hughes, Mistree, and Davies (1977),
the method presented herein was used for the structural
optimization of a large steel box girder bridge.

1.1.5 Practicality of the Method

Rationally-based design is necessarily compu-
ter-based. This raises a number of practical ques-
tions in regard to computer implementation,
accuracy, cost-effectiveness, availability, ease of
use, documentation, and so on. These are impor-
tant questions, and they are dealt with fully in
Section 1.3. But, since practicality is so essential
in a design method, it is appropriate to mention
here that this method, ever since its first version in
1975, has been developed and improved continu-
ously, and that during this same period a computer
program based on it has likewise been continu-
ously developed and improved. This program,
called MAESTROT, has now been used for hun-
dreds of ship structural analyses and designs. In
addition to its use for optimum design, the analy-
sis portion of MAESTRO can be used to evaluate
a given design, to assess proposed changes to a
design or to an existing ship, or to evaluate the
seriousness of damage incurred by a vessel. The
program is also a valuable tool for ship structural
research and for the teaching of ship structural
design. Further details of all these aspects are
given in Section 1.3 and in the references cited
there.

1.1.6 International Maritime Organization
Goal-Based Standards and IACS Common
Structural Rules

As noted earlier, ships have historically been designed
and dimensioned on the basis of rules of a ship clas-
sification society. These rules were largely based on
structural mechanics principles as well as on the
extensive experience individual classification socie-
ties gathered over the years with ships in service.
With their worldwide network of surveyors, classifi-
cation societies looked after their classified ships not
only from the time of initial design to the construction
in the shipyards, but also throughout the ship’s life-
time up to decommissioning and scrapping. When
weaknesses were found in a ship or in a class of ships
indicating a lack of strength, the rules were adjusted.
This is sound practice followed even today.
Competition between classification (or “class™) soci-
eties was and is a strong driving force to support inno-
vation. The International Association of Classification
Societies (IACS) looked after a certain degree of
alignment between rules of member societies and a
common minimum standard, a situation that was

tModeling, Analysis, Evaluation and STRuctural
Optimization.
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important particularly when ships changed class dur-
ing their lifetime.

One of the areas where it was difficult for classi-
fication societies to agree on common standards in
the past is corrosion. Different societies follow dif-
ferent philosophies on how to treat corrosion during
the lifetime of a ship: some have explicit corrosion
allowances added to scantlings determined by their
rules; others take care of corrosion implicitly within
their rules. This works well as long as ships stay
within the same class from beginning to end. It does,
however, cause confusion and difficulties of inter-
pretation when a ship changes from a class follow-
ing one philosophy to a class with another procedure.
Such problems arose particularly with tankers and
bulk carriers, ships that by nature of their trade are
especially prone to corrosion. In the 1980s and
1990s, some of the more spectacular accidents with
older ships, where heavily-loaded bulkers disap-
peared during a storm or where tankers floundered
and broke apart with severe pollution to the sea and
coast, could at least partly be traced back to this
state of affairs.

It was agreed in maritime circles that this had to
change, and this was supported by strong political
pressure. Therefore, the International Maritime
Organization (IMO) and TACS set out to improve
the situation.

1.1.6.1 Goal-Based Standards

The concept of goal-based ship construction stand-
ards (GBS) was introduced at the IMO in 2002, sug-
gesting that IMO plays a larger role in determining
overall standards to which new ships are built. The
IMO agreed to develop the basis for ship construc-
tion standards that permit innovation in design but,
at the same time, ensure that ships are constructed in
such a manner that, if properly maintained, they
remain safe throughout their economic life. These
standards should eventually be applied to seagoing
ships of all types worldwide.

Consequently, the Maritime Safety Committee
(MSC) of IMO developed GBS at first for hull con-
struction of bulk carriers and oil tankers. The proce-
dures are based on vast practical experience gained
with these ship types over the years, mostly collected
by classification societies. At the same time, GBSs
advocate the application of a rational holistic
approach, such as presented in this book. This
includes, first, defining a procedure for a risk-based
evaluation of the current safety level based on exist-
ing mandatory regulations related to the safety of
these ships and, second, considering ways forward to
establish future risk acceptance criteria using Formal

Safety Assessment. It is expected that over time, GBS
will also be developed for other ship types.

The MSC agreed on the basic principles of IMO
GBS in conformity with other GBS to be developed
by IMO. A five-tier system was agreed for GBS,
comprising goals (Tier I), functional requirements
(Tier II), verification of compliance (Tier III), regu-
lations and rules for ships such as classification
rules, IMO requirements, and relevant national
requirements (Tier IV), and applicable industry
standards and practices (Tier V). The five tiers are
shown in Figure 1.2.

The first three tiers basically constitute the IMO
GBS, whereas Tiers IV and V contain detailed pre-
scriptive provisions developed or to be developed by
classification societies (recognized by flag states),
the IMO and national administrations, and industry
organizations. Thus, IMO’s GBS establish rules for
rules, as opposed to rules for ships.

Verification of compliance of ship construction
rules with GBS will be carried out by an interna-
tional Group of Experts established by IMO’s
Secretary General in accordance with Guidelines for
verification of compliance with GBS, which are cur-
rently under consideration by the Committee. These
Guidelines foresee that national administrations
(i.e., flag states) submit requests for verification of
their ship construction rules or, in most cases, those
developed by an organization recognized by the
administration (in most cases, classification socie-
ties) to the Secretary General of IMO, who will for-
ward these requests to the Group of Experts for a
verification of information submitted through an
independent review. The final report of the group
with relevant recommendations will then be for-
warded to the MSC for consideration and approval
and circulated to the IMO membership by appropri-
ate means, such as MSC circulars.

At the time of finalizing this book, some further
developments are necessary before GBS will be
implemented. Although the Working Group on GBS
recommended that amendments to the International
Convention for the Safety of Life at Sea be approved
and that the GBS be considered for approval, neither
of these actions was agreed in IMO plenary. It
appears that there are still several issues that need
resolution before that step can be taken. Particularly,
the GBS verification process is not yet agreed on,
and alternative methods are being considered.

1.1.6.2 Common Structural Rules
In the early years of this century, IACS developed

two sets of common structural rules (CSR) which
entered into force on April 1, 2006. They apply to all
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Tier 0

The IMO mission

“Safe, secure and efficient shipping on clean ocean”

Tier |

Tier Il

Tier 11l

Tier IV

Tier V

Figure 1.2 The five tiers of the IMO vision for ship construction standards. (Source: Oh, K.-G. [2009]. Recent status of
rules and regulations for ships. Keynote lecture, /7th International Ship and Offshore Structures Congress, Seoul, Korea.)

bulk carriers with length above 90 m and all double
hull oil tankers with length above 150 m.
Basic considerations in the CSR include:

* Design life of 25 years

* Net scantlings approach

*  Dynamic loading in North Atlantic environmen-
tal conditions

*  Buckling

* Fatigue life

* Ultimate Limit State of the hull girder

Background and basis for the development of com-
mon structural rules is discussed, for instance, by
Lgvstad and Guttormsen (2007).

Since first entering into force, a few amendments
to the CSR were made in an effort to harmonize the
CSR for tankers and bulk carriers. Additionally,
IACS published common interpretations for the
rules to assist its member societies and industry in
implementing the CSR in a uniform and consistent

manner. There is also a long-term plan in place to
further increase harmonization between tanker and
bulk carrier common structural rules.

CSR for tankers and bulk carriers initially consid-
ered different approaches for corrosion additions,
and this was identified as an issue that required har-
monization in the short term. The aim was to apply
corrosion additions in a way common to both CSR
for tankers and bulk carriers. In summary, the corro-
sion harmonization is as follows.

* A corrosion propagation model based on proba-
bilistic theory for each structural member was devel-
oped, and corrosion diminution was estimated at the
cumulative probability of 95% for 20 years using the
corrosion propagation model.

*  Corrosion additions were determined for each
structural member and for the corrosion environment.

Figure 1.3 shows how, according to CSR, net scant-
ling thicknesses and corrosion additions are to be
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Figure 1.3 IACS CSR net scantling approach to be adopted
during design and in service. (Source: Aksu, S., et al. (2009).
Technical committee 1I.1—Quasi-static response. Proc. of the
17th International Ship and Offshore Structures Congress,
Seoul, Korea, Vol. 1.)

adopted during design and in-service conditions.
The corrosion addition approach in CSR is more
rational than prescriptive corrosion allowance
requirements as practiced in the past. The CSR do
not necessarily call for corrosion additions as struc-
tural design requirements. If net thicknesses, as
determined by the rules, are accepted as represent-
ing the minimum acceptable value, it should be the
owner’s choice to adopt a variety of techniques to
determine corrosion additions for the ship. Even
zero corrosion addition is a possibility if, for
instance, structural scantlings are maintained during
the life of the ship by using advanced coatings, by
aggressive inspection and repair regimes, and by
other ways.

When CSR for tankers and bulk carriers were
implemented in 2006, the shipbuilding industry had
to cope with two completely new design standards.
While rule development in the past was a slow proc-
ess of evolution, the introduction of CSR repre-
sented a step change in assessing the adequacy of a
structural design. Tougher strength and fatigue
requirements were introduced, and more extensive
design calculations were made mandatory to fulfil
both prescriptive scantling requirements and direct
strength assessments using finite element analysis.
All existing designs that had been developed over
years and were the basis for new buildings offered
by the shipyards had to be reassessed, redesigned,
and documented for compliance with the new rules.

A detailed overview of the contents and introduc-
tion of GBS and CSR is given in the ISSC report by
Aksu et al. (2009).

1.2 BASIC ASPECTS OF STRUCTURAL
DESIGN

One of the most fundamental concepts in engineer-
ing is that any object of interest is regarded as a sys-

tem, which may be anything from a simple device to
a vast multilevel complex of subsystems.

A ship is an example of a relatively large and
complex system, and itself is a part of an even larger
system including the ocean environment, port facili-
ties, etc. The ship consists of several subsystems,
each essential to the whole system. Examples of
subsystems are the propulsion machinery and the
cargo handling gear. The structure of the ship can be
regarded as a subsystem, providing physical means
whereby other subsystems are integrated into the
whole and given adequate protection and a suitable
foundation for their operation.

In general terms, the design of an engineering
system may be defined as, “The formulation of an
accurate model of the system to analyze its
response—internal and external—to its environ-
ment and the use of an optimization method to deter-
mine the system characteristics that best achieve a
specified objective, while also fulfilling certain pre-
scribed constraints on the system characteristics and
the system response.” Translating this to the case of
preliminary ship structural design, a rationally-based
design procedure can be described as follows.

1. External loads are predicted as accurately as
possible, taking account of their stochastic nature.
2. Load effects and limit values of load effects are
calculated accurately throughout the structure for all
load conditions and load cases.

3. Minimum required margins between the load
effects and their limit values are selected on the
basis of a required degree of safety.

4. Theresulting strength requirements are expressed
in the form of mathematical constraints on the design
variables (in most cases, nonlinear constraints).

5. The designer is left free to specify the measure
of merit of the structure, that is, the criteria that are
to be used in achieving the best structure and the
influence of each design variable on the measure of
merit. Also, the designer is able to specify any
number of other constraints on the design, of any
form whatsoever, in addition to the strength-related
constraints.

6. An optimization method automatically and
efficiently solves for the values of the design varia-
bles that yield maximum value of the measure of
merit while also satisfying all of the constraints.

From this description of a rationally-based design
procedure, it is possible to identify six essential
tasks:

1. Calculation of environmental loads
2. Overall response analysis
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3. Substructure response analysis
4. Limit state analysis
5. Formulation of
constraints

6. Solution of a large nonlinear optimization
problem

reliability-based structural

Figure 1.4 illustrates the overall design process,
consisting of these six tasks. It is also a flowchart of
the MAESTRO program. All of these tasks are
extensive, especially for structures as large as ships.
The principal difficulty or challenge in developing a
rationally-based design procedure is to develop
methods that can perform these tasks to the required
degree of accuracy and thoroughness within accept-
able amounts of total man-hours and computational

efforts. To define the program more precisely and to
explain broadly what it entails, each of these tasks is
now considered briefly.

1.2.1 Calculation of Environmental Loads

Environmental loads are loads, both static and
dynamic, that come from the ship’s environment
(mainly because of gravity and fluid pressures) and
from its motion. Most of these loads are relatively
independent of the structural design, that is, they are
not much affected by the structural layout or by the
scantlings. Rather, they are more a function of hull
shape, the type and distribution of cargo, and other
nonstructural factors. Therefore, although calcula-
tion of these loads is the first step of structural design
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Figure 1.4 Rationally-based structural design.
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and one of the most crucial aspects of the entire
process, it is essentially a separate initial task. Some
of the loads can be readily calculated and controlled
by the designer (e.g., those arising from the light-
ship mass and cargo distribution). Other loads, par-
ticularly wave loads including inertia loads and
other hydrodynamic loads (slamming, sloshing,
etc.) are sufficiently complex that their calculation is
not regarded as part of the designer’s task, but rather
that of hydrodynamicists and other specialists. In
contrast, the other two types of calculations—
response analysis and limit state analysis—are
inherently and totally structural in nature.

1.2.2 Overall Response Analysis

Overall response* analysis entails calculation of the
effects of the environmental loads on the overall
structure (bending moment, deflection, stress, etc.).
For reference, load effects will be represented by the
symbol Q (or Q; if referring to the i load effect).

For a ship, the overall structure is regarded essen-
tially as a beam—a floating box girder internally
stiffened and subdivided. For vertical bending, the
decks and bottom structure are flanges and the side
shell and any longitudinal bulkheads are the webs.
The hull girder analysis deals only with those longi-
tudinally integrated forces and moments that are
dealt with in beam theory: vertical shear force, F.,
longitudinal bending moment in the (ship’s) vertical
and horizontal planes, M, and M_, and longitudinal
twisting moment, M,. Of these, the most significant
is the vertical bending moment M,, that is, bending
about the Y-axis in Fig. 1.7. This load effect is caused
mainly by the unequal distributions of weight and
buoyancy along the length of the ship, accentuated
by waves. Horizontal bending (i.e., bending about
the Z-axis) occurs when the ship is in an inclined
condition, as a result of rolling, and this situation
also arises from quartering seas where wave crests
on one side of the ship are in phase with troughs on
the other. In most ships, the maximum value of M, is
smaller than the maximum value of M, (typically
20% or less), but in large tankers and containerships,
for instance, it can rise to as high as 50% of vertical
bending. For simplicity, here we only consider verti-
cal bending; horizontal bending and its relation to
vertical bending is considered in Section 3.6.6.

The bending moment varies along the length of
the ship, being zero at the ends and having a maxi-
mum value that usually occurs near the midlength of

*The “response” of a structure is simply the group
of load effects caused by all types of loading; the
two terms are essentially the same, and they are used
interchangeably throughout this text.

elongated length (R+z)dé

.

NA z

de

Figure 1.5 Strain distribution in simple beam theory.

the ship. The maximum value of hull girder bending
moment is the single most important load effect in
the analysis and design of ship structures. Hull
girder bending is referred to as either “hogging” or
“sagging,” depending on the sense of curvature
which it causes in the hull, as shown in Fig. 1.7.
The hull girder analysis assumes that hull girder
bending satisfies simple beam theory (Bernoulli-
Euler), which implies the following assumptions.

1. Plane cross-sections remain plane.

2. The beam is essentially prismatic (no openings
or discontinuities).

3. Other modes of response to the loads (e.g.,
transverse and longitudinal deflection and distortion
caused by shear and/or torsion) do not affect hull
girder bending and may be treated separately.

4. The material is homogeneous and elastic.

The first assumption is illustrated in Fig. 1.5.
Under the action of a bending moment, a beam
undergoes curvature of radius R locally and, if plane
cross-sections remain plane, the longitudinal strain
&, in a cross-section varies linearly in the vertical
direction and is related to R as follows.

. (R+2)d0—RdO =
* R dO R

The horizontal surface where z, and hence also

the strain, is zero is referred to as either the neutral

surface or, regarding the beam problem as one-

dimensional, the neutral axis. The material is

assumed to be homogeneous and elastic, and so the
longitudinal stress is

o -Ee=E— (1.2.1)
R

If there is no external axial force, equilibrium
requires
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J.A o,dd =0
which reduces to
j zdA=0
A

and this indicates that the neutral surface is the hori-
zontal axis passing through the cross-section.

Equilibrium of moments requires that the exter-
nal moment, M,, is balanced by the moment of the
internal stress forces

M, = L z0,dA
which from (1.2.1) reduces to

M =X (1.22)

where [ is the moment of inertia of the cross-section,
defined by

]=Lz2 dA

Equation 1.2.2 relates the curvature to the external
bending moment and, if this is used to eliminate R
from (1.2.1), the result is the familiar equation for
bending stress at a height z from the neutral axis

o - M7 (1.2.3)

X

1.2.2.1 Section Modulus

Equation 1.2.3 indicates that the longitudinal bend-
ing stress o, is greatest when z is greatest, that is, at
the extreme upper or lower edge of the section.
When z corresponds to one of these extreme values,
the quantity //z is called the section modulus and is
denoted herein as Z. Since the neutral axis is not
generally at half-depth, there will be two extreme
values of Z: Z, for the deck and Z; for the keel, and
there will thus be two values of Z: Z,, = I/z, and Zy =
I/zx. Because of hydrostatic and hydrodynamic
loads, the bottom structure is usually sturdier (heav-
ier scantlings) than the deck and so the neutral axis
is usually below the half-depth. A height of 0.4 D
above the keel is typical, but the location varies
widely between different ship types and designs.
Thus, the largest hull girder stress usually occurs in
the deck rather than the bottom. More precisely, it

occurs in the uppermost member which is longitudi-
nally effective, that is, which is of sufficient length
and has a sufficiently rigid attachment to the rest of
the hull girder to act as part of the hull girder. In
most cases this 1s a deck, and that deck constitutes
the uppermost flange of the hull girder. If the side
shell extends up to this deck, then it is referred to as
the strength deck.

Section modulus is also useful whenever it is
desired to assess or control the maximum hull girder
stress (wave-induced, stillwater, or total) by itself,
separately from the stresses arising from hull mod-
ule and principal member response. For example,
because the wave-induced hull girder stress is cyclic,
it is necessary to restrict its amplitude to guard
against fatigue failure.

1.2.2.2 Departure from Simple Beam Theory

Equation 1.2.3 states that stress is constant across
horizontal decks and varies linearly in the sides.
There are several factors that can cause the actual
stress distribution to differ from this idealized distri-
bution. Because of transverse shear, there is some
longitudinal distortion of the cross-section of the
hull girder. Torsional loading will cause further dis-
tortions, particularly if there are large openings in
the deck; this longitudinal distortion of the cross-
section out of its original plane is referred to as
“warping” of the cross-section. This means that the
first assumption is not fulfilled, at least not perfectly.
Likewise, the second and third assumptions are not
fulfilled because the hull girder is not prismatic
(except in the “parallel midbody,” if there is one)
and it may have hatches, other openings and discon-
tinuities, and discretely occurring elements such as
transverse bulkheads. Also, it is a complex assembly
of intersecting members, transverse as well as longi-
tudinal, and there are several other modes of
response, in addition to warping, that affect the hull
girder bending response. For ships with no major
changes in cross-section other than in-line hatches
(for which the intermediate portions of deck may be
ignored) the longitudinal stress resulting from hull
girder bending generally follows the idealized distri-
bution quite closely (ignoring stress concentrations
and other local effects) as shown in Fig. 1.6. For
such ships, the effects of shear and of other responses,
of transverse structure, and even of openings and
discontinuities, can be calculated separately (or at
least estimated) to assess their importance and to
apply corrections where necessary. In some cases,
superposition can be used. This structurally pris-
matic type of hull girder is considered in Chapter 3.
For ships with significant changes in cross-section,
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Figure 1.6 Typical hull girder bending stress distribution for
structurally prismatic ships.

the load effects are best obtained by a full ship finite
element analysis.

Shear force can be significant with some cargo
types and distributions (especially bulk cargoes),
and both shear force and twisting moment can be
significant if the hull girder has low torsional rigid-
ity, as in container ships. Shear force and torsion are
treated in Sections 3.7, 3.10, and 3.11.

1.2.3 Levels of Structural Modeling and
Analysis

1.2.3.1 Definition and Use of Modules in
Analysis and Optimization

In the early 1980s, when MAESTRO first became
available, the limited computing capability meant that
the finite element model could be only a portion of the
ship, and this was called a hull module. It could be one
cargo hold, as in Fig. 1.7, or several, as in Fig. 1.8.
Loads at ends of the model were obtained from the hull
girder analysis, as shown in Fig. 1.7. With today’s com-
puting power there is no such limitation, and the finite
element model usually idealizes the entire ship.

However, the term “hull module” (or just mod-
ule) is still useful because a ship hull usually does
consist of a series of distinct segments: cargo holds
in commercial ships and compartments in naval
ships and submarines. Other nonhull parts also con-
stitute distinct modules, such as an accommodation
block or a funnel.

A finite element model of an entire ship is a large
model, and its construction needs to be done in care-
fully planned levels and sequences. Modules are
helpful for this because they are ideal high-level
building blocks. Moreover, in the parallel midbody
of a tanker, bulker, or submarine, only one module
(one cargo hold or compartment) needs to be built
and then copied. If there is a need to build the model
quickly, several people can create different modules
simultaneously.

Also, in the creation of such a large finite element
model, it is advisable to test the model as it is being
built, so as to catch modeling errors early. A conven-
ient occasion for testing is after the addition of a
new module or group of modules. This requires
additional temporary data: restraints to prevent rigid
body movement and hull girder loads at the ends of
the model.

Another consideration is that for such a large
structure as a ship, optimization involves so many
simultaneous changes that it is difficult to keep track
of them and to appreciate which of the many loads,
limit states, and designer-specified constraints are
driving the design. Therefore, in MAESTRO,
although several modules can be optimized in one
design cycle (the outer loop in the flow chart of Fig.
1.4), each module is optimized in isolation (the inner
loop). That is, steps 4, 5, and 6 are performed for
just one module at a time. This is permissible
because a module is sufficiently large (at least one
complete cargo hold) that the limit states (failure
modes) do not involve structures longer than one
module. Even for the largest and most serious fail-
ure mode—hull girder collapse—the failed structure
occurs within one cargo hold. The optimization of
each module in isolation means that, within each
design cycle, the optimization of one module cannot
influence or be influenced by other modules.
However, in the next design cycle, the finite element
analysis of the overall model (step 3) will reflect all
of the changes that were made in the previous cycle.
For this reason, it is advisable to optimize only a few
modules in each run and to choose those modules
that are considered to be critical, either because they
are most heavily loaded (amidships for bending
moment, quarter-length locations for vertical shear
force) or have large openings. After these modules
have been optimized, then a new run is made in
which the optimized modules are “frozen,” and a
few other modules, in between the frozen ones, are
optimized. Thus, the optimization is not an overall,
automated, and instantaneous process, and it does
not produce a unique “overall optimum” design.
Rather, it is a gradual process requiring many runs
and the careful involvement of the designer. This is
actually an advantage because sometimes the earlier
runs may give results or reveal features (influences,
sensitivities, tradeoffs, etc.) that were not antici-
pated and may require new constraints or that give
the designer a better understanding of the structure
and perhaps some new ideas.

For best results, optimization should be per-
formed using a full ship length model. If it is not the
full length, then a module adjacent to a cut end
should not be optimized, because at the cut end there
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Figure 1.7 Levels of structural analysis.

are hull girder loads and physical restraints, and
both of these can cause local distortion and over-
stressing. A partial length model should never be
used for a containership, because its torsional
response depends on the longitudinal distribution of
both the torsional loading and the hull torsional
stiffness over the whole length of the ship.

1.2.3.2 Principal Members

As shown in Fig. 1.7, the next level of structure is
that of “principal member.” The most common of
these is a stiffened panel, which is the basic unit for
all decks, sides, double bottoms, and bulkheads of

the module. But the panels must be held in place,
and this is the purpose of the framing system of a
hull, made up of individual beams (transverse
frames) as shown in Fig. 1.7. These beams provide
bending rigidity in the ship’s transverse plane. In
this role of supporting the stiffened panels, the plat-
ing to which they are welded constitutes one of the
two “flanges” of the beam. A transverse bulkhead is
likewise made up of stiffened panels, and it too is
supported by a framing system. If it carries a large
pressure load as in a tanker, this framing system will
consist of deep beams, running both vertically and
horizontally and forming a “grillage.” If a smooth
surface is needed as in a dry bulk carrier, corrugated
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Figure 1.8 Application of hull girder load effects.

plating is used. Pillars are another type of principal
member. They are used extensively in ferries and
other ships having wide internal spaces because they
reduce the span of the beams. They are also used
extensively in naval ships because in reducing the
span, they provide weight savings.

1.2.3.3 Local Structure

Finally, there is the local structure: brackets, con-
nections, reinforcements, foundations, fittings, and
so on. Basically, a structural element can be classi-
fied as local if it does not have any appreciable effect
on the load distribution within the hull module; in
other words, it is local if it does not affect the mag-
nitude and overall distribution of internal forces in
the principal members, but has only a local effect on
its immediate surroundings.

Because of the irregular geometry of a local struc-
ture, its analysis may represent a significant computa-
tional task. Analysis and design of a local structure
can only be done after the structural dimensions of
the principal members have been determined. As
illustrated in Fig. 1.4, the design of the principal
members is an iterative process, and it would be inef-
ficient to include the design of local structure as part
of the preliminary design process. Rather, the design
of a local structure—detail design—is a separate step
coming after the preliminary design shown in Fig.
1.4. Lamb (2003) contains a great deal of information
on detail design, as do the rules and other publications
of the classification societies. Moreover, most of the
items that come under the heading of local structure
are not unique to ships, and there are many design
manuals and handbooks for land-based steel struc-
tures that contain useful information.

1.2.4 Limit State Analysis

A limit state is any condition in which a structure or
a structural member has become unfit for one of its
intended roles because of one or more loads and/or
load effects.* There are two broad categories of
limit states: the ultimate or collapse limit states, in
which the structure or member has failed in its pri-
mary, load-carrying role; and the serviceability limit
states, which involve the deterioration or loss of
other, mostly less vital functions. The limit values
are the values of the loads or load effects which pro-
duce or correspond to a limit state. A limit value is
denoted by the symbol Q,. The symbol Q, repre-
sents the values of a group of loads and/or load
effects which produce a limit state. A limit state
analysis consists of the calculation of the limit val-
ues, perhaps in various combinations and sequences,
which correspond to a specified limit state, either in
a member or in the overall structure. An ultimate
limit state is often referred to as the ultimate strength
of the structure or member, and the two terms are
used interchangeably throughout this text.
Serviceability limit states arise from the fact that
some members are designed on the basis of a form
of failure other than structural failure. For example,
as shown in Chapter 9, laterally-loaded plating is
usually designed on the basis of a maximum allow-
able “permanent set” (plastic dishing of the plating).
The limit value is the load which causes this limit
state, whereas the ultimate load is that value beyond
which the plate can no longer support the load.
There are three basic types of structural failure:
plastic deformation, instability, and fracture. Within
these there are several different modes of failure,
some of which are more serious than others; these
are explained in Section 2.4. Moreover, these vari-
ous failure modes can combine and can interact,
depending on member properties, function, and
loading. There are generally several different load-
ing arrangements and load combinations that must
be considered (hogging and sagging, deep draft and
light draft, various distributions of cargo, etc.).
Hence, for each structural member there are usually
several limit states, not all of which have the same
degree of seriousness. In general, rationally-based
design requires that each and every relevant limit

*For the overall structure, it is loads, whereas for
a member it is usually load effects. For simplicity,
we often use the term “load” even when the term
“load effect” might be more accurate. The symbol Q
denotes whatever agent is causing a limit state; hence
Q can represent either a load or a load effect. Where
a distinction is important, the symbol F will be used
for a load and the symbol Q for a load effect.
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state be examined, and those that interact should be
examined together. There should be no a priori
assumptions as to whether some limit state will or
will not govern the design.

Thus, to take a simple example, the laterally-
loaded plate referred to above should be examined
for both types of limit state. The limit load for ulti-
mate failure is much larger than the limit load for
allowable permanent set. But, because of the greater
degree of seriousness, there must be a greater mar-
gin between the ultimate load and the expected serv-
ice load, and so either requirement may govern the
required thickness of plating. To determine which is
the governing requirement, it iS necessary to per-
form both limit state analyses.

The level of seriousness of a limit state usually
corresponds approximately to the level or extent of
structure which has failed: overall, hull module,
principal member, or local. The first two overlap
because a hull module is always a complete segment
of the hull girder, and so failure of a hull module is
failure of the overall ship. Hence, in this text “over-
all failure” refers to failure at the hull module level,
unless noted otherwise. Failure of local structure is
not sufficiently serious to be included with the other
levels. As noted earlier, this level of structure is usu-
ally dealt with in detail design rather than pre-
liminary design. If needed, the local structure can be
locally strengthened, usually without effect on other
structural components.

Thus, there are two levels of structure that can
reach a limit state: the structure as a whole (the hull
module) and the principal members. Ideally, the
limit analysis of the overall structure should include
the limit analysis of the individual principal mem-
bers. However, the limit analysis of a hull module is
an extensive computational task. If necessary, the
total amount of computation can be reduced by per-
forming the two separately: a hull module limit
analysis using a simplified structural model of the
hull module and a separate limit analysis of each dif-
ferent principal member for each different load
combination which that member faces. The member
limit analyses provide the values of a member’s ulti-
mate strength which are used in the hull module
limit analysis. It specifies the load combinations
which are to be used in each member limit analysis.
The determination of these load combinations is
crucial for rationally-based ship structural design.
At the member level, it is often not possible to ade-
quately account for the interaction between mem-
bers. Hence, it is not possible to know the true loads
that are acting on each member as the structure
approaches collapse. Moreover, most large struc-
tures have a high degree of static indeterminacy and,

therefore, alternative paths through which loads can
be transmitted once one member fails. It is unu-
sual—and undesirable—for large structures to have
a member that is so vital that collapse of the member
would result in collapse of the structure. In most
cases, overall collapse requires a large number of
individual failures in various members. Some of
those failures occur within the same members and
cause them to collapse; others are more widely dis-
tributed among different members and, therefore, do
not cause member collapse. It is even possible for a
structure to collapse by a mechanism involving sev-
eral members, none of which has undergone com-
plete collapse. Hence, it is absolutely necessary to
examine the strength of the structure as a whole to
identify any and all mechanisms which may cause
collapse.

An example of member collapse is the collapse of
a stiffened panel in the deck of a ship. In this case,
the load is the hull girder bending stress, o,. The col-
lapse could be caused by any of the three basic types
of failure (for simplicity, we here ignore combina-
tions and interactions). Hence, there are (at least)
three separate limit values of o,, and the panel col-
lapses when o, reaches the lowest of these three val-
ues. The magnitude of each of these limit values is
determined by the design of the panel: its geometry,
scantlings, material, and so on. Expressing this in
more general terms, we say that each limit value Q;
is a function of the design variables X and, when we
wish to indicate this dependency, we shall write
0,(X). Thus, the limit values are under the control
of the designer, and the safety of the structure is
achieved mainly by choosing X such that each of the
limit values Q,(X) exceeds the corresponding load
Q by a satisfactory margin.

1.2.5 Safety, Uncertainty, and Structural
Constraints

1.2.5.1 Strength Constraints

Almost every design involves constraints, that is,
conditions or requirements which must be satisfied.
In structural design the most important constraints
are the strength constraints—those aimed at provid-
ing adequate safety and serviceability. Structural
safety is inherently probabilistic; it is the probability
that a structure will not fail. The risk of failure arises
from the various uncertainties which are involved:
uncertainties in loads, load effects, and limit values
of load effects, which are results of variations in
material thickness and quality, workmanship, fabri-
cation, and so on. There are two broad types of
uncertainty: statistical and nonstatistical. Statistical
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uncertainty arises from genuine statistical random-
ness. Nonstatistical uncertainty arises from sub-
jective elements and from events which are not truly
random but are difficult to predict. Wave loads and
material properties are examples of statistical uncer-
tainties; these can be dealt with adequately by
statistical methods. Examples of nonstatistical
uncertainty are those arising from the operation of
the ship, such as operating errors (improper loading,
mishandling, etc.) or a fundamental change of
service.

A rationally-based design procedure must be
able to deal with both types of uncertainty in such
a way that the required degree of safety (which is
ultimately decided by society as a whole through
the medium of regulatory authorities and insurance
rates) is achieved in a clear and explicit manner.
The first type—statistical uncertainty—is dealt
with by statistical methods. For all loads, load
effects, and limit values which are probabilistic,
statistical theory is used to estimate suitable values
to be used for design. If the quantity involves a
large number of peak values, such as wave-induced
bending moment, then the calculation is based on
extreme values of that quantity, and the particular
extreme value which is selected for design is
referred to as the characteristic value. In this text,
an extreme value is denoted by the symbol # placed
above the quantity (e.g., M, for wave-induced
bending moment) and the characteristic value is
denoted by a subscript ¢ (e.g., M,, ).

Besides dealing with statistical uncertainty, a
rationally-based design procedure must also provide
some means whereby the designer (or the regulatory
authority) can explicitly allow for the other
uncertainties. This is done by specifying a minimum
value of the margin between Q and Q;. In practice,
this margin is usually specified in terms of a safety
factor, v,, which is the minimum factor by which Q;
must exceed QAC. In terms of +y,, the constraint is of
the form

Y,9.(X) <0, (X) (1.2.4)

In addition to accounting for uncertainty, it is also
necessary to utilize some further safety factors to
allow for the degree of seriousness of each type of
failure, both in regard to safety (loss of life) and
serviceability (loss of revenue or reduced mission
capability). Likewise, it is also necessary to apply
some factors to account for particular circumstances,
such as the type of ship (passenger, cargo, naval,
carrying hazardous cargo, etc.), its costs, and the
operational importance of the ship. These various

factors are known as partial safety factors. The
required degree of safety is provided by the total
factor of safety, which is the product of the partial
safety factors. Thus, in (1.2.4), v, denotes the total
factor of safety.

Strength constraints are often nonlinear for a
variety of reasons. First, two of the three basic types
of failure are generally nonlinear: instability in typi-
cal ship structural members is usually followed by
inelastic response or collapse, and plastic deforma-
tion is inherently nonlinear. Therefore, most of the
limit value expressions Q;(X) are nonlinear and,
hence, most of the structural constraints, even those
involving only one load, are nonlinear. Modes of
failure that involve more than one load and/or more
than one structural member are even more nonlinear.
Also, in a statically indeterminate structure the load
effect in a member, Q(X), can be a nonlinear func-
tion of the design variables X.

Failure Involving Multiple Loads. In our discus-
sion thus far, we have mostly considered limit states
which involve only one load. For a limit state which
involves two or more loads, one of the loads is
selected as the principal independent variable, and
an expression for its limit value is obtained as a
function not only of the design variables, but also of
the other loads. For example, in the collapse (ulti-
mate failure) of deck plating resulting from plate
buckling, the primary load is the longitudinal com-
pressive stress, o,. The limit or ultimate value is the
value of o, that causes collapse; this is referred to as
the “ultimate” stress, (o). If there is also a trans-
verse stress o, acting on the plate, this constitutes a
second load which influences the value of (o).
From plate ultimate strength theory (Chapter 13),
one can obtain an expression for this influence; in
general form it is

(O-)C )u][‘ Zf(X’ O-y)
Hence, the constraint equation takes the form
yO(Gx)ulz = f(X7 Oiv)

In the design of the plating, the design variables
must be such as to satisfy this inequality.

1.2.5.2 Other (Non-Strength-Related)
Constraints

As shown in Fig. 1.4, there are other constraints on
the structural design besides the strength constraints
arising from 1) operational requirements (e.g., mini-
mum size of hatches, limitations on distortion and on
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vibration, etc.) and 2) fabrication considerations
(e.g., maximum plate thickness for cold rolling, min-
imum spacing between stiffeners for welding, etc.).

These other constraints are relatively straight-
forward and usually can be expressed directly in
terms of the structural design variables. For instance,
minimum or maximum values of design variables or
ratios of design variables can be specified. An exam-
ple is the design constraint that, in light of fabri-
cation, the height A, of a stiffener which passes
through a transverse frame of height 4, must not be
so large that the cutout interferes with the flange of
the frame. Thus, for example, if it were desired to
restrict the stiffener height to no more than 80% of
the frame height, then the constraint would be A
=0. 8 h,. Constraints of this type are important, but
there is no need to give them further treatment in
this book, because they are straightforward and are
already contained in structural design manuals and
structural codes, such as the rules of the classifica-
tion societies. Also, since they have a simple math-
ematical form (linear inequality), it is a simple
matter to incorporate them in any mathematical
algorithm or computer program for rationally-based
structural design.

1.2.6 Definition of the Objective in
Structural Optimization

Rationally-based design, of its very nature, must have
a goal or objective, and there must be some measure
for assessing the merit of a design vis-a-vis that objec-
tive. Hence, in a rationally-based design process, the
designer must be able to define and quantify the
objective of the design. The design process must then
be capable of actively and automatically achieving
this objective to the fullest extent possible, subject to
the constraints. This in turn means that the design
process must include an optimization method which
is capable of solving an optimization problem involv-
ing a large number of constraints of various types
(linear and nonlinear, equality and inequality) and in
which the measure of merit is totally flexible. That is,
the optimization method should not restrict the meas-
ure of merit to linear expressions or to special cases
(such as “least weight”) since these may not suit the
designer’s needs.

Mathematical optimization of any kind requires
that the measure of merit be defined as a mathemati-
cal quantity which is to be maximized (or mini-
mized) and which is expressed as a function of the
design variables. The measure of merit is also
referred to as the “objective function.” In the overall
design of a ship, the structural design interacts with

the other aspects of design, such as operational
aspects, and something which is beneficial from a
structural point of view may be detrimental in some
other regard. Therefore, the structural design
objective should reflect the overall goal, and the
objective function should account for the results of
interactions between the structural design and the
other aspects of ship design. The goal depends, first
of all, on the basic purpose of the ship, and in this
regard the two principal categories are commercial
vessels and naval vessels. In this section, we con-
sider the measure of merit for a ship structure, first
for commercial vessels (while keeping in mind that
many of the factors relating to this are also relevant
to naval vessels) and then for naval vessels.

1.2.6.1 Commercial Vessels

For commercial vessels, the objective is profitability,
either of the ship itself or of some larger system. The
principal factors which determine a ship’s profitability
are shown (in greatly simplified form) in Fig. 1.9, taken
from Evans (1975). The quantities that are strongly
influenced by the structural design are outlined, and it
is clear that the structural design can affect profitability
at various levels and in various categories: payload, ini-
tial cost, operating cost, and so on.

The choice of the objective function also depends
on which person or agency has the authority to
decide; that is, it depends on whose behalf the
designer is acting. In most cases, it is the ship owner,
but it may be the ship operator, the shipyard, or the
controller of some larger system in which the ship is
to operate. For example, a shipyard which is respon-
sible for the design as well as the construction would
probably give greater importance to initial cost than
would a ship owner, whereas the latter would have a
greater interest in operational aspects and life cycle
economics.

Also, the factors and influences shown in Fig. 1.9
have different degrees of importance, and not all of
them need to be included in the objective function.
In many cases, the only strong influence which the
scantlings have on profitability is their effect on ini-
tial cost, and in such cases “least initial cost” is a
sufficiently accurate objective.

Alternatively, with small weight-critical vessels,
such as hydrofoils and surface-effect ships, profit-
ability or performance is determined almost entirely
by hull weight because decreased structural weight
allows a direct and corresponding increase in pay-
load. In this case, the weight of the structure is,
therefore, included in the objective function as a dif-
ferent type of cost. Moreover, even large vessels can
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Figure 1.9 Principal factors in ship profitability.

be weight sensitive, such that a saving in hull weight
gives an increase in payload as well as reductions in
cost. The ways in which this occurs are indicated in
Fig. 1.9.

The question then arises as to what is the proper
combination of the two goals of weight reduction
and initial cost reduction. This question can only be
answered by a careful study of the economic life
cycle of each ship, to determine the tradeoff between
initial cost and increased revenue from weight sav-
ings. As an approximate means of allowing for this
combination, Caldwell (1971) proposed a useful
nondimensional objective function which combines
weight and cost in the form

w C
U=v— 1-v)—
vW0+( V)CO

(1.2.5)
where W, and C, are, respectively, the weight and
initial cost of some basis or standard design, W and
C are, respectively, the weight and initial cost of a
proposed design, and v is a number which varies
between zero (where least initial cost is the objec-
tive) and unity (where weight-saving is the objec-
tive). It can be shown that if the weight saved in

structure can be taken up by cargo, then the best
value of the weighting factor v in (1.2.5) is

1
V= —" 2.
1+R./R, (1.2.6)
in which

_ weight of structure
weight of cargo

in the basis design and

annual costs arising from initial cost
total annual cost

R:

c

in the basis design.
1.2.6.2 Naval Vessels

For naval ships, the objective is to obtain the maxi-
mum possible mission capability over the life of the
ship, subject to budget limitations. Cost is here a
constraint instead of an objective. The structural
designer’s greatest influence on mission capability
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is the weight of the structure. Weight saving permits
either a higher speed, more mission-related equip-
ment (weapons, sensors, etc.), or increased range
and endurance, or some combination of these.

The mission capability is also strongly linked to
the ship’s vertical center of gravity (VCG). A low
VCG of the hull structure is of great benefit since
most of the important weapons and sensor systems
involve large topside weight. In fact, the provision
of adequate stability is often the limiting factor on
the number or size of such systems, particularly as a
vessel gets older and it becomes necessary to fit
more modern systems. However, VCG is determined
primarily by the basic layout of the ship (e.g., the
number of decks) and secondarily by the choice of
material (e.g., aluminum versus steel). Both of these
are decisions that are made prior to the structural
design process of Fig. 1.4. If they are changed, then
the structural design must be redone. The structural
design variables (scantlings of principal members,
denoted by X in Fig. 1.4) have only a slight influ-
ence on VCG, and that influence could be either an
increase or a decrease, depending on the member’s
vertical location in the ship.

Hence, for a naval vessel, the optimization “objec-
tive” in step 6 of Fig. 1.4 is usually “least weight” and
does not include VCG. This objective tends to pro-
duce a structure that is more intricate and involves
less material. Hence, for naval vessels the structural
cost (i.e., the cost that is attributable to structure and
is a function of the structural design variables) is
mainly fabrication cost; the material cost is smaller
and, for a given material, it has little influence in
determining the final optimum design.* Thus, naval
design involves a tradeoff between weight and fabri-
cation cost. The designer seeks to determine the
number, arrangement, and size of structural members
which will give the lowest possible weight, subject to
cost limitations and to a variety of other constraints
requiring satisfactory strength, reliability, endurance,
and functioning of the vessel. The constraint on cost
is somewhat different from the other constraints.
Rather than being an absolute limit, it is a somewhat
elastic barrier in which the rigidity of the resistance to
further increase in cost depends on the cost:benefit
ratio, that is, how much benefit the increase in cost
will yield. Nevertheless, besides the cost:benefit type
of constraint, there can also be an explicit upper limit
on total cost.

*The benefits of using a different material (e.g., an
aluminum or composite superstructure) would be
investigated by making a separate optimum design
using that material and then judging whether the
weight/VCG savings is worth the extra cost.

1.2.7 Opverall Procedure for Ship
Structural Optimization

The final basic aspect of the rationally-based design
procedure shown in Fig. 1.4 is the structural opti-
mization process. This aspect consists of a mathe-
matical method which utilizes the information
provided by the other aspects and generates the design
(i.e., the set of scantlings for all principal members)
which satisfies all constraints and maximizes the
objective. The aim of the present section is twofold:
to give an overview of structural optimization and
also, now that we have discussed all aspects of the
overall design procedure of Fig. 1.4, to explain briefly
how that procedure works. For this, it is not necessary
to have a detailed knowledge of mathematical optimi-
zation theory. It is sufficient to know the basic fea-
tures. Since the primary aim of this text is to present
and explain the method—both theory and practice—
of rationally-based structural design, no attempt is
made to cover mathematical optimization theory or to
give a complete coverage of structural optimization.
Only those aspects will be treated here which are
needed by a designer. The coverage is in three parts:

1. In this section, a brief summary of the basic fea-
tures of structural optimization, presented as part of
a simple example of the overall design process of
Fig. 1.4.

2. Inthe next section, a brief summary of the broad
classes of optimization methods, some comments on
these in relation to the requirements of preliminary
ship structural design, and references where more
detailed information on these methods may be
found.

3. InSection 2.7, a summary of a “dual level” opti-
mization strategy, which permits the efficient opti-
mization of large structures in which some
constraints apply to the structure as a whole.

1.2.7.1 Sample Application of the Procedure
for Rationally-Based Preliminary Structural
Design

We now present a simple example of the rationally-
based design procedure of Fig. 1.4. The example
should illustrate the various steps of the procedure
and show how the structural optimization step brings
together and utilizes the results of the other steps.
The procedure is intended for the structural design
of an entire ship. To have a simple example, we will
here apply it to just one small part of the structure—
a stiffened panel in the strength deck of a vessel, as
shown in Fig. 1.10. We will also make simplifying
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L2

Figure 1.10  Example of a stiffened panel.

assumptions which would not be made in the actual
procedure. For example, let us say that the panel has
only two design variables: the plate thickness, t,,
and the stiffener height, A,. In reality, the panel
would have several more design variables: the
number of stiffeners (or their spacing) and the web
thickness and flange area of the stiffeners. But for
this example, let us say that the number and type of
stiffeners have already been selected, perhaps
because of a need to match some existing structure.

1.2.7.2 Specification of Loads, Dominant Load
Parameters, and Design Waves

The first step in structural design is to investigate the
maximum or extreme value of each load so as to
determine a suitable extreme value to be used for
design, that is, the characteristic load Q.. For sim-
plicity, let us say that the only significant load is hull
girder bending moment, M, and that the only signifi-
cant load at the panel level is the hull girder bending
stress, o. In reality, there would also be other loads
acting on the panel (lateral pressure, shear stress,
etc.), and the magnitude of these loads would be
obtained by the finite element analysis.

As will be discussed in Chapter 4, the
wave-induced portion of the hull girder bending
moment, M,, is probabilistic and, therefore, statisti-
cal methods must be used to establish a characteris-
tic extreme value for it, denoted as M,, .. For standard
types of ships, a value for M,, . is available from clas-
sification societies, having been determined by
research and by at-sea measurements for that type of
vessel (see Section 3.5.1).

1.2.7.3 Finite Element Analysis

The next step is the finite element analysis. Since
there are two values of maximum wave bending
moment (hogging and sagging) and several values
of stillwater bending moment (corresponding to dif-
ferent cargo and/or ballast configurations), it is nec-
essary to perform the hull girder analysis for several
load combinations.

We note that, to perform the finite element analy-
sis, it is necessary to have some initial or starting
value of the ship’s scantlings. For the design varia-
bles of the panel, let us denote the initial values as z,,
and Ay, or, in vector form, as x,. These initial values
are arbitrary; they are required simply because any
computer calculation or analysis (such as steps 3, 4,
and 6 of Fig. 1.4) requires specific numerical values
for all quantities. These values do not require calcu-
lation by the designer: he/she can either select stand-
ard values, arbitrary values, or values from some
other design. This will be discussed further when
considering the structural optimization step.

The finite element analysis provides values of
individual load effects in each of the principal mem-
bers, for each load case. We are examining only one
principal member in this example—a deck panel—
and we are saying, purely for simplicity, that the
only load effect is the hull girder stress. Thus we are,
in effect, skipping over the finite element analysis.

1.2.7.4 Hull Module Limit State Analysis

We now begin the inner loop to perform the hull
module design, starting with the limit analysis, for
the initial scantlings, x;. As shown in Fig. 1.4, the
hull module design cycle must be performed repeat-
edly because at the end of each cycle the values of
the design variables (which comprise all of the
scantlings of the hull module) are altered by the
optimization process. Once the modules have been
designed, we return to the outer loop and repeat the
finite element analysis, using the new values of x.
For reference, we will denote the current values of x
as x; (or t,; and hy,); that is, x; represents the scant-
lings which are used during the i design cycle.

Let us assume that there are five limit states for
the panel: three types of compressive collapse, with
collapse being initiated by 1) plate buckling, 2) tor-
sional buckling of the stiffeners, or 3) flexural buck-
ling of plating and stiffeners acting together, and
also 4) large plastic deformation under tensile load,
and 5) fracture because of fatigue. Hence, the five
limit values are the three buckling stresses denoted
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by 04(x) with j =1, 2, and 3, the yield stress oy, and
the fatigue-derived limit on wave-induced stress,
(6,.0)1, corresponding to the expected number of
hogging and sagging cycles in the life of the ship
(which is estimated at about 108 for a 25-year life).

The purpose of the limit state analysis is to calcu-
late the limit values for the current values of x. In
this example, the fourth and fifth limit values are
more or less material properties and do not depend
on X, so the limit analysis here consists of the calcu-
lation of the three buckling stresses, 0,(X;). For sim-
plicity, we are assuming that the buckling is elastic.
The theory for this is presented in Chapters 12 and
14. In the notation, we are using the following
equations.

2
4
Local plate buckling ©,, = K\E i

Torsional buckling of stiffeners O, = K,E
hS
b

The next step is to formulate the constraints for the
optimization problem. The general form of a con-
straint was given in (1.2.4). In our example, this
leads to the following equations for the three buck-
ling constraints.

SN

t
Overall panel buckling Or = K3E (Zp }(

1.2.7.5 Formulation of Constraints

{
%0, < KE |+
b
/ 2
%0, < KE hi (1.2.7)
w6 <KE|Z hy
0 Y — 3 b b

To plot these constraints in Fig. 1.11, we assume the
following values: E = 200,000 MPa, b = 500 mm, &
=160 MPa, y,=1.25,K,=4,K,=0.1,and K;=0.5.

As mentioned above, an actual design involves
several load cases, which here would mean several
different values of 6;. Hence, for each constraint it is

final t, -

necessary to use whichever value of &; is critical for
that type of limit state. Moreover, in reality each
load case usually involves several loads acting on
the member, in various different combinations, and
so the search for the decisive combination must be
systematic and thorough.

As explained in Section 1.5, the total factor of
safety, vy, , is made up of several partial safety fac-
tors which are chosen in accordance with 1) the
degree of (nonstatistical) uncertainty which exists in
regard to both the load and the limit value, and 2) the
degree of seriousness of the limit state. For this
example, the degree of seriousness is about the same
for all constraints since they all refer to collapse
rather than unserviceability. Although there would
be differing degrees of uncertainty in o, oy, and
(6,..). let us say, again purely for simplicity, that y,is
the same for all five constraints.

In Fig. 1.11, the axes are the design variables f,
and h,. The three buckling constraints of (1.2.7) are
plotted as curves of ¢, versus h,. In this type of dia-
gram, any specific combination of ¢, and h,—that is,
any specific panel design—is a particular point on
the diagram. For example, point A represents the
initial or starting design, corresponding to #,, and .
The plane of the diagram represents all possible
designs and is referred to as the design space (or
hyperspace; the concept may be extended to any
number of design variables). The constraint equa-
tions are inequalities and, therefore, each curve is
the boundary between all designs that satisfy that
constraint and all that do not. In Fig. 1.11, the imper-
missible side of each constraint is indicated by shad-
ing the impermissible side.

The two constraints corresponding to tensile yield
of the panel and fatigue fracture cannot be drawn in

cold rolling

10f

0 ' L ' L
0 hsl 50 ﬁnal hS 100

Figure 1.11 Design space for optimum design of a stiffened
panel.
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the figure because the limit values are material prop-
erties and the limit states are, therefore, essentially
independent of the design variables. The only way
in which the design variables x are involved is
through o, because o, is inversely proportional to the
hull girder section modulus, Z. But the plate thick-
ness of a single panel has only a small influence on
Z, and h, has even less influence. That is, even a
large change in 7, would cause only a small increase
in section modulus and, hence, only a small decrease
in o.. If either of these constraints were not satisfied,
such that it would be necessary to reduce o, this
would require increasing the plate thickness of all
deck panels and possibly also of all bottom panels.
In other words, these two constraints relate to the
overall structure, via section modulus, and not just
to this panel. Constraints of this type are discussed
in Section 2.5. Also, the determination of the opti-
mum combination of thickness changes for all pan-
els requires that all of the panels be redesigned
together in a coordinated manner.

We have already seen that a principal member
cannot be analyzed in isolation, but only in conjunc-
tion with the other principal members through the
medium of the finite element analysis. We now see
that in optimization, the situation is similar—a prin-
cipal member cannot be designed in isolation, but
only in conjunction with the other principal mem-
bers. For the present example, let us assume that the
current values of deck and bottom thicknesses are
already sufficient to give a reasonable value of o,
such that these two constraints are not violated. In
that case, they will not become violated because of a
reduction in thickness of just this one panel, and so
we will not consider them further in this example.

Besides the strength constraints, there are other
constraints on the structural design arising from
operational requirements and fabrication consider-
ations. For the deck panel, for example, there might
be a maximum plate thickness for cold rolling or
for weldability, a minimum stiffener height (for a
given stiffener spacing b) to support lateral loads,
and a maximum stiffener height (for a given height
of the transverse deck beams, £,) so that the cutout
for the stiffener leaves sufficient web area in the
beam.

We note that in a more realistic example, the stift-
ener spacing and the frame height would also be
design variables and, hence, the latter two con-
straints would only restrict the ratios h/b and h/hy,
not the absolute value of /..

These additional constraints are also drawn in
Fig. 1.11. Taken as a group, the constraints define a
region of the design space in which none of the con-
straints are violated. This region is known as the fea-

sible design space, and corresponds to the shaded
outline in the figure.

1.2.7.6 Objective Function

Let us assume that in our example least initial cost
has been chosen as the objective for this design. The
cost of a panel would depend mainly on the amount
of steel used and the cost of fabrication. In the
present example, ¢, and /4, are the only variables, and
the amount of steel is linearly proportional to each
of them, but in general the amount of steel is the
product of two design variables; for example, in a
stiffener web it is A, where t,, is the web thickness.
The fabrication cost is related to the design variables
in a completely different way from the material cost
and, therefore, the sum of the two costs will be even
more complex. The cost function C(X) is, like many
of the constraints, a nonlinear function of the design
variables. In Fig. 1.11, a typical cost function for the
panel is indicated by means of contour lines of con-
stant cost.

1.2.7.7 Structural Optimization

The figure also shows two particular combinations
of ¢, and h; that is, two specific panel designs.
Design A represents the initial design, that is, the
starting point for the optimization process. It may
correspond to an actual panel in some existing
ship, or it may be a purely arbitrary first assump-
tion. For any good optimization process, the latter
is sufficient. Thus, the starting design need not be
feasible (and often will not be, even if it does cor-
respond to an actual design, since the loads and/or
limit values for the current design are different).
Design A is not only infeasible (it violates the min-
imum h; and the combined buckling constraint),
but also expensive. Design B is the optimum
design; it is the point within the feasible region
which has the least cost. The task of the mathemat-
ical optimization process is to find this optimum
point, from any starting point, and to do so with as
little computation as possible.

1.2.7.8 Postoptimality Information

In Fig. 1.11, the optimum design is governed by two
constraints: combined buckling of stiffener and plat-
ing and the minimum plate thickness to prevent plate
buckling. Another feature of a good optimization
method is that, if requested, it can inform the designer
as to all the circumstances relating to the optimum
design, such as what are the governing constraints.
Other useful information that should be available
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includes how steep or flat the optimum is; that is,
how much extra cost would be incurred in moving
away from the optimum design point in various
directions; what would be the effect on the cost of
relaxing or tightening any of the active constraints;
and, if relaxation were possible, which direction
would give the greatest further decrease in cost.

1.2.8 Optimization Methods for Large
Structures

Mathematical optimization is purely a mathematical
procedure and therefore it can and should be a fully
automated process. That is, in the overall design pro-
cess of Fig. 1.4, the optimization step is simply a
“black box” which performs a specific task: it accepts
as input an objective function and a set of constraints,
and it returns as output the specific optimal values of
the design variables, that is, the values that maximize
the objective while satisfying all of the constraints.
Since there is only one optimum point in the design
space, the optimization task is straightforward and
unambiguous; there is no need or reason for any inter-
vention by the designer. The only requirement is that
the method must find the optimum rapidly and effi-
ciently. The particular manner in which it does this is
not important, and any optimization method that
meets the requirement can be used in the overall
design process of Fig. 1.4, without any need for the
designer to have a detailed knowledge of it or of
mathematical optimization theory. Therefore, in this
section we merely describe the broad classes of opti-
mization methods, identify those methods which have
been proven to be capable of meeting the require-
ments of ship structural optimization, and provide
references from which detailed information about the
methods may be obtained.

1.2.8.1 Types of Nonlinear Optimization
Methods

Many optimization methods that have nonlinear
capability are available. The majority may be
grouped into three categories:

1. Fully nonlinear methods, such as mathematical
programming methods and various algorithms for
unconstrained minimization

2. Special purpose methods, such as fully-stressed
design, the optimality criteria methods, and geomet-
ric programming

3. Methods based on sequential application of lin-
ear programming

In all, there are many different optimization
methods, and nearly all of them can be used for

structural optimization in some application or
other. However, most of them tend to be suitable
only for a particular type of problem. Gallagher
and Zienkiewicz (1973) give a basic explanation of
all of the principal methods and demonstrate their
applications.

In general, the majority of the methods are suit-
able either for small nonlinear problems (i.e.,
which have only a few design variables) or for
slightly nonlinear large problems. As far as the
authors are aware, only the third type of method—
sequential linear programming—has been shown
to be capable of solving the large nonlinear prob-
lem which is involved in ship structural optimiza-
tion with sufficient speed, computational efficiency,
and generality. The fully nonlinear methods per-
form satisfactorily for small problems (say five or
six design variables), but the amount of computa-
tion increases sharply with problem size, and for a
structure as large and complex as a hull module,
these methods are not feasible. The special purpose
methods are rapid and efficient, but they are too
restricted; they cannot handle constraints that are
highly nonlinear and/or involve many design vari-
ables, and the first two (fully-stressed design and
optimality criteria) cannot handle an arbitrary
(user-specified) nonlinear objective.

1.2.8.2 Methods Based on Sequential Linear
Programming

In this type of method, all of the nonlinear functions
[the objective function and the limit values Q, =
f(x)] are replaced by linear approximations, and the
linearized problem is solved rapidly by the
well-known method of linear programming, using
the simplex algorithm. This process is repeated
sequentially, with the linear approximations being
recalculated at each new design point. The original
version of sequential linear programming was
developed by Kellog (1960) and Griffith and
Stewart (1961). In this first version, the linearized
form of each function f was simply the linear terms
of its Taylor series expansion, which involves the
various first derivatives of f with respect to each
design variable: df/dx;. It was found that, unless all
functions were only slightly nonlinear, the linear-
ized problem was too different from the actual non-
linear problem, and the process would not converge.
Hence, for many years, the method was limited to
problems which were only moderately nonlinear.
But it was subsequently shown that this limitation
can be overcome by using some second derivative
terms in formulating the linearizations. Various sec-
ond-order methods have been developed. Hughes
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and Mistree (1976) presented the SLIP2 method,
which uses the second derivatives of the nonlinear
. >f .
functions (but only terms of the form 8—2; mixed
Xi
2

derivatives are not required) to obtain a more

0x; 0X;

accurate linearization of both the objective function
and the constraints. This method was developed spe-
cifically to meet the requirements of rationally-based
ship structural design, and it is this method that is
used in the MAESTRO computer program. As
shown in the examples and references given in
Section 1.3, SLIP2 is able to solve problems involv-
ing a large number of constraints of various types
(linear and nonlinear, equality and inequality) and in
which the objective may be any user-specified non-
linear function of the design variables. Most
importantly, the method is rapid and cost-effective.
The SLIP2 method is not limited to structures; it is a
general purpose method that can be used for com-
mercial, industrial, or other optimization applica-
tions. The complete mathematical algorithm and
logic structure for SLIP2 are given in Mistree,
Hughes, and Phuoc (1981).

Another second-order version of sequential linear
programming was developed by Murtagh and Saun-
ders (1980). In Murtagh and Saunders (1983), this
method is demonstrated for several large-scale opti-
mization problems in commerce and industry.
Although these examples do not include structural
optimization, it is clear that the method is also suit-
able for this application.

Pedersen (1973) presented a systematic method
for using “move limits” in sequential linear pro-
gramming, which overcame most of the conver-
gence problems referred to above.

1.2.9 Coverage and Plan of the Book

This new edition of the book is a major update of the
original 1983 publication. The biggest change is to
involve multiple authors and editors. It has taken
many years and is still not quite finished. But rather
than delay publication any further, all of the availa-
ble new and revised chapters have been inserted in
this edition. To show what the final work will
include, this section gives a summary of all of the
chapters and identifies the two chapters that have yet
to be written.

The rest of Chapter 1 is devoted to some further
basic aspects of structural safety, probabilistic design,

and the use of partial safety factors. Specification of
safety factors is primarily the responsibility of clas-
sification societies and, therefore, this text does not
seek to determine or recommend any specific combi-
nation of safety factors or any specific values for
them. Instead, these are described in general terms,
and the combinations and values given are purely for
illustration.

Chapter 2 summarizes the four major analysis
tasks in rationally-based ship structural design: cal-
culation of loads, the structure’s response to the
loads, the various limit values of each response, and
optimization. Thus, Chapters 1 and 2 give the over-
all method of rationally-based structural design.

Chapter 3 presents the traditional hull girder anal-
ysis based on beam theory. This is the oldest and
best established aspect of preliminary structural
design. The chapter covers only those topics which
continue to be relevant for rationally-based design.
Chapter 4 summarizes the theory and techniques for
obtaining a more precise estimate of wave loads on
ships, when account is taken of the probabilistic,
dynamic, and nonlinear aspects of these loads.

Chapter 5 presents the reliability-based approach
to structural design, which is particularly appropri-
ate for ships since their primary loading (forces
resulting from waves and ship motions) are best
obtained and presented in statistical terms.

Chapters 6 and 7 present the basic features of
finite element analysis, starting with frame analysis
and introducing some basic two-dimensional ele-
ments. Chapter 8 presents the basics of nonlinear
finite element analysis.

Chapters 9 through 15 deal with the limit analy-
sis of the principal members: columns, beam-col-
umns, plates, and stiffened panels. In each case,
the elastic aspects are covered first and then the
inelastic. For computer-based analysis, it is neces-
sary to have either explicit expressions or numeri-
cal procedures for calculating limit values, and
only these types of methods are presented. Some
methods are new, such as that for clamped
beam-columns in Section 11.3 and the ultimate
strength algorithms for plates and stiffened panels,
presented in Chapters 13 and 15.

Chapter 16 deals with the limit state analysis of
the hull module. Because of the structural complex-
ity of a hull module and the complex interaction
which often occurs between instability and plastic
deformation, this analysis requires an incremental
load-deflection approach, which traces the history of
the collapse.

Chapter 17 deals with fatigue of structural details.
Two further chapters are intended for future edi-
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tions. Chapter 18 will deal with a relatively recent
type of sandwich panel, consisting of steel faces and
an elastomer core. These panels have extraordinary
in-plane and bending strength, and they provide
excellent protection against projectile impact and
fire. They also provide good vibration and acoustic
damping. Algorithms will be given for the ultimate
strength of these panels under in-plane compression
and lateral pressure. Finally, Chapter 19 will give a
summary of the available computer programs for
ship structural design.

1.3 PRACTICALITY AND
PERFORMANCE OF THE METHOD

As explained above, the aims of this text are to
present a method for rationally-based design and to
explain the basic theory and analysis methods which
are required for that method. But the first require-
ment of a design method is that it be practical. A
method which lacks this characteristic is of no real
value in practical design, no matter how “rational” it
may be. Thus, when a method is proposed which has
a much larger theoretical content and is entirely
computer-based, the questions which immediately
arise are: what stage has it reached regarding imple-
mentation, availability, and actual use; what are its
benefits and its performance characteristics; what
does it require; and in short, how practical is it?
Therefore, before proceeding further with the theory
and method, it is necessary to demonstrate that the
method of rationally-based design presented herein
is truly as powerful, practical, and beneficial as
implied in the previous section and to provide fac-
tual information that will answer the questions just
raised.

This can readily be done because the method was
developed over a long period of time (since 1972),
and throughout all of this period the practical aspects
were given just as much attention as the theoretical
aspects. As each portion of the method was devel-
oped, it was computer-implemented and tested
before being accepted. Each portion received many
further tests as other portions were added or modi-
fied. If at any stage, some portion was found to be
impractical, it was promptly discarded, and work
was begun on a replacement. In the first decade or
so, there were many discards.

The first version of the method was completed in
1975, for which the computer program was called
AUSTROSHIP. Under the sponsorship of the
American Bureau of Shipping, a second version was
completed in 1978, for which the program was
called SHIPOPT. This was followed by a series of

validation tests; the finite element portion was vali-
dated against DAISY, a large general purpose finite
element program owned by the American Bureau of
Shipping, and the structural optimization portion
was validated by a series of formal, full-scale design
studies involving four ship types: a 14,000 dead-
weight (dwt) general purpose cargo vessel (Hughes,
Mistree, & Zani¢, 1980), a 96,000 dwt segregated
ballast tanker, a 140,000 dwt bulk carrier (Liu,
Hughes, & Mahowald, 1981), and a destroyer
(Hughes, Wood, & Janava, 1982). In 1983, the com-
plete method was implemented in the MAESTRO
computer program.

The practicality and performance of the method,
and also of MAESTRO, may be judged from the
results of the validation tests and design studies. All
of them showed a similar performance, and since
Liu, Hughes, and Mahowald (1981) is the most
comprehensive study, most of the results quoted
here are from that reference.

Since this section deals mainly with the features
and performance of a particular computer program,
it should be noted that the subject matter of the
book is not a computer program, but rather the
underlying theory of and a general method for
rationally-based structural design, which is neces-
sarily computer-based. The theory and method pre-
sented in this book can serve as the foundation for
various computer programs, some more general
and some more specific. It is not limited to one par-
ticular program.

1.3.1 Use of MAESTRO for Structural
Evaluation

Being a program for rationally-based design, MAE-
STRO is organized along the lines of the design pro-
cess of Fig. 1.4. Thus, corresponding to steps 3, 4,
and 5, it contains:

1. A special high-speed design-oriented finite ele-
ment method which calculates the load effects Q
(deflections and stresses) in all of the principal
members for all load cases.

2. A set of coordinated subroutines which perform
limit state analysis, examining all relevant types of
failure and calculating Q,, the limit values of the
load effects, for each different principal member and
for all load cases.

3. Other subroutines which formulate the con-
straints against each type of limit state for each dif-
ferent principal member. This involves searching the
values of Q and Q; to find and use the currently
worst combinations of these two quantities. The pro-
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gram then makes a note of the corresponding lowest
value of the margin of safety for each limit state and
the location and load case where each lowest value
occurs.

These three features make the program a powerful
tool for a variety of structural analysis and evalua-
tion purposes in addition to optimum design. When
used in this mode, the program executes only one
cycle and stops just short of the optimization step.
Because the finite element portion is extremely
rapid and because a given set of input data is easily
modified, the designer can quickly determine the
effect of a proposed design change. Moreover, the
structural evaluation portions of the program have
many valuable applications outside of, or immedi-
ately following, the design of a ship. Some exam-
ples are:

1. To check the structural adequacy of a proposed
design

2. To investigate proposed structural modifications
3. To assess the seriousness of structural damage
and the degree of urgency of repair

4. To assess the structure after an actual or a pro-
jected corrosion wastage

A common example of the first application is the
checking of a proposed design prior to or as part of
the classification approval process. For large and/or
nonstandard ships, classification societies usually
require that a finite element analysis be made of the
hull structure to check whether the general stress
levels are satisfactory and whether there are any par-
ticular locations of overstressing. The analysis is
usually performed in two stages: a three-dimen-
sional “coarse mesh” analysis of the ship, followed
by a series of separate, mostly two-dimensional
“fine mesh” analyses of selected areas. MAESTRO
allows both of these to be done within a single
model. Any portions of the “coarse mesh” model
can be converted to fine mesh. As shown in the bulk
carrier example, the coarse mesh portion of
MAESTRO is approximately 12 to 15 times faster
than conventional finite element programs. Also,
MAESTRO uses more sophisticated finite elements
and, therefore, in spite of the coarse mesh, it yields
all important stress values in all principal structural
members of the ship. Moreover, besides calculating
the stresses, MAESTRO also performs the complete
limit state analysis just described and produces a
color-coded graphical display of the vessel’s struc-
tural adequacy for all of the principal members.
These features, together with a graphical user
interface, make MAESTRO ideal for obtaining a

rapid and yet thorough evaluation of the adequacy of
a proposed design. This is useful for two purposes:

1. To assess a design in which there are some non-
standard aspects, but not sufficiently unusual to war-
rant a detailed (fine mesh) finite element analysis

2. For designs that are nonstandard, to determine
whether there are regions which require a fine mesh
analysis and, if so, to immediately perform these
analyses within the same model (no need to construct
separate, stand-alone models, with the associated
problem of producing accurate boundary conditions)

1.3.2 Selection of Design Objective

MAESTRO leaves the designer free to specify how
the optimization objective is to be measured. For
commercial vessels, the usual objective is maximum
profitability over the ship’s lifetime. Factors which
most affect profitability are initial cost and operating
revenue. Initial cost is a combination of material
cost and fabrication cost, and to a first approxima-
tion these two may be expressed in terms of the vol-
ume of material and the total length of welding (the
combined lengths of all of the girders, frames, and
stiffeners). These are the parameters that were used
in Liu, Hughes, and Mahowald (1981). The cost
algorithm contains four factors:*

1. Cost per unit volume for stiffened panels

2. Cost per unit length of stiffening for stiffened
panels

3. Cost per unit volume for web frames and girders
4. Cost per unit length for web frames and girders

The other principal aspect of profitability—operat-
ing revenue—is determined mainly by cargo capac-
ity. In bulk carriers, for instance, a saving in hull
steel weight gives a corresponding increase in cargo
deadweight and, hence, revenue. The additional rev-
enue resulting from weight savings (or, on a cost
basis, the extra cost [lost revenue] resulting from
weight increase) can be allowed for by increasing
the volumetric cost factors.

The four cost factors are part of the data input
and, if desired, can be different for different regions
of the ship. The lineal (cost per unit length) factors
would reflect such items as welding costs and would
influence the optimum number of stiffeners in each
strake of plating. These factors might vary accord-

*As shown therein, the costs are not, and do not need
to be, actual dollar costs, but rather cost indicators, or
indices, which portray the correct relative proportions
of the various costs.
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ing to which shipyard is building the ship. For exam-
ple, one yard might have better automatic welding
machines, so that its cost per unit length of stiffener
weld might be less than for another yard. In this
case, the optimum design would probably have more
stiffeners and less steel than at the yard with higher
welding costs. The type of ship could also influence
the cost function. In a double bottom bulk carrier,
one would want to penalize increased double bottom
height since this reduces volumetric cargo capacity.
In this way, the program would automatically look
first at other structural changes before increasing the
double bottom height.

1.3.3 Example 1—96,000 DWT Qil Tanker

The first example from Liu, Hughes, and Mahowald
(1981) is a single skin, medium-sized oil tanker.
This was before the requirement that tankers must
have a double hull. Since one of the main purposes
of this study was to assess the economic benefits of
rationally-based design, all of the design specifica-
tions (principal dimensions, geometry, loads, etc.)
were the same as for an actual, rule-based, manu-
ally-produced design. As explained therein, steps
were taken to avoid any bias in favor of MAESTRO
and to remove the rather uncertain question of cor-
rosion allowance from the comparison. In ration-
ally-based design, there is a clear distinction between
steel that is required for adequate strength and steel
that is provided in order to allow for corrosion.
MAESTRO provides only the former; the latter
must be added on after the optimization.

The transverse section of the basis ship is shown
in Fig. 1.12. For the three cargo tank lengths which
comprised the MAESTRO structural model, the cost
of the basis design was 9708 cost units, and the
structural weight (which is automatically calculated
by MAESTRO) was 8050 tons. As mentioned ear-
lier, the initial scantlings for MAESTRO are com-
pletely arbitrary and so in this case, in order to
provide a direct and graphic comparison between
the rule-based design and the MAESTRO design,
the scantlings of the former were used as the initial
scantlings for MAESTRO. The performance of
MAESTRO is shown in Fig. 1.13.*

The solution for the optimum design required 11
design cycles, which today involves only a few sec-
onds of computer time. The resulting optimum
design had a total life cycle cost (in which increased
revenue from weight savings is converted to and
subtracted from initial cost) of 8477 cost units,

*Including solutions with two other quite different
sets of initial scantlings.
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Figure 1.12 Basis ship: 96,000 dwt tanker.

which is a 13% improvement on the basis or current
practice design. The savings in initial cost was 6%,
which for a tanker of this size represents a savings of
the order of 1 million dollars (in 1981 values).

1.3.3.1 Effect of Using Standard Sections

The foregoing savings will be decreased slightly by
the need to use standard plate thicknesses and stand-
ard rolled sections for the stiffeners. MAESTRO ini-
tially treats these design variables, and also the
stiffener spacing, as continuous variables in order to
avoid the enormous computation and complexity of
discrete variable optimization. Then, in the final
design cycle, it converts to standard sizes, based on a
list of standard sections and available thicknesses that
the designer specifies in the input data. The designer
can also specify the location and extent of whatever
interstrake (see Fig. 2.15) uniformity he or she wishes
to impose, in order to limit the total number of differ-
ent sections and thicknesses. Moreover, the designer
can make these choices after seeing the idealized
optimum, which provides a great deal of insight and
guidance. In the final design cycle, the program does
not merely round off all scantlings to the next larger
standard size, but rather looks for tradeoffs between
rounding up and rounding down, subject to the over-
riding requirement that all constraints (safety, fabrica-
tion, etc.) must remain satisfied. As this requirement
is essentially “one way,” it is unavoidable that the
standardized design will be a few percentage points
away from the “ideal” (but impractical) optimum of
the nonstandard design. In this example, the final
design was 8670 cost units, and so the savings over
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the rule-based design decreased from 13% to 11%,
and the savings in initial costs became 5%. This is
still of the order of 1 million dollars, since the hull
construction cost for such a tanker is at least $20 mil-
lion (in 1981 values). Moreover, this savings can be
regarded as realistic because the design itself is both
realistic and “production-friendly”: standard sizes
and a limited number of different sections and
thicknesses.

1.3.3.2 Ability to Repeat a Preliminary Design

Since the preliminary structural design, by defini-
tion, does not examine local effects, it often happens
that in the detail design, it is necessary to increase
some of the scantlings because of local loads, cut-
outs, and so on. This will happen more frequently
when the preliminary design is an optimum design,
since there is no excess steel in such a design. In
most cases, the cost increase is small. However, if
there are many such loads or other influences, such
that the subsequent cost increase is found to be large,
then these are not really local effects; they are gen-
eral effects and the preliminary design should be
redone with these effects included. With manual
design, this is a large and time-consuming task; in
many cases, the more expensive locally adjusted
design would have to be accepted. With MAESTRO,

it is a relatively easy matter to add the loads or make
an approximate modeling of the local geometry, and
rerun the program. In that case, the extra design
requirement will be satisfied in the optimal way, and
so the cost increase (over the previous preliminary
design) will be much less than the cost increase
associated with making local adjustments. It will
also be less than that obtained by redoing a manual
preliminary design.

A similar situation arises when an important
design requirement is changed after a preliminary
design has been completed. To fulfill the new
requirement properly would mean repeating the
design. A designer using standard manual methods
must choose between making another costly and
time-consuming design or only partially fulfilling
the requirement by making local changes.

1.3.3.3 Examination of Alternative Structural
Configurations

Another principal benefit of the program is that it
allows the designer to compare the optimum designs
for alternative structural configurations. In order to
demonstrate this, a study was made of an alternative
tanker design having three longitudinal girders in
the center tank; that is, three parallel “ring frames”
around the inside of the tank in a vertical longitudi-
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nal plane, instead of only one ring frame in the ship’s
centerplane. The data for this alternative configura-
tion took about one man day to prepare. The results
showed that the optimum design based on this con-
figuration was slightly more costly than that of the
single-girder model, and hence that there was no
point in adding the extra girders. To have performed
such a study without a program like MAESTRO
would have constituted a major research project,
occupying several man months.

1.3.4 Example 2—Bulk Carrier

The other ship type which is investigated in Liu,
Hughes, and Mahowald (1981) is a 140,000 dwt
bulk carrier. This also was an actual current practice
design, but in this case the design chosen was not the
final design but an earlier version in which a coarse
mesh finite element stress check (by DAISY, a gen-
eral purpose finite element program) had found
stresses exceeding yield in the bottom and inner bot-
tom plating. The yielding was caused by a combina-
tion of stresses from the local cargo bending moment
and the overall hull girder bending moment (see
Figs. 1.14 and 2.3). This early version of the design
was chosen to illustrate how MAESTRO can be
used to check a tentative design and also, if desired,
to produce optimal corrections. For this model, it
was necessary to analyze five hold lengths because
of the ballast tank arrangement. Since the model was
structurally symmetric longitudinally, it was only
necessary to model two and a half hold lengths of
the structure.

1.3.4.1 Structural Evaluation

At first, MAESTRO was used in the “evaluation
mode” to compare its results with those obtained

HULL MODULE

Figure 1.14 MAESTRO deflection plot—full load sagging
conditions; heavy ore cargo.

earlier in the DAISY three-dimensional coarse mesh
analysis. All of the deflections and all of the stresses
given by the MAESTRO analysis were in good
agreement with those given by DAISY.

1.3.4.2 Optimization

After the structural evaluation of the existing design,
MAESTRO was used to produce an optimum (least
cost) design while also correcting the deficiencies.
The cost factors were basically the same as those
used in Hughes, Mistree, and Zani¢ (1980).

With the height of the double bottom fixed at its
original value of 2.3 m, the optimum design pro-
duced by MAESTRO had thicker plating but smaller
longitudinals. The resulting cost was 7.5% and the
weight 6.4% less than the starting design. Next, the
double bottom height was allowed to vary. This pro-
duced a design that had a lower double bottom
height (1.9 m) and thicker bottom plating (24 mm).
Compared to the original design, the cost was
reduced 8.8%. These results indicate that the design
having a smaller double bottom height is of slightly
lower cost. In addition, this design is able to carry
more cargo.

The effect of varying the double bottom floor
spacing in the bulk carrier was also examined. The
original design had a floor spacing of 2.4 m (23 bays
in the MAESTRO model). From this original model,
two others were developed: one with a spacing of
2.208 m (25 bays) and one with a spacing of 2.76 m
(20 bays). The overall lengths of all three designs
were identical. The length of the cargo holds, how-
ever, did vary because of the differing floor spacing,
with the variation not more than 14%. One man day
was required to generate these two additional
models.

Running MAESTRO for these three floor spac-
ings without restricting the double bottom height
produced the results shown in Fig. 1.15. Because
there were no restrictions on double bottom height,
each floor spacing resulted in a different double bot-
tom height. From the cost index curve, it appears
that the original spacing of 2.4 m was a reasonable
choice. To determine the minimum value of the
curve, it would be necessary to make additional runs
with larger frame spacings. Notice that the weight is
lowest at the original frame spacing.

To eliminate the variation in double bottom height
as a factor in determining the optimum frame spac-
ing, the three models were run with the double bot-
tom height fixed at 1.9 m. The weight and cost index
curves for these runs are shown in Fig. 1.16. In this
case, it appears that of the three spacings, a frame
spacing of 2.76 m is still the optimum.
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1.3.5 Use of MAESTRO in Teaching and
Research

Since rationally-based design deals with the actual
characteristics of a structure, including the complex
and interrelated response of all of its members and
the calculation of the various limit values of these
responses, and since the program is a mathematical
model of these characteristics, it is very helpful in
teaching both the theory and the practice of ship
structural design. First, because of its structural
analysis and structural evaluation features, the pro-
gram assists in gaining a deeper understanding of
the complex and interrelated characteristics of a ship
structure, and in learning what types of structural
arrangement are most efficient. Second, because it
also has an optimization capability, the program is
in effect a “ship design simulator,” in which a
designer can try out various ideas and possibilities,
and can learn more about various aspects of struc-
tural design, such as the relative cost efficiency of
different structural arrangements and the optimum
proportions of structural members for different
structural arrangements.
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Figure 1.16 Cost and weight versus frame spacing—1880
double bottom height.

The program also has many useful applications in
ship structural research. For example, it may be used
to examine the effect of corrosion on the strength of
the hull girder and to develop improved corrosion
criteria (initial allowance, permissible wastage—
both thickness and extent, etc.). The program may
also be used to perform a series of “hindcasting”
analyses of various types of ships in order to deter-
mine the approximate magnitude of the safety fac-
tors that are inherent in current design practice, and
to see how the factors compare for various locations
in the ship, types of principal structural members,
types and modes of failure, and types of ship.

1.3.6 Other Practical Aspects

MAESTRO includes several features that make it
versatile and easy to use, such as a graphical inter-
face and menu system, an interactive modeler for
rapid structural modeling, and color graphics that
display complete information about the structural
model and the various results of a MAESTRO job:
stresses, types, and locations of structural failures,
degree of structural adequacy (safety margins) of
each member for each loadcase, and optimum scant-
lings. Special methods of color coding allow the
designer to quickly review, quantify, and compre-
hend the wealth of information that is obtained.
Thus the designer always remains in control of the
overall process.

The use of the program does not require any
specialist knowledge about computing or about
optimization theory. The program has a comprehen-
sive Help File including a User Guide and tutorials,
all of which can be downloaded and printed. In addi-
tion, this book itself serves as a very complete type
of theoretical manual for the program. MAESTRO
can be run on ordinary laptop computers using any
recent version of the Windows operating system. As
of 2009, it has been used by 13 navies, various struc-
tural safety authorities (Coast Guard agencies, clas-
sification societies, etc.), and by hundreds of
structural designers and shipyards throughout the
world. Distribution and technical support is pro-
vided by Advanced Marine Technology Center,
DRS Defense Solutions, LLC, 160 Sallitt Drive,
Suite 200, Stevensville MD, 21666, USA (www.
orca3d.com/maestro) and by Design Systems &
Technologies, Antibes, France (www.ds-t.com).

1.4 STRUCTURAL SAFETY
1.4.1 Uncertainty, Risk, and Safety

In the design of ocean structures, there are many
uncertainties to be dealt with. First, there is the
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uncertainty of the loads, especially those arising
from waves. The ocean environment is severe, com-
plex, and continuously varying. Ocean waves are
essentially random and can be adequately defined
only by means of probabilistic methods and statis-
tics. Second, there are uncertainties regarding mate-
rial properties such as yield stress, fatigue strength,
notch toughness, and corrosion rate. For example, in
ordinary steel which has not had special quality con-
trol, the yield stress can vary by as much as 10%; it
is also dependent on the rate of loading and on the
effects of welding. Third, there is inevitably some
degree of uncertainty in the analysis of a structure as
complex as a ship. Both the response analysis and
the limit state analysis necessarily involve assump-
tions, approximations, and idealizations in for-
mulating mathematical models of the physical
environment and of the structure’s response to that
environment. Fourth, there can be variations and
hence uncertainties in the quality of construction,
and this factor may have a particularly strong influ-
ence on the strength of a structure. Finally, there are
uncertainties of operation, such as operating errors
(improper loading, mishandling, etc.) or a change of
service.

Wherever there are uncertainties, there is risk of
failure. For a structure, the risk of failure is the
probability of a load reaching or exceeding its limit
value. That is, for each limit state

risk = F, = prob (0 = 0;) (1.4.1)
in which, for simplicity, we are here considering a
limit state which involves only one load. The safety
of a structure is the converse—the probability that it
will not fail. Hence

safety =prob (0<Q,)=1-P;, (14.2)
Since there are always some uncertainties, and
hence some risks of failure, it is impossible to make
a structure absolutely safe. Instead it can only be
made “sufficiently safe,” which means that the prob-
ability of failure can be brought down to a level that
is considered by society to be acceptable for that
type of structure. Therefore, if a structural design
process is to be rationally based, the whole question
of safety must be dealt with on a probabilistic basis,
and the process must provide the means whereby the
designer can ensure that the degree of safety meets
or exceeds the required level. The calculation of the
probability of a particular type of failure involves
the probability density functions of the relevant load
and of the limit value of that load. If these probabil-
ity density functions are denoted by po(-) and pg, (+)

respectively, then the probability of this particular
type of failure occurring is

P, =f:“:pQL(§) dé} Po(MdN (1 43y

This is illustrated in Fig. 1.17, which shows that
even though Q;, the mean of the limit value, is well
above the mean load, there is still some overlap of the
curves and hence some possibility of failure. (Note:
The probability of failure is not equal to the area of
the overlap, but this area nevertheless provides a use-
ful visual and qualitative indication of P;.) The figure
also shows that the important regions of the distribu-
tion curves are the tails, because this is where the
overlap occurs. Unfortunately, it is this portion of a
distribution curve which is most difficult to obtain
with any precision, mainly because one is dealing
with rare events. However, it will be shown that there
are ways of obtaining satisfactory estimates and upper
limits of P, even though the tail portions of the distri-
bution curves are not known precisely.

1.4.2 Levels of Safety

The required level of safety varies according to the
type of failure and the seriousness of its conse-
quences. Because these levels are ultimately deter-
mined by society, there are no precise values or
exact rules for determining them, but they can be
estimated by surveys and by examining the statistics
regarding failures, particularly those types in which
the failure rate is considered by the public to be gen-
erally satisfactory, in the sense that the costs and
resource usages that would be required to further
reduce the failure rate are considered to be unwar-
ranted when balanced against other needs. For
example, in regard to occupational risk, Flint and

*This equation assumes that Q and Q; are independent
random variables.
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Possibility of Q>Q;
hence possibility of failure

Figure 1.17 Probability distributions of load effect and of
limit value of load effect.
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Baker (1977) reviewed a range of activities and
obtained the results shown in Table 1.1. From the
results of a study of merchant ship losses, Lewis et
al. (1973) estimated a value of between 0.003 and
0.006 as the lifetime probability of overall structural
failure that has been tacitly accepted for large ocean-
going ships. From studies of this type, it would
appear that the value of Py, the total annual failure
probability per structure (ship, aircraft, drill rig,
etc.), ranges from 10 or less for failures that have
moderately serious consequences (substantial eco-
nomic loss but no fatalities) to 10~ or less for cata-
strophic failures, such as the crash of a passenger
aircraft.

A different approach to the question of required
level of safety is the use of economic criteria
(Construction Industry Research and Information
Association, 1977). This is particularly appropriate
for cases in which loss of life is not involved. For a
large number of similar structures, the total annual
cost C; of each of them can be formulated as

Cr=C+PIC,lso (1.4.4)

where C, is the initial cost, converted to an annual
depreciation cost; P;is the annual probability of fail-
ure; and [ C/]gq is the equivalent failure cost in present
worth.

The equivalent failure cost involves a discounting
of future damage costs to present worth by appropri-
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Figure 1.18 Typical relationship between cost and total
probability of failure.

ate interest rates. Failure costs should include all costs
involved such as salvage operation, pollution abate-
ment, cleanup, and lost production. It could also
include loss of reputation and public confidence. In
Fig. 1.18, a typical relationship between annual cost
and annual probability of failure is demonstrated. The
figure shows that the most important parameter is the
ratio p between failure cost and initial cost.

Many structures are comprised of, or can be
divided into, a set of members, each of which is suf-
ficiently important that failure of any one member is
regarded as failure of the structure. If the failure

Table 1.1 Comparative Annual Probability of Death per 10,000 Persons

Activity

Annual Exposure (hr) Annual Risk per 10*

Offshore operations (including diving and vessels)
Mountaineering (international)
Distant water trawling (1958-1972)
Offshore operations (other than construction,
diving, or vessels)
Air travel (crew)
Coal mining
Car travel
Construction site
Air travel (passengers)
Home accidents (all persons)
Home accidents (able-bodied)
Manufacturing
Structural failure (land-based structures)
All causes (England and Wales, 1960-1963)
Male, age 30
Female, age 30
Male, age 50
Female, age 50
Male, age 53

65
100 27
2900 17
11
1000 12
1600 33
400 2.2
2200 1.7
100 1.2
5500 1.1
5500 0.4
2000 0.4
5500 0.001
8700 13
8700 11
8700 73
8700 44
8700 100
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modes of the members are independent, the total
failure probability is

Py=YP, (1.4.5)

where Pj; is the failure probability of the j* member.
Since the total probability of failure consists of sev-
eral components, there is an opportunity to optimize
the way in which this total required level is obtained.
Under some simplified assumptions the optimal
design will come close to satisfying the following
equation (Moses, 1978).

Qj:

C

1

P,
JJ
1.4.6

o (1.4.6)

where Cj; is the cost of member j. This approach can

be used to decide on the relative safety margins of
the members.

1.5 PROBABILISTIC DESIGN METHODS

This topic is covered at length in Chapter 5. The pur-
pose of this brief section is merely to introduce some
of the basic notions and to give some of the early
history. Chapter 5 was originally published as a sep-
arate document, and so for completeness it includes
a few of the figures and tables from this section.
Also, there are a few small differences of notation.

The question of a design procedure based on a
probabilistic model for loads and strength has
received a great deal of attention in the field of struc-
tural engineering. Pugsley (1942) and Freudenthal
(1947) were the pioneers for aircraft and civil struc-
tures in the 1940s. They demonstrated how a rela-
tionship can be derived between safety factors and
probability of failure, provided that the statistical
distributions are known. In subsequent years, these
methods were further developed and were increas-
ingly incorporated in structural design codes, both
for steel and for concrete. For concrete, this approach
has been particularly successful because it accounts
for the large variability in the strength of this mate-
rial. A probabilistic design code is currently being
developed for the design of offshore structures,
stimulated by the higher risks and the higher eco-
nomic stakes involved in that field.

In contrast, in the field of ship structures, the
probabilistic approach is still at the early stages, in
spite of the obvious probabilistic nature of wave
loads. But in fairness, it should be pointed out that
the load and response analysis is much more com-
plicated for ships than it is for fixed structures or for

aircraft, because it must deal with the exceedingly
complex interaction between wave excitation and
ship motions merely to compute the loads.

1.5.1 Exact and Approximate Probabilistic
Methods

The task of achieving a specified level of safety can
be pursued at various levels of mathematical rigor.
We shall first show that a fully rigorous method
requires the gathering of a great deal of information
and is simply not justified in the majority of cases.
Then we shall present two approximate methods,
with an emphasis on the second one—the Partial
Safety Factors Method.

1.5.1.1 Fully Probabilistic Design

The most rigorous and most general type of proba-
bilistic design is that which utilizes the complete
probability distribution functions of all relevant
quantities (loads, load effects, and limit values) to
calculate P, from (1.4.3) for each load and for each
type of failure. These values are then combined into
an overall probability of failure which is then
adjusted, by making modifications to the design,
until it falls within the stipulated acceptable overall
risk. This approach requires the determination of all
of the probability distributions, either by measure-
ment (of the complete phenomena or of their sepa-
rate constituent aspects, and either full-scale or
model) or by theoretical considerations, all of which
is a very large task. Since the most highly probabil-
istic loads are those arising from waves, and since
hull girder bending moment is the most important
load effect, early research efforts were concentrated
on obtaining the probability distribution for the
extreme value of wave-induced hull girder bending
moment. Sufficient data regarding waves have now
been collected and processed statistically to produce
some approximate probability distributions for this
load effect; these are discussed in Section 4.3. The
probability distributions of other loads and load
effects are less known, and much work remains to be
done. Likewise, the distributions of limit values are
not easy to obtain since they arise from so many
separate variations (material properties, accuracy of
analysis, and quality of construction), each of which
requires the collection of a great deal of statistical
information. In areas where this information is not
yet available, it is necessary to use less rigorous
techniques.

Moreover, the availability of information is not
the only factor that should be considered; another
important question is whether the application really
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requires the complexity of the fully probabilistic
method, because a design method should always be
as simple as the circumstances permit. A complex
method always introduces more likelihood of errors
in its use. Also, greater complexity usually increases
both the cost and the time required for the design.
Therefore, it is important to consider whether the
added accuracy of a rigorous but complex method is
really justified, in regard to both safety and econ-
omy, for the particular application. For aerospace
structures it often is justified, but for ship structures
this is less likely.

In this regard, it is also relevant to examine what
proportion of ship accidents are due to structural
failure. Figure 1.19 from Gran (1978) presents the
results of a survey which showed that in a given
sample of ship casualties, only about 7% (0.138 X
0.54 X 100%) of severe accidents were caused by
structural failure. In view of the many other causes
of severe accidents and the relative infrequency of

structural failure, it is clear that even a large increase
in the rigor and accuracy of structural design would
not improve the overall risk of casualty very much.
Resources used for this purpose could be used more
effectively for improvements in areas of other risks
involved. Hence, there is need for moderation in
regard to the statistical complexity of the structural
design method.

1.5.1.2 Approximate Probabilistic Methods

The desire to reduce the complexity of the fully
probabilistic approach has led to the development of
simplified methods which retain the basic statistical
foundation but which require only the mean and the
variance and not the complete probability distribu-
tion curves.

Two alternative approximate methods are availa-
ble and they are basically similar, having the follow-
ing two fundamental features.

ONE YEAR OF
SHIP OPERATION
1 3 ¥ i
SEVERE MINOR ROUTINE NO
ACCIDENT ACCIDENT FAILURE FAILURE
0.015 0.035 0.20 0.75
ACCIDENT
TYPE:
L L 3
HULL FAILURE NAVIGATION FIRE AND MACHINERY OTHERS
ROUGH WEATHER FAILURE EXPLOSION FAILURE 0.047
0.138 0.514 0.233 0.068 :
HULL FAILURE
TYPE:
L '
STRUCTURAL LOSS OF FOUNDERING
FAILURE STABILITY AND MISSING
0.54 0.26 0.20
FAILURE IN
MAIN STRUCTURAL
ELEMENTS:
r Y i
DECK AND HOLDS AND SUPER-
HATCHES BULKHEADS gg'ap SIDES EE;TDM STRUCTURE
0.15 0.36 ) ) 0.04

Figure 1.19 Empirical distribution of ship casualties.
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1. All failure modes which are independent are
treated separately. This greatly simplifies the proc-
ess, but it requires that a value of acceptable risk
must be defined separately for each type of failure
(although in practice the same value can be used for
all types which have the same degree of seriousness)
and it precludes the possibility of combining the
separate risks. Therefore, it requires approxima-
tions, which must necessarily be on the conservative
side, in order to deal with combinations of loads of
differing probability and combinations of interactive
modes of failure.

2. The basic probability distributions (Gaussian,
lognormal, and Rayleigh) are characterized by their
first two moments, that is, by the mean and the vari-
ance (see Section 4.1 for a brief summary of basic
statistical definitions and theorems). For this reason,
these methods are sometimes referred to as second
moment methods. If these two parameters have been
established for the load effects and for the limit val-
ues, it is possible for the relevant safety authority to
specify the required level of safety in terms of a set
of deterministic (i.e., nonstatistical) safety factors
from which the designer can immediately calculate
the required strength (limit values) which the struc-
ture must have.

1.5.2 Safety Index Method

The Safety Index Method is the earlier of the two
(Freudenthal, 1956), but it has not been as widely
adopted as the second, the Method of Partial Safety
Factors. Nevertheless, it will be briefly described
here because it introduces basic concepts common
to both methods and because the Safety Index itself
is a very useful tool in establishing suitable values
for the partial safety factors.

The degree of safety is directly related to the mar-
gin between the actual value of the load effect and
the limit value

M=0, -0

and failure occurs when the margin becomes nega-
tive. Since these are both random variables, M will
be likewise, having a probability density function
pu(M), as shown in Fig. 1.20. Therefore, the degree
of safety depends not only on the separation of the
two curves as measured by the distance between
their mean values

W=0,-0
but also it depends inversely on the “spread” of the
two curves, as measured for example, by their coef-

Po(Q), po (Q)
L > Q.Q
0 a g,
e
py(M)
L M
0 M
P (M)
- M
_ 4 0
Vm

Figure 1.20 Probability distributions of the safety margin.

ficients of variation. Therefore, it will also bear
some inverse relationship to V,, the coefficient of
variation of M. If V), is large, the degree of safety
will be correspondingly less, and vice versa. The
probability of failure is

P, = prob[M < 0]

Subtracting M from both sides of the inequality and
normalizing by means of the standard deviation o,
gives

M-M M
Oum

Py = prob <=5, s

By definition, the coefficient of variation is V,, =
o/ M and therefore

M-M 1
= prob < - (1.5.2)
P, = Pro o VM]

The left-hand term within the brackets is the nor-
malized margin, for which the distribution has zero
mean and unit variance. Let us denote this normal-
ized margin as Jl and let P,(-) be its probability
distribution

P () = cumulative probability
distribution of Jl = prob [JM< ¢ ]
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P, = prob (1.5.3)

1
M<_E}

The occurrence of 1/V,, on the right-hand side within
the brackets confirms that the degree of safety
depends on the inverse of the coefficient of varia-
tion. We therefore give this quantity the name Safety
Index and denote it by the symbol 3

_ 1
BVM

In terms of the Safety Index, (1.5.3) is

P; = prob{ M< - B]
=E(-PB)

This last expression shows that there is a direct
correspondence between the Safety Index 8 and the
probability of failure. The larger the Safety Index,
the smaller the probability of failure, that is, the
safer the structure. If the complete distribution P (-)
is known (i.e., if the distributions of Q and Q, are
known), then the exact value of P, corresponding to
a given value of B can be determined.* But even if
the exact P(-) is not known, designing on the basis
of a specified value of B produces a consistent
degree of safety from one design to another, for each
type of structure. For ship structures, a suitable value
of B can be determined for each type of failure by
analyzing the statistics regarding ships which have
proven to be reasonably efficient and which also
have a satisfactory safety record. This has been
done, for example, for extreme hull girder bending
moment in Mansour (1974) and Faulkner and
Sadden (1979).

One of the principal advantages of the Safety Index
and also of the Method of Partial Safety Factors is
that the provision of adequate safety, which is a
probabilistic quantity, is converted and expressed
deterministically in terms of a specific “design” value
of load and a specific limit value which the structure
must possess. The Safety Index Method makes use of
mean values and in particular it involves their ratio
which is referred to as the central safety factor, vy,

(1.5.4)

Yo =

SIS

It can be seen that Y. corresponds to the familiar sin-
gle safety factor of deterministic design.

The relationship between 3 and vy can be derived
as follows, starting with the definition of 3,

Upon rearranging for y¢

1+ B\/VLz"'VQz_ BZVLZVQZ
- BV

Ye = (1.5.5)

In the Safety Index Method of design, the appropri-
ate safety authority specifies the values of 3, V,, and
Vi, depending on the type of structure and the degree
of seriousness of the limit state. For each limit state,
the designer calculates the central safety factor from
(1.5.5) and then calculates the mean value (best esti-
mate) of the relevant load effect Q by performing a
response analysis. Alternatively, for those structures
for which the loads and load effects are well estab-
lished, the safety authority may provide a formula
for a less exact but more universal “design value” of
Q, together with a larger value of 8 which must be
used with it. Knowing Q, the designer then applies
the factor y. to obtain y-Q, and then designs the
structure such that Q; equals or exceeds y.Q. This
requirement constitutes one of the strength con-
straints which the design must satisfy. Stated math-
ematically, the constraint is

Y-0< 0, (1.5.6)
This procedure is carried out for each limit state,
thus producing the complete set of strength con-
straints which govern the design.

1.5.3 Partial Safety Factor Method

The Partial Safety Factor Method has been adopted
in several areas of structural design, from simple
building codes for civil structures to designs for air-
craft and aerospace structures. It has two advantages
over the Safety Index Method. First, it makes a more
explicit distinction between statistical uncertainty—
that which arises purely from genuine statistical ran-
domness and which can therefore be properly and
adequately assessed using statistical theory—and
approximational uncertainty—that which arises
from the assumptions, approximations, and judg-
ments that are necessarily involved in any structural
design task.* Second, in the Partial Safety Factor
Method, each principal circumstance affecting the
seriousness of the failure, and each principal source
of approximational uncertainty, is accounted for

*For example, for the normal distribution the Safety
Index is the same as the standard deviation.
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explicitly by means of a separate safety factor, and
this clarifies matters and permits greater precision
and consistency.

The following paragraphs give a fuller explana-
tion of statistical and approximational uncertainty. It
is shown that the first can be accounted for by using
characteristic values (instead of mean values),
whereas the second can be accounted for by using
safety factors, with a separate factor for each source
of uncertainty.

1.5.3.1 Statistical Uncertainty

The uncertainty that arises because of the randomness
of the variable (Q or Q,) can and should be assessed
by means of basic statistical theory. To do this, it is
necessary to establish what type of distribution (nor-
mal, Poisson, etc.) is involved. In some cases, this is
known from theoretical considerations. In other cases,
it is possible to determine by observation which basic
type most nearly resembles the actual distribution.
Once the type is known, the uncertainty can be calcu-
lated by means of the basic laws and relationships of
statistics. A very useful way of dealing with statistical
uncertainty is in terms of a characteristic value,
which is the value corresponding to a specified per-
centage of the area under the probability density
curve, that is, to a specified probability of exceed-
ance. For example, Fig. 1.21a illustrates a character-
istic value of load Q. corresponding to a 5%
probability of exceedance. Figure 1.21b illustrates a
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Figure 1.21 Illustration of characteristic values.

characteristic limit value of load, in which case the
5% probability refers to nonexceedance.

In contrast to the Safety Index Method, which
uses the mean values Q and Q,, the Partial Safety
Factor Method uses characteristic values Q. and
0, ., thereby automatically accounting for the statis-
tical probability of failure. Thus, if the only uncer-
tainty was purely statistical (i.e., if Q and Q, exactly
followed their assumed distribution function), there
would be no need for any safety factors, and the
strength constraint would be simply

0.=0. 1.5.7)
in which the characteristic values would be selected
so as to provide whatever degree of safety was
required.

To illustrate this, let us take the idealized triangu-
lar probability distribution of Fig. 1.22 for both QO
and Q,. Let us define the characteristic values Q. and
0, . as those values which correspond to a 2% prob-
ability of exceedance and nonexceedance, respec-
tively. We superimpose the two distributions such
that their characteristic values coincide, thereby just
fulfilling the constraint which is expressed by
(1.5.7). For this case, (1.4.3) becomes

%=fm@@ﬂ@®M<m&

Pa(Q): P, (Q)

A TOTAL AREA = 1.0
Po(Q) A, (Q)
0.80 |- Shaded Area = 0.02
0.16 _———
= Q,Q
0 2.5
Qc= 225
po (M) = 0.32-0.64n Po, €)= 0.64%
0.32
0 05 2.5 &

Figure 1.22 Idealized probability distributions.
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in which the limits of integration and the origin of
the dummy variables & and m reflect the fact that the
integration need only be performed over the length
of the overlap. We now take further advantage of
this in writing simple expressions for p, and p,,
which are valid within this range

P, (8) = 0.64§
PoM) = 0.32-0.64n

Substituting into (1.5.8) and integrating gives
05 2
p=] 0.64%(0.32— 0.641) dn

and integrating again gives

2
P = 64y _ 00107

* 384
or a failure probability of about 0.1%. Hence, if the
required safety corresponded to a failure probability
of 0.1%, then the two-percentile characteristic val-
ues would be the appropriate values, and the strength
constraint of (1.5.7) would give the required safety
without needing any factor of safety.

1.5.3.2 Approximational Uncertainty

In reality, of course, there is always some additional
uncertainty besides the purely statistical uncertainty,
which is either not statistical in nature (e.g., uncer-
tainty arising from value judgements, from approxi-
mations, or from legal, political, or other nontechnical
influences on design) or which, although statistical,
cannot be included in that category because suffi-
cient information is not available. This uncertainty
is here called approximational because most of it
arises from the approximations that are inevitable in
structural design. Indeed, even the use of statistical
theory to describe ocean waves involves some
assumptions and approximations. But in dealing
with any statistical aspect in design, the goal should
be first to obtain sufficient information so as to be
able to use statistical theory and to account for most
of the uncertainty by this means, even though some
approximations are still required, and then to seek to
improve the information so as to further reduce the
approximational uncertainty. Thus the amount of
approximational uncertainty is reduced as more
information becomes available. However, it will
never be entirely eliminated; some approximations
will always be necessary, and in addition there will

always be some sources of uncertainty for which
statistics are not entirely adequate; of that, at least,
there is no uncertainty.

Because of approximational uncertainty, the charac-

teristic values that account for statistical uncertainty
are not sufficient in themselves. It is necessary to fur-
ther increase the separation of the Q and Q; curves, by
some amount that can only be estimated and that
requires judgement, in order to retain the required
degree of safety. There are two different ways of doing
this, and in describing these we shall use as an example
the case of an approximational uncertainty in the load
Q. The two approaches are as follows.
1. Artificially increase the variance V. If the mar-
gin between Q and Q; is being specified in terms of
mean values and a central safety factor y,, as in the
Safety Index Method, this produces a larger value
for . from (1.5.5), which causes the limit value dis-
tribution curve to be displaced to the right, thereby
increasing the margin. If the margin is being speci-
fied in terms of characteristic values, this produces a
larger characteristic load Q,, and from (1.5.7) this
again causes the limit value curve to be displaced to
the right.

It is emphasized that as the uncertainty being
accounted for is either not statistical or has unknown
statistical properties, the amount by which the vari-
ance should be increased can only be estimated; it is
a matter of judgment and is therefore somewhat sub-
jective and arbitrary. This is emphasized because
variance is a statistical quantity and so the stratagem
of increasing the variance, as is done in the Safety
Index Method, might make the method appear to be
entirely statistical and objective, with no subjective
or arbitrary element. Hence, the increase in the vari-
ance is described as “artificial” at the beginning of
this description.

2. Apply a factor of safety y,, the value of which is
likewise a matter of judgment in exactly the same
degree as the increase of variance. However, in this
approach, statistical aspects remain unchanged, and
the approximational uncertainty is accounted for in
a more explicit manner. For example, if statistical
uncertainty is being accounted for by means of char-
acteristic values, as in the example involving the tri-
angular distributions, then the strength constraint of
(1.5.7) would become

10 Q= O (1.5.9)

The second approach is the basis for the Partial
Safety Factor Method, which is presented next. We
note here that since the statistical uncertainty is
already accounted for by the characteristic values,
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the magnitude of 7y, will be much smaller than the
value of . in the Safety Index Method.

1.5.3.3 Partial Safety Factors

Regardless of which of the two semiprobabilistic
methods is used, and regardless of which technique
is used to account for approximational uncertainty,
it is absolutely essential to be able to specify differ-
ent levels of safety for different types of failures, in
accordance with the degree of seriousness of the
failures. That is, in addition to and quite apart from
the need to account for uncertainty, it is also neces-
sary to adjust the separation between the curves of Q
and Q; to account for the degree of seriousness of
the particular type of failure which is being consid-
ered. Thus, there is a need for some simple and
explicit method for adjusting the separation between
Q and Qy; the safety factor vy,, which relates the two
characteristic values Q. and Q; ., provides just such
a method. Therefore, instead of regarding this factor
as a single quantity, we will regard it as the product
of several partial safety factors. These factors can
then be used for two main purposes:

1. To account for the degree of seriousness of the
particular limit state in regard to safety and service-
ability (for a commercial ship, the latter refers
mainly to the economic consequences of the failure)
taking into account any special circumstances (pur-
pose of the ship, type of cargo, interaction of this
limit state with others, etc.). Since safety and serv-
iceability are not the same, it is best to use two inde-
pendent partial safety factors for this task.
2. To account for the approximational uncertain-
ties such as:
e Deviation of the probability distribution of
the loads from the assumed distribution, due to
unforeseen actions or conditions, and conse-
quent deviation of the load effects
* Assumptions and approximations in the
response analysis and in the limit state analysis
* Deviation of the limit value from its assumed
distribution due to unpredictable factors (e.g.,
poor workmanship)
e Other matters requiring estimation and
judgement

The number of partial safety factors varies from
as few as three to eight or more, depending on the
type of structure and on what level of detail is pre-
ferred for their specification. Factors are sometimes
further subdivided if this gives greater precision or
consistency. In this text, we will use four factors:

* v and 7yg, which account for the seriousness,
in regard to safety and serviceability, of the type of
failure under consideration

* o which accounts for the approximational
uncertainties in the loads and load effects, including
the discrepancy between the structure’s actual load
effect and the value predicted by the (necessarily)
idealized response analysis

* <., which accounts for the approximational
uncertainties in the estimated limit value

The first three of these factors are applied to the
load (or load effect) in the same way as v, is applied
in (1.5.9). But since the fourth factor refers specifi-
cally to the limit value, it is customary to transfer it
to the denominator of the right-hand side and to
apply it to Q, . as a dividing factor. For this reason,
Ys1, Ys2» and vy, are often referred to as load factors
while vy, is called a limit value reduction factor, or,
in some cases a usage factor.

Thus in the Partial Safety Factor Method, the
strength constraints are of the form

Ysi¥s2Yo Oc = Orc /M1 (1.5.10)

The situation is illustrated in Fig. 1.23.

The Partial Safety Factor Method has been adopted
for civil engineering design codes in nearly all of
Europe and in Canada, Australia, and other countries.
It has been adopted by the American Institute of Steel
Construction (AISC) as an alternative to its existing
code. These codes are actually a synthesis of the
Safety Index Method and the Partial Safety Factor
Method because the former was used to establish
suitable values for the partial safety factors. The
Safety Index is ideal for measuring and comparing
the relative safety of different structures and struc-
tural members. Structures or members designed to
the same Safety Index will have essentially the same
degree of safety. From a survey of past designs, it is
possible to calculate values of 8 for structures that
were designed using earlier codes and that have
proven satisfactory. For example, the AISC found that
B =3 gave a reasonable correlation with its previous
code. Once a satisfactory value of 3 is established, it
is possible to calculate partial safety factors for the
various loads, load effects, and limit values, such that
they all have a consistent degree of safety, even
though they may have quite different degrees of
uncertainty. This process is basically the responsibil-
ity of the safety authorities rather than the designers,
and so it is beyond the scope of this text. We here
merely mention a few basic and simplified aspects.
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Figure 1.23  Use of partial safety factors.

In general, the distribution that is found to give the
best fit to measured values of loads, load effects, and
limit values is the lognormal distribution, defined in
Section 4.1. From the definition of the Safety Index

lezﬂ: QL_Q

Oy A 0'L2+ O'Q2

Vi
it may be shown that for the lognormal distribution

o, 1417
___oNI+W (1.5.11)
JIn[+7)A+ 7))

where V,, and V, are the coefficients of variation of
the load effect and of the limit value. If V, and V, are
0.3 or less, (1.5.11) can be simplified quite accu-

rately to
In (QL>
0

This expression can be further simplified by intro-
ducing a “splitting” constant, «, and making the
approximation

W +Vi = oW+ 1)

If, for example, V,, and V, have about the same mag-
nitude, then a choice of & = 0.7 gives a good approx-

B= (1.5.12)

imation for a fairly wide range of magnitudes. With
this approximation, (1.5.12) can be rearranged into
the form of a strength constraint

%0 < O/, (1.5.13)

in which

Yo = exp (o BV)p)

Y, =exp (o BV)) (1.6.1a)

This equation states that if the mean value (best esti-
mate) of the load effect multiplied by 7, is less than
the mean (best estimate) of the limit value divided
by 7., then a Safety Index greater than 8 will be
achieved. Note that in this formulation the mean val-
ues Q and Q, are used instead of the characteristic
values, and so the factors 7y, and 7y, account for both
statistical and approximational uncertainty. This is
done if neither Q nor Q, are amenable to a statistical
representation and nearly all of the uncertainty is
approximational.

The establishment of a suitable set of partial
safety factors for ship structures is a large task, but it
is absolutely essential for progress in this field, and
it will be of benefit to all in the shipping world: own-
ers, designers, builders, operators, insurers, and oth-
ers. The new civil engineering codes provide a good
start, but there is need for further effort by persons
and agencies directly concerned with ship struc-
tures. The American Petroleum Institute and other
agencies are currently engaged in a similar task for
offshore structures.
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1.5.4 Distinction Between Stillwater Loads
and Wave Loads

The hull girder loading on a ship may be divided into
two broad categories: stillwater loads and wave loads.
The first relate mainly to cargo loading and other con-
trollable factors, and they are, for the most part, spe-
cific, deliberate, and directly calculable; they are
basically deterministic, and for the statistical fluctua-
tions which do occur, it is a relatively simple matter to
calculate characteristic values. Therefore, the calcula-
tion of the corresponding characteristic load effects is
relatively straightforward, requiring only a single
response analysis. Wave loads are the opposite: they
are essentially probabilistic and the calculation of hull
girder bending moment in the at-sea condition is a
major task, primarily because there is a quite compli-
cated interaction between the load and the response:
the seaway loading causes ship motion and the motion
influences the seaway loading. Because of this cross-
coupling in the response, the characteristic value of
load effect (such as hull girder bending moment which
is the most important load effect) cannot be obtained
by defining a single characteristic value of load and
then performing a single, static response analysis. On
the contrary, the response analysis for wave-induced
loads is quite complex, involving statistical theory,
hydrodynamics, and systems analysis, and it can only
be done by means of rather sophisticated computer
programs that have been developed for the purpose. A
brief summary of this analysis is presented in Section
2.2, and it is treated more fully in Chapter 4.

For an individual designer, such an analysis repre-
sents a complex and time-consuming task, and yet it
is the only way of obtaining accurate values for the
wave-induced load effects for a specific ship design.
However, for ships of standard geometry and propor-
tions, there is a much easier method, which is made
possible by the following observations.

1. The load effects of the stillwater loads can be
calculated separately; the stillwater loads have only
an indirect influence on the wave loads.

2. The stillwater load effects depend on the particu-
lar geometry and the structural weight and cargo
distribution, but the wave-induced characteristic
load effects, being long-term statistical quantities,
are more general and universal, and are applicable to
a whole class of ships having the same geometry and
proportions.

Ship classification societies and other researchers
have utilized computer programs for wave-induced
response analysis to calculate the characteristic value

of hull girder bending moment for ships of standard
geometry and proportions. Then, by subtracting the
stillwater portion of the bending moment, they
obtained characteristic values for the wave-induced
bending moment. Other information has been
obtained from long-term measurements of bending
strain in ships. As a result, it has been possible to
develop expressions for these characteristic values in
terms of the principal dimensions of the ship. These
expressions are given in the rules of the various clas-
sification societies. Some examples are given in
Section 3.5. Thus for ships of standard geometry and
proportions, the designer can concentrate on the still-
water response analysis and load effects, which
depend on internal layout and cargo distribution.

For ships of nonstandard geometry or propor-
tions, the characteristic value of total bending
moment should be calculated for the most important
cargo configurations using a wave response analysis
program. These programs have now been developed
to the point where the user need only supply basic
information such as the ship’s lines (or offsets) and
the cargo distribution. They are available at the com-
puter bureaus of various classification societies, and
they run easily on personal computers.

1.6 LOAD FACTORS AND DEGREES OF
SERIOUSNESS OF FAILURE

As mentioned earlier, three of the four partial safety
factors are applied to the load; hence, these three are
commonly referred to as load factors.* It will be
convenient to also define a “total” load factor, Vi,
which is simply the product of these three partial
load factors.

Yid = Ysi¥s2¥o (1.6.1)

The first two refer to the degree of seriousness of the
failure, and in this section we present some qualita-
tive definitions of degrees of seriousness and some
sample values of load factors. The fourth factor, y;,
is applied as a divisor to the limit value of the load
effect, and its value is determined mainly by mate-
rial properties and fabrication considerations.

1.6.1 Degrees of Seriousness of Failure

In order to assess the degree of seriousness of a
structural failure, we must examine the conse-

*Strictly speaking, they should be called “partial load
factors,” but the word “partial” is often omitted.
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quences: what are the losses and how severe are
they? We have seen that the two principal attributes
by which the fitness of a ship is measured are safety
and serviceability. Accordingly, we may distinguish
two different types of losses.

1. Loss of life and other serious and irreparable
noneconomic losses

2. Loss of main function which, for a commercial
vessel, means economic loss because of lost reve-
nue, cost of repair or replacement, environmental
damage, lawsuits, and so on.

The foregoing categories also apply to non-
commercial vessels in which the main function is the
performance of some mission or service that has no
direct relationship with economic factors. For such
vessels, the performance can be quantified by means
of a performance index; in fact, as pointed out in
Section 1.2, for a rationally-based design the objec-
tive has to be specified and its dependency on the
design variables must be quantified. The same per-
formance index that serves as the objective function
can also be used to assess the degree of seriousness of
a failure that adversely affects the performance.

Although safety and serviceability have much in
common, they are clearly distinct; there are some
failures that can cause fatalities without causing loss
of main function and vice versa. Also, they have dif-
ferent relative importance in different situations. For

example, in naval vessels the main function is the
performance of a mission and therefore serviceabil-
ity—the accomplishment of the mission—has
greater importance relative to safety than it has for
commercial vessels.

Since there are two separate attributes for mea-
suring seriousness—safety and serviceability—we
use two separate factors, ys; and vyg,. Even with this
distinction between safety and serviceability, the
degree of seriousness is still difficult to assess and to
quantify. There are any numbers of degrees of seri-
ousness; it is a continuous rather than a discrete
quantity. Nevertheless, for our purpose we must
nominate and define a few specific degrees of seri-
ousness. As an example, we will herein distinguish
four degrees of seriousness which we will call
extreme, severe, moderate, and slight. These must be
defined in terms of their likely consequences in
regard to safety and serviceability. For the attribute
of safety, the degree of seriousness of a failure cor-
responds to its consequences in regard to loss of life.
Table 1.2 describes in general terms the sorts of con-
sequences that are associated with the four degrees
of seriousness. Similarly, for the attribute of service-
ability the seriousness is measured by loss of main
function. Table 1.3 describes the sorts of conse-
quences that would correspond to these four degrees.
It is emphasized that the values of partial load fac-
tors given in the tables are merely sample values,
given for illustration only. The way in which they

Table 1.2 Degrees of Seriousness of Structural Failure in Regard to Safety

Degree of
Seriousness of
Failure

Level of Structure Loss of Life

Consequences in Regard to

Sample

Range of ys5,v, Ysi for yo=1.1

Hull module
collapse

Extreme

Some fatalities likely; may include
all personnel if there is another

1.30-1.54 1.18-1.40

failure or harsh conditions or

mismanagement
Principal Severe

member collapse

Small but definite risk that failure
may cause a few fatalities at

1.20-1.40 1.09-1.27

occurrence; risk of subsequent
fatalities very small unless
there is another failure, harsh
conditions, or mismanagement

Moderate

No appreciable risk of fatalities

1.10-1.30 1.0-1.18

but the structure is weakened and
a slight risk would arise if there

is another failure, harsh conditions,
or mismanagement

Slight

No risk of fatalities, but the

1.0-1.20 1.0-1.09

resulting local damage constitutes a
slight risk of injury (e.g., warped

deck plating)
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Table 1.3 Degrees of Seriousness of Structural Failure in Regard to Serviceability

Degree of
Seriousness Consequences in Regard to Loss Sample Range
Level of Structure of Failure of Main Function* of vy
Hull module Extreme Complete loss (ship out of service) 1.2-1.4
collapse for a long period; may be permanent loss
(i.e., total loss of ship) if there is another
failure, harsh conditions, or mismanagement
Principal Severe Complete loss for short period or partial 1.1-1.2
member loss (ship operational but severely handicapped);
collapse repair costly and urgent
Moderate Ship operational but inefficient; loss of some 1.05-1.1
secondary functions; repair as soon as
practicable
Slight Main function impaired; some inconvenience or 1.0-1.05

inefficiency at the secondary level; repair as
soon as convenient

*Revenue earning or mission performance.

were obtained is described in the next section, which
also points out the need to take into account particu-
lar factors such as the type of ship (passenger, cargo,
naval, hazardous cargo, etc.) and the cost and the
operational importance of the ship.

Since the primary aim of structural constraints is
to provide adequate safety and serviceability, the
most important limit state is that of ultimate failure
or collapse of the hull girder (which in practice is
performed for hull modules that are each a complete
segment of the ship). The other limit states are
merely stages toward collapse. The provision of an
adequate degree of safety against structure collapse
automatically provides a proportional degree of
safety against less serious forms of failure, and this
is usually sufficient. But the converse is not true; the
provision of adequate safety against lesser forms of
failure does not necessarily provide sufficient safety
at the overall level—which is where it is most
required.

In the past, because a true ultimate strength anal-
ysis of the overall structure was not possible, the
only alternative was to define certain ways in which
overall failure could occur, in terms of certain com-
binations of member failures. This has obvious limi-
tations, the most serious being that structure collapse
can in fact be caused by the collapse of one member
or of many, depending entirely on the geometry and
proportions of the structure and on the loading. The
correlation of structural collapse with member col-
lapse requires long-term experience and carefully
documented information concerning actual failures
of that particular type of structure. If the structure is
of a different type, or even of different proportions,
it may very well be susceptible to a certain combina-
tion of member failures which has not occurred

before. This is precisely what has happened in many
structural failures.

It is better to determine what the actual forms of
failure are for the structure in question, under the
various combinations of loads which are expected.
Since the ultimate strength testing of a complete hull
module is usually out of the question, this can only
be done by means of a model—either a physical
model or a mathematical model. With modern com-
puting power, mathematical modeling is not only
possible but also just as reliable and is far easier and
more efficient than the former. As is shown briefly in
Section 2.5, and in more detail in Chapter 16, the
mathematical calculation of the ultimate strength of
a hull module requires an incremental or load-deflec-
tion approach, that is, the formulation of a mathe-
matical model and the determination of the
structure’s actual load-deflection relationship by an
incremental analysis of the individual failures which
lead to collapse of the structure. There is no other
way of determining the true forms of collapse and
the true (i.e., lowest) collapse load for a large struc-
ture which is subjected to a variety of load combina-
tions. A load-deflection approach is normally a
rather large computational task, but Chapter 16
presents a modeling strategy and a method of analy-
sis that makes it quite economical with present-day
computers.

If a true ultimate strength analysis is performed
for a specific hull module, there is no need to attempt
to anticipate the form of the collapse. Hence, there is
no need to define intermediate stages of failure in
terms of numbers and types of member failures, or
to classify these according to their degree of serious-
ness and assign partial safety factors for them.
Therefore, the ultimate strength analysis of the over-
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all structure logically involves only one level of seri-
ousness—the extreme level. The other levels shown
in Tables 1.2 and 1.3 are mainly intended for the
ultimate strength analysis of principal members,
which we will consider next. But we note in passing
that if there is some particular intermediate form of
failure for which it is desired to have a specified
degree of safety, then these other levels can be used
for this purpose.

The other type of limit state analysis is that of the
principal members. In most cases, these are suffi-
ciently simple and their characteristics are suffi-
ciently well known that it is possible to define all of
the possible limit states for each type of member
(the member types being distinguished on the basis
of the topology, geometry, and material of the mem-
ber). The information required is the member’s
structural dimensions and material properties, and
the loads acting on it. The last point is emphasized
because the true loads acting on a principal member
can only be obtained by a full ship finite element
analysis. Even so, some approximations and ideali-
zations may be required. For example, a tapered
stiffened panel is usually idealized as rectangular.

Since there are several limit states and since some
of them may be known to have more serious conse-
quences than others (again because of safety or ser-
viceability or both), it is desirable to have two or
three levels of seriousness of member failure, and
that is the purpose of the other three categories—
severe, moderate, and slight—of Tables 1.2 and 1.3.
Each member failure is assigned to one of these cat-
egories depending on which of the consequences
described in the tables best matches the consequence
which that limit state would have on the safety and
serviceability of the ship.

1.6.2 Sample Values of Load Factors

At the hull module level, the most significant load
effect is hull girder bending moment. Because of the
complexity of this load effect, there is as yet no stan-
dard or universally accepted value for the percentile
level to be used in calculating the characteristic
value of wave bending moment, or for the load fac-
tors 7y, and 7s,. The specification of these values is
the prerogative of the classification societies and
other ship structure authorities. These bodies are
currently engaged in the determination of suitable
values. In order to reach a worldwide uniform safety
climate for shipping, the IMO in cooperation with
IACS, within the development of GBS as described
in Section 1.1.6 above, is in the process of defining
overall safety goals and acceptance criteria for ships.
These will be the basis for future rules of the differ-

ent classification societies with a more uniform
safety level. Finally, this will also have an influence
on the selection of safety factors and load factors in
ship structural design.

In this section, we present some sample values of
load factors which are intended merely to illustrate
the discussion and to give some indication of the
approximate magnitude and range of these factors.

As we have seen, the degree of seriousness of a
structural failure, from the point of view of safety, is
accounted for by +ys,. But this degree of seriousness
depends on many factors and circumstances relating
to the nature of the ship and its service. For example,
a given type of structural failure is more serious in a
vessel carrying passengers, not only because of the
added number of people, but also because, unlike a
crew, they are uninvolved and untrained. Therefore,
although we can define certain degrees of serious-
ness in general terms as in Table 1.2, it would not be
sufficient to assign one specific value of vy, for each
of these degrees. Instead, it is necessary to give a set
of values that covers all of the important circum-
stances relating to safety. In order to give at least a
qualitative indication of this, Table 1.2 gives a sam-
ple range of values of s, 7y, for each of the defined
levels of seriousness. The reason for giving the
product instead of the separate load factors is
explained later.

The factor s, accounts for the degree of serious-
ness in regard to serviceability. The seriousness of a
given failure depends here on the importance of the
ship’s main function, or on the economic scale of the
ship and of the system in which it is operating. For
example, a failure that causes 3 weeks of ship immo-
bility for repairs is more serious for a fast or expen-
sive or specialized ship than for a slow-speed,
low-cost, easily-substituted ship. Thus, the choice of
Ys» is normally made not by regulatory authorities
but by whomever is responsible for the overall sys-
tem in which the ship is to operate, on the basis of
economic and operational criteria. Hence the value
of vy, can vary over an appreciable range, and to
illustrate this, Table 1.3 gives a range of values. But
here again, as in Table 1.2, the values are for illustra-
tion only, and the specified upper and lower values
are not intended as limits in any way.

The sample values of vy 7y, for the “extreme”
level of seriousness in Table 1.2 are based on
Faulkner and Sadden (1979), who analyzed several
actual and “rule-based” naval vessels. Working
backward from available data (load estimates, strain
records, etc.), the authors estimated that the percen-
tile level for the characteristic hull girder bending
moment which is implicit in current design practice
is of the order of 2%, that is, a wave bending moment
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which is sufficiently large that there is only a 2%
chance of it being exceeded in the ship’s lifetime.*
However, this figure of 2% is only approximate
because there are still some aspects of ship response
analysis theory in which greater accuracy is required,
such as some of the nonlinear effects of the ship
motion response analysis, the spectral distribution
function for ocean waves, and the statistical predic-
tion of long-term values.

These are all examples of approximational uncer-
tainty regarding the load; therefore, they can be
accounted for by vy,. If the values of the other two
load factors were known, it would be possible to
deduce the value of v, which is implicit in
present-day design practice. But, since there are as
yet no officially established or standard values for
either of these factors Faulkner and Sadden (1979)
could only obtain values of the total load factor,
Yioaas defined in (1.6.1).7

The results indicated that for hull module col-
lapse (specifically, collapse of the strength deck)
which corresponds to the “extreme” level of serious-
ness, the value of vy, varied from 1.56 to 1.83 for
the rule-designed naval vessels, for which the values
of s would resemble those which are implicit in
merchant ship design. Since all of the ships consid-
ered were of the same type, s, is constant and so the
product s 7y, is proportional to the load factor.
Although the value of s, is unknown, it is probably
rather low since these were naval vessels. In order to
give some indication of the value of the product s,
Yo, let us choose a value of 1.2 for vy, (this corre-
sponds to the lower end of the sample range of y, in
Table 1.3). Dividing this into the values of y,,,, gives
arange for vys; yo from 1.30 to 1.54. This is the range
shown in the top row of the table. The other three
ranges were chosen such that all four are similar in
size and have a small overlap.

From the above discussion, it is clear that the total
load factor is influenced by all three partial factors,
each of which has a different purpose and is deter-
mined according to different criteria. Since the value
of s, does not relate to safety and is chosen by per-
sons other than the safety authorities, the values of

*This is not the probability of failure; it is merely the
definition of the characteristic value of the load effect, Q.
in Fig. 1.21a. The probability of failure is much less than
2% because it also involves the characteristic value of the
limit bending moment Q; . which is itself defined in terms
of a small percentage chance of nonexceedance (typically
5%), and the margin between Q. and Q; . which is provided
by the partial safety factors.

TActually, Faulkner and Sadden (1979) presented values
of the overall safety factor, yy = v ¥s2 Yo Vi, but from the
information given in the paper it is possible to deduce that
Y. is approximately 1.08.

vs1 and Yy, must be sufficiently large such that the
overall level of safety is satisfactory even when vys,
is 1.0, as it might be for a low-cost, easily-replace-
able vessel. Obviously, a value of 7y, less than 1.0
cannot be allowed. In principle, this same restriction
applies to the other partial safety factors as well.
However, circumstances can arise where there might
be grounds for allowing a factor to be less than 1.0,
such as when a standard characteristic load is being
used which is too severe for the vessel in question
(e.g., ocean wave bending moment for a vessel
intended only for semisheltered waters).
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This chapter takes a closer look at four of the
main aspects of rationally-based design: loads,
structural response, limit states, and optimization.
The aim is to identify their principal components
and to help the reader to gain a clear overall
picture by classifying these components accord-
ing to their types, levels, and the relationships
between them. The logical place to start is with
the loads, and so we begin with a brief summary
of the principal types of loads which act on a ship.

2.1 LOADS ON SHIPS

One way of classifying loads on ships is accord-
ing to the level of structure at which they act
because some loads influence the structure at
just one of four levels: hull girder, hull module,
principal member, and local (see Fig. 1.5). But
other loads have an influence at more than one
level, and the most fundamental load—external
pressure on the hull—has an influence at all four
levels. Nevertheless, the loads can be classified
approximately in this way, and it is important
to have a clear concept of the levels at which
the various loads act or at which they have their
principal influence.

Another way of classifying loads is accord-
ing to how they vary with time: static, slowly
varying, or rapidly varying. In calculating
load effects, there are three types of structural
analysis that more or less correspond to these:
static, quasistatic, and dynamic. In a dynamic
analysis, effects of time variation of loading are
fully accounted for. Almost any irregular dynamic
loading can be represented as a combination of

regularly varying loads. If the force—displacement
relation is linear or only slightly nonlinear, then
the problem of calculating load effects can be
solved “in the frequency domain,” with frequency
as the principal independent variable instead of
time, which greatly simplifies the calculations.
The frequency-based distribution of a load or a
load effect (response) is called a spectrum, and
so we speak of a wave spectrum and a response
spectrum. If the force—displacement relation is
nonlinear, then the problem must be solved “in
the time domain,” with time as the independent
variable.

A quasistatic analysis is simply a static analysis
in which the motions are estimated and their effect
on the structure is accounted for approximately
by including some inertia forces. Since there is no
essential difference between static and quasistatic
analysis, we will in this text usually speak of just
“static” and “dynamic,” and only use the term
“quasistatic” when it is desired to emphasize that
some motion effects are being allowed for in the
static analysis. In most cases, this will be clear
from the context.

Slowly varying loads are those for which even
the shortest component period is appreciably
longer than the fundamental (longest) natural
period of vibration of the structure. In most
cases, slowly varying loads can be dealt with
by means of static analysis with only a small
loss of accuracy, whereas rapidly varying loads
usually require a dynamic analysis for sufficient
accuracy.

Whenever possible, to minimize computation
time, static and dynamic analyses are performed
separately, with the latter dealing only with the
fluctuation in load, that is, the departure from
the static load. Total response of the structure is
then obtained by superimposing the two results.

In terms of the three load types just defined,
the principal loads on ships are:

2-1
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Static (or essentially static) loads

1. All “stillwater” loads: external and internal
pressures (buoyancy and bulk cargo); all weights

2. Drydocking loads
3. Thermal loads

Slowly varying loads

1.  Wave-induced dynamic pressure distribution
on the hull resulting from the combination of wave
encounter and the resulting ship motion

2. Sloshing of liquid cargoes
3. Shipping of green seas on deck
4. Wave slap on sides and on foredecks

5. Inertia loads, especially on masts and other
elongated structures, and also on decks and frames
at the attachment points for containers (lashing
loads) and other heavy objects

6. Launching and berthing loads
7. Ice-breaking loads (at the hull girder level)

Rapidly varying loads
1. Slamming

2. Forced (mechanical) vibration; pressure
pulses from the propeller

3. Other dynamic loads, as discussed later

Static loads are relatively straightforward and
do not require special explanation. Calculation
of stillwater hull girder load effects is dealt with
in Chapter 3. Slowly varying and rapidly vary-
ing loads are more complex, and the following
sections define and describe the various loads in
these categories.

The treatment here is largely qualitative. The
aim is to cover the main aspects and to give an
overview of the various types of loads and the
ways in which they are accounted for.

As computing costs decrease, it is foreseeable
that advanced computational methods will be
used more frequently in the future to predict
dynamic loads. For large containerships in high
waves, recently developed techniques based on
solving the Reynolds-averaged Navier-Stokes
equations in the time-domain have been suc-
cessfully employed to assess, for example,
effects of slamming-induced loads on large-
scale elastic hull girder whipping or effects of
green water loads on wave breakers. However,
it must be stressed that these loads need to
be validated against measurements. For ship
structural designs, we are often only interested
in average loads obtained by integrating local
pressures over structural plate fields and not

local peak pressures acting over small control
volume face fields. Slamming design loads are
typically obtained in this way, and predicted
slamming loads compare favorably with test
measurements. In contrast, it is difficult to
validate predicted sloshing loads because, to
assess their effects, it may well be necessary to
account for concentrated pressure peaks acting
on small areas inside partially filled tanks.

2.1.1 Slowly Varying Loads

The most important load in this category is the
wave-induced dynamic pressure, and the most
important effect is the wave-induced hull girder
bending moment, M,. The term “wave-induced”
means the difference or departure from the
stillwater value of that load (pressure, bending
moment, shear force, etc.), such that the total
value at any point is the sum of the two. Ideally,
since it is influenced by the ship’s motions,
the pressure on the hull should be calculated
as part of the ship motion analysis, and the
wave bending moment obtained from it by
integration. Research in ship motion analysis
and in the statistical description of ocean waves
permitted the development of approximate
but sufficiently accurate expressions for the
characteristic value of extreme wave-induced
(vertical) bending moment, M, .. The accuracy
and applicability of these expressions is being
steadily improved by theoretical analyses and by
model and full-scale testing. In the hull girder
analysis, the corresponding wave-induced hull
girder (vertical bending) stress, o, is obtained
from the section modulus formula o, =M,,./ Z.

In the (static) hull module analysis, these
wave-induced hull girder stresses, together with
the stillwater hull girder stresses, constitute the
loads at the ends of the module. The other hull
module loads are an equivalent static pressure
distribution on the hull representing the actual
dynamic pressure distribution and the various
gravity loads (cargo, steel weight, etc.) with an
allowance for inertia effects if these are con-
sidered important.

Of the other slowly varying loads listed above,
loads (2) through (5) should also, ideally, be
derived from a ship motion analysis. The first
three of these loads are, however, highly nonlinear
and hence the computation is difficult. Sloshing
requires a dynamic analysis for satisfactory
accuracy, and Section 4.6.2 provides some
information on this. Chapter 10 provides some
closed-form expressions for the deformations
resulting from sloshing.
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For green seas on deck, the downward pressure
loading is approximately equal to the hydrostatic
pressure for that height of water (i.e., negligible
dynamic effect). The horizontal pressure (on
deckhouse fronts, etc.) has both static and
dynamic components, and it can be represented
approximately by an equivalent static pressure; a
value of 50 kPa is typical. Wave slap is similar and
is of the same order of magnitude. Inertia loads
require knowledge of the ship’s peak acceleration
at the point in question; a precise value requires
a ship motion analysis, but an approximate
value can be obtained from the experimental
data and ship motion studies that are available
in the technical literature. Some information on
launching, berthing, and ice-breaking loads can
also be found in the literature.

2.1.2 Rapidly Varying Loads

There are several types of load that have short
periods and that usually require a dynamic
response analysis.

2.1.2.1 Slamming

Slamming can occur in three locations: the
forward portion of the bottom, especially if it is
flat, the bow if it is flared outward, and the stern
if it has a large overhang, as in containerships.*

Bottom slamming occurs when, because of
pitching and heaving, possibly combined with the
occurrence of a wave trough, the ship’s bottom
emerges from the water and subsequently, because
of its relatively flat area and the combined speed
of ship and wave surface, undergoes a severe
hydrodynamic impact on reentry. The impact is
sufficiently rapid and intense to generate a high-
intensity pressure pulse on the bottom plating,
of very short duration (typically 0.1 to 1 sec),
which is often accompanied by a loud booming
or slamming sound.

Bow flare (or stern) slamming is the plunging of
the upper flared portion of the bow (or overhanging
stern) deeper into the water. This is a somewhat
more gradual phenomenon (usually without any
sound unless the flare is very concave), but it also
imparts a relatively sudden and intensive force to
the forward (or aft) part of the ship. Circumstan-
tially, the two types of slamming are quite different;
bottom slamming requires emergence of the ship’s

*Some authors prefer to use the term slamming only for
bottom slamming and to refer to the second type as bow
flare (or stern) impact.

forefoot, whereas bow or stern slamming occur
at other times in the ship’s pitching cycle. They
are independent phenomena, and either can occur
without the other. But in spite of their external
differences, these phenomena all have the same
fundamental cause—the relatively sudden change
in the breadth of the immersed cross-section{ of
the ship as it moves downward. This change of
breadth causes a change in the momentum of the
surrounding water, and it does so by changing both
velocity and mass (i.e., the amount) of water which
is involved. The velocity change—both in direction
and in magnitude—is easy to understand because
the immersed section of the ship is growing in size
and changing in shape. But the motion of a body
in a fluid involves simultaneous movement of the
fluid, and this makes the body behave as if it had
additional or added mass; more force is required
to accelerate the body. If the submerged body
grows rapidly in size, as happens in slamming,
the added mass also grows rapidly and resists the
body’s motion, which causes a rapid increase in
local pressure.

Slamming has important effects at two different
levels of structure:

e Hull Girder Level. Bottom and bow slamming
cause a sudden vertical acceleration and deflection
of the bow and excite flexural vibration of the
hull girder, mainly in the fundamental two-node
mode but to a lesser degree also in higher modes.
This hull girder flexural vibration is referred to
as “whipping.” As shown in Fig. 2.1, the vibra-
tory hull girder bending stress, referred to as
“whipping stress,” is of much higher frequency
than the wave-induced stress, and is effectively
superimposed on it. The period of the fundamental
vibration mode excited by slamming is usually
in the range from 0.5 to 2 sec. The hull girder
aspects of slamming are discussed further in
Section 4.6.1, which deals with the nonlinear
ship motion and response analysis.

e Principal Member Level. The shell plating
and its supporting structure (stiffeners, frames,
webs, etc.) are subject to high-impact pressure
forces, which accelerate and deflect all of this
structure and set up vibrations, particularly in
the plating. Damage may occur in the form of
permanent deformation of plating and other struc-
ture. Analysis of this level of slamming response
requires detailed information on the pressure

TStrictly speaking, it is the waterplane area of the immersed
volume which is changing; that is, the phenomenon is actually
three-dimensional. But since a ship is a generally prismatic
body, the flow is idealized as being two-dimensional.
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distribution, which varies with time and space.
The calculation of the permanent deformation is
treated in Section 9.5 and Chapter 10.

Bottom slamming is a particularly complex
phenomenon. Magnitude and duration of impact
pressure depend strongly on, and are sensitive to,
the angle and the relative shape of the ship’s bot-
tom and the water surface and also on the relative
speed of approach. This type of slamming has
been the subject of an enormous amount of study
and research. Some classical works are Mansour
and d’Oliveira (1975), Ochi and Motter (1973),
Kawakami et al. (1977), and Evans (1982). Sections
4.6.1 and 4.6.3 summarize more recent methods for
predicting the impact pressure and the whipping
stresses resulting from bottom slamming.

2.1.2.2  Forced Vibration

For the complete hull girder or at the various sub-
structure levels, forced vibrations may be excited
by main or auxiliary engines, fluctuating hull
pressure loads because of propellers (especially if
cavitating), or other sources of excitation. Although
these are not severe loads, they can influence the
structural design in two ways:

1. By requiring the redesign of a structural
member to avoid resonance

2. By requiring thicker plating (to reduce the
stress level) to avoid fatigue damage

2.1.2.3  Other Dynamic Loads

Ice-impact (at the local or other substructure level)
Underwater explosion (e.g., minehunter)

Certain idealized collision or grounding loads that
may be specified by safety authorities for some
ship types; the ship structure must be capable
of absorbing these without undergoing certain

Whipping stress resulting from slamming.

specified type(s) of failure, such as failure of
cargo tank bulkheads adjacent to those structures
ruptured by collision.

2.1.3 Springing

For most ships, the period of wave encounter
is longer than the longest natural period of hull
girder vibration. But for ships that are relatively
flexible (e.g., some of the very long Great Lakes
vessels) the period of two-node vibration is suf-
ficiently long (of the order of 1 sec) that it can
be excited by the shorter period components of
encountered waves. This phenomenon is known
as “springing.” Since it depends on the period of
encounter, springing is more likely at higher ship
speeds. Springing is undesirable for two reasons.
First, it produces, at the fore and aft ends of the
ship, a noticeable rise and fall of the deck, with
a period of the order of 1 sec, which is distract-
ing and even uncomfortable. It seldom lasts for
more than a few cycles because it depends on so
many coincidental factors, but it is nonetheless
an undesirable phenomenon, particularly in ships
with accommodation aft. Second, since spring-
ing occurs at a higher frequency than ordinary
wave-induced bending, it increases the number of
stress cycles in the ship’s lifetime. Thus, if it were
to occur frequently, it would be a contributing
factor to hull girder fatigue.

2.2 TYPES OF STRUCTURAL RESPONSE
ANALYSIS

2.2.1 Static Only or Static and Dynamic

Figure 2.2 illustrates the principal types of loads
and load effects that are involved in the four levels
of structural response analysis, from hull girder
to local. The figure shows that at each level, the
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Figure 2.2 Levels of response analysis.

analysis may need to include a dynamic structural
analysis. The need depends entirely on whether
that level of structure is subject to any significant
rapidly varying loads, that is, loads for which
the shortest component period is the same order
of magnitude or shorter than the longest natural
period of that level of structure. Since the latter

differs markedly for different levels, with longer
periods for larger levels of structure, a load that
is slowly varying at a lower level may constitute
a rapidly varying load at a higher level (providing
that it qualifies as a significant load at that higher
level). Springing is an example of this; wave loads
have too long a period to cause any excitation at



2-6 LOADS, STRUCTURAL RESPONSE, LIMIT STATES, AND OPTIMIZATION

the hull module level, but they can cause vibration
of the hull girder if the ship is relatively flexible.
An impulsive or high-frequency load, if it is
large enough, will cause a vibratory response at
several levels. Slamming, in particular, can cause
a response at all four levels. But most rapidly
varying loads have their principal influence at
the local and/or principal member level and are
not large enough to induce vibration of an entire
hull module or hull girder. Of course, vibration
can be transmitted from one member to the next
and thus extend over large regions of the ship’s
structure, but that is still member vibration.

In summary, we may say that at the hull girder
and hull module levels a wave-excited dynamic
analysis is not required for most ship types.
However, a calculation of hull girder natural
frequency is nearly always performed. At the
principal member and local levels, a vibra-
tion analysis may be required if there is some
significant and unavoidable source of excitation
(propellers, machinery, etc.). In most cases,
the only requirement is to calculate the natural
frequencies and to design the structure so as to
avoid resonance as far as possible.

On the other hand, there are some instances
when a dynamic analysis is required at the hull
girder and/or hull module levels. For relatively
flexible ships, a dynamic hull girder analysis
should be performed to check for springing. Also,
a dynamic analysis may be required at one or
both levels for “high performance” vessels, that
is, vessels that have greater structural efficiency
and hence are more flexible, particularly at the
hull module level, and which at the same time
must face significant dynamic loads at these levels
because of high-speed operation, unusual hull
geometry, or other reasons. Some containerships
and some naval vessels fall into this category.

2.2.2 Probabilistic or Deterministic

In addition to the choice between static and
dynamic, there are also two different types of
response analysis depending on whether an
explicit statistical approach is used to define
loads and to calculate load effects:

e Probabilistic*—Characteristic values of load
effect are calculated explicitly for the particular
structure and load.

*Strictly speaking, this should be called semiprobabilistic,
but we have seen in Chapter 1 that a fully probabilistic
analysis is presently not feasible and is probably not justified.
Hence, in this text, the distinction is not required, and from
this point on we shall use the terminology defined above.

e Deterministic—Characteristic values are
obtained from approximate expressions derived
previously by means of a systematic series of
probabilistic analyses.

Probabilistic analysis should be used for ships
for which the hull girder loads are not already well
established, as there are no prederived character-
istic values of wave-induced bending moment.
If these are well established and characteristic
values are available, then deterministic analysis
is sufficient. Most types of cargo ships belong
to this latter category.

If a probabilistic response analysis is neces-
sary, it is usually required only at the hull girder
level because the most uncertain load is usually
the wave load. At more detailed levels, there are
seldom loads that are so random as to permit
probabilistic analysis. Hence the analysis at
lower levels is usually deterministic, using the
characteristic values of load effects obtained
from the hull girder analysis and deterministic
estimates for the maximum values of all loads
that occur at these lower levels.

For limit state analysis, the situation is
reversed. Here, it is the limit value that is uncer-
tain, and the principal source of the (statistical)
uncertainty arises at the local level (especially
material properties) and the principal member
level (especially connections and fittings). Hence,
the limit analysis is probabilistic at these levels
and produces a characteristic value, Q; ., for the
relevant limit value Q;. At higher levels, the
limit analysis is deterministic, combining these
characteristic values together to calculate limit
values for modes of failure that occur at those
higher levels.

2.2.3 Linear or Nonlinear

Finally, wave response analysis may also be
classified according to whether it is linear or
nonlinear. The former is easier, but for severe sea
states there are several sources of nonlinearity: the
waves themselves, the governing hydrodynamic
equations, and the ship geometry. A linear analysis
is based on several simplifying assumptions, of
which the principal ones are:

1. The irregular wave surface of the ocean can
be represented as the linear sum of a large number
of individual regular waves of different heights
and frequencies.

2. Hydrodynamic forces on a ship hull can be
obtained by considering each transverse section
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of the ship separately and combining the results
linearly.

3. The wave force acting on each section is
linearly proportional to the “emergence” at that
section, that is, the difference between the local
wave height and the ship’s still waterplane is
wall-sided.

The accuracy of these assumptions is discussed
in Section 4.5. The accuracy of the first two
assumptions is generally satisfactory, and the
third assumption is valid for ships that are ap-
proximately wall-sided in the waterplane region.
If this is not so, or if there is any other source
of nonlinearity, a nonlinear method of response
analysis may be required.

From what has been said previously, it can be
seen that wave response analysis can be complex,
involving probabilistic, dynamic, and nonlinear
aspects. These are discussed in Chapter 4, after
first covering the deterministic aspects of hull
girder response analysis in Chapter 3. But for
purposes of this section, where we are seeking
to present an overall view, it may be helpful to
list the principal steps involved for the simplest
type of wave response analysis, which is based
on linear ship response theory (see Fig. 4.27).

1. A ship motion response analysis is performed
repeatedly for a complete range of deterministic
wave loads, each consisting of regular waves of
a single specific frequency w and unit height.
This yields the transfer function |®(w)|? for the
relevant response (e.g., wave-induced hull girder
bending moment, M,,).

2. A typical ocean storm condition is represented
by a group of selected ocean wave spectra (i.e.,
frequency-based distributions of wave height).
For each wave spectrum, S(w), the corresponding
response spectrum [e.g., M, (w)] is the product of
1P (w)}? and the wave spectrum.

3. The results for the various wave spectra are
then combined, according to the proportion in
which each spectrum is present in a particular
sea state.

4. The analysis is repeated for various sea states
(and also for various ship headings and speeds).
The resulting short-term response spectra are
then combined statistically to obtain long-term
characteristic values of load effects, such as the
value of bending moment for which there is a
sufficiently high probability of nonexceedance
in the ship’s lifetime.

Price and Bishop (1974) wrote a classical text on
the linear probabilistic theory of ship dynamics.
Chapter 4 covers this subject thoroughly.

2.3 FURTHER CONSIDERATIONS
ABOUT LOADS

Some of the loads on ships have an effect at
several levels. For example, in a bulk carrier
loaded with a dense cargo, such as iron ore, only
about half of the internal volume can be filled
because of the high weight of the cargo. Also, in
a bulk carrier to be loaded with cargo of normal
density, such as grain or coal, each hold should
be either full or empty to prevent cargo shifting.
To avoid excessive hull girder bending moment,
the empty holds must be interspersed between
full holds, as shown in Fig. 2.3.

This arrangement causes large shear forces
between holds, which cannot be adequately
examined by beam theory at the hull girder level,
because of the complex interaction between the
side shell, double bottom, and transverse bulk-
head. Also, as shown in Fig. 2.3, there is a large
amount of interbulkhead bending of the double
bottom, which cannot be examined in isolation
(i.e., by considering only one cargo hold) because
the boundary support of the double bottom within
each hold is provided largely by the double bottom
structure in adjacent holds.

Similarly, in tankers and other liquid bulk
carriers, the cargo tanks are either full or empty
(with cargo or ballast) to avoid free surfaces and
to minimize tank cleaning. Here again, to avoid
excessive hull girder bending, full and empty
tanks are interspersed, both longitudinally and
transversely, in a checkerboard pattern, as shown
in Fig. 2.4. This arrangement produces a complex
pattern of shear force between all tanks, in both
longitudinal and transverse bulkheads, and it also
produces alternating hogging and sagging in each
combination of three in-line tanks, both longitudi-
nally and transversely. This intertank loading and
response is not represented or analyzed adequately
by beam theory. In fact, the hull structure of a
tanker is outside the scope of beam theory because
it has extra “webs”’—longitudinal bulkheads and
double-hull side structures—of different vertical
deflections. Also, these longitudinal bulkheads
have approximately the same in-plane rigidity
as the transverse bulkheads, and their vertical
deflection relative to the side shell depends
almost entirely on the vertical shear distortion
of the transverse bulkhead. Hence, for all bulk
carriers, dry or liquid, the finite element model
must include the entire cargo block. Since the
bow and the stern blocks have a different internal
geometry from the cargo block, their interaction
with the cargo block is complex, and the only
way to achieve reliable results is to also include
them in the finite element model.
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Interbulkhead bending of the double bottom

Figure 2.3 Hull module loading and response with a dense cargo.

When the transverse bulkheads are not full depth
or are almost entirely absent (e.g., ro-ro ships and
train and car ferries), the hull can undergo signifi-
cant transverse distortion, known as “racking”
(Fig. 2.5). For such ships, the structural model
should again extend over the full ship length, and
at least one loadcase should include a combination
of loads representing the “worst case” for racking.

Finally, even if there are relatively rigid
transverse bulkheads, the hull girder may be
subject to significant rotation if the ship has
low torsional rigidity, such as containerships
and other ships with large deck openings. Here
again, the structural model should extend over
the full ship length.

2.4 BASIC TYPES OF STRUCTURAL
FAILURE

In contrast to a response analysis dealing with
the linear elastic response of a structure to

prescribed loads, a limit state analysis seeks to
determine those levels and combinations of loads
that cause structural failure, both of individual
members and of the overall structure. Structural
failure is nearly always nonlinear—either a
geometric nonlinearity (buckling, or any other
large deflection) or a material nonlinearity
(yielding and plastic deformation). Also, it is
possible for both types of nonlinearity to occur
together, and so, in general, limit state analysis
is more complex than linear response analysis.
In fact, it is probably the most complicated
aspect of rationally-based structural design,
and for this reason the entire second half of
this text—Chapters 9 through 17—is devoted to
limit state analysis. Because of its importance,
we here give a brief and qualitative review of
the basic types of member failure. The next two
sections deal with basic aspects of limit state
analysis at the overall structure level.

For steel members, the three basic types of
failure and their subdivisions are as follows.
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Figure 2.4 Ballasted or partly loaded liquid bulk carrier.
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Large local plasticity
2. Instability
e Bifurcation
e Nonbifurcation
3. Fracture
e Direct (tensile rupture)
e Fatigue
e Brittle

In practice, an individual failure in a structural
member often involves a combination of these
basic types, particularly the first and second types.
For example, for sturdy members, instability is
preceded and accompanied by plasticity. Also, the
occurrence of local plasticity can seriously dimin-
ish the stability of a member and even convert it
into a (hinged) mechanism. Nevertheless, each of
these three failures is a distinct type of failure,
and since we here wish to review only their basic
aspects, we shall consider each of them separately.
Their interactions are considered in Chapters 9
through 16.

To discuss the basic types of failure and to
appreciate the difference between them, it is
necessary to examine the relationship between
load and deflection for each of them. Figure 2.6
presents a sample of load-deflection curves for
individual members, illustrating the variety of
shapes the curves have, depending on the type

0

DIII [ T |

Figure 2.5 Transverse shear or “racking” deformation.

(c)

(b) (d)

)

Figure 2.6 Load-deflection curves: (a) failure by plastic
deformation, (b) bifurcation buckling of beams and columns, (c)
bifurcation buckling of plates, and (d) nonbifurcation buckling.

of member and the type of loading and support
it receives. The curves are for typical ship struc-
tural members, having the following features:
1) they contain local imperfections, including
eccentricities and locked-in stresses resulting
from forming and welding; 2) they are made of
good quality steel, such that premature fracture
does not occur and ultimate fracture is preceded
by large plastic deformation; and (3) they are of
relatively sturdy proportions, such that buckling
is not purely elastic but rather involves some
yielding. Although the curves differ, they have
some basic aspects in common. In most cases, the
curve consists of an elastic portion, a region of
transition from mainly elastic to mainly plastic
behavior, and a plastic region where the slope
becomes small, such that the deflection increases
greatly for only a small increase in load. The slope
of the curve is the instantaneous stiffness of the
member, indicating its ability to carry additional
load. It is also a measure of the stability of the
member. An unstable member is one that can
undergo a large increase in deflection with little
or no increase in load.

2.4.1 Local Plastic Deformation

We first consider a member that is not susceptible
to instability, either because all axial compression
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loads are small, the member is of sturdy propor-
tions, or it is completely braced and supported.
For this type of member, the load-deflection
curve resembles curve (a) in Fig. 2.6. In the
elastoplastic region of the curve, local regions
of plastic deformation occur progressively at the
most highly-stressed points, and this gradually
decreases member stiffness. In the plastic region
of the curve, when this local plastic deformation
has grown larger or has occurred at several differ-
ent points, the stiffness has become quite small
and the deflection increases rapidly, eventually
becoming so large that the member is considered
to have failed; it is no longer fulfilling its main
purpose. There is no obvious or precise point on
the curve where failure occurs. The failure load
(or collapse load or ultimate strength) is usually
taken as the load at the beginning of the plastic
region, where the deflection first begins to grow
rapidly. Although the member’s actual loss of
function may not occur until the deflection reaches
a larger value, the reserve of strength is too small

X Fracture

Tensile yield of
cross section

//_———
7
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Figure 2.7 Example of strengthening influence of deflec-
tion on internal force.

to warrant consideration. This type of structural
failure is essentially because of material failure
at high stress levels. Hence, this type of failure
requires a stress analysis.

The foregoing discussion assumes implicitly
that deflection and deformation do not signifi-
cantly alter either the geometry of the member or
the equilibrium equations. Hence, it is sufficient
to perform all calculations using the initial
geometry and the initial equilibrium equations.
This is a first-order stress analysis, and it is by
far the most common type of analysis. In some
cases, however, the effect of deflection and
deformation on the geometry may be important.
The effect can cause either a strengthening or
a weakening of the member. For example, as
shown in Fig. 2.7, a strengthening effect oc-
curs in a laterally loaded beam whose ends are
completely restrained against axial deflection
(“pull-in”’) because the relatively small change
in geometry resulting from the lateral deflection
causes part of the load to be carried by the action
of membrane tension instead of by bending.
In such a case, stresses in the member have to
be calculated with regard to the effect of this
deflection on the equilibrium of the member.
This is a second-order stress analysis.

More often, the change in geometry because
of deflection produces weakening effects. For
example, in the beam-column of Fig. 2.8, the
lateral deflection represents some additional
eccentricity and this change of geometry, in
conjunction with the axial load f,, causes ad-
ditional bending moment in the member. This
particular effect is a fundamental characteristic of
all geometric instability problems; that is, in such
problems, the lateral deflection always affects
the bending moment in the member and hence
it alters the equilibrium conditions. Therefore,
geometric instability is essentially a second-order
phenomenon and stability analysis, which is
distinct from stress analysis, is necessarily a
second-order analysis.

2.4.2 Bifurcation Buckling

Instability, or buckling, can occur in any member
or part of a member that carries an axial or
in-plane compressive load. There are two types
of buckling: bifurcation and nonbifurcation. The
most common example of bifurcation buckling
is the buckling of a simple column. The general
shape of the load-deflection curve for such a mem-
ber is shown in Fig. 2.9. For an elastic column,
there is some axial load at which an alternative
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Figure 2.8 Example of weakening influence of deflection on internal force.

equilibrium position exists, corresponding to a
bent shape, and this load is the buckling or bifur-
cation load of the member. In a typical column
that contains some initial eccentricity, the axial
load induces bending of the column, and this in
turn causes some further lateral deflection. For
low levels of load, this effect is negligible, and
the initial portion of the curve is approximately
linear. But as the axial load increases, the lateral
deflection becomes significant and induces ad-
ditional bending, which in turn further increases
the lateral deflection. The result is a relatively
rapid loss of stiffness. Also, the large bending
stress, in combination with the axial stress, may
cause yielding of the compression flange, and
this further decreases member stiffness. This loss
of stiffness causes the curve to reach a peak and
then to fall off. The falling portion of the curve is
only obtained if the load on the member is quickly
decreased, so that it follows the curve. If the load
is not decreased, then, since the member has zero
stiffness, the deflection increases suddenly to
some large value, that is, the member collapses.

In addition to ordinary flexural buckling, a
beam or column of open section, such as an
I-beam, can undergo flexural-torsional buckling if

A Idealized "
/ bifurcarion buckling
fult = >
\\ \
\ \
\ \
\ |
|
/
/
Actual /
column buckling
-1

Figure 2.9 Column buckling.

it is subject to bending in the plane of its web and
if it is not constrained to remain in this plane. The
bending can be due to either a distributed lateral
load, bending moments applied to the ends, or
an eccentric axial compressive load. Initially, at
low levels of bending load, the member deflects
by bending in the plane of the web. However, at a
certain value of load, the compression flange may
become unstable and buckle laterally, while the
tension flange remains stable. Hence, the cross-
section undergoes a combination of twist and
lateral deflection, as shown in Fig. 2.10. The curve
of load versus vertical deflection is illustrated by
curve (a) in Fig. 2.11. Alternatively, if sufficient
lateral support is provided for the compression
flange, such that twist of the cross-section cannot
occur, then the load-deflection curve continues
upward until failure occurs either by plastic
deformation—curve (b)—or, possibly, if there is
an axial compressive load and if the member is
slender, by flexural buckling in the plane of the
web—curve (c).

In many cases, the prebuckling deflection is
relatively small, and this permits an idealized
approach, known as the eigenvalue approach, that
simplifies the calculation of the buckling load.
In this approach, an ideal or perfect member and
loading conditions are considered. The member
is assumed to have no geometric or material

Figure 2.10 Flexural-torsional buckling.
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Figure 2.11 Load-deflection curves for a beam-column
under various load and support conditions.

imperfections and to be loaded in such an ideal
manner that the only deflections that occur prior
to buckling are those in the direction of the
applied loads. That is, in the case of a concentri-
cally loaded column, the load does not produce
transverse deflection until a load of a unique
magnitude, the critical load, is reached. At that
point, the member has two possible equilibrium
states—undeflected and deflected—and it adopts
the deflected shape because the strain energy
of the undeflected shape just exceeds the strain
energy of the deflected shape. The load-deflection
behaviour is shown by the heavy line in Fig. 2.9.
The essential feature of this idealized form of
buckling is that the member can undergo indefinite
lateral deflection at no increase in axial load. This
feature makes it possible to calculate the buckling
load or, more precisely, the bifurcation load by
means of an eigenvalue analysis.

However, the eigenvalue approach is only
appropriate when buckling is of the bifurcation
type and when the member fulfills the idealizing
assumptions reasonably closely. This is particu-
larly important because in nonideal conditions
(eccentric load, eccentric member, local yield-
ing) the buckling load is always /ess than that
calculated by an eigenvalue analysis. Hence, if the
assumptions are not met to a reasonable degree,
the result is a potentially serious overestimate of
the buckling load or of the stiffness of the member
under a large load.

In plates and stiffened panels, there is some
postbuckling reserve strength; that is, the ultimate
or collapse load is greater than the buckling load,
as illustrated by curve (c) in Fig. 2.6. The buckling
analysis and ultimate strength analysis of these
members are taken up in various chapters later
in the book.

2.4.3 Nonbifurcation Buckling

In nonbifurcation buckling, the load-deflection
curve is similar to curve (d) of Fig. 2.6. The
lateral deflection commences as soon as the axial
load is applied, and it increases progressively,
at an increasing rate, causing the member to
progressively lose its stiffness from the begin-
ning of the loading until, finally, the stiffness
becomes zero. Hence, this type of buckling is a
gradual phenomenon. It occurs whenever one of
the deflections, which is caused by and which
increases with the applied load, is such as to
have a weakening effect on the member from
the beginning of the loading. This can occur in
members (beam-columns, plates, and stiffened
panels) that are subject to relatively large lateral
loads that increase with axial load. A notable
example is a beam-column subject to bending
in two planes (biaxial bending).

As can be seen in Fig. 2.6, the load-deflection
curve for nonbifurcation buckling resembles that
for failure by local plastic deformation. There is
no obvious buckling point or any precise peak
value of load. As with failure by plastic deforma-
tion, the gradual loss of stiffness may produce
such large deflections that the member is deemed
to have failed on that account. Hence, the failure
load is defined as the value corresponding to some
limit value of deflection or stiffness.

2.4.4 Static Fracture: Ductile and Brittle

Provision of adequate safety against failure by
static fracture is achieved by keeping the stress
level throughout each member sufficiently below
ours, the ultimate tensile strength of the material.
Thus, the constraint against failure by fracture is

(2.4.1)

’YO- S O-UTS

The partial safety factor is chosen according
to the degree of uncertainty of o (if not already
factored out) and the importance of the member
and the seriousness of the consequence of the
fracture. The static fracture constraint is simpler
than the constraints against plastic deformation
and instability because the limit value, instead of
depending strongly and in a complicated manner
on the member’s dimensions and proportions, is
virtually independent of them. Once the material
has been selected, the limit value is known.

The term “brittle fracture” refers to the fact
that below a certain temperature, the ultimate
tensile strength of most steels diminishes sharply.
The value of this transition temperature depends
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almost entirely on the chemical composition of
the steel and its metallurgical processes. For ship
structures, a good quality steel ductile at prevail-
ing temperatures is absolutely necessary and, in
most cases, sufficient to avoid brittle fracture.

2.4.5 Fatigue Fracture

In steel and other metals, a fluctuating stress
can initiate microscopic cracks. If the metal
is welded or extruded, such cracks are already
present. In either case, a fluctuating stress causes
these cracks to gradually lengthen until, after
a large number of cycles, they become so large
that fracture occurs. Fatigue fracture is distinct
from static tensile fracture. In fatigue, the most
important parameter is the stress range, S,
which is the total (peak to trough) variation in
the cyclic stress, as shown in Fig. 2.12. Since
fatigue damage (crack growth) is cumulative, the
occurrence of fracture depends on the magnitude
and duration (number of cycles) of the individual
cyclic loads acting on the structure throughout
its life. For an individual cyclic load of constant
amplitude, S, the least number of cycles, N,
required for fatigue fracture is established
experimentally for each type of steel and other
materials. This information is usually presented
in “S-N diagrams” of the type shown in Fig. 2.13,
where the horizontal distance to the sloping line
is the fatigue life (number of cycles to failure)
at that level of S for a certain type of structural
specimen (geometry, direction of weld, and qual-
ity of weld). Each line is obtained by testing to
failure a series of identical structural specimens
at different levels of S and then performing linear
regression analysis on a log-log plot of the data
with, say, a 95% confidence limit. Thus each
line (or “S-N curve,” as it is commonly called)
represents an exponential relationship of the form

1/m
e(9

which in logarithmic form becomes

(2.4.2)

log N = log C — mlog Sy

where N = number of cycles to failure for a
constant amplitude stress range Sy
m = the negative slope of the log-log plot
of the S-N curve
Sy = the constant amplitude stress range
for failure at N cycles
log C = the life intercept of the S-N curve

stress

mean -

JAj/_X
N

Figure 2.12 Stress range.

stress range S
time j

For most materials, there is a threshold level of
stress range, S, below which fatigue damage does
not occur, regardless of the number of cycles. This
is commonly referred to as the fatigue limit.*
In a ship structure, there are three main sources
of cyclic stresses: wave-induced loads, especially
bending of the hull girder; the alternation between
loaded and ballasted conditions, a situation that
occurs in tankers and some other ships; and
mechanical sources, such as the engine and the
propellers. The number of wave bending cycles in
a ship’s life (say, 20 years) is of the order of 103.
In general, fatigue failure is prevented by
controlling the cyclic stress amplitude, and in
most cases an efficient way to control stress
is to either increase the local scantlings and/or
modify the local geometry so as to reduce stress
concentrations, eccentricities, and discontinuities.
Hence, in the overall process of ship structural
design, the prevention of fatigue falls mainly
within the scope of detail design. However, for
all cyclic stresses that are not locally controllable,
the matter of fatigue must be dealt with at the
preliminary design stage. The principal example
is the wave-induced hull girder bending stress,
o,, which is proportional to section modulus
and is relatively unaffected by local changes in
scantlings. Therefore, one of the most important
tasks in preliminary design is to ensure that o,

log S| S (N/mm?)

2 1100

log S..

log N
2 4 6 8 ©9

Figure 2.13 Typical S-N diagram.

*A better term would be “fatigue threshold,” since fatigue
only commences at this level of S.



2-14 LOADS, STRUCTURAL RESPONSE, LIMIT STATES, AND OPTIMIZATION

is sufficiently small to not cause fatigue in any
portion of the hull girder, taking into account
all unavoidable and non-locally-treatable influ-
ences. One way of preventing fatigue fracture is
to prevent the occurrence and accumulation of
fatigue damage by keeping cyclic stresses below
the fatigue limit. This approach is adopted when
the number of stress cycles is extremely large, as
in mechanically-produced stresses. Such stresses
are usually local and, therefore, relatively easy
to control. However, this approach is inefficient
(if not impossible) for more extensive stresses
arising, for instance, from full/ballasted cargo
variations and hull girder bending. Instead, it is
necessary to design ships in such a way that over
their lifetime they can sustain some cumulative
fatigue damage without appreciable risk of
fracture. To do this, it is necessary to know how
individual amounts of fatigue damage caused by
various sequences of cyclic stresses of different
magnitude, duration, and mean value interact and
accumulate to finally cause fracture. This is an
extremely complex question.

There are two methods to deal with fatigue:
one is based on fracture mechanics and the other
based on fatigue tests together with the hypothesis
of linear damage accumulation. The fracture
mechanics method is more detailed, examining
crack growth and calculating the number of load
cycles that are needed for small initial defects
(which are always present in welds and in the
structure adjacent to welds) to grow into cracks
large enough to cause fracture. The growth rate
is proportional to the stress range, expressed in
terms of a stress intensity factor K that accounts
for stress magnitude, weld and joint geometry,
and the current crack size. The equation for crack
growth rate is of the form

d o m
CF‘{, = C (AK) (2.4.3)

where a is crack depth, C and m are crack
propagation parameters associated with fracture
mechanics, and AK is the range of K correspond-
ing to the stress range.

The other method is based on fatigue test
data (S-N curves) together with the hypothesis,
commonly known as Miner’s Rule, that fatigue
damage accumulates linearly.* According to this
hypothesis, total fatigue life under a variety of

*QOriginally proposed by Palmgren (1924) and later by Miner
(1945); it is usually known under the latter’s name because
he developed it on a logical basis by considering the work
done during each loading cycle.

stress ranges is the weighted sum of individual
lives at constant S, as given by the S-N curves,
with each being weighted according to the frac-
tional exposure to that level of stress range. To
apply this hypothesis, the long-term distribution
of stress range is replaced by a stress histogram,
consisting of a convenient number of constant
amplitude stress range blocks, AS;, and a num-
ber of stress cycles, n;. The constraint against
fatigue fracture is then expressed in terms of a
nondimensional damage ratio, :

B
>
i=1

|

(2.4.4)

,Sm

i

=

where B = number of stress blocks
ni = number of stress cycles in stress block i
N; = number of cycles to failure at constant
stress range S;
M. = limit damage ratio

The limit damage ratio, m.;, depends on the
maintainability, that is, the possibility for inspec-
tion and repair, as well as the importance of the
particular structural detail. For important details
exposed to seawater, a typical value of m; is 0.3
if there is good access and maintainability and
0.1 if not.

As stated above, fatigue relates mainly to struc-
tural details, and fatigue analysis and prevention
is primarily a part of detail design. But, since it
is so important, it is covered in Chapter 17.

2.5 OPTIMIZATION OF LARGE
STRUCTURES

In nonlinear optimization, the amount of
computation increases exponentially with the
number of design variables to be optimized
simultaneously. A direct solution to a typical
ship structure optimization problem requires a
prohibitively extensive computational effort. The
computation can be substantially reduced if the
overall problem is subdivided into a number of
subproblems. In fact, if each structural member
were to be optimized separately, the total amount
of computation would be relatively small. But, in a
large structure such as a ship, member-by-member
optimization is neither desirable nor possible.
It is undesirable because the objective function
is a nonlinear function of the design variables,
and member-by-member optimization would not
allow any tradeoffs between members, which is
where a large part of the benefits of optimization
come from. In any case, member-by-member
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optimization is not possible, because some limit
states relate to the overall structure and cannot
be dealt with at the member level.

In a structure as large as a hull module, there
are typically 100 to 200 design variables, and
a nonlinear optimization problem of this size
requires too much computational effort to be
solved as a single problem, even with a rapid
and efficient optimization algorithm such as one
of the sequential linear programming methods
discussed in Section 1.2. Therefore, one of the
prerequisites for rationally-based ship structural
design is a method or strategy to subdivide the
overall problem while still retaining true overall
optimization and the capability of dealing with
overall constraints. In this section, we present a
brief outline of a dual level strategy that meets
these requirements.

2.5.1 Subdivision of the Overall Optimization
Problem

Subdivision of the overall optimization problem is
based on the concept of a submodule, which is a
region of a structure where a sufficient number of
the scantlings are linked, either by fixed structural
geometry or by explicit constraints linking two
or more scantlings, such that the region forms a
logical entity from an optimization point of view.
The characteristics that most clearly make a region
suitable as a submodule are geometric uniformity
and identical, repetitive structural members. Such
characteristics are frequently imposed on portions
of structure to simplify the design and to thereby
gain increased economy and efficiency in nearly all
aspects of the ship’s existence: design, fabrication,
outfitting, operation, and maintenance. Modularity
of cargo is another common reason to impose
structural uniformity. Regardless of the reason,
such uniformity provides an opportunity to reduce
the amount of computation, and the choice of sub-
modules should reflect and take full advantage of
uniformity. In most cases, the choice is obvious and
straightforward because it is a natural extension
of the designer’s decisions regarding geometric
uniformity and member repetition. In making such
decisions, the designer, in effect, imposes various
constraints on the design—constraints requiring
that some scantlings or geometric features in
one member or region bear a fixed relationship
(in most cases identical constraints) to those of
another member or region.” For these constraints

*For simplicity, the discussion here is in terms of identity
constraint, but the principles apply to any simple and direct
type of linking, such as a fixed proportion of scantlings or
geometry between members.

to be properly accommodated, the optimization
problem should extend over and include all of the
linked members or regions. Hence, the physical
size of the submodule depends mainly on the extent
of the linking.

Figure 2.14 shows the most common type of
submodule, which, for simplicity, shall be called
a “strake.” It consists of a longitudinal row of
panels, transverse frame segments, and, if ap-
plicable, longitudinal girder segments.t In most
ships, these members are uniform and repetitive in
the longitudinal direction over large distances—
nearly always over the full length of a hold and
often over several hold lengths (or compartments
for a naval vessel). Local changes in geometry
or scantlings (cutouts, reinforcements, etc.) are
disregarded because they are dealt with in the
detail design. The length of the uniformity is
taken as the length of the submodule. Because the
panels, frame segments, and girder segments in
the submodule are identical, the total number of
design variables is small; it is the same number
as for just one member of each type. In Fig. 2.14,
the strake submodule has 14 design variables: 6
for the stiffened panel, 4 for the frame segments,
and 4 for the girder segment (if the stiffener is
a rolled section, not all of its dimensions are
design variables).

Submodules also reduce the number of limit
values that have to be calculated because identical
members have the same value (if their pattern of
internal load effects is the same). Hence, there
is just one constraint for each mode of member
failure, and to formulate each constraint it is
necessary only to scan for and utilize the worst
combination of internal load effects.

As mentioned above, the amount of computation
increases exponentially with the number of design
variables. Experience with the MAESTRO program
showed that the total amount of computation (for
the complete hull module) remains reasonable as
long as the number of design variables in each
submodule does not exceed 20. Thus, a simple and
general rule to follow is to make submodules as
large as possible, subject to the limit of 20 design
variables. If a proposed submodule has more than
20 design variables, it should be divided into
two submodules or, alternatively, some further
uniformity should be specified.

Not all scantlings in a submodule need to be
uniform. It frequently happens that in a particular

+1n ship construction terminology, a “strake” is a lengthwise
strip of plating (e.g., keel strake, sheer strake, etc.). The
distinction between this “strake” and a strake submodule
will be clear from the context.
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Frame:

Strake Variables
Figure 2.14 Strake submodule.

portion of structure, it is desired that most mem-
bers of a certain type should be identical, but there
are a few members that ought to be allowed to
differ, perhaps because they carry special loads.
For example, Fig. 2.15 illustrates a hull module
that corresponds to one complete cargo hold
with, say, eight transverse frames, the second
and seventh of which coincide with the forward
and aft ends of the hatch. In each of the side
and deck strakes, the second and seventh frame
segments carry larger loads than the other frame
segments. If these two segments were included
in the strake, the final optimum scantlings of
the other six frame segments would be dictated
by the requirements of these two. Therefore,
the two hatch end segments should be defined
as a separate submodule. The fact that they are
not continuous is not a problem, because the
grouping of members in a submodule is done for
optimization purposes only and not for analysis.
Hence, there is no need for a submodule to be a
single or continuous portion of structure.

ORDINARY <« HATCH END FRAME
FRAME

Figure 2.15 Variations in frame size.
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CHAPTER

THREE

HULL GIRDER RESPONSE ANALYSIS — PRISMATIC BEAM

Owen Hughes
Professor, Virginia Tech
Blacksburg, VA, USA

In this chapter we consider the overall or primary
level of ship structural loading and response, in
which the ship is idealized as a hollow thin-wall box
beam, referred to as the “hull girder.” At this level
of consideration we can make several simplifying
assumptions and approximations, the principal
one being that the hull girder acts in accordance
with simple beam theory. In Section 3.8, some
corrections for these approximations will be given.
For the sake of clarity and overall perspective, the
principal assumptions are listed hereunder.

1. There is only one independent variable,
longitudinal position, and loads and deflections
have only a single value at any cross section.

2. The hull girder remains elastic, its deflections
are small, and the longitudinal strain due to bending
varies linearly over the cross section, about some
transverse axis of zero strain (neutral axis).

3. Dynamic effects may be either neglected or
accounted for by equivalent static loads. Hence
static equilibrium may be invoked.

4. Since the bending strain is linear, the hori-
zontal and vertical bending of the hull girder
may be dealt with separately and superimposed.
Since they are similar, and since vertical bending
(bending in the vertical plane of the hull girder)
predominates, we shall deal mainly with it.

3.1 BASIC RELATIONSHIPS: LOAD, SHEAR
FORCE, BENDING MOMENT

As shown in Fig. 3.1, overall static equilibrium
requires that the total buoyancy force equals the
weight of the ship (considered as a force; e.g.,
megaNewtons (MN), not tonnes) and that these
two vertical forces coincide; that is, the longitu-

dinal center of buoyancy (l.c.b.) must coincide
with the longitudinal center of gravity (l.c.g.).
The notation to be used herein is shown in Fig.
3.1. Using this notation the first requirement is

ng dx—gf

where a(x) = immersed cross-sectional area

m(x) = mass distribution (mass per unit
length)

p = mass density of sea water (or
fresh water, if appropriate)

g = gravitational acceleration
A = displacement.

(3.1.1)

The factor g is retained on both sides to emphasize
that it is forces that are involved.
Similarly, equilibrium of moments requires

that
pgf xdx—gf

=gAl,

x)x dx

(3.1.2)

where /; = distance from origin to l.c.g.

3.1.1 Application of Beam Theory

In elastic, small-deflection beam theory the govern-
ing equation for the bending moment M(x) is

M
A

in which the right hand side, f(x), is the loading
on the beam, expressed as a distributed vertical
force.
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Figure 3.1 Summary of hull girder bending.
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Like civil engineering, naval architecture is a
very old branch of engineering.*' In land-based
structures the dominant force is the structure’s
weight, which always acts downward. Hence
in early times forces were taken as positive
downward, and ship loading still follows this
(nowadays backward) convention. Thus for a
ship the loading f(x) is the net resultant of the
positive weight force w(x) and the negative
buoyancy force b(x), as shown in Fig. 3.1¢c. The
solution for M(x) requires two integrations. The
first yields the transverse shear force Q(x), and is
obtained by imposing vertical force equilibrium
of a differential element considered as a free
body, as shown in Fig. 3.1d.

O+ fdx—Q—d0=0

_d9
or / T i (3.1.4)
from which
0w = [f@dx+¢ 1)

For ships the constant of integration is always
zero because the hull girder is a “free-free” beam,
with zero shear force at the ends: Q(0) = 0.

As shown in Fig. 3.1d equilibrium of moments
(say, about the right hand end of the element, and
positive clockwise) yields

M+de—|—fdx%—M—dM:O

The dx? term is of second order and therefore

dM
0= dx (3.1.6)

from which

M (x) =fOXQ(x)dx+¢ (3.1.7)

* The first “engineers” were mainly engaged in military
applications — bridges, siege towers, catapults — and those
who designed other large land-based structures (churches,
castles, etc.) were called “architects” (which means master
builder). Thus the designers of ships became known as
naval architects. Eventually, as structures became more
varied and more complex (not just buildings) the term
“civil engineer” emerged.

The sign conventions for shear force and
bending moment are shown in Fig. 3.1e, f. Shear
force at any point is positive if the integral, or
net accumulation, of load up to that point is
positive. If we define a “positive face” as the
cross section that one sees when looking in the
positive x-direction, then the shear force is posi-
tive downward when acting on a positive face,
and positive upward when acting on a negative
face. As shown in Fig. 3.1e, an alternative way of
expressing this is to say that positive shear causes
counterclockwise rotation of an element.

In a similar manner, the bending moment at any
point is positive if the integral, or net accumula-
tion, of shear force up to that point is positive.
It can easily be shown that with this definition,
positive bending moment corresponds to beam
curvature that is convex upward. This condition
or state of bending is referred to as “hogging,”
and the opposite state, concave upward, is referred
to as “sagging.”

In discussing a sign convention for shear force
and bending moment it is important to realize that
we are actually considering each of them as a state
of loading, rather than a specific force or couple.
These two states of loading have their own sign
convention, quite apart from the sign convention
adopted for specific forces and couples. Thus,
for example, the differential element in Fig. 3.1d
is in a state of positive shear, even though one
of the two end forces acting on it is downward.

3.1.2 Characteristics of Shear Force and
Bending Moment Curves

As we have seen, both the shear force and the
bending moment must be zero at the ends. Since
the load is the derivative of the shear force Q, a
point of zero load corresponds to a local maxi-
mum or minimum value of Q, as shown in Fig.
3.1. In most cases the loading is approximately
similar forward and aft of amidships. Under
these conditions the shear force is approximately
asymmetric, passing through zero somewhere near
amidships and having maximum values, positive
and negative, near the quarter points.

Similarly, since the shear force and bending
moment are related by Q = dM/dx, a point of zero
Q corresponds to a local maximum or minimum
value of bending moment, as shown by the dashed
lines joining Fig. 3.1e and f. In general, therefore,
the bending moment, will be a maximum, positive
or negative, near amidships, but if the loading is
very asymmetric the maximum bending moment
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may be some distance from amidships. Since shear
force is zero at both ends, the bending moment
curve will have zero slope at both ends, and its
value will usually be small forward and aft of
the quarter points.

3.1.3 Distinction between Still Water Loading
and Wave Loading

In order to calculate the load on the hull girder,
it is necessary to first calculate both the distributed
buoyancy force and the distributed weight force.
In regard to the former, it is useful to distinguish
between the buoyancy force in still water and the
additional, and quite different, buoyancy force
that occurs as a result of waves. The still water
buoyancy is a completely static quantity, and it
depends mainly on the shape of the immersed
hull. It therefore most logically forms part of the
hydrostatic calculations. The additional buoyancy
force due to waves is markedly different from the
buoyancy force in still water, being essentially
both dynamic and probabilistic. Therefore, in
order to simplify the analysis, the buoyancy
distribution in waves is calculated separately and
is superimposed on the static and deterministic
still water buoyancy force.

In order to calculate the still water buoyancy
distribution, the location of the still waterline of
the vessel must be determined from the two overall
equilibrium requirements of (3.1.1) and (3.1.2).
Therefore, it is also necessary to know the weight
(i.e., mass) distribution m(x), or at least the overall
A weight and the location of the l.c.g. Thus, once
the lines of a ship have been specified, the still
water buoyancy is fixed and calculable, and hence
the still water load, shear force, and bending
moment depend entirely on the weight distribution.
We therefore begin by examining some steps and
techniques for estimating this distribution.

3.2 ESTIMATION OF WEIGHT
DISTRIBUTION

The calculation of the longitudinal distribution
of weight or mass m(x) is a difficult process, partly
because m(x) is made up of discrete items rather
than being a continuous and regular curve, and
partly because at the design stage many of the
individual weights are known only approximately.
The calculation cannot be as readily or as thor-
oughly automated as for the buoyancy distribution,
but it can be greatly facilitated and even largely
automated by means of a systematic approach and
by the use of suitable approximate methods.

The weights in a ship fall into two main cat-
egories: those that are relatively unchanging, such
as the ship’s own structural weight; and those
that do change, such as cargo, fuel, stores, and
ballast—see Fig. 3.4. The first group constitutes
the “lightweight” of a ship, that is, the weight
when it is without cargo, fuel, and so on (this
condition is referred to as the “lightship” condi-
tion). The second group is called the “deadweight”
(equivalent to “payload” in modern terminology).
The deadweight changes with each different
cargo loading, and hence there are usually several
loading conditions that need to be investigated.
The two most common conditions are “full load”
and “ballast.”

In general, the information regarding weights is
of a discrete nature and must be gathered together
and entered into a “Table of Weights” or some
other suitable form of information storage. In
most cases, the following information is specified
for each logically distinct item:

1. Total weight.

2. Vertical* and longitudinal center of gravity
(L.c.g.)

3. Longitudinal extent.

4. The type of distribution over this extent.

Once this information is available the rest of
the calculations can be done by computer: the
lightweight curve and, for each loading condition,
the deadweight curve, the total weight curve,
the displacement, and the 1.c.g. Knowing the
latter two items makes it possible to calculate
the still water buoyancy curve for each loading
condition, usually by means of a comprehensive
hydrostatics program. Then, for each loading
condition the appropriate buoyancy and weight
curves are combined to get the load curve, and
this is then integrated twice to get the shear force
and bending moment curves.

In specifying the extent and distribution of
individual weights, it is helpful and even neces-
sary to use some approximations and idealizations.
Nearly all items can be represented in terms of one
or more of three basic types of distribution: point,
uniform distribution, and trapezoidal distribution.
Also, for cargo and ballast, an alternative approach
is possible. For these items the weight per unit
length is related to the cross-sectional area of the
relevant cargo or ballast space, and their weight
distribution may be taken as the product of the
sectional area curve of the relevant space times
the mass density of the cargo or ballast.

*For calculation of stability and ship motions.
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The idealization of a weight as a trapezoidal,
uniform, or even as a point mass, does not intro-
duce any appreciable error into the calculation
of shear force and bending moment as long as it
is done reasonably and carefully. After all, both
of these quantities are themselves idealizations:
they arise from and are a measure of the overall
behavior of the hull girder, not the local response;
they have only a single value at any cross section.
Moreover, they are obtained by integrating the
load, and integration is a smoothing process.

Typical examples of point loads are machinery
(one point load at each foundation point), masts,
winches, and transverse bulkheads. Examples of
uniform loads are hull steel within the parallel
midbody and cargo, fuel, ballast, and other
homogenous weights within prismatic spaces.
Outside of the parallel midbody and particularly
toward the ends of the ship, a trapezoidal distribu-
tion is appropriate, although even here some items
can be accurately represented as uniform loads,
such as superstructure. For a trapezoid, say of
length 1, the relevant information may be specified
in two different ways: either as total mass, M,,
with a specified position of center of gravity within
this length (say a distance X from the center; see
Fig. 3.2) or in terms of mass per unit length at the
forward and after ends: m; and m,. The formulas
for converting from one form to another are:

_ I|m,—m,
X=—|—
6|m, +m (3.2.1)
l(mf+ma)
and ’ 2
. :%_6M0)7
a l 12
M 6Mx (3.2.2.)
m =—L 0
S l 12

|

centroid

T + m¢

|—
x|

L
2
!

Figure 3.2 Trapezoidal representation of a weight.

wy, = hull weight
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Figure 3.3 Approximation for hull weight distribution.

One of the major items of the weight distribu-
tion is the hull itself, and this will sometimes be
required before the structural design of the hull
has been completed. A useful first approximation
to the hull weight distribution is obtained by
assuming that two-thirds of its weight follows
the still water buoyancy curve and the remaining
one-third is distributed in the form of a trapezoid,
with end ordinates such that the center of gravity
of the entire hull is in the desired position, as
shown in Fig. 3.3. An alternative approach is to
use a uniform weight distribution over the parallel
midbody portion and two trapezoids for the end
portions, with end ordinates again chosen such
that the l.c.g. of the hull is in the desired position.

A sample weight curve is given in Fig. 3.4.
By commencing with “lightship” components
(hull steel, machinery, equipment, and outfit),
the designer can determine the distribution of
variable weight items (cargo, fuel oil, ballast,
etc.) for those loading conditions that will be
most serious in both hogging and sagging.

The most significant loading condition is the
“full and down” condition, with the ship loaded
with sufficient cargo to float at its “loadline,” the
water line corresponding to the minimum permis-
sible freeboard. In some cases, beam and draft
restrictions may be the overriding constraints.
For simplicity, the cargo is usually assumed to be
homogeneous and of a density that just produces
the “full and down” condition. Lighter-density
cargoes reduce displacement (and hence the load-
ing), whereas heavier densities permit flexibility,
and hence optimization of load distribution, as
the cargo weight remains essentially limited
by the statutory draft limitation. Regardless of
whether the maximum bending moment in the

DISPLACEMENT
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/
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Figure 3.4 Typical weight distribution.
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homogeneous cargo case is hogging or sagging,
it can be reduced by concentrating the more dense
cargo either amidships or in the ends, respectively.
Because the cargo is the largest item of weight
and because there are so many possible variations
in its distribution, there are often some distribu-
tions and combinations that would cause excessive
values of bending moment and that therefore must
be avoided. This is particularly the case with bulk
carriers in which, for various reasons (e.g., tank
cleaning, avoidance of free surface or the shifting
of dry bulk cargo, very dense cargo such as iron
ore) it is preferable to have the cargo holds or
tanks either completely full or completely empty.
Given such extreme differences it is important that
they be spread out and interspersed, rather than
grouped together, because the latter would give
excessive shear force and/or bending moment,
as shown in Fig. 3.5. Therefore, in addition to
restrictions arising from stability requirements,
the loading manual of a cargo ship may also
contain restrictions on the permissible cargo
combinations and distributions, arising from
longitudinal strength requirements.

3.3 CALCULATION OF STILL WATER
BENDING MOMENT

From the foregoing discussion it is clear that
the calculation of the still water bending moment
is, conceptually at least, a straightforward task;
it is simply a double integration of the sum of
the buoyancy force and the weight force. The
calculations are straightforward but tedious, and
so there are many computer routines available for
this. The largest part of the calculation is finding
the equilibrium values of draft and trim for each
loading condition. Since this is a basic part of the
hydrostatic calculations, nearly all hydrostatics
programs include a routine for calculating the
still water load, shear force, and bending moment
distributions along the ship length.

At the very least, it is necessary to obtain the
maximum bending moment M., and in some cases
this may not occur at amidships. Some typical
cases are:

1. Vessels with unusual internal arrangements
(e.g., combination of oil cargo and ordinary cargo,
as in a naval replenishment ship).

2. Tankers and bulk carriers with some empty
cargo holds.

For example, in tankers with empty spaces amid-
ships My may be quite small and there may be
two peak values of bending moment, at or near
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Figure 3.5 Effect of cargo distribution.

the two quarter points. Also, with a heavy cargo
such as iron ore, a bulk carrier may be loaded in
alternate holds, and in this case there is a peak
value of bending moment in the way of each
alternate hold. Moreover, with bulk carriers,
the shear force Q can be quite significant and it
will have several peak values. Therefore, even in
preliminary design it is best to calculate Q and
M over the full length of the vessel.

3.4 CORRECTION FOR CHANGES IN
WEIGHT

Because of the wide variety of possible loading
conditions, the ship will rarely be in the same
condition as was assumed for the still water
bending moment calculation. It is therefore
important to be able to calculate, as simply as
possible, the effect of the addition or removal
of weight on the hull girder bending moment.
A useful technique for this is to construct an
influence line diagram. An influence line shows
the effect on the maximum bending moment of
the addition of a unit weight at any position x
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along the ship length. The height of the line at
x represents the effect on M,,,, of the addition
of a unit weight at x. Two influence lines are
normally drawn, one for the maximum hogging
and one for the maximum sagging condition.
Influence lines could, of course, be drawn to
show the effect of additions on other bending
moment values (i.e., other than M,,,,), but these
would be of less interest.

Let us take the case of a weight P which is
added at a distance x, forward of amidships, as
shown in Fig. 3.6. Other relevant quantities are
defined in the figure. As a result of this addition
the ship will undergo a parallel sinkage v and a
nondimensional trim ¢ (total trim divided by the
total length L). If Ay and [, are the area and the
longitudinal moment of inertia of the waterplane
about the Longitudinal Center of Flotation (LCF),
then (assuming that the change in the waterplane
is small) we have

v P g =P
pga, pgl,

where x is positive forward of amidships. Let R
denote the position of maximum bending moment,
M., located at a distance x from amidships. The
total change in M,,,, can be determined by taking
moments about R, either forward or aft. Choosing
the forward side, we see that the change in M, is
the sum of the negative moment of buoyancy of the
parallel sinkage forward of R minus the moment
of buoyancy of the wedge forward of R plus the
moment of added weight. (This is consistent with
the convention that downward force is positive and
hogging bending moment is positive). These three
quantities are:

1. Moment of buoyancy of parallel sinkage for-
ward of R about R

Pwm

R

A

w

=—pgVt, =~

where M, is the moment about R of the water-
plane area forward of R (the shaded area Ay in
Fig. 3.6).
2. Moment of buoyancy of wedge forward of R
FP

=—pg [ 228&+ (v, —x,)]rd

= —pg|l,+ M (x, —xF)}t
B P(xP — xF)

L

I+ M (x, —xF)}

.

max

NOTE:
PARALLEL SINKAGE
NOT SHOWN

Ag = area of WP forward of R
Mg = 1st moment of Ag about R
Ir = 2nd moment of Ag about R

= J:Ez ézdi

/‘N

R vt

P

Figure 3.6 Influence line for change in M, due to added
weight.

3. Moment of added weight = P(xp — xz).

Note: since we are calculating moments forward
of R, this third term is only included if the added
weight is forward of R; if not, it is omitted. To
assist in remembering this, we shall write this
third term as P<xp, — xz>, in which the pointed
brackets indicate that whenever the quantity
within the brackets becomes negative its value
is taken as zero.

Therefore, the net effect on the bending moment
at R (i.e., on M,,,,) due to the addition of a weight
Pis

M, (x,—x,)

5Mmax:P{——R— I, +M(x,—x,)

4,
+<g—n>}@An

This equation is also valid for negative values of
xp (i.e., for P aft of amidships), provided that,
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once again, if the expression in pointed brackets
is negative it is taken as zero. A discontinuity
occurs at R, the position of maximum bending
moment. As shown in Fig. 3.6, the influence
lines are straight lines that cross the axis at
approximately the quarter points of the vessel.
Therefore, a weight added within this length
causes an increased sagging moment and an added
weight outside this length causes an increased
hogging moment. To construct an influence line
diagram, (3.4.1) should be evaluated for three
values of xp: —=L/2, xg, and +L/2.

By making suitable approximations it is pos-
sible to simplify (3.4.1). It can be shown that if
both LCF and R are taken as being at amidships,
then xz =x=0, Iz =1, /2, and My = Y2Aw X uywes
where xg,wp is the distance from amidships to
the centroid of the forward half waterplane. With
these simplifications (3.4.1) becomes

Xa2ymp _X_P_|_<xp>

OM_=~ Pi—
% 2

Thus, if the weight is added forward of amidships
the result is

X —x
~ P a/2wp
OMy =P 5

and this has a direct and relatively simple
physical interpretation: it is half of the moment
of P about the centroid of the half waterplane
area (and the slope of the influence line is %2.)
Moreover, for this simplified case, it is possible
to define the terms in such a way that a single
expression applies, regardless of whether P is
forward or aft of amidships. To do this, we define
[ as the distance between the added weight and
the nearer centroid of the half-waterplane area,
as shown in Fig. 3.7, and we adopt the sign
convention that if P lies between this centroid
and amidships, the moment change is negative
(sagging) or is otherwise positive (hogging).

The approximate expression for the moment
change is then simply

SMy= L (3.4.2)

-2
Note that this approximation can only be used
for the admidships value of a symmetric bending
moment distribution. Of course, if a weight is
removed, then —P replaces P in all of the above
formulas.

[EE—

P
’_D_r\”

\ )

—

D:
] N )
centroid of aft 1]
half waterplane M centroid of forward
8 1 half waterplane
A P
L X
- P

7

Figure 3.7 Simplified influence line: change in Mg due to added
weight.

In addition to their use in design, influence
lines are a helpful tool for the ship operator and
are sometimes provided as a part of the loading
manual. However, it should be noted that they
are intended for small weight changes only,
certainly not more than 5% of the displacement.
If the change exceeds this amount, a new bending
moment calculation should be done. Obviously,
the approximate formula of (3.4.2) is even less
accurate and it should not be used at all if either
the LCF or the location of M., is not close to
amidships.

3.5 APPROXIMATE DESIGN VALUES OF
WAVE LOADS

Because of the complexity of ocean waves
and of the dynamic interaction between ship and
waves, the direct calculation of an appropriate
design value of wave loading for a given ship is
a very complex task, and one that has occupied
the attention of several generations of naval
architects. After many years of investigation
significant progress has been made, due largely
to simultaneous and complementary advances in
several fields: ocean wave data collection, statisti-
cal theory, system response analysis, free surface
hydrodynamics, and above all, computing. Thanks
to these advances, methods are now available that
are more rationally-based, more accurate, and
more comprehensive than the methods of only
a few years ago. Being computer-based, these
new methods also eliminate much of the tedium
of the older methods.
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But as mentioned in Chapter 1, the design
values for wave-induced loads are long-term
statistical quantities and are therefore applicable
to all ships of a given size, speed, hull geometry,
and distribution of mass. Therefore, over the
past several years the classification societies
have gathered much information concerning
wave loads from the computer-based methods,
from model studies and from direct full-scale
measurements. From this they have developed
explicit formulas for the characteristic extreme
values for standard ship types, expressed in
terms of the principal dimensions of the ship.
Because of the complexity of wave loading and
because it is probabilistic there is a good deal of
scatter in the measured values, and the formulas
developed from them are only approximate and
somewhat conservative. Nevertheless, the explicit
specification of wave loads is of great convenience
and usefulness to the designer, and this helps
to offset the approximations and possible extra
safety margin that it contains.

For special ship types the characteristic extreme
values of wave loads should be calculated explic-
itly, using the computer-based methods. This
does not require specialist knowledge or involve
an undue amount of calculation, because these
computer-based methods are currently being
incorporated into user oriented packages, which
require for their use only a broad familiarity with
the basic concepts of statistics, ship motions,
and system response analysis, all of which are
presented in Chapter 4.

Beginning in the 1970s, the International
Association of Classification Societies (IACS)
has compiled, updated and published a set of
Unified Requirements governing the design
of ships and their equipment. Chapter S deals
with Ship Structure. In 1989, IACS published
Section S11 Longitudinal Strength Standard.
In the remainder of this section we present a
set of characteristic wave loads from IACS
(1989, revised through 2006) and Bureau Veritas
Rules (2000), which may be used for the design
of standard ships. These characteristic values
correspond to a probability of exceedence of
the order of 107,

3.5.1 Wave Vertical Bending Moment

The vertical wave bending moments at any hull
transverse section are, in units of Nm:

(M), =—10F CL’B(C,+0.7) (351a)

(M) (3.5.1b)

v/ ho

_ 2
_=+190F, CI’BC,

FM ‘
Il R ,
| E x
0.0 0.4 0.65 1.0 L
AP. F.P.
Figure 3.8 Distribution factor Fy;.
where:
Fy = Distribution factor given in Fig.
3.8
L = Length of the ship in meters
B = Greatest molded breadth in meters
Cy; = Block coefficient, not to be taken
less than 0.6
C = Wave parameter
300—1)"
C=10.75— — for 90 < L <300
100
or 10.75 for 300 < L <350
1.5
or 10.75— L153050] for 350 <L <500

(3.5.2)

The effects of bow flare impact are to be consid-
ered where all the following conditions occur:

(1) 120m <L <200m

(2) V=17.5 knots

(3) 100F,Ag> LB
where:

Ag = twice the shaded area shown in Fig. 3.9,
which is to be obtained, in m*, from the following
formula:

As=ba0+0.1L(a0+2a]+a2)

where:
ay, dy, a,, and b are the distance, in m, shown in
Fig. 3.9. Fjis given in Table 3.1.

For multideck ships, the upper deck shown
in Fig. 3.9 is to be taken as the deck (including
superstructures), which extends up to the extreme
forward end of the ship and has the largest breadth
forward of 0.2L from the fore perpendicular.

To account for the dynamic effects of bow flare
impact, the sagging bending moment at any hull
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transverse section, defined in Equation (3.5.1a), is to
be multiplied by the coefficient F, from Table 3.1.

Table 3.1 Coefficient F)

Hull transverse

section location Coefficient F'p,
0<x<04L 1
04L<x<0.5L 1+10(Cp-1)(x/L — 0.4)
05L<x<L Cp
C,= 262,5 A — 0,6

CLB (Cy+ 0,7)

with1.0 < C,< 1.2

When at least one of the three conditions does
not occur, F may be taken as 1.

3.5.2 Wave Horizontal Bending Moment

NOTE: The material in this section and section
3.5.3 is from Bureau Veritas Rules (2000).

The horizontal bending moment at any hull
transverse section is obtained, in Nm, from the
following formula:

_ 2
Mwh = 420FMHL TCB (Nm) (3.5.3)
where:
Fy, = Distribution factor given in Fig. 3.8
H = Wave parameter
T = Summer draft
3
250—-0.7L
H=813—|———
125
without being taken greater than 8.13
Agl2
Upper deck (including
) u / superstructures, if any)
1

Waterline at the
calculation draft

EP

Figure 3.9 Area A;.

3.5.3 Wave Torsional Moment

The wave torque at any hull transverse section
is to be calculated considering the ship in two
different conditions:

Condition 1: ship direction forming an angle of
60° with the prevailing sea direction

Condition 2: ship direction forming an angle of
120° with the prevailing sea direction.

The values of the wave torques in these condi-
tions, calculated with respect to the section
center of torsion, are obtained, in Nm, from the
following formula:

=250HL (F, C, +F, C d)

w, torsion 70 Q
(3.5.4)
where:
Fry, Fro = Distribution factors, defined in
Figs. 3.10 and 3.11 for ship
conditions 1 and 2.
H = Wave parameter defined in Sec-
tion 3.5.2.
Cy = Wave torque coefficient
= 0.45B*C,’
C, = Horizontal wave shear coef-
ficient
= 5TCy
C,, = Waterplane coefficient, to be taken
not greater than the value obtained
from the following formula:
C, = 0.165+0.95Cy
where Cj; is to be assumed not less
than 0.6. In the absence of more
precise determination, C,, may be
taken equal to the value provided
by the above formula.
20 —— Fyy =it
151
// \\
1/ \
0.0 : : —
4. P, 0.25 0.50 0.75 /F.P. L
05 + \ Y
\\ %
-1.0 ~L -

Figure 3.10 Distribution factors Fpy, and Fy, for condition 1.



3.6 HULL GIRDER BENDING STRESS

3-11

Frp Frg J— 1_6052L£_xl
—— Fp= sin2ML=x) 2—x

2.0

15+

10 - N

v / // \\

0.0 . -

’ L 0.25 050 0.75 FP L
05T '\
N il
-1.0 -

Figure 3.11 Distribution factors Fy,, and F, for condition 2.

d = Vertical distance, in m, from the
center of torsion to a point located

0.6T above the baseline.
3.5.4 Wave Vertical Shear Force

The vertical wave shear force at any hull
transverse section is obtained, in N, from the
following formula:

0, =300F,CLB(C,+0.7) (N)

(3.5.5)
where:
F, = Distribution factor given in Fig. 3.12 for
positive and negative shear forces.
C = Wave parameter defined in (3.5.2).

Since shear force is the first derivative of bend-
ing moment, the magnitude of wave shear force
is directly proportional to the magnitude of the
wave bending moment. In (3.5.5) the quantity
CLB(Cy + 0.7) is the same as in the sagging wave
bending moment in (3.5.1b) except that, being a
derivative, it has L instead of L*. Examining the
factor Fy in Fig. 3.12 we see that it is a pure

190Cp

92 — 9
092 T15C,r07)

number for the forward positive peak (1.0) and
the aft negative peak (0.92). That means that
these peak values of wave shear force come
directly from the sagging wave. Conversely, the
hogging wave bending moment in (3.5.1b) has
Cpin place of (Cy + 0.7). In Fig. 3.12 the value
of Fy, for the other two peaks has the ratio Cp/
(Cy + 0.7), so that here the wave shear force is
proportional to the hogging wave bending
moment, and these peak values are produced by
the hogging wave. Although each shear force
distribution—sagging and hogging—goes through
zero somewhere near amidships, the location
varies widely among various waves, and it would
be unwise to try to take advantage of the decrease.
Hence in the amidships region (0.4 < x/L < 0.6)
the envelope of all the possible distributions is
taken as a horizontal line at Fp = = 0.7.

3.6 HULL GIRDER BENDING STRESS

As explained earlier, section modulus Z = /7 is
a coefficient that converts bending moment into
maximum bending stress, either in the strength deck
(z = zp) or in the bottom (z = z3). It is a convenient
grouping of the two factors in the bending stress
equation that are determined by the geometry and
scantlings of the hull girder cross section. In other
words, section modulus is the quantity through
which the designer can control the maximum hull
girder stress (stillwater, wave-induced or total) by
itself, separately from the stresses arising from
hull module and principal member response.

3.6.1 Reduction Factor k for Higher Yield
Strength Steels

As we have seen, modern ship structural design
is based on explicit consideration of the failure

Typical sagging
wave shear force
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Figure 3.12 Distribution factors F,.
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modes of yielding, buckling, and fatigue, but in
earlier times only yield was explicitly considered.
Before the 1960s there was no need or incentive
to use a higher yield steel for commercial ships.
It was expensive, difficult to weld, and ship sizes
were such that it was not difficult to keep the
maximum hull girder stress sufficiently below
the yield stress of ordinary steel, which is about
235 MPa. Therefore hull structural design was
based on keeping the maximum hull girder stress
below an “allowable stress” set at 190 MPa, or
81% of yield. In practice this limit was imposed
indirectly, by requiring a specified minimum
value of section modulus; this will be discussed
in the next two sections. Placing a limit on the
maximum stress, based on yield, had two further
benefits: it kept the compressive stress low enough
to avoid buckling, and it kept the cyclic (wave-
induced) stress low enough to avoid fatigue.

In the 1960s oil tanker size began to grow, caus-
ing an increase in maximum hull girder bending
moment. Oil tankers are “weight critical ships”—
heavier scantlings (more steelweight) requires a
corresponding reduction in oil cargo weight, and
therefore a reduction in revenue. To avoid heavier
scantlings, ship designers began using higher yield
steels, which meant that the allowable stress could
be increased and still maintain the same safety
factor against yield. But the classification societies
realized that increasing the stresses would lower the
safety margins against buckling and fatigue, and
these margins were not known with any precision.
Therefore the allowable stress was not kept at the
same fraction of the yield stress (0.81) but rather at
a slowly decreasing fraction specified by a Higher
Strength Steel Factor, denoted as k. This factor is
defined in the third column of Table 3.2, adapted
from Table 6.1.1 of Section 6, Paragraph 1.1.4 of
ABS (2008).

In practice this strategy was not sufficient.
The increased stresses caused severe problems of
buckling and fatigue, and the classification socie-

Table 3.2 Higher Strength Steel Factor, &

ties had to introduce additional and more explicit
requirements: a control over the slenderness of
plating and stiffeners to prevent buckling, and
a limit on cyclic stress to prevent fatigue. This
was the beginning of the gradual change away
from the “allowable stress” type of design and
toward the modern “limit state” design, in which
buckling and fatigue are dealt with explicitly. For
the yield limit state, the notion of allowable stress
remains valid, and we will see in the next two
sections that there is still a specified minimum
value of section modulus, and an allowable stress
specified by the factor k.

3.6.2 Limit on Combined Bending Stress

Section 8 Paragraph 1.2.3 of ABS (2008),
specifies the following requirement for section
modulus (for bending moment in Nm)

k

3
_— m
190x10° )

zZ> ‘M +M
(3.6.1)

w

NOTE: The value of 190 in (3.6.1) is for Z
calculated using net thicknesses after subtracting
the corrosion allowance; in IACS (2006) the
value is 175 because there Z is based on gross
thicknesses.

Since Z is a coefficient that relates bend-
ing moment and maximum bending stress, this
requirement can be interpreted as an explicit limit
on the total bending stress, using the 10° factor
to get N/mm? or MPa

@ (3.6.2)

c + ow‘ < (MPa)

In other words, there can be a linear tradeoff
between the still water and wave stresses, as
long as the total does not exceed 190 MPa (for

Steel Type Yield Stress k Allowable Stress Allowable / Yield
190/k
AH24 235 1.00 190 0.81
AH27 265 0.93 204 0.77
AH32 315 0.78 244 0.77
AH35 340 0.74 257 0.76
AH36 355 0.72 264 0.74
AH40 390 0.68 279 0.72




ordinary steel, for which k = 1). This combined
limit is the 45 degree line in Fig. 3.13, to be
discussed in the next section.
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o < 110
"HE 0.9k
122

(MPa) (3.6.4)

3.6.3 Minimum Value of Section Modulus and
Its Relation to Sagging Wave Bending

Besides the required value given in (3.6.1)
Section 8 Paragraph 1.2.2.2 of ABS (2008)
specifies another formula for the minimum value
of the section modulus.

Z =09CI'B(C,+0.7)kx10"°

mi

(m’)
(3.6.3)

Although not at first evident, all the terms on the
right hand side (except 0.9 and k x 107°) are the
same as in (3.5.1.a), which is the IACS formula
for the design value of the amidships sagging
wave bending moment, M, .. The only term that
does not appear in (3.6.3) is the 110 factor. That
is, the above formula is equivalent to

) kx10°°
"/ sag 110

The ratio M, so/Zmi, 1s of course the corre-
sponding maximum sagging wave bending stress.
Therefore the above formula for minimum value
of section modulus can be converted into an upper
limit on O, (using the 107 factor to get N/mm’
or MPa).

I
=)
o
—
<

190

0, S122
Eq. (3.6.4)

N
N

osto, £190
Eq. (3.6.2)

Permissible Stress Combinations

oS 68+122(1-ZT'“‘")

Wave-induced Sagging Stress o, (N/mm?)

Eq. (3.6.5)

68 190
Still Water Stress og (N/mm?)

Figure 3.13 Permissible combination of stresses due to still
water bending moment and wave in-duced bending moment in
sagging of hull girder at midships.

or O < —
k

w,sag

For ordinary steel, the yield stress is about 235
MPa and k = 1, and so for that case this equation is
saying that 0, must not exceed 122 MPa, or about
52% of the yield stress. For higher strength steels 1/k
increases at a slower rate than the yield stress, and
so the limit value of 122/k MPa is an even smaller
percentage of yield stress (e.g. 48% for AH36 steel).
Thus the underlying reason for the Z;, imposed by
(3.6.3) is to limit the sagging wave bending stress to
about half of yield at all times, even for a ship that does
not have any appreciable sagging still water bending
moment. For ordinary steel, the limit is 122 MPa.

There is also a reason for choosing sagging
bending moment. An important feature of wave-
induced bending is that it is not symmetric—
the sagging moment is larger than the hogging
moment, because of bow flare and other factors
that are explained in Section 4.4.3.

The formula applies to both the deck and the
bottom. Since the hull girder neutral axis is usually
lower than 0.5D (D = depth of hull girder), the
bending stress in the strength deck is larger than in
the bottom, and so the formula is more likely to be an
active constraint in the design of the strength deck.

Thus for the sagging case we have three limita-
tions on the combined still water and wave bend-
ing stress. To simplify the logic, we will here
treat sagging stress as positive and we will assume
ordinary steel, for which k£ = 1.

(1) The limit on wave-induced stress in (3.6.4)
O, e <122

(2) The limit on the combined bending stress in
(3.6.2)

O-s + o-w,sag S 190

(3) Since (3.6.2) limits the total stress to 190,
the maximum still water stress depends on the
actual wave-induced stress. For example, if 0,
is at its maximum value of 122, the limit on O,
is 0, < 68. For other values of 0 ,, we have

Z .
O'S§68+122 1—? (3.6.5)

These three limits are plotted in Fig. 3.13.
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SECTION MODULUS REDUCTION AWAY
FROM AMIDSHIPS

Because the ship will meet a wide variety of
stillwater and wave loads during its lifetime,
the envelope curve of all of the various bending
moment distributions is relatively flat throughout
the amidships region. Therefore, the required
value of section modulus needs to be maintained
at almost its full magnitude for some appreciable
length forward and aft of amidships. For simplic-
ity, and in order to avoid having to calculate
the envelope curve, it is common procedure
to maintain the full value of section modulus
throughout the middle 40% or so of the ship
length. Outside of this length the scantlings may
be reduced but the reduction must be gradual, for
example, to one-half of the full value at 0.15L
from the ends.

If the bending moment envelope curve is
used, items included in the hull girder section
amidships may be reduced in size or eliminated
as the bending moment decreases, but always
in a gradual manner and always such that the
maximum permissible stress is not exceeded.

3.6.4 Allowable Area for Section Modulus

In general, the following items are included in
the calculation of the section modulus, provided
they are longitudinally continuous:

Deck plating (strength deck and other effec-
tive decks).

Shell and inner-bottom plating.
Longitudinal bulkheads and girders.
Longitudinal stiffeners.

Some items may be partly effective, depend-
ing on their length, manner of attachment, and
longitudinal stiffness:

1. Length: To be effective, a member must extend
over a sufficient length such that some portion of
the longitudinal stress field enters the member. An
approximate rule-of-thumb is that the longitudinal
stress can diffuse at an angle of 15° on each side.
Thus, as shown in Fig. 3.14q, a longitudinal bulk-
head would become fully effective in its midlength
region only if it extended over a length of at least
D/(2 tan 15°) = 1.866D, where D is the depth of
the bulkhead; at locations closer to its ends, it
would be only partly effective. Similarly, if at a
certain point along the ship length the height of
the side shell increases by H, as in a full width
superstructure, the additional side plating only

becomes fully effective after a length of H/tan
15° =3.73H. An even longer length is required for
the entire superstructure to become fully effective
(see Fig. 3.14¢). This same rationale can also be
used to estimate and allow for the ineffective plat-
ing immediately forward or aft of an opening. As
shown in Fig. 3.14d, the material that lies within
the “shadow area” subtended by the two 15° rays
is ineffective. This shadow area rule is useful for
dealing with openings that occur close to, but not
quite within, the same transverse plane. It also
indicates that the material between hatches is
seldom very effective, as shown in Fig. 3.14d. Thus
if there were other openings, such as sideports,
located at other points in the ship’s transverse
plane between the hatches, it could happen that
this plane would be the critical one.

2. Manner of attachment: The attachment must
be capable of transmitting shear force without
undergoing longitudinal slip. In welded structures
this is generally not a problem.

3. Physical continuity: If the member consists
of lengthwise segments that are joined by weld-
ing, the joints must be butt welds and not fillet
welds. For example, in order to be effective, a
longitudinal stiffener must pass through the web
of a transverse frame or beam, by means of a
cutout in the latter, as shown in Fig. 3.14e. If
the longitudinal stiffener is “intercostal”; i.e., if
it does not pass through but rather stops at the
web and is simply fillet welded to it, it cannot
be counted.

4. Longitudinal stiffness: To be fully effec-
tive, a member must have the same (or greater)
Young’s modulus as the rest of the hull girder
and must have parity of strain; that is, it must
undergo the same elongation or compression
as is occurring in the rest of the hull girder at
that same elevation. Thus there are two further
ways in which a member might be only partly
effective: by having a smaller material stiffness
(e.g., aluminum) or by deflecting vertically
so as to adopt a larger radius of curvature,
thereby reducing its longitudinal strain and
thus “shirking” part of the stress load it would
otherwise carry. This phenomenon can occur,
for example, in superstructures that are not full
width, as illustrated in Fig. 3.14f. The question
of superstructure is discussed in Section 3.9.
In most cases the critical hull girder cross
section will be the section that contains the
least amount of effective material—that is, the
section containing the largest hatches or other
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Figure 3.14 Effective longitudinal material.

openings—but it also depends on the distance of
these from the neutral axis. If there is any doubt,
the section modulus should be calculated for all
of the potentially critical sections.

In general, the net sectional areas of longitudi-
nal members are to be used in the section modulus
calculation, except that small isolated openings
need not be deducted, provided the openings and
the shadow area breadths of other openings in any
one transverse section do not reduce the section
modulus by more than a few percent.

3.6.5 Calculation of Hull Girder Moment of
Inertia

Figure 3.15 is an example of a longitudinal
structural section showing (only) the longitudi-
nally effective material. The two quantities to
be calculated are the position of the neutral axis
of the section and the moment of inertia I about
the neutral axis. If done by hand, the calculation
is best carried out in tabular form, as shown in
Table 3.3. The dimensions and the vertical height
of the centroid of each item are entered, and then
the area and the first and second moments of area
of each item are calculated about some axis yy.
The choice of the axis yy is arbitrary but the keel
position is probably the most appropriate because
the location of the neutral axis is usually quoted
as height above the keel. To obtain the moment of
inertia of an item about the yy axis, it is necessary
to add to ah® the moment of inertia of the item
about its own neutral axis, which is denoted as
i. This is entered in the last column. Most of the
items can be treated as rectangles so that the
moment of inertia is simply 1/12ad?, where a is
the area and d the depth. Note that, as shown in
Fig. 3.15, this expression is also valid for inclined
sections of plating.

It will be noted that there are only a few entries
in the last column; this is because the moment of
inertia of what may be called “horizontal” material
about its own neutral axis is sufficiently small to
be negligible. If, for example, a panel of plating
is of thickness ¢t and width 100z, the value of i is
10°#* if the panel is vertical but is only 10%* if it
is horizontal; since the values are to be summed,
the latter quantity is clearly negligible.

The distance of the neutral axis above the keel
is

Z ah;
Ya;

hNA:

Finally, from the parallel axis theorem, the
moment of inertia about the neutral axis is

=1 - An, (3.6.6)
where I = moment of inertia about the neu-
tral axis
I,, = moment of inertia about the
baseline
A = total area
and hy, = distance from baseline to neutral

axis.
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Figure 3.15 Example of longitudinally effective material.

As shown in the example of Table 3.3, the
calculation is usually carried out for one side of
the ship only, and therefore the results have to
be multiplied by two.

For open flange-web beams (tees, angles, etc.)
an explicit formula for moment of inertia is given
in Section 3.12.

For calculating horizontal moment of inertia (about
the centerline) add three more columns to the table

Distance from centerline, g

The second moment ag’

The horizontal centroidal moment of inertia
of the member i, (if relevant).

Then use the sums of the last two columns to
calculate Y2/;, and double it to get /. Finally,
calculate Z.,, the section modulus for a location
at the ship’s side.

3.6.6 Combined Vertical and Horizontal
Bending

The calculation just described assumes that
the ship is upright and that the bending moment
is in the ship’s vertical plane. This is referred to
as vertical bending. If the ship is at an angle of
heel due to rolling, it will also be subjected to
horizontal bending, that is, a bending moment
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Table 3.3 Section Modulus Calculation

2nd Local 2nd
Scantlings Area Height Moment Moment Moment
Item m mm a (m?) a (m?) ah ah? i (m*)
Strength Deck Plating 25 14 0.0350 9.0 0.3150 2.835
S.D. stinger plate 1.5 16 0.0240 9.0 0.2160 1.944
S.D. longitudinals (mm) W160 14;F40 14  0.0084 for 3 8.9 0.0748 0.666
Sheer stake 1.0 16 0.0160 8.5 0.1360 1.156 0.001
Side plating 72 14 0.1008 4.4 0.4435 1.951 0.435
2nd deck plating 4.0 12 0.0480 5.5 0.2640 1.452
Bilge (curved portion) R=08;t=14 0.0176 0.29 0.0051 0.001 0.001
Inner bottom plating 6.5 14 0.0910 1.0 0.0910 0.091
L.B. margin plate 1.5 16 0.0240 1.0 0.0240 0.024
I.B. longitudinals (mm) W200 10; F66 15 0.0150 0.86 0.0129 0.011
Side girders 1.0 12 0.0240 0.5 0.0030 0.001
Center girder (1/2) 1.0 6 0.0060 0.5 0.0030 0.001 0.001
Bottom plating 72 14 0.1008 0 0 0
Bottom longitudinals (mm) W200 10; F66 15 0.0150 0.14 0.0021 0.000
Upper hatch side girder W0.5 25;F0.4 25 0.0225 8.64 0.1944 1.680
Lower hatch side girder WO0.5 25;F0.4 25 0.0225 5.14 0.1157 0.595
Totals (for half section) 0.5706 1.9095 12.413 0.440
Height of neutral axis: h,, = Za—"h" = 1.9093 =3.346
Za 05706
%Iyy =12.413+0.440 = 12.853m’
Parallel axis term = f(Zal_)thA 1 = —6.390 m*
5[ = 6.463m*
Full values: A=1.142m’
I=12.93m*
%=y —1 ho 9.00102;933.346 2287
'~ M
7, =L 125 56w
h, —3.346

M, acting in the ship’s horizontal plane (see Fig.
3.16). For this bending moment the neutral axis
is the ship’s vertical centerline.

Let us first take the case in which M. is entirely
due to inclination of the vessel, say to an angle
0. In this case M, and M, are directly related,
being components of the total bending moment
M (which acts in the true vertical plane):

M,= McosO

' (3.6.7)
M = Msin 0

If y and z are the coordinates of any point in
the cross section and I, and I, are the moments
of inertia about the horizontal axis in the upright
condition and about the centerline respectively,
then the stress at (y,z) is

_ McosO

O =0,+0,="7 7+ Msin®
N,

7Y
“ (3.6.8)

When 0 = 0 then y and z are on the neutral axis
(yn» zw) and it follows that
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z,cos0  y,sin6
+ =0
Ly, Lo, (3.6.9)
or
y=— itan@ Yy (3.6.10)

ICL

This gives the equation of the neutral axis in
the inclined condition. Note that in Fig. 3.16
yn 18 negative, and so the zy given by (3.6.10)
is positive, as in the figure. If we had chosen
a neutral axis point on the other side, zy would
have been negative. This gives the equation of
the neutral axis in the inclined condition. The
angle ¥ of the new neutral axis relative to its
original position is given by

tany = X =_ %tane (3.6.11)
Iy cr

In the figure, the ship is rotating through a
positive angle 0 relative to global coordinates Y,
Z, whereas the neutral axis is rotating through
a negative angle Y relative to ship coordinates
v, z. If the vessel were such that I, = I, then
tan ¥ = -tan 0, and the neutral axis would remain
horizontal. In general this is not so, /- being
larger than Iy, , and so the neutral axis rotates
less than the ship and is inclined to the horizontal.
This is a well-known feature of unsymmetric
bending. In a ship there is one axis of symmetry,
the centerline, and therefore I, and I, are the
maximum and minimum moments of inertia
respectively.

Referring to (3.6.8), the angles of heel at
which the greatest and least stresses occur may
be obtained by putting do/d6 = 0.

Hence,
do Msin6 Mcos 6
do _ _ | =0 (3.6.12)
d6 L, T,
N
Neu&'\x‘\5 ( Y
(HEE\ed)
\]\\\
o v \,\‘G\P‘ﬂs
‘fov“g“\

Figure 3.16 Neutral axis with simultaneous horizontal and
vertical bending.

or

— yl [NA — ZNA
tan =27+ = 7 (36.13)
where i = D or B (deck or bottom)

The greatest and least stresses will also be
associated with the maximum values of y and
z and this means that these stresses will occur
at the corners of the section. Figure 3.17 is a
qualitative illustration of the stresses at the four
corners of a ship section, for which the maximum
and minimum stresses occur at a heel angle of
about 30°.

In practice the horizontal and vertical bending
moments are not so directly coupled and do not
necessarily occur simultaneously. Their relation-
ship varies with different sea conditions and
depends mainly on ship heading. The situation is
summarized in Fig. 3.18, based on International
Ship Structures Congress (1976), which shows the
results of theoretical calculations of the character-
istic value of wave bending stress in a 300-m tanker
(We recall from Section 1.2 that the characteristic
value is the extreme value corresponding to some
specified probability of exceedence in the ship’s
lifetime.) The figure shows the stresses at the deck
edge due to vertical and horizontal bending, &y
and 64, and also the total stress, 6, over a range
of ship headings. This type of calculation, and
the underlying statistical principles, is discussed
in Chapter 4. But to interpret Fig. 3.18, it should
be mentioned here that the degree of simultaneity
or correlation between two random variables may
be measured by a correlation coefficient £. If the
variables are independent, then € = 0; if they are
completely linked, such that they always occur
simultaneously, then € = 1. Horizontal and vertical
bending stresses are random variables and for
this reason their characteristic values cannot be
just added together, as is done for deterministic
quantities. Instead, the combined characteristic
stress depends on the extent to which the variables
are correlated. If 6, and 6, denote the individual

G=GV+GH

4 Maximum stress in deck

/_%edge at higher side)
P Maximum stress in bottom
/_\ (lower bilge)

0 20 20 60° >0

Figure 3.17 Variation of maximum total stress with angle of
heel.



3.6 HULL GIRDER BENDING STRESS

3-19

Beam Seas: &, & G, closely correlated

90°
]
_____ - 60 Radial coordinate is
~ stress at deck edge
N
AN
\
\\
\ 30°
\
\~\~ \
. \
\ \
1
i ‘ 0
! 0° Head Seas

6, & G, independent
— —— Combined stress &
Vertical bending stress 3\, A
—-—-. Horizontal bending stress OnQ

1.0 ——]
/ I~
CORRELATION
COEFFICIENT
’ /
4
0 —
0° 30° 60° 90°
Head seas Quartering seas Beam seas

HEADING ANGLE
Figure 3.18 Combination of long-term vertical and horizontal

bending stress.

values, it can be shown that the magnitude of the
combined stress & is given by

P P PN A2
o= \/O'H + ZEO'HO'V +0, (3.6.14)
Thus, if the bending moments are independent,

their stresses will be uncorrelated (€ = 0) and the
magnitude of the long-term total stress is

A a2 ~2
o= O'H + GV
If on the other hand the bending moments are
perfectly correlated, such that they always coin-

cide, then & = 1 and the total long-term stress is
simply the sum of the two separate values:

(3.6.15)

6=6,+6, (3.6.16)

Figure 3.18 presents the values of 6, and &, their
correlation coefficient £, and the total stress G,

as given by (3.6.14), plotted for a range of ship
headings. For beam seas and quartering seas
€ is nearly unity, indicating that 6, and & are
closely correlated. This is because for beam seas
and quartering seas the horizontal bending is due
mainly to rolling of the ship. Likewise the largest
value of & occurs with beam seas because rolling
is usually a maximum for this heading. Thus the
horizontal and vertical bending moments are, for
the most part, components of the same overall
bending moment and so their respective stresses
are closely correlated. Therefore, the total stress
calculated from (3.6.14) is nearly the same as the
direct sum of 6, and 6.

For head seas the situation is the reverse: here
the horizontal stress has its smallest value and
it is nearly independent of the vertical stress.
This is because there is less rolling and much
of the horizontal bending is caused by irregular
seas that give different load distributions along
the two sides of the ship. The total stress as
given by (3.6.14) is only slightly greater than
the vertical stress, and for this heading &, could
be ignored.

Figure 3.18 shows that as the heading angle
increases, 6, diminishes and &, increases. Also,
because of the change in their correlation, the
total stress is approximately constant, with a peak
value that is about 12% larger than the maximum
(head seas) value of &y. This indicates that for
design purposes it is sufficient (and conservative)
to calculate the two stress values separately, using
characteristic values of wave bending moment
such as those given by (3.5.1) and (3.5.3), and
then to simply add them together. Note that this
gives the stress at the deck edge; the stress in the
deck at the centerline would be 6, because 6 is
always zero at this location.

3.6.7 Changes in Hull Girder Cross Section

The provision of the required section modulus
is necessarily an iterative process, particularly
if it is to be done efficiently, avoiding an overly
large value. As the design progresses, it will be
necessary to add or remove material in the hull
girder cross section. A typical situation is shown
in Fig. 3.19, in which an area §A is added at a
height z above the neutral axis of a vessel having
moment of inertia /, total area A, and distances
zp and z, to the deck and keel. The effect of the
addition is to raise the neutral axis a distance
dh and to increase the moment of inertia to a
value I + &1 (about the new neutral axis). The
net effect on the deck and bottom can vary,
depending on the location of dA. For example,
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/ original area A

added area
SA——
Zp
new N.A. z
Sh original N.A. +
h Zy

Figure 3.19 Effect of adding area. Notes: 1. z values are posi-
tive above the original N.A., and negative if below. 2. If material
is removed, SA is negative.

although the addition shown would reduce the
deck stress (because it increases / and decreases
Zp) it might increase the keel stress because
Zx 1s increased, and this might outweigh the
increase in /. In addition to this complication,
there is also the fact that the calculation of [
is a lengthy computation, and it would not be
desirable to have to repeat it for every change
of area, even within a computer-aided design
program. Therefore it would be helpful to have
some means for quickly estimating the effect
of adding material. To this end we first derive
expressions for §i and 1.

With the addition of the area A, the rise of the
neutral axis is

0z
Oh =
Y (3.6.17)

and the additional moment of inertia is

61 =86AZ +i—( A+ SA)NSh)

If the material is added below the original neutral
axis, the value of z is negative. If the material is
removed, then the value of A is negative, and
also i is negative in the foregoing equation.

Substitution for 84 from (3.6.17) gives

SAZ
A+0A

. AbAZ

SI=86A7— i=
A+ 6A

(3.6.18)
3.6.8 Derivative of Hull Girder Stress

For design purposes a method is needed for
quickly estimating the incremental change in
hull girder stress due to a change in effective
material. Figure 3.20 shows how this can be done

0;

601

am

0 >
day,

Figure 3.20 Variation of hull girder stress at location / with
sectional area of member m.

by extrapolating along the slope of the stress-area
curve, which is the derivative 00,/ da,,. That is,
if the area a,, of any member m is changed by a
small amount da,, the change in hull girder stress
O, at any arbitrary location [ is given by

Jo
501 =1 5am

a
m

(3.6.19)

and so if a general expression were available
for the stress derivative, d0, / da,,, the change in
stress could be readily calculated.

Figure 3.21 illustrates some of the basic
parameters relating to the member being changed:
area a,,, height of centroid above the keel 4,
distance from neutral axis z, (positive upward)
and vertical depth d,,. A subscript / denotes the
location where the stress change is to be calcu-
lated. For generality the expression to be derived
requires a rigorous sign convention for z, the
distance from the neutral axis, and so we adopt
the usual choice of positive upward. We thus have
zy=h;— hyy , and z,, = h,, — hya.

In order to obtain an expression for 90,/ da,, it
will be necessary to have the partial derivatives of
hy, and I with respect to a,,. These can be obtained
from the expressions developed earlier for 4 and
OI—the changes in hy, and in I due to adding some
material. In the present case, the added material is
da,,. The centroidal moment of inertia of the added
material, i,, is usually negligible except when
the member m is oriented vertically. In this case,
assuming that it is a straight, thin-walled member of
vertical depth d,, i,, is equal to da,d’,/12 (see the
bottom of Fig. 3.15). With these changes (3.6.17)
and (3.6.18) become
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l/ location /

original N.A.
h;
Zm
hNA l
¥ \\ ) dm
i

member m being changed:
original area = a,,
change in area = da,,
height of centroid = h,
distance from original N.A. =z, (neg. if below)
vertical depth =d,,

Figure 3.21 Definition of terms for stress derivative equation.

Zm5am
oh,, = I (3.6.20)
Az*Sa da d?
ol = m_m o mom (3.6.21)
A+da 12

We may obtain the desired derivatives by dividing
these changes by the increment of area da,, and
taking the limit.

8hNA Oh
= lim | = | = lim |—=
Oa, ~ éa,—0| Oa, | éa,—0|A+dba,
— Zm
4 (3.6.22)
ol . ol
— = lim |—
Oa, ~ 4,~0ba
Azfn di
— m —_—
ba,—0| 4+ da 12 (3.6.23)
2
= i 4
12

We may now proceed to derive the stress deriva-
tive that is required in (3.6.19). The hull girder
bending stress at z; is

Mz
o =—1 (3.6.24)
S §
and its derivative is
0z
0o Oa Oa
/ — M m m
Oa I’

m

Since z, = h; — hy,, the first derivative in the numer-
ator is -dhy, / da,, which is given by (3.6.22),
and the other derivative is given by (3.6.23).
Substitution yields

(90'1 Mz |z 1, d?
= — 4=z
da Ijaz, 1" 12

m

and from (3.6.24) this is

oo z 1 d?
e g |y |2 |l (3625)
da, Az, 1| " 12

In the simplest case when d,, << z,,, this equation
becomes

861 z z2
L — _Gl —_m_ +_m
aam Azl I

(3.6.26)

This expression is to be used in conjunction with
(3.6.19). Of course, if the change in area is large—
say, more than 5% of the total area—then the
moment of inertia should be recalculated as in
Table 3.3.

3.7 CALCULATION
SHEAR STRESS

OF HULL GIRDER

3.7.1 Shear Stress in Open Sections

In the hull girder, as in any beam loaded by
transverse vertical forces, there is a vertical
shear force Q acting on the cross section. In a
thin-walled section such as an I-beam or a box
girder, it is important to know how the total shear
force Q is distributed across the section so that
the wall thicknesses can be adequately sized. That
is, it is necessary to determine the distribution of
the shear stress T around the entire cross section.

Figure 3.22 shows a thin-walled symmetric
box girder subjected to a vertical shear force
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Figure 3.22 Free body diagram for transverse shear.

Q. From elementary beam theory it is known
that over a differential segment of length dx, O
causes a change of bending moment given by

dM = Qdx

Due to this change in the bending moment, the
bending stresses 0, and O on the two faces of
the differential segment are not equal. Therefore
if we isolate a portion of the differential segment
by making two cuts, one at the centerline and the
other at an arc length s from the centerline, the
imbalance in the longitudinal normal stress forces
must be counterbalanced by longitudinal shear
stress forces across the cut sections. However,
because of symmetry, there can be no shear stress
in the centerplane cut and hence the balancing
force must come entirely from the shear stress T at
the other cut. Longitudinal equilibrium therefore
states that

wdi= [‘ods— [ ods (7.1

force on
face = Ttdx

Substituting 0 = Mz / I on both faces

M — M s
Ttdx:Mf ztds
I 0
CdM

J Jo
and substituting dM = Qdx gives

_ 9
Tt—lﬁztds

The integral on the right hand side is a function
of the geometry of the section and of position s
around the section. For convenience we assign
the symbol m to this quantity:

j:) ' zt ds

and we note that m is the first moment about
the neutral axis of the cumulative section area
starting from the “open” end (shear-stress-free
end) of the section.

ztds

(3.7.2)

m(s) (3.7.3)
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Substituting for m in (3.7.2) and solving for T.

_Om
tl

. (3.7.4)

The product Tt has special significance in the
torsion of thin-walled sections, and has some analo-
gies to the flow of an ideal fluid within a closed pipe.
This product is therefore referred to as the “shear
flow” and is assigned the symbol g:

qg="1t (3.7.5)

The shear flow is also a useful quantity in the

present case, in which the shear stress is due to

a transverse load. From (3.7.4) we observe that
the shear flow is given by

m
,_Om
1

(3.7.6)

Since Q and [ are constants for the entire section,
the shear flow is directly proportional to m. In
fact, the ratio Q/I may be regarded as simply a
scaling factor, and once the distribution of m
has been calculated, the shear flow distribution
is identical to it but with different units. Still
another advantage of ¢ is that its value does not
vary abruptly with local thickness changes, as
does T (see Fig. 3.26).

It may be seen from the derivation of (3.7.4)
that the values of Q and I are normally those for
the entire hull girder cross section, whereas the
calculation of m is performed using a half-section.

m, = gt,b

m(s,) = gt,s,

This is the convention that is usually followed.
Obviously, the Q and [ values for a half-section
could also be used since their ratio is then
unchanged. However, m should always be calcu-
lated for a half-section; if both port and starboard
halves had been used in deriving (3.7.4), then
there would have been two symmetric and identi-
cal cut faces, each carrying an axial shear force
of T t dx. In this case the denominator of (3.7.4)
would have to be 2¢/. The convention of using a
half-section for the calculation of m is also more
appropriate because in practice half-sections are
used for structural drawings.

The calculation of m is illustrated in Fig.
3.23 for an idealized hull girder. For horizontal
portions, the moment arm z is constant, and
m therefore increases linearly with arc length.
This occurs in the deck and bottom if there is no
camber or deadrise. For instance, in the deck

m(s)=gt,s,

and

m, = m(b)= gt b
In the side shell m is parabolic
m(s,) =m —|—fszztds =m, +|gs —ls2 t
2 A 0 s 2 A 2 2 21s

In ships of normal proportions, the parabola is
very flat and hence the shear flow ¢ is almost
constant vertically.

S,
m(sz) = mA+,[_) (g - Sz) tstZ

2
=m,t+ (932 '?2) ts

|<—b—> [ y— W
g _
o] | .
N - A
| Ql g==m
t t - '
h | B

(a)

7 s
= m(ss3) =J; *htgds,

= htgs;

(b)

Figure 3.23 Calculation of moment term m by integrating along branches.
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Because of changes in the orientation and
thickness of the plates that make up the hull
girder cross section, the integration for m is
usually performed in segments. The integration
is always commenced at the “open” end of any
branch. As shown in Fig. 3.24, this need not be
on the centerline; it may be at the edge of a hatch
or other opening.

Figure 3.24 also shows the effect of multiple
branches—for example, additional decks. If an
imaginary cut were made at point C, the shear
force at that point would have to balance the net
imbalance in bending stress forces in the second
deck and all plating above it. Therefore, all of
this area must be included in the calculation of
m at point C. The new area that is incurred in
passing from B to C is the area of the second
deck, and therefore the increment in m is equal to
the total value of m for the second deck. That is,
me = my + my and, since g is directly proportional
to m, qc = g4 + gp. This illustrates one of the
reasons for the use of the term “shear flow”: at
any junction or branchpoint, the increment in
the shear flow is equal to the flow contributed
or taken away by the branch, as shown in Fig.
3.25. It should be noted that since deck and side
plating may be of different thickness, this rule
of continuity of shear flow does not hold for
T. Figure 3.26 illustrates how T changes with
changes in thickness.

It is well known (e.g., from Mohr’s circle)
that because of equilibrium the shear stress in
a differential element at any point occurs in the
form of two equal and opposite stress couples,
one positive and the other negative. Since they
are equal it makes little difference which is
which, and so there is no need for a rigorous sign
convention for either m or T or g. The direction of
the shear flow may be determined by inspection,

¢

Figure 3.24 Conservation of shear flow at corners and branch
points.

Figure 3.25 Sample diagram indicating direction of shear
flow.

because in the webs of the hull girder it has the
same direction—upward or downward—as the
overall shear force, Q. In “open” sections such as
that of Fig. 3.25 the flow is a “straight-through”
flow; there is rarely a reversal in the flow direc-
tion and so usually it is only the magnitude of
m, or of g, which is of interest, and its sign will
usually be positive. Also, the integration for m
is always commenced at the open end of each
branch because that simplifies the computation.
Therefore, the moment arm z is always taken as
positive at the beginning of each branch, regard-
less of which side of the neutral axis the branch
commences, and it only becomes negative if and
when that particular branch crosses the neutral
axis. For this reason, it is best to stop at the
neutral axis and to finish that branch by starting
from the other end. If this is not possible then the
integration can proceed across the neutral axis,
provided that a negative moment arm is used for
all points on the other side.

Figure 3.26 Change of T due to change of thickness.
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3.7.2 Shear Stress in Multicell Sections

In the definition of m in (3.7.3), it was assumed
that the line integral was always commenced at a
point of zero shear flow. Thus, as noted earlier, if
there are any branch points (such as a second deck
and side shell connection) then each branch must
have zero shear flow at its end. This is equivalent
to requiring that there should be no closed loops
or “cells” within the overall half-section of the
hull girder. Consequently, for the tanker of Fig.
3.27 the value of m can only be calculated along
AB and FE; it cannot be calculated anywhere
around the perimeter of the wing tank BCDEB.
The difficulty arises from the fact that the shear
flow divides at point B (and reunites at point E)
and the separate components cannot be determined
from simple statics. The problem is statically
indeterminate and, as usual in such problems,
additional information must be obtained from a
consideration of geometric compatibility.

Simple beam theory assumes that plane cross
sections remain plane. The warping of a cross sec-
tion is the net axial deformation pattern that occurs
when a cross section deforms out of plane. It does
not include the axial displacement caused by a pure
rotation of the section (about the neutral axis, due
to bending). Rather it is the net axial displacement
pattern over the cross section after the rotation due
to bending is subtracted out. Warping is caused
by shear stress, arising either from transverse
shear force or from torsion. In the next section
(3.8), we will examine how transverse shear force
causes warping, and what errors warping causes
in the predictions of simple beam theory. Then
in Section 3.10 we will examine warping caused
by torsion. It is clear that if we move around the
perimeter of a closed cross section and record the
warping at each point, when we come back to the

A B C

[ —

- 4 o »

‘ l points of zero
L 4 7 shear flow,

locations

4 unknown
L initially
L
F E D
¢

Figure 3.27 Shear flow in a multicell section.

starting point the warping must return to its original
value. In Section 3.10 we will see that the net
warping over the full perimeter must be zero, and
this is the geometric compatibility condition that
we need in order to solve for the shear stress in a
cross section that includes closed cells. Therefore
we will defer the treatment of such cross sections
until Sections 3.10 and 3.11.

3.8 SHEAR EFFECTS AND OTHER
DEPARTURES FROM SIMPLE BEAM
THEORY

3.8.1 Shear Lag

Simple beam theory assumes that plane cross
sections remain plane, and that therefore the bend-
ing stress is directly proportional to the distance
from the neutral axis. Thus in any flange-and-web
type of beam, the stress should be constant across
the flanges. However, in most cases the bending
is not caused by the application of a pure couple
to the ends of the beam; rather, it is caused by
vertical loads, and these loads are absorbed by the
webs of the beam and not by the flanges. That is,
even for a hull girder, in which the vertical loads
may initially act on the flanges (e.g., pressure on
the bottom), they are immediately transferred to
the webs by transverse beams and frames; the
plating of the flanges can only take longitudinal
in-plane loads (we are discussing principal loads,
not small local loads). Therefore, the vertical
loads act on the webs and cause them to deflect to
some radius of curvature, thus inducing maximum
strain in the flanges. Since they carry maximum
strain, and hence maximum stress, the flanges
make the largest contribution to the bending
stiffness. But, it is important to note that this
maximum strain comes initially from the webs
and only reaches the flanges by shear. This is
illustrated in Fig. 3.28, which shows a portion
of a box girder cantilever loaded by a vertical
force F. The force is reacted by, or carried by, the
webs, which deflect to some radius of curvature
such that the upper and lower edges of the web
are elongated and shortened. For simplicity, the
curvature is not shown; only the change in length.
At the upper edge the elongated web pulls the
flange plating with it, through shear forces, and
this sets up shear stresses in the flange; these
were discussed fully in the previous section. The
bending and shear stresses cause stretching and
in-plane distortion of the flange. On the left and
right sides of the figure, an element is shown
before and after this stretching and distortion.



3-26

HULL GIRDER RESPONSE ANALYSIS — PRISMATIC BEAM
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Figure 3.28 Shear lag in box girders.

The shear distortion is such that the inner edge
of the element does not have to stretch as much
as the outer edge; that is, the longitudinal strain
is less at the inner edge and therefore so is the
longitudinal stress. This same phenomenon will
occur at each element, from the edges to the
centerline, although it will diminish steadily and
disappear at the centerline because the shear stress
diminishes to zero. The overall result is that the
flange undergoes in-plane longitudinal distortion
and therefore plane cross sections do not remain
plane when shear stress is present. This distortion
is commonly referred to as “warping” of the cross
section. The most significant aspect of the shear
distortion is that the inner portion of the flange
carries less bending stress, and is therefore less
effective than the outer portion. That is, due to
shear effects, the bending stress remote from a
web “lags behind” the stress near the web. The
phenomenon is therefore termed the “shear lag”
effect. The same effect occurs in the compression
flange since here the shear distortion allows fibers
that are remote from a web to avoid some of the
shortening and hence to carry less compressive
stress. Shear lag occurs in any wide-flanged
section that carries a lateral load in the manner of
a beam. In an open section, such as the standard
single web beam of Fig. 3.294, it is the outer
edges of the flange which are less effective.
The exact distribution of stress in a wide-flanged
section can be found using the mathematical
theory of elasticity, but this analysis, involving the
use of stress functions, is too complex for design

calculations. The exact analysis shows that the
magnitude of the shear lag effect (i.e., the extent
to which the distribution of bending stress differs
from simple beam theory) is dependent on:

1. The ratio of width to length of the flange.

2. The distribution of lateral loading along the
beam.

3. The relative proportions of web and flanges.
4. The type of section (single or multiple web,
symmetric or unsymmetric, etc.).

5. The position along the beam. The shear lag
effect in general varies from point to point along
the length, and is maximum at maximum shear
force gradient (concentrated loads).

Shear lag is of importance in beams having
very wide flanges and shallow webs, such as
aircraft wings. In steel box girders the effect is
much smaller, even in box girder bridges (Dowl-
ing et al, 1977), which have large concentrated
loads due to the point supports. In the hull girder
bending of ships, the shear lag effect is usually
only a few percent. It is more important in the
consideration of the effects of superstructures and
of the effective breadth of plating in local strength
problems, which will be discussed later.

3.8.2 Effective Breadth Due To Shear Lag

Rather than using a mean value of flange stress as a
way of allowing for shear lag, it is preferable to retain
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Figure 3.29 Shear lag in beam flanges.

the value of the maximum stress O, at the junction
of the flange and web, so that it can be allowed for
in designing the flange. Therefore, the usual way of
allowing for shear lag is to use an “effective breadth”
of flange, b,, which is defined as:

The breadth of plating which, when used
in calculating the moment of inertia of the
section, will give the correct maximum stress
O ... across the effective width of the flange,
using simple beam theory.

Also, the effective breadth must be such that
the total longitudinal force in the flange is equal
in the actual and simplified cases. Equating forces

b
b0, =bt ody

or

1 b
b, 5 fo o.dy (3.8.1)

Effective breadth is illustrated in Fig. 3.30.
In Schade (1951, 1953) effective breadths are
calculated for a wide variety of structures and
loading conditions. These references should be
consulted if it is required to investigate shear lag
effects in detail.

The main conclusions from such analyses are:

1. The most important parameter that determines
effective breadth of plating is the ratio of flange
width b to the length L, between points of zero
bending moment. For simply supported beams,
L, = beam span. A low L,/b ratio results in a
small ratio of b./b.

2. Effective breadth varies from point to point
along the span of a beam, being smallest at points

of concentrated loading on the beam, where
there is a discontinuity in the shear force curve.
Conversely, there is no shear lag effect in pure
bending (no shear).

3. Shear lag occurs in both tension and compres-
sion flanges equally, provided that in the latter
case buckling does not occur.

For design purposes the effective breadth at the
section of maximum bending moment is of most
importance. Figure 3.31, derived from Schade
(1951, 1953) enables effective breadths to be
found at points of maximum bending moment.
These breadths should then be used in calculating
the effective moment of inertia /, of the section,
and hence the maximum bending stress in the
beam.

M z
__yTmax

Figure 3.30 Effective breadth of flanges.
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Figure 3.31 Effective breadth at maximum bending moment.

3.9 HULL-SUPERSTRUCTURE
INTERACTION

The interaction between hull and superstruc-
ture (or deckhouse) is highly three dimensional
and quite complex, and therefore it cannot
be dealt with adequately by beam theory, but
rather only by a 3D finite element model of
the full ship. This is especially true for large
passenger ships, where the superstructure is
almost full length and many decks high. For
example, Fig. 3.32 is shows a MAESTRO finite
element model of a cruise ship. In Fig. 3.32a
the colors indicate material type. In Fig. 3.32b
the colors indicate panel type; i.e they reflect
such properties as plate thickness and stiffener
spacing. The increased variety of colors gives
a better appreciation of the 3D complexity of
the structure, showing that it could never be
analyzed by beam theory.

Despite the complexity, there are some basic
topological features that influence the degree
to which the superstructure participates in the
hull girder bending, and we therefore consider
these briefly and qualitatively. This topic has
long been of concern to naval architects but it

was only when the finite element method was
developed in the early 1960s that an adequate
analysis became possible. Paulling and Payer
(1968) was a landmark paper, and since then
many other contributions have been made, par-
ticularly by naval designers such as Mitchell
(1978) and McVee (1980), because naval vessels
have relatively long superstructures, while at the
same time, it is important to keep the weight of
the superstructure as small as possible because
of the criticality of vertical center of gravity in
naval vessels.

3.9.1 House Side Continuous with Ship Side

In essence, a superstructure participates in hull
girder bending to the extent that its webs (sides)
are forced to act as a vertical continuation of the
ship’s sides and to undergo in-plane bending to
the same radius as the hull. This will be maximal
if the house sides are in the same plane as the
ship’s sides. Figure 3.33a illustrates the deflected
shape and the distribution of longitudinal strain
&y for such a case. The bottom fibers of the house
side undergo the same extension as the top of
the hull. At the midlength the upper deckhouse
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Figure 3.32 MAESTRO model of a cruise ship. (Picture courtesy of Kvaemer Masa Marine, Vancouver, BC, Canada, V6J 1T5).

fibers also contribute, and so the axis of zero
strain is higher and the curvature 1/R is smaller
than if the deckhouse was not present. Hence the
vertical rate of increase in strain is smaller. But
away from the midlength the upper deckhouse
fibers undergo progressively less extension, and
at the ends of the house &y will be zero.

Thus even though the bottom of the house side
has the same curvature as the hull, the vertical
distribution of strain is not linear because of
the longitudinal shear deformation (warping)
of the house side; that is, a plane cross section
of house and hull does not remain plane. The
figure shows typical strain distributions at the
midlength and quarter points, and also the
lengthwise variation of €y in the upper fibers
of the house side. The sharp reentrant corners
would be avoided in practice since they cause
very high stress concentration.

3.9.2 House Side Offset from Ship Side

Figure 3.33b illustrates the effect if the house
sides are not in line with the ship’s sides. Because
of the relative flexibility of the deck beams, the
house sides are able to adopt a much larger radius
of curvature and thereby escape from a good deal
of the bending. (No matter how sturdy a deck
beam may be, its flexural stiffness is only a small
fraction of the in-plane stiffness of plating.) In this
situation the strain is small even at the midlength,
and the deckhouse is largely independent of the
hull in regard to primary bending.

As the ship undergoes hogging and sagging, the
bottom comers of the deckhouse will alternately
pull upward and push downward on the deck, and
sufficient area of attachment must be provided to
keep the cyclic stresses sufficiently small in order
to avoid fatigue. Also it is usually advisable to
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Figure 3.33 Interaction between hull and deckhouse.

terminate the deckhouse at transverse bulkheads
in order to avoid excessive cyclic deflections and
cyclic stresses in the deck structure.

3.9.3 Amidships Superstructure in Naval Ships

A particular challenge in the design of the
superstructure of a naval ship is the need for
Replenishment At Sea (RAS) operations. Because
of pitch motions the location must be close to
amidships, which is precisely where the hull
girder bending moment is largest. RAS operations
require a large open area on the main deck, on
both sides of the ship. Consequently the super-

structure in this region must be narrower than
elsewhere. The difficulty is further increased if
the superstructure is welded aluminum, which is
more prone to fatigue than steel.

Figure 3.34 provides examples of the super-
structure design for three classes of US Navy
ships. Figure 3.34a is a MAESTRO finite
element model of a Perry class frigate. Color
indicates material type, the ship having an
aluminum superstructure (the hull has more
than one type of steel). The superstructure is
relatively long, continuous and of essentially
constant height. It would therefore be strongly
affected by hull girder bending, especially in
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Figure 3.34 (a) MAESTRO finite element model of a Perry class frigate. Continued on next page.

the amidships region, where because of RAS
operations it is narrower.

Figures 3.34b,c are a photo and a MAESTRO
finite element model of a Ticonderoga class
cruiser, which also has an aluminum superstruc-
ture. In this ship each end of the superstructure
consists of a massive full-width block, which
would follow the hull girder deflection and slope
quite closely, and could cause large stresses in
the amidships region. However, in this region
the superstructure is lower and very narrow. It
is possible that this portion of the superstructure
might act as a relatively “soft” portion, thereby
reducing the potentially large hull girder bending
stress. If so, this region would have been a very
challenging design.

Figure 3.34d is a photo of an Arleigh Burke
class destroyer. Here the superstructure has been
split into two entirely separate portions. Also,
the portions forward and aft of the amidships gap
are mostly the nearly void spaces of intakes and
uptakes. The only significant superstructure is the
full-width eight-sided “pyramid” at the forward
end, and this structure is relatively short. Thus in
this ship the superstructure (which is steel) would
participate only slightly in hull girder bending.

3.10 TORSION OF PRISMATIC THIN-
WALLED BEAMS

Torsion of noncircular sections causes longi-
tudinal deformation of the cross section, called
warping. In solid sections this has a negligible
effect, and the assumption may be made that a
plane cross section remains plane during torsion.
But in thin-walled beams the warping deformation
can induce considerable longitudinal normal
stresses, called warping stresses. Although these
are self-balancing, they cannot be considered as
local stresses. The theory of torsion of thin-walled
beams was developed by numerous authors, mainly
in Germany. Classical and comprehensive texts

include Vlasov (1961), Kolbrunner and Basler
(1969), Kolbrunner and Hajdin (1972 & 1975).
This theory is based on three assumptions:

1. Since the beam is everywhere thin-walled, the
warping and the shear flow are assumed to be
constant through the thickness.

2. During torsion the beam cross section undergoes
rotation and longitudinal warping, but its shape
is assumed to remain unchanged; that is, there is
no distortion in the tranverse or cross-sectional
plane.

3. The longitudinal warping causes additional
(or “secondary”) stresses of both types, normal
stress and shear stress, but the theory ignores the
effect of the latter; that is, it ignores the additional
shear deformation caused by the secondary shear
stress.

In their overall topology, most ship hulls
have a closed cross section, and the hatches are
simply openings. But a containership hull is
essentially a beam of open cross section, and
the provision of adequate torsional strength is
vital and difficult. For thin-walled beams the
torsional characteristics differ markedly, depend-
ing on whether the section is open or closed.
Open sections have much less torsional stiffness
than closed sections; that is, they undergo more
rotation for a given twisting moment. Also, they
exhibit much more warping, that is, non-uniform
axial deformation u such that an initially plane
cross section is no longer plane (see Fig. 3.35). In
fact, the low rotational stiffness of open sections
is directly linked to their ability to warp, and
if warping of any section is prevented or partly
restrained, then that section becomes effectively
stiffer. Therefore, in our discussion of torsion
we will deal separately with open sections and
with closed sections, and within each of these



3-32 HULL GIRDER RESPONSE ANALYSIS — PRISMATIC BEAM

i L

e A

. - . ~ . —
e i . ansmaruliET Y --.‘71‘5
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Figure 3.35 Torsional deflection of a prismatic thin-wall beam of open section.

we will first consider the case of free warping
and then the effect of warping restraint. As noted
previously, the theory deals only with prismatic
members and it assumes that during the twisting
the cross section retains its shape; that is, that
it rotates in rigid body fashion about a point,
which is referred to as the center of twist, and
does not deform in its own plane. Although such
deformation does occur due to transverse shear,
its magnitude relative to the size of the cross
section is very small (in prismatic members).
Under these conditions the displacements of
any point (y,z) in the cross section are (see Fig.
3.35)

u=0o(y,z)0 = o (s)¢
V——02 (3.10.1)
w=0y

where 0' = dO / dx = rate of twist.

That is, the distribution of the warping around
the cross section is given by a (normalized) warp-
ing function w,(y,z), which does not change in
the axial direction x. Also, as will be shown, the
magnitude of the warping is directly proportional
to the rate of twist. In thin-wall sections the warp-
ing is constant through the thickness, and hence
it can be expressed as a function of arc length

s instead of y and z. If the cross section has an
axis of symmetry then the center of twist* lies
on this axis, and the warping is antisymmetric
about this axis.

If there is no warping restraint, then torsion
of any section—open or closed—is governed by
the first-order differential equation

M :GJﬁ
¥ dx

where M, = the twisting moment
G = the shear modulus
J = St. Venant’s torsional constant

Figure 3.35 shows the sign convention that is
used herein. The twisting moment M,, the twist
angle 0, and the arc length s are all positive
in the clockwise direction when looking along
the +x-axis. As noted earlier, open and closed
sections differ markedly in regard to both their
stress distribution and the degree of warping. We
shall now describe each of these briefly, before
going into detail.

Figure 3.36 shows the shear stress distribution in
a member having an open section. The shear stress

* The center of twist of any section—open or closed—is
identical to the shear center of that section.
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Figure 3.36 Chear stress in open sections.

varies linearly through the thickness and is zero at
the mid-thickness. Such a member, regardless of its
shape, has essentially the same stress distribution
as a flat slab of width b and thickness ¢, where b
is the total arc length of the open cross section of
the member. Thus in reality the member has a very
slender “solid” cross section, and the shear stress
can “circulate” (thus balancing the applied twisting
moment) only within this confined area. Also, the
shear stress is maximum along the outside edges
and much lower everywhere inside, and this is a
quite inefficient distribution. The main problem
is that because of the slenderness of the member,
the moment of these internal stresses is small, and
so equilibrium between this internal moment and
the applied twisting moment necessarily involves
a large twisting angle and large peak values of
shear stress.

In a closed cross section (see Fig. 3.37) the
“circulation” of shear stress occurs around the
closed path formed by the section, and this has
two advantages: the stress is constant through
the thickness, thus giving a better utilization of
material, and it has a much larger moment arm
about the center of twist. The result is that a
closed section involves much less rotation and
shear stress for a given twisting moment. Also, as
will be shown subsequently, in a closed section
the shear flow q (¢ = Tt) is constant around the
section.

We turn now to the question of warping of the
two types of sections. In an open section, warp-
ing is not caused by shear. In fact, as we have
seen, the mean value of shear stress (averaged
through the thickness) is everywhere zero. As a

\® shear stress T

Figure 3.37 Shear stress in closed sections.

result, the warping (as long as it is not restrained)
is caused entirely by rigid body rotation of the
member wall within its own plane. This rotation
is the direct kinematic complement to the axial
rotation of the member. Figure 3.38 shows that for
a differential member of length dx, the tangential

‘ | +S

reference line (s=0)/\

|
»if - A= h

} ~

\ \

dx
VIEW AA

Figure 3.38 Warping in an open section.
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displacement of any point around the section
is hdO, where h is the distance from the center
of twist to the tangent to the point in question.
This distance shall be considered positive when,
in conjunction with the positive direction of the
arc length coordinate s, it would correspond to a
positive twist. The tangential displacement causes
a “spiral” angle ¥ = hd60/ dx = h@". Since the net
shear stress is zero through the wall thickness,
there is no in-plane shear deformation of the wall.
Instead, the wall rotates in rigid body fashion and
so the cross section rotates out of its plane by this
same angle, ¥, and this causes a local warping
displacement du = -y ds = —h0~ ds. Therefore,
the warping displacement of any point in the cross
section, as a function of arc length s around the
section, is proportional to @(s) which is defined as

o(s) = fo “h(s)ds

(3.10.2)

This function is related to the normalized warping
function by

®,(s)=)—als) + @,

The quantity @, corresponds to a constant of
integration. As will be shown subsequently, it is
determined by axial equilibrium requirements.

In a closed section, warping is necessarily much
smaller because regardless of how it may vary as
a function of arc length around the (closed) cross
section, it must return to the same value after a
complete cycle. Hence for a circular section there
is no warping whatever. The underlying reason
for the reduction in warping is the presence of
shear stress. As we have seen, in a closed section
the shear stress T is nonzero and is essentially
constant through the thickness. The shear strain
Y =T / G causes shear deformation of the member
walls which, as shown in Fig. 3.39, corresponds
to a local rotation of the cross section that is
opposite to the rigid body rotation . Hence
the net warping of a differential element of arc
length ds is

(3.10.3)

du=(y—vy)ds = ds  (3.10.4)

T e
G

There is always some cancellation between these
two components and hence there is less warping
with closed sections.

If warping is restrained then there is some
additional resistance to the twisting moment,
and it will be shown that for all sections—open

Figure 3.39 Warping in a closed section.

or closed—this gives rise to an additional term
in the differential equation such that it becomes

3
M :Gfﬁ—EI ﬁ
X dx ¢ dx’

in which [, is the warping torsional stiffness of
the section, to be defined subsequently.

3.10.1 Open Sections: Free Warping

SHEAR STRESS

As noted earlier, for free warping the relation-
ship between twisting moment and rate of twist
is

M =GJo

and it may be shown (see, for example, Kolbrun-
ner & Basler [1969]) that for open sections St.
Venant’s torsional constant is given by

_1 b3
J—Ej;fds

where b is the total arc length of the cross section.
For a section composed of straight portions, a
more convenient form of equation is

J:lzn:ﬁb.
3

where b; and ¢; are the breadth and thickness of
the individual portions of the section.

The shear stress at any point is maximum at
the outer surfaces and zero at the mid-thickness.
The maximum value is given by

Myt
max J

(3.10.5a)

(3.10.5b)
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WARPING

As explained earlier, warping in open sections
is due entirely to the transverse rotation of the
cross section which necessarily accompanies the
axial rotation so as to give rigid body rotation
because the net shear stress is zero everywhere
around the section. The distribution of the warping
around the cross section is given by the normal-
ized warping function defined in (3.10.2) and
(3.10.3). The value of @, and the location of the
shear center are determined from the conditions
that the net warping must be zero (since otherwise
there would be extension of the member) and
that the net first moments of the warping, both
horizontal and vertical, about the center of twist
must be zero (because to be otherwise would
require a horizontal or vertical bending moment
acting on the member; see Kolbrunner & Basler
(1969) for details. Stated mathematically these
three conditions are

[ os)ras=0 (3.10.62)

j;bya)n(s)tds:o (3.10.6b)
b

fo yo (s)tds =0 (3.10.6¢)

In the absence of symmetry the procedure to
evaluate @, and to determine the location of the
center of twist is to define a set of reference axes
n,{ with the origin at the centroid, as shown
in Fig. 3.40a, and then calculate the following
quantities

o (s)= j; Shcds
Ig :j;bnztds

b
. 2
In—j; CCtds

(3.10.7)

Then calculate

1 b
(a’)ozzf; (s)tds  (3.10.8)

in which A; is the total area of the cross sec-
tion:

A,,:/;btds

g
(@)  UNSYMMETRIC SECTION
n
hD
S
\ _ ‘
0ot

(b) SYMMETRIC SECTION

Figure 3.40 Calculation of center of twist.

Thus, (@w,), 1s the mean value of the “centroidal”
warping function @ (s).
The location of the center of twist is

1 b
¢ = A [ o9 —(@),|tds

n=— [ ¢lot (@), tds
n (3.10.9)

Then calculate @(s) from (3.10.2), calculate its
mean value @, as in (3.10.8) but now with @ in
place of @, and then obtain @, (s) from (3.10.3).

If the section has an axis of symmetry, then
the center of twist lies on that axis and the
foregoing calculations may be simplified. Since
ships are usually symmetric about their vertical
centerplane, we shall describe the calculations
for the case when the z-axis is an axis of sym-
metry. First, when there is symmetry it is not
necessary to place the origin of the 77,{ axes
at the centroid. Instead it may be placed at any
convenient point on the axis of symmetry, say D.
If the ship has a flat bottom it is advantageous
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Figure 3.41 Stresses due to warping restraint.

to place the origin there because then /), the
distance to the tangent line of any point, is zero
for all points in the bottom. Also, s should be
measured from the centerline because this greatly
simplifies matters. Note that s always follows a
right hand rule. In Fig 3.40 +x is into the page,
and so +s is clockwise. With these conventions
the resulting equations are

:fo h ds (3.10.10)

L 3.10.11

no:[_fo $o, (s)t ds (3.10.11)
n

o (s)=—o (s)+n¢ (3.10.12)

3.10.2 Open Sections: Warping Restrained

If a beam is composed of a series of prismatic
but differing segments, each segment will have a
different warping response and hence will inter-
fere to some extent with the warping of adjacent
segments. When warping in a prismatic member
is restrained, axial stresses O, are set up in the
member and, as we shall see, these stresses are
not constant in the axial direction. Moreover, since
they are not constant they are accompanied by a
secondary distribution of shear stress T, over and
above the primary distribution due to the (free
warping) torsion. Since the warping is constant
through the thickness, so also are 0, and T,, and
therefore it will be more convenient to deal with
shear flow, g, = T,t. Note that in this regard the
secondary shear stress differs from the primary
shear stress T, that (for open sections) varies
linearly through the thickness. The total shear
stress in the member is the sum of T, and 7.

We may obtain expressions for g, and O, by
considering axial equilibrium of a differential
element, as shown in Fig. 3.41.

dx

o+ do,t dx

ds— o tds+
Ox

8%
q, +—=ds
2 s

—q,dx =0

o (3.10.13)

s an
w2

The constant of integration (g,), will be zero,
provided that ¢, = 0 at s = 0; this will be satisfied
as long as the integration is commenced at one
of the free edges of the member. Moreover, it
is automatically satisfied if the integration is
performed over the entire section, as it will be
in some of the derivations that follow.

The value of 0, is obtained as follows:

o, = Ee, _E—_E [ ]
or
d*e
o =Eo— (3.10.14)
dx

Substituting this into (3.10.13) gives

,(8,x) —f E—a)tds

Z—E—f ords 31019

with s measured from one of the free edges of
the member. The secondary shear flow ¢, sets
up a secondary twisting moment M,, that may
be evaluated as follows:

b
szzj; q,hds

and from (3.10.15) this is

M =—EIl ﬁ

(3.10.16)
x2 dx3

where

b s
Iw:j; [ 0 a)ntds]hds
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The latter may be simplified by rearranging as
follows:

I, - j;bwntdsj;bhds—j;bﬁs(hds) w1 ds

and observing that the first integral is zero from
(3.10.6a). Also, from (3.10.2) and (3.10.3) we see
that the inner integral of the second term is

f hds =0, —o
0 n
Hence the expression becomes
b
I = j; (0 —)otds
b b
:f wztds—cof wtds
0 n [ ) n

and again (3.10.6a) means that the second integral
is zero. Therefore we finally obtain

I = L/;b[a)n(s)r tds

This quantity is referred to as the warping
torsional stiffness. The product El, that occurs
in (3.10.16) is the warping torsional rigidity
and, as the equation indicates, the additional
resistance to twisting that arises when warping
is restrained is directly proportional to El, and
to the third derivative of the twisting angle. The
general equation governing the torsion of open
sections is

(3.10.17)

3
v o—cr99 g 40
* dx < dx’

(3.10.18)

As we shall now see, this equation is also valid
for closed sections, but the expression for J is
different.

3.10.3 Closed Sections: Free Warping
SHEAR STRESS

In a closed section the shear stress T is constant
through the thickness. We seek now to determine how
T varies around the section. Figure 3.42b shows an
element of varying thickness, and from the require-
ment that the net axial force is zero we have

(tt,—7t)dx=(q,—q )dx=0

and therefore the primary or St. Venant shear flow
q is constant around the section.

y
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Figure 3.42 Geometry and equilibrium of stresses in a closed
section.

Let us now consider overall equilibrium between
the applied twisting moment M, and the moment
of the internal shear stress. Figure 3.42a shows
that the force due to an element ds is g ds and the
moment it exerts about the center of twist is

dM = hqds

From the geometric properties of a triangle the
sector area subtended by ds (shown shaded in
Fig. 3.42a) is

dA:lhds
2

and so dM, can be expressed in terms of this
sector area

dM_=2qdA

The total moment is obtained by integrating
around the full section which gives

M =2q4 (3.10.19)
where A is the total area enclosed by the perimeter

of the closed section. The shear flow around the
section is then
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MX
24

q= (3.10.20)

For a typical member segment of length dx, we
now invoke the principle of strain energy, which
states that the work done by M, equals the internal
strain energy:

2

1Md@ dx ——tds
P45

and therefore, from (3.10.20) and g = Tt

M = GJﬁ—GJe’ (3.10.21)
dx
where
2
J_ 44
ds (3.10.22)
t

This value of J for closed sections differs mark-
edly from the value for open sections given by
(3.10.5). For most section shapes, it greatly
exceeds the latter. For example, in a square box
section of side 600¢ (typical of ships) the ratio
of the two values is 270,000! Hence in a closed
section that has attached open section members,
such as longitudinal stiffeners on a hull, the
latter’s St. Venant torsional stiffness J may be
ignored.

WARPING

As discussed earlier, and as shown in Fig. 3.39,
the warping of a closed section involves the
combination and partial cancellation of the shear
deformation and the “rotational” or rigid body
warping. The net warping distribution is

u(s):j: Y

c ds + a)OQ/

(3.10.23a)

By means of T = ¢/t and equations (3.10.19),
(3.10.20), and (3.10.21), this may be converted to

u(s) = [ ]9’ 22fsds—ﬁshds+wo o

(3.10.23b)

3.10.4 Closed Sections: Warping Restrained

Here again, as for open sections, any restraint
on the warping will introduce a nonuniform axial
stress distribution O,(s, x) and an accompanying
secondary shear flow ¢,(s, x). The derivation of
g, exactly parallels the derivation given for open
sections earlier in this Section, with the warping
function now given by (3.10.23). The only dif-
ference is that the constant of integration (g,), in
(3.10.13) can no longer be automatically set to
zero because there is now no free edge at which
g» is known to be zero, and which would provide
a convenient starting point for the integration.
Thus the equation corresponding to (3.10.15) is

4o ps

q,(s,x) = _EE . wtds+(q,), (3-10.24)
In order to evaluate (g,), we make use of the fact
that since the section is closed, g,(s) must be such
that the net axial displacement strain that it causes
over one full cycle of the section is zero. Therefore
we make a cyclic evaluation of the warping caused
by ¢,, and to do so we divide g, into two parts: one
part, say ¢,*, which corresponds to the first term
of (3.10.24) and for which the value at the starting
point of the integration is taken to be zero; and a
second part that is the true, but unknown, starting
value (g,)o. The latter is constant and hence the

foregoing condition is
ds
36 —0

—9§ g+

from which

§q§ds
ds

t

After solving for (g,)o, the additional resisting
moment that results from ¢, is found in the same
way as for an open section

(3.10.25)

(4,),=—

M = 9§q2hds
3
_ g 90
© dx’
where
b 2
I = a)ntds
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and @, is given by (3.10.23b). The foregoing
equations are the same as (3.10.16) and (3.10.17),
and so these equations apply to both open and
closed sections, with the warping function being
given by (3.10.3) or (3.10.23b), respectively. The
integration for /, may be done piecewise, in any
order and in any direction, such that each portion
of the section is traversed once only. Therefore
(3.10.18) is the governing differential equation for
both types of sections, with J being calculated
from either (3.10.5) or (3.10.22) as appropriate.

3.10.5 Multiple Cell and Mixed Sections
MULTIPLE CELL: FREE WARPING

In a section containing n cells, each cell com-
prises a closed section and so the overall shear
flow consists of the superposition of n separate
circulating shear flows, one in each cell, each
of which is constant around the perimeter of its
cell. Along the interface between any two cells
the shear flow is the algebraic sum of the two
circulating shear flows. From (3.10.19) the torque
transmitted by each cell is

Mxi - 2Aiq[
and the total torque transmitted by the section is
the sum of these values

M =% 24q (3.10.26)

i=1

Since there are n unknown values of ¢, the
problem is statically indeterminate and we must
invoke geometric compatibility. In a closed sec-
tion the geometric condition is that there must
be zero net warping in one complete circuit of
each cell. From (3.10.23a) this condition is

1 Tds—0 P hds=0
GPras—o

in which @, does not appear because the integral
is exactly one cycle. Rearrangement gives

ijiﬁds:zAG
o ¢

As the integration proceeds around the i"
cell, the shear flow along each wall of the cell
will be the value associated with that cell, g,

plus the flow from the adjacent cell, if any. For
example, in Fig. 3.43 there are two walls that
adjoin other cells, designated i — 1 and i + 1.
For convenience we regard all of the circulating
shear flows as circulating in the positive (i.e.,
counterclockwise) direction. If the solution gives
a negative value for any particular shear flow, this
indicates that the shear flow around that cell is
clockwise. With this convention the contribution
of adjacent cells will always be opposite to ¢; and
must be subtracted. Thus for the i cell we have
the equation

&%é_hf ﬁ_hf é:QAG
o ¢ 9 Ji-liy¢ 9 Jitui ¢ i

Since there is no transverse deformation all
cells undergo the same rate of twist, 8”. Therefore
although 6~ is an unknown in the foregoing
equation, it will have the same value in all such
equations and so it can be regarded as a normal-
izing factor that is applied to all of the unknown
values of ¢g. Therefore we define a normalized
shear flow

q.

q, 25’, (3.10.27)
Also, we note that the integrals in the equation
may all be evaluated from the given geometry,
and so they constitute known coefficients, which
will be represented by the symbol C. The equation
then becomes

Cq,—C .~ Cindy, =24GC

This equation is written for all cells, resulting in
a system of n equations

[CHq}=2G{4}

which can be solved for {G}. The total torque is,
from (3.10.26),

(3.10.28)

i-1 i i+1
T——— ———— —

(g
=

My

—

AN

X

Figure 3.43 Shear flow in a multi-cell section.
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M =2{4}"{q} =26'{4}" {7}
and therefore

— MX
2{4}' {7}

From the latter equation we see that the denomina-
tor is the torsional rigidity of the overall section,
corresponding to GJ for a single closed section.
That is, for a multicell section

GJ =2{4}'{q}

/

(3.10.29)

After solving for 07, the values of ¢ may be
calculated from the normalized values.

MULTIPLE CELL: WARPING RESTRAINT

The effect of warping restraint is accounted for
by the warping torsional stiffness, I, = ®,’t ds,
and for multiple cells the integration must be done
in such a way that no wall is traversed more than
once. Some typical examples are illustrated in Fig.
3.44. The figure also shows that if the cells are
slender relative to the overall dimensions, such
as a double-wall side shell, a double bottom, or
an isolated “torsion box,” then for the calculation
of 1, it is sufficiently accurate to combine the
two walls and to lump other areas such as cross
webs. Stiffeners and other small members may
be ignored.

OR

(b) CLOSED SECTION

Figure 3.44 Integration paths for calculating 7.

MIXED SECTIONS

If the overall cross section contains both closed
portions and open portions, the total St. Venant
stiffness is the sum of J for these two portions,
and the total warping stiffness is the sum of [,
for the two portions.

As mentioned earlier, the value of J for open
sections is negligible compared to that for closed
sections, unless the open section is very long or
very thick-walled. In fact, in a mixed section
the only significant contribution of open section
portions is their contribution to the warping
torsional stiffness /,. This can be estimated with
sufficient accuracy by assuming that the warping
is constant within that portion and is equal to the
value in the closed section at the point of attach-
ment to the latter. With this assumption the area
of the open portion may be lumped at the point
of attachment, as shown in Fig. 3.45a.

Figures 3.44 and 3.45 illustrate some
modeling assumptions and idealizations which
may be used, depending on whether the overall
section is open or closed. Because of symmetry
the calculations are usually performed for a half
section, as shown in the figures.

3.10.6 Numerical Calculation of the Warping
Function

For hand calculation @,(s) is calculated from
the equations just derived but for automated or
computer-based applications a numerical approach
is more suitable. As shown by Herrmann (1965)
the distribution of @,(s) can be represented in a
discretized manner by defining “nodes” at which
@, has a specific value and by assuming a linear
variation between nodes. Since the value of @, is
not known beforehand, the problem is formulated
in terms of the general warping function @,
rather than @,. The method produces a system of
linear equations for the nodal values of @. After
solving for these the value of @, is calculated by
numerical integration (within the same computer
program) and added to each value, thus giving
@,. The warping torsional stiffness /, can then be
computed, again using numerical integration. In
this approach the overall cross section is modeled
as a series of straight-line “elements,” each of
constant thickness and of unit depth in the axial
(x) direction. Along the element, the warping
function varies linearly as shown in Fig. 3.46. The
elements can be any length and so it is possible
to model quite complicated cross sections with
good accuracy. In terms of the nodal values @,
and @,, the warping within an element is
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Model for calculating J

—| s=b
r;a:h'y Jf-la: Sr;::(eigd— %
pillar_,|
N %
N/
_ 4A% _ 16 (A)? _ 2AZ
ot 27k : <

open sections ( e.g. mach'y flat )
and small cells are ignored
when calculating J.

Model for calculating I,
—»| s=b

center of twist

D
=0
b
=27 df tds
where o, =- o ds ~Ihds+o
" 2A o t o °

(a) CLOSED SECTIONS

Model for calculating J

cell 5
cell 4 A4
— T
el3 2 cell 1
GJ=43AT

values of q; are obtained from

[cl{a} =26 {A}

oy = Ew,0"

Model for calculating |,

s=h_ o

TII

t~{=Fds

———@ S0
S <—|
<h+>$ center of twist
|

b
l,=2 7 tds

S
where o, = -Z hds + o,

q2=-E[gs(ontds]9"’

(b) OPEN SECTIONS

Figure 3.45 Structural models for calculation of torsional stiffnesses.

1

1 Xt

Figure 3.46 Segment or calculation of warping function distri-
bution.

w(s)=w1+(w2—wl)%

in which the +s-direction for the element is the
same as for the overall section. From (3.10.4) the
shear strain in the element is
au
y=—+ho
BS

and from the definition of the warping function
we have u = (—@ + @,)0" and therefore

Y= _8_a)+h o'

Os

In terms of strain the potential energy of element
eis
Gt L
J— e

e 2 oe[?/(s)] ds
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where L is the length of the element in the
x-direction; that is, the length of the overall
prismatic member. From the above equation for
Y the expression for U, becomes

N O —
+ le T‘f’ /’le =0

e=1 e

The total potential energy of the structure is the
sum of that for each of the elements, taken over
all of the elements, say N, in number.

GL X .
U = 7(9')2 ;tej;b

The overall distribution of @, as defined by
the set of nodal values (@,, ..., @, ..., @y)
must be such as to minimize the total potential
energy.* That is

2

ds

o —,
—=+h
b, ¢

fotal __ 0

i=1,..
00

LN

which yields a system of N equations, one for
each node. The differentiation can be done inside
the integral and the common terms (GL / 2)(0°)*
can be dropped. The result is

Yo |0 —o +1
€2 12 h|| ==
;t“/; b, T b

ds=0

in which the + arises from the differentiation.
The plus sign applies if @, corresponds to @,
of element e, and the minus sign applies if it
corresponds to @,. Integrating along the element
length gives

N —_—

S o —Q
Yo+t lb—2+h‘—’ =0 (3.10.30)
e=1

e

There is one such equation for each nodal value
@;. In each equation the summation need not be
performed over all N, elements but only on the M
elements that are attached to node i. Let us use
the subscript m to denote each of these attached
elements, such that m =1, 2, . . ., M. Also, for
each element, let us denote the node remote
from i by the subscript . Then as the summation

* The work done by the load is independent of @,
and therefore does not need to be included in the total
energy.

process at node i proceeds, taking each of the M
elements in turn, the values of @, and @, of each
element will either be w; and w,,, or the reverse,
depending on the orientation of element m. If
i corresponds to node 1, the term in brackets
in (3.10.30) would be (w; - @,,, + h,b,)/b,,. If i
corresponds to node 2 the term would be

-, -o+hb)/b,

= (a)l B w’ﬂm - hmbm) / bm

Hence the system of equations may be written as

 — @
|t |=0 i=1,.,N

(3.10.31)

in which the minus sign applies whenever i corre-
sponds to node 2 of the mth element.

In most cases the location of the center of twist
is not known beforehand and so in the foregoing
solution the values of & are measured relative to an
assumed location D (which we are here presuming
to be on the vertical centerline) and the result is
@p, as in (3.10.10). In this case the normalized
warping function @, can be calculated directly
from (3.10.11) and (3.10.12) using numerical
integration; there is no need to calculate @,.
The warping torsional stiffness /, can then be
calculated from (3.10.17), again using numerical
integration.

3.11 PRACTICAL CALCULATION OF
HULL GIRDER SHEAR EFFECTS

In Section 3.7 the shear stress due to trans-
verse shear loads was calculated by considering
equilibrium. For a multicell section it was neces-
sary to invoke geometric compatibility, which
requires that the net warping of each closed cell
must be zero. This approach requires careful
consideration of the connectivity of the section
and of the pattern of the shear flow—its direction
in the various cell walls and the way in which it
divides at branch points. Such a method is not
well suited for computer implementation and so
in this section we present an alternative method
that is formulated not in terms of shear flow but
rather in terms of the warping due to transverse
shear. This approach is simpler because warping
is everywhere single-valued, even at branch
points.

We have now seen that when transverse shear
is present, plane cross sections do not remain
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plane, as assumed in simple beam theory, but
undergo deformation out of this plane. This type
of deformation is referred to as warping, and
occurs both in torsion and in transverse shear.
These two types of warping are distinct, having
separate causes. If there is both twisting and
transverse shear, both types of warping will exist,
and if the warping is restrained the two types will
interact. For simplicity this section deals only
with warping due to transverse shear.

In a prismatic beam that is not subject to twist
the shear strain in the cross section is simply the
derivative of the warping:

_ du,

, o
y’ 9z

xy
In a thin-walled beam it is more convenient to
use the tangential or arc length coordinates within
the cross section, for which the relationship is;
y— du
s
and there is no need for subscripts. This relation-
ship may also be obtained by setting the spiral
angle Y to zero in (3.10.4). If end effects are
ignored the warping in a prismatic beam maintains
the same cross-sectional pattern along the length
of the beam, and the magnitude at any section is
proportional to the transverse shear force Q(x) at
that section. It is therefore convenient to introduce
a warping function @y(s), which describes the
transverse distribution of warping, and to express
the warping as a product

u(s.x) = @, ()0(x)

Since the shear strain ¥y (and hence also the
shear stress, T = GY) is simply the derivative of
the warping, the distribution of transverse shear
stress can be determined by first solving for the
warping distribution and then differentiating. This
approach was developed by Mason and Herrmann
(1968) and is similar to the latter’s method for
calculating the torsional warping function that
was presented in Section 3.10. It was first applied
to ship hulls by Kawai (1973). The method
is essentially an application of the classical
Rayleigh-Ritz technique. First the distribution
of @, is represented in a discretized manner by
defining “nodes” at which @, has a specific value
and by assuming a linear variation between nodes.
Then the total potential energy of the system I
is expressed in terms of the nodal values @, and
the derivative of II with respect to each value of

(3.11.1)

(3.11.2)

W, is set equal to zero, thus obtaining a system
of equations for the @, values. After solving for
these, the complete distribution of shear stress
can be readily calculated.

The derivation is presented here for a prismatic
segment of the hull of length L. As shown in Fig.
3.47, the segment may consist of any number of
flat rectangular elements of constant thickness
t,, breadth b,, and length L. The transverse shear
force Q can vary linearly along the length of
the element, as occurs if the overall load on the
hull segment is a uniform distributed load. If the
magnitude of this load is f. (see Fig. 3.47) the
shear force at any section is:

O(x)=0, 1+¢% (3.11.3)
where
L
S o - Wl (

f, = net distributed force

NEUTRAL
AXIS
end B
y
end A
end A end B
L
s
x
\ QA‘ \QB
te

Figure 3.47 Warping due to transverse shear.
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and Q,is the shear force at end A of the segment.
The warping is then:

u(s,x) = ()0, (3.11.4)

X
1+¢>
L

Since the longitudinal variation of @, is inde-
pendent of the transverse variation, the problem
can be formulated entirely in terms of the warping
at end A, and so the problem is essentially a
two-dimensional shear flow problem, in which
the shear flow g(s) (at end A) is to be determined.

The assumption of a linear variation of @y(s)
within each element implies constant shear flow
in the element, whereas it is known from Section
3.7 that the shear flow varies linearly in horizontal
portions of the ship’s cross section and paraboli-
cally in all other portions. It will be shown that the
constant value of shear flow which is obtained for
each element is the mean value for that element,
and that the other part of the total shear flow (a
linear or parabolic distribution, having a zero
mean value) can be obtained separately for each
element and superimposed on the mean value.*
Thus the assumption of a linear distribution of
warping within the element does not constitute an
approximation, and so a single element can be used
for any straight, constant thickness portion of the
cross section, even if its breadth b, is quite large.

In terms of nodal values @w,, and @,, the
warping within an element is:

o (s)= @, +<wQ2 -0

S
, J; (3.11.5)

e

in which the +s-direction is from element node
1 to element node 2. The orientation of the ele-
ment is defined by the angle ¥ which the +s-axis
makes with the horizontal axis of the hull girder,
as shown in Fig. 3.47.

In terms of strain the potential energy of an

element is:

Substituting from (3.11.1) and (3.11.4) and
integrating along the length gives:

] ds dx

2

1 b | 0@
U==-CQGtL| |—*2
) QQA ¢ j; s (3.11.6)

*This approach was suggested to the author by Dr. Vedran
Zani¢ of the University of Zagreb.

where

1,
Z 1.7
C, =149+ (3.11.7)

Substituting the linear expression for @ (s)
and summing over all the elements (say N, in
number):

C G 12
QLZf o~

6

tds (3.11.8)

The other component of the total potential
energy is the negative of the work done by the
loads as a result of the warping. For the dif-
ferential element in Fig. 3.48 the work done is
the product of the net longitudinal force in the
element

ar — 9% gt as
ox ¢

times the distance through which the element
moves, which is the local warping displacement
u(s, x). That is, the work done throughout the
element is:

W:f uls,x)dF - (3.11.9)
(There is no ¥2 factor because the stress is caused
by the external loads and not by the warping.)
The longitudinal stress can come either from hull
girder bending or from a restraint on the forsional
warping if the segment is undergoing twist. For
bending stress dF may be related to the change
in bending moment and hence to the transverse
shear force Q, as was done in deriving (3.7.1)
and (3.7.2) (and as illustrated in Fig. 3.22). The
steps are:

dF:ﬁ[MZ]dxt ds
Ox

oM z

=——dxt ds
Oox

= Q(IX) zdx t, ds

After substituting this expression and (3.11.4)
and (3.11.5) into (3.11.9), integrating along the
length of the element, and finally summing over
all of the elements, the result is:
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, hull girder
bending stress

warping = u (s,X) = 04(s) Q,(1+¢ {3

Figure 3.48 Distribution of warping.

C,O°LY, o . (af —af)
w, :Q—]A;tej; a)Ql-l—% z(s)ds

e

(3.11.10)
where C, is defined in (3.11.7). The value of
z(s) can be expressed in terms of the value at

element node 1 and the orientation angle } (see
Fig. 3.47)

z(s) =z, +su
U =siny

where (3.11.11)

We have seen in Section 3.10.2 that if a section
that is undergoing twist is even partially restrained
from warping, this causes a longitudinal stress
o, which varies in the axial direction. From
(3.10.14)

2
o =Eo d—?
dx

and so the net axial force in an element of width
ds and length dx is:

o
dF = —=

dxt ds
x e
3

=Fw ﬁa’xt ds
"dyt ¢

Again substituting into (3.11.9) and integrating
lengthwise, the following expression is obtained
for the work done by the torsional warping
stress:

= 50, [ [ (o.0,)| 1+ 0%

X
1+ 9=
L

(3.11.12)

Thus if there is torsion and if the torsional warp-
ing is restrained so as to give a nonzero d’6/dx’, then
the two types of warping interact. For most ships
transverse shear Q is a much more severe load than
torsion, and the shear flow g is due almost entirely
to Q. Therefore the remainder of this section deals
with transverse (vertical) shear only.

The total potential energy of the system is I1 =
U — W, and the system of equations for the nodal
values of @ is obtained by requiring that /I must



3.11 PRACTICAL CALCULATION OF HULL GIRDER SHEAR EFFECTS 3-47

be a minimum with respect to each @;, as was done
in Section 3.10.6 for torsional warping. That is

on _
o,

0 i=1...,N

n

where N, is the number of nodes. The steps
are straightforward and the resulting system of
equations is

Mo, — )
Gy t |—2—21|=
m=1 bm
1 & n
—>> tbh |z, +—2ub i=1,...N
21; m-m Im 3um m] n
(3.11.13)

In these equations the subscript e has been
replaced by m to indicate that since each equation
refers to one node (the ith node) the summation
over the elements need only include the M ele-
ments that touch that node. For each of these M
elements the subscript r denotes the node which
is remote from node i, and the symbol n,, is the
element node number (either 1 or 2) which cor-

fe—10 m 10 m

responds to node i. The symbols z;, and ¢ were
defined in (3.11.11).

It can be shown that axial equilibrium requires
that @, = 0 at all points which lie on the neutral
axis. This requirement can be imposed by placing
nodes at all such points and setting these values
of w, equal to zero.* This effectively divides
the system of equations into two independent
subsystems.

In order to demonstrate the simplicity of this
method and to show how the final distribution of
shear flow is obtained, it will be applied to the
small idealized tanker shown in Fig. 3.49. For
brevity the calculation will be performed only for
the upper portion. As shown in Fig. 3.49 there are
only three nodal values of @, to be determined,
and only four elements are required. For elements
a and b the parameter values are:

t=0.032, b=10, z =12, =0, u=0
while for elements ¢ and d they are:

t=0.032, b=12, z,=0, x=90, u=I

*If this is not done the system of equations is singular.

12

in elements a - d
plate thickness t = 32mm

A

(a) structure nodes and element definitions

or

z,=12
X =-90°

S

(b) element nodes and coordinates

Figure 3.49 Sample calculation of warping due to transverse shear.
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These values correspond to a choice of the
lower end as element node 1. It would be equally
valid to choose the upper end, as shown in Fig.
3.49c¢.

At node A only element a is involved and so
(3.11.13) becomes:

o —0
or _ 1,
¢ ba 2GI “

1
z +-ub
la 3 aa]

Substituting the foregoing values gives:

0.32
=212
GI( )

At node B elements a, b, and ¢ are involved and
the equation (with zero values already inserted)
is

0.0032a, , —0.0032), ,

ba bb bc or ba o bb e bc

1
—— iz +0
2GI a a(zla )

2
+t,b(z, +0)+1b, {0 + Ebcﬂ

which becomes:

0.009067¢, , —0.0032a, , —0.0032@), .
710,752

26T

At node C elements b and d are involved and the
equation is:

t t t t
Lt <lw, —Lao,, —-0
bb b bb ' bd
1 2
:ﬁ tbbb(zb +O)+tdbd 0+§bd
which becomes:

6.912
0.005867(0ch — 0.0032(093 = 2—G[

The solution to these three equations is:
GI(UQVA = 2827.8
GI(UQ’B =2227.8
leo_c =1804.2

The mean value of shear stress in each element
is given by:

_ du 0% o —af

T=G—=G0—~2=60——"

¢ ds Qas o b
(3.11.14)

Since Q and [ are constant for a given section
it is convenient to deal with scaled values of T
which correspond to a unit value of Q/I, and then
apply this factor at the end.

Thus for element a the mean value of the
(scaled) shear stress is:

= _ %ou " ®op 2827822278

¢ b 10

The other values obtained from (3.11.14) are:
Tb =42.35 7T =185.65, fd =150.35

4

60

Once the mean value of T is known in any
element the local variation can be found from
(3.7.2), which gives the local or incremental
distribution of T in any element, over and above
the value at the end where the integration is started
(node 1). We require a local distribution which
has a zero mean value, instead of a zero value at
node 1, and this can be obtained by subtracting
the mean value. Thus for each element the local
distribution T',(s) which is to be superimposed on
the mean value obtained from a warping solution
is given by:

7(s) = t%[mg(s) .

where m(s) is the first moment of area, defined in
(3.7.3). Expressing z(s) in terms of z; and 4 as in
(3.11.11), this equation becomes, after integration:

b, , b
zZ,|8—= 57—
2 3

Since this expression comes from the shear
flow equations of Section 3.7, it follows the
same rules in regard to sign convention. That is,
it assumes that the s-axis is in the direction of
increasing shear flow (or shear stress). If this is
not so, then the sign of T',(s) must be reversed.

In the tanker example the resulting local
distributions for elements a and ¢ are:

9
I

LK

7,(s)= 5

(3.11.15)

T (s)= Q[lz(s -5)|

I
rj(s)z—% :%[24—;&]

0+§[S2 —&]
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Figure 3.50 Geometric properties of beams attached to plating.

Note that for T',(s) the sign has been reversed
because element node 1 is at the neutral axis
(z1.= 0) and the s-axis points upward (& = 1),
which is the direction of decreasing T. The
maximum value of T occurs at the neutral axis
and for element c this value is

(z=0)=7 +17(0)
= (185.6+24)Q/1
=209.60/1

3.12 GEOMETRIC PROPERTIES OF BEAMS
ATTACHED TO PLATING

In ship structures it is quite common for a beam to
be welded to plating, such that the plating acts as
a second flange (the “plate flange”) to the beam.
The breadth b of the plate flange is usually much
wider than the beam’s own flange, and so the neu-
tral axis of the combined section is usually close
to the plating. Because of “shear lag” (Section
3.8.1) the bending stress in the plate flange may
vary across the width, having a maximum value at
the web. To allow for this the plate flange may be
assigned an “effective breadth” b,. In this section

we present some simple and useful formulas for
the neutral axis location and the moment of inertia
of the combined cross section. These formulas
are sufficiently accurate for design use provided
that the section is a thin-wall section.

We define the following quantities (see Figure
3.50)

Then it can be shown that:

A, = effective plate area=1b, 7,
A, = web area

A, = flange area

A, = total area =4 + 4, + 4,

{ =

, = Dlate thickness

t, = flange thickness

d = distance from midthickness of plate to

midthickness of flange
yr= %ff* dC;

1 3.12.1
Y=ty +d(1-C) ( )
Ie :ATd2C]

in which
Ar A

an (F-5) a4,

C[ =
A7

A

3
C =

2 AT
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In the context of ship structural analysis, the pri-
mary purpose of computing wave-induced loads is
to be able to furnish an essential part of the input
for a finite element model in terms of forces acting
on selected nodal points of the ship’s structure. This
involves various specialized branches of knowledge,
including probability theory and extreme value sta-
tistical theory, statistical data—both short-term and
long-term—regarding ocean storm waves, hydrody-
namics of the flow around a ship in the presence of
a free surface, and numerical methods employed in
ship seakeeping analyses. Obviously, it is a complex
field, and a complete coverage is beyond the scope
of this book and also beyond what is normally
required for rational analysis methods used for the
structural design of ships. As mentioned in Chap-
ter 3, a deterministic approach is often sufficient,
whereby the wave loads, such as the wave bending
moment, are obtained from approximate formulas
given by classification societies. These formulas are
the result of a variety of statistical analyses of theo-
retical and experimental studies and full-scale mea-
surements, and they are adequate for most standard
kinds of ships. Nevertheless, to estimate loads is one
of the most crucial aspects of structural design and,
hence, it is important for ship structural designers to
know at least the basics of the theory and technique
for a reliable prediction of wave loads.

Moreover, there are some kinds of ships for
which it is advisable to perform an explicit esti-
mate of wave loads. This is especially so for large,
modern containerships. The unique hull form of
these vessels with pronounced bow flare and large,
flat overhanging stern coupled with high service
speed introduces nonlinear ship motions and wave
loads. These nonlinear sea loads can result in sig-
nificantly higher wave-induced bending moments,
shear forces, and torsional loads than have been
considered in formulation of traditional prescrip-

tive rule values. To better predict motions and
structural behavior of these ships, a hydrodynamic
sea load approach that accounts for the signifi-
cant nonlinear effects must be used and integrated
with a full ship finite element structural analysis to
augment standard classification review. Numerical
methods, based on a first-principles approach for
ship structures, are increasingly becoming indis-
pensable to determine design loads, the structure’s
response (stress, deflection, etc.) to those loads,
and assessment of the response compared to accep-
tance criteria. These computations are performed by
means of comprehensive computer codes developed
expressly for that purpose, and it is important for
the designer to be familiar with at least the basic
aspects, in order to use these codes correctly and to
maximum advantage.

Probability theory is an indispensable standard
tool to assess design values of wave-induced loads,
that is, values that have a specified probability of non-
exceedence in the ship’s lifetime. For linear wave-
induced response, theoretical methods to estimate
short- and long-term probability distributions are well
established. For nonlinear response, it is difficult to
obtain sufficiently accurate extreme value estimates.
However, the extreme nonlinear response is usually
related in time to the extreme linear response. Thus,
to illustrate the overall method of obtaining design
values based on the use of probability theory, it is
essential to be familiar with the particular topics and
formulas for linear systems. Section 4.1 of this chap-
ter contains a brief summary of these aspects. Sec-
tion 4.2 presents information regarding the extreme
values of random processes, both for responses that
can be obtained from a linear as well as a nonlinear
treatment of the wave-ship system. Section 4.3 deals
with the mathematical and statistical representation
of ocean waves, showing how a typical sea state may
be presented in terms of a family of spectral density
functions or, more commonly, wave spectra, and it
also presents information on short-term and long-
term statistics of these sea states.

Parts of these sections are either left unchanged
or amended from the 1988 SNAME edition of
Ship Structural Design. Of course, the numbering
of the equations is adapted to fit the reworked

4-1
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text. Specifically, Section 4.1, dealing with the
basics of probability theory and random pro-
cesses, is essentially unaltered, and Section 4.2,
concerned with the prediction of extreme values,
is supplemented by part 4.2.2 for nonlinear sys-
tems, whereas part 4.2.1 for linear systems is not
changed. In Section 4.3, treating the statistical
representation of the sea surface, only parts 4.3.1
and 4.3.4, describing the mathematical treatment
of ocean waves and the duration of sea states,
respectively, are left the same, whereas parts
4.3.2 and 4.3.3, documenting ocean wave spectra
and their families, are modified. Finally, in Sec-
tion 4.4, describing the computation of wave-
induced loads, only part 4.4.2 dealing with linear
computations is left as is.

Section 4.4 presents a brief perspective of ship
motion theory as it relates to seakeeping computa-
tions for structural wave-induced load predictions.
Section 4.5 deals with the determination of equiva-
lent regular design waves that are based on linear
frequency-domain computations corrected for the
major nonlinear effects. The resulting nonlinearly
corrected (pseudo) transfer functions of the critical
loads are formally treated like transfer functions of
linear systems, and an almost standard stochastic
analysis procedure based on these pseudo transfer
functions yields long-term wave-induced loads.
Section 4.6 discusses special load effects of slam-
ming, sloshing, and hull girder whipping as these
loads are important for the design of local ship
structures.

Finally, Section 4.7 is devoted to the treatment
of nonlinear response simulation for the predic-
tion of wave loads, as numerical simulation is the
sole computational method that can handle strong
nonlinearities and is, therefore, the appropriate
tool to investigate strongly nonlinear ship response
in severe seas.

4.1 BASICS OF PROBABILITY AND
RANDOM PROCESSES

4.1.1 Probability Density Functions

In the general theory of statistics a random vari-
able X is an event, or an outcome, among all
possible outcomes. If the possible outcomes form a
continuous ‘“space,” —eo < x < oo, and each event is
some portion of this space, then the probability of
an event occurring is simply the probability that X
will lie within that portion of x. This probability is
specified by a probability density function px(x) as
shown in Fig. 4.1.1.

>

[ Px(¥)

x| X
Figure 4.1.1 Probability density function.

In terms of this function, the probability that X lies
between x and x + dx is px(x)dx. That is

Prob[x < X < x + dx] = px(x)dx (4.1.1)

In general, the probability of X lying within any
interval is equal to the area under the px(x) curve
within that interval.

b
Probla < X < b] = f () (4.1.2)
and hence the total area under the curve is equal to
unity:

Prob[— < X < o] = f pdr=1  (4.13)

The cumulative probability distribution func-
tion, Px(x), often referred to as simply the “prob-
ability distribution,” is the indefinite integral of the
probability density function

Px(x) = ﬁ px(X)dx (4.1.4)

We next define E[X], the average or the expected
value, either of a random variable X or, more gener-
ally, of any function of X, f(x), as follows:

Elx] = f " x px(x)da (4.1.5)

EFOO1= [ fopody (4.1.6)
Equation 4.1.3 states that, for any function f(X)
of a random variable having a probability density
function px(x), the average of f(X) is equal to the
moment of px(x), with f(X) taken as the moment
arm. For the special case when f(X) is X itself, the
average is simply the mean, or mean value, of X,
that is, the most direct and most familiar type of
average. We shall use the symbol u to indicate this
mean value, thus:
= E[X] = fm X pr(x)dx 4.1.7)
We next examine the average or expected value
of some simple functions of X, namely, powers of
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X. In this case, the moments are second moments,
third moments, and so on, of px(x). For example,
the average of X°, or the mean square of X, is the
expected value of X. From (4.1.6) this is

(4.1.8)

E[X?] = f " Cp)dx

which is the second moment of px(x), taken about
x=0.

In defining the averages for higher powers of X,
it is convenient to introduce the deviation from the
mean, X — u, and to take powers of the deviation
instead of X because this corresponds to taking
moments about the mean .

With this definition the second moment is a
measure of the spread or dispersion of px(x) and is
known as the variance, o

o = E[(X - p)?]
ji i (x —u)? px(x)dx

= m,

(4.1.9)

The symbol m, is introduced for this second
moment to be consistent with the more general
relationship to be defined in (4.1.11).

The only difference between the variance and
the earlier form of second moment, the mean
square, is the use of a different moment arm, and
hence they are closely related:

o’ = fw Xpx(x)dx — 2 fw xpx(x)dx

+u’ f_ " px(x)dx

= E[X?] - p? (4.1.10)

Since px(x)dx is a pure number, the units of
variance are those of X*. This is not convenient
for some purposes and, therefore, the measure of
dispersion is usually taken as the positive square
root of ¢ This quantity o is referred to as the
standard deviation. It is also the root mean square
of the deviation.

It may be helpful to note that if px(x) were
visualized as the mass distribution of a rod, then
n would equal the distance of the center of mass
from x = 0, and o would equal the moment of
inertia about the center of mass. Also, (4.1.10) is
simply a statement of the parallel axis theorem.

We next proceed to define moments of
higher order, denoting a moment of order k as m:

me=EIX - 'l = [ r-plpuode (4.1.11)

Each of these moments is a kind of weighted
average of px(x); that is, each moment is a param-
eter that characterizes px(x), and it would be pos-
sible to define or describe a probability density
function in terms of its various moments. How-
ever, a complete and unique definition would, in
general, require moments of all orders. This is
impractical, and we usually deal only with the first
two orders: the mean and the variance. As we shall
see, for some particular probability distributions,
this information is sufficient to completely define
the distribution.

GAUSSIAN DISTRIBUTION

The Gaussian or normal distribution

1 2 2
px(x) = ———— e T (—0 < x < +0)
V2T o
(4.1.12)

is by far the most common distribution. Many
random processes, be they physical or mathemati-
cal, exhibit this relationship. One of the features
of this distribution is that it is defined entirely
and explicitly in terms of its mean value u and its
variance o°. Some typical Gaussian distributions
are shown in Fig. 4.1.2 for u = 0 and 0 = 1, 2,
and 3. (Where a slash (/) is used in an exponent
of this and other probability density functions
below, all of the terms to the right of the slash are
in the denominator, unless indicated otherwise by
parentheses.)

LOG-NORMAL DISTRIBUTION

A positive random variable X is said to have a
log-normal distribution if its natural logarithm,
Z = InX, has a normal (Gaussian) distribution.
That is,

(e V2202
()20,

e (4.1.13)

(z) = #
bz \ 2 oy

where uz and o, are the mean and the variance of
InX, respectively. The probability density function
of X is then

A4Z _ pax)
1704 X

Px(x) = pAz)

_ ; e—(lnx—,uz)z/ZU'; (x = 0) (4 1. 14)

V2 ozx
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X

Figure 4.1.2 Gaussian pobability density function, with ox =1, 2, and 3, and

with u = 0.

It has been found from ocean wave data that the
two parameters that characterize a sea state—sig-
nificant height and modal period—follow a log-
normal distribution. This is discussed in Section
4.3.

RAYLEIGH DISTRIBUTION

The surface elevation X at any point in the ocean
is a random variable with a Gaussian distribu-
tion and a zero mean. In Section 4.1.2 it will be
shown that the peak values of X, denoted here as
X, have a Rayleigh probability density function
which is

—i202

pm@=%f (x> 0) (4.1.15)
g

X

or, in nondimensional form, with Y = ¥/oy

dX P
Py =pi) 55 =2 e o

Ox

=y eV 2 (4.1.16)
where o2 is the variance of X. This is illustrated in
Fig. 4.1.3.

All three of the foregoing distributions are
defined in terms of no more than two parameters:
w and o In such cases the first two moments,
m, = u =E[X] and m, = ¢ = E[X?], are sufficient
to completely define the distribution; if they are

known, then the full distribution can be created.
For other distributions, further information would
be required.

CENTRAL LIMIT THEOREM

The central limit theorem states that, if a random
variable Z is the sum of n independent random
variables

n

Z=2X,

i=1

(4.1.17)

and if all of the X; have the same distribution,
then the probability density function pz(z) for

A
06 |-

PyY)

1 2 3

Figure 4.1.3 Rayleigh probability density function of the
nondimensional random variable y = ¥/ox.
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Z approaches the Gaussian distribution as n
approaches infinity, regardless of the type of dis-
tribution of the X; variables. That is, a random
variable that is the sum of similar random effects
also has a Gaussian distribution.

PROBABILITY DENSITY FUNCTION FOR
TWO VARIABLES

If there are two events or random variables X and
Y, the corresponding probability density function
expresses the probability of both events occurring
together:

Prob[x =X=x+do )Ny =Y=y+dy)]
= pux, Ydx dy  (4.1.18)

A typical probability density function for two
variables is shown in Fig. 4.1.4, illustrating that
the joint probability is the volume under that
part of the pxy(x, y) surface bounded by the two
intervals.

Prob[@a=X=b)N(c=Y=4d)]
b
= f fpxy(x, vdxdy (4.1.19)

Also, the total volume under the complete surface
is unity.

In the special case when the two random vari-
ables are independent, then the joint probability
density function is simply the product of the two
separate distributions

Pxr(x, ¥) = px(x) pr(y) (4.1.20)

For a joint distribution we can again take moments
as before. The expected value of the product XY
corresponds to a mixed second moment:

Figure 4.1.4 Second-order probability density function.

E[XY] = j: j: Xy par, Ydx dy  (4.1.21)

If we take moments about the respective mean
values uy and wy (computed independently from
the one-dimensional distributions) we have what
is known as the covariance Cyy of the random
variables X and Y:

Cxr = E[(X — ux)(Y — uy)]
= j: j: (x = w)(y — wy)pxv(x, y)dx dy
= E[XY] - E[X]E[Y] (4.1.22)

When X =Y, the covariance C,, reduces to the vari-
ance o°x of the random variable X.

The correlation coefficient pyy of the random
variable is defined as

(4.1.23)

It can be shown that the correlation coefficient
lies in the range —1 < pxy < 1. When pxy = 0, the
random variables X and Y are said to be “uncor-
related.” If two random variables X and Y are inde-
pendent, then they are also uncorrelated because

E[XY] = j:c j: xy pxv(x, y)dx dy

= f: xpx(x)dx j: ypAy)dy

= E[X]E[Y]

ny=E[XY] —E[X]E[Y] =0 = Pxy

(4.1.24)
and
However, uncorrelated random variables are not
necessarily independent random variables.
The expected value of a linear combination of

random variables Z = aX + bY is

E[Z] = E[(aX + bY)]

[ S @x+ by pute vidx dy
af xfpxy(x, v)dy dx
tb f: y j: P, y)dx dy

a [; xpx(x)dx + b j: ypr(y)dy

= apx + buy

(4.1.25)

and the variance is
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0% = E[{(aX + bY) - (apx + biuy) 1’
= E[{a(X — ux) + b(Y — uy)}’]
= @’E[(X — ux)’] + 2abE[(X — ux)(Y = wy)]
+ D’E[(Y — ny)?]

= a’oy + 2abCxy + b0} (4.1.26)

If X and Y are independent random variables, then
the covariance Cxy = 0 and

o, = d’oy + b’oy (4.1.27)
We may extend these results to the set of n inde-
pendent random variables X;, X,, ..., X, with
individual expected values w; and variances o”i,

(i=1,2,...n). It may be shown that the summed
random variable

z=) X (4.1.28)
i=1
has the expected value
=> (4.1.29)
i=1
and the variance
S 2
=> o (4.1.30)
-1

4.1.2 Random Processes

A random process is a random function of a

time parameter. Figure 4.1.5 shows several
NG)
Py (X ty)
47 Px(X: tz)
® ‘.’,I‘ ‘ A‘ t
x o Y e pAM
@ 'A"“’ l' MW"V‘"L' A ' t
“) 'A'l ‘ ,AVA,L"“'.'".‘ A “ t
X / [/
&‘ v "'Av .‘ ‘ ‘AAA“ t — | —)
P, (2)(%)

Lm“ pell A.“ t

l /
1 t,
Figure 4.1.5 Schematic representatlon of a random process

X(#) (each XY(#) is a sample function of the ensemble).

samples or observations of a random, time-
dependent quantity X(f). In each case the time
t is the time from the commencement of sam-
pling. Since X is a random variable, each curve
X®() represents just one sample out of an infinite
number of possible samples or measurements. The
collection of such samples, theoretically infinite in
number, is known as an “ensemble.”

Of course, there may be more than one inde-
pendent variable; for example, the process may
depend on location as well as time. Whatever the
dependency, it is necessary that each sample be
taken under identical conditions, at least in regard
to the factors that affect X(7), so that X(¢) is a
truly random process. If variations in some such
factor cannot be avoided, then that factor must
be included as a second independent variable, in
addition to ¢, and the process would then be “two-
dimensional.” In the case of ocean waves, where
X(f) is the sea surface elevation, it is possible
to identify and isolate these factors sufficiently
well so that, for short-term observations (up to
a few hours in duration), X(f) is essentially one-
dimensional.

STATIONARY AND ERGODIC RANDOM
PROCESSES

If the statistical characteristics of a random process
do not change with time ¢, we say that the process
is stationary. Thus, for example, if the process
in Fig. 4.1.5 were a stationary random process,
then the probability density functions at #,, #,, and
so on would all be the same. Now, the statistical
quantities used in the analysis of random processes
are averages of X(¢) and of various functions of
X(#), such as its square, as is done for a simple,
non—-time-dependent variable X. If the process is
stationary, then the averages and moments are
invariant over time, and they therefore have the
same definition and meaning as given earlier for
simple, non-time-dependent random variables.
That is, the mean, the variance, and the higher
moments of the process continue to be given by
(4.1.7), (4.1.9), and (4.1.11).

It has been found experimentally that, over the
short term (as defined before), the sea surface eleva-
tion is a stationary random process. Hence, all of the
earlier definitions of averages and moments are still
applicable, even though the random variable X is
now a function of time, i.e., X(?).

Because a random process is a function of time,
there are in fact two different ways of calculating
averages. The averages may be taken over all of the
samples of the ensemble at the same instant of time,
say t;, or they may be taken for a particular sample,
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say X"(¢) over all time from —oco to co. These two
alternatives are referred to as ensemble averages
and temporal (or time) averages, respectively. All
of the averages defined thus far have been ensemble
averages. For instance, the mean w, the variance
o’, and the higher moments m; are the ensemble
averages of X, (X — w), and (X — w)", respectively.
Likewise, the ensemble average of any function f(X)
of X is given by (4.1.6).

The temporal averages, on the other hand, are
computed for a particular sample X(¢) = X"(¢) [we
will omit the (1) superscript from here on] over
some length of time—a long time for sufficient
accuracy. Thus, for example, the temporal mean is

MMLMm—j‘MMt

T—o0

(4.1.31)

where brackets ( ) indicate a temporal averaging.
Likewise, the temporal mean square is

<mmﬂm—fXMm

T—eo

(4.1.32)

It is often useful to represent a time-dependent
variable as the sum of a temporal mean value plus
a fluctuating component. The fluctuating compo-
nent is described by the variance o*, which is from
(4.1.9)

o =([X(t) - uI’)

:mmlfmmm—mwr

T—e0 172

(4.1.33)

In practice, of course, some finite length of time
must be used in place of the limit 7 — oo, and so
the above equalities become approximations, or
estimates, of the mean, the mean square, and the
variance.

In general, these time averages are different
from those obtained by averaging “across the
ensemble.” However, many random processes,
including ocean waves, are such that time aver-
ages formed from a single sample over a time
interval are, in the limit, equal to the ensemble
averages. Such processes are known as ergo-
dic processes. In qualitative terms, an ergodic
process is one where a single sample X(7) is
sufficiently typical to represent the entire process.
Obviously, an ergodic process must be stationary,
but a stationary random process is not necessarily
ergodic. Ergodicity implies that all of the various
expectations are equal to, and may be replaced
by, the corresponding temporal averages. This is
important because, although most of the theoreti-

cal relationships are defined or derived in terms of
ensemble averages, in practice these are difficult,
if not impossible, to obtain, whereas calculating
time averages from a single observation is rela-
tively easy. If the process is ergodic, these can be
used in place of the ensemble averages.

As noted earlier, there are two distinct methods
of specifying a random process X(?):

1. Through its probability density function, or

2. Through various averages that correspond
to various moments of the probability density
function.

The first of these methods is impractical,
because it involves an enormous amount of infor-
mation. The second is practical, providing that
the averages can be measured. Hence, ergodicity
is important. With this property, the required
averages may be computed from measurements
of a single observation. Ergodicity is assumed in
virtually all practical applications, particularly in
the estimation of parameters of empirical models.
Fortunately, oceanographers and statisticians
established that the surface elevation at a given
location in the ocean can be considered, at least
for engineering purposes, as an ergodic process
with a Gaussian distribution. This will be taken
up in Section 4.3.

AUTO-CORRELATION FUNCTION FOR AN
ERGODIC RANDOM PROCESS

The averages used to analyze linear systems by statis-
tical methods are those that represent or measure the
degree of association between values of the random
variable X(#) at times differing by a specified time
interval 7. These averages are called correlation func-
tions. The most basic of them is the auto correlation
function, T, which is the average, or expected value,

of the product of any two values of X: X; = X(#) and
X, =X(t) =X(t, + 7):
R(1) = E[X()X(t + 7)]
= E[X:X]
f f X1X2pxx(X1, X2)dx dx, (4.1.34)

For a stationary process, R(7) is independent of ¢
because E[X(t)X(t + )] = E[X(t)X(t, + 7)]. Also,
since the product X, X, is commutative, we have

R(7) = E[X,Xa]
= R(-7)

= E[X>X\] = E[X(t:)X(t> - 7)]
(4.1.35)
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indicating that R(7) is an even function of 7. The
value at the origin is simply the mean square
R(0) = E[X?] (4.1.36)

To get some idea of the shape of R(7), let us
consider an ensemble of functions X() with zero
mean. (This zero mean restriction is not necessary
for the theory developed in this section. However,
as it is characteristic of ocean waves and as it
also simplifies the development, it is introduced
at this stage.) If r and 7 are such that there is little
or no association between X(¢) and X(¢ + 7), then
a particular value of X(¢) is just as likely to be
associated with a positive value of X(¢ + 7) as
with negative value. For this reason we can expect
the average value of the product X(¢) X(t + 7) to
be near zero. On the other hand, the association
between the two values may be such that both tend
to have the same sign, either positive or negative.
In this case the product will have an average that
is positive. Again, if X(¢) and X(¢ + 7) tend to have
opposite signs, the average of the product will be
negative.

To clarify matters, let us consider two extreme
cases. On the one hand, values of a function
X(t) of the ensemble at different times may be
completely unrelated, however close the times
may be. This kind of an ensemble, called white
noise, generally has no continuity; it represents
the characteristic of an erratic variation in the
extreme. In this case, R(7) = O for all values of
T except zero, where it equals the mean square.

On the other hand, if each sample X(¢) were
identical, thus exhibiting perfect correlation, then
R(7) would be a constant equal to the mean
square.

Usually the situation is intermediate between
these extremes. Thus, if 7 is small, X(t + 7)
can be expected to lie in a range of values
that do not differ greatly from X(z). On the
other hand, if 7 is large, there will be very

R (%)

—~

\/ 0

—

VA

little association between X(r) and X(r + 7).
Consequently, provided that there are no
periodic components present in the random
process, R(7) tends to zero since products
will be equally positive and negative. That
is, R(t) >0 as 7 — o. With a nonzero mean,
R(o0) = u?. Two typical auto correlation func-
tions are shown in Fig. 4.1.6.

Instead of the ensemble average of X;X,, we
can form the time average; the temporal auto-
correlation function is

R(1) = X(OX(t + 7))

72
= lim f XXt + Tydt (4.1.37)
-T2

T—eo T

For an ergodic process, this will be identical to the
ensemble average of (4.1.34), and in the case of a
physical process, the time average is much easier
to obtain. Hence, (4.1.37) is taken as the definition
of R(7).

Some further insight into the concept of auto-
correlation may be gained by examining a typical
method for measuring the auto-correlation of a
random signal (for example, the heave motion
of a buoy for measuring wave heights). Figure
4.1.7 shows a block diagram for the procedure.
The sample function is recorded on a tape, and
a tape recorder with fwo heads is used. The
spacing between the heads is adjustable. If the
speed of the tape is V, the time interval between
readings is 7 = a/V. The values f(1), f(t + 7) are
then multiplied and averaged over a long time
period T. For a finite averaging time the mea-
sured quantity y(¢) fluctuates slowly. In the limit
T — oo the reading y approaches the temporal
auto-correlation function R(7) and, if the process
is ergodic, this is also equal to the ensemble
auto-correlation function. To obtain the auto-cor-
relation function as a function of 7, it is necessary
to perform the average just described for a whole

R (7)

Figure 4.1.6 Possible forms of the auto-correlation function.
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range of values of 7; that is, for a whole range of
values of a.

FREQUENCY ANALYSIS OF AN ERGODIC
PROCESS

In dealing with fluctuating time variations, it is
usually more convenient to work in terms of fre-
quency. This is obviously true for periodic varia-
tions, but it is also true for random variations, par-
ticularly if the process is ergodic.

Before considering a random function X(¢), it is
useful to recall the Fourier expansion of a defer-
ministic time dependent function g(¢). When g(¢)
is periodic with period T, or frequency wo = 27/T,
we have

g =, g(n)e™

n=—oo

(4.1.38)

1 T2 .
where 2(n) = — f g(He ™ di
T Jm

The quantity g(n) is referred to as the “Fourier
transform” of the periodic function g(#). The func-
tion g(¢) and the quantity g(n) are said to constitute
a “Fourier transform pair.”

When g(t) is a nonperiodic function, it may,
under fairly general conditions, still be repre-
sented in a transformed manner as a “Fourier
integral:”

is the Fourier transform of the function g(7r). Here
again, the functions g(f) and G(w) are a Fourier
transform pair, constituting inverses of each other.
For deterministic time-dependent functions, the
transformation to the “frequency domain” usually
simplifies and facilitates the analysis.

For a random process X(7) a similar frequency-
based or spectral representation can be achieved.
Although it is not possible to transform X(¢)
directly, it can be shown that the auto correlation
function R(7) fulfills all of the requirements to
define a Fourier transform. The Fourier transform
of R(7) and its inverse for a stationary random
process X(7) are, respectively,

1 )
S(w) = ﬁj:m R(7) cos ot dr  (4.1.40)

1 0
R(7) = ;LO S(w)cos wr do  (4.1.41)

These two equations are called the “Wiener
Khintchine Relations.” The quantity S(w) is called
the “spectral density function” because its domain
is the spectrum —oco < @ < oo. Like the auto-corre-
lation function, the spectral density function is a
measure, or at least an indicator, of the repetitive-
ness or harmonic content of the random process
X(f) and of its distribution over the frequency
range. If X(7) exhibits some approximate repetition
having an approximate frequency w,, then S(w)
will have a local peak in the vicinity of wo.

8(1) = j:x G(w)e™ do (4.1.39) The full name of this function is the “mean
B square spectral density function,” or the variance
in which G(w) = 1 f g(t)e ™ di spectrum for E[x(#)] = 0. It is called this because
29 J = the area under the S(w) curve is the mean square
f1(0 - Multiplying Averaging
i Device x(f) Device R(x)
20 . x=£f > R=+ gc{r)dr Measured
- 12 Tt.T Quantity

Figure 4.1.7 Schematic diagram for measurement of autocorrelation function R(7) for sample function
f(t). The adjustable distance a between tape heads is proportional to lag 7.



4-10  WAVE LOADS—STATISTICAL, DYNAMIC, AND NONLINEAR ASPECTS

value of X(¢). This may be shown from (4.2.8) in
which, if we set 7 = 0, the right-hand side becomes
the area under the S(w) curve and the left-hand
side becomes R(0), which is simply the mean
square of the process, as was shown earlier in
(4.1.36). That is,

Area under S(w) = f S(w)dew = R(0)
= E[X*(1)]

=(X(r)) (4.1.42)
Hence, in an analogous manner to the probability
density function, the area S(w)dw that lies within the
interval or “band” from w to w + dw is the contribution
which is made to the mean square by components
whose frequencies lie within that band.

Other properties of S(w) may be deduced from its
definition. Since R(7) is real and even, it follows
that S(w) will be a real and even function of w.
Also, since S(w) is the spectral density of the
mean square, it is nonnegative. An example of a
typical spectral density function is shown in Fig.
4.1.8. In defining S(w) we adopted, simply for
mathematical convenience, the range or spectrum
—oo < w < oo. Since we wish to apply this theory
to physical processes, it is necessary to use a
modified, one-sided spectrum: w = 0. For this
purpose we define the one-sided mean square
spectral density function

25(w) forw =0

S'(w) = (4.1.43)

0 otherwise

as shown in Fig. 4.1.8. Since both the auto-correla-
tion function and the spectral density function are
real and even, we have

R(7) = fo‘ 28(w) cos wT dw (4.1.44)

R(7) = j: 2() cos wr dw (4.1.45)

and so, for a one-sided spectrum, S*(w) bears
the same relationship to R(7) as did S(w) for the
two-sided spectrum. Since S and S* are so closely
related, and since the latter is used in all practical
applications, we will not bother using the + sign
to distinguish them. We will use the two-sided
spectrum only when it is more convenient math-
ematically, and its use in such instances will be
clear from the context.

Since the spectral density function is the math-
ematical transform of the auto-correlation function

Mean square
spectral density

s* ()
/\/N

0 (0]

Figure 4.1.8 One- and two-sided mean square spectral
density functions of a random process.

of X(#), the units of S(w) depend on the units of
X(#). If X(¢) is wave height in meters, then S(w)
has units of m’s. It may be shown that for any kind
of wave—gravitational, electromagnetic, and so
on—the area S(wo)dw within a bandwidth dw is
directly proportional to the total energy of all of
the components that lie within the band (wy — ¥2
dw, wy + V2 dwi). Because of this direct relation-
ship between energy and the mean square spectral
density function and because of the attraction of
a shorter name, the terms “energy spectrum” or
“wave spectrum” are commonly used in place
of the full name. Sometimes this is even further
shortened to simply “spectrum” although, strictly
speaking, this word means a range of frequencies
rather than a function defined within that range.
One of the principal advantages of the spectral
density function is that all basic characteristics
of a random process can be expressed in terms of
moments of this function:

m, = j: W"S(w)dw (4.1.46)
where n can be any integer. We have already seen
in (4.1.42) that the mean square value is the “zero
order moment.” That is

X)) = mo = j: S(w)dw (4.1.47)

Some other basic characteristics that may be

expressed in terms of spectral moments are the
following:

Average mean period

my

T,=2m— 4.1.4
P ™ P ( 8)
Average zero crossing period
Tyo=2m /) 20 (4.1.49)

m;
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Period between maxima, regardless of magnitude,

n”=2w\ﬁ%§ (4.1.50)

Average crest-to-crest period for a general random
process

V1 - &?

[m
1+\/1—82> \ (4.1.51)

T, = 477(

quency of the band, wy. This periodicity produces
regularly spaced peaks in the auto correlation
function and a single narrow peak at w, in the

energy spectrum.

2. Wide-Band Process—In this case the process
contains components of many different frequen-
cies, so that there is little or no periodicity and
the auto-correlation function is almost zero. The

energy spectrum is therefore quite wide.

and for a narrow band random process

Ty =2m \ —

' m,
my

Broadness (or “bandwidth’)

\/1 i
Mmony

(4.1.52)

(4.1.53)

PROPERTIES OF A NARROW-BAND RANDOM

PROCESS

Figure 4.1.9 shows two extreme kinds of random

process and their corresponding energy spectra.
The two kinds are:

1. Narrow-Band Process—A process that is made
up of components whose frequencies lie within
a narrow band or range, whose width is small

compared with the magnitude of the center fre-

Il

R(1) 4

1

R(0) = E(<?)

I

Analysis of ocean wave data showed that for a
fully developed, wind-generated, mid-ocean sea
state (i.e., no growth or decay, no coastal effects,
and no swell) the wave spectrum is relatively nar-
row-banded. Of course, high-frequency wave com-
ponents do occur, but they correspond to waves
that are small—both in height and in length—and
waves that have little effect on the ship. In fact,
the ship acts as a filter, such that the spectra of
ship motions and of the hull girder load effects are
even more narrow-banded than the wave spectrum.
Also, like the waves, these various responses have
distributions that are Gaussian and stationary (in
the short term, i.e., for a given sea state). This is
an important point because a process of this kind is
much easier to analyze than a general, wide-band
process. In this section we present some of the
principal characteristics of a narrow-band process,
X(1); these will have application not only to waves,
but also to the various wave-induced load effects
in ships, especially hull girder bending moment.

_ st A
Symmetric

aboutt=0

ANAN,

X (t) A

)

Time domain

Time domain

~Y

U

h

INAAAG PR

Auto-correlation Spectrum
(a)
s" ()
Auto-correlation is
practically zero
o
Auto-correlation Spectrum

(@)
Figure 4.1.9 Narrow-band (a) and wide-band (b) spectrum.
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For simplicity we shall assume that X(¢) has a
zero mean. This is, of course, true for the ocean
surface elevation, and it is also true for wave-
induced motions and load effects if they are
calculated from the linearized theory presented
in Section 4.4. The more accurate nonlinear
motions and load effects have nonzero mean
values, but this in itself does not present any
difficulty. Rather, the difficulty with nonlinear
processes is that a frequency-based response
analysis is not possible; the analysis must be
performed in the time domain. This is discussed
in Section 4.4.

For design purposes we are interested in peak
values, X', rather than the full range of values of
X(7). Peak values of a random process are a special
subgroup and, therefore, they have a probability
density function of their own, different to that
of X(t). If we denote this function as pi(X), the
probability that a peak value, chosen at random,
will exceed the value X is

Prob{peak exceeds X} = J pi(x)dx  (4.1.54)
X

This is illustrated in Fig. 4.1.10.

As shown originally by Rice (1945) and in
standard texts such as Crandall and Mark (1963),
p«(X) may be derived by examining the probability
of “positive crossings” of X = x; that is, the aver-
age frequency w; with which X exceeds a specified
magnitude X. If X(7) is Gaussian, the frequency is
1 ox

e-;ézlzai(

(4.1.55)

Wy = —
2w oy

where ox and oy are the standard deviations of
X(f) and X(f) (= dX/dt), respectively. Setting
X = 0 gives the average frequency for the process,

/ Envelope, )?(t)
_0.000—?1 —_
’ “"0‘0-

<~One

cycle ,Peaks, X

. In a narrow band process, X() crosses the axis
before and after each peak, with only rare excep-
tions. Therefore, the expected number of positive
peak values is approximately equal to the number
of cycles. In time T there will be, on average,
woT cycles. Of these, the number of cycles with
peak values exceeding ¥ will be w:T. Hence, the
probability that any peak value, chosen at random,
exceeds ¥ is equal to wv/wy; that is,

w
w

= Jp,;(x)dx (4.1.56)
0 X

Substitution of (4.1.55) and differentiation with
respect to X gives

- X
Py(X)=—e
Tx

which is the Rayleigh distribution of (4.1.15).
This shows that for a random process which is
Gaussian, ergodic, and narrow-banded, peak
values follow a Rayleigh distribution. For a
process with zero mean, the variance o7 is equal
to the mean square, and from (4.1.47) this is equal
to my, the area under the spectral density function
of the process. In terms of my, (4.1.57) is

<25 2
—X"/20%

(4.1.57)

~ X
Py ="
mO

=2
—X7/2m,

(4.1.58)

The cumulative probability distribution function is
P = [ pdr=1-e""" (4159
0

Thus, the probability of X exceeding a specified
value X, is

p.d.f of peaks, X
(Rayleigh)

Probability density

\ p.d.f. of sea
elevation, X

(Gauss)

Figure 4.1.10 Distribution of peak values in a narrow-band process.
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Prob{X>X,} =1 - PxX,) = o-/2mg
(4.1.60)

By inverting this we can define any value X, in
terms of its probability of being exceeded. For
example, as illustrated in Fig. 4.1.11a, we can
define Xi; as the value of X for which there is a
probability of exceedance of 1/3. This implies

1

Prob{X = X} = e Xm0 = 3 (4160

from which we obtain

X,y =2m In3=1482,/m (4.1.62)

The average of all of the values above the one-
third value is called the significant value, and it
is denoted Xjs. It is the horizontal distance to the
centroid of the area under pi(X¥) beyond X = Xj;,
which is given by

)?s =3 [ 3p.(x)dx
. P

173

(4.1.63)

The result is

Xs={VIn 3 +3Va [1 = d(V2 In 3)]} V2mo

(4.1.64)
which, to three significant figures, is
X, =2.00m, (4.1.65)

where

¢(§):% l-l—erf(%]]

and erf(éN2) is the error function or the prob-
ability integral

3 2 g
f|— | = — d
()= gp 4 e e

Similarly, the average of the highest “one-nth”
values of a random process that has a Rayleigh
distribution is

} 2m,

X, :{ In(n) + n\/;ll )
(4.1.66)

When n becomes large, this reduces to

X, =+/2m,In(n)

The average 1/nth value provides information
about the magnitude of the larger peaks of a
random process and, hence it characterizes the
“severity” of the process. In particular, the sig-
nificant value, X;s, is used to measure and specify
the severity of sea states. In this case the random
variable is the trough-to-crest wave height, H,
which is twice the amplitude of X. Therefore,
the preceding expression must be multiplied by

(4.1.67)

2, giving
H,=4.01ym, (4.1.68)
A
g{ Area=Prob [)7>Y1/3:|=1§
?/
/ //////////I/ln......,,,
X3 X
—X
S
(a)
2.0
\
1.9 AN

Vg
1.6
1.5
1.4 €
0 0.2 0.4 0.6 0.8 1.0
(b)
0.8
0.5 \ <[=0 (Rayleigh)

0.2

% 0.4 \\\ </0'4
\ 0.6
\\ 0.8

N

0.5 1.0 1.5 2.0 25 3.0 3.5

X

(©)

Figure 4.1.11 (a) Definition of significant value, Xs; (b)
effect of bandwidth on Xg; and (¢) effect of bandwidth on
p.d.f. of peak values.

0.2

1.0 ( Truncated normal)—

X
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The statistical properties of a general non-
narrow band process were investigated by Cart-
wright and Longuet Higgins (1956) and by Huston
and Skopinski (1956). Figure 4.1.115 from Ochi
(1982) shows the results of computations of sig-
nificant wave heights (in dimensionless form)
for various values of the bandwidth parameter ¢,
defined in (4.1.53). As can be seen in the figure,
there is no appreciable difference in the significant
wave heights for € up to 0.5. The difference only
becomes significant for & greater than 0.8. Since
the e-value for ocean waves is generally within the
range from 0.4 to 0.8, the significant wave height
evaluated on the assumption of a narrow-band
process is only slightly overestimated, of the order
of 5% or so.

Fig. 4.1.11¢ shows the probability density func-
tion of the peak values of various nonnarrow-
band random processes as a function of e. For a
totally wide-band process the function is simply
the Gaussian curve.

4.2 PREDICTION OF EXTREME VALUES
4.2.1 Extreme Values for Linear Responses

As explained in Chapter 1, the rationally-based de-
sign of ships requires the consideration of the largest
value (extreme value) of wave loading, especially the
wave-induced bending moment, which is expected to
occur within the ship’s lifetime and, in particular, the
prediction of a characteristic value associated with
a certain probability of nonexceedance in that time.
To achieve this, we must first examine the concept
of an extreme value of a random process. This topic
was first treated by Fisher and Tippett (1928) and
was later systematized by Gumbel (1966).

In defining a design value, it might seem sufficient
to use the 1/nth value, for which the probability of
being exceeded is 1/n, and to simply choose an
appropriate value of n. It is true that the probability
of exceeding the value On is, on average, once in
n observations (peaks). (The symbol Q is chosen
because in the majority of applications of the results
obtained here, the random process Onisa response
or a load effect, which in this text is denoted by the
symbol Q.) However, there is no assurance that 0,
will occur once inn observations. For design purposes
we need information concerning the extreme value,
that is, the largest peak value that will occur in the
life of the ship, and also the probability (or risk) that
this largest value will exceed a specified magnitude.
The characteristic value is then that magnitude of
extreme value that has an appropriate probability
of exceedance. Since the statistical properties of

negative peak values are essentially the same as
those of positive peak values, only the latter are con-
sidered in the following discussion (see Fig. 4.2.1).

For linear systems, there are three different
methods to calculate extreme values, depending on
whether or not the probability density function of
the peak values is known analytically. In discussing
extreme value statistics (for linear systems) this
function is referred to as the initial probability
density function, and its integral is referred to as the
initial probability distribution. If the former is known
analytically, then an exact analytical expression
can be derived for the probable extreme value by
applying order statistics. This situation exists, for
example, in regard to the short-term peak values of
wave height because the initial probability density
function for this process is the Rayleigh distribution.

If the initial probability density function is
not known analytically and the only information
available is some measured (or observed) data, then
there are two other possibilities, depending on the
nature of the data:

1. If enough data are available to allow an approxi-
mate initial probability distribution P3(Q) to be con-
structed, then the extreme value for a longer period
of time can be established by plotting the distribution
in the form 1/[1 — P3(0)] and extrapolating the
curve. Obviously, this method possesses the
usual uncertainties associated with any process of
extrapolation. It is used, for example, to estimate the

Positive peak values

o Extreme value (in this sample)
]
(¢]
~ _ Q
2 t

A% Q4/\ G,
l \/ \/ Time

\\/

Negative peak values

(@)

(q 54 (= Qforthese 5 peaks)
e ~ 62 5
G Q 3 s

Figure 4.2.1 Random processes: (@) wide-band, (b) narrow-
band
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most severe sea state likely to be encountered over a
long period of time.

2. If the available data consists of a large number
of short-term extreme values (e.g., the largest wave
measured or observed each day over a period of
many years), then the extreme value likely to be
encountered over a longer period can be estimated
by means of the asymptotic distributions that were
originally developed by Fisher and Tippet and later
systematized by Gumbel.

ANALYTICAL EVALUATION OF EXTREME
VALUES

Let p5(Q) be the probability density function that
governs the positive peak values Q of a random pro-
cess Q(1) and let P3(Q) be the corresponding cumu-
lative probability function, as shown in Fig. 4.2.2.
The function 1 — P3(Qy) gives the probability that
any one peak value, selected at random, exceeds
a specified magnitude, Q,. However, for design
purposes we wish to know the probability that, out of
a total of n peak values that are encountered, at least
one peak will exceed a specified magnitude. We will
derive this in two stages. First, we will obtain the
probability density function for the extreme value,
that is, the largest peak value among a sample of n,
peak values, and then we will use this to relate the
magnitude of the extreme value to its probability of
occurrence.

Let (01,0, ..., 0,) be a typical sample of size n
where each Q; is an observed peak value of Q(7),
as in Fig. 4.2.1. Since none of the members of the
sample are specially defined or distinguished in
any way, all of them have the same probability
density function, p3Q. Let us now arrange this
random sample into an ordered sample (01, 0.,
..., Q,) in ascending order of magnitude, such that
01<0,<... <0, We choose a new symbol, 0,
to emphasize that each of these random variables
now has its own separate definition (largest peak,

o
N
2

P (@

Y

Q
Figure 4.2.2 Distributions of peak values.

second largest peak, etc.) and, therefore, each
has its own probability density function pg(Q;)
different from ps(Q;). The variable of interest is
the extreme value, that is, the largest peak value
in the ordered sample. Since the other values are
not of interest, we will dispense with the subscript
and denote the extreme value as Q. When we wish
to associate O with the sample size, we will write
On.

We wish to obtain the probability density
function of Q. Now, for any one member to be the
largest requires that all of the other n — 1 peak values
must be less than ), and the probability of this is
[Ps(O)]"! (assuming the peaks are statistically
independent). But since there are n members, any
one of which could be the largest, we must multiply
this probability by n. Hence, the probability density
function of Q is

po(0) = pa(Dn[Po(O)"!

A typical extreme value probability density function
is illustrated in Fig. 4.2.3. The value of Q for which
the probability density function py(Q) is maximum
is the extreme value that is most likely to occur
in n observations, and this is called the “probable
extreme value” and is denoted by Q,. The probable
extreme value is useful because the extreme value
that actually occurs in n peak values of wave loading
is close to this value. It is obtained as the solution of
the following equation:

4.2.1)

d A
5 =0 422
a0 [Po(Q)] (4.2.2)
which can be expanded to
Po(QPHQ) + (n=DIpa(QP =0 (4.2.3)

For a narrow-band process the initial distributions
are the Rayleigh distributions

Figure 4.2.3 Typical probability density function of extreme
values.
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~ 20 s
py(0)= ?Qe 0/ (4.2.4)
and
Po=1-¢ @k (4.2.5)
where
R ZUé = 2m, for amplitude 42.6)

80, = 8m, for height (crest-to-trough)

Substituting these into (4.2.3) gives
A2 A2 A2
2%(neQ - 1) - (e*Q - 1) =0 (42.7)

The second term may be neglected for large n. Since
0 is an amplitude, we can write

R=2my (4.2.8)

The result is

0, =VRIn(n) (4.2.9)

Ochi (1982) showed that, for a random process
having a bandwidth parameter £ < 0.9 (which easily
applies to wave-induced bending moment and most
other wave-induced loads), the solution to (4.2.3) is

241 — & ;
1+1—¢&

fore<0.9
(4.2.10)

0, = [2mn

However, the probability that the largest peak value
may exceed the probable extreme value is large
and, hence, it is not appropriate to use this value for
engineering design. For example, Ochi showed that,
for a perfectly narrow-banded process (¢ = 0) the
probability that the extreme value exceeds 0, is 1 —
e”' = 0.632. For purposes of structural design, we
must obtain an extreme value for which the proba-
bility of being exceeded is some acceptably small
value, «, chosen by the designer—a typical value
is @ = 0.01. As explained in Chapter 1, « is not the
probability of failure, since that also involves the
probability distribution function of the limit value
of the wave-induced load or load effect. Rather, «
is a risk parameter by means of which the designer

explicitly controls the probability, or risk, of the
design load being exceeded in a total of n peak
values. Hence, we wish to obtain the extreme value
0., here referred to as the characteristic value, for
which there is a probability « of being exceeded.
That is, QC must be such that

Prob{extreme value among 7 peak values > 0.} = «

An equivalent requirement is that there must be a
probability of 1 — « that all of the n peak values will
be less than or equal to Q.. For each peak value this
probability is P5(0.), and the joint probability of this
being satisfied for all peak values simultaneously is
the product of the n individual probabilities, that is,
[P5(O.)]". Thus we have

[Po(Q)]' =1 -« 4.2.11)

Considering that « is small and 7 is large, we have

Py(Q)=(1-a)"

~1- % +0(d) (4.2.12)

where O(a?) indicates terms of the order of o’
By developing further the results of Cartright and
Longuet-Higgins (1956), Ochi derived an expression
for P3(Q) which, in combination with (4.2.12),
gives the following expression for Q.

2
0 = NIZE 2m0 e <009

2
1+ Vi * (4.2.13)

This equation expresses the design value as a
function of the number of peak values, n, of the
random process under consideration, such as the
wave-induced bending moment. For practical
purposes it is preferable to express the design value
in terms of time rather than as a function of the
number of peak values. Ochi further showed that
the number of peak values can be expressed as a
function of time by

n = (60)° 1—1—\/1— n,
e «/l—e m,

where T is time in hours. Substituting in (4.2.13)
gives

(4.2.14)
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0=

2m, In

18007 [m, (4.2.15)
T mo

It is seen that the characteristic value Q. expressed
in terms of time 7 is no longer a function of the
bandwidth parameter &, but it is a function only of
the area m, and the second moment m, of the spectral
density function of the random process. Therefore,
(4.2.15) applies for any Gaussian process, regardless
of its bandwidth.

From (4.2.10) and (4.2.14), the most probable
extreme value, Q,, can be also expressed as a

function of time by
18007 |m, | (42,16
T m,

ESTIMATION OF EXTREME VALUES BY
EXTRAPOLATION OF MEASURED DATA

Qp = [2m,In

The previous section presented an analytical
expression for extreme values when the initial
probability distribution of peak values is known
analytically. In practice, the initial distribution is
often not known with such precision. For example,
the probability distribution that is applicable for the
long-term sea severity (as measured by significant
wave height H,) is not known analytically. The
cumulative probability distribution P(H,) is derived
empirically from analysis of observed (or measured)
data accumulated over a certain period of time, and
there seems to be no single mathematically defined
probability distribution function that applies to
this quantity. In fact, there is probably no way
of theoretically deriving such a distribution, as
contrasted with the Rayleigh probability function
applicable for the height of individual waves in a
given sea. For design purposes we need to estimate
extreme values of H,, particularly the probable
extreme value H,, corresponding to a certain
period, and so we must use an approximate method
for this purpose.

Strictly speaking, significant wave height is
a peak value quantity, and in the notation of the
previous section it would have been written
as H,. The symbols ~ and ” for peak value and
extreme value, respectively, are necessary when
discussing the general case, but in most applica-
tions the fact that a quantity is a peak value or
an extreme value is obvious from the context.
For example, a significant value is always a peak

value by definition. Therefore, significant wave
height will generally be written as H,; the symbol
~ is not required. Likewise, since the subscripts p
and c indicate the probable extreme value and the
characteristic extreme value, respectively, there is
no need to also use the symbol * for these quantities.
Therefore, the probable extreme significant wave
height will be denoted as H;,.

For long-term statistics it is possible to estimate
the general asymptotic form of the cumulative
probability distribution and to use the theory of
asymptotic distribution of extreme values, as this
theory is applicable to any probability function if
certain conditions are met (David, 1970). In this
method the initial cumulative probability distri-
bution is assumed to be of the form

Py(Q)=1-¢7? 4.2.17)
The function f(Q) specifies the precise manner in
which P3(Q) approaches its asymptote. The proba-
bility density function is the derivative of Pg(Q):

Ps(0) = ddQ [1-e7?] (4.2.18)
=e’f ()

In our intended application, Q is significant wave
height H,; however, for generality we retain the
symbol Q. Likewise, the symbol for the extreme
value of Q in a sample of size n is 0. As shown in
the previous section, the probable extreme value Q,
is the solution of (4.2.3). In the present case, this
equation becomes

Q) [1—el@] 4+ ne’@_1=0

(4.2.19)
Lf' QP

For large n the first term is small in comparison with
the other terms, and the equation becomes

7O =5

(4.2.20)

and Q, is the particular value of Q that satisfies
this equation. Equation 4.2.17 holds for any value
of 0, including the probable extreme value, Q,.
When (4.2.29) is substituted back into (4.2.17) the
assumed functional expression for the asymptote
drops out, leaving simply

1

———=n (4.2.21)
1= Py(0,)

This result shows that the probable extreme value
expected to occur in n observations can be evaluated
from the initial cumulative distribution function
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and the number of observations. Although the
initial cumulative distribution function P3(Q) is not
known analytically, it can be constructed from the
observed data. Then the left-hand side of (4.2.21)
can be plotted versus ,, and the extreme value
for a number of occurrences larger than n can be
estimated by extrapolating the curve. The left-hand
side of (4.2.21) is known as the return period
because it corresponds to the number of occurrences
in between extreme values of a certain magnitude.
The use of this technique to estimate the probable
extreme sea state is shown in Section 4.3.

ESTIMATION OF EXTREME VALUE FROM
OBSERVED SHORT-TERM EXTREME VALUES

The observed short-term extreme value considered
here is the largest value that is either measured or
observed during a certain period of time. As an
example, let us assume that the data of the largest
wave height measured every day are available. If the
number of measured data is large, then it is possible
to estimate the wave height expected to occur in a
long time period of, say, 20 or 40 years. The estimate
is based on the asymptotic distribution of extreme
values developed by Gumbel (1966). This theory
shows that, if the initial distributions are exponential,
meaning that they satisfy the following relationship

po@) _  po(Q)
1-Py(Q)  pa(Q)’

O—c  (4222)

[which is satisfied, for example, by the Rayleigh dis-
tribution and by (4.2.17)] then a suitable asymptotic
approximation to the exact cumulative probability
function of the extreme value is given by

Ps(0) = e ¢ (4.2.23)
where
_ a
V6 Var[0]
0,=E01-L
K

Here Var[Q] and E[Q] are, respectively, the variance
and the expected value of the available data (i.e., the
observed short-term extreme values) and vy is Euler’s
constant, 0.577.

Following Gumbel (1966) Loukakis and Grivas
(1980) showed that, if the initial distribution is the
Rayleigh distribution [see (4.2.4)] then the parameter
Kk in (4.2.23) is given by

In(n)
R

K =2 (4.2.24)

4.2.2 Extreme Values for Nonlinear Responses

Usually, it is the statistical properties of the simulated
load response that are of practical interest and not the
results from the deterministic response history for a
limited duration as such. Sufficiently accurate extreme
value estimates are difficult to obtain from deterministic
simulations. In principle, extreme value predictions
can be obtained by carrying out simulations for a
sufficiently long duration and to estimate the extreme
values directly from the simulated record. Several
possibilities exist. Most commonly, a global statistical
model is applied to the entire response history by either
fitting a Weibull model to the local maxima (Winterstein
and Torhaug 1996) or a Hermite model to the first four
statistical moments of the response (Winterstein 1988).
Alternatives used are tail-fit models that either fit a
Gumbel model to the largest peaks within a number of
subintervals of the response or that only use peaks over
a certain threshold in the fitting of a Weibull model.
However, from an engineering standpoint, the extensive
computer resources needed make it impractical to carry
out sufficiently long simulations to generate long time
histories to directly obtain converging extreme value
estimates.

It is especially difficult to obtain long-term
extreme value statistics in this way. For the strength
assessment of ship structures, it is necessary to
estimate the long-term maximum value of wave-
induced loads during the ship’s operational life.
Based on this value, large deflection and limit state
strength analyses of ship structures are performed.
For a fatigue strength analysis, the time history of
wave-induced loads is also required. For linear wave-
induced response, theoretical methods to estimate
short- and long-term probability distributions are
well established. The Rayleigh distribution, for
example, describes the short-term distribution
of wave-induced loads, assuming that linear
superposition holds and that the response spectrum
is narrow-banded. A weighted sum of the short-term
descriptions that consider various wave headings,
ship speeds, and routes then yields the long-term
distribution. However, no theoretical distribution of
peak values exists for the nonlinear wave-induced
response. Methods to obtain short- and long-term
probability distributions for nonlinear wave-induced
loads, therefore, are continuously being developed.

SHORT-TERM DISTRIBUTION

Many theoretical and experimental methods were
proposed to estimate the probability distribution of
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nonlinear response in an irregular short-term wave
condition characterized by a large significant wave
height. These proposals showed that the statistical
distributions depend not only on the ship type, but
also on the kind of loading. Table 4.2.1 summarizes
probability distribution functions frequently used to
predict the nonlinear short-term extreme of the load
responses (ISSC 2006) for specific ship types. Table
4.2.1 also lists the procedure used to validate these
functions.

According to Wang and Moan (2004), the
generalized Weibull distribution appears tobe suitable
to represent the wave load peak value statistics
for all types of ships, sea states, and ship speeds.
They found this to be the case after systematically
analyzing the statistics of nonlinearly simulated
wave loads on seven ship models under various
short-term sea state and ship speed conditions. In the
upper tail area the fit was favorable and the statistics
uncertainty of the estimated extremes was small.

Kapsenberg et al. (2003) performed model tank
tests of a cruise ship and found that a three-parameter
Wiebull distribution favorably represented the
extreme values of the wave frequency component
of the vertical wave bending moment, the whipping
moment, and the total vertical bending moment
in head seas. Using a nonlinear, hydroelastic strip
theory, Baarholm and Jensen (2004) studied the
effect of slam-induced whipping on the extreme
(design) value of midship vertical bending moment
for the S-175 containership. For a good fit, they
chose the three-parameter Weibull distribution
for the wave-induced loads and the exponential
distribution for the whipping maxima.

Based on a strip theory for high speed ships, Wu
and Moan (2004) performed nonlinear simulations
of a high-speed pentamaran in regular and short-
crested irregular waves. They estimated the short-
term exceedance probabilities of wave bending
moments by fitting the generalized gamma

distribution to the histograms of extreme values
extracted from the simulations. To validate their
numerical predictions, they compared computed
results with model test data in regular and irregular
waves and observed favorable agreement.

To develop a practical prediction method for
green water loading on a ship’s bow and deck,
Ogawa (2003) conducted a series of model tests for a
standard Japanese tanker and a cargo ship in regular
and long-crested irregular head seas. He expressed
the probability function for the maximum value
of the green water load in terms of the probability
function of the relative water height at the ship’s
stem. By assuming that this water height follows a
Rayleigh distribution, he expressed the probability
function of the green water load by the truncated
Rayleigh distribution.

CRITICAL WAVE EPISODE

Torhaug et al. (1998) defined so-called critical wave
episodes that are used as input to a selected number
of nonlinear simulations. This method is based on
the assumption that short wave episodes chosen as
the waves that produce the largest linear responses
efficiently produce the largest nonlinear responses.
Prior knowledge of the ship’s behavior in waves
at different speeds and wave headings, such as
precomputed transfer functions, helps to identify the
critical wave episodes. If the primary properties of the
response process are known, critical wave episodes
can also be identified directly from the simulated
surface elevation of the seaway. If, for instance, the
relevant response is the midship bending moment,
wave episodes with wave lengths close to the ship
length and wave heights above some specified level
may well be suitable as critical wave episodes. For
the torsional strenghth assessment of containership
structures, lijima et al. (2004) introduced critical
design sea states and specified a dominant regular

Table 4.2.1 Probability distribution functions for nonlinear short-term load response

Distribution function Load response

Weibull Vertical bending moment

Weibull Bending moment, whipping

moment

Weibull for bending moment,
exponential for whipping
moment

Bending moment, whipping
moment

Generalized gamma Bending moment

Truncated Reyleigh Green water load

‘Weibull Green water load

Ship type Validation procedure
Containership, tanker, frigate, Numerical simulation
destroyer

Cruise ship Tank test
Containership Numerical simulation
High speed ship Numerical simulation
Cargo ship, tanker Tank test
Containership Tank test
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wave condition for which the torsional response of
a containership is largest. The length of this regular
wave is 35 percent of the ship’s length and its wave
heading is 120° (180° denotes head waves).

MOST LIKELY EXTREME RESPONSE

By combining the ideas of Fries-Hansen and
Nielsen (1995), Taylor et al. (1995), Adegeest et al.
(1998), and Dietz et al. (2004) proposed the most
likely response wave (MLRW) to estimate the entire
nonlinear extreme value distribution for a selected
operational profile, given the amplitude and phase
information from linear transfer functions (ISSC,
2006). The most likely extreme response (MLER)
method of Adegeest et al. accounts for the correct
response memory and reduces the number of
uncertain variables needed as input for an extreme
response analysis. They systematically investigated
extreme values of the midship vertical wave bending
moment for a Panamax containership in an irregular
seaway of 1500 s duration. The ship advanced at a
median speed corresponding to a Froude number
of 0.145. Table 4.2.2 lists the ship’s principal
particulars.

Comparable model test measurements for the 1500
s full-scale duration were available for comparison.
A significant wave height of 4.8 m and a zero-
crossing period of 8.0 s characterized the irregular
seaway. The spectral density of the wave spectrum
as generated in the model basin is shown in Fig.
4.2.4. This wave spectrum was used to specify the
irregular seaway for the numerical simulations. The
segmented backbone model allowed measurement
of global sectional loads. The maximum measured
sagging and hogging midship bending moments
were 4.46 - 10° and -2.31 - 10° kNm, respectively.

Adegeest et al. (1998) also estimated the extreme
response in the 1500 s sea state according to linear
theory, using narrow-band short-tem statistics. The
midship bending moment was calculated on the
basis of the encounter frequency transfer functions
in head waves at a probability level corresponding to
234 response cycles. This resulted in a mean response
period of 6.4 s and an expected linear extreme
bending moment of 3.17 - 10° kNm. Using the panel

Table 4.2.2 Principal particulars of sample containership

Length bet. perpendiculars 160.00 m
Breadth 24.65m
Draft 8.93 m
Displacement 20491 t
Block coefficient 0.57
Waterplane area coefficient 0.71
Pitch radius of gyration 3939 m
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Figure 4.2.4 Measured wave spectrum of model tests (Source:
Adegeest et al. 1998, National Academies Press; used with
permission).

code SWAN (Kring et al.,, 1997) in its nonlinear
mode, they also performed one long simulation of
1500 s full-scale duration in random irregular waves,
using a deterministic wave amplitude distribution
with phases distributed randomly between 0 and 277.
The simulation yielded the extreme midship sagging
and hogging bending moments of 4.81 - 10’ and
—2.17 - 10° kNm, respectively. They also applied the
regular design wave approach, but this did not yield
accurate predictions of extremes, mainly because the
results were sensitive to the selected wave period,
which is not well defined in the regular design wave
procedure for short-term analyses.

Using statistical moments calculated from
the SWAN simulation in irregular waves, they
also applied a Hermite moment-based model
documented by Winterstein (1988) to obtain the
distribution of extreme midship vertical bending
moments in sagging and hogging. The length of the
time series comprised 30,000 samples. Therefore,
statistical measures were calculated for three
separate data blocks of 10,000 samples each, and
Hermite distributions were obtained for each data
block as well as for the complete time series. Figure
4.2.5 shows the calculated Hermite distributions for
the three different data blocks and for the complete
time series as well as the distribution from the
measurements. The agreement between the Hermite
distribution and the distribution from model test
measurements is favorable only for the distribution
based on the statistical moments valid for the
complete time series. The variations in the calculated
tails of the distributions were large for the different
sets of data blocks, implying that long time histories
are required for accurate extreme predictions by the
Hermite model because only then will the required
statistical measures become more stable. The
Hermite model for the complete time series yielded
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Figure 4.2.5 Hermite distributions of extreme midship vertical
bending moment based on different data blocks and comparative
distribution from model test measurements (Source: Adegeest
et al. 1998, National Academies Press; used with permission).

extreme sagging and hogging moments of 4.46 - 10°
and —2.41 - 10° kKNm, respectively.

The advantage of the most likely extreme response
(MLER) method is that it accounts for memory
effects while reducing the number of uncertain
variables necessary to specify the input procedure
for a nonlinear time domain simulation. The method
as documented by Adegeest et al. used the theory
that generates the so-called most likely wave (MLW)
profiles with conditioned amplitudes (Tromans
et al.,, 1991) and frequencies (Friis-Hansen and
Nielsen, 1995) and applied this theory to response
spectra. The amplitude and phase information of
the frequency response functions serves to derive
the irregular wave train that causes the MLER, and
successive nonlinear simulations can be performed
with this irregular wave train as input. Adegeest et
al. (1998) validated this procedure for the estimation
of extreme vertical bending moments and maximum
wave heights of green water on deck. Of course, the
MLER approach can produce only one estimate at a
particular probability level per simulation. Separate
simulations have to be performed in different wave
conditions, derived from different conditioned
responses, to obtain additional data points needed
to specify the probability distribution function. For
a mean response frequency and a conditioned linear
extreme bending moment in sagging of 3.17 - 10°
kNm and in hogging of —=3.17 - 10° kNm, Figs. 4.2.6
and 4.2.7 show time histories of the nonlinearly
computed most likely extreme midship vertical
bending moment for the sample containership in
sagging and hogging, respectively. The resulting
maximum values were 4.57 - 10° in sagging and
—-2.36 - 10° kKNm in hogging. The figures also depict
time histories of the underlying wave profile as well
as the linearly computed MLER.
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Figure 4.2.6 Time histories of linear and nonlinear most likely
extreme midship vertical bending moment for the sagging
condition (Source: Adegeest et al. 1998, National Academies
Press; used with permission).

Results of the estimated extreme vertical bending
moments are summarized in Table 4.2.3. They show
that the different methods may produce estimates
of the extreme response that deviate significantly
from each other and from extremes based on
measurements from towing tank model tests. These
results show that the MLER predictions agreed
most favorably with the experiments. Sagging
and hogging extreme bending moments predicted
with this method deviated less than 3 percent form
comparable measurements, and only 200 s of real
time had to be nonlinearly simulated. The MLER
method is based on the application of the MLW
theory to response spectra. Therefore, the resulting
extremes are a statistically correct product of well-
defined quantities, such as a linear transfer function,
a wave spectrum, the expected mean response
period, the expected duration of exposure, and the
expected extreme according to linear short-term
statistics. However, the method is based on the
assumption that the extreme response, including all
nonlinear effects, is related in time to the extreme
linear response.

Pastoor (2002) also presented a summary of
computational procedures to determine extreme

Hogging condition
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Figure 4.2.7 Time histories of linear and nonlinear most likely
extreme midship vertical bending moment for the hogging
condition (Source: Adegeest et al. 1998, National Academies
Press; used with permission).
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Table 4.2.3 Comparative extremes of midship vertical bending
moments of the sample containership at F, = 0.145 in a 1500 s
seaway characterized by H;=4.8 m and T, = 8.0 s (Adegeest et
al. 1998)

Midship vertical | Midship vertical
Method bending moment | bending moment
in sagging [KNm] | in hogging [KNm]
Model test 446 - 10° -2.31-10°
measurements
Linear (Rayleigh) 3.17-10° -3.17-10°
Nonlinear 4.81-10° -2.17-10°
simulation
Hermite model 4.46 - 10° -2.41-10°
(complete time
series)
Nonlinear MLER 4.57 - 10° -2.36-10°

responses using nonlinear simulations. When the
expected extreme is of interest, the MLER method
is applicable; however, when large nonlinear
response amplitudes are calculated by correcting
linear responses, a so-called extended version of the
MLER procedure yields more accurate predictions.
He documented results from model tests carried out
with a segmented naval frigate and investigated the
response-conditioning technique more extensively.
He found that it was possible to generate the condi-
tioned incident waves and, by tuning a control mech-
anism of the carriage, to synchronize the transient
wave profile with the moving ship model. He con-
ducted a series of conditioned model tests in severe
wave conditions with large amounts of green water
on deck and accurately predicted the bending mo-
ment amplitude probability function. He compared
his results with results from other techniques and
demonstrated that the extrapolation based on fitting
a mathematical function to the tail of the response is
critical when it comes to safety and reliability. The
advantage of the response-conditioning technique
is that it accurately predicts the behavior in severe
conditions, and it is this behavior that defines the tail
of the probability distribution.

SIMPLIFIED DESIGN WAVE

From an engineering standpoint, the extensive
computer resources needed make it impractical to
carry out sufficiently long simulations to generate
long time histories to directly obtain converging
extreme value estimates. Simplified design wave
conditions, where the equivalent long-term extreme
loads can be generated, can improve the efficiency of
obtaining long-term extreme values from numerical
simulations.

The simplest method, the regular design wave,
is still widely used and can be considered to be a

standard engineering tool. To determine the design
wave, the first step consists of using standard methods
to determine the long-term extreme value based on
linear theory. Next, the period of the design wave
(for a given load response, wave heading, vessel
speed, etc.) is chosen as the period corresponding to
the peak of the transfer function of the load response
under consideration. Finally, the amplitude of the
design wave is obtained by dividing the extreme
value by the value of the transfer function at the
period just found. Corrections may have to be made
if the amplitude conflicts with wave steepness limits.
This design wave can be used as input to a nonlinear
simulation, and the resulting response is then taken
to be the extreme value estimate.

The concept of equivalent waves, modeled with a
simplified geometry (e.g., Folso and Rizzuto, 2003),
approximates complex wave patterns that lead to a
linear extreme response in the long-term distribution.
This approximation can differ substantially from
reality, particularly if the simplified wave is sinusoidal
with characteristics that differ significantly from
those of extreme waves. Calculations carried out
for a 128 m Ro-Ro fast ferry, for instance, indicate
that a set of three or four equivalent head, beam, and
bow waves with different wave lengths is sufficient
to cover the chosen responses.

LONG-TERM DISTRIBUTION

The complete long-term distribution of the nonlinear
response is still outstanding (ISSC, 2006). However,
Minoura and Naito (2004) proposed a stochastic
process model for the long-term statistics of ship
responses. They investigated the correlation between
significant wave height and standard deviation of
ship responses at sea by analyzing the monitored
ship response data on board a containership and a
bulk carrier for three years. They observed that these
standard deviations follow a Markov process, regress
to an equilibrium, and fluctuate linearly. Stochastic
differential equations describe the stochastic process
model based on these properties, and the Fokker-
Plank equation can be applied to yield the probability
density function. Their long-term predictions based
on this model agreed favorably with the monitored
data. Shin et al. (2004) presented a method for
computing correlation factors to combine the long-
term dynamic stress components of ship structures
from various loads in irregular seas. This method,
based on the stationary ergodic narrow-band
Gaussian processes, expresses the total combined
stress in short-term sea states as a linear summation
of the component stresses with the corresponding
combination factors. The long-term total stress is
then similarly expressed by linear summation of
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component stresses with appropriate combination
factors. They found that the combination factors
strongly depend on wave period and wave heading
in short-term sea states and that these factors are
not sensitive to the selected probability level of the
long-term stress.

A long-term analysis may need to account for
nonlinear as well as transient elastic effects on the
midship vertical bending moment. The so-called
contour line approach can be applied to obtain the
long-term extreme value in such cases. Baarholm
and Jensen (2004), for example, obtained long-term
extreme values using this method. They compared
their results with various simplified methods as well
as with classification society rules and found that the
contour line approach yields satisfactory results.

At times, the limiting wave condition that a
ship can navigate is considered to estimate the
probability distribution of the nonlinear extreme
wave bending moment. Kawabe et al. (2005), for
instance, used this approach by selecting pitch angle,
bottom slamming, and deck wetness as the relevant
parameters for the limiting wave condition. Their
nonlinear analysis under the most severe short-term
wave condition yielded a distribution of extreme
bending moment that is about 10 percent lower in
sagging and about 40 percent lower in hogging than
a distribution obtained by linear analysis.

4.3 STATISTICAL REPRESENTATION
OF THE SEA SURFACE

The surface of the ocean—that is, the pattern of
surface elevation—is highly irregular and totally
random (nonrepeating) even under relatively
calm conditions. Fortunately for naval architects,
oceanographers found that the irregularity of the
ocean surface can be represented as the superposition
of a large number of regular waves having different
heights, lengths, directions, and random phase. This
finding is important because it allows the ocean
surface to be described mathematically, and it also
permits the use of statistical methods to predict the
maximum wave loads in a ship’s lifetime.

4.3.1
Waves

Mathematical Representation of Ocean

The first major contributions were made by Pierson
(1952) and Pierson et al. (1955), who proposed that
the completely irregular and nonrepeating pattern of
the ocean surface can be represented as the sum of
an infinite number of regular sinusoidal waves, of all
frequencies, each of which satisfies the governing
hydrodynamic equation for gravity waves. For sim-

plicity, we begin with a “long-crested” sea, that is, a
sea in which the waves are all parallel. The surface
profile of a typical component wave is

{(x, ) =acos(—kx — wt + 6) (4.3.1)
This and other quantities and terms are defined as
follows (see Fig. 4.3.1):

a = wave amplitude, measured from the mean water
surface, which is also the location of the x-axis.

A = wave length, the horizontal distance between
successive crests or troughs.

k = 2m@/A = wave number

T = wave period, the time between two successive
crests to pass a fixed point on the x-axis or the
time between a crest to travel a distance equal
to one wavelength.

w = 27/T = wave frequency

0 = phase angle

For deep water, the wave number and the wave fre-
quency are related by

k=— (4.3.2)

The total energy (kinetic and potential) per unit area
of water surface is

0= % pga’ (4.3.3)

Pierson et al. (1955) were the first to propose that
the surface elevation A(x, ) of an irregular sea could
be represented as

h(x, ) =lim ) a; cos i

n—eo =1l

(4.3.4)

where

Ui = —kix — wit + 6; (4.3.5)

LA

=T
o A (drawn for 6 = > )

Height H = 24

Fig. 4.3.1 Geometry of a regular wave.
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and where the phase angle 6; is a random variable,
equiprobably distributed over the range (0, 2).

Each component wave must satisfy the governing
differential equation for gravitational waves. This
equation is most conveniently expressed in terms of
a velocity potential ¢(x, y, 1), defined such that its
derivatives correspond to velocities:

_ ¢

(4.3.6)

ox’ J

In terms of the potential function, the governing
equation is the Laplace equation

V=0 (4.3.7)
and the pressure at any point is
peyvn=p[ s gy iwer|  @an)

The problem is nonlinear because the free surface
boundary condition is p = 0 and the pressure p(x, y, t)
is a nonlinear function of ¢. The problem is further
complicated because the boundary—the free surface—
is an undulating time-dependent surface instead
of a fixed boundary. If the wave height is small in
comparison to the wave length, then the problem may
be linearized, and it may be shown that the solution for
the linearized problem is the velocity potential

b, y, 1) = % e sin (4.3.9)

The surface elevation at a particular location is
found by setting x = 0

h(t) =1im ) &= 1lim ) a; cos(—wit + 6))

n—eo i=l n—eo =1

(4.3.10)

It is easily verified that each of the component
random processes {i(t) is stationary and, hence, A(t)
is stationary. Also, since these processes are indepen-
dent with zero mean values, terms like E[{(t1){(%,)]
are all zero for i # j and are only non-zero when i =
J, so that the mean square wave height is given by

[Z e <r)] = Z E[£7(0] = Z a?

245
4.3.11)

E[R*(1)] =

and the auto-correlation function of the summed
process is

R(7) = E[h(1)h(12)

= Z Z E[5(O(t + )]

=l j=1

= le R(T) (4.3.12)
Because the surface elevation A(7) is the sum of a
large number of independent variables, it will, by the
central limit theorem (Section 4.1), have a Gaussian,
or normal, probability density function. For the case
of a zero mean, this is

—(hlo)12

plh)y=———ce (4.3.13)

o\2m

and, since the mean is zero, the variance equals the
mean square:
o’ = E[h*) (4.3.14)
Also, because h(r) is Gaussian, the variance is
sufficient to uniquely define the entire process.
As indicated earlier, it is advantageous to describe
a random process in terms of its mean square
spectral density function S(w), which is the Fourier
transform of R(7) given by (4.1.44). For all practical
applications we use the one-sided form of this
function. As we have seen, the area under this curve
is the mean square or, in this case, the variance:
o’ = jo‘ S(w)dw (4.3.15)
From (4.3.3) the energy of each component wave is
O, = Y5pga; and, hence, the total energy is
1 2
Q=ZQi=?ng(li (4316)
Using (4.3.11) and noting that the variance equals
the mean square, the foregoing can be rewritten as
QO = pgo? (4.3.17)
and hence, as noted earlier, the spectral density func-
tion is often referred to as the energy spectrum because

the area under this curve is directly proportional to
the total energy of the waves per unit area of surface:

0= pgfo S(w)dw

Again, for each component wave the relationship is

(4.3.18)

L pgai = pgS(w)dw (4.3.19)

and so the relationship between the wave spectrum
and the amplitude of each component wave is
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a; =\N28(w)dw (4.3.20)

In terms of S(w), the surface elevation is

h(f) = lim ) \2S(w)dw cos(wit + 6;)  (4.3.21)
n—e =1
Sw—>oo

This relationship is illustrated in Fig. 4.3.2 for n = 14.
4.3.2 Ocean Wave Spectra

Over many years oceanographers and other
researchers gathered and tabulated both visual and
measured data concerning ocean waves in various
parts of the world. One of the most comprehensive
sets of data is the atlas of wave statistics presented by
Hogben, Dacunha and Olliver (1986), where data for
104 ocean areas around the world are tabulated for
different seasons for wave periods varying roughly
from 0.6 to 22.5 s over ten increments. These data are
based on 55 million visual observations from ships
on passage between 1854 and 1984. Wave statistics
were correlated with measurements, and unrealistic
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Figure 4.3.2 Typical energy spectrum showing approximation

by a finite sum of components: (a) spectrum, (b) component
waves.

data were eliminated. The data are presented as scatter
diagrams, subdivided into different wave directions,
and comprise joint frequency of occurrence of
combinations of significant wave height and zero-
crossing period occurring simultaneously. The
frequency of occurrence of waves from each of
the specified directions is given as “percentage of
observations” at the top of each scatter diagram.
Further data on the North Atlantic were presented
by Roll (1953) and Walden (1964). Data for the
North Pacific were provided by Yamanouchi et al.
(1965). All of these data are visual observations and,
hence, they are not entirely consistent, being based
on judgements made by many different observers.
Measured wave data are more precise, but these
kinds of data are limited in quantity and geographical
location when compared with the vast accumulation
of visual observations. Most of the measured data
was obtained from British weather ships in the
North Atlantic. Additional wave data were generated
by a hindcast technique (i.e., Chen et al., 1979).
Bales et al. (1981) documented a comprehensive
summary of standardized wave and wind condi-
tions, and Michel (1999) comprised a compendium
of updated spectrum formulations, Rayleigh factors,
and associated wave height and period relationships
prepared for easy understanding and application.

THE MODIFIED PIERSON-MOSKOWITZ
SPECTRUM

The most widely recognized theoretical function
representing the state of the sea in the form of an
energy spectrum is the two-parameter spectrum
developed by Bretschneider (1959). Bretschneider
was the first to propose that the wave spectrum
for a given sea state can be represented in terms of
two parameters that are characteristic of that sea
state, such as average wave height, H, and average
wave period, 7. Various other formulas in addition
to Bretschneider’s were proposed, such as those
of Pierson-Moskowitz, the International Towing
Tank Committee (ITTC), and the International
Ship Structure Congress (ISSC). In some cases
the average frequency @(= 2#/T if expressed in
radians/s) is used instead of 7. In terms of H and @,
the general form of these two-parameter formulas is

k

S(w) = A (9) H pvawr 43
w w

where coefficients A and B and exponents k and /
are selected to fit the data and the system of units.
Some formulas make use of an alternative pair of
parameters: significant wave height, H,, (shown as
X, in Fig. 4.1.11a) and modal wave frequency, w,,
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the frequency where the wave spectrum has its
maximum height. It may be shown that, for a narrow-
band spectrum, these two parameters are related to
the first two as follows:

Hs:\/gl-_lzl.601:l
m

_ (0.8)1/4

]

where I'( ) denotes the Gamma function. In the
work to follow we use a two-parameter formula,
now adopted by the ITTC. This modified version
of Bretschneider’s formula, expressed in terms of
H, and w,, is also labelled the modified Pierson-
Moskowitz spectrum and has gained acceptance
through usage:

H; [ 691
— exp|-— 4_
T’ T*w*

<0513 kel ()]
—031376)(1) —Z ;

The Pierson-Moskowitz spectrum was first intro-
duced in 1964 as a one-parameter spectrum, that is,
in terms of the wind speed measured at a height
of 19.5 m above sea level (the height of the
anemometers used on ships that provided the data).
Some time later it was realized that its proper use
is restricted to fully developed seas as generated by
relatively moderate seas over large fetches. Pierson-
Moskowitz spectra for wind speeds of 20 to 50
knots, measured at a height of 19.5 m above sea
level, are shown in Fig. 4.3.3. The peak or modal
frequency decreases with increasing wind speed,
and the magnitude of the spectral density function
S(w), or the energy of the sea state (area under the

w=07Two  (43.23)

S(w) =173

(4.3.24)
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Figure 4.3.3 Pierson-Moskowitz spectra for various wind
speeds (Source: Lewandowski, 2004, World Scientific Publishing
Co. Pte. Ltd., Singapore; used with permission).

spectrum), increases substantially with wind speed.

The general two-parameter formulation was
needed to account for the more prevalent conditions
of high winds over relatively short fetches, which
conditions produce spectra covering lower periods
for a given wave height. In such areas as the North
Sea, many spectral shapes are so highly peaked as to
require a multi-parameter treatment.

THE JONSWAP SPECTRUM

In the early 1970s the Joint North Sea Wave Project
(JONSWAP) was organized to systematically record
North Sea wave patterns. Spectral methods analyzed
the data, and the resulting spectra were parameterized
in an equation that accommodated spectral shapes
ranging from those sharply peaked to those
representing the fully developed Pierson-Moskowitz
limit. A number of wave-recording stations were
positioned along a course from the German coast
extending west for about 100 miles. Then, with
a wind coming directly from shore, the various
fetch distances and wind speeds were established
at each station. Knowing that the generated waves
had no prior history to corrupt the resulting data, it
was anticipated that the wave spectra would start
out sharply peaked and gradually ease towards the
fully developed spectrum according to Pierson-
Moskowitz. Reportedly, some 2000 wave records
were analyzed in the course of the project. On this
basis, the spectrum parameters were evaluated and
the JONSWAP spectrum was developed.

Theresults indicated that the sharply peaked spectra
are common when waves are generated in the North
Sea, and data from other North Sea locations under
more severe conditions substantiate this. Surprisingly,
however, the spectra did not “settle down” to the fully
developed Pierson-Moskowitz formulation as fetch
increased. Several opinions expressed that perhaps
such fully-developed conditions may never occur.

In view of this latter observation, a simpler
formulation for easier analysis and evaluation could
have been introduced for the JONSWAP spectral
formulation to eliminate the Pierson-Moskowitz
dependency. However, with all the data having been
processed in the existing JONSWAP form, that
spectrum function was retained, and it continues
to be specified for many North Sea operations. It is
formulated as follows:

2 01910711
Hs exp [— 244 ] yo [_ Vig ]

T’ T'w*

2 4 4 (0o’
=0.205 Mexp [— 2 (&") ] v p[ 200, ]

’ 4\ w
(4.3.25)

S(w) = 155




4.3 STATISTICAL REPRESENTATION OF THE SEA SURFACE 4-27

This is a peak-enhanced Pierson-Moskowitz
spectrum. The factors v and o control the height and
width of the peak, respectively. The parameters were
determined by analysis of North Sea wave data and
depend on the fetch (in this case the distance from
the lee shore) and the mean wind velocity measured
at a height of 10.0 m above the sea surface. Figure
4.3.4 shows the evolution with fetch of a JONSWAP
spectrum for a wind speed of 10.0 m/s and the
corresponding  Pierson-Moskowitz ~ spectrum.
The JONSWAP modal frequency decreases with
increasing fetch, and the peak of the spectrum
increases noticeably. Eventually, when no further
energy storage is possible, the sea is “saturated,” and
the area under the spectrum stops growing.

In general, where site-specific data are
unavailable, the following average values obtained
in the JONSWAP experiment are considered:

v = peakedness parameter
= 3.3 for a mean spectrum
o = spectral shape parameter
=0.07 if 0 <5.24/T
=0.09 if w > 5.24/T

Where spectrum data were recorded at a specific
site, the values of several JONSWAP parameters
probably need to be changed to obtain a reasonable
fit with the data as the formulation has no analytic
basis that allows ready correction.

PERIOD RELATIONSHIPS OF SPECTRA

At times the period in these spectrum equations
are replaced with representative periods that may
be more visually apparent in the seaway. Before
defining these periods, it is convenient to recall the
moments of the spectrum:

m, = fo w"S(w)dw (4.3.26)
1.0 —

— - JONSWAP, 100 km fetch
2 oos l
2 3
w 0.6} Pierson- ; \'
: Moskowitz l..
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Figure 4.3.4 Evolution of JONSWAP spectrum with fetch and
comparative modified Pierson-Moskowitz spectrum (Source:
Lewandowski, 2004, World Scientific Publishing Co. Pte. Ltd.,
Singapore; used with permission).

The zeroth moment my is equal to the area under
the spectrum, i.e., the mean square wave elevation.
Moments m, and m. correspond to the mean square
values of velocity and acceleration of the wave
surface.

Several periods are in use; the most common ones
are defined as follows:

T,, The modal period is used with the frequency
spectrum to denote the reciprocal of the peak
frequency:

7. =27
Wy

(4.3.27)

~l

The true average period is the period of the
elemental waves in the spectrum:

T=27"" 08577,

m

(4.3.28)

T. The mean zero-crossing period is the average
period between successive crests in the
wave record. This is the period most readily
determined from the wave record or from model
test data:

T.=2m /2% = 0.7107,
ni,

Ts The significant period is defined as the average
period of the one-third highest waves in the
record. This period is determined from measured
or estimated times between significant crests,
involving personal judgment in deciding what
significant crests are. The value of the significant
period cannot be mathematically determined
from the spectrum function. Nevertheless, most
oceanographic data were obtained by these
methods. Bretschneider proposed the following
value:

(4.3.29)

Ts=0.946T, (4.3.30)

T\ This period was adopted by ITTC in 1969 as
their standard reference, labeled characteristic
period.

T, =0.772T, (4.3.31)

T, The visually estimated period from shipboard
observations. Earlier, ISSC suggested that the
characteristic period 7 adopted by ITTC might
be equivalent to this visually estimated period:

T,~T, (4.3.32)

The relative positions of the various periods for
the frequency spectrum are shown in Fig. 4.3.5. The
modal period 7,, (at the peak frequency) is dominant
and is thus often proposed as the standard period
parameter for the frequency spectrum. The mean
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Sw)

Figure 4.3.5 Relative positions of periods for the frequency
spectrum.

zero-crossing period 7. is important because it can
be directly evaluated from the wave record as well
as from spectral moments.

RELATIONSHIP BETWEEN WAVE
FREQUENCY AND SIGNIFICANT
WAVE HEIGHT

Both of the modal frequency, w,, as well as the
significant wave height, Hs, are random processes
and, to use any of the two-parameter formulas,
it is necessary to know the probability density
function and the interdependence, if any, of the two
parameters. Customarily, H, is chosen as the primary
parameter, and it then becomes necessary to account
for the dependency of w,, (or @) on it. Until recently,
this was done by attempting to fit a deterministic
expression for w,, as a function of H, but as pointed
out by Ochi (1982), this is not appropriate, because
both quantities are random processes, and ,, is
neither totally dependent nor totally independent of
H,. The dependency can only be accounted for by
establishing the statistical relationship between these
two parameters. Specifically, what is needed is the
probability density function of the wave frequency
for a given value of H,, that is, the conditional
probability density function of w. From an analysis
of North Atlantic data, Ochi showed that H, follows
the log-normal probability density function given

in (4.1.14) (and not the Weibull distribution as
others have proposed). Only large values of H;
(the uppermost 1 percent, corresponding roughly
to values exceeding 10.0 m) depart from this law,
and for such extreme values the probability density
function is obtained in a different manner, that is,
by means of the asymptotic approximation of the
cumulative probability distribution function as
discussed in Section 4.2. Ochi also showed that, if the
data are expressed in terms of wave period instead of
wave frequency, the modal period, T, also follows a
log-normal probability density function. Therefore,
since both H, and T,, are log-normally distributed,
the wave period for a given wave height follows the
conditional log-normal probability density function
given by

* ¥
7%[(111 Tm —Hr )/”T ]

PT(Tm\HS)Zﬁe (4.3.33)
T m

where

Hy = +pZ—T(1nHS — )

H
O'; =1-p° o,

In this expression the two pairs of parameters —
Mu, oy and wr, or— are the mean and the standard
deviation of the probability density function for
In(H,) and In(7’,,), respectively, and p is the correlation
coefficient between the two random variables H,and
T,.. Table 4.3.1 gives values of these five parameters
that Ochi obtained by averaging values calculated
from data obtained at seven weather stations in the
North Atlantic.

It was mentioned previously that most of the
available data on wave height and wave period are
visually observed values, H, and T,. For example,
the data of Walden (1964) are values observed at

Table 4.3.1 Parameters associated with bivariate log-normal probability distribution for various locations in the North

Atlantic
Weather Station A B C D I J K
Significant
height
jos 0.946 0.910 1.024 0.968 1.112 1.053 0.748
on 0.619 0.588 0.571 0.588 0.562 0.565 0.680
Modal period
L 2.505 2.462 2.494 2.483 2.588 2.594 2.600
or 0.218 0.218 0.216 0.209 0.142 0.147 0.174
Correlation
coefficient
p 0.498 0.594 0.578 0.586 0.358 0.339 0.331
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nine locations in the North Atlantic over a period
of 10 years. The observations were made regularly
by trained oceanographers at 3Y2-hour intervals on
average. Wave heights were visually estimated,
and wave periods were counted by a stopwatch
from visually observed wave crests. Therefore,
the observed wave height H, represents neither
the significant nor the average wave height. Also,
the observed wave period T, represents neither the
zero-crossing nor the average wave period. Hence,
to use these data, it is necessary to convert them
to the statistical quantities H and T,, or H, and T,,.
Having shown that both the visually observed data
and the measured data follow a log-normal distri-
bution, Ochi obtained the following relationships
between them

H,=H,* (4.3.34)

T, =2.99T," (4.3.35)

SHORT-CRESTED WAVES

The mathematical spectral formulas and wave spec-
tra previously discussed are spectra of the sea at a
fixed point, that is, they are one-dimensional spectra.
This can be thought of as describing a long-crested
irregular sea. A more complete representation of
the sea is given by a two-dimensional directional
spectrum, S(w, 0), as shown in Fig. 4.3.6, that indi-
cates the direction 0 as well as the frequencies of the
wave components and thus accounts for the typical
short-crestedness of ocean storm waves. The most
common method for approximating S(w, 6) is to use
the form

S(w, 0) = S(w)f(0) (4.3.36)
The function f(0) is referred to as the spreading
function. A function commonly used is

Ecosz 0 _Top<T
fO)=irw 2 2 (4.3.37)
0 otherwise

Figure 4.3.6 shows a contour plot of S(w, 0) after
applying the spreading function.

4.3.3 Families of Wave Spectra

The spectra given by a two-parameter formula such
as (4.3.24) are idealized and simplified. In reality,
the shape of wave spectra observed in the ocean
varies considerably (even for the same significant
wave height) depending on the geographical loca-

0=-90°
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Figure 4.3.6 Idealized directional sea spectrum.

tion, duration and fetch of wind, stage of growth or
decay of a storm, and existence of swell. Since a
ship encounters an infinite variety of wave condi-
tions and since the magnitude of the response is sig-
nificantly influenced by the shape of the wave spec-
trum, it is necessary to have a method that accounts
for this variety of wave spectra. For this purpose
researchers developed families of wave spectra that
consist of groups of some ten or twelve spectra for
each of several levels of sea state severity, that is,
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for each of several significant wave heights. Exam-
ples are the H-family of Lewis (1967), the exten-
sion of it by Hoffman (1975), and the two-parame-
ter and six-parameter families of Ochi and Hubble
(1976). The approach of Ochi and Hubble is chosen
for illustration because it is based on the probabi-
listic relationship between w,, and H, expressed in
(4.3.33). The six-parameter family is more compre-
hensive and versatile, but it involves more computa-
tion. Both families are briefly summarized here.

TWO-PARAMETER WAVE SPECTRA

There are nine members of this family. Each family
is generated for a different value of w,, (or, equiva-
lently, 7,,) from the two-parameter formula adopted
by the ITTC, which is a modified version of Bret-
schneider’s formula, expressed in terms of H, and

() e
)4

Since the probability density function of 7, for
any given H, is known, the nine values of 7,, can be
chosen so as to give a complete and balanced repre-
sentation of the variation in wave period occurring
in each level of sea state. This is achieved by choos-
ing the most probable value of 7,, and four pairs of
values on either side of it, corresponding to confi-
dence coefficients 0.95, 0.85, 0.75, and 0.50. The
resulting expressions for w,, as a function of H; are
given in Table 4.3.2, which also gives the weight-
ing function by which each of the nine wave spec-
tra is multiplied to reflect the differing probabilities

W
w

H;
®

e 25(w,/w)’

&@:%( (4.3.38)

Table 4.3.2 Modal frequencies for the (mean) North Atlantic
wave spectra as a function of specific wave height (w,, in 1ps,
H, in meters)

Confidence Weighting
Coefficients Value of w,, Factor
Lower w,,
0.95 0.048(8.75 —In Hy) 0.0500
0.85 0.054(8.44 —1n H,) 0.0500
0.75 0.061(8.07 — In Hy) 0.0875
0.50 0.069(7.77 — In Hy) 0.1875
Most probable 0.079(7.63 —In H;) 0.25
Upper w,,
0.50 0.099(6.87 — In Hy) 0.1875
0.75 0.111(6.67 —1n Hy) 0.0875
0.85 0.119(6.65 — In Hy) 0.0500
0.95 0.134(6.41 —1n H,) 0.0500

of occurrence. Figure 4.3.7 shows the family of
two-parameter wave spectra for a significant wave
height of 3.0 m.

THREE- AND FOUR-PARAMETER WAVE
SPECTRA

The spectrum given by the two-parameter Pierson-
Moskowitz formula (4.3.24) is idealized and
simplified. In reality, the shape of wave spectra
observed in the ocean varies considerably (even for
the same significant wave height) depending on the
geographical location, duration and fetch of wind,
stage of growth or decay of a storm, and existence
of swell. Since a ship encounters an infinite variety
of wave conditions and since the magnitude of the
response is significantly influenced by the shape
of the wave spectrum, it is necessary to have a
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Fig. 4.3.7 Family of two-parameter wave spectra for a significant wave height of 3.0 m.
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method that accounts for this variety of wave
spectra. For this purpose researchers developed
multi-parameter spectra, based on the general form
(4.3.22). For convenience, we shall rewrite this
general formulation, resulting in the standard form
of Michel (1999):
S(w) = aw™ e (4.3.39)
For sharply peaked spectra, such as the spectrum
(4.3.25) addressed by JONSWAP, more tractable
equations can be obtained using this standard from.
The complete integral of S(w) includes a gamma
function. At the frequency w, the slope of the spec-
tral function is zero, which leads to the spectrum’s
peak value:

I
L
S(eo) ="ng%wa' e (43.40)
=)
n

The complete equation for the spectrum may then be
written as follows:

W e 5 4341

When [ = 5 and n = 4, these two relationships
reduce to those of the standard two parameter spec-
tral form.

Ochi (1978, 1993) proposed an effective three-
parameter spectrum by letting the factor n = 4 as a
constant value:

1-1

2 T S P B
Sw) =22 (1) wo @ 4T (4342
4 \4 r(l‘ 1)
4
with a peak value of
H? 1\ o L
S(wo):T(Z) _ ot (4343)

")

Michel (1999) documented an alternative three-
parameter spectrum that provides a simpler yet
effective formulation by keeping the relationship / =
n+1:

2

S(an) = fl—é (n+ Do e 5 (4.3.44)

with a peak value of

2

Swo) = ';I—g i+ Daogle " (4.3.45)

Either of these three-parameter spectra can be
readily approximated from the characteristics of a
measured sea spectrum (wo, S(wo), H,) by evaluating
the product

(,t)oS(a)o)
H;

The appropriate value of / can be found directly
from Fig. 4.3.8.

Taking the factors / and n as independent vari-
ables in (4.3.41) produces a four-parameter spec-
trum, wherein the characteristic mean zero-cross-
ing period, T, is represented as the forth index of
a given spectrum, along with @y, S(wo), and H,.
In 1976 a recorded North Sea spectrum was com-
pared with theoretical spectra (Det Norske Veritas
1976). The three-parameter spectra conformed most
closely to the record, whereas the more complete
four-parameter spectrum showed least agreement.
It became apparent that the three-parameter spectra
represent the wave spectrum satisfactorily without
concern about the relative value of the zero-crossing
period. This example may help support the general
conclusion that the three-parameter formulations are
more representative of sharply peaked spectra than
the two- or four-parameter spectra and that the zero-
crossing period is not significant in this application.

SIX-PARAMETER WAVE SPECTRA

Ochi’s six-parameter family accounts for two addi-
tional sources of variation in ocean wave spectra.
The first is the shape, or degree of sharpness, of the
spectrum peak. To account for this feature, Ochi
added a shape parameter A (0 < A < o) to the basic

Figure4.3.8 Evaluation of factor / for the three-parameter spectra
(Source: Michel, 1999, SNAME; used with permission).
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two-parameter formula of (4.3.38); the generalized
formula is

491 2
1 [4)\ +1 (ﬁ)m) } [E e—[(4)\+l)/4](w,,,/w)4

S(w) = ——
ot 4 o/l o (4.3.46)

where I'( ) is the Gamma function. The shape of the
wave spectrum becomes sharper with increasing
A. For A =1, (4.3.46) reduces to the two-parameter
wave spectrum formula of (4.3.38). The derivation of
(4.3.46) is documented in Ochi and Hubble (1976).

Another characteristic of actual wave spectra is
that there often exists a plateau, or even a second
peak, at a higher frequency as shown in Fig. 4.3.9.
This may arise because of swell coexisting with
wind-generated waves or because of the growth or
decay of a storm. Although the wave energy at the
higher frequencies is usually less than that at the
lower frequencies, its contribution to ship response
may be significant, depending on the ship size and
speed.

Thus, it is highly desirable to represent the shape
of the entire spectrum as closely as possible, and
this may be achieved by separating the spectra into
two parts, one that includes primarily the lower-fre-
quency components of the energy and another that
covers primarily the higher-frequency components
of the energy as shown in Fig. 4.3.9. This gives a
six-parameter spectral formula:

S(w) =
1 1 {4)\/' +1 ( Wmj )4])\j 252/ e-[(4/\,+1)/4](0),,,/«))4
4 52 T'(A) 4 w w

(4.3.47)

where j = 1,2 stands for the lower and higher fre-
quency components, respectively.

To obtain expressions for the six parameters, Ochi
first grouped the 800 observed North Atlantic wave
spectra documented by Moskowitz et al. (1963),
Bretschneider et al. (1962), and Miles (1972) into
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Figure 4.3.9 Decomposition of wave spectra.

ten groups, according to severity, and then for each
group he performed a statistical analysis, of which
the principal steps are given next. In this analysis it
was possible to deal with only five parameters by
working in terms of the ratio of the two significant
wave heights: ry = Hy/Hy,. The steps are:

1. Probability density functions were established
for each parameter. For example, it was found that
the parameters A; and A, both follow the gamma
probability law for all ten groups.

2. Three values were determined from the proba-
bility density function for each parameter, namely,
the modal value and upper and lower values
corresponding to a confidence coefficient of 0.95.

3. For each value of a parameter, values of each
of the other parameters were determined from the
original data by taking their respective averages in
the region of 5 percent. Thus, a total of 15 spectra
were established for a given sea severity.

4. Of these 15 spectra, five are associated with the
modal value of the five parameters. It was found,
however, that these five spectra had nearly the same
shape; therefore, the spectrum associated with the
modal value of the parameter ry was chosen as
representative, and this spectrum is called the most
probable spectrum for a given sea severity. Thus, a
total of 11 spectra ware derived as a family of wave
spectra for a specified sea severity.

In Table 4.3.3 the values of the six parameters
for this family are expressed as functions of signifi-
cant wave height H,, and from these expressions the
complete family of spectra for the desired sea can be
generated from (4.3.47).

The weighting factor for each member of the
family is

0.50
(each) 0.05

Most probable spectrum
All other spectra

The weight given to the most probable wave spec-
trum is higher than that for the other spectra. This is
S0, as stated above, because the most probable spec-
trum also represents four other spectra associated
with the modal value of the parameters.

Figure 4.3.10 shows the family of six-parameter
spectra for a significant wave height of 3.0 m, and
this family may be compared with the family of
two-parameter spectra shown in Fig. 4.3.7. It can be
seen that the members of the six-parameter family
have a wider variety of shapes than the members
of the two-parameter family. Some members of
the six-parameter family have double peaks, and
the majority of the spectra have sharper peaks than
those of the two-parameter family.
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Table 4.3.3 Values of six parameters as a function of significant wave height (H, in meters)

H;, Hg W1 Wm2 A Az
Most probable
spectrum 0.84 H, 0.54 H, 0.70 e 0061 1.15 001 3.00 1.54 00021
[10.95 H, 0.31 H, 0.70 e 0061 1.50 g 0046 1.35 2.48 g 01021
[10.65 H, 0.76 H, 0.61 0¥ 0.94 ¢ 001 4.95 2.48 g 01021
10.84 H, 0.54 H, 0.93 g 0051 1.50 g 00461 3.00 2.77 g2
Ho.84 H, 0.54 H, 0.41 0061 0.88 00267 2.55 1.82 0087
0.95 confidence N 0.90 H, 0.44 H, 0.81 ¢ 02 1.60 g 00337 1..80 2.95 ¢ 01024
spectra %0.77 H, 0.64 H, 0.54 ¢ 009 Hs 0.61 4.50 1.95 g 0082 s
0 0.73 H; 0.68 H 0.70 06 0.99 ¢ 0039 Hs 6.40 1.78 009 Hs
[10.92 H; 0.39 H, 0.70 g 0046 Hs 1.37 000 0.70 1.78 009 Hs
[10.84 H, 0.54 H, 0.74 ¢ 0021 1.30 ¢ 0030 2.65 3.90 ¢ 0085 s
[10.84 H, 0.54 H; 0.62 0¥ 1.03 g0 2.60 0.53 ¢ 000 Hs

4.3.4 Duration of Sea States

The extreme value of a response is a function
of the number of peak values encountered and,
hence, it is necessary to know the duration of each
sea state. Ideally, we wish to know the length of
time a ship is subjected to a given sea condition.
In many instances a ship encounters a particular
sea state some time after that sea state arose, or it
departs from the relevant area of the ocean before
the sea state has subsided. However, it is always
in the midst of some sea state, and the transfers
from one to another largely cancel out. Hence, we
can assume that the exposure time to a given sea
state is equal to the duration of that state. This is
conservative because of modern forecasting and
long-range weather radar a ship can often avoid the
worst regions of a storm area. Figure 4.3.11, taken
from Ochi and Motter (1974), is an envelope curve
of the longest recorded durations of every 1.52 m

interval of significant wave height, estimated from
analysis of the data documented by Moskowitz et
al. (1962-65). For example, significant wave heights
between 6.0 and 7.5 m can be expected to persist
for a maximum of 40 hours. At the upper and lower
extremities of sea severity, the maximum duration
tends toward a constant value of approximately 3
hours and 45 hours, respectively.

ESTIMATION OF MOST PROBABLE EXTREME
SEA STATE

The second method of Section 4.2.1 can be
used to estimate the probable extreme value of
significant wave height, H,,, from available wave
data. Ochi (1978) did this, using the visually
observed data from ten weather stations collected
over a period of 10 years. As an example, Fig.
4.3.12 shows the results for Station J, which
generally encountered the most severe conditions
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Figure 4.3.10 Family of six-parameter wave spectra for a significant wave height of 3.0 m.
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Figure 4.3.11 Significant wave height and its persistence in the North Atlantic

every 1.52 m interval.

of the ten stations. The cumulative distribution
of H,, P(Hy), was evaluated from the data, and
then the left-hand side of (4.2.21) was plotted
in logarithmic form. The resulting points lie
approximately along a straight line, showing that
the long-term distribution of H,is approximately
exponential; that is, that f(H,) in (4.2.17) is
approximately linear in H,.
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Figure 4.3.12 Probable extreme significant wave height in 10
years at Station J (Walden, 1964).

In estimating the probable extreme values from the
line drawn in the figure, the number of observations
involved in the data has to be considered since the
magnitude of the extreme value depends on this
number. For Station J the number of observations
in 10 years was n = 24,947. Hence, the right-hand
side of (4.2.21) is In(24,947) = 10.12, and this point
on the line corresponds to a visually observed wave
height of 15.4 m. Hence, this is the probable extreme
value for a 10-year period. Using the conversion
given in (4.3.34), the probable extreme significant
wave height expected to occur in 10 years is 19.2
m. Ochi also showed that these estimates obtained
from visually observed wave data agree well with
the estimates calculated from measured values of
H, provided the comparison is made for the same
sample size, that is, for the same value of n.

Figure 4.3.13 gives the combined results for all
10 stations and covers the full range of H,, includ-
ing the smaller values [below P(H;) = 0.99] which
follow the log-normal probability density function
as discussed earlier.

The data used for Fig. 4.3.12 cover a 10-year
period, whereas we wish to know the probable
extreme significant wave height expected in the
lifetime of the ship of, say, 20 years. If we assume
that the statistical characteristics of the extreme
values expected to occur in 20 years are the same
as those observed in the data accumulated in 10
years, then the value for 20 years may be obtained
by extending the line to a point corresponding to a
sample size that is twice as large. The ordinate of
Fig. 4.3.12is In[{1 — P(H,,)}"'], and from (4.2.21)
this is equal to the natural logarithm of n. Hence,
the new ordinate is In(2n) or 10.82. By extrapolating
the straight line up to this point, we obtain a value
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Figure 4.3.13 Cumulative distribution of significant wave
height for the (mean) North Atlantic.

of 20.2 m for H;,. Thus, the 20-year value is about 5
percent greater than the 10-year value.

FREQUENCY OF OCCURRENCE OF VARIOUS
SEA STATES

It is necessary, or at least advisable, to perform a
response analysis not only for the probable extreme
significant wave height H,,, but also for one or two
smaller values of H,. To maintain a uniform risk
level, it is necessary to decrease the value of the
risk parameter for these values in proportion to their
more frequent occurrence. Hence, we need to know
the frequency of occurrence of the various sea states.
This is even more necessary if a response analysis is
being performed for the full range of H, and over the
complete life of the ship, as might be done if a rigor-
ous hull girder fatigue calculation is required.

The frequency of occurrence of various sea sever-
ities can be obtained from the available wave data.
For small and moderate sea states the governing
probability density function is the log-normal func-
tion. This applies up to a cumulative probability dis-
tribution of 0.99 (i.e., values of H, that have at least
a 1 percent likelihood of occurring). For severe sea
states the calculation must be based on the asymp-
totic extreme distribution. Ochi (1978) performed
the calculations for the average North Atlantic data

Table 4.3.4 Long-term frequency of occurrence of various sea
states in the (mean) North Atlantic

Significant Significant

Wave Height Frequency of yy,ce Height Frequency of
(Meters) Occurrence (Meters) Occurrence
<l 0.0503 9-10 0.0079
12 0.2665 10-11 0.0054
2-3 0.2603 11-12 0.0029
34 0.1757 12-13 0.0016
4-5 0.1014 13-14 0.00074
5-6 0.0589 14-15 0.00045
6-7 0.0346 15-16 0.00020
7-8 0.0209 16-17 0.00012
8-9 0.0120 17< 0.00009

and obtained the results shown in Table 4.3.4, listing
the frequencies for each 1-meter interval of signifi-
cant wave height.

4.4 COMPUTATION OF WAVE-INDUCED
LOADS

4.4.1 Computational Methods

Beck et al. (1996) and Beck and Reed (2001) com-
prehensively reviewed computational methods to
solve marine hydrodynamic problems. Here we
shall limit our discussion of computational seakeep-
ing methods that are used in the context of load gen-
eration for finite element structural analysis. There-
fore, only the case of ships in waves with forward
speed in infinitely deep water is of interest.

The nonlinearities are the major difficulties in sea-
keeping computations. The free surface causes the
ship to behave nonlinearly because of the nature of
the free surface boundary conditions and the nonlin-
ear characteristics of the incident waves. The time-
dependent change of position and wetted surface of
the ship in waves often cause nonlinear hydrostatic
restoring forces and nonlinear force contributions at
the free-surface intersection. There are nonlineari-
ties associated with viscous force contributions that
depend quadratically on the water velocity and intro-
duce velocity squared terms in the pressure equation.
However, because of forward speed, ships are gener-
ally long and slender with smooth shape variations
along their length. This geometric feature of typical
ships allowed a significant amount of progress to date
and is the basis of many approximations.

To obtain wave loads and ship motions, com-
pressibility effects and cavitation can be ignored.
Neglecting these two effects reduces the mathemati-
cal problem to the extent that only the three fluid
velocity components and the fluid pressure have to
be determined. These four unknowns are determined
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by solving the four governing equations, namely, the
continuity equation and the three-component Navier-
Stokes equations.

Conditions that reflect the physical situation, so-
called boundary conditions, need to be satisfied to
obtain a unique solution to a particular problem.
Applying the kinematic boundary condition ensures
that no fluid passes through the hull surface. On the
free surface a kinematic condition of no flow through
the surface as well as a dynamic condition of con-
stant pressure must be applied, leading to highly
nonlinear free-surface boundary conditions. Satis-
fying radiation boundary conditions prevents wave
reflection in the far field. Additional conditions of
no-slip boundary condition on rigid surfaces and no
tangential shear stress on the free surface are needed
for viscous fluids.

The general solution requires solving nonlinear,
partial differential equations with nonlinear boundary
conditions and temporal instabilities. At the present
time, the computational capacity to solve these
equations is not available. For a particular problem,
therefore, some approximations are necessary, such as
reducing the governing equations to make them easier
to solve and/or simplifying the boundary conditions.
The Navier-Stokes equations can be simplified by
assuming the viscosity is zero, yielding the so-called
Euler equations. The flow field in such an ideal flow
is then irrotational, meaning that the three velocity
components can be determined from the gradient of a
scalarpotential and that the continuity equationreduces
to the Laplace equation. This so-called potential flow
is probably the most widely used assumption in ship
hydrodynamics. The Navier-Stokes equations can
be integrated to yield the Bernoulli equation for the
pressures, and mathematical tools are available to
solve the Laplace equation, which is a linear partial
differential equation. Assuming the flow to be ideal
and irrotational thus reduces the original problem of
four coupled nonlinear partial differential equations
for the four unknowns (three velocity components and
pressure) to one linear partial differential equation for
the unknown scalar velocity potential. The gradient
of the known velocity potential yields the velocity
components; the Bernoulli equation, the pressure.

For ship-related problems, the free-surface
boundary conditions can be linearized about the
plane of the undisturbed surface. The transverse
dimensions of most ships are significantly less than
the longitudinal dimensions, and the cross-sectional
shape varies smoothly along the length. This so-
called slender-body assumption allows the complete
three-dimensional potential flow problem to be sub-
divided into a series of two-dimensional potential
problems that are solved in the transverse plane.
The two-dimensional solutions are then combined

to approximate the three-dimensional problem.
The slender-body theory most widely used in ship
hydrodynamics is probably strip theory. Strip theory
gives useful results for normal ships up to moderate
forward speeds in head seas. At higher speeds, pre-
dictions can be poor for hull forms with large shape
changes because forward speed effects in the free-
surface boundary conditions and three-dimensional
effects are not properly accounted for.

Theories were developed to overcome the defi-
ciencies of slender-body theory. They retain the lin-
earized free-surface boundary condition, but satisfy
the body boundary condition on what would be the
wetted surface of the hull at rest in calm water. For
small motions, this mean position is close to the exact
wetted hull surface that changes with time. However,
for large amplitude motions, the linear assumption
breaks down because the actual hull surface can be
significantly displaced from the mean position.

So-called panel codes are typical linear codes that
account for three-dimensional effects. They divide
the hull into a large number of small surface ele-
ments (panels). Over these panels, singularities are
distributed that satisfy the Laplace equation in the
fluid domain, the linearized free-surface boundary
condition, and the boundary conditions at infinity.
Wave Green functions are singularities that satisfy
these conditions (Wehausen and Laitone, 1960). On
each panel, the strength of the singularities has to
satisfy the boundary conditions of each panel, which
leads to a set of M simultaneous linear equations,
where M is the number of panels or, equivalently,
the number of unknown singularity strengths.

These linear numerical methods can be extended
by introducing some nonlinearity into the linear
problem. The idea is to compute the hydrostatic
restoring forces and the Froude-Krylov part of the
exciting forces using the instantaneous submerged
part of the hull as theses forces are relatively easy
to compute. Hydrodynamic terms that are difficult
to compute are retained as linear, and the equations
of motion are then solved using both the linear as
well as the nonlinear terms, yielding large ship
motions and wave loads in finite amplitude waves.
This approach gives useful design loads as the
hydrostatic and Froude-Krylov terms are the larg-
est nonlinearities. Beck and Magee (1991) and Lin
and Yue (1990) extended this method by computing
the hydrodynamic terms using the complete body
boundary condition applied on the exact instanta-
neous wetted surface, but retaining the linearized
free-surface boundary condition. However, this
method is computationally intensive because the
body surface constantly changes, so that a fully non-
linear computation can be performed with approxi-
mately the same computational effort.
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For fully nonlinear computations, the viscosity
in the governing Navier-Stokes equations must be
included. Of course, the flow is then no longer irrota-
tional, and the velocity potential alone cannot be used.
This means solving four nonlinear partial differential
equations with four unknowns. Direct solutions to this
problem are too computer intensive and not practical
for ship design purposes. Thus, further approxima-
tions must be made. This is done by computing the
average flow in a viscous fluid flow. For load predic-
tions, the approach based on the Reynolds-averaged
Navier-Stokes (RANS) equations has typically been
used. As the flow about a ship with forward speed in
a seaway is invariably turbulent over essentially the
entire hull surface, the RANS are derived by assum-
ing that all velocity components can be approximated
by a mean component plus a highly oscillatory, small
amplitude, zero-mean component that represents
turbulence. After substituting these velocities into
the Navier-Stokes equations, they are time-averaged
over a suitable time scale. The resulting equations
describe the mean flow. They are identical to the origi-
nal Navier-Stokes equations except for the addition
of so-called Reynolds stress terms that represent the
influence of turbulence on the mean flow. Recently
developed RANS codes incorporate the nonlinear free
surface, and work is in progress on unsteady RANS
codes that include incident waves and ship motions.

FREQUENCY DOMAIN CODES

Frequency-domain codes obtain solutions for peri-
odic ship motions using wave Green functions for
both zero speed and constant forward speed. Both
of these Green functions satisfy their respective
linearized free-surface boundary conditions and
the appropriate radiation conditions. The zero-
speed frequency-domain Green function poses
relatively few numerical difficulties. However, the
constant forward speed frequency-domain Green
function is computationally complex because it
must also capture the Kelvin wave field created by
the steady flow with a uniform stream as the basis
flow. This problem has a computationally difficult
Green function, known as the Havelock singular-
ity that satisfies both the linearized steady flow
free-surface boundary condition and the radia-
tion condition; see, for example, Ba and Guilbaud
(1995) and Iwashita and Okhusu (1992). Conse-
quently, the zero-speed frequency-domain Green
function is used regularly while engineering appli-
cations of the constant forward-speed frequency-
domain Green function are rare. For a literature
review of these methods, see ISSC (1994).

An internationally well-known seakeeping code
capable of solving frequency domain problems is

SWAN 1 (Sclavounos et al., 1993). It is based on
linearizing the flow about a double body to numeri-
cally model wave propagation and ship dynamics,
using a three-dimensional Rankine panel method for
potential flows based on a linear, frequency-domain
formulation for steady and unsteady ship motions.
Some Green function methods consider the for-
ward speed under the so-called encounter frequency
approach, where the boundary conditions on the
ship are evaluated with the Green function evalu-
ated only at zero speed. This saves a huge amount of
computational effort, which is the reason why such
methods are widely used for many routine design
applications; see, for example, Rathje et al. (2000).
Especially for ships with large bow flare and stern
overhang, where three-dimensional effects become
significant, such methods are replacing strip theory-
based methods. Even for fast ships up to speeds
corresponding to a Froude number of 0.4, these
methods yield practical useful results, albeit only
for relatively small amplitude waves (Schellin et al.,
2003). However, this approach must be used with
caution and needs to be validated for critical wave
situations and specific ship types.

For many engineering applications, useful design
loads can be obtained by correcting linear predic-
tions for nonlinear effects. For large motions that do
not involve bow emergence or water on deck, the
nonlinearity of a ship’s response is mainly caused by
the nonvertical sides. To account for this nonlinear-
ity, Hachmann (1986) formulated an approximation
for the hydrodynamic pressure between still water
level and wave contour. With this method, linear
theory load predications can be corrected for this
nonlinear effect, yielding realistic results for many
standard applications (Hachmann, 1991). As this
approach is computationally efficient, it has been
used to obtain large amplitude wave-induced design
loads that are then part of the input for finite element
structural analyses of many modern ships (e.g.,
Payer and Fricke, 1994; Rathje and Schellin, 1997).

TIME DOMAIN CODES

If the motion response of a ship in waves and the asso-
ciated wave-induced loads are highly nonlinear with
respect to the wave amplitude, the ship should not be
investigated in elementary regular waves, because
these waves do not appear in nature, and the nonlin-
ear response of the ship in a natural seaway cannot be
deduced from the response in elementary waves. For
these nonlinear cases, simulation in the time-domain
is the appropriate tool for numerical predictions.
Simulations performed in the time-domain facilitate
the inclusion of important nonlinear effects, such as
hydrostatics (wave profile) and roll damping.
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Time-domain codes use their own wave Green
functions. As in boundary element solutions in the
frequency-domain, these singularities are distrib-
uted over the wetted hull surface, and the solutions
are integrated over time as well as over the surface
of the body. Alternatively, simple singularities can
be distributed over both the hull and the undisturbed
free surface. However, simple singularities must be
employed to obtain solutions of nonlinear free-sur-
face problems.

An internationally well known time-domain code
with deep water potential flow assumptions is the
Large Amplitude Motion Program (LAMP), devel-
oped to compute ship motions and wave loads under
the assumption of weak scattering (Lin and Yue,
1990; Lin et al., 1994; Lin et al., 1996). A unique
feature of the LAMP code is its multi-level degree
of sophistication, allowing analyses with increasing
complexity. The newest approach of LAMP is that,
instead of satisfying the boundary condition on that
portion of the hull that is below the mean free sur-
face, the body boundary condition is satisfied on the
actual instantaneous wetted hull under the incident
wave profile. At each time step, local free-surface
elevations are used to transform the body geometry
into a computational domain with a deformed hull
and a flat free surface. By linearizing the free-sur-
face boundary conditions about this incident wave
surface, the problem is solved using a linearized
free-surface transient Green function. In this way,
the correct hydrostatic and Froude-Krylov wave
forces are automatically included.

The time-domain code SWAN2, the second code
in the SWAN family, was extended to apply to non-
linear wave ship interactions (Nakos et al., 1993;
Sclavounos, 1996). As with SWANI, it employs a
three-dimensional Rankine panel method for poten-
tial flows based on Green’s third identity, and the
radiation condition is enforced by introducing a dis-
sipative beach.

The methods described above are generally
adequate to predict ship motions and the associ-
ated global loads for a large number of situations.
However, these methods have their limitations.
They cannot handle breaking waves or green water
effects, and the flow around sharp edges (such as
the hull-deck intersection) is usually not well mod-
eled. Furthermore, effects of viscous damping have
to be implemented artificially, relying, for instance,
on damping coefficients that may have to be linear-
ized. Other methods are needed, therefore, to predict
not only global loads in severe seas, but also local
water-impact related loads.

It has long been recognized that such loads can
be accurately predicted only if the free-surface
flow is correctly simulated. Interface-capturing

techniques of the VOF type proved to be most
suitable for handling strong nonlinearities and are
today the obvious choice for computing complex
free-surface shapes with breaking waves, sprays
and air trapping. These techniques are suitable to
also analyze related problems, such as sloshing
loads in partially filled tanks.

The computer code COMET (CD-adapco, 2002),
for instance, a code that implements interface-cap-
turing techniques of the volume-of-fluid (VOF) type,
proved to be suitable for handling strong nonlineari-
ties. Today, this kind of code is the obvious choice
for computing complex free-suface shapes with
breaking waves, sprays, and air trapping, hydrody-
namic phenomena that should be considered to pre-
dict impact-related slamming and sloshing pressures.
The conservation equations for mass and momentum
in their integral form serve as the starting point. The
solution domain is subdivided into a finite number of
control volumes that may be of arbitrary shape. The
integrals are numerically approximated using the
midpoint rule. The mass flux through the cell face is
taken from the previous iteration, following a simple
Picard iteration approach. The unknown variables at
the center of the cell face are determined by combining
a central differencing scheme (CDS) with an upwind
differencing scheme (UDS). The spatial distribution
of each of the two fluids (air and water) is obtained
by solving an additional transport equation for the
volume fraction of the water. To accurately simulate
the convective transport of the two immiscible fluids,
the discretization must be nearly free of numerical
diffusion and must not violate the boundedness cri-
teria (Ferziger and Peric, 1996). For this purpose, the
high resolution interface capturing (HRIC) scheme is
used (Muzaferija and Peric, 1998). The scheme is a
nonlinear blend of upwind and downwind discretiza-
tion, and the blending is a function of the distribution
of the volume fraction and the local Courant number.
The free surface is smeared over two to three con-
trol volumes. Fluid—structure interaction effects are
presently not accounted for, i.e., the body is assumed
to be rigid. The fluid is assumed to be viscous and
incompressible.

For special cases, it may be opportune to use an
extended RANS solver; for example, when effects
of slamming pressures that cause significant hull
girder whipping are to be analyzed. The nonlinear
equations of ship motions are solved and coupled
with the RANS solver (Brunswig and El Moctar,
2004). The computational procedure consists of four
main steps. First, flow around the ship is computed,
taking into account viscosity, flow turbulence, and
deformation of the free surface. Second, the hydro-
and aerodynamic forces and moments acting on the
ship are calculated by integrating the pressure and
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friction stresses over the ship’s surface. Third, the
nonlinear rigid body motion equations are solved
for the six degrees of motion, and subsequent time
integration yields accelerations, velocities, and dis-
placements. Fourth, by updating the position of the
ship and again computing the fluid flow for the new
position and integrating this procedure over time,
the trajectory of the ship is obtained.

POTENTIAL FLOW FORMULATION

For potential flow computations it is assumed that
the water is invisced, homogeneous, incompress-
ible, and of constant density. The surface tension on
the free surface is neglected. Considered is a ship
advancing at a steady mean forward speed U. A
right-handed orthogonal coordinate system, Oxyz, is
fixed with respect to the mean position of the ship
and translates in the positive x-direction relative to
an earth-fixed frame. The z = 0 plane of this Oxyz
system corresponds to the calm water level with z
directed positive upwards as shown in Fig. 4.4.1.
Translatory ship motions surge, sway and heave
are denoted by 1, 1, and 7s; angular ship motions
roll, pitch and yaw, by n4, ms and me, respectively.
The time-dependent ship speed is denoted by U(t);
at steady forward speed, U(f) = —U. A ship-bound
coordinate system, Ox"y’z’, defines the hull shape of
the ship itself. Ship motions are measured in terms
of the translation and rotation of the ship-fixed axes
relative to Oxyz.

The governing equations and boundary condi-
tions are presented in the time domain. For fre-
quency domain computations, the dependence on
the time ¢ is to be replaced by exp(iwf), and it is
understood that only the real part is to be used. The
total velocity potential of the flow, ®, is separated
into a time-independent steady contribution caused
by the ship’s forward speed U and a time-dependent
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Figure 4.4.1 Coordinate system.

part associated with the incident wave system and
the oscillating ship motions (Beck and Reed, 2001):

—U(Z)X + ¢(X, Y, 2 t)

where ¢(x, y, z, 1) is the perturbation potential. Both
potentials @ and ¢ must satisfy the Laplace equa-
tion in the fluid domain:

Px,y, 230 = (4.4.1)

VP =0 (4.4.2)
On all surfaces surrounding the fluid, boundary
conditions must be satisfied. On the instantaneously
wetted hull surface (Su), the kinematic body bound-

ary condition is applied as follows:
9

— = —U(l‘)m + ‘_}H . 17

S
n ondy

(4.4.3)

R
where Vy is the vector of velocity relative to the
moving coordinate system (including rotational
effects) of a point on the hull surface, and n=(n, na,
n3) is the unit normal vector out of the hull surface
(into the fluid). The kinematic boundary condition
must also be satisfied on the bottom. For infinitely
deep water, this condition becomes

Vo >0 as z——oo (4.4.4)
On the instantaneous free surface (Sr), the kinematic
as well as the dynamic boundary condition must be

satisfied. The kinematic condition is

n _op

Eralahe -V¢ - Vn —U(t)—

on Sr 4.4.5)

where z = n(x, y; t) is the free-surface elevation. The
dynamic boundary condition requires that the pres-
sure everywhere on the free surface equals the ambi-
ent pressure, p, normally set equal to zero. Use of
the Bernoulli equation for unsteady flow leads to the
dynamic boundary condition:

%z_gn——V(ﬁ qu U(I)—d)——l; on Sr

at
(4.4.6)

where p is the fluid density and g the acceleration
of gravity.

In the time domain, the initial values of the poten-
tial and the free-surface elevation must be specified.
Normally, the computations start from rest, such that
¢, = ¢r =m = 0 for time ¢ < 0. In the frequency
domain, no initial conditions are necessary.

Boundary conditions must also be satisfied at
infinity. In the time domain, for an initial value prob-
lem with no incident waves, it is also necessary for
the fluid disturbance to vanish at infinity:
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Vb >0 as R=\x"+y >  (44.7)
In the frequency domain, waves caused by the hull
disturbance, including diffracted waves, must be
outgoing towards infinity.

Hydrodynamic forces acting on the hull are found
by integrating the pressure over the instantaneous
wetted surface. The generalized force acting on the
hull in the j" direction of the hull-bound coordinate

system is thus given by the following expression:

Fi= [ mpas
SH

Here n; is a component of the generalized outward
unit normal 7 at the hull surface, defined as

(4.4.8)

(ny, na, n3) =n and (ng, ns, ng) =rxn  (4.4.9)
and 7= (x', ', Z') is the position vector of a point on
the hull surface (Sp) referred to the ship-fixed coor-
dinate system. Subscripts j = 1, 2, 3 correspond to
the force directions and subscripts j = 3, 4, 5 to the
moments about the ship-fixed coordinate system,
respectively.

Applying the Bernoulli equation for unsteady
flow yields the pressure in the moving coordinate
system:

_ |2
p=-r [WJ’ U

0 1
(4.4.10)
VISCOUS FLOW FORMULATION

As mentioned above, when computing the viscous
flow about a ship, the velocity potential alone cannot
be used because the flow is no longer irrotational.
The viscous flow is then governed by the Navier-
Stokes equations and the continuity equation, and
loads are predicted using RANS solvers. The result-
ing RANS and the continuity equation are of the fol-
lowing form (Beck and Reed 2001):

out;

— 617, _ aﬁ 67'4,-

- L = . 2_. -7
o T Fre + pgi + vVu; o 4.4.11)
oui _ (4.4.12)
ax,-

Here the velocities and pressure are expressed
as u; = it; + u; and p = p + p’, respectively, where
the overbar represents a Reynolds average taken
over a time/special scale large relative to the scale
of turbulence, and the primed quantities account
for the velocities and pressure at turbulent scale.
The u; for i = 1, 2, 3 are the x-, y-, and z-compo-

nents of the velocity, p is the pressure, g; is the i"
component of the gravitational acceleration g in
the x-direction. Double subscripts within a term
imply summation over that index, and 7; = ii; is
the Reynolds stress tensor.

The RANS equations must be solved by satisfy-
ing boundary conditions on the hull surface, the
free surface, the fluid boundary far away from the
ship, and on the ocean bottom. On the hull surface,
a kinematic boundary condition and a no-slip condi-
tion hold. On the free surface, a kinematic boundary
condition assures that no fluid passes through the
surface, and a dynamic boundary condition requires
that the fluid pressure equals the atmospheric pres-
sure and that no shear is acting. Conditions on the
far fluid surface boundary must assure that there is
either no disturbance or no wave reflection. On the
(infinite) bottom, the disturbance must vanish.

Equations 4.4.11 and 4.4.12 represent four
equations with 13 unknowns, namely, the three
velocity components, the pressure, and the nine
components of the Reynolds stress tensor. To find
a solution, the turbulent kinetic energy and an
equation relating the turbulent kinetic energy to
the mean velocities and the eddy viscosity is intro-
duced. This eddy viscosity relates the Reynolds
stress tensor to the mean velocities.

At present, the use of RANS solvers for sea-
keeping problems is in its beginning stage. For
vertical plane motions and wave loads, RANS
and potential flow predictions generally compare
favorably with experimental measurements.

STRIP THEORY

Strip theory methods are the standard tool for sea-
keeping computations. The development of such
methods started about 50 years ago. The steady
potential ¢, is omitted completely and the unsteady
potential ¢ is approximated for each strip indepen-
dently of the other strips. The essence of strip theory
thus is to reduce the three-dimensional hydrodynamic
problem to a series of two-dimensional boundary
value problems that are easier to solve. The actual
free-surface condition has to be simplified as well.
The principle is to divide the underwater part of the
ship into a number of strips (usually about 20) as
shown in Fig. 4.4.2. The two-dimensional flow about
an infinite cylinder of the same cross section as the
ship at the strip’s position determines hydrodynamic
forces. The two-dimensional forces for each strip
are combined to obtain the forces for the entire ship.
Strip theory implies that the variation of flow in the
cross-sectional plane is much larger than the varia-
tion of flow in the longitudinal direction. This is not
the case at the ends of the hull.
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Figure 4.4.2 Strip theory idealization of a ship's hull
(Source: Faltinsen, 1990, Cambridge University Press, New
York; used with permission).

The original work on strip theory was docu-
mented by Korvin-Kroukovsky and Jacobs (1957).
Most of today’s strip methods are variations of
the strip method of Salvesen, Tuck, and Faltinsen
(1970), and these methods are generally known as
STF strip methods. Analytical or panel methods are
used to solve the two-dimensional problem for each
strip. Analytical approaches rely on conformal map-
ping techniques to transform semi-circular cross
sections to cross sections resembling ship sections
(Lewis forms). Although this transformation cannot
deal with submerged sections, such as a bulbous
bow, it still yields results of similar quality as panel
based (close-fit approach) strip methods.

Strip methods are fast and cheap and give rea-
sonably accurate results over a wide range of
parameters, and recent developments have shown
improved comparison with experiments. However,
they are still not entirely satisfactory. Although
strip methods are today considered to be the most
practical design tool to assess global wave-induced
loads, it is important to be aware of their limita-
tions. Strip theory is basically a high-frequency
theory. Strip methods fail for waves shorter than
about one-third of the ship length. Thus, it is more
applicable in head and bow waves than in follow-
ing and quartering seas for a ship with forward
speed. Furthermore, strip theory is a low Froude
number theory. It does not properly account for the
interaction between the steady wave system and
the oscillatory effects of ship motions. Another
limitation is the assumption of linearity between
response and incident wave amplitude. Therefore,
it is questionable to apply strip theory for severe
sea states.

UNIFIED THEORY

A theory that is theoretically applicable at all
frequencies is the unified theory (Newman 1978).
It uses the slenderness of the ship hull to justify
coupling a two-dimensional flow in the near field
to a three-dimensional flow in the far field. Distrib-
uting singularities along the ship’s centerline gen-
erates the far field flow. Although its theoretical
treatment is more consistent, for real ships results

based on unified theory are not significantly more
accurate than results from strip theory. Therefore,
the method is not generally accepted in practice.

HIGH-SPEED STRIP THEORY

For fast ships with speeds at Froude numbers
greater than about 0.4, the high-speed strip theory
was developed, initially by Chapman (1975). For
lower speeds, it is inappropriate. The theory is often
referred to as being two-and-a-half-dimensional
because, at a particular location along the ship’s
length, it only considers the effect of upstream sec-
tions on the flow and not the effect of downstream
sections. Boundary conditions at the free surface
and at the hull are satisfied to obtain the velocity
potential and the wave elevation, and numerical
differences between strips determine derivatives
in the longitudinal direction. By marching down-
stream from strip to strip, the computation ends at
the stern just before the transom.

GREEN FUNCTION METHOD

Green function methods discretize the aver-
age wetted hull surface into a large number of
small surface elements (panels). Some methods
use a slightly submerged surface inside the hull.
Usually, the calm-water floating position defines
the wetted surface, neglecting dynamic trim and
sinkage as well as the steady wave profile. For
each panel, a Green function defines the velocity
potential. Usually, these potentials are sources that
model the displacement effect of the ship. If lift
plays a significant role, such as for yawing or
maneuvering ships, additional vortices and dipoles
are employed to model lift effects. All these poten-
tials automatically fulfill the Laplace equation,
the radiation condition, and the linearized free-
surface condition, leading to an integral equation
for the potentials (source strengths). To determine
the unknown potentials, the integral equation is
replaced by a set of linear equations, such that the
no-penetration condition is satisfied at the colloca-
tion points of each panel.

When the ship is excited by elementary waves,
it is customary for panel methods to evaluate ship
responses in the frequency domain. When the ship
is excited impulsively, an alternative to the solution
in the frequency domain is the formulation in the
time domain. Evaluation of highly oscillating inte-
grands is then avoided; however, other difficulties
related to the proper treatment of the time history
of the flow (memory effect) by means of so-called
convolution integrals are introduced. As the prob-
lem is linear, the superposition of both frequency as
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well as time domain solutions is possible to obtain
the response under an arbitrary excitation, such as a
natural seaway.

All Green function methods are fundamentally
simplified in that they completely neglect the poten-
tial ¢, for steady flow. This omission can introduce
significant errors in the prediction of local pressures,
especially in the bow region.

RANKINE SINGULARITY METHOD

The Rankine singularity method includes the poten-
tial ¢, for steady flow. In addition, more compli-
cated boundary conditions on the free surface and
the hull are considered. However, the free surface
surrounding the hull as well as the hull itself must
be discretized by panels. In this way, all waves are
accounted for. The main difficulty of this method is
to avoid physically unrealistic reflections of waves
at the outer (artificial) boundaries of the computa-
tional domain. A comprehensive overview of vari-
ous Rankin singularity methods for seakeeping is
documented by Bertram and Yasukawa (1996).

4.4.2 Linear Computations

Computations of linear seakeeping properties of a
ship in elementary waves are of immense practical
value because these results, in combination with
statistical methods, can describe the ship’s response
more broadly. In practice, potential flow solvers are
used almost exclusively to compute linear seakeeping
properties of a ship in elementary waves. In addition
to the neglect of viscosity (Euler solvers) potential
flow assumes that the flow is irrotational. Assuming
irrotational flow does not introduce a major loss in
the physical model, because rotation is created by
the water adhering to the hull, and this information
is already lost in the Euler flow model. Of relevance
for practical application is that potential flow solv-
ers are so much faster than Euler and RANS solvers
because only one linear differential equation needs
to be solved when dealing with potential flows
instead of four nonlinear coupled differential equa-
tions. Potential flow solvers are usually based on
boundary element methods and therefore need only
to discretize the boundaries of the fluid domain, not
the entire fluid space. The effort to generate grids is
considerably reduced. However, potential flow solv-
ers require a simple continuous free surface. Flows
involving breaking waves and splashes cannot be
analyzed using potential flow solvers.

In certain classes of seakeeping problems, vis-
cosity becomes significant and cannot be neglected,
especially if the boundary layer periodically sepa-
rates from the hull, which is the case for roll and

yaw motions. This results unavoidably in nonlinear
differential equations. In practice, empirical correc-
tions are introduced. The problem also arises when
the flow separates at sharp edges in the aftbody, as it
does at transom sterns or rudders. Usually, a Kutta
condition can enforce a smooth detachment of the
flow from edges.

For many practical problems, linear theory ade-
quately describes the wave-induced motions of and
sea loads on ships. However, in severe sea states
nonlinear effects become important and need to be
considered to obtain reliable predictions. Linear
theory considers a ship advancing at constant speed
in regular waves of small amplitude and small wave
steepness. Linear theory implies that wave-induced
motions and loads are proportional to the wave
amplitude.

Section 4.3 showed that linear theory is used to
simulate an irregular (natural) sea and to obtain sta-
tistical estimates. As shown therein, the method of
St. Denis and Pierson (1953) relies on two critical
assumptions: first, an ergodic, Gaussian random
process with zero mean describes the sea surface
elevation and, second, a linear system represents
the ship. The first assumption ensures that the area
under the spectral density of the ship responses, i.e.,
the variance, completely characterizes the probabil-
ity density function of the ship responses. From the
probability density function for a given response,
all the desired response statistics can be determined
and, by multiplying the incident wave spectrum by
the square of the transfer function of the response,
the spectral density of any given response can be
found. A transfer function specifies the amplitude
and phase of the desired response of the ship subject
to regular incident waves at a given frequency.

The use of the St. Denis and Pierson approach
requires that the wave spectrum and the transfer
functions of the ship are known. Reliable wave
spectral information is critical. Usually, oceanog-
raphers are called upon to supply this information.
Here, it will be assumed that necessary wave spectra
are available. The development of analytical meth-
ods to determine the transfer functions started in
the 1950’s, neglecting viscosity and using potential
flow.

RESPONSE IN A NATURAL SEAWAY

To examine the interaction between the ship and the
waves so as to be able to calculate the wave-induced
structural loading on the ship, it is helpful to con-
sider the interactive process between the wave and
the ship as a system, as illustrated in Fig. 4.4.3. The
input to the system is the irregular and randomly
varying elevation of the sea surface. We have seen
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Figure 4.4.3 Wave-ship system. (Here v(L) represents vertical displacement of the

ship’s bow.)

that the usual practice is to represent this irregu-
lar sea surface as a linear superposition of a large
number of regular waves of various amplitudes and
frequencies, and that the resulting combination is
conveniently described in terms of a wave spectrum.
The output of the system is whichever form of ship
response we are interested in, such as ship motion,
hull pressure distribution, and bending moment. In
the preceding sections we obtained all of the neces-
sary information about the input that, being a ran-
dom process, requires the use of statistical methods
for its determination.

A useful consequence of linearly predicted
response is that results from regular waves of differ-
ent amplitudes, wave lengths, and propagation direc-
tions can be superimposed to obtain the response in
natural seaways made up of a large number of reg-
ular waves of different length and height. Further-
more, the time-varying processes can be represented
in terms of a spectral density function. There are
many areas of engineering, such as vibration theory
and communications, that deal with linear systems
where the input and the output are time-varying
functions, say X(#) and Y(f). We now show that in
all such cases the response analysis is simplified if
it is performed using the spectral representation of
X(t) and Y(7) because, if the system is linear, the two
spectra are directly related by a frequency response
function H(w), commonly referred to as a trans-
fer function. The transfer function depends on the
characteristics of the system, and it can be deter-
mined either by mathematical analysis (providing
the governing equations for the system are known)
or by experiment, or by a combination of the two.
To establish the basic properties of this function, let
us consider the response to a sinusoidal wave input.
If the input is a constant amplitude cosine wave of
fixed frequency

x(t) = xo cos wt (4.4.13)
then it can easily be shown that the output also is
a steady state cosine wave of constant amplitude,
having the same frequency w and a phase difference
0. That is
y(t) = yo cos(wt — ) (4.4.14)
Information about the amplitude ratio yo/x, and
the phase angle 6 defines the transmission character-
istics or transfer function of the system at the fixed
frequency w. Instead of thinking of amplitude ratio
and phase angle as two separate quantities, it is cus-
tomary to use a single complex number to represent
both quantities. This is called the (complex) fre-
quency response function H(w) and is defined such
that its magnitude is equal to the amplitude ratio and
the ratio of its imaginary part to its real part is equal
to the tangent of the phase angle. If

H(w) = A(w) — iB(w) (4.4.15)

where A(w) and B(w) are real functions of w, then

H@) = VA +B =2 (4.4.16)
and
_Imaginary part = B =tan 6 (4.4.17)

Real part A

Using complex exponential notation, we can now say
that if the input is a harmonic wave of amplitude x,

x(t) = Xp COS wf = xo[the real part of eiwt]
=x Refe™}, (4.4.18)
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Figure 4.4.4 Response to a unit impulse.

Y

then the corresponding harmonic output will be

y(1) = xo Re{H(w)e™'} (4.4.19)
We now determine the transfer function for a general
input, X(¢). Let Y(¢ — 7) be the response Y(¢) of the
system for the special case when the input is a unit
impulse at time ¢ = 7; that is, Y (¢ — 7) is the response
to X(f) = 6(7), as shown in Fig. 4.4.4. To obtain the
response for a general input function X(7), the latter
is divided into a series of impulses, as shown in Fig.
4.4.5, and the response from each impulse is super-
imposed, yielding

Y() =3 [X(mAIY(t—7)  (4.4.20)
In the limit, as A7 — 0,
Y(r) = f XY -Ddr  (4421)

This integral is known as the Duhamel or convolu-
tion integral. By an appropriate change of variables,

Y
Impulse of magnitude
X(zj)At

X(t)

Y

I I
At
Figure 4.4.5 Impulse representation of a general input.

it may be written in an alternative form more con-
venient for mathematical purposes:
vo= [ Xe-mYmar @422
It may be shown that the frequency response func-
tion H(w) and the impulse response function Y (7)

constitute a “Fourier transform pair” and are related
by

H(w):% fi Y™ di (4.4.23)
and
Y(t)=2—1ﬂ_ f; H@)e” do  (4.4.24)

We have seen that the analysis of a fluctuating
process such as ocean surface elevation is simpli-
fied by using a spectral representation, that is, by
describing the process in terms of its frequencies,
and we are therefore led to rewrite the relationship
between X(f) and Y(r) of (4.4.22), expressing it in
terms of their spectral density functions Sx(w) and
Sy(w). The details of this step are available in stan-
dard texts, i.e., Crandall and Marc (1963). The result
is the strikingly simple relationship

Sr(w) = |H(w)]Sx(w) (4.4.25)
Thus, for a linear system the spectral density of the
response is simply the spectral density of the input
multiplied by a single scalar function of w: the square
of the amplitude of the transfer function. Once Sy(w)
is known, the averages and expected maxima can
be computed from its moments, using the formulas
presented in Section 4.1.1. The quantity ‘H(w)‘z is
often called the response amplitude operator (RAO)
of the system. We showed that |H(w)| is the ampli-
tude of the steady state response to a unit sinusoidal
input of frequency w. Thus, one way of determining
the transfer function for ship motions and loads is to
subject a ship model to a series of sinusoidal waves
of unit amplitude and various frequencies and to
measure the response amplitude for each frequency.
However, this is only valid for small waves and
small response amplitudes, so that the wave-ship
system is linear.

Thus, if the wave-ship system is linear, the calcu-
lation of wave bending moment M,, or other wave-
induced response is both simple and rapid. We here
summarize the procedure to calculate the response
for a given wave spectrum S,(w) and a given ship
heading and ship speed (and, hence, a given wave
encounter frequency w.):
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1. Calculate the transfer function H(w) by per-
forming a ship motion analysis for the response to
regular waves of unit height over a complete range
of wave encounter frequency.

2. Express the wave spectrum in terms of encounter
frequency and apply the transfer function to obtain
the response spectrum Sy(w.), as in (4.4.25).

3. By calculating the appropriate moments o, mo,
and so on of Sy(w,.), determine whatever response
values are required, such as

2
m
1 _ 2
Moy

Mw,s=2 V Ny

bandwidth: &=

significant value: (4.4.26)

1800T> 1,

ar my

probable extreme value: M wp = \/ 2 ln(

Recall that 7 stands for the time in hours.

Use of this procedure to obtain the characteris-
tic extreme value of bending moment is illustrated
schematically in Fig. 4.4.6.

Ship heading and speed

Calculate
transfer
function

Select sea state Hs
and wave spectrum SW((n)

AN

®

m, = area

Obtain response spectrum m, = 2" moment

Su@) = H@)]? S,(,) Sum

e

and moments my and m.
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!

For selected risk parameter o,
calculate characteristic extreme
value A”\’wc , using (4.2.15)

Figure 4.4.6 Determination of the characteristic extreme value
of bending moment, M,,., for a linear wave-ship system.

4.4.3 Linear Response in Regular Waves

Consider a ship advancing at a steady mean forward
speed U in a train of regular waves of small ampli-
tude moving in six degrees of freedom. The angle 3,
measured between the direction of U and the direc-
tion of wave propagation, defines the ship’s heading
(B = 180° for head waves). It is assumed that both
the wave excitation forces and the resultant oscilla-
tory motions are linear and harmonic, acting at the
frequency of encounter, w,, expressed as follows:

W, =

w§
Wy — ? U cos B (4.4.27)

where w,is the circular frequency of the incident
waves, and g is the acceleration of gravity.

The coordinate system shown in Fig. 4.4.1
defines the six degree of freedom ship motions. A
set of six coupled linear differential equations, with
six unknowns, must be solved simultaneously to
describe the ship motions. The fundamental motion
equation is written as follows:

(M + A)§ + Bs + Cs = F,e?! (4.4.28)
where M represents the mass matrix, A the hydro-
dynamic added mass matrix, B the matrix of poten-
tial damping, and C the stiffness matrix of restoring
forces, with F, defined as the complex amplitude of
the exciting force or moment. In linear theory the
harmonic response of the ship is proportional to the
amplitude of the exciting force or moment. It oscil-
lates at the same frequency, but with a phase shift.
Solutions of (4.4.28) are the harmonic ship motions,
s = sdw.)e?, where s.(w,) is a complex vector con-
taining the six motion amplitudes.

The ship’s mass (displacement) defines compo-
nents of the mass matrix M, and hydrostatic buoy-
ancy effects define components of the restoring force
matrix C. Well-known classical ship theory can be
used to define components of the added mass matrix
A, the damping matrix B, and the exciting force and
moment vector F. However, methods based on the
use of advanced hydrodynamic theory yield more
accurate results.

The velocity potential ® is separated into a time-
independent steady contribution caused by the ship’s
forward speed U and a time-dependent part associ-
ated with the incident wave system and the oscillat-
ing ship motions:

® = (~Ux + ¢,) + pre?™ (4.4.29)
Here [-Ux + ¢,] is the steady contribution and ¢ the
complex amplitude of the unsteady potential. The
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potentials can be superimposed because the funda-
mental field equation (Laplace) is linear with respect
to @. Various approximations are used for ® and ¢,,
and they affect computational effort and accuracy
of results. The most important linear methods are
strip theory methods, Green function methods, and
Rankine singularity methods. These methods were
discussed near the end of section 4.4.1.

For a ship advancing at constant mean forward
speed in a seaway, the incident waves undergo a cer-
tain amount of scattering (diffraction), leading to a
diffraction wave potential with complex amplitude
¢-. Induced by the incident wave, this diffraction
wave potential oscillates harmonically and creates
a wave field of the same frequency radiating away
from the ship. Furthermore, the ship moving in the
wave field itself generates body motion potentials
corresponding to translational and angular motions.
These body potentials and the diffraction potential
are superimposed on the incident wave potential
with complex amplitude ¢,. Accordingly, the com-
plex amplitude of the unsteady potential is expressed
as follows:

br=po+ P71 + il ojs; (4.4.30)
=

The local potential function ¢; with j =1,2, ..., 6
depends only on the hull geometry and is, therefore,
independent of the as yet unknown hull velocity.
Index j stands for the six degrees of freedom ship
motions: surge s;, sway s, heave ss, roll sy, pitch ss,
and yaw ss. Each of the above potentials must satisfy
the Laplace equation in the fluid domain as well as
appropriate boundary conditions.

Components of the wave excitation loads F; are
separated into the incident wave load part, F}, and
the diffracted wave load part, F;":

F}=Fj1+FjD (4431)
where j = 1, 2, ... 6 refer to the directions of the
six degrees of freedom motions. To determine the
incident wave part, the complex amplitude of the
incident wave velocity potential ¢, is substituted
into the expression of the incident wave excitation
load. After incorporating the frequency of encoun-
ter, an expression is found for the incident wave
load, also known as the Froude-Krylov forces. To
obtain the diffraction part of the wave exciting load,
the complex amplitude of the diffracted wave veloc-
ity potential is substituted into the expression of
the diffracted wave load. The resulting expression
can be split up into a speed-independent part and
a speed-corrective part. After applying a variant of
Stokes theorem (Salvesen et al., 1970) to the speed-

corrective part, the relationship is found for the dif-
fraction wave loads.

Added mass and damping loads are steady-
state hydrodynamic forces and moments caused by
forced harmonic rigid hull motions. These motions
generate outgoing waves, resulting in oscillating
fluid pressures on the hull surface. Integrating these
pressures over the hull surface yields forces and
moments acting on the ship. Because the ship oscil-
lates with circular frequency of encounter, added
mass and damping have to be evaluated for the fre-
quency of encounter.

THE ENCOUNTER FREQUENCY BASED
PANEL METHOD

The numerical solution to the formulated boundary
value problems is approached by means of the Green
function G, representing a known velocity potential
at field point (x, y, z) of a source at (¢, v, {) of unit
strength. It is possible to show that all solutions of
¢; are of the form

b y.0= [[0E .0 G vz v 0 ds
5 (4.4.32)

These are integrals over the hull surface S, with
Q; being the unknown source strengths and G the
Green function. The source strengths are found by
satisfying the body boundary conditions, leading
to linear integral equations of the second Fredholm
type for each of the source strength contributions.
These equations are solved numerically by replac-
ing them with a system of linear equations. By a
discretization procedure, the wetted hull is divided
into a finite number of small triangular or rectangu-
lar surface patches (panels), capable of representing
a curved surface and avoiding “leakage” gaps. The
source strength distribution is taken to be uniform
over each panel, with the boundary condition being
satisfied at the center of the panel. Subdividing into
M panels replaces the integral equations by seven
systems of M linear equations, corresponding to
the diffraction potential and the six local potentials
of the six-degree-of-freedom body motions. From
these systems the desired source strengths are deter-
mined:

M
=3 0,G, AS, forj=1,2,...Tandp=1,2,..M
= (4.4.33)

After the velocity potentials are derived from the
Laplace equation and the appropriate boundary con-
ditions, the dynamic pressure follows from the lin-
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earized Bernoulli equation. Proper integration over
the hull surface then yields the desired wave excita-
tion forces and moments F; from potentials ¢, and
¢, and the added mass and damping coefficients Ay
and By from potentials ¢ ;. The equations of motion
can be solved, resulting in the six degree of freedom
ship motions. Now the total velocity potential is
obtained, enabling the computation of fluid veloci-
ties, accelerations, and pressures at any desired
point in the fluid domain. Integration of pressures
over appropriate parts of the hull yields the wave-
induced global sectional loads.

NONLINEAR CORRECTION FOR ROLL

Although motions are generally small if the ship
is stable and if the incident wave amplitude is
relatively small, roll resonance in beam seas is an
exception and must, therefore, be treated specially.
Experimental and theoretical investigations showed
that roll can be handled satisfactorily by equivalent
linear approximations (Himeno, 1981). An addi-
tional viscous roll damping term, B,, is included to
account for the viscous resistance to rolling. This
term is assumed to comprise four effects, namely,
hull friction Br, eddy making resistance Bg, normal
force damping of bilge keels Bgxy, and hull pressure
damping of bilge keels Bpkn:

Bv = BF + BE + BBKN + BBKH (4434)

As these effects are nonlinear with respect to the
roll velocity, they cannot be introduced directly into
the motion equations. Based on the principle of har-
monic balance, a quasi-linear viscous roll damping
coefficient, B% = B,$4, can be obtained which, when
added to the linear (potential) roll damping coeffi-
cient Bu, yields the total damping coefficient.

To obtain accurate predictions for twin-hull ships,
it is necessary to consider viscous effects of lift and
damping on both hulls and, if the ship is equipped
with stabilizing fins, lift and drag effects on these
fins (Rathje and Schellin, 1997). This is because
twin-hull ships generally have a relatively small
waterplane area and do not generate large waves
when oscillating in the vertical plane. Consequently,
potential (wave making) damping is small com-
pared to that of monohull ships, and viscous lift and
drag therefore contribute significantly to the overall
damping of twin-hull ships.

NONLINEAR CORRECTION FOR HULL
SHAPE

One consequence of using linear methods is that
predicted wave-induced vertical loads have the same

magnitude in sagging as well as in hogging. How-
ever, past full-scale measurement programs (e.g.,
Smith, 1966) demonstrated that the resulting mag-
nitudes of vertical bending moment in sagging and
hogging are not equal, which should be the case for
linear signals. The sag/hog ratios of vertical bend-
ing moment magnitudes tend to be larger for slender
ships, such as modern container ships, than for fuller
ships, such as tankers and bulkers.

Jensen and Pedersen (1981) performed one of the
first truly nonlinear analyses of a VLCC tanker and a
containership, both operating in the fully loaded con-
dition in a moderate sea state. The hull shape of the
containership was typical in that it featured a large
bow flare, a large stern overhang, a relatively small
block coefficient, and a relatively high operating
speed. Applying their perturbational strip method
(Jensen and Pedersen, 1979) for the containership,
they theoretically obtained the probability distribu-
tion of the extreme values of sagging and hogging
wave bending moment over a short-term (1 hour)
period. Their results showed that the sagging bend-
ing moment is about 20 percent larger than the value
predicted by linear theory and that the hogging
bending moment is about 10 percent smaller. They
also showed that complementary measurements
of short-term extreme values agree favorably with
theory. This clearly indicates that for a containership
a nonlinear method should be used. In contrast, the
VLCC results showed that for this kind of ship, at
deep draft, the nonlinear effects are small, and linear
theory is adequate.

For flared or high-performance vessels, nonlinear
effects should always be accounted for, especially
in an investigation of springing, where the item of
principal interest is the ship’s flexible response to
the waves. Linear theory appears to be adequate for
a tanker or bulker in the deep draft condition. For a
tanker in the ballast condition, it is preferable to rely
on nonlinear theory because the shallow draft for-
ward introduces nonlinear effects (Guedes Soares
and Schellin, 1998).

For large amplitude wave-induced ship motions
that do not involve bow emergence or water on deck,
Hachmann (1986) developed a practical procedure
to correct linear results for the nonlinear effect
caused by the nonvertical sides. Today his method
is still used to obtain realistic results for many stan-
dard applications (Hachmann, 1991), including
modern containerships as well as naval vessels. The
linear loads can be based either on a strip theory or
a panel method. The corrected loads are processed
to yield global wave-induced design loads that then
become part of the input for a finite element struc-
tural analysis (e.g., Payer and Fricke, 1994; Rathje
and Schellin, 1997).
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Table 4.4.1 Principal particulars of the tested containership

Length between perpendiculars 2944 m
Breadth 42.8 m
Draft 12.5m
Block coefficient 0.64

To validate Hachmann’s method, the Hamburg
Ship Model Basin (HSVA) carried out system-
atic model tests (Blume, 1999) of a containership
advancing in large amplitude regular head waves.
Table 4.4.1 lists principal particulars (full-scale
values) of the tested ship. The ship is a modern 6700
TEU containership designed by Kvaerner Warnow
Werft characterized by large bow flare and large
stern overhang. The self-propelled free running
model of this ship was segmented at the foreship by
a sectional cut located 0.8 L from its aft perpendicu-
lar, where L is the ship’s length between perpendicu-
lars (Fig. 4.4.7). At this cut, the ship experienced a
relatively large increase in vertical bending moment
over the linear results.

Model tests corresponding to a ship advancing
at a speed of 20 knots (Froude number 0.20) in
regular head waves were conducted for two wave
heights of 6.9 and 13.4 m. The wave length in both
cases equaled 1.1 times the ship’s length between
perpendiculars. All measurements were affected by
elastic, high frequency oscillations of the model.
After filtering the model’s elastic response, the
first harmonics of measured global dynamic hull
girder loads compared favorably with nonlinearly
corrected GLPANEL (Papanikolaou and Schellin,
1992) predictions for all cases investigated. Figure
4.4.8 shows two representative samples of the mea-
sured midship vertical bending moment, VBM,
together with the corresponding computed bending
moment (Beiersdorf and Rathje, 2000). Results are
presented as time histories over one wave encoun-
ter period, here denoted by 7. At time ¢ = 0, the
location of the wave crest was close to the ship’s
center of buoyancy.
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Figure 4.4.7 Schematic of model tested containership.

4.5 LOAD GENERATION FOR FINITE
ELEMENT ANALYSIS

The analysis of complex ship structures often
requires the inclusion of the dynamic response
of the hull girder, and it may even be necessary
to perform such an analysis as part of the ship
motion appraisal. A dynamic analysis is generally
not required for standard ships although the hull
girder vibration frequencies should be determined
to check against resonance with main engines,
propellers, etc. If a dynamic analysis is desired (for
example, to investigate slamming), it can be per-
formed separately after computing wave-induced
loads. Structural response, be it of low frequency
such as wave-induced bending or of high fre-
quency such as whipping, has no significant effect
on the ship’s overall motion. Therefore, from the
standpoint of load specification, the ship can be
considered rigid.

Today, rational dimensioning of complex ship
structures is frequently based on refined finite
element (FE) analyses of the entire ship, e.g.,
Payer and Fricke (1994), and Shi et al. (2005).
This allows a realistic application of loads and an
accurate analysis of stresses, even for complex
ship structures. Unlike the traditional rule formula-
based design, this method realistically accounts for
loads experienced by the ship.

The equivalent regular wave approach repre-
sents a consistent rational procedure that employs
a direct analysis for the particular hull structure
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Figure 4.4.8 First harmonic of measured and computed, nonlinearly corrected dynamic midship vertical
bending moment of the tested containership model in regular head waves of 6.9 m height (left graph) and

13.4 m height (right graph).
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being considered. It is a practical compromise
between the design loading condition approach and
the physical load approach. By defining loads for
the FE analysis, it mitigates modeling uncertain-
ties that are introduced when using rule scantling
formulas. Development of rule formulas neces-
sarily relied on simplifications to readily account
for applied loads, structural response, and mate-
rial strength. Thus, the equivalent regular wave
approach provides more reliable structural analysis
results as well as improved insight of structural
system behavior.

The underlying assumption is that if the ship is
investigated to resist loadings caused by selected
(equivalent) regular waves, it will resist all loads
expected during its lifetime. Loads generated for
this kind of analysis constitute extreme loads and
must be based on a return period of at least 20
years. In assessing dynamic loads, it is necessary
to consider a range of sea conditions and headings
that cause a critical response of the structure. The
resulting loads are then incorporated within an FE
analysis to determine the resulting stresses experi-
enced by the hull structure. Applied loads include
static as well as dynamic loads.

When assessing hull girder strength against
extreme loads that are exceeded only once during
the ship’s lifetime, the equivalent wave approach
relies on long-term load predictions. However,
the equivalent wave approach is also useful to
define rule-based loads suitable for dimensioning
structural components, e.g., Rorup et al. (2008).
The basic difference is that rule-based loads
instead of long-term load predictions are taken
into account to determine amplitudes of equivalent
regular waves. Major classification societies pro-
vide guidelines and/or software tools suitable for
the generation of rule-based global loads. These
rule-based loads are nominal (design) loads used to
determine minimum scantlings of structural com-
ponents. The resulting stresses must always be less
than the material’s permissible stress.

If all possible wave situations are to be sys-
tematically analyzed, extensive computations are
required. The selection to find the most relevant
load cases from the large number of possible wave
situations can be reduced by choosing so-called
dominant load parameters (DLPs). Specified by
the classification society to expedite the analysis,
DLPs represent critical wave conditions. They are
based on previous experience with similar ships
and include hull girder loads that cause maximum
stresses in structural components and/or large
deformations of the hull structure. In any case, for
containerships the following two loading condi-
tions are always investigated:

1. The ship at its maximum displacement, with
a distribution of containers that subject the ship to
the maximum allowable vertical still-water bend-
ing moment in hogging.

2. The ship at its maximum displacement, with
a distribution of containers that subject the ship to
the maximum allowable vertical still-water bend-
ing moment in sagging or to the minimum allow-
able still-water bending moment in hogging.

For tankers, the following five loading con-
ditions, typically found in the loading manual,
generally need to be considered (Liu at al., 1992):

1. Homogeneous full load condition at design
draft

2. Normal ballast load condition at light draft

3. Partial load conditions, 33 percent full load

4. Partial load conditions, 50 percent full load

5. Partial load conditions, 67 percent full load

However, the Common Structural Rules for Bulk
Carriers (IACS, 2006a) and the Common Struc-
tural Rules for Double Hull Oil Tankers (IACS,
2006b) specify only the first two of these loading
conditions.

For fast ships, special effects of slamming need
to be considered to generate global loads because
motions of fast ships in high waves may be so large
that the ship’s forefoot and propeller are exposed.
This occurs most frequently at high speed in head
waves although it also happens in other conditions.
Reentry of the keel after emergence may result in
slamming as the ship’s bottom strikes the water
surface. Therefore, for fast ships class rules gener-
ally dictate that special effects of slamming need
to considered for global loads. Specifically, this
means that the procedure to determine amplitudes
of equivalent regular waves has to account for an
additional slamming-induced bending moment in
sagging, e.g., Schellin and Perez de Lucas (2004).

4.5.1 Prediction of Wave-induced Loads

The physically most realistic numerical meth-
ods to predict wave-induced loads directly solve
the Reynolds-averaged Navier-Stokes (RANS)
equations in the time domain. By relying on the
interface-capturing technique of the volume-of-
fluid (VOF) type, for example, this technique
accounts for highly nonlinear wave effects in that
it computes the two-phase flow of water and air
to describe the physics associated with complex
free-surface shapes with breaking waves and air
trapping, e.g., Schellin and el Moctar (2007). Such
simulations need to be carried out for all wave
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situations that might occur during the operating
life of the ship. In addition, results obtained from
the FE analysis have to be post-processed. In
practice, these are prohibitively time consuming
and expensive tasks. Furthermore, such physically
realistic loads do not automatically represent reli-
able loads for design, because they model only
physical effects of simulated wave conditions and
not loads that subject the ship to experience-based
design bending moments, shear forces, or torsional
moments.

In contrast to a physically rigorous load
approach, magnitudes of wave-induced loads
based on the equivalent regular wave approach
mainly depend on experience-based design load-
ing conditions and not on capturing all physical
effects by computational fluid dynamics (CFD)
simulations. Moreover, increased accuracy of
these results is relatively unimportant, because
loads finally applied to the FE model are calibrated
in accordance with extreme or rule-based loads.

Extensive design experience with frequency
domain codes exists. Therefore, thoroughly vali-
dated linear codes suffice. Major nonlinear effects
can be accounted for. One nonlinear effect is roll
resonance in beam seas. As already discussed
in Section 4.4.2, realistic results at resonance
conditions in roll can be obtained by equivalent
linear approximations. Specifically, this consists
of including an additional viscous roll damping
term in the motion equations to account for viscous
resistance to rolling.

An important consequence of using linear sea-
keeping methods is that predicted wave-induced
vertical shear forces and bending moments have
the same magnitude in hogging as well as sagging.
Especially for modern containerships that are often
characterized by extreme bow flare and strong
stern overhang, buoyancy forces on the ship in
a position different from still-water equilibrium
vary nonlinearly with displacement from the still-
water position. Hence, amplitudes of hogging and
sagging global midship bending moments differ,
a result not predicted by linear theory. There is
evidence that for moderately large motions that do
not involve water on deck, the nonlinearity of the
ship’s response due to variation of the ship’s cross
section caused by nonvertical sides explains most
of the differences between hogging and sagging
stresses.

To compensate for errors of linear theory caused
by truncating the pressure distribution at the still-
water level, linear seakeeping models can be made
to incorporate a nonlinear correction to account
for the hydrodynamic pressure between still-water
level and wave contour. Hachmann (1991) devel-

oped such a correction method that, when imple-
mented within a linear model, allows not only the
assessment of extreme wave-induced load effects,
but also the routine generation of rule-based global
loads for strength analyses of ships using finite
element techniques.

The method starts with linear computations
in the frequency domain to obtain ship motions
and dynamic pressures acting on the ship’s hull.
Hachmann developed a revised pressure formula
based on hull bound steady perturbation flow to
calculate the hydrodynamic pressure. Hachmann
(1986) also introduced a procedure to define the
wetted profile along the ship’s sides and to extrap-
olate the pressure distribution up to this profile
or to limit the resulting pressures to zero. The
imbalance of forces that generally results when
integrating pressures is corrected for by small
changes of the ship’s accelerations. In contrast to
linear theory techniques, this pressure integration
yields realistically reduced hogging and increased
sagging moments.

Hachmann’s revised pressure formula accounts
for the steady perturbation of the forward speed
flow, which is generally neglected by common
linear methods. For small-amplitude waves, his
hull-bound perturbation flow is a concept identical
to common strip theory models, such as the one of
Salvesen et al. (1970), with the pressure p given by

p=p[(——+Uax)¢> gé] (4.5.1)

where U is the ship’s constant forward speed,
¢ is the velocity potential, { is the vertical ship
displacement at the location in question, ¢ is time, x
is the shipbound length coordinate, p is density of
water, and g is acceleration of gravity. Hachmann
extended the unsteady part of the velocity potential
to approximately account for the violation of the
hull surface condition associated with the forward
speed flow variation potential. His revised formula
includes an additional term to read

b= p[(_ % LU %)¢ _gl+ Wﬁ} (4.5.2)

where / stands for the hull-bound stream function
coordinate, {* is the ship’s unsteady velocity rela-
tive to the fluid at the location in question, and W;
is the velocity field of the steady perturbation flow
which, for slender bodies, can be approximated
by its transverse components. For slender bodies,
dl = dx. Detailed analysis of the flow field’s gra-
dient is avoided, and relevant pressure terms are
exposed to enable efficient numerical evaluation.
Figure 4.5.1 shows a schematic diagram of the
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pressure distribution on a cross section of a ship’s
hull positioned in a wave crest. Coordinate r pro-
ceeds along a tangent to the ship’s still waterline
(into the paper in Fig. 4.5.1), and coordinate s,
orthogonal to r, extends from the still-water level
positive upward along the side of the ship. The
origin of the r,s coordinate system is located at the
intersection of the still-water level and the consid-
ered ship section. Angle «, measured between the
vertical and the ship’s side, designates the flare of
the ship section.

To obtain the wetted height along the ship’s
side and the corresponding pressure extrapolation
above and pressure reduction below the still water-
line, Hachmann’s method defines a time harmonic
velocity potential of the flow field above the still
waterline. In regular waves, the wetted height  at
every station along the ship’s length is assumed to
vary harmonically with the encounter frequency,
. Applying Bernoulli’s equation together with
the kinematic boundary condition at the ship’s hull
yields hydrodynamic pressure p, as a function of
position s, with s measured tangent to the ship’s
side:

Ps = pwi — p(g cos a — w*{)s (4.5.3)
where pw; denotes hydrodynamic pressure at still-
water level obtained from Hachmann’s revised
pressure formula. This pressure formula does not
account for hydrodynamic effects caused by the
displacement of the ship’s hull relative to the still-
water level. Therefore, these effects need to be
added to obtain the total pressure.

The gradient of the hydrodynamic pressure at
still-water level
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Figure 4.5.1 Pressure distribution on ship cross section.

dp;
£ =—p(g cos a — w’{)

(4.5.4)

shows the influence of the Smith effect. At the
wave crest ({ > 0), the pressure gradient is reduced;
at the wave trough ({ < 0), it is increased.

Above still-water level (s > 0), the pressure
is always specified according to (4.5.3); below
still-water level (s < 0), however, the calculated
hydrodynamic pressure p,(s) becomes unrealistic
when its absolute value exceeds the hydrostatic
pressure. If this is the case, the hydrodynamic
pressure is set equal to the negative value of the
hydrostatic pressure, causing the superposed total
pressure to vanish.

Along the wave contour (at s = () the pressure
ps(s) is zero. Applying this condition to (4.5.3)
yields the following expression for the wetted
height along the side of the ship:

et PR | ess

This wetted height attains its maximum
when the hydrodynamic pressure equals p(g cos
a2w)’, resulting in a crest ‘amplitude’ of =
g cos a/2w?. Half a wave period later, the dynamic
pressure becomes —p(g cos a/2w)’, resulting in a
trough ‘amplitude’ of i, = 0.414 (. . Accord-
ingly, the maximum wetted height that can be
obtained with this procedure equals {uw — {nin =
1.414 £, For a deepwater wave not influenced
by the presence of a ship, assuming that the wave
breaks against a vertical wall (cos a = 1), the
wetted height equals the wave height, and the ratio
of maximum wave height to wave length turns out
to be about 1/9. The theoretical limit of this ratio
is around 1/7, indicating that wave elevations pre-
dicted with this method are within realistic bounds.

If the position s along the ship’s side exceeds
the wetted height {, the hydrodynamic pressure
is zero. Furthermore, if the hydrodynamic pres-
sure at the still-water level exceeds the theo-
retical limit for a breaking wave, i.e., if py(0) =
p(g cos a/2w)?, the hydrodynamic pressure is
obtained by substituting {,.. for ¢ into (4.5.3).
The resulting pressure corrections are schemati-
cally illustrated in Fig. 4.5.2, depicting the ship
cross section in the wave crest and in the wave
trough. For the wave crest case, the nonlinear
correction is seen adjusting the total pressure at
mean water level to zero at the wave contour.
For the wave trough case, it is seen that total
(adjusted) pressure is zero at the wave contour
when the hydrodynamic pressure is added to the
hydrostatic pressure.
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Figure 4.5.2 Schematic presentation of pressure correction for a ship cross section in a wave crest (left) and in a wave trough

(right).

4.5.2 Extreme Global Loads

Extreme loads are used to investigate ultimate
strength, at both hull girder level and individual
structural member level. Accurate assessment of
ultimate strength is important not only for the
initial design, but also for the operation, mainte-
nance, repair, and modification of the structure.
Of course, rule-based design comes first because
calculating ultimate strength requires known scant-
lings. Ultimate strength assessment is basically a
post-design safety check, and values must exceed
the extreme load effects by some specified margin.

As computational power increases, it is becom-
ing feasible to perform direct analyses of the hull
structure by combining hydrodynamic computations
with structural FE modeling. This modeling is well
suited for an elastic longitudinal global strength

assessment of ship structures. In general, however,
this kind of analysis is suitable only for an elastic
stress analysis and not for a collapse analysis.
Long-term predictions are called for to assess
hull girder strength against extreme loads that are
exceeded only once during the ship’s lifetime.
These extreme loads, generally based on a prob-
ability of exceedance of about 107, correspond to
the Recommendation No. 34 of IACS (2001) for a
return period of at least 20 years. This recommen-
dation generally serves as an accepted standard
of wave statistics to predict long-term (extreme)
loads for operation in unrestricted waters over the
service life of the ship. It is based on wave statis-
tics for the North Atlantic and documents wave
data as a so-called scatter diagram shown in Table
4.5.1. The wave climate is modeled as an ergo-
dic succession of short-term stationary sea states,

Table 4.5.1 IACS recommended wave climate for the North Atlantic
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1. LINEAR SEAKEEPING ANALYSIS

k4

NONLINEARLY CORRECTED
WAVE-INDUCED PRESSURES

!

PSEUDO TRANSFER FUNCTIONS
OF WAVE-INDUCED GLOBAL LOADS

!
EXTREME WAVE-INDUCED
GLOBAL LOADS
!
5. EQUIVALENT REGULAR WAVES

!

6. | TRANSFORMATION OF EXTREME
LOADS TO NODAL FORCES

A linear frequency domain seakeeping code
obtains transfer functions of ship accelerations
and wave-induced pressures.

Nonlinear corrections extrapolate linearly
computed hydrodynamic pressures up to the
wetted wave profile along the ship’s sides.

Integration of pressures yields nonlinear
pseudo fransfer functions of wave-induced
loads.

Extreme nonlinear wave-induced global
loads are obtained.

Equivalent regular waves are selected for
an assessment of extreme global loads.

Exreme loads are fransformed to nodal
forces to be applied to an FE code.

Figure 4.5.3 Flow chart to determine extreme global loads.

where each short-term sea state is characterized
by the two-parameter Pierson-Moskowitz seaway
spectrum with a significant wave height (Hs) and
an average zero up-crossing period (7%).
Computations start with the use of a linear
frequency domain code to obtain wave-induced
pressure distributions below the calm waterline.
These codes are either based on strip theory, or
they rely on the so-called panel method. Strip
theory codes are usually sufficiently accurate;
however, for ships with large bow flare and stern
overhang, where three-dimensional effects become
significant, panel codes often replace strip theory
codes. When panel codes are used, they almost
always account for forward speed effects under
the so-called encounter frequency approach, where
boundary conditions used to solve for pressures
acting on the ship’s hull are obtained with the
Green function evaluated for the ship advancing at
zero forward speed. This saves a huge amount of
computational effort, which is the reason why this
approach is widely used in panel method codes,
e.g., Rathje et al. (2000). The next steps consist of
nonlinear correction of hydrodynamic pressures,
integration of pressures to obtain global loads,
specifying extreme loads, selecting the correspond-
ing equivalent regular waves, and transforming the
extreme loads to nodal forces for an FE code. The
flow chart in Fig. 4.5.3 presents the major steps:

1. A linear frequency domain seakeeping com-
puter code analyzes ship motions in regular unit

amplitude waves of different lengths and direc-
tions to obtain transfer functions of rigid body ship
accelerations and wave-induced pressures acting
on the ship advancing at constant forward speed.
2. Based on these transfer functions, nonlinear
corrections are performed. Hachmann’s method is
employed to modify and extrapolate the linearly
computed hydrodynamic pressures to the wetted
wave profile along the ship’s sides. This is done for
a number of different wave amplitudes extending up
to the wave amplitude that will not be exceeded.

3. Integration of these wave-induced pressures
yields wave-induced loads. The sum of wave loads
and inertial forces is generally not in balance.
Therefore, the linear equations are resolved to retain
equilibrium. Repeating these load computations for
different amplitudes and frequencies and dividing the
loads by the corresponding wave amplitude results
in nonlinearly corrected pseudo transfer functions of
wave-induced global loads, corresponding to each
of the different wave amplitudes. This correction
artificially transforms a linear load response into two
responses, namely, a response of decreased ampli-
tude for hogging and increased amplitude for sag-
ging. Linear theory is valid only for infinitesimally
small amplitude waves. Consequently, linear theory
yields small amplitude motions about the ship’s float-
ing position in still water, resulting in wave loads of
equal amplitude in hogging and sagging, an effect
that is realistic only if the ship is wall-sided.

4. Long-term nonlinear wave-induced global
loads are obtained. Their formulation is based
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on the formulation of linear wave-induced global
loads, recognizing that the wave surface elevation
is a nonstationary Gaussian stochastic process that
can be discretized in a sequence of periods of
time over which the process is stationary. This
stochastic analysis yields cumulative distributions
of long-term wave-induced extreme loads.

5. Equivalent regular waves are selected for an
assessment of extreme global loads. Where appro-
priate, still water loads are first added to long-term
wave-induced loads. Amplitudes, wave lengths,
and wave crest positions of the selected equivalent
regular waves are then determined from their cor-
responding pseudo transfer functions.

6. Extreme loads are transformed into nodal forces
that can be applied to any standard FE code.

4.5.2.1 Extreme Wave-Induced
Load Formulation

For the linear case, extreme wave-induced loads
can be efficiently evaluated applying linear
potential flow hydrodynamic procedures in the
frequency domain together with spectral analysis
and a weighted summation of short-term Rayleigh
distributions of maxima. However, at least for
ships with small block coefficient, such as contain-
erships, wave-induced loads are highly nonlinear.
The asymmetry of global wave-induced loads,
especially the vertical bending moment, is the
visible nonlinear characteristic of this response. In
these cases, the linear procedure cannot be applied,
and the extreme wave loads must be based on load
predictions that account for nonlinearites together
with appropriate extreme vale distributions.

Several approaches have been proposed, and
presently it is not clear which is the best. Several
procedures, also discussed in Section 4.2.2, are
based on the assumption that the linear model
is a good identifier of conditions under which
extreme wave loads occur. Recall that Aadegeest
et al. (1998), for example, presented their extreme
regular wave method, whereby a regular wave
is first determined from linear long-term predic-
tions and then a nonlinear simulation is performed
for that particular wave to determine structural
loads. Baarholm and Moan (2002) employed the
so-called coefficients of contribution method to
investigate the nonlinear vertical bending moment
on a containership in the Northern North Sea by
using linear long-term results to identify those sea
states of the scatter diagram that contribute most
to the probability of exceedance of the structural
loads occurring during the ship’s lifetime. They
then applied a nonlinear simulation program to a
selected small number of sea states only.

Also recall the critical wave episodes method of
Torhaug et el. (1998) mentioned in Section 4.2.2,
which is adequate for the most advanced and time
consuming hydrodynamic codes. By performing a
linear time domain analysis for each relevant sta-
tionary sea state, this method identifies the random
incident wave sequences that result in the extreme
ship response. The wave sequences resulting in the
largest linear responses are then applied to the non-
linear analysis. In the most likely response method
of Pastoor et al. (2003), a linear frequency analyses
first determines the most likely extreme response.
Then, using the theory of Gaussian processes near
a maximum, the corresponding deterministic wave
elevation is produced and applied to the nonlinear
simulation. Another technique is the so-called con-
tour line approach. Based on a long-term analysis
of the wave climate, this method defines a set of sea
states that include the most severe environmental
conditions corresponding to a specific return period.
These sea states lie on an enclosed contour of the
scatter diagram, and the extreme response is the
most probable extreme value determined within all
short-term sea states on the contour line.

Schellin et al. (1996) and Guedes Soares and
Schellin (1998) generalized the linear long-term
prediction procedure to account for the nonlinear
asymmetry of the vertical bending moment by using
form functions that transform the amplitude of linear
transfer functions to nonlinear transfer functions
associated with sea states of different intensity.
Based on this approach, Guedes Soares et al. (2004)
and Schellin and Perez de Lucas (2004) took advan-
tage of a strip theory based time domain seakeeping
code to obtain the extreme wave-induced vertical
bending moment for a fast monohull operating in
the North Sea. First, they obtained transfer func-
tions for a range of wave amplitudes, and then they
directly computed response spectra with these trans-
fer functions for all sea states in the scatter diagram.

The procedure applied here to compute extreme
wave-induced loads is similar as it is also based
on the use of pseudo transfer functions. For the
ship in a regular wave with a wave height equal
to the sea state’s significant wave height, linearly
computed transfer functions are replaced by pseudo
transfer functions, nonlinearly corrected according
to Hachmann’s method (Section 4.5.1) to account
for the hydrodynamic pressure between still-water
level and wave contour. Amplitudes of pseudo
transfer functions for hogging and sagging, which
are now different, are then determined separately
by dividing the corresponding peak response values
by wave amplitude. This procedure is somewhat
inconsistent from a strictly mathematical standpoint
of nonlinear systems. This is because the response,
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although periodic, is no longer harmonic. However,
for practical purposes it has been shown to be more
than adequate, e.g., Rathje et al. (2000).

For strength assessment of the hull structure,
it is necessary to estimate the extreme values of
wave-induced loads during a ship’s average work-
ing lifetime. In computing the long-term response
it is necessary to decide on a probability level for
the extreme response. For example, if a lifetime of
20 years is assumed for a ship and an average wave
period is given as 6 s, the long-term probability
of exceedance (once in 20 years) is found to be
6/(20 x 365 x 24 x 60 x 60) = 10°*.

Then, all short-term response spectra for the given
wave spectra and the pseudo transfer functions must
be computed. Each wave spectrum, S,(w), is charac-
terized in terms of the significant wave height, H,, and
the average period between successive crests, 7., as
listed, for example, in Table 4.5.1. Each pseudo trans-
fer function, H(w, H,), is valid only for the particular
sea state’s significant wave height. Then, for each of
these wave spectra a short-term response spectrum,
Sk(w, H,), is obtained from the input wave spectrum,
S.(w), and the pseudo transfer function, H(w, H,):

Sk (w, H,) = S(w, H,, T%) - |H(w, Hy)

2 (4.5.6)

The variance of the response, 05, defines its statis-
tical properties and is obtained by integrating its
spectrum as follows:

P j; “S(w, Hydw 4.5.7)

Since the wave height is assumed to be Rayleigh

distributed, so is the response ~amplitude, Q. The
probability density function of Qis

pa(0, o) = % exp(— 2Q2 ) (4.5.8)
o) ]

and the short-term probability of exceeding the
value Qis
QZ
0:(@ > 0lo) = exp[- -2

g0

(4.5.9)

Thus, the probability of a value Q exceeding a
certain short-term response amplitude Q depends
only on the variance of the response, o73.

At a random time during its lifetime, the ship
experiences a sea state that causes a response of
variance ¢§, which itself is a random variable.
Thus, the probability of exceeding amplitude Q in
the long-term is obtained in multiplying the long-
term probability of exceeding the value Q by the
probability of occurrence of each sea state variance
and integrating over all possible variances:

0UQ> 0od) = | 0:(0 > Oloe) - [0, o9l dorg
(4.5.10)

where [pa(0O, 0p)]. is the general form of the
complete long-term probability density function
of peak values of response for the ship’s lifetime.
It is a weighted sum of the various short-term
probability density functions, each of which is for
a particular combination of specified conditions
and carries weighting factors to account for the
relative frequency of the particular combination.
The expression is as follows:

S5 5SS affifififlpa O o0l

[pa(Q)).=—
pAQ) XXX S Affififif
, (4.5.11)

where [pa(O, 09)]jun is the probability density func-
tion for the peak values of the short-term response,
conditionally dependent on certain relevant physical
parameters; 71 = (1/271)V ma/my is the average number
of responses per second for the short-term response;
moy and m, are moments of the short-term response
spectrum; and f;, f, fi, fi, and f,, are the weighting
factors for these physical parameters, correspond-
ing to severity of the sea state (from Table 4.5.1),
wave spectrum shape, wave heading (usually taken
to be uniform), ship speed, and the ship’s load-
ing condition, respectively. Other variations of this
comprehensive formulation can also be found in the
literature. The total number of responses expected
over the lifetime of the ship is then

m=(S3 S ST Afffififa) x Tx 607 (45.12)

where T is the total exposure time to the sea, in hours.

This evaluation of extreme cumulative distributions
of wave-induced loads over a long period of time is an
application of the so-called Lifetime Weighted Sea
method (Hughes 1988). In this method the total life-
time response history of the ship may be thought of
as a series of short-term response episodes, whereby
all of the short-term responses are combined by a
procedure that takes into account the relative amount
of exposure to the various levels of sea severity.

4.5.2.2 Demonstrative Example

Let us demonstrate the generation of global extreme
loads with an example. The ship we consider is a
typical modern containership with principal particu-
lars listed in Table 4.5.2. We chose this particular
ship because of its large flare at the bow and strong
overhang at the stern. We wish to generate these
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Table 4.5.2 Principal particulars

Length at design waterline 321.0 m
Rule length 3169 m
Molded breadth 45.6 m
Draft 150 m
Depth 272m
Displacement 147088 t
Block coefficient 0.64
Metacentric height 293 m
Service speed 26.9 kn

loads as part of the input for an FE strength analysis
of the hull structure. We assume the ship’s lifetime
to be 20 years, which in waves with an average
period of 6 s corresponds to a long-term probability
of exceedance of 107, The finite element model of
the ship’s structure, shown in Fig. 4.5.4, idealizes
all major structural components.

STEP 1—SHIP RESPONSE IN
REGULAR WAVES

A panel seakeeping code computes the ship’s
motions, accelerations, and associated wave-
induced pressures to unit amplitude regular waves
of different frequencies and headings. Wave fre-
quencies correspond to ratios of wave length to
ship length ranging from 0.2 to about 5.6. Wave
headings range from head seas (8 = 180 deg) to
following seas (8 = 0 deg) at 30 deg increments.
Results, when plotted against ratios of wave length
to ship length, yield transfer functions. Seakeeping
computations are based on discretizing the hull
surface of the ship by a total of 4460 small quadri-
lateral and triangular surface panels; of these, 2922
panels idealize the wetted hull up to the design
waterline.

Figure 4.5.4 Global FE model of the ship.
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STEP 2—NONLINEAR CORRECTIONS
TO WAVE-INDUCED PRESSURES

The ship’s wave-induced pressures and inertial
loads caused by resonant rolling are realistically
accounted for by increasing the roll damping in the
calculation of roll response, based on the equiva-
lent linear approximations documented by Himeno
(1981). The resulting maximum roll amplitudes are
found to be between 9 and 15 deg to both port and
starboard. Hachmann’s method is applied to obtain
nonlinearly corrected wave-induced pressures up
to the wave contour, accounting for the altered
wetted surface caused by the ship’s changed posi-
tion in finite amplitude waves. Amplitudes of the
regular waves for which these nonlinear correc-
tions are performed extend up to 8.5 m in 0.5 m
increments. For each wave, 50 different equidis-
tant wave phases are considered to assess critical
global loads for maximum values.

A sample of the computed pressure distributions
on the hull in a 7.0 m amplitude regular head wave
with a wave length of 264 m (0.83 of the ship’s
rule length) is shown in Fig. 4.5.5. Darker (blue)
panels designate high pressure zones; lighter (green
and yellow) panels, low pressure zones, viewed from
below. Wave pressures as well as wave contours
along the ship’s side are seen to correspond to wave
phases that represent hogging and sagging conditions.
In the sagging condition, breaking of wave causes
unsteady pressure transitions under the flared bow.

STEP 3—PSEUDO TRANSFER FUNCTIONS

Integration of external pressures yields wave-
induced loads. The imbalance of forces that gener-
ally results when summing the integrated pressures
and inertial forces is corrected for by small changes
of the ship’s accelerations, obtained by resolving
the linear motion equations. With all forces in
balance, this results in nonlinearly corrected load
responses relevant for the wave amplitude and fre-
quency under consideration. Repeating these load

computations for all wave amplitudes, frequencies,
and headings and dividing these loads by the cor-
responding wave amplitude yields nonlinearly cor-
rected pseudo transfer functions of global hull girder
loads. As these pseudo transfer functions depend on
wave amplitude, they no longer satisfy an important
criterion of linear dynamics, which stipulates that
the output signal amplitude (ship response) at any
given frequency is linearly proportional to the input
signal amplitude (wave amplitude). Of course, these
pseudo transfer functions are valid only for one
or, from a practical point of view, a certain limited
range of wave amplitudes.

This correction artificially transforms a sinusoidal
load response into two responses, namely, a response
of decreased amplitude for hogging and increased
amplitude for sagging. Of course, only half of the
cycles are of interest, positive ones in hogging and
negative ones in sagging since, ultimately, the inter-
est is stresses in deck and bottom deck structures,
respectively. This procedure is acceptable for long-
term predictions because the probability distribution
functions consider only peaks of the amplitudes.
Thus, linear wave-induced global loads are trans-
formed into two signals of differing amplitude, and
these signals are used as a basis to construct two
long-term distribution functions of peak values.

Samples of (linear) transfer functions together
with pseudo transfer functions are shown in
Fig. 4.5.6 as absolute values of vertical bend-
ing moment (VBM) at the ship’s midship section
for four different wave headings, here for 7.0 m
amplitude waves. As expected, absolute values of
nonlinearly corrected bending moments in hogging
are less than and, in sagging, greater than linear
bending moments. These results are typical for
other wave headings as well.

STEP 4—CUMULATIVE GLOBAL
WAVE-INDUCED LOADS

Long-term computations are performed for cumu-
lative distributions of global wave-induced loads

Figure 4.5.5 Wave pressure distribution on hull in regular head waves for hogging (left) and sagging (right).
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Figure 4.5.6 Transfer functions (linear) and pseudo transfer functions of wave-induced midship vertical bending moment in
regular 7.0 m amplitude stern waves (8 = 0°), quartering waves (8 = 30°), bow waves (8 = 150°), and head waves (8 = 180°).

according to the method described above in Section
4.5.2.1. The severity of the sea states considered
and their probability of occurrence are taken from
Table 4.5.1, where each short-term sea state is char-
acterized by the two-parameter Pierson-Moskowitz
seaway spectrum with a significant wave height,
H;s, and an average zero up-crossing period, 77. To
account for the short-crestedness of each seaways,
the short-term response spectra are multiplied by
the cosine squared spreading function (4.3.37). The
range of wave headings is divided into equal 30 deg
intervals. To account for speed reduction in waves,
the ship is analyzed while advancing at constant
two-thirds service speed. The ship’s loading condi-
tion corresponds to its maximum displacement, with
a distribution of containers that subject the hull
girder to the maximum allowable vertical still-water
bending moment in hogging. Samples of the result-
ing cumulative distributions of extreme loads acting
at the ship’s midship section, plotted as functions
of the probability level, are shown in Fig. 4.5.7
for wave-induced shear forces and in Fig. 4.5.8
for wave-induced bending and torsional moments,

respectively. Distributions based on nonlinearly
corrected values are significantly different than dis-
tributions based on linear values.

Of course, cumulative distributions are obtained
for the other extreme load components as well, and
this is done also at ship stations other than amid-
ships. These distributions, when used to determine
extreme loads acting at different stations, generally
result in smooth envelope curves of shear forces,
bending moments, and torsional moments over the
ship’s length, approximating the loading resulting
from systematically varying the ship’s position in
waves. For the probability level of 107%, Figs. 4.5.9
and 4.5.10 depict envelopes of the resulting wave-
induced shear forces and wave-induced bending
moments, respectively.

Modeling extreme loads is useful to assess the
elastic longitudinal ultimate global strength of the
hull girder. Therefore, extreme values must exceed
rule-based values. Recall that rule-based values
are nominal loads used to specify ship scantlings.
Thus, a direct comparison with rule-based values
is inappropriate.
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Figure 4.5.7 Absolute values of cumulative distributions of three-quarter-length values of vertical shear force (left)

horizontal shear force (right).

STEP 5—EQUIVALENT REGULAR
EXTREME WAVES

Bending moments acting on the hull reflect gross
effects of waves, and the midship bending moment is
one of the most important global parameters. There-
fore, let us illustrate the identification of extreme
regular waves by focusing on maximum vertical hull
girder bending moments in hogging and sagging.
Large amplitude waves with lengths close to ship
length will typically cause extreme response. This is
because in hogging, the fore and aft ends of the ship
are located simultaneously in wave troughs with the
midship located in the wave crest and, in sagging,
the fore and aft end of the ship are located simultane-
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and

ously in wave crests with midship located in the wave
trough. Theses waves are characterized by wave
amplitude, wave length, wave heading, and wave
phase (wave crest position referenced to amidships).
The wave amplitude of such an equivalent extreme
wave is determined by dividing the long-term value
of the load under consideration by the value of
its pseudo transfer function occurring at the wave
frequency and wave heading corresponding to the
maximum amplitude of the pseudo transfer function.
The wave length is obtained from the functional
relationship to the wave frequency; the wave crest
position, from the wave phase.

Let us demonstrate how to determine the ampli-
tude of the equivalent regular extreme waves. We
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Figure 4.5.8 Absolute values of cumulative distributions of

midship values of vertical (upper left) and horizontal bending

moment (upper right) and three-quarter-length values of torsional moment (lower).
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Figure 4.5.11 Determination of equivalent regular extreme wave amplitudes.

want to obtain amplitudes for the hogging condition
as well as for the sagging condition. Figure 4.5.11
shows the sum of still-water and wave-induced mid-
ship vertical bending moments as functions of wave
amplitude for the hogging and sagging conditions.
Positive values stand for bending moments in hog-
ging; negative values, for bending moments in sag-
ging. Linearly computed bending moments are seen
to be straight (dashed) lines. Nonlinearly corrected
values deviate from linear values. In accordance with
their pseudo transfer functions (Fig. 4.5.6), absolute
values are smaller in hogging and larger in sagging.
For the loading condition under consideration, the
midship still-water bending moment has a value of
6,820,000 kNm. The horizontal line in the middle of
Fig. 4.5.11 depicts this still-water bending moment.
From the cumulative distributions in Fig. 4.5.8 (upper
left graph), here for the probability level of 107,
the extreme wave-induced vertical midship bending
moments are seen to be 7,909,000 kNm for the hog-
ging condition and —12,273,000 kNm for the sagging
condition. By adding the still-water bending moment
to the long-term wave bending moments, we obtain
the extreme values of total midship vertical bending
moments in hogging of 14,729,000 kNm and in
sagging of —5,453,000 kNm. As seen in Fig. 4.5.11,

the corresponding amplitudes of the two equivalent
regular extreme waves turn out to be 9.31m for hog-
ging and 8.36m for sagging condition.

STEP 6—TRANSFORMATION OF EXTREME
LOADS TO NODAL FORCES

The external pressures caused by the extreme
wave-induced loads are added to inertial loads
and transformed to the FE model as nodal forces.
Nodal loads are given preference over surface
loads because, for a global strength analysis, nodal
loads yield sufficiently accurate results and their
application is straightforward.

4.5.3 Global Wave-Induced Loads According
to Class Rules

Reliable computation of loads is crucial for an
accurate global FE analysis of a ship. Classifi-
cation society rules (e.g., Germanischer Lloyd,
2006) require the ship to withstand global loads
that subject the hull girder to given (rule-based)
shear forces, bending moments, and torsional loads.
Accordingly, major classification societies publish
guidelines that are specially suited for a structural
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analysis of ships. Generally, these guidelines are
based on the equivalent regular wave approach to
obtain load combinations relevant for dimensioning
the ship structure. The guideline Global Strength
Analysis for Container Vessels of Germanischer
Lloyd (2007), for example, uses this approach. In
contrast to the loading approaches in the Common
Structural Rules for Bulk Carriers (IACS, 2006a)
and Common Structural Rules for Double Hull Oil
Tankers (IACS, 2006b), ship accelerations as well
as wave-induced pressures are obtained from first
principle hydrodynamic computations of the ship’s
behavior in regular waves.

The interactive software package GL ShipLoad
(Rorup et al., 2008) was developed as an aid to
assess the global structural integrity of container-
ships. Using the equivalent regular wave approach,
it constitutes the standard tool to generate rule-based
loads for a global FE analysis of containerships. The
global FE model of the ship’s structure serves as
input, and nodal forces that can be applied to that
same FE model are its output. Performing a struc-
tural analysis on this basis comprises several tasks
(Eisen and Cabos, 2007), schematically presented
by the flow chart in Fig. 4.5.12.

1. An FE mesh is generated to idealize all major
structural components, such as decks, transverse
and longitudinal bulkheads, walls, floors, web
frames, and shell plating.

2. Global loading conditions are selected from
load cases specified in the ship’s stability booklet.

1. GENERATION OF FE MESH

!
2 GLOBAL LOADING CONDITIONS

!

3 GROUPED MASSES ADDED
' TO FE MODEL
;
4. DESIGN WAVE CONDITIONS

A 4

5. EQUIVALENT REGULAR WAVES

A 4

6. ENVELOPE CURVES OF GLOBAL
LOADS

One selected load case subjects the ship to the
maximum allowable vertical still-water bending
moment in hogging. Another load case subjects the
ship to the maximum allowable vertical still-water
bending moment in sagging or to the minimum
allowable still-water bending moment in hogging.
The distribution of containers for these two load
cases causes the ship to float at its maximum
displacement.

3. To facilitate convenient access and reuse for
different loading conditions, components of the
ship’s basic masses are typically grouped into
assembled mass items made up of reusable mass
components. These grouped masses are added to
the FE model.

4. A large number of sea states, characterized
by different wave heights, wave lengths, and
wave headings are investigated systematically
for a realistic representation of wave-induced
loads. Containerships, having a high deck open-
ing ratio, may need special consideration because
load conditions in oblique seas often are decisive
from a structural strength point of view. In such
cases, it is not enough to separately analyze verti-
cal, horizontal, and torsional hull girder loads;
such effects have to be combined in a phase
correct manner to achieve realistic design loads.
A strip theory-based code solves the linear prob-
lem of a ship advancing at constant speed in
waves, considering a sufficiently wide range of
wave frequencies and wave headings. Viscous roll
damping is added and hydrodynamic pressures

An FE mesh is generated to match the structural
properties of the hull.

A set of global loading conditions are selected
for the structural analysis.

Grouped masses are added to the FE model.

Appropriate wave conditions for loads
are obtained.

Equivalent regular waves are selected for
an assessment of extreme global loads.

Longitudinal distributions of global loads
yield envelope cures.

Figure 4.5.12 Flow chart to determine global loads according to class rules.
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in finite amplitude waves are corrected according
to Hachmann (1986). The resulting pressures for
rule-based equivalent regular (design) waves are
generally specified for a lower probability level of
about 107, which is less than the probability level
of 107 for extreme loads. These resulting pressures
are integrated to obtain nonlinear pseudo transfer
functions of wave-induced global loads. Gener-
ally, these computations are extensive. Therefore,
to expedite computations, one or more dominant
load parameters (DLPs) are usually specified by
the classification society to represent design wave
loading conditions.

5. From a large number of sea states, a smaller
number of regular equivalent design waves are
selected which subject the hull girder to the required
design loads. For head and stern wave cases,
the selected wave heights subject the hull girder
to rule-based bending moments. For other wave
headings, wave length, wave phase, and roll angle
are systematically varied, such that the resulting
equivalent regular design waves subject the hull
girder to the other global design loads, such as shear
forces torsional moments. For each wave, some 50
different equidistant wave phases are considered to
assess critical loads for maximum values.

6. The longitudinal distributions of global loads
result in envelope curves.

The resulting pressures and inertial forces cor-
responding to the design load cases are transferred
as nodal forces to the FE model, ready as input for
the structural analysis of hull components.

Performing most of these tasks is state of the art.
Codes based on various numerical methods exist
that can obtain wave-induced loads and perform a
global FE strength analysis, and preprocessors are
commercially available to assist in setting up the
required meshes. However, modeling cargo loads
efficiently is not addressed by standard tools, because
it is specific to the subject ship design. Even if
software components were available for all the above
tasks, performing a structural analysis based on com-
puter generated loads remains complex and time
consuming. Codes from various vendors need to be
interfaced and executed in a coordinated manner, and
experts from different departments need to cooperate,
which can be an organizational challenge.

Software tool GL ShipLoad was developed to
address these problems. It integrates all algorithms
necessary to assess and combine the wave-induced
pressures and the ship’s structure to generate
appropriate external loads for the FE model. In this
way it facilitates the application of ship and cargo
masses as well as external, wave-induced loads
to the FE model. Structural loads come from the

acceleration of masses (inertial loads) and from
external (wave-induced) pressures. The program
provides support in modeling the mass distribution
of the ship and its cargo, in computing hydrostatic
and hydrodynamic pressures from waves, and in
combining both kinds of loads to obtain balanced
quasi-static load cases.

Read-in files are processed for the FE model and
the hull description, write-out files are prepared for
the results (loads), storage files are created for user
input data, and files are set up for communicating
with external programs (e.g., NASTRAN).

Data of nodes, elements, and materials used in
any standard FE program are loaded from the FE
model into a binary file format. The resulting nodal
loads consist of inertial loads that result from the
acceleration of the mass distribution and from static
and dynamic wave-induced pressures. These nodal
loads are either appended to the FE model file or
directly identified as output files of nodal loads.

In addition to detailed geometric information
contained in the FE model, principal ship particulars
have to be entered, mainly to evaluate the prescribed
global loads, such as rule-based vertical bending
moments. It is also possible to specify a frame table,
allowing the longitudinal positions to be addressed
by frame number rather than by a length coordinate.

Normally, hatch covers are not explicitly mod-
eled by finite elements, because hatch covers must
not contribute to the overall stiffness of the model.
For containerships, however, appropriate features of
hatch covers need to be entered as input, inasmuch
as deck container loads are applied at hatch covers.

Elements representing the hull need to be specified
to compute the vessel’s trim and to transform com-
puted hydrostatic pressures into nodal loads. This can
be done automatically by specifying the height up to
which the FE model represents the watertight hull.

To generate the appropriate external loads for
the FE model, all algorithms necessary to assess
and combine wave-induced pressures and the
ship’s structure are implemented. A graphical user
interface is provided to control the load generation
process in a time- and cost-saving manner. The
screen shot in Fig. 4.5.13 shows a sample view of
this interface (Cabos et al., 2006), consisting of user
input windows that can be opened by clicking on
separated tree items in the work space. The interface
is subdivided into areas “tree” (on the left), “output”
(at the bottom), and “workspace.” User input win-
dows are opened in the workspace by clicking on
the tree items. Additional symbols for actions that
are specific to the active window appear on the tool
bar. Some windows have a “preview” for graphical
feedback of the user input in the white input fields.
The section of the FE model in Fig. 4.5.13 shows



4-64 WAVE LOADS—STATISTICAL, DYNAMIC, AND NONLINEAR ASPECTS

Ele DRt Pew ook Wedow Hep

DeR ' 2 @A B/ 2@ ¥ [Da ® rr 22" -9 @

B 37 Equitenm
B 33 Cotin 'Wonem Amlich

=

34 Sean
15 Gmet [ierign Loadrase
G Grenmiste [iengn Losdcs

1E2IRERE2ERERENEEREREDE
2

T T AT I T T R TR T TR

| T ]

bem 20 27,3 [] | ey b 100 (re200 55 W | e |

Figure 4.5.13 Graphical user interface showing user input windows.

the currently examined container bay. At the mouse
position the tool tip displays bay, row, and tier
number of the container.

Tree items are arranged such that, by proceed-
ing from top to bottom, the user is guided through
all required steps, beginning with input of the prin-
cipal dimensions and ending with generation of
FE loads. A progress bar monitors the workflow of
lengthier computations, and a persistent log traces
the program run, displaying information, warning,
and error messages.

4.5.3.1 Load Groups

In GL ShipLoad all loads for each load case
comprise a linear combination of load groups. This
leads to an efficient storage of loads for many dif-
ferent wave conditions. Loads on the hull structure
result from acceleration of masses (inertial loads)
and from external (hydrostatic and hydrodynamic)
pressures of the surrounding water. Loads applied
to the FE model for each load case are sorted into
the following load groups:

1. Hydrostatic buoyancy loads

2. Static weight loads

3. Static tank loads

4. Six inertial unit load groups, resulting from
three translational and three rotational rigid body
accelerations of all masses except tanks

5. Six inertial unit load groups, resulting from
three translational and three rotational rigid body
accelerations of tanks (Tanks are grouped sepa-
rately because the fluid distribution inside the
tanks depends on the ship’s floating position.)

6. One hydrodynamic load group for each
selected wave pressure distribution

Any load case applied to the FE model is a
combination of these load groups. Combining the
first three load groups yields balanced hydrostatic
load cases. To obtain balanced hydrodynamic load
cases, factors for unit load groups are computed,
based on the condition that no residual forces
and moments remain when combining hydrostatic
and hydrodynamic load groups. These factors then
represent rigid body accelerations. For any chosen
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RELIABILITY-BASED STRUCTURAL DESIGN
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5.1 PROBABILISTIC APPROACH
AND SHIP DESIGN

5.1.1 General

The U. K. House of Lords Select Committee (1992)
highlighted that “modern science and technology
were not being adequately applied in many of the
fields which affect the safety of ships” and that
“newer industries were approaching safety regula-
tion in new and better ways.” In that respect,
nuclear, aeronautics, and space industries com-
pelled to introduce increasingly sophisticated tech-
nologies have encouraged the emergence of
systems of growing complexity. This made it nec-
essary to not only control the performance but also
to provide for malfunctions of any system from
design to operation. This necessity gave rise to the
emergence of a new science, risk analysis, based
on the assessment of

1. Reliability, i.e., the ability of a system to ensure
its primary role.

2. Availability, i.e., the capability of a system to
fulfill its function on demand.

3. Maintainability, i.e., the ability of a system to
be inspected and repaired.

4.  Safety, i.e., to make evidence that a system complies
with the level of safety as defined by the regulator.

The same report proposed to base ship safety on
this new RAMS concept and to set up a safety regime
based on

1. “Primary safety goals for all aspects of opera-
tion,” including standards for
a. Structural strength.

b. Stability.

c. Maneuverability and performance in a
seaway.

d. Operational
management.

competence and  safety

Using the same approach as for aeronautics or space
industries, these standards should be based on the
RAMS concept, including
a. The determination of acceptable risks. Risk is
the danger undesired events represent for humans,
the environment, and economic values and may
be defined as the product of the probability of
occurrence of an adverse event, and the conse-
quences that this undesired event produces.
b. Quantified risk assessment.
c. Analysis of costs and benefits.
2. “Asafety case for every ship trading commercially
produced by the operator and approved and audited by
the flag state.” In particular, the safety case has to dem-
onstrate that the ship is operated in accordance with the
primary goals. In other words, application of the RAMS
approach to a complex system enables
a. Development of the design according to
quantified objectives expressed by the permissi-
ble probabilities of failure.
b. Verification of the safety of the system and
its environment over its service life.
c. Cost optimization.

The capacity of a system to operate without major
failures, as characterized by its reliability, is therefore
ensured by defining performance standards rather
than design criteria. This last remark has been pointed
out by the U.S. National Academy of Science (1990),
which emphasized that “performance standards rather
than design criteria should be developed for spill
free tanker.” This means that we have to move from
design for compliance to design for performance.

5-1
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5.1.2 Review of Risk Analysis Techniques

Quantified risk analyses aim at identifying the haz-
ards and assessing the risks associated with them
and include the following six steps:

1. Definition of reliability objectives.

2. Preliminary risk analysis for identification of
a. Hazards, for example, fire, explosions, col-
lisions, groundings, typhoons, heavy weather
conditions, unsafe human behavior, poor com-
munication, defective equipment, etc. Various
qualitative techniques and procedures exist for
hazard identification, such as failure mode and
effect analysis (FMEA), hazard and operability
analysis (HAZOP).
b. Risks associated with those hazards.
c. Accidental scenarios considering events,
breakdowns, and errors leading to hazardous
situations or accidents. Various methods exist
for scenario identification, such as event tree
analysis (ETA), fault tree analysis (FTA), cause-
consequence analysis (CCA), escape evacuation
and rescue analysis (EER).
d. Necessary preventive measures for control-
ling the identified risks.

3. Risk assessment for comparison with acceptable

levels of risk:
a. Intolerable, requiring improvement of the
design,
b. Tolerable but not negligible, subject to reduc-
tion or mitigation on the basis of cost-benefit
analysis. This requires further action to make the
risk “as low as reasonably practicable,” refer to
the ALARP diagram of Figure 5.1 as provided
by the U.K. Health and Safety Executive (1992).

Intolerable

ALARP region Tolerable level

risk is modified subject to
only if benefit is reduction
desired or mitigation

Acceptable level
no need for
risk reduction

Figure 5.1 The ALARP diagram from U.K. HSC, 1992. ©
Crown Copyright 2005. Reproduced with permission of the
controller of Her Majesty’s Stationery Office.

c. Negligible or broadly acceptable, with no
modifications.
4. Risk reduction and mitigation measures gener-
ally requiring changes in the design.
5. Cost-benefit analysis for implementing remedial
measures and comparison with the benefits of risk
mitigation.
6. Selection of the optimum design and mitigation
measures.

5.1.3 Reliability-Based Structural Design
UNCERTAINTY, RISK, AND SAFETY

An ocean structure is a complex, thin, stiffened shell
with randomly disposed fabrication imperfections
due to material and workmanship quality and sub-
jected to random loads resulting from the action of
winds, waves, currents, ice, temperature, etc.
Consequently, many uncertainties are to be dealt
with in the design of ocean structures. First, there is
the uncertainty of the loads, especially those arising
from waves. The ocean environment is severe, com-
plex, and continuously varying. Ocean waves are
essentially probabilistic and can be adequately
defined only by means of statistics. Second, there
are uncertainties regarding material properties, such
as yield stress, fatigue strength, notch toughness,
and corrosion rate. For example, in mild steel that
has not had special quality control, the yield stress
can vary by as much as 10% and is also dependent
on the rate of loading and the effects of welding.
Third, there is inevitably some degree of uncertainty
in the analysis of a structure as complex as a ship.
Both the response analysis and the limit state analy-
sis necessarily involve assumptions, approxima-
tions, and idealizations in formulating mathematical
models of the physical environment and the struc-
ture’s response to that environment. Fourth, there
can be variations and hence uncertainties in the qual-
ity of construction, and this factor also has a signifi-
cant influence on the strength of a structure. Finally,
there are uncertainties of operations, such as operat-
ing errors resulting from human action (improper
loading, mishandling, etc.) or a change in service,
and wherever there are uncertainties, there is a risk
of failure.

Since there are always uncertainties, and hence
some risk of failure, it is impossible to make a struc-
ture absolutely safe. Instead it can be made only
“sufficiently safe,” which means that the risk can be
brought down to a level that is considered by society
to be acceptable for that type of structure. It is clear
that an objective evaluation of the strength of a given
structure is an impossible task. As more and more
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attention is paid to safety at sea as well as to eco-
nomic considerations, what every designer aims at is an
optimized combination of safety and cost. Therefore, a
rational design should rely on a statistical basis and the
structural design process must provide the means
whereby the designer can ensure that the degree of
safety meets or exceeds the required level. Application
of reliability analysis techniques to the design of
ship structures should improve the ship safety by
providing

1. Clear distinction between resistance and loads.
2. Better knowledge of the safety through appraisal
of uncertainties.

3. Better coherency of calculations.

4. Quantification of risks.

However, there are yet many difficulties in apply-
ing reliability concepts to ships, among which are

1. Lack of statistical data on modes of failure, dam-
age, workmanship, maintenance, extreme load value.
2. Influence of corrosion and minor damage that
contribute to the reduction of capability with time.
3. Does the probability of failure increase with
time and how should this affect the initial choice of
probability of failure?

LEVELS OF SAFETY

The required level of safety varies according to the
type of failure and the seriousness of its conse-
quences. Because these levels are ultimately deter-
mined by society, there are no precise values or exact
methods for determining them, but they can be esti-
mated by surveys and examining the statistics
regarding failures, particularly those types in which
the failure rate is considered by the public to be gen-
erally satisfactory, in the sense that the costs and
resource usages that would be required to further
reduce the failure rate are considered to be unwar-
ranted when balanced against other needs. From the
results of a study of merchant ship losses Lewis et
al. (1973) estimated a value of between 0.003 and
0.006 as the lifetime probability of overall structural
failure, which has been tacitly accepted in the past
for large oceangoing ships. In this regard, it is rele-
vant to examine what proportion of ship accidents
are due to structural failure. Figure 5.2 from Gran
(1978) presents the results of a survey which showed
that in a given sample of ship casualties only about
7% (0.138 x 0.54 x 100%) of severe accidents were
caused by structural failure.

Based on more recent statistics of losses of pro-
pelled seagoing merchant ships of more than 100
GT, as given in Table 5.1 from Lloyd’s Register of

Shipping (1999), and assuming that only about 10%
of severe accidents are caused by structural failure,
it may be concluded that the lifetime probability of
overall structural failure would range from 0.004 to
0.005. From similar studies for other types of struc-
tures it would appear that the total annual failure
probability per structure (aircraft, drill rig, etc.)
ranges from 1073 or less for failures that have mod-
erately serious consequences (substantial economic
loss but no fatalities) to 1075 or less for catastrophic
failures, such as the crash of a passenger aircraft.

A different approach to the question of required
level of safety is the use of economic criteria, as pro-
posed by the Construction Industry Research and
Information Association (CIRIA 1977) and the
International Ship and Offshore Structures Congress
(ISSC 1994a and 1997). This is particularly appro-
priate for cases in which loss of life is not involved.
For a large number of similar structures the total
cost Cy of each of them is of the form

C,=C,+P.-C.=C, +R (5.1.1)
initial cost.
probability of failure over
expected lifetime of the structure.
present value of expected cost of fail-
ure, including repair cost and eco-
nomic consequences of nonoperability,
salvage operation, pollution abate-
ment, and cleanup as well as loss of
reputation and public confidence.
cost of failure defined as the product
of the probability of failure and con-
sequences that this failure produces
(R quantifies the risk).

where C;
Pr

the

Cr

From the owner’s point of view, the required
probability of failure is that which minimizes R,
while the regulatory bodies have in addition to take
into account the consequences of catastrophic struc-
tural damage in regard to human life and protection
of the environment. Taking into account that there
are various causes of failure the cost of failure R
may be written as

R:PF'CF:ZPFJ"CFJ'ZZR/' (5.1.2)
j j

in which Py is the probability of occurrence of a
particular mode of failure and Cp; the expected cost
associated with that mode of failure. The designer
has first to determine the various modes of failure of
the structure and their economic consequences,
including accidents such as collision or grounding
that may have dramatic consequences on human life
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ONE YEAR OF
SHIP OPERATION

ACCIDENT
TYPE:

HULL FAILURE

TYPE:

FAILURE IN

MAIN STRUCTURAL

ELEMENTS:

/

SEVERE MINOR ROUTINE NO
ACCIDENT ACCIDENT FAILURE FAILURE
0.015 0.035 0.20 0.75
| l
HULL FAILURE NAVIGATION FIRE AND MACHINERY OTHERS
ROUGH WEATHER| | FAILURE EXPLOSION FAILURE 0.047
0.138 0.514 0.233 0.068
/ y
STRUCTURAL LOSS OF FOUNDERING
FAILURE STABILITY AND MISSING
0.54 0.26 0.20
y y
DECK AND HOLDS AND SHIP SIDES BOTTOM SUPER -
HATCHES BULKHEADS 0.23 022 STRUCTURE
0.15 0.36 ' 0.04

Figure 5.2 Empirical distribution of ship casualties (from Gran, 1978).

Table 5.1 Total 1998 Loss Rates (Per 1000 Ships at Risk) by Ship Type, Category, and Incident Type (from Table

4b of Lrs, 1999)

Ship Type Foundered/Missing Fire/Explosion Contact Types? Overall
LPG tanker 1.0 1.0 2.1
Chemical carrier 0 0.4 0.8
Oil product tanker 0.6 0.4 1.0
Bulk dry 1.4 0.6 1.2 34
General cargo 1.9 0.2 1.7 4.3
Container 0.4 0.4 1.3
Refrigerated cargo 1.4 1.4
Ro-ro cargo 0.6 0.6 0.6 2.3
Passenger ro-ro cargo 0.8 0.8 1.6
Passenger (cruise) 3.0 3.0
Passenger ship 0.4 0.4
Fishing vessel 1.3 0.2 0.5 2.2
Overall 1.0 0.2 0.7 2.0

*Contact types include collision, wrecked/stranded, and contact.
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and environment, and second to minimize the cost
of failure R. Optimizing the risk R resulting from the
individual risks R; requires quantifying the safety
levels for each hazard, taking into account that the
target probability of failure Py; associated with the
risk j depends not only on the consequences of that
particular risk but also on that of the other risks.

These overall considerations show how an eco-
nomic approach can be a useful complementary tool
to decide on the relative safety margins of the vari-
ous structural members.

5.2 RELIABILITY-BASED DESIGN
PROCEDURES

5.2.1 General

Probabilistic methods have been used in civil engi-
neering for many years now. Pugsley (1942) and
Freudenthal (1947) were the pioneers for aircraft and
civil engineering in the 1940s. They demonstrated
how a relationship can be derived between safety fac-
tors and probability of failure, provided that the statis-
tical distributions of the random variables are known.
In subsequent years, these methods were further
developed and were increasingly incorporated in
structural design codes, both for steel and concrete. In
the latter case, this approach has been particularly
successful because it accounts for the large variability
in the strength of this material. Probabilistic design
codes have been developed for the design of offshore
structures stimulated by the higher risks and the
higher economic stakes involved in that field.

In contrast, it is only recently that the probabilis-
tic approach has been introduced in ship structural
design procedures, in spite of the obvious probabil-
istic nature of wave loads. The load and response
analysis is much more complicated for ships than it
18 for fixed structures or for aircraft, because it must
deal with the exceedingly complex interaction
between wave excitation and ship motions merely to
compute the loads. This analysis capability has only
recently become available and still has limited
usefulness.

5.2.2 Reliability Procedures

GENERAL

Reliability procedures are generally classified accord-
ing to the share given to probabilistic calculations:

1. Level I procedures (first-moment methods). In
level I procedures, such as the partial safety factor

method, “characteristic” or nominal values of the
various random variables are used and safety fac-
tors covering the uncertainties in the variables are
introduced in the limit state equations, whose val-
ues are based on the results of level II reliability
analyses.

2. Level Il procedures (second-moment meth-
ods). In level II procedures, the various random
variables are represented by their mean value and
standard deviation; where the random variables
are correlated, there is also a need to measure their
degree of correlation. Among these procedures,
the reliability index method is the most frequently
used.

3. Level Il procedures (full probabilistic). These
procedures utilize the complete probability distri-
bution functions of all relevant quantities (loads,
load effects and limit values) for calculation of the
probability of failure P, associated to each load
and each mode of failure. These probabilities are
then combined into an overall probability of
failure.

4. Level 1V procedures. These methods combine
both event probabilities of failure and the associated
benefits and costs. These procedures are used for
particular structures whose failure may have dra-
matic consequences.

Whatever procedure is used, the designer must
define the capacity C of the structure or of a struc-
tural element, that is to say, its ability to withstand
the load effects (or demand D) that it may be sub-
jected to. Also, a criterion must be chosen represent-
ing the limit above which the structure is considered
as to have failed. This criterion should be independ-
ent of loads and should be a specific characteristic of
the material or the geometry of the structure; for
example,

Von Mises criterion.

Limit value of deformations.
Critical buckling stress.
Limit value of crack length.
Limit value of acceleration.

Nk

Each of the two parameters C and D depends on
design variables that are randomly distributed. Their
probability density functions and at least their mean
and standard deviation are to be defined. This is one
of the most difficult problems to solve prior to pro-
moting reliability-based ship structural design, since
reliability analyses carried out in the past on various
types of ship structures have shown how the calcu-
lated level of safety is very sensitive to the choice
of probability distributions adopted for the various
stochastic variables.
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LIMIT STATES

First, it is necessary to define the various modes of
failure or limit states that may deteriorate the struc-
ture. A limit state is defined as a condition for which
a particular structural member or a complete struc-
ture is unable to perform the function for which it
has been designed. According to the ISO (1994),
there are four types of limit states:

1. Serviceability limit states involving deteriora-
tion of less vital functions and including
e Local damage that may reduce the durabil-
ity of the structure or affect the efficiency of
structural or nonstructural elements.
e Unacceptable deformations that affect the
efficient use of structural or nonstructural ele-
ments or the functioning of equipment.
e Excessive vibrations that cause discomfort
to people or affect nonstructural elements or the
functioning of equipment.
2. Ultimate limit states leading to the collapse of
the structure and including
e Loss of equilibrium of the structure or part
of the structure, considered as a rigid body (e.g.,
overturning or capsizing).
o Attainment of the maximum resistance
capacity of sections, members, or connections
by gross yielding, rupture, or fracture.
o [nstability of the structures or part of it,
such as buckling of columns, plates, shells, and
stiffened panels.
3. Fatigue limit state resulting from damage accu-
mulation under the action of cyclic loads.
4. Accidental limit states, such as collision or
grounding.

LIMIT STATE FUNCTION

Any failure criterion as obtained from application of
first engineering principles may be expressed by a
limit state function g(x) = g (x, x,,..., X,,) in which
the x;’s represent the design parameters:

g(x) = g(xl’ X2yeees xn)
g(x) = Capacity of the structure — Load effects

This limit state function characterizes the condi-
tion of the structure and defines in the x-space two
domains of safety separated by the failure surface:

g(x) <0 1in the unsafe domain

g(x) >0 1in the safe domain

g(x) =0 on the failure surface or limit state
surface

If we replace in the function g(x) the parameters
x; by the corresponding random variables X;, we
obtain a random variable, which is called the safety
margin M = g(X). Where the resistance function C
and the load effect function D are independent ran-
dom variables, the safety margin M may be expressed
as the difference between C and D:

M=C2-D (5.2.1)

MODELING OF UNCERTAINTIES

According to the ISO (1994) and Nikolaidis and
Kaplan (1991), the uncertainties of any basic varia-
ble may be classified as follows:

1. Statistical or random uncertainties that arise
purely from genuine statistical randomness and can
therefore be properly and adequately assessed using
statistical theory.

2. Approximational or modeling uncertainties that
arise from the assumptions, approximations and
judgments necessarily involved in any design task.
These approximational uncertainties can be reduced
by improving the knowledge.

(A) STATISTICAL UNCERTAINTIES

The uncertainties that arise because of the random-
ness of the variables can and should be assessed by
means of basic statistical theory. To do this, it is
necessary to establish what type of distribution (nor-
mal, Poisson, etc.) is involved. In some cases, this is
known from theoretical considerations. In other cases,
it is possible to determine by observation which basic
type most nearly resembles the actual distribution.
Once the type of distribution is known, the uncer-
tainty can be calculated by means of the basic laws
and relationships of statistics. When applying relia-
bility methods that require only the mean value E (X)
and the standard deviation Gy of the random variable
X, these values may be determined from the results
of measurements without any assumption on the
probability distribution:

i=n

1
E(X —;;xi

1 i=n

> x—E(X))

n—1“5

(5.2.2)

oy = (5.2.3)
where the x;’s are the measured values of the random
variable X.

A very useful way of dealing with statistical uncer-
tainty is in term of a characteristic value, which is
the value corresponding to a specified percentage of
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Figure 5.3 Illustration of characteristic values.

the area under the probability density curve, that is,
a specified probability of exceedance. For example,
Figure 5.3(a) illustrates a characteristic value of the
load effects D, corresponding to a 5% probability of
exceedance. Figure 5.3(b) illustrates a characteristic
limit value of the capacity C,, in which case the 5%
probability refers to nonexceedance.

In contrast to the safety index method, which uses
the mean values £(C) and E (D) of resistance and load
effects, the partial safety factor method uses “charac-
teristic” values, thereby automatically accounting for
the statistical probability of failure. Thus, if the only
uncertainty was purely statistical (e.g., if C and D
followed exactly their assumed distribution func-
tion), there would be no need for any safety factor,
and the strength constraint would be simply

C.z2D, (5.2.4)
where the characteristic values C. and D, would be
selected so as to provide whatever degree of safety is
required.

(B) APPROXIMATIONAL UNCERTAINTIES

In reality, of course, besides the purely statistical
uncertainty, there is always some additional uncer-

tainty, which is either not statistical in nature (e.g.,
uncertainty arising from value judgments, from
approximations, or from legal, political, or other non-
technical influences on design) or which, although
statistical, cannot be included in that category because
sufficient information is not available. This uncer-
tainty is here called approximational because most of
it arises from the approximations that are inevitable in
structural design. Indeed, even the use of statistical
theory to describe ocean waves involves some
assumptions and approximations. But, in dealing with
any statistical aspect in design, the goal should be first
to obtain sufficient information so as to be able to use
statistical theory and to account for most of the uncer-
tainty by this means, even though some approxima-
tions are still required, and then to seek to improve the
information so as to further reduce the approxima-
tional uncertainty. Thus, as more information becomes
available, the amount of approximational uncertainty
is reduced. However, it will be never entirely elimi-
nated; some approximations will always be neces-
sary, and in addition there will be always some sources
of uncertainty for which statistics are not entirely
adequate; of that, at least, there is no uncertainty. This
is particularly the case for blunders that include
neglect and human errors, considered responsible for
about 70% of structural failures. In conclusion, at
each step of the structural design:

Description of the environment.
Calculation of the design loads.
Combination of loads and load effects.
Structural response analysis.

Selection of the failure criteria.

Nk W=

there are approximational uncertainties that have to
be identified and properly modeled.

(C) MODELING OF UNCERTAINTIES

According to the method proposed by Ang and
Cornell (1974) for modeling statistical and approxi-
mational uncertainties, any random variable of actual
value X can be expressed as follows:

X = B[BHXO (525)

where X, = value of the random variable X as given
by a design code

Xp = theoretically predicted value of the vari-
able X

X
BH:_'

Xp
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B, measures the statistical uncertainty while B
measures the approximational uncertainty. Assuming
that B; and B;; are independent random variables, the
mean value E(B) and the coefficient of variation Vjp
of the random variable B = B; B;; are given by (refer
to Appendix 5-A)

E(B)=E(BI)E(B”) (5.2.6)
VB=EU( NA
V + VBM 5.2.7)

where o is the standard deviation of B.
If the various approximational uncertainties B;

1=n

B, = H B,
i=1

are identified, B;; may be expressed as

and the total uncertainty B is
B=B,[]B
i=1

where the B/’s represent all the approximational
uncertainties occurring in determination of the ran-
dom variables. If the various uncertainties are assumed
uncorrelated, the mean value E (B) and the coefficient
of variation V; of the random variable B are given by

B[ E (2)

i=n

Vo4V, \/W [H(1+VI;‘: —1]

i=1

(5.2.8)

(5.2.9)

(5.2.10)

STRUCTURAL RELIABILITY

As already mentioned, the reliability of a system defines
its ability to perform its primary role over a specified
period of time. This general definition may be expressed
in a probabilistic manner as “the probability of a device
performing its function over a specified period of time
and under specified operating conditions.”

The reliability of any structural component with
respect to a given mode of failure is therefore defined
as the probability that it will not fail:

RzP[gx >O]

_[ Px, x,..

g(x) >0

xl’ 29 X

dx,, dx,...dx,
(5.2.11)

n

where px(x) is the “joint” probability function of the
random variables X and the domain of integration
includes all values of the X%s where the safety mar-
gin is positive. The probability of failure P;is conse-
quently given by

P, =1-R=P[g(x <0]

j le X5 00X, xl’x2’ > X, dxldxz...dxn
g(x) <0

(5.2.12)

The calculation of the probability of a particular
type of failure involves the probability density functions
of the relevant random variables. If it is assumed that the
capacity C of the structure and the demand D or load
effects are independent random variables represented by
two probability density functions, respectively, p(-) and
pp(+), as shown in Figure 5.4, then the probability of
this particular type of failure occurring is

P, J [J pe (& df]pg (n dn
where F(-)is the cumulative distribution function of
C. This is illustrated in Figure 5.4, which shows that
even though the mean value E(C) of the capacity is
well above the mean value E(D) of the load effects
there is still overlap of the curves and hence some
possibility of failure. (Note: The probability of fail-
ure is not equal to the area of overlap, but this area
nevertheless provides a useful visual and qualitative
indication of Pj). The figure also shows that the

important regions of the distribution are the tails,
becausethisiswherethe overlapoccurs. Unfortunately,

=
0,2 CAPACITY C
2 DEMAND D
=10}
SO
x
E(D) E(C) C.D

Possibility of D>C
hence probability of failure

Figure 5.4 Probability distributions of the capacity and load
effects
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it is this portion of a distribution curve that is most
difficult to obtain with any precision, mainly because
one is dealing with rare events.

TIME-DEPENDENT RELIABILITY

Both capacity C of the structure and load effects D
are generally time-dependent random variables. For
example, the capacity C may continuously deterio-
rate over the ship’s life under the effect of corrosion
or damage accumulation, such as fatigue and crack
propagation. Time-dependent reliability problems
consist of determining the time # = 7 when the limit
state function g[x(#)] becomes negative; this time 7,
called the time to failure, is a random variable. The
probability that g[x(¥)] < O is called the first pas-
sage or outcrossing probability. Additional informa-
tion is given in Section 5.5.1.

If the effects of deterioration with time of the capac-
ity C are neglected, taking into account that the struc-
tural reliability is maintained over the ship’s life thanks
to a system of periodical surveys, the reliability of ship
structures can be determined by applying the theory of
stochastic process for calculation of the extreme value
distribution of the load effects. Stochastic variables are
then modeled by the distribution of their extreme val-
ues over the lifetime period and introduced as time-
invariant random variables in the limit state functions.
Moreover, where the structure is subjected to two or
more time-dependent loads the theory of stochastic
load combination has to be used, bearing in mind that,
for independent stochastic variables, it is unlikely that
their maximum respective values occur at the same
time. This is particularly the case for the various wave-
induced loads acting on the ship structure. Examples of
load combination methods are given in Section 5.4.3.

5.3 PROBABILISTIC DESIGN

The task of achieving a specified level of safety can
be pursued at various levels of rigor. We shall first
present various approximate methods based on level 1
and II procedures. Then we shall show that a fully
rigorous method requires the gathering of a great
deal of information and is simply not justified in the
majority of cases, and finally we shall present exam-
ples of simplified level III procedures.

5.3.1 Partial Safety Factor Method (Level I
Procedure)

The basic idea of the partial safety factor concept can
be understood on the example of the load and resist-

ance factor design (LRFD) format, introduced by the
American Institute of Steel Construction (AISC 1994)
or classification societies for the design of steel con-
structions or ship structures. The old format, called
working stress design (WSD), was expressed as

R
—2F,+F, +F, (5.3.1)
v
where R = nominal resistance.
~ = safety factor.
F» = nominal gravity load.
F, = nominal live load.
F,= nominal environmental load.

Designs based on the WSD format have proven to
provide reliable structures without considering explic-
itly uncertainties and probability distributions of the
random variables. However, this format was not able
to design structures with uniform safety levels because
one safety factor cannot cover all the numerous uncer-
tainties in the design variables. In the LRFD format,
e.g., refer to Ayyub et al. (2002), or Assakaf et al.
(2002), the design equation is expressed as

TwC2 i F, (5.3.2)

i=1

where -, = resistance reduction factor.
F; = nominal load effect due to load compo-
nent i.
v, = amplification factor for load component i.

The coefficients ~y, and -y, depend on the accuracy
of the method considered for calculation of loads
and resistance and are based on the results of proba-
bilistic models, measured data, and past satisfactory
experience.

In level I procedures based on the partial safety
factor (PSF) concept, the design parameters are con-
sidered random variables, represented by their char-
acteristic or nominal values. For each limit state, a
limit state function is determined from application
of first principles, and the safety of the structure is
expressed in terms of partial safety factors (PSF),
which take into account all the uncertainties that
affect the determination of the design variables and
whose values are based on the results of reliability
analyses (refer to Section 5.3.4). If the capacity C
and demand D are independent random variables,
the design equation expressed in the PSF format is

%anv > P (1, F)

(5.3.3)

where F, = characteristic values of load effects, cor-
responding to a specified percentage of
the area under the probability curve.
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C, = characteristic value of the capacity of
the structure, corresponding to a speci-
fied percentage of the area under the
probability curve for the limit state
being investigated.
value of the demand calculated from the
characteristic values of loads and weighed
by the partial safety factor ~, covering
approximational uncertainties in loads
resulting from approximations and
assumptions in the description of the
environment.
partial safety factor covering uncertain-
ties in the material characteristics.
partial safety factor covering approxima-
tional uncertainties in the actual capacity
of the structure, such as assumptions and
approximations in the response analysis
and the limit state analysis.
= additional partial safety factor taking
into account the degree of seriousness
of the particular limit state in regard to
safety and serviceability.
Equation (5.3.3) may be generalized to multiple
types of loads:

D(’yf Fk):

C _ YD, (v, kFE) (534

ViV e i

All F,; are not simultaneous and, depending on
the structural component, a load combination factor
k; has to be considered to take into account that
extreme values of wave-induced loads do not occur
at the same time (refer to Section 5.4.3).

Because of approximational uncertainties the char-
acteristic values that account for statistical uncertainty
are not sufficient in themselves. It is necessary to fur-
ther increase the separation of the capacity and
demand curves, by some amount that can only be
estimated and requires judgment, in order to retain
the required degree of safety. Thus, there is a need for
some simple and explicit method for adjusting the
separation between these two curves, and the coeffi-
cient ~y, provides just a method. Therefore, instead of
regarding this factor as a single quantity, we regard it
as the product of several partial safety factors, depend-
ing on the type of structure and the level of detail pre-
ferred for their specification. These safety factors are
used for two main purposes:

1. To account for the degree of seriousness of the
particular limit state in regard to safety and service-
ability (for a commercial ship, the latter refers
mainly to the economic consequences of the fail-
ure), taking into account any special circumstances
(purpose of the ship, type of cargo, interaction of

this limit state with others, etc.). Since safety and
serviceability are not the same, it is best to use two
independent partial safety factors for this task.
2. To account for the approximational uncertain-
ties that are not purely statistical and therefore can-
not be properly modeled (refer to Section 5.2.2):
a. Deviation of the probability distribution of
the loads, due to unforeseen actions or condi-
tions, and consequent deviation of the load
effects.
b. Deviation of the limit value from its assumed
distribution due to unpredictable factors, e.g.,
poor workmanship.
c. Others matters requiring estimation and
judgment.

5.3.2 Second-Moment Methods (Level 11
Procedures)

In second-moment methods, all failure modes are
independent and treated separately. This greatly
simplifies the process but it requires that a value of
the acceptable risk must be defined separately for
each mode of failure (although in practice the same
value can be used for all types that have the same
degree of seriousness) and it precludes the possibil-
ity of combining the separate risks. Therefore, it
requires approximations, which must necessarily be
on the conservative side, in order to deal with com-
binations of loads of differing probability and com-
binations of interactive modes of failure.

CORNELL SAFETY INDEX

This concept is the earlier method and was initially
introduced by Freudenthal (1956). Subsequently
Cornell (1969) defined a reliability safety index as

E(M)

535
- (M) (5.3.5)

8=

where E(M) = mean value of the safety margin.
o(M) = standard deviation of the safety
margin.

If the capacity C of the structure and the load
effects D are assumed to be independent random
variables, the safety margin M may be defined as the
difference between C and D

M=C-D (5.3.6)
and failure occurs when the margin becomes nega-
tive. According to equation (5.3.5) the safety index
[ is given by
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E(C -E(D
Joi+o,

Since C and D are random variables, M will be
likewise, having a probability density function
Py (M) as shown in Figure 5.5(a).

Therefore, the degree of safety depends not only
on the separation of the two curves, as measured for
example, by the distance between their mean values
E(M)=E(C)—E(D), but also inversely on the spread
of the two curves, as measured for example, by their
coefficients of variation. Therefore, it will also bear
some inverse relationship to V,,, the coefficient of
variation of M. If V,, is large, the degree of safety
will be correspondingly less and vice versa. The
probability of failure is

8= (5.3.7)

P;=Prob [M <0] (5.3.8)

Subtracting E(M) from both sides, and normaliz-
ing by means of the standard deviations o (M) gives
M-EM  EM

< j—

P. =Prob
! o o (M O'(M

(5.3.9)

Figure 5.5(a) shows that the safety index meas-
ures, in standard deviation units, the distance from
the mean safety margin to the failure region.

P.(C). p,(D)

\ e
\

Figure 5.5(a) Probability density function of the safety
margin.

By definition, the coefficient of variation (COV) is
o (M)
"E(M)

and therefore

M-E(M)

R LE

1
< _E] (5.3.10)

The left-hand term is the normalized margin, for
which the distribution has zero mean and unit vari-
ance. Let us denote this normalized margin as M,
and let Py,(-) be its cumulative probability
distribution:

_ M-E(m)
T o(m)
Pyo(.) = cumulative probability distribution of

M, as shown in Figure 5.5(b)
= Prob M, <))

0
M

Figure 5.5(b) Probability density function of the normalized
safety margin.

Equation (5.3.10) becomes

1
Pf=Prob[M0 <—V—M] (5.3.11)
The occurrence of 1/V,, on the right-hand side
within the brackets confirms that the degree of safety
depends on the inverse of the coefficient of variation
of the safety margin. We therefore give this quantity
the name safety index and denote it 3

g=1 (5.3.12)

In terms of the safety index, equation (5.3.11)
becomes

=P

(-3 (5.3.13)

P, =Prob (M0 <-p

This last expression shows that there is a direct
correspondence between the safety index (3 and