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Introduction

Transverse loading applied to a beam
results in normal and shearing stresses in
transverse sections.

Distribution of normal and shearing
stresses satisfies

Fy =]oyxdA=0 Mx:I(yTXZ_ZTXy)dA:O
Fy=[rydA=-V My =]z0,dA=0
F, =[7x,dA=0 M, =[(-yoy)=0

When shearing stresses are exerted on the
vertical faces of an element, equal stresses
must be exerted on the horizontal faces

Longitudinal shearing stresses must exist
In any member subjected to transverse
loading.
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Shear on the Horizontal Face of a Beam Element

P, [P,
T w i
l l I _
! For equilibrium of beam element

- $F, =0=H + [(sp o0 )dA
- X > . A

Consider prismatic beam

ns
B

Mp-M
al B @ AH = DI ijdA
) A
é_y_l;__e : 9‘_‘_‘_‘_‘_‘_£i """ i et
] \ Q=[ydA
A

& MD—Mczd—MAx:VAx
g dx
K]
< . SubsUtu;c;gg,
> AH =< Ax
Pl - _AH _VQ

= —— =—"=shear flow
AX I
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Shear on the Horizontal Face of a Beam Element

e Shear flow,

— A
¢l_ID = _ AR :V—sthear flow

_________ — T
1 C' D’ 1
e Lo 15,/ ¥+ where
Q=]ydA
A
=first moment of area above y;

= [y2dA
A+ A
=second moment of full cross section

£l

y e Same result found for lower area
- AH' B VQ' B

SaliEeE T | “' q —q’
é_yﬂf_c_ ¥ 24 fun P:’\ NA ax: |

— ~— Ax

- . M Q+Q=0

c" D" = first moment with respect
to neutral axis
AH' =-AH




SVIECHANICS OF MATERIALS
Example 6.01

100 mm ]
[oiomm— SOLUTION;

» Determine the horizontal force per
unit length or shear flow g on the
lower surface of the upper plank.

 Calculate the corresponding shear
force in each nail.

A beam is made of three planks,
nailed together. Knowing that the
spacing between nails is 25 mm and
that the vertical shear in the beam is
V =500 N, determine the shear force
In each nail.
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il Example 6.01
0.100 m 0.100 m
j_ < - SOLUTION:
b ~ 0.060 m ]  Determine the horizontal force per
= 0.100m unit length or shear flow q on the
lower surface of the upper plank.
J o0020m q=VQ_ (500N)(120><160 m )
0=A | 16.20x107°m
=3704
o =(0.020m x 0.100m }(0.060m) %n
8 =120x10°m? |
K] . 3 « Calculate the corresponding shear
B | = ,(0.020m)0.100m) force in each nail for a nail spacing of
‘é‘ +2[L(0.100m)(0.020m)? 25 mm.
o +(0.020m x0.100m)(0.060m)?] F =(0.025m)q = (0.025m)(3704N/m
N F=92.6N
=16.20x10®m* 92.6
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Determination of the Shearing Stress in a Beam

e The average shearing stress on the horizontal
face of the element is obtained by dividing the
shearing force on the element by the area of
the face.

AH gAx VQ Ax
Tave = = =
AA  AA | tAX
_VQ
ot

e On the upper and lower surfaces of the beam,
T,,= 0. It follows that 7,,= 0 on the upper and
lower edges of the transverse sections.

o If the width of the beam is comparable or large
relative to its depth, the shearing stresses at D,
and D, are significantly higher than at D.
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Shearing Stresses z,,in Common Types of Beams

 For a narrow rectangular beam,
VvQ 3V(, V2
Ty == 1=
b 2A|" ¢
3V
Tmax:EZ

T

» For American Standard (S-beam)

- S — 'f and wide-flange (W-beam) beams
8 : Lo =02

’E‘ , : ave It

_ N \V
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Further Discussion of the Distribution of

Stresses In a Narrow Rectangular Beam

y « Consider a narrow rectangular cantilever beam
é" ,- subjected to load P at its free end:
B 3P y? _Pxy
,, L i ZA( ‘Cz] ET
[ * Shearing stresses are independent of the distance
from the point of application of the load.

» Normal strains and normal stresses are unaffected
by the shearing stresses.

e From Saint-Venant’s principle, effects of the load
application mode are negligible except in immediate
vicinity of load application points.

o Stress/strain deviations for distributed loads are
negligible for typical beam sections of interest.
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Sample Problem 6.2

2.5kips  1kip 2.5 kips

~—L3 ft —»Lz ft"

10 ft

1, SOLUTION:

T * Develop shear and bending moment
diagrams. Identify the maximumes.

T-z f't-J-—S ft

A timber beam is to support the three

_ irated loads sh Knowi e Determine the beam depth based on
ja| concentrated loads shown. Knowing allowable shear stress.

% that for the grade of timber used,
5|  oan=1800psi 74 =120psi

o Determine the beam depth based on
allowable normal stress.

* Required beam depth is equal to the
larger of the two depths found.

5| determine the minimum required depth

d of the beam.
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Sample Problem 6.2

25kips  lkip 2.5 kips SOLUTION:

Develop shear and bending moment

D E : : )
diagrams. Identify the maximumes.
‘1‘ 3 kips
3 ftJvS ft —<2 ft*—‘ Vimax = 3KIps

C

3 kips !
<2 ft

1% " M max = 7.5Kip - ft =90Kip -in
3 kips
(1.5)
(6) ,/ 0.5 kip ‘
— 0.5 kip T !
‘ (-15) (6
M — 3 kips
’5‘ M & T B 7.5 kip - ft
= 1R 6 kip - ft
>
E X
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Sample Problem 6.2

L =35in » Determine the beam depth based on allowable
' normal stress.

M max

S
90x10%1b - in.
(0.5833in.)d?
d =9.26in.

Oall =

DO |

1800 psi =

| = Ebd3 » Determine the beam depth based on allowable

shear stress.

~ 6 _ §Vmax

Tall 5 A
120psi = 330001

= (0.5833in.)d? 2 (3.5in.)d

d =10.71in.

ED|
wm
I
=
O
o
N

Il
o O |
VoumnS
w
o1
>
N
o
N

* Required beam depth is equal to the larger of the two.
d =10.71in.
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Longitudinal Shear on a Beam Element

of Arbitrary Shape
t y * We have examined the distribution of

P, IP;
I.
l l ARy the vertical components 7, on a
A Ci B fﬂ’ transverse section of a beam. We
now wish to consider the horizontal
components z,, of the stresses.

Y « Consider prismatic beam with an
o [ e element defined by the curved surface

—® 7. % cove
g = B AN,A.

[ 5 Jiiee] SF, =0=AH + [(op — o )dA

K] 2

= v, v, » Except for the differences in

_ ' l Integration areas, this is the same

> / crt % ] result obtained before which led to

— O dA —| [/ opdA

R R
x X
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Example 6.04

O.75in.4>-1 |<73in.—>‘ ’4:1.75in. SOLUTION:

T @ & 0.75in. e« Determine the shear force per unit

—{ length along each edge of the upper
plank.

» Based on the spacing between nails,
determine the shear force in each
nail.

A square box beam is constructed from
four planks as shown. Knowing that the
spacing between nails is 1.5 in. and the
beam is subjected to a vertical shear of
magnitude V = 600 Ib, determine the
shearing force in each nail.
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| Example 6.04

SOLUTION:

» Determine the shear force per unit
length along each edge of the upper
plank.

VQ _ (600Ib)(4.2i|n ) o 5lb
| 27.42in in
f = % 46.15°
in
_ For the upper plank, = edge force per unit length
A Q = A'y = (0.75in.)Y3in.)(L.875in.)
<] _ 4.99in3 « Based on the spacing betvx_/een nails,
5 determine the shear force in each
— _ nail.
] For the overall beam cross-section, Ib
_ : . F=1f/=|46.15— |(1.75in
] I =%(4.5|n)3—ﬁ(3|n)3 ( mj( )

—27.42in" F =80.8Ib
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Shearing Stresses in Thin-Walled Members

« Consider a segment of a wide-flange
beam subjected to the vertical shear V.

» The longitudinal shear force on the
element is
AH =VI—QAX

* The corresponding shear stress is

AH VO

e
=
—

I  Previously found a similar expression
@‘ for the shearing stress in the web

> Y

B

* NOTE: 174y ~0 inthe flanges
7, =0 inthe web
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Shearing Stresses in Thin-Walled Members

Y

t
Txz ¢ Toz

N.A.

» The variation of shear flow across the

section depends only on the variation of
the first moment.
_VQ

q=rt |

For a box beam, g grows smoothly from
zero at A to a maximum at C and C’ and
then decreases back to zero at E.

The sense of g in the horizontal portions
of the section may be deduced from the
sense in the vertical portions or the
sense of the shear V.
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Shearing Stresses in Thin-Walled Members

» For a wide-flange beam, the shear flow
Increases symmetrically from zero at A
and A’, reaches a maximum at C and the

“NA. *NA decreases to zero at E and E’.

—— -1—-t

 The continuity of the variation in g and
. the merging of g from section branches
l suggests an analogy to fluid flow.
11 1

A] [ED]
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Plastic Deformations

I : :
e Recall: My =0 = maximum elastic moment

e For M =PL < M,, the normal stress does
not exceed the yield stress anywhere along
the beam.

e For PL > My, yield is initiated at B and B’.
For an elastoplastic material, the half-thickness
of the elastic core is found from

2
PX_3My( _1yY}

3| 2 3¢?

i » The section becomes fully plastic (y, = 0) at
H the wall when

> PL = g My =M,

X

 Maximum load which the beam can support is
M
Prnax = _Lp
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Plastic Deformations

Y
PLASTIC

xyy

max

PLASTIC

Preceding discussion was based on
normal stresses only

Consider horizontal shear force on an
element within the plastic zone,

AH =—(GC —GD)dAI—(O'Y —Gy)dAIO

Therefore, the shear stress iIs zero in the
plastic zone.

Shear load is carried by the elastic core,

2
Tyy 3P LY where A’ =2byy
2N
3P
Tmax = >N

As A’ decreases, 7., Increases and
may exceed z,
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Sample Problem 6.3

bty = 0.770 in. i

i

k T T| SOLUTION:
I i * For the shaded area,
e cl Q =(4.31in)(0.770in )(4.815in)
—~15.98in°
) [
I, = 394 in * The shear stress at a,
— - . 3
8 Knowing that the vertical shear is 50 T :VIQ = (50 k!pj)\(15'98'_n )
T KipsinaW10x68 rolled-steel beam, t (394'” X0-770'”)
3 determine the horizontal shearing 7 — 2 63Ksi

stress in the top flange at the point a.
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Unsymmetric Loading of Thin-Walled Members

» Beam loaded in a vertical plane
of symmetry deforms in the
symmetry plane without
twisting.

My VQ

Oy =——" Tave =
X ave
I It

» Beam without a vertical plane
of symmetry bends and twists
under loading.

M VQ
ox=y Tme

A] [ED]

o




SVIECHANICS OF MATERIALS see . Jonncion . pewo
Unsymmetric Loading of Thin-Walled Members

dF = q ds

o If the shear load is applied such that the beam

| A A
does not twist, then the shear stress distribution
— satisfies
D B E
o £ S E Tgue = vQ V=Jgqds F=[gqds=-[qds=-F'
' It B A D

A
 F and F’ indicate a couple Fh and the need for

the application of a torque as well as the shear
load.

Fh=Ve

* When the force P is applied at a distance e to the
left of the web centerline, the member bends in a
vertical plane without twisting.
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Example 6.05

_{ e Determine the location for the shear center of the
7 el channel section with b =4 in., h =6 in., and t = 0.15 in.
Fh
e=——
I
e where
b b b
F = Iq dS: I\st :\Ljsthds
0 0 lo 2
_ Vthb?
— 4]
& 2
* | =1 yen + 21 _ 3o ibt3+bt(Ej
’B‘ — Tweb flange — 12 12 2
’%‘ =~ Lth*(6b+h)
> -
— « Combining,
@\ b 4in. :
€= = . e =1.6in.
h 6in.
24+ 24
3b 3(4in.)
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il Example 6.06
e Determine the shear stress distribution for
V = 2.5 Kips.
,_a_VQ
t It

 Shearing stresses in the flanges,
 =VQ_V (yh Vhy

It It "2 2I
Vhb 6Vb

2(112th2)(6b +h) th(6b+h)
~ 6(2.5Kkips)(4in)
~ (0.15in)(6in)(6 x 4in + 6in)

B =

= 2.22ksi

 Shearing stress in the web,
vQ V(Ehtkab+h) av(apn)
= o -
It Lth (6b+h)t 2th(6b + h)

~ 3(2.5Kips)(4x4in +6in)
- 2(0.15in)(6in)(6x 6in + 6in)

Tmax =

= 3.06ksi

6 - 26



