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Introduction
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• Distribution of normal and shearing 
stresses satisfies

• Transverse loading applied to a beam 
results in normal and shearing stresses in 
transverse sections.

• When shearing stresses are exerted on the 
vertical faces of an element, equal stresses 
must be exerted on the horizontal faces

• Longitudinal shearing stresses must exist 
in any member subjected to transverse 
loading.
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Shear on the Horizontal Face of a Beam Element

• Consider prismatic beam

• For equilibrium of beam element
( )

∫
−

=∆

∑ ∫ −+∆==

A

CD

A
DDx

dAy
I

MMH

dAHF σσ0

xVx
dx

dMMM

dAyQ

CD

A

∆=∆=−

∫=
• Note,

flowshear
I

VQ
x
Hq

x
I

VQH

==
∆
∆

=

∆=∆

• Substituting,
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Shear on the Horizontal Face of a Beam Element

flowshear
I

VQ
x
Hq ==
∆
∆

=

• Shear flow,

• where

sectioncrossfullofmoment second

 above area ofmoment first  

'

2
1

=

∫=

=

∫=

+AA

A

dAyI

y

dAyQ

• Same result found for lower area

HH

QQ

q
I
QV

x
Hq

∆−=′∆

=
=′+

′−=
′

=
∆

′∆
=′

axis neutral to
respect h moment witfirst  

0



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

MECHANICS OF MATERIALS

Third
Edition

Beer  • Johnston  • DeWolf

6 - 6

Example 6.01

SOLUTION:

• Determine the horizontal force per 
unit length or shear flow q on the 
lower surface of the upper plank.

• Calculate the corresponding shear 
force in each nail.

A beam is made of three planks, 
nailed together.  Knowing that the 
spacing between nails is 25 mm and 
that the vertical shear in the beam is 
V = 500 N, determine the shear force 
in each nail.
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Example 6.01
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SOLUTION:

• Determine the horizontal force per 
unit length or shear flow q on the 
lower surface of the upper plank.
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• Calculate the corresponding shear 
force in each nail for a nail spacing of 
25 mm.

mNqF 3704)(m025.0()m025.0( ==

N6.92=F
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Determination of the Shearing Stress in a Beam

• The average shearing stress on the horizontal 
face of the element is obtained by dividing the 
shearing force on the element by the area of 
the face.
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• On the upper and lower surfaces of the beam, 
τyx= 0.  It follows that τxy= 0 on the upper and 
lower edges of the transverse sections.

• If the width of the beam is comparable or large 
relative to its depth, the shearing stresses at D1
and D2 are significantly higher than at D.
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Shearing Stresses τxy in Common Types of Beams

• For a narrow rectangular beam,
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• For American Standard (S-beam) 
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Further Discussion of the Distribution of 
Stresses in a Narrow Rectangular Beam
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• Consider a narrow rectangular cantilever beam 
subjected to load P at its free end:

• Shearing stresses are independent of the distance 
from the point of application of the load.

• Normal strains and normal stresses are unaffected 
by the shearing stresses.

• From Saint-Venant’s principle, effects of  the load 
application mode are negligible except in immediate 
vicinity of load application points.

• Stress/strain deviations for distributed loads are 
negligible for typical beam sections of interest.
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Sample Problem 6.2

A timber beam is to support the three 
concentrated loads shown.  Knowing 
that for the grade of timber used,

psi120psi1800 == allall τσ

determine the minimum required depth 
d of the beam.

SOLUTION:

• Develop shear and bending moment 
diagrams.  Identify the maximums.

• Determine the beam depth based on 
allowable normal stress.

• Determine the beam depth based on 
allowable shear stress.

• Required beam depth is equal to the 
larger of the two depths found.
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Sample Problem 6.2
SOLUTION:

Develop shear and bending moment 
diagrams.  Identify the maximums.

inkip90ftkip5.7
kips3

max

max
⋅=⋅=

=
M
V



© 2002 The McGraw-Hill Companies, Inc. All rights reserved. 

MECHANICS OF MATERIALS

Third
Edition

Beer  • Johnston  • DeWolf

6 - 13

Sample Problem 6.2
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• Determine the beam depth based on allowable 
normal stress.
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• Determine the beam depth based on allowable 
shear stress.
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• Required beam depth is equal to the larger of the two.
in.71.10=d
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Longitudinal Shear on a Beam Element 
of Arbitrary Shape

• We have examined the distribution of 
the vertical components τxy on a 
transverse section of a beam.  We 
now wish to consider the horizontal 
components τxz of the stresses.

• Consider prismatic beam with an 
element defined by the curved surface 
CDD’C’.
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integration areas, this is the same 
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Example 6.04

SOLUTION:

• Determine the shear force per unit 
length along each edge of the upper 
plank.

• Based on the spacing between nails, 
determine the shear force in each 
nail.

A square box beam is constructed from 
four planks as shown.  Knowing that the 
spacing between nails is 1.5 in. and the 
beam is subjected to a vertical shear of 
magnitude V = 600 lb, determine the 
shearing force in each nail.
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Example 6.04

For the upper plank,
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For the overall beam cross-section,
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SOLUTION:

• Determine the shear force per unit 
length along each edge of the upper 
plank.
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• Based on the spacing between nails, 
determine the shear force in each 
nail.
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Shearing Stresses in Thin-Walled Members
• Consider a segment of a wide-flange 

beam subjected to the vertical shear V.

• The longitudinal shear force on the 
element is

x
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• The corresponding shear stress is

• NOTE: 0≈xyτ
0≈xzτ

in the flanges
in the web

• Previously found a similar expression 
for the shearing stress in the web
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Shearing Stresses in Thin-Walled Members

• The variation of shear flow across the 
section depends only on the variation of 
the first moment.

I
VQtq ==τ

• For a box beam, q grows smoothly from 
zero at A to a maximum at C and C’ and 
then decreases back to zero at E.

• The sense of q in the horizontal portions 
of the section may be deduced from the 
sense in the vertical portions or the 
sense of the shear V.
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Shearing Stresses in Thin-Walled Members

• For a wide-flange beam, the shear flow 
increases symmetrically from zero at A
and A’, reaches a maximum at C and the 
decreases to zero at E and E’. 

• The continuity of the variation in q and 
the merging of q from section branches 
suggests an analogy to fluid flow.
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Plastic Deformations

• The section becomes fully plastic (yY = 0) at 
the wall when

pY MMPL ==
2
3

• For PL > MY , yield is initiated at B and B’.  
For an elastoplastic material, the half-thickness 
of the elastic core is found from
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• For  M = PL < MY , the normal stress does 
not exceed the yield stress anywhere along 
the beam.

• Maximum load which the beam can support is

L
M

P p=max
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Plastic Deformations
• Preceding discussion was based on 

normal stresses only

• Consider horizontal shear force on an 
element within the plastic zone,
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Therefore, the shear stress is zero in the 
plastic zone.

• Shear load is carried by the elastic core,
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• As A’ decreases, τmax increases and 
may exceed τY
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Sample Problem 6.3

SOLUTION:

• For the shaded area,
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• The shear stress at a,
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Knowing that the vertical shear is 50 
kips in a W10x68 rolled-steel beam, 
determine the horizontal shearing 
stress in the top flange at the point a.
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Unsymmetric Loading of Thin-Walled Members

• Beam loaded in a vertical plane 
of symmetry deforms in the 
symmetry plane without 
twisting.
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• Beam without a vertical plane 
of symmetry bends and twists 
under loading.
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• When the force P is applied at a distance e to the 
left of the web centerline, the member bends in a 
vertical plane without twisting.

Unsymmetric Loading of Thin-Walled Members

• If the shear load is applied such that the beam 
does not twist, then the shear stress distribution 
satisfies

FdsqdsqFdsqV
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B
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• F and F’ indicate a couple Fh and the need for 
the application of a torque as well as the shear 
load. 

VehF =
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Example 6.05

• Determine the location for the shear center of the 
channel section with b = 4 in., h = 6 in., and t = 0.15 in.
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Example 6.06
• Determine the shear stress distribution for 

V = 2.5 kips.
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• Shearing stresses in the flanges,
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• Shearing stress in the web,
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