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PROBABILISTIC ASPECTS OF OCEAN WAVES

by
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Report no. 77-2
Laboratory of Fluid Mechanics
Department of Civil Engineering

Delft University of Technology

The material in this report has been prepared as notes for lectures on
"Engineering aspects of ocean waves", given at the seminar on "Safety of
Structures under Dynamic Loading'", Trondheim, June 23 tot July 1, 1977;

it will be published in the proceedings of that seminar.
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ENGINEERING ASPECTS OF OCEAN WAVES

J.A. Battijes Delft University of Technology Netherlands

Purpose and scope

In the lectures on "Engineering Aspects of Ocean Waves", the aspects
to be considered will be restricted to those which are relevant for the
dynamics of structures under wave loading. Furthermore, since the hydro-
dynamics of given wave (and current) fields near structures are dealt with
elsewhere in this seminar, only the probabilistic specification of the inci-
dent wave fields will be considered here, both for the short term and the
long term.

For an indication of the treatment to be adopted, it should be borne
in mind that in the lectures at this seminar knowledge of basic probability
theory and of the theory of random vibrations should be assumed, and
that recent developments should be included. In view of this and of
the available lecture time, a rather general overview of short-term and
long-term statistics will be given, while one area of recent developments
has been selected for a somewhat more detailed treatment - namely, the
short-term joint probability distribution of -zero-crossing wave height

and period.

Short-term and long-term descriptions

In the description of sea states, it is meaningful to distinguish
various time (and length) scales.

In the so-called short-term description one adopts a time scale
such that on that scale the sea state is approximately stationary in

the statistical sense, while for purposes of sampling it should be




sufficient for statistically significant results.

The short-term variability of the wave field is characterized by
means of various probabilistic and spectral distribution functions, with
their associated parameters.

In the long-term description the aim is to characterize the long-

term variability of the parameters of the short-term distributions.

Short-term description of sea states

3.1. Generalities

In the following, the variable water surface elevation above some
reference plane is taken to be representative for a sea state. Particle
velocities, pressures etc. are considered as dependent variables which

need not be specified in addition to the surface elevation itself.

In short-term descriptions, the water surface elevation above the
chosen réeference plane is treated as a random process, approximately
statioﬁary in time and homogeneous in the horizontal coordinates. The
specification of this process requires knowledge of the joint probability
distributions of the elevations at an arbitrary number of arbitrary
times and places. These probability distributions in turn can be charac-
terized through their moments of various orders, the lowest-order ones
being the most important.

For a process with zero mean, the second-order moments (or equiva-
lently, the covariances) are the lowest order moments of interest, and
therefore the most important of the whole hierarchy.

For a process which is stationary in time and homogeneous in the
horizontal coordinates, all statistical properties depend on time- and
space-intervals only, altogether three independent variables. The
Fourier transform of the autocovariancefunction with respect to these
variables yields the three-dimensional spectral variance density function
(in the frequency-wave number domain). Reduced versions of this general
three-dimensional spectral density function (which it is virtually
impossible to measure) are obtained by projecting it on a sub-space of
the frequency-wave number domain, such as the frequency axis, the wave
number plane etc. Another reduction of the multi~dimensionality of the
spectrum is obtained under the assumption of linearity of the wave field,
in which case frequency and wave number are coupled through the linear

dispersion equation.




A consequence of considering the wave field as a linear superposition
of an uncountably infinite number of spectral components is that it can
be treated as a Gaussian process. Such processes are fully specified by
their mean value (usually assumed zero) and their autocovariancefunction,
or by their mean and the spectral variance density function. This assump-
tion is usually made in theoretical considerations of the probability
structure of the wave field.

If the nonlinear coupling of the spectral components cannot be
neglected then higher order moments than those of the second order are
also required for a full specification of the wave field, or for an
investigation of the degree of nonlinearity. The Fourier transform of
the third-order moment function is called the bispectrum; it has been
measured in a number of cases (refs. 23 and 28), but its use has so far
been very limited. Fourth- and higher order moments and their Fourier
transforms have not yet been measured to the author's knowledge. There
is much room for research here, particularly in view of the importance
of extreme sea states, for which the assumption of linearity is least valid.

It should be noted that even if the variance spectrum is not quite
sufficient for a specification of the wave field, due to nonlinearities,
it still remains eminently useful, because of its high information

content in a condensed form.

Although the autocovariancefunction and the corresponding spectrum
are formally equivalent with respect to their information content, the
use of the spectral format for the presentation of that information is
usually much to be preferred for a number of reasons, apart from those
of computational efficiency:

- the spectrum localizes the contributions to the variance of the process
in terms of frequency and wave number, and it thereby gives more insight
into the underlying structure of the process than is possible through
the autocovariancefunction;

- as a corollary, the structure of a given process, as revealed in its
spectrum, usually can be more simply explained in terms of causative
factors than in the case of the autocovariancefunction;

- the calculation of the effects of linear operators on the process
is far simpler in the spectral domain (algebraic multiplication) than
through the use of covariances (convélutions);

-~ the statistical theory of the sampling distribution of estimates from
a finite sample, and the results obtained, are less complicated for

spectra than they are for covariances.




In the following we shall first deal with some probabilistic proper-
ties of sea waves of a given variance spectrum, and after that with
some aspects of the spectra themselves, particularly for wind-driven

waves. .

3.2. Probabilistic description of sea states

In this section we shall deal with some statistical properties of
the water surface elevation at a fixed point, for a given sea state.
Emphasis will be placed on level crossings, crest heights, wave heights
and wave periods. Most of the theoretical results to be mentioned apply

to a stationary Gaussian process with zero mean.

The value of the water surface elevation in a given vertical above
its mean is written as h(t), in which t is time and the underscore
denotes a random variable. The spectral variance density function of
h(t) is written as E(f), in which f is frequency in cycles per unit time.
E(f) isﬂdefined such that its integral over all positive values of f

equals the variance of h(t). The moments of E(f) about f = 0 are denoted

by m

m ={an(f)df. (3.1)

3.2.1. Level crossings

Consider the upcrossings of an arbitrary level h by the process h(t).
In other words, consider the events {h(t) = h and é(t) > 0},in which a
dot denotes a differentiation with respect to t. Let gﬂh;tl,tQ) be the
number of such events in a time interval (tl’tz)' Considering an infini-

tesimal interval (t,t+8), Rice (ref. 43) showed that

Prin;t,t+6t) = 1} = (mz/mo)%exp(-hQ/Qmo)ét +.0(8t) (3.2)
and that
Prin(h;t,t+st) > 1} = o(8t), (3.3)

in which o(dt) denotes any function of &t which with decreasing §t goes

faster to zero than 8t itself.




It follows from (3.2) that the expected number of upcrossings of

h(t) through the level h per unit time, written as Ah), is given by
z 2
Alh) = (m2/m0) exp(- h /2mo). (3.4)

In particular, the expected number of upcrossings through the level

h = 0 ("zero upcrossings") per unit time is
3
A(0) = .
(0) = (m,/m )%, (3.5)

The time interval between consecutive zero-upcrossings, often called
the '"zero-crossing wave period", is a random variable, written as T.
Is expected value, the mean zero-crossing period, is written as TZ;

it equals the reciprocal of A(0):
-1 1
T_= E(T) = M0) ~ = (mo/m2)2. (3.86)

The shape of the probability distribution of T is rather sensitive to
variations in the shape of the spectrum. Some approximate results for
narrow spectra will be mentioned in conjunction with the joint proba-

bility distribution of zero-crossing wave height and pericd.

Extreme value

A quantity of interest is the probability that h(t) shall not exceed
some value h in a given time interval (tl’tz)' If hmax(tl’tQ) is the
maximum value of h(t) in such interval then obviously
st2t,} = Prlh  (t,,%) <hl. (3.7)

Pr{h(t) < h for t

Various methods can be employed to estimate this probability. In the
present context it is natural to consider the probability of non-
occurrence of crossings of the level h by h(t), and to use

Prin(h;t ,t2) = 0} for an estimate of Pr{ﬁmax(tl,tz) < hl.

1

The expected value of n for a time interval of duration D is
E{n(h;t ,t,+D)} = A(h)D. (3.8)

The probability distribution of g(h;tl,t1+D) is assumed to be of the

Poisson-type, which is asymptotically correct for large h//ﬁo (ref. 13).




It then follows that

Prin = 0} = o DB}, (3.9)

or

—h2/2mO

(3.10)

-x(h)D -1(0)De
e - e

Pr{_}lmax(tl,tl-rD) < h} =

provided h//mO is sufficiently large. This is not a severe restriction
from a practical point of view, since one is generally interested in

large values of h//ho anyway .

It should be noted that the preceding results did not require the
assumption of a narrow spectrum. Furthermore, the validity of
. ~E{n(h3;t, ,t +D)}
Pr{h  (t .t +D) < h} = e 1’71 (3.11)
is not restricted to stationary processes. For non-stationary processes
it is bhly necessary to replace (3.8) by
t_ +D

1
E{n(h;t,,t,+D)} = A(h,t)dt. (3.12)

3.2.2. Maxima, crest heights, and wave heights

Before dealing with the distributions of the heights of maxima etc.,
some more general remarks will be made concerning the relations between
the appearance of the realizations of h(t) and its variance density

spectrum.

Consider the maxima of h(t). The average time interval between
consecutive maxima is written as Tm' The ratio of this to the mean zero-

upcrossing period TZ, written as
r=T/T (0 << 1), (3.13)
m 'z - -

is a parameter which in some sense is a measure of the degree of
irregularity of the process h(t). This has already been pointed out
in 1921 by Taylor in his pioneering work on the statistical theory

of turbulence (ref. 7).

Narrow-banded processes have realizations which have the appearance




of a slowly modulated sine curve, without positive minima or negative
maxima, in which case r = 1.
Broad-banded processes have realizations with a less regular appearance,
with numerous positive minima and negative maxima, in which case r can
be much less than one. It can even approach zero.
The proportion of positive maxima (a, say) is closely related to r.
If the process h(t) is statistically symmetrical about its mean

value, then a geometrical argument (ref. 10) shows that
a = 31 + p). (3.14)

Another way of looking at these aspects is to consider the correlation
between the“function value h(t) and its second derivative, say its
curvature, h(t). The coefficient of linear correlation between these
(p) can be expressed in terms of the moments of the variance spectrum

as follows:

[

p = - m2/(momu) . (3.15)

If the spectrum is narrow then the right-hand side of (3.15) is near

to -1. Considering the corresponding realizations, with the appearance
of a slowly modulated sine curve, we see that h(t) and é(t) are strongly
negatively correlated, in agreement with (3.15). With increasing
spectral width, the right-hand side of (3.15) diminishes, while the
realizations display an increasing proportion of negative maxima and

a corresponding d?crease of the absolute value of the correlation

between h(t) and h(t), in agreement with (3.15).

It should be noted that the preceding remarks are in no way restricted
to Gaussian processes. However, to proceed further by theory it is of
course most convenient to introduce such a restrictio?. If this is done
then (3.6) can be used, for instance. Applying it to h(t) gives the

result

Nl

Tm = (mz/mu), (3.18)

in which case

1
_ 2 - _
r = m2/(momu) = - gy (3.17)

which (for Gaussian processes) links the two viewpoints presented above.




Maxima

We now consider the heights of the maxima of h(t), denoted by Em

(see figure 1).

*  maxima of h(t)

values of h
LW

~

Figure 1 - Definition sketch for heights of maxima

The distribution of h was first derived by Rice (ref. #3). It has been

further elaborated and compared with ocean wave data by Cartwright and

Longuet-Higgins (ref. 10). It will here be reproduced for easy reference.
The co-cumulative probability of the normalized height of the

maxima, defined by
0, 7 b //mos (3.18)

can be written as

2
]
_ _ -51 r
?ﬂm (n3e) = Pp{ﬂm > n} = %erfc(7§2) + 3dre 2" erfc(- 792), (3.19)
in which

2 2 2
e” =1 - mQ/(mOmu) = 1-nr (0 < e < 1), (3.20)
and
2 °f -2
erfc(x) = = z(e dt . (3.21)

The proportion of positive maxima is

a=q (038) = 31l +r), (3.22)

AU




in agreement with (3.14).

If for some constant € < 1 we increase n, then the complementary
error functions in (3.19) converge rapidly to 0 and 2 respectively, so
that

2 2

-1 _2
q (nse) =re CLL (Tm/TZ)e 2n for nr/e >> 1. (3.23)

o

In the narrow~spectrum case, € +~ 0 and r + 1, in which case the in-

equality in (3.23) is fulfilled for all n, so that

1
oy

q  (n;0) = forn 20
D ;.2 (3.24)
for n > 0,

which is the well-known Rayleigh distribution (refs. 2, 33). This
result can also be established more directly by noting that narrow-band
processes have virtually no positive minima, so that there is just one
maximum exceeding h for each upcrossing of h by h(t), for all h > 0.

By the same token, all the maxima are positive, so that

—h2/2m
e

)‘(gi 0 for h > 0, (3.25)

PP{Em>h}=‘)\—(-—-'=

provided the spectrum is sufficiently narrow.

An empirical correction to the distribution (3.23) has been proposed
by Jahns and Wheeler (ref. 32), who point to significant non-Gaussian
behavior of h(t) in water of restricted depth, leading to probabilities
of occurrence of high maxima far in excess of those predicted by (3.23).
The expression proposed by them for the range h > 3(m0)% can be written as

2

h h h
Prih > h} =re Zm o+ 7B g (By - Pl (3.26)
—mn 0

in which d is the mean water depth, and B, and B2 are empirical coefficients

estimated to have the values (4.0 iv0.2) and (0.60 t 0.02), respectively.
The ratio /mo/d ranged up to about 0.1 in the data on which (3.26) is based.

Crest heights

The approximate distribution function (3.23) of the maxima Em

suggests a Rayleigh-like behaviour, provided we consider not all




the maxima, but only a fraction (Tm/TZ) thereof. In particular, we now

choose to consider the so-called crest-height h (normalized: n = h /Ym ),
—=—C - < 0

which is defined as the largest value (the largest maximum) of h(t) on

an interval between a zero-upcrossing and the next zero-downcrossing of

h(t) (see figure 2).

O zero-crossings of h(t)

- X crests

t

crest heights h
de

Figure 2 - Definition sketch for crest heights

For each crest height exceeding a level h, there may be more than
one upcrossing of h(t) through the level h. But with increasing h//mo,
the probability of such an event approaches zero. And since the expected
number of crest heights per unit time equals the expected number of
zero-upcrossings per unit time, we have
Prih > n} = 2B) - e'%hQ/mo for h/Vm_ >> 1 (3.27)

-c A(0) 0 ? '
so that the crest heights are approximately Rayleigh-distributed in the

higher range, for all ¢ > 1.

A more refined estimate of the distribution of Ec than that given
above has been presented by Bonneau (ref. 5 ). He accounts for the
fact that there may be more than one upcrossing of h(t) through h for
each crest height exceeding h, the excess number being equal to the
number of minima between the levels 0 and h minus the number of maxima
in the same range, both in the time interval (tl,tz) defining the crest

being considered (see figure 3).

- TP AT T’R O zero crossings of h(t)

upcrossings of h(t)

1 R
iy through h
L.‘ t \/) t g

X crest height above h

Figure 3 - Sketch showing relation between numbers of extremes and level
_crossings

10




If § denotes the expected value of this excess number, then it follows

from the definitions adopted that
A(h) = M(0)Pr{h, > h}(1 + ¢), (3.28)

or, switching to the normalized crest height Dc = QC//mO:

2
_2
e 2"

Pr{gc >nt = TS (3.29)

in

qQ (n3e,..... )
N

Bonneau derives some rigorous constraints on the variations of § with n.
and e. By making some ad hoc assumption in addition he arrives at an

expression for 6§ which is here written in the form

2

§{nze) = %; [é—%n {1-r erf(%%g)} - erfc(7%E)]. (3.30)

An approximation to (3.30) is

2
p 22
8§(nse) = %;E-e 2N for (r/e)n >> 1. (3.31)

Bonneau's correction to (3.27) is mainly relevant to the intermediate

range of crest heights, since it was made to vanish for both very small
and very large crest heights (8 < 0.02 for all n > 2.5 and € < 0.8). It
is therefore not of much practical importance for estimating extreme
conditions. Note also that Bonneau's correction to (3.27) is within the
framework of the Gaussian model for h{(t), whereas this is not the case
for the empirical correction to (3.23) proposed by Jahns and Wheeler

(eq. 3.26).

Extreme value

We shall in this paragraph reconsider the extreme value of h(t) in
a finite duration, this time using the crest heights for the parent

population.

Let n denote the number of crest heights occurring in the time
interval (t,t+D), and m the number of these which exceed h. We then

have

11




N = E(n) = A0)D (3.32)
and
E(m) = N Pr{h_ > h}. (3.33)

We now consider the largest crest height in the time interval
(tl,tl + D), written as Ec,max(tl’t1+D)’ In view of the definitions adopted,

we have

Pr{h (t,, t,+D) < h} = Pri{m = 0}. (3.34)
—c,max 1 1 — -
Usually, only such cases are of interest in which N >> 1 and PP{EC > h}<<1.
If furthermore the individual crest heights are assumed to be stochastically

independent, then m is Poisson-distributed, and

Prim = 0} = o E(m) (3.35)
so’that

_ _~E(m)
Prih, o (t,t4D) <} = et R, (3.38)

The condition of stochastic independence of the individual crest
heights is actually unnecessarily restrictive. Watson (ref. 51 ) has
shown that (3.36) also holds in the limit N = ® if the crest heights are
(3) (k)

"m-dependent", which means that h and Ec are independent if

. —C
|j - k' > m, where gij) is the j-th crest height in the sequence. It

seems very reasonable to make such an assumption.

It should also be noted that (3.36) holds for non-stationary
processes as well, provided E(m) is estimated as the time integral
of K(O)Pr{_l}C > h}, in which both factors can vary with t. This has

been considered in detail by Borgman (ref. 7).

The restriction to relatively large values of h implies that
theoretically (in the Gaussian model) (3.27) holds, in which case (3.33)
becomes

2
h /2mO

E(m) = Ne = AMh)D (3.37)

12




(for stationary processes), so that

2
—Ne_h /sz

= 3.
PP{EC ax(tl,tl+D) <h} =e s (3.38)

,m
which corresponds to (3.10). A similar result is also obtained for

the largest of all the maxima (Qm). This case has been investigated in
detail by Cartwright (ref. g ), who also gave an empirical verification
of the validity of the results. About 15 years later, Ochi (ref. 39),
apparently unaware of Cartwright's work, considered the problem of the
distribution of the largest of the positive maxima, which needless to

say again gave the same result.

An interesting and practically important point in these results is
that they do not depend on €3 m, and m, are the only spectral parameters
required. The distribution (3.38) is therefore the same as for the case
of a narrcw spectrum, for which it has first been presented by Longuet-
Higgins (ref. 33). Thus, the expressions derived by Longuet-Higgins for
the expected value and the mode of Ec carry over without modification to
cases of arbitrary spectrum shapes.

The theory of extreme value statistics (ref. 20) has been applied
by Cartwright (ref. 9 ) to the distribution (3.23). For large N the dis-
persion of h

—m,max
that of the second largest value of Em is even smaller. A similar state-

1
/(mo)2 about its mean value is relatively small, and

ment applies to the extreme values of Ec' For this reason an estimate

of m, can be made with a reasonably small coefficient of variation, just
on the basis of an observation of N and of the highest one or two values
of h (or EC) (refs. 9, 50). The fact that this procedure gives an un-
biased estimate of m, has recently been re-confirmed by Haring et al
(ref. 21), on the basis of surface records made under a variety of storm
conditions. This is of particular interest in view of the fact that
Haring et al do concur with Jahns and Wheeler's conclusion (ref. 32)
that the theoretical parent distribution of bm (3.23) or of Bc (3.27)
would grossly underestimate the actual probability of occurrence:of the
relatively high maxima. It seems worthwhile to make further study of

these seemingly contradictory findings.
Wave height

A wave height H is here defined as the total range of h(t) in a
time interval between two consecutive zero-upcrossings of h(t) (see

figure 4).

13




X crest

\/\\/ /\/ l Vt‘ ¥ trough

\
) -
} O zero-upecrossing

Pigure 4 - Definition sketch for zero—~upcerossing height and period

In the case of a narrow spectrum, the largest depth of a trough
between zero-crossings is almost equal in absolute value to the height
of the crest immediately preceding it, so that H = QQC. Since Ec is

Rayleigh-distributed, so is H:
Pr{H > H} = exp(-H’/8n,). (3.39)

With increasing spectral width, the correlation between consecutive
cres;‘heights and trough depths diminishes. Even though these quantities
sepéfately may in theory still be approximately Rayleigh-distributed,
at least the larger ones, there is no theoretical ground for the same
statement applied to H. Yet, there is much empirical evidence in support
of a Rayleigh-distribution for H (see e.g. refs. 8, 27, 49 and 53), and
its use is generally deemed to be justified, though with a scale para-
meter for the heights which is often found to be between 5% and 10% less
than that of eq. 3.39 (see e.g. ref. 27). Similarly, the distribution
of the largest wave height in a sample is generally found to be adequately
described by the double-exponential type given in eg. 3.38.

An exception to the rather general acceptance of the Rayleigh-dis-
tribution for the wave heights is made by Jahns and Wheeler (vef. 32),
who point to the less-than-100% correlation between crest height and
following trough depth in broad-band Gaussian processes, and who find
it necessary to correct for this, with the effect of decreasing the
exceedance probabilities of the larger wave heights. Their results are
corroborated by those of Haring et al (ref. 21), who give the following

empirical distribution:
2

Pr{H » H} = exp {~ g—m— (c, + ¢, )}, (3.40)
0

1

Compared to the Rayleigh distribution based on the narrow-band, Gaussian
model (eq. 3.39), the scale parameter is changed (if C1 # 1), and there
is an increasing deviation from a Rayleigh-behavior with increasing

3
H/(mo)2 (if ¢, # 0). The authors give no explicit information about

1y




the magnitude of C, and C2. The combined effect is such that the wave

1
height with an exceedence probability of 10 8 is about 10% less than

predicted on the basis of (3.39).

Regarding the more general question of the applicability of the
theoretical results as given above (based on the Gaussian model) to
empirical data, no unique and definitive answer can be given, at least
from a purely statistical point of view. Considering the question in a
broader context, the reliability of input data beccmes important, as well
as the sensitivity of results of subsequent calculations to variations
in the results discussed here. It is the author's opinion that such
discrepancies as may exist in the short-term descriptions of a sea state
of given parameters are generally insignificant compared to the uncer-

tainties in those parameters themselves.

Wave groups

The occurrence of wave groups is of importance in various applications.

In the context of dynamics of structures one can think of the build-up
of the response to a sequence of high waves (response with the
frequency of the waves), or of the response to low-frequency drift
forces (response with the frequency of the wave groups).

For a review of theoretical and empirical results on the length
of groups of wave heights exceeding a certain threshold, the reader is
referred to Goda (ref. 19), who presented such a review at the BOSS
Symposium in 1976. Suffice it here to say that the empirical frequencies
of occurrence of long groups of large wave heights were considerably in

excess of the available theoretical estimates.

3.2.3. Joint distribution of heights and periods

The effects of periodic waves on structures vary both with the
height and the period of the wave train. An estimate of such effects for
wind~generated waves is conveniently made in the spectral domain,
if linearity can be assumed. An estimate of nonlinear effects is
often made in the time domain on a wéve—by—wave basis. In this
approach the random wave motion is supposedly characterized by a
joint distribution of heights and periods. From this, a distribution of
the effect being considered is calculated, assuming that the same

transformation applies as in the case of periodic waves. This

15




hypothesis of equivalency has been checked and found valid for
run-up of waves breaking on dike slopes (ref. 3 ). It has also widely
been used for the calculation of nonlinear wave forces on piles. It
is obvious that at least in procedures such as sketched above, knowledge
of the joint distribution of heights and periods is necessary. As mentioned in
the introduction, the recent developments in this area will be dealt with
in some detail.
We shall in the following consider the joint distribution of (H,T),

in which T is defined as the duration of a time interval between two

consecutive zero-upcrossings of h(t), and H is the total range of h(t)
on that interval (see figure 4). In the following the normalized variables

g = %E//mo and 1T = T/E{T} = T/T are used.

Bretschneider distpibution

Until recently the most widely used joint distribution of H and
T was that due to Bretschneider (ref. 8), who found that the Rayleigh
distribution would apply not only to H but also to z?, at least for
wind-driven waves. He also found that in developed seas H and T were
virtuaily uncorrelated. Assuming that this implies stochastic independence,

the joint probability density of (£,1) becomes

p(g,1) = p(g)p(1), (3.u1)
in which
_152
plg) = ge ? (3.u42)
and
TR _ L
p(t) = H{F(%)}qr3e {F(u)} T a9, 7.5, 0875 (3.43)

While there is some empirical support of (3.42),as discussed in
a previous paragraph, and to some extent also of (3.43) (see e.g. refs.
8, 48, £3), the joint density (3.41) has hardly been tested empirically.
A fairly recent attempt has been made by Earle et al (ref. 16), using
data from hurricane "Camille'". They conclude that "extreme wave proba-
bilities are not accurately estimated using independent Rayleigh dis-
tributions'. They ascribe this in part to the assumption of independence,
which they find to be not always correct.
A two-dimensional Rayleigh-distribution with arbitrary degree of
correlation between H and T has been used tentatively by Battjes (refs.

3, 4 ). This might possibly give a better fit to the data used by
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Earle et al, but this has not been checked.

It was noted above that there is some empirical evidence in suppoft
of (3.43), in wind-driven waves. While this is true, there are also
numerous cases in which the period distribution is quite different.

This is not surprising inasmuch as the shape of the period distribution
is sensitive to variations in the shape of the wave spectrum, much

more so than the shape of the wave height distribution. This implies
that it is rather meaningless to try to search for a common shape

of the period distributions of waves with quite different spectral
shapes. One must select certain categories of spectra, such as very

narrow ones, or spectra for pure wind-driven seas.

Leaving aside the question of the goodness-ef-fit of (3.43) and
(3.41), these distributions still have the limitation of being purely
hypothetical at worst, or purely empirical at best. There are however
at least two theoretically derived joint amplitude-period distributions,
both based on the model of a stationary Gaussian process with a narrow
spectrum. One is due to Wooding (ref. 52) and Longuet-Higgins (refs.

34, 35), another to Cavanie et al {(ref. 11).

Solution by Wooding and Longuet-Higginsg

In 1955, Wooding derived a joint probability density function
of wave frequency and amplitude for the case of a narrow spectrum.
Shortly afterwards, a similar result was derived independently by
Longuet-Higgins (ref. 34) in his work on random surfaces. More recently,
Longuet-Higgins (ref. 35) reformulated the solution and its derivation,
and compared it with some empirical data.

The derivation is hased on a consideration of the envelope R(t) and
the associated phase function x(t) of the process h(t), and their first
derivatives. The joint probability density of.these can be found by
using Rice's results on the statistics of the envelope of narrow-band
processes (ref. 43)., It reduces to a relatively simple form if the mean

frequency of the spectrum, defined by
£ = ml/mO’ ’ (3.44)

is used as the central frequency in the definition of the envelope.
The joint probability density of R(t) and x(t) is used to estimate
the joint probability density of the wave amplitude a and period T,

using the approximations a = R and T = 2n/%. These approximations,
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and the subsequent transformation from_i to T, are based on the <
assumption that the spectral width parameter v, defined as

. 5 1
v = (m0m2/ml - 1)3%, (3.45)

is small. Terms of O(vz) are in fact neglected.

‘The normalized variable & is now defined as

Bof

£ = a/(m))*, (3.u46)

and a normalized and reduced period g as

£fT -1
g:—‘—-\)—-—-. (3.47)

The joint probability density of (£,z) is then given by
£2 2 2

p(E,5) = —=—r exp{- F£°(1 + £7)}. (3.48)

L (2m)®
The mérginal densities are

- 1,2 :
p(g) = £ exp(~ 3£7), (3.49)
which is the Rayleigh density, as expected, and

2

plz) = (1 + ;2)‘3/ . (3.50)

It follows that E{z} = 0, so that T = E{T} = (f)ul. The interquartile

ranges of r and T are given by
IQR(Z) = 2/¥3 and IQR(T) = 2vT/V3. (3.51)

The conditional density of 1 is

p(z|e) =M=—£Texp(— 129, (3.52)
p(e) (27m)2

. . . . A -1 R
which is Gaussian, with zero mean, standard deviation £ ~, and inter-

quartile range 1.355_1. It follows that the conditional mean of T
equals (})_l, independent of &, and that the higher the waves, the

more likely it is that their period is close to the mean value.
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Longuet-Higgins compares his theoretical results with measured data
presented by Bretschneider (ref 8 ) for a sequence of 399 consecutive
pairs of values of H/H and T /T In this analysis, v is estlmated from
(3.51), using the interquartide range of the observed values of (T /T )2
as an estimate of IQR(I/T).

The theoretical marginal densities (3.49) and (3.50) are found to
provide a '"reasonable fit" to the data.

Two tests of the validity of the joint density are_glven The condi-
tional mean of T/T (actually, Longuet-Higgins uses (T /T )2) is found to
be scattered somewhat about 1, but without trend with H/H, in accordance
with the theory. The predicted conditional interquartile range is also

in good agreement with the data.

The following comments are made.
Strictly speaking, (3.50) implies a non-zero probability of negative
wave periods, but this probability becomes vanishingly small (= %VQ)
as v+ 0.
The mean value of T is found to be mo/ml. This differs from the exact
value of the mean zero-upcrossing interval TZ = (mO/m21)2 derived by
Rice, the relative difference being equal to (1 + vz) 2 -1, or to
%vz if v2 << 1. Since the derivation is based on approximations to
0(v), there is no inconsistency. The point is only that one is here
again reminded of the approximate character of the solution (within the
framework of Gaussian processes), as in item (1).
Due to the fact that for large lcl, p(z) as given by (3.50) falls off
only as [E]_3, the second moment of p(Z) diverges, so that the
(root) mean square, the variance, and the standard deviation of T, are not
defined. This is the case for all v, no matter how close to zero. This
is a somewhat surprising conclusion, which-serves to indicate that the
theoretical density is not valid for large deviations of T from its mean.
In the comparison of theory with empirical data, the parameters of the
distribution had to be estimated from the observed values of heights
and periods themselves, since no variance spectrum of the record was
available. As noted by Longuet-Higgins, this means that the theoretical
relations between these parameters and the spectral moments My smy and m,
have not been checked.
Bretschneider's work, from which Longuét—Higgins took the data, contains
only one measured joint density of heights and periods (squared), but
several marginal cumulative distributions (ref. 8 , fig. 4.25 and

fig. 4.26). The author has compared the cumulative distribution of wave

periods based on (3.50), which is given by
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(3.53)

B

g
P(z) = /P(C')dC' =]+
~% 2(1 + 22)2

to these data, for various assumed values of v. The results are presented
in figure 5, from which it appears that the overall shapes of the
empirical distributions are better described by Bretschneider's equation

4
pP(t) = Pr{z/i‘ <tl=1-e 0.675t s (3.54)

which was in fact based on these data, than by Longuet-Higgins'

eq. (3.53). By choosing a proper value of T and IQR(T), and therefore
of v, the curves based on (3.53) can be made to agree with any of

the given empirical distributions in the middle range, but they will
still diverge strongly from the data in the tails, displaying far
greater probabilities of occurrence of very small and of very large
periods than the data (or than 3.54). This is qualitatively in agreement

with item 3 above.

| ——— eq. 3.54 v o=

-

— eq. 3.53; v = ...,

individual records
(ref. 8)

# o eX + 4

] data used by Longuet--
Higgins (v = 0.234)

I Longuet-Higgins

0.2 °
0.0001 0.001 0.01 0.05 0.1 0.2 0.5 0.8 0.9 0.95 0.99 0.939 0.9999
P(1)

Figure 5 - Comparison of theoretical cumulative distributions of relative

wave. period to empirical data
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Solution by Cavanie, Arhan and Ezraty

Another approach to the theoretical derivation of the joint probability
density of wave amplitude and period in narrow-band Gaussian processes
has been taken by Cavanie et al (ref. 11,1 ). They consider the positive
maxima (§m+) of h{t), and define a wave amplitude a and period T from
the value of h(t) and h(t) at these maxima, using the same relations
as for a pure sine function:

o

a=h+randl = 21r(—§/_}3)2_l_}l =+ (3.55)
Since p(h,ﬁ) is known (from Rice's work),1p(a,T) can be calculated.

The resulting joint density of & = 3/(m0)E and 1 = z/f can be written as

3.2 -5 2 -4
pl&,13e) = __EEIE—E_*E—“E exp{} §;€%7I {(u212 - a2)2 + azaq}] (3.56)
(2m)2e(1-¢" ) 2en

in which o, a and p are given functions of €. The coefficient o is the

proportion of positive maxima, given by

1
@ =31+ (1= D7), (3.57)
while
2
a“ = 52/(1 - 62), (3.58)

and u is the ratio of the mean value T, as defined in (3.55), to the

mean time interval between positive maxima (Im+):

BE{T}
W ETET u(e), (3.59)
~n
in which
1 1
E{;r_m+} == (m2/mu)2. (3.60)

The function u{e) has been calculated numerically by Cavanie et al,
and is presented in tabular form in reference 1. For €= 0, u = 1,

while in the range (0 < & < 0.95), u deviates less than 7% from 1.

The marginal density of £ as defined above is simply the density
of the positive maxima, which can be obtained directly from the Rice
distribution (3.19) for all the maxima. It will not be given here.
Suffice it to say that it approaches the Rayleigh density for sufficient-

ly large values of rg/e.
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The marginal density of 1 is

0.38.2 2"{
p(t;e) = b (3.61)
{(HQTQ‘OLQ)Q N aQau}s/Q

The authors have made a comparison of their theory to measured values
of H and T, defined according to the zero-upcrossing convention (figure 4).
A total of 182 records were used, selected on the criteriom that they
should have been made during storm conditions. The spectral width
parameter ¢ for these records had a mean value of 0.865 and a standard
deviation of 0.031 (a surprisingly small value).

The frequencies of occurrence of ﬁ//mo and E/f in certain intervals
for all the records were lumped in one figure, and compared to the
theoreticél joint density function 3.56 (modified according to H = 2a).
The theoretical shape appears to agree well with the data.

The marginal distributions were also checked. The shape of the
period @istfibution is well predicted in a range of approximately
0 < T/T < 1.6 (about 90% of the waves), but the empirical distribution
displays a sort of cut-off in the range 1.6 < T/T < 2.0, in contrast to
the theoretical distribution (example: for & = 0.865, Pr{z/f > 2}= 0.03
theoretically; observed frequency ® 0.002).

It should be noted that for values of € as large as 0.8 or more one
can hardly expect the theory by Cavanie et al to be realistic with
regard to the wave periods. This is certainly true for the prediction
of the mean zero-upcrossing period, with which the theoretical period,
calculated on the basis of eq. 3.55, bears but little resemblance,

unless ¢ is small. The ratio

E{T} T
— _ B m_ uer(e)
T, T T, T Hisr(e)}? (3.62)

in which T is defined by (3.55), is approximately 0.7 for e = 0.8

(u(0.8) = 0.93, ref. 1 ). Nevertheless, the theoretical distribution

of the normalized variable T = T/E{T} may be useful for the description
of the distribution of the normalized zero-upcrossing intervals even

for large values of e, but the theoretical foundation of such eventuality

is of course not very strong any more.
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Comparison

It would be of interest to perform statistical tests of goodness-of-
fit to investigate further the theoretical distributions proposed by
Longuet-Higgins and by Cavanie et al. Lacking such a basis for a
quantitative comparison, at the moment of writing, only a limited,

qualitative comparison will be made.

The marginal distributions of the wave amplitudes are almost
the same. Longuet-Higgins starts a priori from the envelope, which
is always Rayleigh-distributed, while Cavanie et al consider the positive
maxima, allowing for more maxima than zero-upcrossings. As noted above,
the distribution of these positive maxima approximates to the Rayleigh
distribution with decreasing spectral width and/or increasing value
of the heights of the maxima being considered.

For a gross comparison of the marginal densities of
1 = T/E{T}, reference is made to figure 6, which shows plots of (3.61) for

€ = 0.50 and 0.70, of (3.50) for v = 0.25 and 0.35, and also of (3.43).
—————— eq. 3.50, v = 0.25

Figure 8 - Marginal probability density functions of relative wave pertod
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The reason for choosing v = Ze is that for a given spectrum these
parameters should satisfy the relation v = le, as long as they are small
(ref. 35). It can be seen that with this choice (3.50) and (3.61) are

very similar, and that for € = 0.7 and v = 0.35 both are similar to

the Rayleigh density for 22 (3.43), provided we consider the central
region of the distribution only. The functions shown behave quite
différently in the upper tail. Any judgement of the possible superiority
of one over the over depends on how much weight one wishes to give to these
different regions. Such evaluation should be carried out in the context

of the applications which are envisaged. Moreover, one should then look

beyond just the marginal densities.

For a gross comparison of the joint densities (3.u48) and (3.56),
reference is made to figure 7, which shows a rough sketch of the general

pattern of lines of constant density.

&
T ! ’
(a) ' (b)
2 21
14 14
0 T . ' '2 0 ' 1 ' 2
e T [

Figure 7 - Sketeh of lines of constant joint probability density of amplitude
and period (a): eq. 3.48, Lomguet-Higgins; (b): eq. 3.56, Cavanie

et al.
The two-patterns are quite similar for the larger wave amplitudes,

showing an increasing concentration of wave periods around their (common)mean
with increasing amplitude. There is a distinct difference in the region

of lower amplitudes, however. Longuet-Higgims' solution is symmetrical

about the mean, while the solution given by Cavanie et al shows a decrease

of the conditional mean period with decreasing amplitude. The author
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has often seen similar trends in Dutch wave data (see e.g. Svasek, ref. yg ).
The data given by Cavanie et al (28240 waves) also show it quite clearly.
The data presented by Chakrabarti and Cooley (ref. 12) again give the same
picture. It is the author's impression that in this respect the solution
given by Cavanie et al is the most realistic, but the importance of such
differences as may exist between (3.48) and (3.56) is again open to
question. The fact that the difference is most pronounced for the smaller
wave amplitudes may suggest that it is not important, but this conclusion
would not necessarily be justified for problems involving particle velo-
cities and accelerations, wave steepness, and breaking, which are en-
hanced by decreasing the period. The last-mentioned two aspects will be

briefly considered below.

Distribution of wave steepness

The steepness (S) of a wave with zero-upcrossing height H and

period T is here defined as

2
S = H/(gl /2m), (3.83)
and a corresponding normalized steepness (s) as

s = _g_/_Q. (3.64)

This can also be written as

gv/mo (gTQ/QTr)
Ay £+ 2_—_3—“—%’ (3.85)
2 s

using the significant wave height He s here equated to #/mo, and the

mean zero-upcrossing period TZ, given by (3.6).

The distribution function of s can be calculated from the joint

probability density function of (£,1) according to
2
5 w st
B(s) = Pr(s < s} = Prig < st°) = [ar [p(£,1)de. (3.66)
0 0

The probability density of s is then given by

p(s) = dzés) = OITQ[p(E,T)] Hd. (3.57)

£=sT

It is expected that for p(&,T) given by (3.48) or (3.56), these

integrals can only be evaluated numerically. However, substitution of
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(3.41-3.43), proposed by Bretschneider, gives the explicit expression

2 2
P(s) = 8 = = . (3.68)

21‘"‘(-&) + 82 1,35+ 82

Essentially the same result has been presented earlier by the
author (ref. 3 ), as a special case of a more general expression based
on a two-dimensional Rayleigh density for (é,lz), allowing for an

: . 2
arbitrary degree of correlation of § and 71 .

In the case of a very narrow spectrum,such that the vafiability
of the wave periods can be ignored, S is proportional to H, and its
distribution then is of the same type as that of H. If the latter is of
the classical Rayleigh-form, then it follows that

Pr{s > s} = exp (- %32). (3.69)

Overvik and Houmb (ref. 40) define a steepness for each maximum

(Em)'of h(t), by substituting
.I%
H=2ln] and T = 2n|n/ml2] (3.70)
— —m
into (3.63), which gives
o a
s=-3 LY . (3.71)

The distribution of § so defined is then calculated from the known
(Gaussian) joint distribution of h(t), h(t) and h(t), with the

following result for the steepness, normalized as in (3.65):

1 - 92
Pr{s > s} = exp (- =—5—

= s%). (3.72)

It follows that the steepness as defined by Overvik and Houmb is
Rayleigh-distributed for all € < 1. For a narrow spectrum, such

that e + 0, eq. (3.72) approximates to (3.59).

According to Overvik and Houmb, the special case given by equation
(3.69) should also apply to the steepness calculated from zero-crossing
wave heights and periods for arbitrary e, because in that case
secondary maxima are neglected, which supposedly corresponds to the
case € + 0. The present author does not see that this is a valid

conclusion, at least on the grounds just stated. The arbitrary
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neglect of the secondary maxima, which are present if € > 0, does not
suddenly cause them to be absent (as when € + 0). And if they are |
present then the distribution of § may well differ from (3.69).

In the evaluations of P(s) referred to above, it is assumed that
the steepness is unbounded. This is not quite correct because of wave
breaking. An estimate of the probability of wave breaking (Pb) can be
cbtained by assuming an equivalency with periodic waves in deep water,
which break if their steepness S exceeds a critical value (Sc} of
approximately 0.13 (empirically) to 0.17 (theoretically). Denoting

the corresponding normalized steepness with S.> We have, using (3.68),

P, =1-P(s)=1{1+ %r‘"‘(i)sz}_1 = {1 + 078823 L. (3.73)
b c L c
For a developed wind sea, the ratio HS/(gT§/2n) is typically about
0.05. Using Sc =~ 0.15 then gives s, = 6 and Pb = $.036.

An equation equivalent to {3.73) has also been presented by
Kath and Ramsey {ref. 37), who furthermore consider the distribution
of the heights of the breaking waves, on the assumption that breaking
waves of a given period T have a height equal to SC(gTQIQw). Houmb and
Overvik (ref. 26) have applied the same method, but they used Longuet-
Higgins'! joint probability density function for wave height and period.

The assumption just stated implies a clipping of the conditional
distribution of H, for given T, which therefore becomes discontinuous
at the breaking limit. Clipping of the height distribution has been
used by Battjes (ref. 4 ) for calculations of set-up and longshore currents
due to random waves on a beach, where breaking occurs due to depth
limitations. Goda (ref. 18) has used an essentially similar analysis, but
he assumed a range of possible breaking wave heights (for given period and
depth), within which the probability of exceedence drops linearly from
the highest value unaffected by breaking, to zerc. The results obtained
are quite good. But one should bear in mind that in the latter applicatioms
one is working with parameters of the distribution of all the wave heights,
including the non-breaking ones (e.g., the overall mean square height).
The results are therefore rather insensitive to possible errors in
the estimates of probabilities in the region of breaking waves, as long
as only a small fraction of the waves is breaking. Making estimatés of
probabilities for breaking waves exclusively, as is dome in the refs. 28

and 20, is much more susceptible to significant errors.
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3.3. Standard sea state spectra

3.3.1. Frequency spectra

In analyses of structures under dynamic loading, one is often con-
fronted with the problem of having to use a sea state spectrum, while
only a characteristic wave height and period are available. In such cases
it is necessary to make an assumption about the spectral form, the wave
height and period serving as scale parameters. Such assumptions are
often based on some standard form of spectra of pure wind-driven sea waves.
The Pierson-Moskowitz (PM) spectrum has been extensively used for this
purpose, but it has in this respect largely been replaced by the JONSWAP

(J) spectrum.

The PM-spectrum was introduced as a representation of spectra for
fully developed seas in deep water (ref. 42). Using frequencies in

cycles per unit time, it can be written as

-4 2 -5 "
B(£) = ap,(2m) g’ Cexpl-8(£,/D)") (3.74)
in which
aPM = 0.0081
= 0.74 (3.75)
£, = g/(QWUlg‘S)
and U19 5 is the wind speed at 19.5 m above sea level.

In the following, only this spectrum, and spectra which can be transformed
to exactly this expression, with the coefficients given by (3.75), will

be called the PM-spectrum. Note that it has only one free parameter, U19.5’
which determines both the energy scale and the frequency scale

of the waves; the form of the spectrum is constant.

Shortly after its introduction, the PM-spectrum was already used
in recommendations for a standard form of sea state spectra. The ISSC
Committee I.1 for instance, in its report of 1964 (ref. 30), recommended
a spectrum similar to the PM-spectrum, but with two adjustable parameters,
HV and Tv, the visually estimated wave height and period. On the

assumption that
H, = Wmg, T, = my/m, (3.78)

the following so-called ISSC-spectrum resulted:
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_ 2 -5 -4
E(f) = 0.11 H T (T £) ° exp{- 0.WM(T £) '}. (3.77)
This spectrum, and other spectra which can be written as
-5 -y
E(f) = Af ~ exp{-Bf '}, (3.78)

in which A and B are independent of f, will here be said to be of

the PM-type.

It should be noted that already several years prior to the
publication of the PM-spectrum, Bretschneider (ref. 8 ) had formulated
a spectrum of the form (3.78). He uses significant wave height and
period as scale parameters; these in turn can be obtained from the
empirical growth curves of the SMB-type. Bretschneider's derivation
of the spectrum is based on concepts which are not directly related
to the concepts commonly used in definitions of variance density
spectra (such as Fourier transforms). This makes a comparison of
his results to those of others somewhat unfounded. However, in
practice, this argument is given very little weight, or none at all.
(The same can be said about the Neumann spectrum, which also came
about in a way which had little to do, in a formal sense anyway,
with common definitions of spectra. There is in fact a cleose link

between the approaches taken by Neumann and Bretschneider.)

The JONSWAP (J) spectrum (ref. 22) applies to fetch-limited
seas due to more or less stationary and homogeneous wind fields. This
spectrum was formulated as a convenient means in the analysis of the
JONSWAP data. It was not the purpose of that study to formulate a
standard spectrum for general use. Nevertheless, it was very soon
accepted as such.

The following five-parameter spectrum was found to give a uniformly
good fit to nearly all of the spectra observed under "ideal' generation
conditions (steady offshore wind, almost perpendicular to the shore,

no swell) during JONSWAP:

- F
- - - o l(_ M2
B(E) = ag(2m) ¢ Pexpl- 2(£/1 ) tygexpl= 2l oT )’ (3.792)
with
o =0, for £ £ (3.79b)

o = 9 for £ > fm
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It is written as the product of a PM-type spectrum, with two adjustable
scale parameters o and fm’ in which fm is the frequency at which this
spectrum has its maximum, and a peak enhancement factor which equals
Y for £ = fm’ and unity for frequencies sufficiently far away from
the peak.

The following fetch-dependence of o and fm was proposed (ref. 22):

az0.076x 0% F =58 0%, (3.80)

in which

%= gx/V2 ,F =fU. /g (3.81)
10 > m 7 Fnl1o

x is the fetch, and Ul the wind speed at a height of 10 m above sea

0
level.

The shape parameters vy, S, and 9, displayed a large scatter
(possibly due to small-scale perturbations of the mean wind field),

but mo significant trend with %X. Their mean values are

¥ =3.3, 5 =0.07, G = 0.09. (3.82)
The spectrum (3.79), with the coefficients given by (3.80) through
(3.82), is here called the J-spectrum. Spectra of the form (3.79)

but with coefficients different from those given by (3.80) through
(3.82) will be said to be of the J-type.

Subsequent to the publication of the J-spectrum,numerous additional
fetch- or duration-limited sea state spectra were analyzed, including
cases of highly non-stationary and inhomogeneous wind fields, from
which the conclusion could be drawn that such spectra were generally
of the J-type (see e.g. ref. 24 for a summary). It therefore appears
to be justified to use a J-type standard spectrum for developing sea
states.

A convenient parameterization for J-type spectra has been
presented by the ISSC Committee I.1 in its 1976 report (ref. 31). For
constant values of A and 0> as given by (3.82), the first two moments
of a J-type spectrum were computed numerically and presented as

a function of y, with the following results (due to J.A. Ewing):
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Y = 1.2 3 3.3 4 5 6

mO(Y)

—_— = 1 1.24 1.4 1.52 1.66 1.86 2.0%
mo(l)

mO(Y)/ml(Y)

— 1 0.95 0.93 0.92 0.91 0.90 0.89
mO(l)/ml(l)

With these numerical values, a J-type spectrum can be easily determined
for given values of HV, TV and y. Taking vy = 3.3, as a representative
(?) mean value, and neglecting the effect of y on the ratio mo/ml, the
following result is obtained (ref. 31):

2, 2
- - - 1 -
E(f) = O.O72H3TV(TVf) 5exp{—o.uu(TVf) 4yg,5%PL= 3(1.296T F - 1)7/07)

(3.83)

Another parameterization has been worked out by Houmb and
Overvik (ref. 26). They also assume o, = 0.07 and o = 0.09, but
they give not onl¥ o and fm but also y as function of HS(= u/ho)
and Tz (= (mo/m2)2). In their formulation, y decreases gith decreasing
mean steepness, approaching the value 1 for 5_ = HS/(gTZ/Qﬂ) = 0.03.
This trend is reasonable, since one may expect the J-spectrum to
approximate to the PM-spectrum for sufficiently large values of
%, i.e. for sufficiently low values of SS (which itself is a monotone
non-increasing function of %). However, the value of 0.03 of SS for
which vy attains a value of about 1 is much lower1than the value of SS
for the (original) PM-spectrum, which is (aPM/ﬂ)2 = 0.05. According
to Houmb and Overvik's results, vy = 4 for SS =~ 0.05. The least which one
can say therefore is that there are considerable discrepancies between
these data and those used by Pierson and Moskowitz. In this connection
it may be noted that in genmeral little is known about the transition
from a developing sea state into a fully developed one.

Houmb and Overvik have tabulated values of y as high as about 7,
for SS up to 0.16. While a value of y of about 7 has on occasion been
measured, the steepness with which it is associated in ref.26 is un-

realistically large.

The following brief comments are made with respect to the above.
1. There are applications in which the peakedness of the spectrum is
important. Based on presently available data, it seems wise in such
cases to distinguish between developing seas and fully developed
seas, and to use J-type spectra for the former and PM-type spectra
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for the latter.

The author has frequently heard statements to the effect that "The
JONSWAP spectrum contains more energy than the Pierson-Moskowitz
spectrum”. Such statements are believed to be erroneous since they
would imply that there are conditions in which both spectra would
nominally be applicable. But this is not the case since the PM-spectrum
is restricted to fully developed seas, and the J-spectrum to fetch-
limited seas. Therefore, the statement cannot refer to a comparison

of wave energies predicted from a given windfield. It can at most refer
to a comparison of the two types of spectra fitted to known wave

height and period values. But in that case the statement is meaningless.
It would be trivial to say that the multiplication of a PM-type spectrum
(or any spectrum, for that matter) with a factor exceeding 1 results

in a spectrum with a larger total area than the originally assumed
PM-type spectrum. However, it should also be obvious that hypotheses
about the details of a process (such as the spectral distribution of
energy) should at least be consistent with known overall-properties of
that process (such as the total energy). Therefore, whether one fits

a PM-type spectrum or a J-type spectrum to known values of a wave
height (and period), the "predicted" values of the wave height
(and'period)‘should be the same in both cases. There seems to be little
point in statements of the kind mentioned above.

The (maximum) peak enhancement factor y is sometimes referred to as

a ratio of the peak spectral demsity of the J-spectrum (or J-type
spectra) to that of "the corresponding PM-spectrum". This again is
considered to be erroneous, or at least meaningless. Comparing the

peak spectral densities of two spectra which (one supposes) should
represent the same sea state, but which do not even have the same total
energy, is considered a meaningless exercise. Nevertheless, J-type
spectra do have a higher peak spectral density than PM-type spectra

for the same mean wave height and period. However, the ratio between
them is not y, but a factor mo(l)/mo(y) smaller (see p. 31). For

1 <y <6, the resulting ratio varies between 1 and 2.94; for y = 3.3
it is 2.17 (assumingxoa = 0.07 and oy = 0.09).

The spectra measured during JONSWAP at different fetches, for a given
wind speed, consistently displayed overshoot. This property has been
preserved in the formulation of the J-spectrum, not only through the use
of the peak enhancement factor, with y > 1, but also because o decreases
with increasing %. (If only the latter condition would obtain, and

y = 1, there still would be overshoot. This is true e.g. for

Bretschneider's spectrum (y = 1), if combined with Bretschneider's
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growth curves, which give a decreasing mean steepness (thus, a
decreasing @) with increasing %.)

The empirical dependence of the dimensionless variance mo(: mOgQ/Uib)
on the dimensionless fetch %, as found in the JONSWAP measurements,
indicates a smaller growth rate of the waves than in most other studies

(see e.g. ref. Ub).

It was noted above that the spectra of wind-driven waves are quite
similar, even in non-homogeneous and non-stationary wind fields (see
ref. 24 for examples). This fact, which has been explained theoretically
by Hasselmannon the grounds of non-linear interactions ' (see ref. 2?2
for details and additional references), is presently being incorporated
in wave prediction models. This development reverses a long trend of
increasing complexity of these models, from the simple (HS,TS)—growth
curves in constant wind fields (Sverdrup-Munk) to numerical two-
dimensional spectral models using an energy balance equation for each
spectral component, with various non-linear couplings included. In
contrast to the latter category, the more recent models by Sanders
(ref. 45) and Hasselmann et al (ref. 24) are based on a standard
spectrum shape at every growth stage of the waves, as indicated by
the parameters gHS/U2 or fmU/g, so that only a few dependent parameters
need be predicted. These models are in this respect very similar to
the earlier, less sophisticated adaptations of Sverdrup and Munk's
method by Wilson, who generalised it to variable wind fields, and

by Bretschneider, who added a standard spectral form.

3.3.2. Directional spectra

A discussion on standard sea state spectra would not be complete
without some reference to the fact that the sea waves form a random,
moving surface. So far only temporal variations at fixed points have
been considered. This should be extended with the inclusion of spatial
properties.

Considering the sea surface elevation as a stationary random
process in time and space (horizontal position vector), one can
define a three-dimensional spectral density function by a straight-
forward generalization of the one-dimensional case. The three independent
variables in this general spectrum are the frequency (f) and the two
components (kl’kz) of a (horizontal) wave vector ¥ with respect to a
chosen reference, in which case we have E(f,kl,kQ). Equivalently,

>
one can work with the frequency f, the magnitude k of k, and the
orientation of ¥ with respect to the chosen reference: E(f,k,8). The

>
integral of this spectral density function over all values of k yields
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the one-dimensional (frequency) spectrum E(f).

If linearity can be assumed, then there is a unique relation between
k and f, so that the dimensionality of the spectral density function is
reduced to two, in which case we have E(kl’k2> or E(k,9), or E(£,8).
In the latter two cases a conditional spectral density as a function
of 8, at fixed values of k or £, can be defined:

D(OE) = -E-é%—‘j—) (3.84)

It follows that

"
J D(e3f)ds = 1. (3.85)
-7

Longuet-Higgins has derived many results concerning the statistical
properties of a random, moving surface considered as a Gaussian process
with an arbitrary two-dimensional spectrum. The reader is referred

to ref.34 for details.

While the two-dimensional spectrum of ocean waves in general can
assume a great variety of shapes, it seems plausible that it would
have some standard form in the case of pure wind-driven waves. However,
good measurements of E(f,8) are difficult to obtain, particularly as
regards the directional density. The most widely used methods of es-
timating this function have a rather poor directional resolving power.
In such cases one usually:assumes a plausible analytical expression
for D(6;f), usually unimodal, and then estimates the associated parameters.
Some such results obtained from an array of three mechanically linked
pitch-and-roll buoys arranged in a cloverleaf pattern, have been reported
by Ewing (ref. 17) and later also by Mitsuyasu (ref. 36). Both give
values of the parameters of the following function:

8- 8O 2s

Dl(e;f) = A(s){cos (———§~*)} , 0<6<2m, (3.86)
in which A(s) is a normalizing coefficient such that eq. (3.85) is
fulfilled. The azimuth 60 is a mean direction, and s is a shape parameter
determining the width of the distribution. Both can vary with f, although
the mean directions at different frequencies can be expected to coincide
with each other and with the mean wind direction in a stationary, homo-
geneous wind field. Mitsuyasu has fitted the following functions to

the observed variation of s with f:
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s = 11.5 f;]7'5f5 for £ < £
~ 5.5 . (3.87)
= 11.5 £ °° for £ > fm, ’
in which f is a normalized frequency:
f = 2nf U/g (= U/c) : (3.88)

and %m is the normalized frequency of the maximum density of the
frequency spectrm. Mitsuyasu's data clearly indicate a maximum of s
(i.e. minimum directional spreading) fgr f = fm. Furthermore, the
maximum value of s, which equals 11.5 fm *7, increases with increasing
growth stage (dimensionless fetch) of the waves.

Combining the behavior of D(83f) with that of E(f), as discussed
above, the following picture emerges. In a young sea, the wave energy
is distributed rather narrowly over the frequencies (JONSWAP) but
rather broadly over the directions of propagation (small s), while
the reverse is true in a developed sea (Pierson-Moskowitz; large s);
throughout this development the components with maximum energy density

have the narrowest angular spreading.

4. Long-term wave statistics

4,1. Generalities

The main purpose in long-term wave statistics is to characterize
the long-term variability of the short-term sea states, both with regard

to service conditions and to extreme conditions.

In the short-term description, a particular sea state is considered,
characterized by various probabilistic and/or spectral distribution

functions and their parameters, such as

(H_, TZ, Vg seenn 5 60, Sy eanes )
or
(mo, L R eo’ Sy eeans )
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. s s . . ) g
which, for brevity, is represented as an n-dimensional vector a.

In the short-term view, a sea state occupies finite (non-zero)
intervals in time and space, but in the long term view one can reduce
these to point values, and define a value of 3 for a continuous range of
location x and time t.

If one considers the growth, propagation and decay of wind waves
due to a given windfield, then 3 can be considered as a slowly varying
function of (;,t), governed by deterministic laws based on the mechanics
of the air-sea interactions. (Numerical spectral wave prediction models
are based on this approach.)

In the long-term description of ocean waves, the wind fields them-
selves are not given in deterministic but in probabilistic terms, and the
sea state parameters can then be considered as a random (vector) process
in x and t, written as g(;,t). It is this random process which is the

basic object of study in long-term wave statistics.

The terminology, methods and results of general random-process
theofy have been widely accepted and systematically applied in the
short-term description of sea states, but not nearly as much in the
long-term description. There would seem to be a potential for further
developments in this direction, despite the fact that the long-term
random process g(;,t) is more difficult to handle than the short-term
process E(;,t) in several respects. This is due e.g. to the scarcity
of basic data and the impossibility of controlled experimentation.

Furthermore, whereas there is at least some basis for a deductive

approach to the analysis of the sea state in the short term, mainly because

of the approximate applicability of the central limit theorem, such

is much less the case for the long-term situation.

The location vector x and the time t have so far in this chapter
been treated on an equal basis. In practice, one deals with E as a
process in time, for given, discrete values of X. We shall here omit the
;—dependence in the notation and write simply g(t).

Because of seasonal effects, the process g(t) is in general non-
stationary. This complication is circumvented by restricting the time
intervals on which E(t) is defined to appropriately small parts of each
calenderyear, e.g. the four seasons, the twelve individual months, etc.
Bach year then gives one realization of each of the processes E(t) so
defined.

In the analysis of E(t) as a random process, one can consider
statistics of its instantaneous values (at arbitrary instants) as well
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as the joint statistics of its values at several instants separated by
certain lags. The former may be sufficient for certain applications in
which the sequential behavior of sea states is not important (example:
conventional practice of evaluating fatigue, using the Palmgren-Miner
rule), but otherwise the latter approach is called for (example: knowledge
of the duration of calms is needed in operations planning). Some aspects
of both levels of approach will be considered in the following, but no
comprehensive review will be given. However, we shall first make a few

remarks about the data base.

There are three principal sources of basic data:
(a) visual observations
(b) instrumental records

(c) hindcast sea states in historical storms.

Visual observations generally are available over a longer time span
than instrumental records, but they suffer from the drawback of a
poorly defined calibration. On the other hand, routine instrumental
records by themselves contain no directional information. Hindcast
data generally can cover a fairly long time span, although only for
storm conditions. If all the options are available then it may be best
to use visually observed data for estimating long-term service conditions,
to use hindcast data for extreme conditions, and to use the available few
years' data from instrumental records for a calibration of the other two

data sources.

4.2. Statistics of instantaneous values

4.2.1. Distribution of sea state parameters

The previous remarks were of a rather general nature. We shall now
be somewhat more specific, and to that end suppose that in the available
data three parameters are given for each sea state: a characteristic wave
height H, (such as 4(m0)%, or a visually estimated height), a characteris-
tic wave period TC, and a characteristic direction ec. In the long-term
view, these have a value (are defined) at each instant. The statistics
of these for arbitrary instants are wholly described by the joint pro-

bability density function p(Hc,TC,GC).

Note that random sampling here consists of picking an instant at
random and observing the corresponding values of (EC’IC’QC)' In principle
we can select such instants from continous time. The notion of "return
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period" is therefore not applicable here - at least not in a meaningful
way. By arbitrarily introducing a discrete time base, e.g. by considering
observations made once per three hours, one can indeed convert fractions
of the total number of observations into durations (i.e., one can define
return periods), but in that case these will reflect the subjectively
chosen time step, rather than an objective characteristic of the wave
climate. For instance, a statement that in a certain locality "a signi-
ficant wave height of 10 m has a return period of 15 years" is meaningless
if not supplemented with information about the (average) time interval
between successive definitions of HS. If that interval is chosen to
coincide with the interval between successive observations of Hs in the
past, say 3 hours, then the '"return period" of 15 years referred to
represents the average interval between successive events {Es > 10 m},

if observations are made once every three hours. But if the observations
are made once per hour, then the return period of the event {Es > 10 m}
would reduce to 5 years. This clearly illustrates that the return period
as used in this context is not an intrinsic property of the observed wave

climate.

Various analytical distribution functions can be fitted to the ob-
served data. For this purpose, and also for graphical or tabular presen-
tation of data, it is convenient to treat the joint probability density
as the product of marginal and conditional densities. The Weibull type
is often used for the marginal distributions of Ec and IC. The goodness-
of-fit is frequently checked visually, although of course more quantitative
measures can be defined, evaluated and used as a criterion in choosing
among various possible types (see e.g. ref. ul).

Having found one or more distribution functions which are deemed to
give an acceptable fit to the data, by the criteria chosen, then these
are also used for extrapolation. This procedure rests on the belief that
there is no basic change in the factors causing the growth or limitation
of the variables considered (except for a change of scale). Weak though
this basis may seem, it would be hard to justify any other procedure
in the absence of indications for such basic changes (such as depth-

limitations on the wave heights).

4.2.2. Distribution of response peaks

So far the long-term distribution of sea state parameters at
arbitrary instants has been considered. This can be used to calculate
the long-term distribution of some response parameter, such as the

rms-stress in a structural member. More frequently the long-term

38




distribution of the peak values of the respénse is of interest, e.g.
for evaluating fatigue. Although peak values are not function values at
arbitrary instants, and therefore, strictly speaking, do not belong in the
section on "Statistics of instantaneous values", they are nevertheless
included here because the aspect of sea state sequences is ignored in the
considerations.

Consider the maxima r, of some résponse r(t) of a given structure
in a wave field. By way of illustration, we shall assume that in a given
sea state . is Rayleigh-distributed, with mean square value equal to QUi,
and that the average number of maxima of r(t) per unit time is Ar.
Both o and AP are functions of the sea state parameters (for a given
structure). In the case considered above, we have only (HC,TC,SC) as
sea state parameters. Knowing Gr and Ar as functions of these, and p(HC,Tc,ec),
the long-term distribution of r, can be evaluated.

lthder the assumptions stated, the conditional distribution of Em’
for given (HC,TC,GC) is given by

r2
Pr{zm > r]HC,TC,ec} = exp {- ;;Ez;;—;?—z;—;} (4.1)
rc’c’e

The fraction of time during which ﬂc’ EC and Ec simultaneously are in
the ranges (HC, HC + dHc)’ (Tc’ Tc + ch) and (GC, ec + dec) respectively,
is given by p(HC, Tc’ ec)dHchcdec, as follows from the definition of
p(Hc,TC,GC). The expected num»er of maxima of r(t) per unit time under
these conditions is AP(HC,TC,QC), of which a fraction given by (4.1)
exceeds r. It follows that the expected number of events {gm > r} per

unit time, regardless of the values of (HC,TC,SC), equals
JIf priz, > r}HC,Tc,eC}AP(HC,TC,ec)p(Hc,Tc,ec)dHCchdec ) (4.2)

in which the integration is carried out over all possible values of (HC,TC,SC).
The fraction of all the maxima of r(t) exceeding r is then obtained by
dividing (4.2) by the expected number of maxima of r(t) per unit time,

which is given by
I AP(HC,TC,ec)p(HC,Tc,ec)dHchcdec . (1.3)

The result equals the marginal (long-term) probability that T shall
exceed the level r. If r is a stress then this result can be used in

evaluating fatigue according to the Palmgren-Miner rule.

It may be noted that the reciprocal of (4.3) equals the average

duration between successive events {Em > r}. As such it represents the
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return period of that event. The value of a return périod is unambiguous
in this case since the occurrence of a maximum is a discrete event, in
contrast to what was noted above with respect to the significant wave
height (or other parameters which are defined for continuous time).
Although the value of the return period of the event {Em > r} is
unambiguous, one should be careful in its interpretations, and not lose
sight of the fact that it is based on the fraction of all the maxima of
r(t) exceeding r, no matter in which sequence they occur. High values
of r. tend to occur only in isolated stormy periods, in each of which
several may exceed r. Thus, the return period of the event {Em > r} is
in general by no means equal to the average time interval between
successive storms in which the event {Em > r} occurs (at least once),
but shorter than that. The latter is in general a more meaningful
quantity in the context of a design process. Its evaluation requires
knowledge of the sequential behavior of sea state parameters, which

will be considered in the following paragraph.

4.3. Sea state sequences

4.3.1. Definitions

Apart from its intrinsic interest, the problem of sea state
sequences has practical relevance for operations planning (duration
of calms and storms) and design (frequency and duration of storms;
probability of encounter of rare values in the service life of a structure).

Only these aspects will be considered here.

Within the context of wave statistics, it is natural to define
"calms'" and "storms' at some location as events in which consecutive
values of the intensity of the wave action at that location, as mea-
sured by the characteristic height Bc’ are below or above a certain
treshold.

To be more specific, we consider Ec as a random function of
continuous time, t (the modifications required in case of a discrete
time base are obvious), and we choose a treshold value H. The time
interval between an upcrossing and the next downcrossing of the level
H by the process ﬂc(t) is said to correspond to a storm, and that between
a downcrossing and the next upcrossing to a calm. The lengths of
these intervals are called durations of storms (Qs) and of calms (QC),
respectively.

In the applications referred to above, knowledge of the probability

distributions of D and of D_ is required, for various values of H. These
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are considered in the next section, 4.3.2. Following that, we shall deal
with encounter probabilities of extreme sea states (section 4.3.3.) and

of extreme response values (section 4.3.4.).

4.3.2. Durations of sea states

Some data on sea state durations have been published (see e.g. refs.
14, 25, 29, 44 and a series of reports by Draper in the format recommended
by him in ref. 15, which format includes data on persistence). In analyses
of the data, and for subsequent generalizations and deductions, one needs
plausible hypotheses about the nature of the processes considered.

For increasing values of the treshold level H, the occurrence
of storms becomes increasingly rare, and memory-effects may become
weaker. This is some justification for introducing the hypothesis that
storm occurrences constitute a Poisson process. In such Poisson-model,
the number of events in an interval of a given duration is Poisson-dis-
tributed, and the time interval between successive events is exponentially
distributed.

Russel and Schueller (ref. 44) have tested the hypothesis that
hurricane occurrences in a certain part of the Gulf of Mexico would con-
stitute a Poisson process, and found it valid. At about the same time,
Houmb (ref. 25) applied the Poisson-model to visual North Sea wave data.
In fact, he considers the sequence of upcrossings of the level H by Ec(t)
as one Poisson process, and the sequence of downcrossings as another. From
this he concluded that both Ec and Bs should be exponentially dis-
tributed. Houmb also made an empirical check of some of his hypotheses
and results. These were found to be correct within the 5% level of
significance, using the chi-square test.

In the author's opinion, considering the occurrences of storms as
a Poisson process implies that such storms are reduced to point-events
in time, or in other words, that E% is neglected compared to Bc’ so that
Ec is approximately exponentially distributed. In this view, the assumed
applicability of the Poisson-model would not permit any deduction
concerning the distribution of the duration of storms.

In a subsequent paper (ref. 29), Houmb and Vik return to the
problem of the duration of sea state. They abandon the Poisson model.
Observed durations of storms and of calms, mainly from instrumental
wave data, were found to be Weibull distributed, with exponents
generally in the range 0.5 to 0.8, dependent on the threshold level con-
sidered. In addition, Houmb and Vik use a relationship between the
average duration of storms (or of calms), their frequency of occurrence,

and the probability distribution of the instantaneous value of Bc(t).
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The frequency of occurrence of storms in turn is expressed in terms of
the joint distribution of ﬂc(t) and its derivative by means of Rice's
formula for the average threshold crossing rate. Since the work by Houmb
and Vik has been reported at the present seminar, no further details are

given here.

4.3.3. Encounter probability of extreme sea state

In the design of offshore structures one has to consider extreme
sea states, i.e. sea states of such intensity that there is only a small
probability of that intensity being éxceeded in the anticipated service
life of the structure. Such service life is generally far longer than the
time span covered by the available wave data. One is forced therefore to
make a substantial extrapolation of the probability distributions esti-

mated from the observed frequencies of occurrence.

To define "storms", a fairly high threshold level (H) is chosen for
the characteristic wave height Ec(t), so that the day-to-day occurrences
are filtered out. On the other hand, the threshold should be low enough
that 2 sufficient number of events in the available data is above it,
since these events are the basis for extrapolation. The choice is to some
extent one of convenience, since the extrapolation is based only on an
upper range of the observed values of ﬁc(t), in which case the threshold
value chosen a priori does not affect the end results.

Having chosen a threshold value H, the expected number of storms
per unit time in which Ec(t) > H, written as u(H), can be estimated from
the data. This information is usually supplemented with the assumptions
that the occurrences of storms are independent events, such that they
form a Poisson process, and that the intensities in the storms which do

occur are mutually independent.

In the further elaboration of the data, various approaches are
possible. One can consider the maximum characteristic height per storm,
written as max Ec’ given that Ec(t) > H. Its probability distribution,

written as

Q(H_;H) = Pr{max H_ > Holgc(t) > H}, (1.4)
can be estimated in the range of (HO;H) covered by the data. If a dis-
tribution function is found which is deemed to represent these data well

enough then that function is used for extrapolation beyond the measured

range.
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The product u(H)Q(HO;H) equals the expected number of storms per unit
time, above the threshold H, in which the maximum value of the characteristic
height ﬁc exceeds HO. Although it may be convenient in practice to estimate
this quantity from the two factors u and Q, estimated separately, it is the
product which is the more fundamental quantity in the subsequent develop-
ments, and for this reason it is given a separate symbol (n). Furthermore,
as noted above, the choice of the threshold level H does not affect this
quantity, although it does affect u and Q taken separately. We can write

therefore
n(Ho) = U(H)Q(HO5H). (4.5)

The expected number of storms in a given duration (lifetime) L, in
which the maximum Ec exceeds an extreme value HO, is equal to n(HO)L. On the
basis of the Poisson model and the independence assumption, the probability
that no sea state shall occur in the duration L with a characteristic height
H exceeding H_ is then estimated as exp {- n(HO)L}.

An alternative interpretation of the quantity just stated is that it
represents the distribution function of the largest characteristic wave

height in the duration L:
Pr{ (max H_ in duration L) < HO} = exp {- n(HO)L}. (4.6)
The value of HO for which

n(H )L = 1, (4.7)
written as ;C(L), can (loosely) be called the characteristic wave height
with retErn period L, in the sense that storms in which the maximum Ec
exceeds HC(L) occur on the average once in a duration L. Since the distri-
bution Q(HO;H), to which n(HO) if proportional, is of the exponential type
as defined by Gumbel (vef. 20), HC(L) is also approximately equal to the
mode of the distribution (4.6), i.e. to the most probable value of the
largest characteristic height in a duration L. On the basis of (4.6), this
modal value itself has a probability of 1 - e—l = 0,63 of being exceeded at

least once in a duration L.

The approach sketched above is somewhat similar to the one used by .
Thom (ref. 48), who considers the annual maximum of gc(t) as the basic ran-
dom variable. He has fitted the Fisher-Tippett type I distribution of ex-
treme values (the double exponential type) to series of the annual maximum

significant wave heights, estimated visually from Ocean Station Vessels.
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This method is sound in principle, but it can only be used if records are
available for at least 10 years or so, since only one data point per year

is retained in the analysis.

4.3.4. Encounter probability of extreme response peak

In the approaches mentioned above, one is dealing with extreme values
of the/characteristic (e.g., significant) wave height Ec(t). Another approach
is to consider extreme values of the individual wave heights. A number of
different methods of this kind have been discussed by Nolte (ref. 38).
Reference is also made to Borgman (ref. 6).

In the following we shall not deal with individual wave heights, but
with individual peaks of some response to the waves. This generalization is
included here because it is needed in applications, in which the ultimate

interest is not in the waves themselves but in their effects.

The problem to be considered is the estimation, on the basis of infor-
mation on,past storms, of the probability that at least one response peak
(gm) shail exceed an extreme value r, in a time interval of duration L.

Since the exceedence level r is given to be extreme, it is for all
practical purposes certain that r will only be exceeded during storms. This
impolies that the required probability is virtually equal to the probability
of occurrence, in a time interval of duration L, of at least one storm in
which at least one value of T exceeds r. The latter probability is fairly
easily estimated, at least insofar as it is justified to treat storms as

independent events.

Let N = g(r;L) denote the number of storms in the duration L in which
at least one response peak exceeds r. The required probability can then be
written as 1 - Pr{N = 0}.

Let p again denote the average frequency of occurrence of storms; ul
then respresents the expected number of storms in the duration L. Furthermore,
let Q(r) represent the probability that in an arbitrary storm at least one
response peak exceeds r:

Qr) = 1 - Primax < r|arbitrary storm}. (4.8)

r
I
Considering encounter probabilities of extreme values in a lifetime
of a structure, we have pL >> 1 and Q(r) << 1. Treating the storms as inde-
pendent events, N is then very nearly Poisson-distributed, in which case the

required probability is given by
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1 - PriN =0} =1-exp {- EQDI,
in which
E{N} = E{N(r;L)} = uL Q(r) . (4.10)

The parameters p and Q(r) must be estimated from the data. Regarding Q(r),
we shall first consider a given, single storm.

A single storm is supposed to be described by the time history of the
short-term sea state parameters such as (HC,TC,GC,....). We consider response
maxima o which for a given sea s;ate are assumed to be Rayleigh-distributed,
with mean square value equal to 20r’ and with mean frequency Kr, both of
which vary with the sea state parameters (HC,TC,GC,...). Considering a storm
lasting from t = t) tot = t2, the expected number of maxima ES which
exceed r is

t2 2,2
m(r) = Ar(t) exp {- %r /cp(t)}dt, (4.11)

Ty
where it should be understood that Ar and 9, actually vary with t implicit-
ly, through their dependence on (HC,TC,SC,...). The probability that no .-

value shall exceed r during the storm is then estimated as
R(r) = Primax T < r|given storm} = exp {- m(r)} (4.12)

(see also eq. 3.36).

The probability (4.12) is conditional in that it is given that a storm
occurs with a given time history of (HC,TC,GC,...). In the long-term view,
the storm may or may not occur, and its parameters are random variables,
with an associated multidimensional probability density function. Moreover,
the variable pattern of their variation with time during a storm should be
taken into account. This greatly complicates the transition from the condi-
tional probability (4.12) to the non-conditional probability (4.8).

A first step in getting around this difficulty is to recognize that the
sea state parameters have an effect on m only through Ar and T and their
variation with time. (Needless to say, this is a reduction in complexity only
if the number of sea state parameters was more than two.) Furthermore, for
large r, only a relatively small time interval around the peak of the response
intensity contributes significantly to m. (The actual values of ty and”t2
in (#.11) are then immaterial, provided t, and t, are sufficiently far away
from the time of the maximum response intensity.) This implies that m is
mainly determined by the storm's maximum Gr—value, and by the number of

Em—values around the storm's peak which contribute effectively to m. Borgman
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(refs. 6, 7) has shown how an effective number of peaks (n) and an effective

intensity (o) can be estimated from given time histories of Ar(t) and Or(t),

such that
t
2 2, 2 2,2
m(r) = [ Ar(t) exp {- 3r /or(t)}dt = n exp {- ir"/o"} (4.13)
t
1

for all not-too-small values of r. (Borgman actually deals with individual
wave heights instead of response peaks, but that does not affect his method.)
In this approximation, the response's time history during the storm is des-
cribed by just two constants, at least insofar as it affects m{r) and R(r),

We can write therefore
m = m{r;n,o), (4.14)

and interpret R as a probability which is conditional on the occurrence of

specific values (n,o) of the random variables (n,o):
R = R(r;w,0) = Pr{max r <r|n=n,g= cl. (4.15)

For each storm, one pair of values (n,0) can be calculated. The joint pro-
bability demsity p(n,o) of (n,0) can therefore be estimated from past
storms. Compounding this with the conditional probability R(r;n,o), the
probability that at least one response peak shall exceed r in a storm picked

at random from the population of storms becomes

1]

Q(r) = 1 - /T R(r;n,o)p(n,o)dndo
=1~ J5 e_m(r;n’o)p(n,c)dndc. (4.16)

Together with (4.10) and (4.9), this is a solution to the problem which

was posed.

In most practical cases, the variability of n has much less effect on
0(r) than the variability of o. A good approximation can then be obtained
by assigning some mean value (n) to n, and to work with the probability
density p(o) of g only. We then have

m = m(r;n,o), R = R(r;n,o) (4.17)

and
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1 - J R(r3n,o)plo) do

Q = Q(r;n)
=1~/ e—m(r;n’q)p(c)do. (4.18)

Antoher simplifying approximation, which can be applied whether we use
(4.16) or (4.18), consists of equating g, the effective value of o , to the
maximum gr-value occurring during a storm. The use of the latter obviates
the need of completely following Borgman's procedure for a more precise es-

timate of o.

A method of estimating Q(r) which would seem to be simpler still is to
treat m(r) itself as the basic random variable. For a given value of the
‘level r, one value of m can be calculated per storm, using (4.11). The pro-
bability density of m can therefore be estimated from past storms, with »
as a parvameter; it is written as p(m;r). In this approach, R is conditional
on the occurrence of a specific value of m(r):

R = R(m) = Pr{max r, = rim(r) = m} = e ™. (4.19)

Note that the dependence on r is absent in this conditional probability.

It re-enters the problem through the probability of the event

{m < m(r) < m + dm}, which is used in the caleculation of the non-conditional

probability Q(r):
Q(r) = 1 - f R(m)p(m;r)dm
-m
=1~/ e p(mr)dm. (4.20)

An advantage of this approach is that in the calculations one deals throughout
with a single random variable, while still taking full account of the effects

of the joint variability of the storm parameters.

It should be remembered that the methods sketched above (egs.4.16,
4,18 and 4.20) differ only in the estimation of Q(r), i.e. the probability
that in a storm picked at random at least one response peak shall exceed r.
The subsequent calculations of E(N) and Pr{N = 0} are the same (egs. 4.10

and (4.9).

Since Pr{N(r;L) = 0} is the probability that not a single Em—value
exceeds r in the entire interval of duration L, it can also be interpreted

as the probability that the largest r-value in a duration L shall not ex-

L7




ceed the level r. (Reference is made to a similar statement which was made
above concerning the distribution of the largest va}ue of gc.) Likewise,
the value of r for which E{N(r,L)} = 1, written as r(L), can be called the
response value with a return period L, in the sense that storms, in which
at least one response peak exceeds ;(L), occur on the average once in a
duration L. The value ; is approximately equal to the most probable value
of the largest £m~value in a duration L, and the probability that in a du-
ration L‘at least one storm occurs in which at least one response peak

exceeds r, is 1 - e—l = 0.63.

Throughout the developments in this section on sea state sequences,
storms have been treated as independent events, both with respect to the
time of their occurrence and with respect to their parameters. While this
may not be correct in a strictsense, it has so far been generally accepted
as a basis for analysis and prediction. At any rate, there is at present
insufficient knowledge about possible dependencies between storms to in-
corporate that in a model. Moreover, if in fact some dependence is
present then the independence assumption is conservative, in the sense that

it then overpredicts the encounter probabilities of extreme values.
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