Novo Espaço – Matemática A, 12.º ano

Proposta de teste de avaliação [novembro - 2022]

Nome: _____

Ano / Turma: _____ N.º: ____ - ___

1. Em certas regiões há a tradição de oferecer às crianças, no final do mês de novembro, uma caixa com 25 pequenos chocolates numerados de 1 a 25. Em cada dia do mês come-se o chocolate com o número correspondente, até ao dia 25 (Dia de Natal).

Na figura está representada uma dessas caixas com chocolates.

1.1. O Francisco não respeitou a tradição e, assim que recebeu a caixa, retirou dois chocolates. A expressão seguinte permite calcular o número de possibilidades de obter dois chocolates, com número ímpar, pertencentes à mesma linha.

$$3 \times {}^{3}C_{2} + 2 \times {}^{2}C_{2}$$

Explica o significado de cada parcela e calcula o valor numérico da expressão.

1.2. O Vasco também recebeu uma caixa igual à da figura e cumpriu a tradição até ao dia 10, inclusive.

Dos restantes chocolates, no dia 11, retirou 3, ao acaso.

Determina a probabilidade de a soma dos números dos 3 chocolates retirados ser um número ímpar. Apresenta o resultado, em percentagem, arredondado às unidades

2. Considera a expressão $(1-\sqrt{x})^6$, x>0.

Utilizando o desenvolvimneto do binómio de Newton podes concluir que o coeficiente do termo em x^2 é:

(A) –15

(B) 20

(C) 15

(D) -20

3. Na figura está parte de uma árvore de Natal inspirada no Triângulo de Pascal.

3.1. Indica se é verdadeira (**V**) ou falsa (**F**) cada uma das seguintes afirmações:

		V	F
a)	Se o número da penúltima bola de uma linha da árvore for 11, então a		
	soma de todos os números dessa linha é 1024.		
b)	O 5.º e o 6.º números de uma linha da árvore são, respetivamente, 495		
	e 792. Então, o 6.º número da linha seguinte é 1287.		
c)	Se o 2.º número de uma linha é 14, então o maior número dessa linha		
	é 3432.		

3.2. Admite que a seguir está representada parte de uma linha da árvore de Natal. Sabe-se que a + b = 210.

Determina o valor de b (antepenúltimo número dessa linha).

4. Um saco contém 10 bolas de Natal que apenas diferem na cor: 5 azuis, 3 vermelhas e 2 amarelas.

As bolas são retiradas do saco, uma a uma, e colocadas sobre uma linha horizontal pela ordem que são retiradas.

- **4.1.** Qual das sequintes opções representa o número de sequências diferentes, atendendo à cor, que é possível obter?
 - (A) 3 628 800
- **(B)** 1440
- **(C)** 120 960
- **(D)** 2520
- **4.2.** Determina a probabilidade de não haver duas bolas azuis seguidas. Apresenta o resultado arredondado às milésimas.
- **5.** Numa escola, os alunos distribuem-se por cursos profissionais e por cursos do ensino regular.

Sabe-se que:

- 48% dos alunos são rapazes;
- 75% das raparigas frequentam cursos do ensino regular.

Escolhe-se, ao acaso, um aluno da escola.

Qual é a probabilidade de ser uma rapariga do ensino regular?

- **(A)** 0,39
- **(B)** 0,75
- **(C)** 0,13
- **(D)** 0,23

 Numa escola, há dois projetos em desenvolvimento: Projeto Solidário e Projeto Saúde e Desporto.

Sabe-se que:

- 20% dos alunos do 12.º ano não participam em qualquer projeto;
- 32% dos alunos do 12.º ano participam no Projeto Solidário e, destes, 25% também participam no Projeto Saúde e Desporto;
- os restantes alunos do 12.º ano participam apenas no Projeto Saúde e Desporto.

Escolhe-se, ao acaso, um aluno do 12.º ano e verifica-se que participa no Projeto Saúde e Desporto.

Qual é a probabilidade de esse aluno também participar no Projeto Solidário? Apresenta o resultado, em percentagem, arredondado às décimas

7. Um jogo consiste em escolher 10 bolas, das que são apresentadas na figura, e introduzilas num saco.

De seguida retira-se, ao acaso, uma bola do saco.

Ganha-se quando sai uma bola com número par e múltiplo de 3.

Considera os acontecimentos seguintes:

A: "sair número par"; B: "sair número múltiplo de 3" e G: "ganhar".

Dá um exemplo de 10 números das bolas que escolherias para colocar no saco, de modo a teres: P(A) = 80%; P(B) = 50% e P(G) = 30%.

8. Seja Ω , conjunto finito, o espaço amostral associado a uma certa experiência aleatória. Sejam A e B acontecimentos possíveis e independentes.

Mostra que
$$1 - P(\overline{A}) \times P(\overline{B}) = P(A \cup B)$$
.

FIM

Cotações											Total
Questões	1.1.	1.2.	2.	3.1.	4.1.	4.2.	5.	6.	7.	8.	10.0.
Cotações	20	25	15	15	15	20	15	25	25	25	200

1.1. Há três linhas com 3 números ímpares e duas linhas com 2 números ímpares.

- $3 \times {}^3C_2$ número de maneiras de escolher dois números ímpares da mesma linha, nas linhas com com 3 números ímpares.
- 2×2C₂ número de maneiras de escolher dois números ímpares da mesma linha, nas linhas com 2 números ímpares.
- $3 \times {}^{3}C_{2} + 2 \times {}^{2}C_{2} = 11$
- 1.2. Os três chocolates foram retirados de entre o conjunto dos números:

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 e 25

(15 números, sendo 8 ímpares e 7 pares)

A soma dos três números é ímpar se forem os três ímpares ou um ímpar e dois pares.

Número de casos favoráveis: ${}^8C_3 + {}^8C_1 \times {}^7C_2 = 224$

Número de casos possíveis: $^{15}C_3 = 455$

Aplicando a Lei de Laplace, obtém-se: $\frac{224}{455} \approx 0,4923$

A probabilidade pedida é, aproximadamente, 49%.

2.
$$\left(1 - \sqrt{x}\right)^6 = \sum_{k=0}^{6} {}^6C_k 1^{6-k} \left(-\sqrt{x}\right)^k$$

$${}^{6}C_{k}1^{6-k}\left(-\sqrt{x}\right)^{k} = \left(-1\right)^{k} {}^{6}C_{k}\left(\sqrt{x}\right)^{k} = \left(-1\right)^{k} {}^{6}C_{k}x^{\frac{k}{2}}$$

O termo em x^2 ocorre quando $\frac{k}{2} = 2$, ou seja, k = 4.

Se
$$k = 4$$
, então: $(-1)^4 {}^6C_4x^2 = 15x^2$

Opção (C)

- 3.1.
- **a)** Falsa, pois $2^{11} = 2048$.
- **b)** Verdadeira, pois 495 + 792 = 1287.
- **c)** Verdadeira, pois ${}^{14}C_7 = 3432$.

3.2.
$$a = {}^{n}C_{1} = n$$
 e $b = {}^{n}C_{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2}$

$$a+b=210 \Leftrightarrow n+\frac{n(n-1)}{2}=210 \Leftrightarrow n^2+n-420=0 \Leftrightarrow n=\frac{-1\pm\sqrt{1681}}{2} \Leftrightarrow n=20 \lor n=-21$$

Neste caso, n = 20. Assim, $b = {}^{20} C_2 = 190$.

Logo, b = 190.

4.1.
$$\frac{10!}{5!3!2!} = 2520$$

Opção (D)

4.2. Para não haver duas bolas azuis seguidas, estas devem ocupar as posições de ordem ímpar ou as posições de ordem par.

Número de casos favoráveis: $2 \times \frac{5!}{3!2!} = 20$

Número de casos possíveis: $\frac{10!}{5!3!2!} = 2520$

Aplicando a Lei de Laplace, obtém-se: $\frac{20}{2520} \approx 0,0079365$

A probabilidade pedida é 0,008.

5. Probabilidade de ser rapaz: 0,48

Probabilidade de ser rapariga: 1-0.48 = 0.52

Probabilidade de ser rapariga do ensino regular: $0.52 \times 0.75 = 0.39$

Opção (A)

- **6.** Sejam *A* e *B* os acontecimentos:
 - A: "ser aluno do 12.º ano e participar no Projeto Solidário"
 - B: "ser aluno do 12.º ano e participar no Projeto Saúde e Desporto"

Sabe-se que:

- $P(\overline{A \cup B}) = 0,2$
- P(A) = 0.32
- P(B|A) = 0.25

Da informação resulta que:

$$P(A \cup B) = 1 - 0.2 = 0.8$$

Sendo
$$P(B|A) = 0.25$$
, então $\frac{P(B \cap A)}{P(A)} = 0.25$. Tem-se: $P(B \cap A) = 0.25 \times 0.32 = 0.08$

Ou seja:
$$P(A) + P(B) - P(A \cap B) = 0.8 \Leftrightarrow 0.32 + P(B) - 0.08 = 0.8 \Leftrightarrow P(B) = 0.56$$

Pretende-se saber o valor de P(A|B)

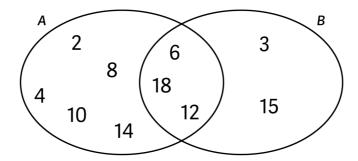
$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{0.08}{0.56} = 0.1429$$

A probabilidade pedida é, aproximadamente, 14,3%.

Novo Espaço - Matemática A, 12.º ano

Proposta de resolução do teste de avaliação [novembro - 2022]

7. Por exemplo: 2, 3, 4, 6, 8, 10, 12, 14, 15, 18



8.
$$1-P(\overline{A}) \times P(\overline{B}) =$$

$$= 1-(1-P(A))(1-P(B)) =$$

$$= 1-(1-P(B)-P(A)+P(A)P(B)) =$$

$$= P(A)+P(B)-P(A)P(B) =$$

$$= P(A)+P(B)-P(A \cap B) = P(A \cup B)$$

FIM

Cotações											Total
Questões	1.1	1.2	2.	3.1	4.1	4.2	5.	6.	7.	8.	10141
Cotações	20	25	15	15	15	20	15	25	25	25	200