Insulation monitoring relay CM-IWN.1

For unearthed AC, DC and mixed AC/DC systems up to $U_n = 400 \text{ V AC}$ and 600 V DC

The CM-IWN.1 serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems, IT AC systems with galvanically connected DC circuits, or unearthed IT DC systems with a voltage up to 400 V AC and 600 V DC. The measuring range can be extended up to 690 V AC and 1000 V DC by using the coupling unit CM-IVN. It can be configured to the requirements of the applications and therefore used multi-functional.

The CM-IWN.1 is available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (push-in terminals).

Characteristics

- For monitoring the insulation resistance of unearthed IT systems up to $U_n = 400 \text{ V}$ AC and 600 V DC
- According to IEC/EN 61557-8 "Electrical safety in low voltage distribution systems up to 1000 V a.c. and 1500 V d.c. – Equipment for testing, measuring or monitoring of protective measures – Part 8: Insulation monitoring devices for IT systems"
- Rated control supply voltage 24-240 V AC/DC
- Prognostic measuring principle with superimposed square wave signal
- Two measuring ranges 1-100 k Ω and 2-200 k Ω
- One (1 x 2 c/o) or two (2 x 1 c/o) threshold values $R_{an}1/R1^{1)}$ (warning) and $R_{an}2/R2^{1)}$ (prewarning) configurable $^{2)}$
- Precise adjustment of the threshold values in 1 k Ω steps (R1) and 2 k Ω steps (R2)
- Interrupted wire detection configurable
- Non-volatile fault storage configurable
- Open- or closed-circuit principle configurable
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available

- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- 45 mm (1.77 in) width
- 3 LEDs for the indication of operational states

 $^{1)}$ term acc. to IEC/EN 61557-8 $^{2)}$ R2 only active with 2 x 1 c/o configuration

Approvals / Marks

Classifcations:

EN 50155, IEC 60571, NF F 16-101/102, EN 45545-2

EN 50155, IEC 60571

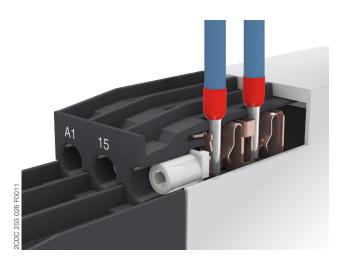
		•		•	Vibration and shock	Coated pcb.
class	S1	S2	C1	C2	acc to IEC/EN 61373	
T3	•	-	-	•	Cat 1, Class B	no

NF F 16-101/1	EN 45545-2	
Flammability index	Opticity and toxicity of smoke index	Risk level achieved
12	F2	HL3

Order data

Insulation monitoring relay

	Nominal voltage U _n of the distribution system to be monitored	:	System leakage capacitance, max.	Connection technology	Order code
CM-IWN.1P		24-240 V AC/DC	20 μF	Push-in terminals	1SVR 760 660 R0200
CM-IWN.1S				Screw type terminals	1SVR 750 660 R0200

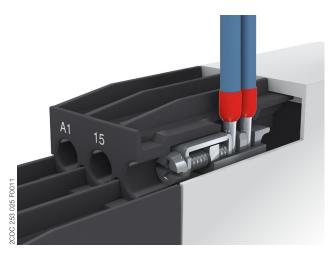

Accessories

Type	Description	Order code
CM-IVN.P	Coupling unit for connection of the CM-IWN to systems with voltages U _n up to 690 V AC and 1000 V DC with	1SVR 760 669 R9400
	Push-in terminals	
CM-IVN.S	Coupling unit for connection of the CM-IWN to systems with voltages U _n up to 690 V AC and 1000 V DC with	1SVR 750 669 R9400
	Screw type terminals	
ADP.02	Adapter for screw mounting	1SVR 440 029 R0100
MAR.12	Marker label for devices with DIP switches	1SVR 730 006 R0000
COV.12	Sealable transparent cover	1SVR 750 005 R0100

Connection technology

Maintenance free Easy Connect Technology with push-in terminals

Type designation CM-xxN.yyP



Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule according to DIN 46228-1-A, DIN 46228-4-E
 - Wire size: 2 x 0.5-1.5 mm², (2 x 20 16 AWG)
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connection terminals

Type designation CM-xxN.yyS

Double-chamber cage connection terminals

- Terminal spaces for different wire sizes: fine-strand with/without wire end ferrule: 1 x 0.5-2.5 mm² (2 x 20 14 AWG), 2 x 0.5-1.5 mm² (2 x 20 16 AWG) rigid:
 - 1 x 0.5-4 mm² (1 x 20 12 AWG), 2 x 0.5-2.5 mm² (2 x 20 - 14 AWG)
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

1 Front-face rotary switches to adjust the threshold value:

R1.1 for R1 tens figure:

0, 10, 20, 30, 40, 50, 60, 70, 80, 90 k Ω in ten k Ω steps

R1.2 for R1 units figure:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10 kΩ in one kΩ steps

R2.1 for R2 tens figure:

0, 20, 40, 60, 80, 100, 120, 140, 160, 180 $k\Omega$ in twenty $k\Omega$ steps

R2.2 for R2 units figure:

2, 4, 6, 8, 10, 12, 14, 16, 18, 20 kΩ in two kΩ steps

- 2 Test and reset button
- 3 Indication of operational states

U: green LED - control supply voltage

F1: red LED - fault message

F2: yellow LED - relay status

4 DIP switches (see DIP switch functions)

Application / monitoring function

The CM-IWN.1 serves to monitor insulation resistance in accordance with IEC 61557-8 in unearthed IT AC systems, IT AC systems with galvanically connected DC circuits, or unearthed IT DC systems.

The insulation resistance between system lines and system earth is measured. If this falls below the adjustable threshold values, the output relays switch into the fault state.

The device can monitor control circuits (single-phase) and main circuits (3-phase).

Supply systems with voltages $U_n = 0-400 \text{ V}$ AC (15-400 Hz) or 0-600 V DC can be directly connected to the measuring inputs and their insulation resistance being monitored. For systems with voltages above 400 V AC and 600 V DC the coupling unit CM-IVN can be used for the expansion of the CM-IWN.1 voltage range.

Measuring principle

A pulsating measuring signal is fed into the system to be monitored and the insulation resistance calculated.

This pulsating measuring signal alters its form depending on the insulation resistance and system leakage capacitance. From this altered form the change in the insulation resistance is forecast.

When the forecast insulation resistance corresponds to the insulation resistance calculated in the next measurement cycle and is smaller than the set threshold value, the output relays are activated or deactivated, depending on the device configuration. This measuring principle is also suitable for the detection of symmetrical insulation faults.

Additional monitoring functions

When interrupted wire detection [is activated, the CM-IWN.1 automatically controls the system/measuring circuit connections L+ and L- when the system starts up. This can be repeated at any time by activating the test function. The CM-IWN.1 cyclically monitors the measuring circuit connections $\frac{1}{2}$ and KE for wire interruption. In case of a wire interruption in one of the connections, the output relays switch to the fault state.

In addition, the unearthed AC-, DC- or AC/DC system is monitored for inadmissible system leakage capacitance. If the system leakage capacitance is too high, the output relays switch to the fault state.

Also incorrect settings that could cause a faulty function of the device are monitored. When the device detects such an incorrect setting, the output relays switch to the fault state.

Operating mode

The system to be monitored is connected to terminals L+ and L-. The earth potential is connected to terminals $\frac{1}{2}$ and KE.

Depending on the setting, the device operates according to the open-circuit principle (fault state: relay energized) or closed-circuit principle (fault state: relay de-energized).

Once the control supply voltage has been applied the insulation monitoring relay runs through a system test routine. The system is diagnosed and the settings are tested. If no internal or external faults are found after this test routine is completed, the output relays switch into the operational state.

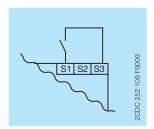
All operating states are signalled by the front-face LEDs. See table "LEDs, status information and fault messages" on page 10.

Configuration 1 x 2 c/o contacts 1x2 c/o (warning)

With this configuration the settings for the threshold value for prewarning (R2) have no influence on the operating function. If the measured value drops below the set threshold value, the output relays switch into the fault state. If the measured value exceeds the threshold value plus hysteresis, the output relays switch back into their original state.

Configuration 2 x 1 c/o contact 2x1 c/o (prewarning and warning)

If the measured value drops below the set threshold value for prewarning the second output relay 21-22/24 switches. If the measured value drops below the threshold value warning, the first output relay 11-12/14 switches.

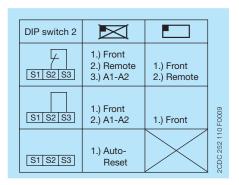

If the measured value exceeds the threshold value for warning plus hysteresis, the first output relay 11-12/14 switches back into its original state. If the measured value exceeds the threshold value for prewarning plus hysteresis, also the second output relay 21-22/24 switches back to its original state.

Test function

The test function is only possible when there is no fault.

By pressing the front-face combined test/reset button a system test routine is executed. The output relays switch to the fault state as long as the test/reset button is pressed, the control contact S1-S3 is closed or the test functions are processed.

The test function can be activated either with the front-face combined test/reset button or with a remote test button connected as shown in the picture.

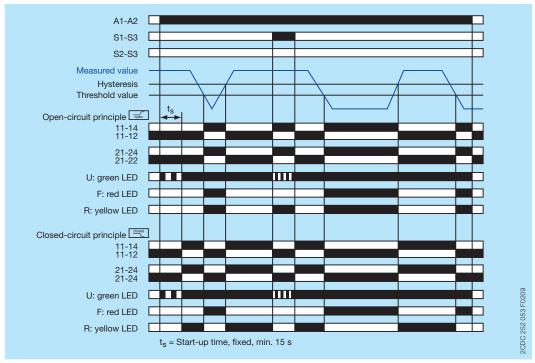


Fault storage, reset function and remote reset

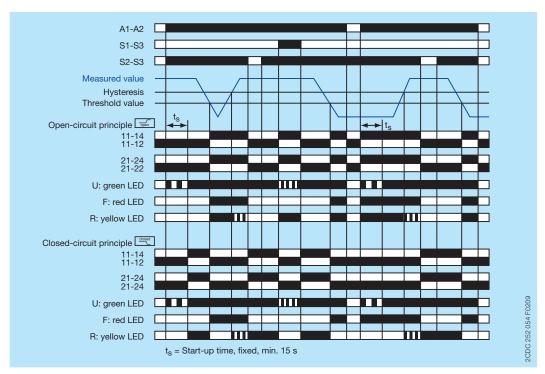
When fault storage is active, the output relays remain in the fault state and only switch back to their original state after the combined test/reset button is pressed or after the remote reset (terminals S2-S3) is activated, and when the insulation resistance is higher than the set threshold value(s) plus hysteresis.

The fault storage is designed non-volatile (remanent). This means that after switch-off and return of the control supply voltage the device returns to the state it was prior to the switch-off until a reset is executed.

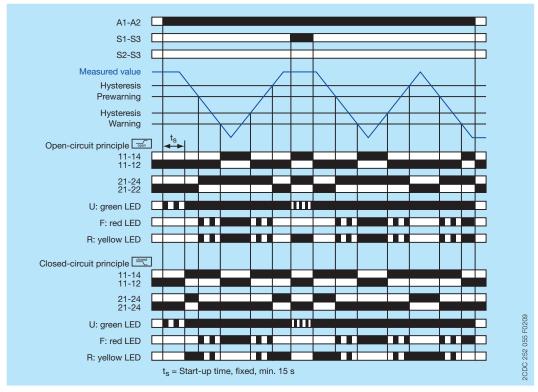
Depending on the configuration of DIP switch 2, there are several possibilities of resetting the device, as shown in the picture.

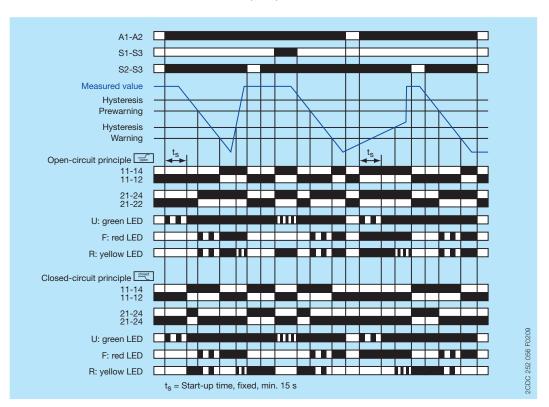


Measuring range expansion by using the coupling unit CM-IVN

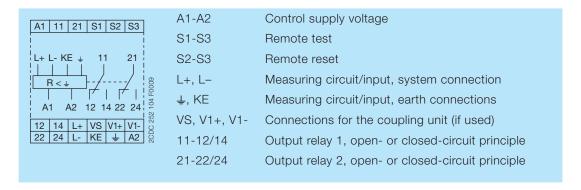

The coupling unit CM-IVN serves to connect the CM-IWN.1 to systems up to 690 V AC and 1000 V DC. Terminals VS, V1+, V1- are connections for the coupling unit.

Function descriptions/diagrams

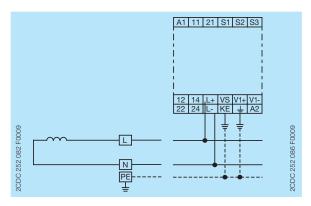

- Control supply voltage not applied / Output contact open / LED OFF
- Control supply voltage applied / Output contact closed / LED ON


Insulation resistance monitoring w/o fault storage , auto reset, 1 x 2 c/o 1x2 c/o

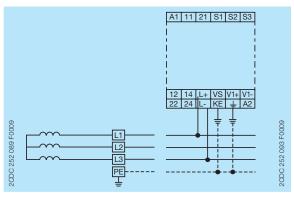
Insulation resistance monitoring with fault storage ____, manual reset, 1 x 2 c/o


Insulation resistance monitoring w/o fault storage , auto reset, 2 x 1 c/o

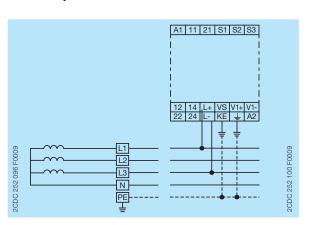
Insulation resistance monitoring with fault storage ____, manual reset, 2 x 1 c/o 2x1 c/o

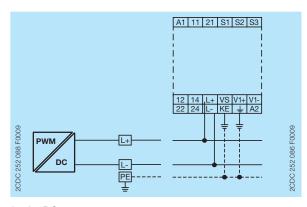

Connection and wiring

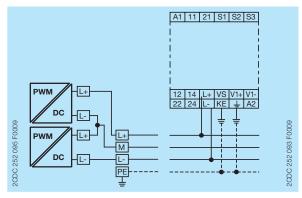
Connection diagram



Wiring diagrams


Always connect L+ and L- to different conductors. L+ and L- can be connected to any of the conductors. $U_n \le 400 \text{ V AC}$; 600 V DC (For monitoring of systems with higher voltages, use coupling unit CM-IVN.)

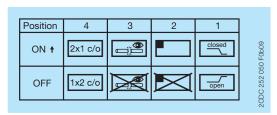

2-wire AC system


3-wire AC system

4-wire AC system

2-wire DC system

3-wire DC system


Configuration and settings

Rotary switches R1.1, R1.2, R2.1 and R2.2 (threshold values)

By means of four separate 10 position rotary switches with direct reading scales, the threshold values for the insulation resistance R_F of the systems to be monitored can be adjusted.

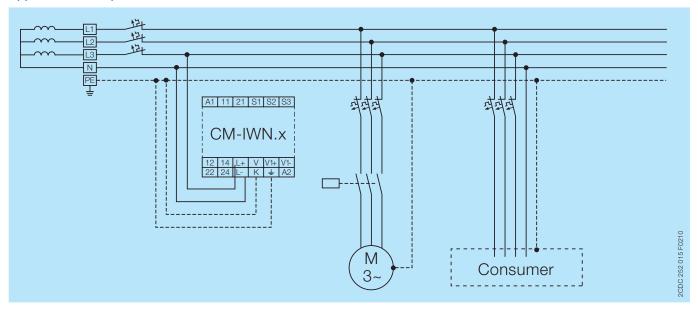
With the Rx.1 rotary switch the tens figure is set and with the Rx.2 rotary switch the units figure is set. The set threshold value is then the addition of the two values. For example, R1.1 set to 70 and R1.2 set to 8 leads to a threshold value for R1 of $78 \text{ k}\Omega$.

DIP switches

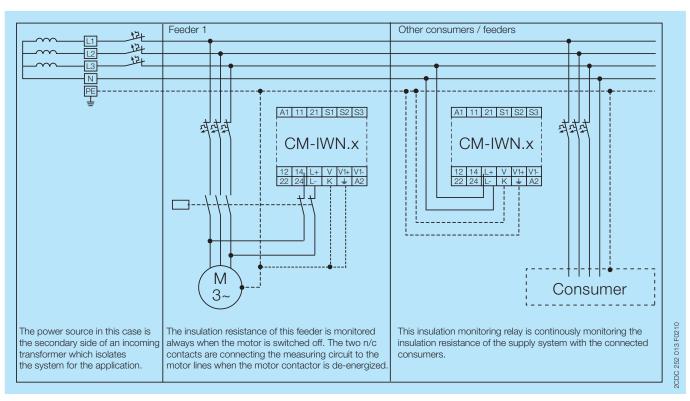
	ON	OFF (default)
DIP switch 1 Operating principle of the output relays	Closed-circuit principle described of closed-circuit principle is selected, the output relays are energized. They de-energize if a fault is occuring.	Open-circuit principle open of the output relays are de-energized. They energize if a fault is occuring.
DIP switch 2 Non-volatile fault storage	Fault storage activated (latching) If the fault storage function is activated, the output relays remain in tripped position until a reset is done either by the front-face button or by the remote reset connection S2-S3. This function is non-volatile.	Fault storage de-activated (non latching) If the fault storage function is de-activated, the output relays switch back to their original position as soon as the insulation fault no longer exists.
DIP switch 3 Interrupted wire detection	Interrupted wire detection activated With this configuration, the CM-IWN.1 monitors the wires connected to L+ and L- for interruptions.	Interrupted wire detection de-activated
DIP switch 4 2 x 1 c/o, 1 x 2 c/o	2 x 1 c/o (SPDT) contact 2x1 c/o If operating principle 2 x 1 c/o contact is selected, the output relay R1 (11-12/14) reacts to threshold value R1 (warning) and the output relay R2 (21-22/24) reacts to threshold value R2 (prewarning)	1 x 2 c/o (SPDT) contacts 1x2 c/o If operating principle 1 x 2 c/o contacts is selected, both output relays R1 (11-12/14) and R2 (21-22/24) react synchronously to threshold value R1 (warning). Settings of the threshold value R2 have no effect on the operation.

Operating state indication

LEDs, status information and fault messages


Operational state	LED U (green)	LED F (red)	LED R (yellow)
Start-up	ЛЛ	OFF	OFF
No fault		OFF	1)
Prewarning		ЛЛ	ЛЛ
Insulation fault (below threshold value)		Г	1)
KE/		ллл	1)
L+/L- wire interruption during system start-up / test function		лл	1)
System leakage capacitance too high / invalid measurement result		л_л_	1)
Internal system fault	1)	ллл	1)
Setting fault ²⁾	Л	Л_П_	Л
Test function	ЛЛЛ	OFF	1)
No fault after fault storage ³⁾		4)	MML

 $^{^{\}mbox{\tiny 1)}}$ Depending on the configuration (see "Function descriptions/diagrams" on page 6.


²⁾ Possible faulty setting: The threshold value for warning is set at a higher value than the threshold value for prewarning.
³⁾ The device has triggered after an insulation fault. The fault has been stored and the insulation resistance has returned to a higher value than the threshold value plus hysteresis.

⁴⁾ Depending on the fault

Application examples

Earth fault / insulation resistance monitoring of an unearthed 4-wire AC system

Earth fault / insulation resistance monitoring of different feeder circuits with fault localization

Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

Input circuits

Input circuit - Supply circuit		A1 - A2
Rated control supply voltage U _s		24-240 V AC/DC
Rated control supply voltage tolerance		-15+10 %
Typical current / power consumption		55 mA / 1.3 VA
	115 V AC	20 mA / 2.3 VA
		15 mA / 3.5 VA
Rated frequency f _s		DC or 15-400 Hz
Frequency range AC		13.5-440 Hz
Power failure buffering time		20 ms
Start-up time t _s	•••••••	15 ms

Input circuit - Measuring circuit		L+, L-, ≟, KE
Monitoring function		insulation resistance monitoring of IT systems
		(IEC/EN 61557-8)
Measuring principle	•	prognostic measuring principle with superimposed
		square wave signal
Nominal voltage U_n of the distribution system to be monitore	ed	0-400 V AC / 0-600 V DC
Voltage range of the distribution system to be monitored	······································	0-460 V AC / 0-690 V DC (tolerance +15 %)
Rated frequency f _N of the distribution system to be monitore	ed	DC or 15-400 Hz
Tolerance of the rated frequency f _N		13.5-440 Hz
System leakage capacitance C _e	max.	20 μF
Extraneous DC voltage U_{fg} (when connected to an AC syste	em) max.	460 V DC
Voltage range expansion of the measuring input with coupling		use connection terminals V1+, V1-, VS
		max. length of connection cable 40 cm
Number of possible response / threshold values	······································	2
Adjustment range of the specified response value R _{an}	minmax. R1	1-100 kΩ
(threshold)	minmax. R2	2-200 kΩ (activated/de-activated by DIP switch)
Adjustment resolution	R1	
•	R2	•
Tolerance of the adjusted threshold value / Relative	at 1-10 kΩ R _F	\geq 15 %; max. ±1 k Ω / in combination with CM-IVN ±1.5 k Ω
percentage uncertainty A	(yellow marked scale)	
at -5+45 °C, $U_n = 0$ -115 %, $U_s = 85$ -110 %, f_N , f_s ,	at 10-15 k Ω R _F	$\pm 1~\text{k}\Omega$ / in combination with CM-IVN $\pm 1.5~\text{k}\Omega$
$C_e = 1\mu F$	at 15-200 k Ω R _F	±8 %
O _e − τμι Hysteresis related to the threshold value	•••••••••••	25 %; min. 2 kΩ
Internal impedance Z _i	at 50 Hz	
Internal DC resistance R _i	dt 00 112	185 kΩ
Measuring voltage U _m	······································	24 V
Tolerance of measuring voltage U _m		+10 %
Measuring current I _m		0.15 mA
Response time t _{an}	•••••••••••••••••••••••••••••••••••••••	
	$0.5 \times R_{an}$ and $C_e = 1 \mu F$	max. 10 s
DC system or AC system with connected rectifiers	all to the	max. 15 s
Repeat accuracy (constant parameters)	······································	< 0.1 % of full scale
Accuracy of R _a (measured value) within the rated control	······································	< 0.05 % of full scale
supply voltage tolerance		
Accuracy of R _a (measured value) within the operation	at 1-10 kΩ R _E	5 Ω / K
2 4	·	
temperature range	at 10-200 kΩ R _F	10.05 % / K

Input circuit - Control circuits		S1 - S2 - S3
Control inputs - volt free	S1-S3	remote test
•		remote reset
Maximum switching current in the control circuit		1 mA
Maximum cable length to the control inputs		50 m - 100 pF/m (164 ft - 30.5 pF/ft)
Minimum control pulse length		150 ms
No-load voltage at the control input		≤ 24 V DC

User interface

Indication of operational states	
Control supply voltage U	green LED
	red LED
Relay status R	yellow LED

Details see table "LEDs, status information and fault messages" on page 10 and "Function descriptions/diagrams" on page 6

Operating elements and controls		
Adjustment of threshold value R1	R1.1	rotary switch, 10 k Ω steps for the tens figure
	R1.2	rotary switch, 1 kΩ steps for the units figure
Adjustment of threshold value R2	R2.1	rotary switch, 20 kΩ steps for the tens figure
	R2.2	rotary switch, 2 kΩ steps for the units figure
Configuration of	DIP switch 1	operating principle of the output relays
	DIP switch 2	non volatile fault storage
	DIP switch 3	interrupted wire detection
	DIP switch 4	2 x 1 c/o, 1 x 2 c/o

Output circuits

Kind of output	11-12/14	relay, 1st c/o (SPDT) contact
	21-22/24	relay, 2nd c/o (SPDT) contact
		2 x 1 or 1 x 2 c/o (SPDT) contacts configurable
Operating principle		open- or closed-circuit principle ¹⁾ configurable
Contact material		AgNi alloy, Cd free
Rated operational voltage		250 V AC / 300 V DC
Minimum switching voltage / Mini	mum switching current	24 V / 10 mA
Maximum switching voltage / Max	ximum switching current	see "Load limits curves" on page 16
Rated operational current I _e	AC-12 (resistive) at 230 V	4 A
	AC-15 (inductive) at 230 V	3 A
	DC-12 (resistive) at 24 V	4 A
	DC-13 (inductive) at 24 V	2 A
AC rating (UL 508)	Utilization category	B 300, pilot duty general purpose (250 V, 4 A, cos phi 0.75)
	(Control Circuit Rating Code)	
	max. rated operational voltage	250 V AC
	max. continuous thermal current at B 300	4 A
	max. making/breaking apparent	3600/360 VA
	power at B 300	
Mechanical lifetime		30 x 10 ⁶ switching cycles
Electrical lifetime	AC-12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles
Max. fuse rating to achieve short-		6 A fast-acting
	n/o contact	10 A fast-acting
Conventional thermal current Ith		4 A

¹⁾ Closed-circuit principle: Output relay(s) de-energize(s) if measured value falls below the adjusted threshold value R_{an}

Open-circuit principle: Output relay(s) energize(s) if measured value falls below the adjusted threshold value R_{an}

General data

ИТВБ		on request	
Duty time		100 %	
Dimensions (W x H x D)		45 x 78 x 100 mm (1.78 x 3.07 x 3.94 in)	
		Screw connection technology	Easy Connect Technology (push-in)
Weight	gross weight	0,241 kg (0.531 lb)	0,217 kg (0.478 lb)
	net weight	0.270 kg (0.595 lb)	0.246 kg (0.542 lb)
Mounting	DIN rail (IEC/EN 60715), snap-on mounting without any t		snap-on mounting without any tool
Mounting position	any		
Minimum distance to other units	vertical / horizontal	not necessary / 10 mm (0.39 in) at U _n > 400 V	
Degree of protection	housing / terminal	I IP50 / IP20	

Electrical connection

		Screw connection technology	Easy Connect Technology (push-in)
Connecting capacity	fine-strand with(out)	1 x 0.5-2.5 mm ²	2 x 0.5-1.5 mm ²
	wire end ferrule	(1 x 18-14 AWG)	(2 x 18-16 AWG)
		2 x 0.5-1.5 mm ²	
		(2 x 18-16 AWG)	
	rigid	1 x 0.5-4 mm ²	2 x 0.5-1.5 mm ²
		(1 x 20-12 AWG)	(2 x 20-16 AWG)
		2 x 0.5-2.5 mm ²	
		(2 x 20-14 AWG)	
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm (7.08 lb.in)	-

Environmental data

Ambient temperature ranges	operation	. ==	
	storage	-40+85 °C (-40+185 °F)	
	transport	-40+85 °C (-40+185 °F)	
Climatic class		3K5 (no condensation, no ice formation)	
Damp heat, cyclic		6 x 24 h cycle, 55 °C, 95 % RH	
Vibration, sinusoidal		25 Hz: 2.5 g	

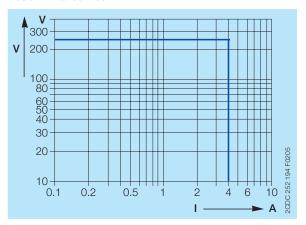
Isolation data

Rated impulse withstand voltage U _{imp}	supply circuit / measuring circuit	6 kV
	supply circuit / output circuits	6 kV
	measuring circuit / output circuits	6 kV
	output circuit 1 / output circuit 2	4 kV
Rated insulation voltage U _i	supply circuit / measuring circuit	600 V
	supply circuit / output circuits	300 V
	measuring circuit / output circuits	600 V
	output circuit 1 / output circuit 2	300 V
Basic insulation	supply circuit / measuring circuit	400 V AC / 600 V DC
	supply circuit / output circuits	250 V AC / 300 V DC
	measuring circuit / output circuits	400 V AC / 600 V DC
	output circuit 1 / output circuit 2	250 V AC / 300 V DC
Protective separation	supply circuit / output circuits	250 V AC / 250 V DC
(IEC/EN 61140, EN 50178)	supply circuit / measuring circuit	250 V AC / 250 V DC
	measuring circuit / output circuits	250 V AC / 250 V DC
Pollution degree		3
Overvoltage category		III

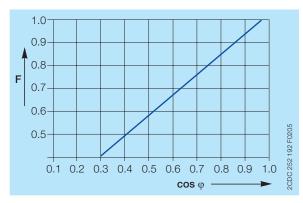
Standards / Directives

Standards	IEC/EN 60947-5-1, IEC/EN 61557-1, IEC/EN 61557-8	
Low Voltage Directive	2014/35/EU	
EMC Directive	2014/30/EU	
RoHS Directive	2011/65/EU	

Railway application standards

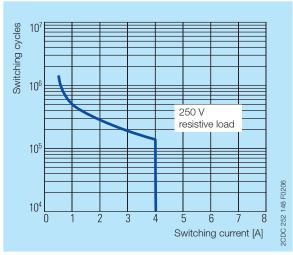

EN 50155, IEC 60571	temperature class	ТЗ
"Railway applications – Electronic equipment used on rolling stock"	supply voltage category	S1, S2, C2
IEC/EN 61373 "Railway applications – Rolling stock equipme	ent – Shock and vibration tests"	Category 1, Class B
EN 45545-2 Railway applications – Fire protection on railway vehicles – part 2: Requirements for fire behavior of materials		HL3
and components	ISO 4589-2	LOI 32.3 %
	NF X-70-100-1	C.I.T. (T12) 0.45
	EN ISO 5659-2	Ds max (T10.03) 104
NF F 16-101: Rolling stock. Fire behaviour. Materials choosing		12 / F2
NF F 16-102: Railway rolling stock. Fire behaviour. Materials choosing,		
application for electric equipment		
DIN 5510-2 Preventive fire protection in railway vehicles. Part 2: Fire behaviour		fullfilled
and fire side effects of materials and parts		

Electromagnetic compatibility

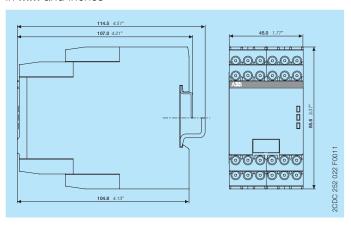

Interference immunity to		IEC/EN 61000-6-1, IEC/EN 61000-6-2, IEC/EN 61326-2-4
electrostatic discharge	IEC/EN 61000-4-2	Level 3, 6 kV / 8 kV
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3, 10 V/m (1 GHz) / 3 V/m (2 GHz) / 1 V/m (2.7 GHz)
electrical fast transient/burst	IEC/EN 61000-4-4	Level 3, 2 kV / 5 kHz
surge	IEC/EN 61000-4-5	Level 3, installation class 3, supply circuit and
		measuring circuit 1 kV L-L, 2 kV L-earth
conducted disturbances, induced by radio-	IEC/EN 61000-4-6	Level 3, 10 V
frequency fields		
voltage dips, short interruptions and voltage	IEC/EN 61000-4-11	Class 3
variations		
harmonics and interharmonics	IEC/EN 61000-4-13	Class 3
nterference emission		IEC/EN 61000-6-3, IEC/EN 61000-6-4
high-frequency radiated	IEC/CISPR 22,	Class B
	EN 55022	
high-frequency conducted	IEC/CISPR 22,	Class B
	EN 55022	

Technical diagrams

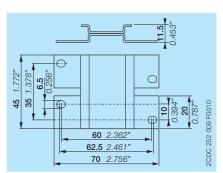

Load limits curves


AC load (resistive)

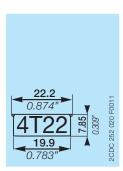
Derating factor F at inductive AC load


DC load (resistive)

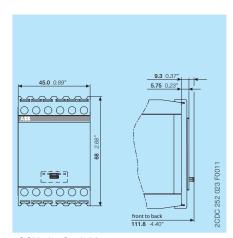
Contact lifetime


Dimensions

in mm and inches



Accessories


in mm and inches

ADP.02 - Adapter for screw mounting

MAR.12 - Marker label for devices with DIP switches

COV.12 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Catalog	2CDC 110 004 C02xx
CM-IWN.1	Instruction sheet	1SVC 750 020 M0000
CM-IVN	Data sheet	2CDC 112 200 D020x

You can find the documentation on the internet at www.abb.com/lowvoltage -> Automation, control and protection

-> Electronic relays and controls -> Measuring and monitoring relays

CAD system files

You can find the CAD files for CAD systems at http://abb-control-products.partcommunity.com

-> Low Voltage Products & Systems -> Control Products -> Electronic Relays and Controls

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 10 16 80

69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2016 ABB All rights reserved