Busbar trunking degrees of protection

Selection

The type of busbar trunking may be determined by the type of luminaires used (weight/fixing distance). See the following page to determine the fixing distances.

Degree of protection

The IP code is made up of 2 characteristic numbers (eg. IP 54). A letter can be added when the actual protection of personnel against touching dangerous elements is greater than that indicated by the first number (eg.: IP 20C).

Any characteristic number not specified is replaced by an "X" (eg. : IP XXB).

1 st characteristic number		2 nd characteristic number	Additional letter
Protection of equipment against penetration by a foreign body :	Protection of personnel against touching a dangerous element with :	Protection of equipment against water penetration with harmful effects:	Protection of personnel against touching dangerous elements with :
0 (not protected) 1 ≥ 50 mm diameter 2 ≥ 12.5 mm diameter 3 ≥ 2.5 mm diameter 4 ≥ 1.0 mm diameter 5 protected against dust 6 dustproof	(not protected) Finger Ø 2.5 mm tool Ø 1 mm wire Ø 1 mm wire Ø 1 mm wire Ø 1 mm wire	 0 (not protected) 1 vertical dripping water 2 water dripping at 15° incline 3 rain 4 water spray 5 water jet 6 pressurised water spray 7 temporary immersion 8 prolonged immersion 	A back of hand B finger C Ø 2.5 mm tool D Ø 1 mm wire

Lighting distribution

Determining the busbar trunking depending on the type and number of luminaires

Selection

The fixing distance is related to the number and weight of the luminaires as well as to the structure of the building. The table below gives the maximum permissible load (kg) spread between two fixing points, for a deflection of $1/500^{\circ}$. In the case of a concentrated load between two fixing points, (fluorescent lamps), apply a coefficient of 0.6 to these values.

-										
Type		FIXII	ng distai	nce in	m					
		2	2.5	3	3.5	4	4.5	5	5.5	6
		Мах	imum lo	ad in I	٨g					
KLE	EA	17	12	9	—	—	—	—	—	—
KBA	EA	34	22	15	No lo	bad	_	_	_	_
	EL	29	19	13	No lo	bad	_	_	—	—
KBB	1 circuit	73	60	48	35	27	21	17	No lo	ad
	2 circuits	62	51	41	30	23	18	15	No lo	ad

The tables below show the possible fixing distances in m for a permissible deflection of 1/350°, depending on the type of luminaires used and their positioning (busbar trunking installed on site).

Fluorescent type luminaires without protection grille

Luminaire		Placed	I closely t	ogether	Placed	slightly a	apart	Placed	l apart		Placed a	cross fixing point
Power	Unit weight											
W	kg	Possib	le spacin	g in m								
		KLE	KBA	KBB	KLE	KBA	KBB	KLE	KBA	KBB	KBA	KBB
1 x 36	4.20	3.00	3.00	5.00	3.00	3.00	5.00	3.00	3.00	5.00	4.00	6.00
1 x 58	5.30	2.90	3.00	5.00	3.00	3.00	5.00	3.00	3.00	5.00	4.00	6.00
2 x 36	4.90	3.00	3.00	5.00	3.00	3.00	5.00	3.00	3.00	5.00	4.00	6.00
2 x 58	6.30	2.80	3.00	5.00	3.00	3.00	5.00	3.00	3.00	5.00	4.00	6.00

Fluorescent type luminaires with protection grille

Luminaire		Placed	closely t	together	Placed	slightly a	apart	Placed	apart		Placed a	Placed across fixing point		
Power	Unit weight									(
W	kg	Possib	le spacin	g in m										
		KLE	KBA	KBB	KLE	KBA	KBB	KLE	KBA	KBB	KBA	KBB		
1 x 36	5.20	3.00	3.00	5.00	3.00	3.00	5.00	3.00	3.00	5.00	4.00	6.00		
1 x 58	6.50	2.80	3.00	5.00	3.00	3.00	4.80	3.00	3.00	5.00	4.00	6.00		
2 x 36	5.90	2.90	3.00	5.00	3.00	3.00	4.90	3.00	3.00	5.00	4.00	6.00		
2 x 58	7.50	2.60	3.00	4.80	3.00	3.00	4.50	3.00	3.00	5.00	4.00	6.00		

Dustproof fluorescent type luminaires

Luminaire		Placed cl	osely together	Placed s	lightly apart	Placed a	part		Placed a	cross fixing point
Power	Unit weight							_		
W	kg	Possible	spacing in m							
		KBA	KBB	KBA	KBB	KBA	KBB		KBA	KBB
1 x 36	3.30	3.00	5.00	3.00	5.00	3.00	5.00		4.00	6.00
1 x 58	4.20	3.00	5.00	3.00	5.00	3.00	5.00		4.00	6.00
2 x 36	5.20	3.00	5.00	3.00	5.00	3.00	5.00		4.00	6.00
2 x 58	5.90	3.00	5.00	3.00	5.00	3.00	5.00		4.00	6.00

Discharge luminaires

Luminaire		Placed between 2	2 fixing points	Placed next to a	fixing point
Power	Unit weight				
W	kg	Possible spacing	in m		
		KBA	KBB	KBA	KBB
250	6.00 8.50 10.00	3.00 3.00 3.00	5.00 5.00 5.00	4.00 4.00 4.00	6.00 6.00 6.00
400	6.50 9.00 11.00	3.00 3.00 3.00	5.00 5.00 5.00	4.00 4.00 4.00	6.00 6.00 6.00

3

Determining the nominal current

Selection

The tables below show the **nominal current** as a function of the type and number of luminaires installed on **a single phase** line (Ph + N) supplied with 230 V a.c.

For a 3-phase + N line, (a.c. supply, 400 V between phases), with equivalent phase current, the number of luminaires is 3 times greater.

Ph + N distribution

3 Ph + N balanced distribution

Proceed as follows :

- Identify the type of luminaire used (eg. : 2 x 58 W compensated fluorescent)
- On the corresponding line, select the number (or closest above) of luminaires installed (eg., 26 for 23 luminaires). • Read, at the bottom of the table, the corresponding nominal current (eg. 20 A).

Fluorescent tube luminaires

Туре	Power	Number of luminaires on the lir												
	W	Sing	le ph	ase lir	ne			3-pł	nase +	N lin	е			
Compensated ballast	1 x 36	33	53	66	-	-	_	99	_	-	-	-	-	
	1 x 58	25	40	50	62	-	-	75	80	-	-	-	_	
	2 x 36	21	33	42	52	67	-	63	99	_	-	-	-	
	2 x 58	13	20	26	32	41	52	39	60	78	96	-	_	
Non compensated ballast	1 x 36	22	35	44	55	-	-	66	105	_	-	-	-	
	1 x 58	14	22	28	35	45	-	42	66	84	-	-	_	
	2 x 36	11	17	22	27	35	44	33	51	66	81	-	-	
	2 x 58	7	11	14	17	22	28	21	33	42	51	66	84	
Nominal current (A)		10	16	20	25	32	40	10	16	20	25	32	40	

Fluorescent lamp luminaires

Туре	Power w	Num Sing	ber of	uminai	res on t	the line	3-ph	260 ± 1	lino		
	**	ong	ie prias				<u>o-pri</u>		N IIIIC		
Compensated ballast	250	7	11	14	17	22	21	33	42	51	66
	400	4	6	8	10	13	12	18	24	30	39
Non compensated ballast	250	4	7	9	11	14	12	21	27	33	42
	400	3	4	6	7	9	9	12	18	21	27
Nominal current (A)	10	16	20	25 (1)) 32	10	16	20	25 (1) 32	

Luminaires for high pressure sodium vapour lamp

Туре	Power Number of luminaires on the line										
	W	Sing	le phas	se line			<u>3-ph</u>	ase + I	N line		
Compensated ballast	150	11	17	22	27	35	33	51	66	81	105
·	250	7	11	14	17	22	21	33	42	51	66
	400	4	7	9	11	14	12	21	27	33	42
Non compensated ballast	150	5	8	11	13	17	15	24	33	39	51
	250	3	5	6	8	10	9	15	18	24	30
	400	2	3	4	5	6	3	9	12	15	18
Nominal current (A)		10	16	20	25 (1)	32	10	16	20	25 (1) 32

Then refer to :

• Page 6, to determine the type of busbar trunking and the cross-section of the wire to use depending on the type of protection installed (circuit breaker or fuses).

• Page 8, to verify the voltage drop in the busbar trunking and the power supply cable.

(1) For this type of luminaire, from 25 A, select a KBA or KBB 40 A rated busbar trunking, so as to allow for overload while the lamps are on.

4

Protection against overloads by precalculating cables + Canalis

Selection

Aim of this section

The following tables enable determination of :

- The nominal current or overload protection adjustment
- The Canalis nominal thermal current
- \bullet The minimum thermal cable cross-section

These three characteristics are defined for the following installation conditions :

- Ambient temperature 30 °C
- Cables placed in cable routing or on panels. Lay out as a single horizontal layer or in groups of 2 or 3 cores.

Tap-off outputs from Canalis must have an overload protection device, except in the following case.

Possibility of dispensing with or remotely locating protection

It can, in certain cases, be advantageous not to use or to locate remotely the protection as described in NFC 15-100. This is summarized below and taken from the UTE C 15-107 guide.

Powering devices which are not susceptible to overloads

Eg. : luminaires, convectors, etc

Omission of devices for protection against overload

Busbar trunking C₃ (connecting equipment) does not need to be protected against overloads or short-circuits (BS7671) as the equipment :

- is not susceptible to overload currents,
- does not have tap-off outlets or power sockets,
- is less than or equal to 3 metres,
- is designed to reduce to a minimum the risk of short-circuits,
- is not located close to any flammable material.

Powering devices which have overload protection

Remote location protection

The device P_2 which protects busbar trunking C_3 against overloads, is not located at the point of origin (BS7671) as the busbar trunking C_3 :

- does not have tap-off outlets or power sockets,
- is less than or equal to 3 metres,
- is designed to reduce to a minimum the risk of short-circuits,
- is not located close to any flammable material.

Protection against overloads by precalculating cables + Canalis

Selection

The tables below enable the following to be selected, according to the type of overload protection used (circuit-breakers or fuses) :

- The type of busbar trunking to use
 The cross-section of the power supply cable as a function of the type and method of laying used, for all polarities

Spaced on cable routing

Touching on cable routing

Protection provided by Merlin Gerin type C60 modular circuit-breaker (C curve)

Nominal	Type of	PRC cab	le		PVC cab	е		
current	busbar trunking	Spaced	Touching	3	Spaced	Touching	1	
Circuit-bre	aker	apart	(number	of cables)	apart	(number	of cables)	
rating		•	2 to 5	6 and +		2	3	4 and +
A		mm ²						
10	KLE-16, KBA-25,KBB-25	1.5	1.5	1.5	1.5	1.5	1.5	1.5
16	KLE-16, KBA-25,KBB-25	1.5	1.5	1.5	1.5	2.5	2.5	2.5
20	KBA-25, KBB-25	1.5	2.5	2.5	2.5	2.5	4	4
25	KBA-25, KBB-25	2.5	4 2.5 (1)	4 2.5 (1)	2.5	4	4	6
32	KBA-40, KBB-40	4 2.5 (1)	6 4 (1)	6 4 (1)	4	6	6	10
40	KBA-40, KBB-40	4	6	10 6 (1)	6	10	10	10

Protection provided by g1 type fuses

Type of	PRC cabl	e		PVC cabl			
busbar trunking	Spaced	Touching	9	Spaced	Touchin	g	
	apart	(number	of cables)	apart	(numbei	r of cables)	
		2 to 5	6 and +		2	3	4 and +
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
KLE-16, KBA-25, KBB-25	1.5	1.5	1.5	1.5	1.5	1.5	2.5
KLE-16, KBA-25, KBB-25	1.5	2.5 1.5 (1)	2.5	2.5	2.5	2.5	4
KBA-25, KBB-25	2.5 1.5 (1)	2.5	2.5	2.5	4	4	6
KBA-25, KBB-25	2.5	4	6 4 (1)	4	6	6	6
KBA-40, KBB-40	4 2.5 (1)	6 4 (1)	6	6	6	10	10
	KLE-16, KBA-25, KBB-25 KLE-16, KBA-25, KBB-25 KBA-25, KBB-25 KBA-25, KBB-25 KBA-40, KBB-40	Spaced apart Spaced apart mm² KLE-16, KBA-25, KBB-25 1.5 KLE-16, KBA-25, KBB-25 1.5 KBA-25, KBB-25 2.5 KBA-25, KBB-25 2.5 KBA-40, KBB-40 4 2.5 (1) 10 cm s social or single ph/s	Spaced apart Touching (number 2 to 5 mm² mm² KLE-16, KBA-25, KBB-25 1.5 1.5 KLE-16, KBA-25, KBB-25 1.5 2.5 KLE-16, KBA-25, KBB-25 2.5 2.5 KBA-25, KBB-25 2.5 2.5 KBA-25, KBB-25 2.5 4 KBA-25, KBB-40 4 6 KBA-40, KBB-40 4 6 gridba cable careas postions in single phase distribution 6	Spaced apart Touching (number of cables) 2 to 5 Touching (number of cables) 2 to 5 Touching (number of cables) 2 to 5 Touching 6 and + mm ² mm ² mm ² mm ² mm ² KLE-16, KBA-25, KBB-25 1.5 1.5 1.5 1.5 KLE-16, KBA-25, KBB-25 1.5 2.5 2.5 1.5 (1) KBA-25, KBB-25 2.5 2.5 2.5 1.5 (1) KBA-25, KBB-25 2.5 4 6 4 (1) KBA-40, KBB-40 4 6 6 2.5 (1) 4 (1)	Spaced apart Touching (number of cables) Spaced apart Mm² mm² mm² mm² KLE-16, KBA-25, KBB-25 1.5 1.5 1.5 1.5 KLE-16, KBA-25, KBB-25 1.5 2.5 2.5 2.5 KLE-16, KBA-25, KBB-25 1.5 2.5 2.5 2.5 KBA-25, KBB-25 2.5 2.5 2.5 2.5 KBA-25, KBB-25 2.5 2.5 2.5 2.5 KBA-25, KBB-25 2.5 2.5 2.5 2.5 KBA-26, KBB-25 2.5 4 6 4 KBA-40, KBB-40 4 6 6 6 2.5 (1) 4 (1) 4 6 6	Spaced apart Touching (number of cables) Spaced apart Touching (number of cables) kLE-16, KBA-25, KBB-25 1.5 1.5 1.5 1.5 1.5 KLE-16, KBA-25, KBB-25 1.5 1.5 2.5 2.5 2.5 KLE-16, KBA-25, KBB-25 1.5 1.5 1.5 1.5 1.5 KLE-16, KBA-25, KBB-25 2.5 2.5 2.5 2.5 2.5 KBA-25, KBB-25 2.5 2.5 2.5 4 6 KBA-25, KBB-25 2.5 2.5 2.5 4 6 KBA-25, KBB-25 2.5 4 6 6 6 KBA-40, KBB-40 4 6 6 6 6 2.5 (1) 4 (1) 6 6 6 6	Spaced apart Touching (number of cables) Spaced apart Touching (number of cables) Mm ² m ² 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Permissible cable cross-sections in single phase distribution.

Verifying the voltage drop

Selection

Recommended evaluation

 Attribute a voltage drop expressed as a % of the nominal voltage (Un), bearing in mind that the voltage drop between the origin and any point of use must not exceed that shown on the table below. (BS7671)

• Convert to volts the percentage of the nominal voltage (Un) attributed to each circuit.

• Using the tables, check that the busbar trunking and/or cables selected from the previous pages are compatible with the calculated voltage drops.

If not, increase the cross-section of the cables.

Notes

- In a mixed circuit, the most economical choice consists of increasing the cable cross-section and avoiding use of prefabricated trunking for higher nominal current (Inc).
- For certain loads, it may be necessary to take into account a transient voltage drop.

Verifying the voltage drop

Selection

Voltage drop in the power supply cable (copper cable)

The table below gives the single phase voltage drop, at the end of the power cable on a canalis run. The 3-phase voltage drop is obtained by multiplying the single phase voltage drop, read from the table, by a coefficient of 0.866. The nominal current (Ib) and the length are selected by the exact or next highest value.

Cable	Nominal	Lenç	gth of	line													
cross-	current	m															
section																	
mm ²	Α	6	8	10	12	15	20	25	30	35	40	45	50	60	70	80	100
11.5	10	- 4	1.0	0.4	0.0	0.0	4.0	<u> </u>	7.0	0.4	0.0	4.4	10	- 4	17	10	0.4
I X I.5	10	1.4	1.9	2.4	2.9	3.6	4.8	6	1.2	8.4	9.6	11	12	14	17	19	24
	16	2.3	3.1	3.9	4.6	5.8	1.1	9.6	12	13	15	1/	19	23	27	31	39
	20	2.9	3.9	4.8	5.7	7.2	9.6	12	14	17	19	22	24	29	34	39	48
1×25	10	0.9	12	14	17	22	29	3.6	43	51	5.8	6.5	72	87	10	12	14
1 X 2.0	16	1 /	1.0	23	2.8	3.5	1.6	5.8	7	8.1	<u>0.0</u>	10	12	1/	16	10	23
	20	1.7	2.3	2.0	3.5	4.3	5.8	7.2	87	10	12	13	14	17	20	23	29
	25	22	2.0	3.6	4.3	5.4	7.2	9.1	11	13	14	16	18	22	25	29	36
			<u> </u>	0.0	1.0	0.1		0.1		10		10	10				00
1 x 4	16	0.9	1.2	1.5	1.7	2.2	2.9	3.6	4.4	5.1	5.8	6.5	7.3	8.7	10	12	15
	20	1.1	1.5	1.8	2.2	2.7	3.6	4.5	5.5	6.4	7.3	8.2	9.1	11	13	15	18
	25	1.4	1.8	2.3	2.7	3.4	4.5	5.7	6.8	8	9.1	10	11	14	16	18	23
	32	1.7	2.3	2.9	3.5	4.4	5.8	7.3	8.7	10	12	13	15	17	20	23	29
-	40	2.2	2.9	3.6	4.4	5.5	7.3	9.1	11	13	15	16	18	22	25	29	36
								~ .									
1 x 6	16	0.6	0.8	1	1.2	1.5	2	2.4	2.9	3.4	3.9	4.4	4.9	5.9	6.8	7.8	9.8
	20	0.7	1	1.2	1.5	1.8	2.4	3	3.7	4.3	4.9	5.5	6.1	7.3	8.5	9.8	12
	25	0.9	1.2	1.5	1.8	2.3	3	3.8	4.6	5.3	6.1	6.9	7.6	9.1	11	12	15
	32	1.2	1.6	2	2.3	2.9	3.9	4.9	5.9	6.8	7.8	8.8	9.8	12	14	16	20
	40	1.5	2	2.4	2.9	3.7	4.9	6.1	7.3	8.5	9.8	11	12	15	17	20	24
1 v 10	20	0.4	0.6	0.7	0.0	1 1	1.5	1 0	2.0	26	2	2.2	2.7	1 1	5.2	5.0	74
1 X 10	20	0.4	0.0	0.7	1 1	1.1	1.0	2.2	2.2	2.0	27	3.3	3.7	4.4	<u> </u>	7.4	0.2
	20	0.0	0.7	1.2	1.1	1.4	2.4	2.3	2.0	<u> </u>	4.7	5.2	5.0	7.1	0.0	0.5	10
	<u>32</u> 40	0.7	1.2	1.2	1.4	2.2	2.4	37	3.5	<u>4.1</u> 5.2	<u>4.7</u> 5.0	6.7	7.4	<u>/.1</u> 8.0	10	9.0 12	15
	τv	0.9	1.4	1.5	1.0	6.6	0	0.7	7.4	J.Z	5.5	0.7	7.4	0.9	10	14	10

Voltage drop in Canalis busbar trunking

The table below gives the single phase voltage drop, on a Canalis run (electrical power uniformly distributed). The 3-phase voltage drop is obtained by multiplying the single phase voltage drop, read from the table, by a coefficient of 0.866. The nominal current (lb) and the length are selected by the exact or next highest value.

Type of	Nominal current	Lenç m	Length of line m														
Canalis	Α	6	8	10	12	15	20	25	30	35	40	45	50	60	70	80	100
KLE-16	10	0.4	0.6	0.7	0.8	1.1	1.4	1.8	2.1	2.5	2.8	3.2	3.5	4.2	4.9	5.6	7
	16	0.7	0.9	1.1	1.3	1.7	2.2	2.8	3.4	3.9	4.5	5.1	5.6	6.7	7.9	9	11
KBA-25	10	0.4	0.5	0.7	0.8	1	1.3	1.6	2	2.3	2.6	2.9	3.3	3.9	4.6	5.2	6.5
KBB-25	16	0.6	0.8	1	1.3	1.6	2.1	2.6	3.1	3.7	4.2	4.7	5.2	6.3	7.3	8.4	10
	20	0.8	1	1.3	1.6	2	2.6	3.3	3.9	4.6	5.2	5.9	6.5	7.8	9.1	10	13
	25	1	1.3	1.6	2	2.5	3.3	4.1	4.9	5.7	6.5	7.4	8.2	9.8	11	13	16
KBA-40	16	0.3	0.4	0.5	0.6	0.8	1	1.3	1.5	1.8	2	2.3	2.5	3	3.5	4	5
KBB-40	20	0.4	0.5	0.6	0.8	0.9	1.3	1.6	1.9	2.2	2.5	2.8	3.1	3.8	4.4	5	6.3
	25	0.5	0.6	0.8	0.9	1.2	1.6	2	2.4	2.8	3.1	3.5	3.9	4.7	5.5	6.3	7.9
	32	0.6	0.8	1	1.2	1.5	2	2.5	3	3.5	4	4.5	5	6	7.1	8.1	10
	40	0.8	1	1.3	1.5	1.9	2.5	3.1	3.8	4.4	5	5.7	6.3	7.6	8.8	10	13

Conversion of voltage drops

Opera- tional	Volta	ge drop	o for a g	given %	0											
voltage	%															
V	0.3	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	6	7	8	9	10
230	0.7	1.2	2.3	3.5	4.6	5.8	6.9	8.1	9.2	10	12	14	16	18	21	23
400	1.2	2	4	6	8	10	12	14	16	18	20	24	28	32	36	40

Short-circuit withstand

Selection

Determining the prospective short-circuit current at the origin of the Canalis

Two situations may be encountered :

1 - The lighting busbar trunking is powered from a secondary distribution board

2 - The lighting busbar trunking is powered from another Canalis busbar trunking

Icc_(a) : Short-circuit rms current to transformer terminals.

Values of $Icc_{(a)}$ rms to transformer terminals (U = 400 V).

Power (kVA)	50	100	160	200	250	315	400	500	630	800	1000	1250	1600
Icc _(a) (kA)	1.8	3.6	5.7	7.2	8.9	11.2	14.2	17.6	22.1	24.8	27.8	31.5	36.7

Icc_(b) : Down stream short-circuit current, less than Icc_(a), limited by the impedance of the cable.

 $|cc_{(c)}|$: Short-circuit current to the circuit breaker terminal, less than $|cc_{(b)}|$ limited by the circuit breaker. $|cc_{(c)}|$: Prospective short-circuit current limited by the impedance of the cable (case 1), or of the cable + Canalis (case 2).

 $c_{(d)}$: Prospective short-circuit current limited by the impedance of the cable (case 1), or of the cable + Canalis (case 2).

The evaluation of short-circuit currents is not required for circuits protected by H.P.C. fuses (breaking power always greater than or equal to 50 kA).

Canalis and protection coordination

The table below shows the type of circuit breaker or fuse to use for a given busbar trunking.

Type of busbar trunking	Protection vi	a circuit breaker		Protection via fuses Prospective Icc (kA)	
	10 kA	15 kA	36 kA	50 kA	
KLE-16	C60X16	C60H16	NC100C16	<u>16 A g1</u>	
KBA-25, KBB-25	C60X25	C60H25	NC100C25	20 A g1	
KBA-40, KBB-40	C60X40	C60H40	NC100C40	32 A g1	

Characteristics of Canalis busbar trunking

Type of busbar trunking	Resistance to short-circuit currents Permissible rated peak current	Permissible thermal constraint
	kA	A ² s
KLE-16	4.4	19.5. 10 ⁴
KBA-25	4.4	<u>19.5. 104</u>
KBA-40	9.6	<u>90. 10⁴</u>
KBB-25	4.4	<u>19.5. 104</u>
KBB-40	9.6	<u>90. 10⁴</u>

Lighting distribution

Study guide

Study example

Selecting busbar trunking according to the type and number of luminaires

Dust and damp proof industrial reflector luminaires (table page 3)

Luminaire	Luminaire Cl		spaced	Spaced	d slightly ap	art Spaced	apart	Placed across fixing point			
Power W	Unit weight kg										
-		KBA	KBB	KBA	KBB	KBA	KBB	KBA	KBB		
1 x 36	3.30	3.00	5.00	3.00	5.00	3.00	5.00	4.00	6.00		
1 x 58	4.20	3.00	5.00	3.00	5.00	3.00	5.00	4.00	6.00		
2 x 36	5.20	3.00	5.00	3.00	5.00	3.00	5.00	4.00	6.00		
2 x 58	5.90	3.00	5.00	3.00	5.00	3.00	5.00	4.00	6.00		
The solut	ion is achieved	using KBE	3								

Determining the nominal current

Fluorescent tube(s) industrial reflectors (table page 4)

Nominal current (A)		10	16	20	25	32	40	10	16	20	25	32	40		
	2 x 58	7	11	14	17	22	28	21	33	42	51	66	84		
	2 x 36	11	17	22	27	35	44	33	51	66	81	_	-		
	1 x 58	14	22	28	35	45	56	42	66	84	-	-	-		
Non compensated ballasts	1 x 36	22	35	44	55	71	88	66	105	_	_	_	_		
														_	
	2 x 58	13	20	26	32	41	52	39	60	78	96	_	_		
	2 x 36	21	33	42	52	67	_	63	99	_	_	_	_		
	1 x 58	25	40	50	62	_	_	75	80	_	_	_	_		
Compensated ballasts	1 x 36	33	53	66	-	_	_	99	_	_	-	-	_	-	
	VV	SIII	jie pri	ase in	le			<u> </u>	lase +		le			-	
Туре	Power	Nun			naire	s mak	ing up t	ne line		NLL				_	
T	Damas	Number of luminairea making up the line													

Study guide

Study example

Protection against overloads (on the line furthest away)

	<i>(</i>)		
Fluorescent tube	(S)	industrial	reflectors

Icc(d) prospective	Cable (25 m) The furthest away line	<	Canalis KBB (60 m)	
Circuit breaker	The fulfillest away into			

Protection provided by Merlin Gerin type C60 modular circuit breaker (curve C) (table page 6)

Nominal	Type of	PRC cab	le		PVC cabl	е		
current	busbar trunking	Spaced	Touchin	g	Spaced	Touchin	g	
Circuit bro	eaker	apart	(numbei	of cables)	apart	(numbe	r of cables)	
rating			2 to 5	6 and +		2	3	4 et +
A		mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
10	KLE-16, KBA-25,KBB-25	1.5	1.5	1.5	1.5	1.5	1.5	1.5
16	KLE-16, KBA-25, KBB-25	1.5	1.5	1.5	1.5	2.5	2.5	2.5
20	KBA-25, KBB-25	1.5	2.5	2.5	2.5	2.5	4	4
Selection	· C60 type circuit breaker ci	Irve C 16	A rating 3	$3 \times 1.5 \text{ mm}^2$	able Cana	lis KBB25	A · KBB-2	5EA203

Verifying the voltage drop

In the power supply cable (table page 8)

100
100
04
24
39
48
14
23
29
36

In the Canalis busbar trunking (table page 8)

Туре	Nominal	Leng	gth of I	ine													
of	current	m															
Canalis	A	6	8	10	12	15	20	25	30	35	40	45	50	60	70	80	100
KLE-16	10	0.4	0.6	0.7	0.8	1.1	1.4	1.8	2.1	2.5	2.8	3.2	3.5	4.2	4.9	5.6	7
	16	0.7	0.9	1.1	1.3	1.7	2.2	2.8	3.4	3.9	4.5	5.1	5.6	6.7	7.9	9	11
KBA-25	10	0.4	0.5	0.7	0.8	1	1.3	1.6	2	2.3	2.6	2.9	3.3	3.9	4.6	5.2	6.5
KBB-25	16	0.6	0.8	1	1.3	1.6	2.1	2.6	3.1	3.7	4.2	4.7	5.2	6.3	7.3	8.4	10
	20	0.8	1	1.3	1.6	2	2.6	3.3	3.9	4.6	5.2	5.9	6.5	7.8	9.1	10	13
	25	1	1.3	1.6	2	2.5	3.3	4.1	4.9	5.7	6.5	7.4	8.2	9.8	11	13	16

Opera- Voltage drop for a given %

tional	%															
voltage	0.3	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5 %	6	7 %	8	9	10
230 V	0.7 V	1.2 V	2.3 V	3.5 V	4.6 V	5.8 V	6.9 V	8.1 V	9.2 V	10 V	12 V	14 V	16 V	18 V	21 V	23 V

The voltage drop in the power supply cable $(3 \times 1.5 \text{ mm}^2)$ is 9.6 V. The voltage drop in the Canalis busbar trunking is 6.3 V. That is, a total voltage drop of 15.9 V corresponding to a value of 7% (6% permitted maximum). **Solution** : select a 2.5 mm² cable to supply the Canalis. In this case $(3 \times 2.5 \text{ mm}^2)$, the voltage drop in the cable is now only 5.8 V, that is, a total of 12.1 V for the line, corresponding to an acceptable value of 5%.

Canalis and protection coordination

The table below enables the type of circuit breaker or fuse to use for a given busbar trunking to be determined.

Type of	Protection	via circuit br	Protection via fuses				
busbar trunking	lcc (d) (pros	spective Icc)		Prospective Icc (kA)			
	10 kA	15 kA	20 kA	25 kA	50 kA	50 kA	
KLE-16	C60N16	C60H16	C60L16	C60L16	_	16 A g1	
KBA-25, KBB-25	C60N25	C60H25	C60L25	C60L25	NC100LH25	20 A g1	
KBA-40, KBB-40	C60N40	C60H40	C60L40	C60L40	NC100LH40	32 A g1	
Select a C60H25 typ	e circuit break	ker					

11