## Tutorial 2-An Identification Problem

Exercise 1. Consider the following problem in the unit square $\Omega$ :

$$
-\nu \Delta u+\beta \cdot \nabla u+u^{3}=\alpha_{1} \sin (x+y)+\alpha_{2} \cos (x+y)
$$

with $u(\partial \Omega)=0$.
Given measures $u_{d}$ in a region $I$ of $\Omega$, identify the coefficients $\alpha_{1}$ and $\alpha_{2}$ with a variational procedure.

Let us assume $\nu=0.1, \beta=[1,1]$. At the beginning, let us set $I \equiv \Omega$.
In particular we minimize the mismatch $\int_{I}\left(u-u_{d}\right)^{2}$ with a Tychonov regularization $\sigma\left(\alpha_{1}^{2}+\right.$ $\left.\alpha_{2}^{2}\right) / 2$.

Procedure specification:

1) Write the Lagrangian functional associated with the problem
2) Write the associated KKT system
3) Use a Netwon linearization
4) Solve the problem
5) Repeat the solution for different values of the regularization parameter
6) Analyze the quality of the solution when $I$ is a circular subdomain (for different values of the position and the radius) in the square.
7) Pollute the data with a random noise
8) Try a $\delta^{2}$ Aitken acceleration
9) Explore BFGS-based methods.
