Autumn School Lisbon - Data Driven Computations in Life Sciences - Fall 2015

Nov 13th 2015

TUTORIAL 2 - AN IDENTIFICATION PROBLEM

Exercise 1. Consider the following problem in the unit square Ω :

$$-\nu\Delta u + \beta \cdot \nabla u + u^3 = \alpha_1 \sin(x+y) + \alpha_2 \cos(x+y)$$

with $u(\partial \Omega) = 0$.

Given measures u_d in a region I of Ω , identify the coefficients α_1 and α_2 with a variational procedure.

Let us assume $\nu = 0.1$, $\beta = [1, 1]$. At the beginning, let us set $I \equiv \Omega$. In particular we minimize the mismatch $\int_{I} (u - u_d)^2$ with a Tychonov regularization $\sigma(\alpha_1^2 + \alpha_2^2)/2$.

Procedure specification:

- 1) Write the Lagrangian functional associated with the problem
- 2) Write the associated KKT system
- 3) Use a Netwon linearization
- 4) Solve the problem
- 5) Repeat the solution for different values of the regularization parameter

6) Analyze the quality of the solution when I is a circular subdomain (for different values of the position and the radius) in the square.

- 7) Pollute the data with a random noise
- 8) Try
a δ^2 Aitken acceleration
- 9) Explore BFGS-based methods.