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Data Assimilation in CardiovasularFluid-Struture Interation Problems:an introdutionL. Bertagna, M. D'Elia, M. Perego, A. VenezianiDeember 9, 2013AbstratNumerial methods for inompressible �uid dynamis have reently re-eived a strong impulse from the appliations to the ardiovasular system.In partiular, �uid-struture interation methods have been extensively in-vestigated in view of an aurate and possibly fast simulation of blood �owin arteries and veins. This interest has been strongly motivated by theprogressive interest in using numerial tools not only for understandingthe general physiology and pathology of the vasular system. The oppor-tunity o�ered by medial images properly preproessed and elaboratedto simulate blood �ow in real patients highlighted the potential impatof sienti� omputing on the linial pratie. Therefore, in silio ex-periments are urrently extensively used in bioengineering for ompleting(and sometimes driving) more traditional in vivo and in vitro investi-gations. Parallel to the development of numerial models, the need forquantitative analysis for diagnosti purposes has strongly stimulated thedesign of new methods and instruments for measurements and imaging.Thanks to these developments, a huge amount of data is nowadays avail-able. Data Assimilation is the aurate merging of measures (inludingimages) and numerial simulations for a mathematially sound integrationof di�erent soures of information. The outome of this proess inludesboth the patient-spei� measures and the general priniples underlyingthe development of mathematial models. In this way, simulations areadapted to the availability of individual data and are therefore supposedto more reliable; measures are orrespondingly �ltered by the mathemat-ial models assumed to desribe the underlying phenomena, resulting ina (hopefully) signi�ant redution of the noise.This note provides an introdution to methods for data assimilation,mostly developed in �elds like meteorology, applied to omputationalhemodynamis. We fous mainly on two of them: methods based onstohasti arguments (Kalman �ltering) and variational methods. Wealso address some examples that have been approahed with di�erenttehniques, in partiular the estimation of vasular ompliane from dis-plaement measures. 1



Keywords: Data assimilation, Kalman Filter, Variational parameter identi�-ation, Fluid-struture interation, Biologial �owsMSC: 49N45,35Q35,74F10,76Z05,62M20, 49M05, 49M15, 49M29 60G25, 60G3590C46 93E10,93E11,93E121 PreliminariesNumerial methods for inompressible �uid dynamis have reently reeiveda strong impulse from the appliations to the ardiovasular system (see e.g.[24, 29℄). In partiular, �uid-struture interation (FSI) methods have beenextensively investigated in view of an aurate and possibly fast simulation ofblood �ow in arteries and veins (see e.g. the reent works by Y. Maday and byJ.F. Gerbeau and M. Fernandez, Chapters 8 and 9 of [24℄ respetively or theChapter of the present book by C. Grandmont, M. Luká£ová and �. Ne£asová).Beyond the intrinsi mathematial interest, the development of reliable toolsfor the numerial simulations of ardiovasular problems - and FSI in parti-ular - has an impat on bioengineering and medial researh. Thanks to theopportunity o�ered by improvements in imaging and measurement devies andthe subsequent elaboration (see Chapter 4 of [24℄ authored by L. Antiga, D.Steinman and J. Peiró), nowadays sienti� omputing is not only a tool for in-vestigating the physiopathology of the ardiovasular system at a general level,but also a way for analyzing in detail the single patient. Mathematial mod-els, properly numerially approximated omplete the patient-spei� informa-tion provided by traditional (yet progressively improved) diagnosti tools. Theomplete patient-spei� piture provided by numerial models may (and mostlikely will) have a diagnosti and prognosti impat and, more in general, pro-vide a deision-making support in linial pratie. However, this fasinatingperspetive raises some important hallenges. The general problem of quantify-ing and reduing unertainty in mathematial models and to ertify the qualityof numerial simulations - ommon to any omputer aided ativity - is evenmore important when supporting the linial pratie, for its individual andsoial impat. This is related to the problem of validating numerial models.�Validation is the proess of determining the extent to whih the omputer im-plementation orresponds to the real world. If solution veri�ation has alreadybeen demonstrated, then validation asks whether the mathematial model is ef-fetive in simulating those aspets of the real world system under study� (from[22℄).Parallel to the development of numerial models, the need for quantita-tive analysis for diagnosti purposes has strongly stimulated the design of newmethods and instruments for measurements and imaging. Thanks to these de-velopments, a huge amount of data is nowadays available to bioengineers andmedial dotors. Also, the reliability of these data and their signi�ane in lin-ial pratie needs to undergo a strit analysis and assessment, sine they aretypially a�eted by noise and errors.Data Assimilation (DA) is a proess for integrating the knowledge provided2



Figure 1: The general framework of Data Assimilation as a proess for improvingthe reliability of quantitative analyses (BG=Bakground, FG= Foreground).3



by numerial models and measurements with the purpose of improving the re-liability of quantitative analysis. This approah has been developed sine themid of the 20th Century having as preferential appliation the weather foreast-ing. The rationale is that the preditions provided by numerial models, thatwe may all a bakground knowledge, being partially based on universal physi-al and onstitutive laws, are a�eted by unertainties in real world problems.These are the onsequene of simplifying assumptions as well as of an inom-plete knowledge of parameters usually needed by the onstitutive laws forminga mathematial model. For instane, referring to biomedial appliations, bloodvisosity (that in a Newton onstitutive law is supposed to be onstant) or om-pliane of an artery (that in a Hookean material is supposed to be representedby a parameter, the Young modulus) are available as estimated on samples, butwhen dealing with a spei� patient they are in general not known, being im-possible or inonvenient to measure. The integration with available measures,that we may all a foreground knowledge, sine they are spei� of the ase, isexpeted to be bene�ial to the quantitative analysis, reduing the unertaintyin the mathematial models. On the other hand, bakground models improvethe knowledge extrated from the data, providing a way for �ltering noise. Inpartiular, this is important for at least three purposes,1. estimate the state of a dynamial system (e.g. the veloity, the pressure)orits derivated quantities for whih noisy data and mathematial models areavailable,2. predit the state of a dynamial system for whih data are available in thepast,3. identify one or more parameters involved in the mathematial model, ad-justing their values on the basis of available data.In the global piture - that we have represented in Fig. 1 - DA redues possibil-ities of failure in estimating, prediting, and identifying by merging bakgroundand foreground in a unique quantitative analysis. The neessity of this proessin the traditional development of numerial models in ardiovasular mathe-matis beomes progressively more urgent with the inrement of available dataand, more importantly, of patients that may bene�t from quantitative analysis.In this Chapter we want to provide an introdution to some topis broughtin by DA in Cardiovasular Mathematis, with a partiular emphasis to FSIproblems. It is important to stress that, as suh, this introdution annot beomplete. First, there are several ways for approahing DA and it is basiallyimpossible to provide an exhaustive global piture of the possible methodologies.We refer to [8℄ as a more general introdution. Seond, DA in ardiovasularmodeling is a relatively reent topi and many questions and hallenges arestill open, so it is hard to draw onlusive statements about the adequay ofa methodology for a spei� problem. Our perspetive is to provide some ex-amples that have been reently onsidered in the literature and a self-ontainedintrodution to the methods used there. In partiular, we have seleted ex-amples takled with di�erent approahes, providing di�erent perspetives for4



solving the same problem. This is intended to give not only the idea of theomplexity of the problems but also of the variety of approahes, the di�erenesand the omplementary nature of the methods. In partiular, we will onsidertwo lasses of methods,1. stohasti approahes, when some probabilisti knowledge of the uner-tainty a�eting the model and the noise a�eting the measures are avail-able; in partiular we refer to methods related to Kalman �ltering andits extension to nonlinear problems; these methods will be addressed inSetion 2;2. deterministi approahes, when no lue on the statistial features of un-ertainty is available; in partiular, we will see variational methods basedon the minimization of the mismath between the data and numerial re-sults, onstrained by the bakground model; these methods are introduedin Setion 3.The above distintion is not strit. In fat, available statistial information anbe inluded in variational models.The FSI problem and more in general the problems involved in ardiovasularmathematis - usually represented by a system of partial di�erential equations- are omplex and per se hallenging. In the framework of DA, the issue ofomputational osts beomes even more important, as DA typially involvesthe solution of inverse problems. In pratie, these problems an be solved byiterative approahes, where the solution of the FSI system (or more in general ofthe �forward� problem) needs to be performed at eah iteration. It is promptlyrealized that this requires spei� tehniques to make the omputational ostsa�ordable. We address this issue in Setion 3, in partiular referring to methodsfor reduing the osts of eah iteration by representing the solution on a �smart�low-dimensional basis funtions set that strongly redues the number of degreesof freedom required by a traditional numerial method (like �nite element orspetral methods).Detailed examples are provided in Setion 4. In partiular, we onsider theassimilation of veloity measures with the numerial simulation of the Navier-Stokes equations for improving the estimate of blood veloity on an artery. Weaddress two di�erent deterministi approahes and how they an be reinter-preted or improved by a stohasti Bayesian perspetive. Finally, we presentin detail the problem of estimating vasular ompliane by solving an inverseFSI problem. Again, we present both a stohasti approah based on Kalman�ltering and a deterministi onstrained minimization approah. In the latterase, we present a tehnique for reduing the omputational osts by represent-ing the solution on a low-dimensional basis obtained with a Proper OrthogonalDeomposition approah.As we have pointed out, the methodologial piture in the �led of DA ispretty artiulated, enompassing statistial as well as numerial issues for inverseproblems [17, 71℄. Here, we mention some referenes for the reader interested inhaving more details on the topis overed only partially in this introdution. The5



importane of unertainty quanti�ation in any �eld of sienti� omputing hasbeen reently underlined in [22℄. An exellent introdution to statistial methodsfor omputational inverse problems is given in the books [47, 13, 27, 68℄. Areent olletion of ontributions in the numerial solution of inverse problemsand omputational osts redution is [7℄.A lassial book on methods for solving onstrained minimization for �owproblems is [37℄. Fundamental ontributions an be found in [32, 33℄, reentlyolleted in [34℄. Parameter estimation for partial di�erential equations hasbeen extensively overed in [2℄ (see also the reent [3℄).An introdutory example To illustrate some basi onepts in DA, we referto an oversimpli�ed example. Let us assume to have a pipe where an inom-pressible �uid �ows. We also suppose that N measures of veloity are availablein N points Pi (i = 1, . . . , N). Our goal is to ompute the shear stress at thewall of the pipe, whih is de�ned as1
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n (1)where µ is the blood visosity, u is the veloity, n the unit vetor normal to thesurfae. In partiular, if we are interested in the estimate of the stress at thetimes for whih veloity measures are available, this is an estimate or �lteringproblem. If we want to quantify the wall shear stress for time instants after timeof measures, we have a predition problem.There are di�erent approahes for this.1. Data �tting approah: a funtional form for the veloity is deided (forinstane polynomial) and �tted with the data. Suessively the wall shearstress is obtained by applying (1) with the �tted veloity. The quality ofthe omputation depends on the number and loation of the measures, andthe amount of noise. Fitting an be performed with either interpolationor least square approximation depending on how trustworthy the mea-sures are onsidered. In this approah, we do not assume any bakgroundknowledge of �uid mehanis.2. Model based omputation: We may assume that blood �ow is an inom-pressible Newtonian �uid. Under these assumptions, for a ylindrial pipedesribed by the oordinates z, r, θ, we an derive the Poiseuille solution(outlined in olor in Fig. 2),

uz =
GP

4µ
(R2 − r2), ur = uθ = 0, p = GP z + C (2)where GP is the pressure gradient, R is the radius of the pipe and C isan arbitrary onstant. Should GP and µ be available, we ompute thewall shear stress; suh parameters are needed to get the �nal estimate of1We remind that the wall shear stress is a quantity of great relevane in biomedial appli-ations for its orrelation with pathologies suh as atheroslerosis - see e.g. [14℄.6
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Figure 2: Pipe where an inompressible �uid �ows and veloity measures areavailable in the points Pi: how is it possible to reliably ompute the wall shearstress at the wall?the stress, while measures are not needed. The quality of the estimatedepends on the reliability of the model assumption. In general, the an-alytial solution may be replaed by a numerial solution. In suh ase,the auray of the estimated stress will also depend on the numerialapproximation.3. Data assimilation proedure: suppose that the assumptions behind thePoiseuille solution are aeptable but our knowledge is inomplete, forinstane the visosity µ and the pressure gradient GP are unknown; in thisase, we may take advantage of the veloity measures to �ll the gap andeventually to ompute the wall shear stress by formulating the followingproblem. Find µ and GP suh that u minimizes the mismath
J =

N∑

i=1

(um(Pi)− up(Pi))
2where um(Pi) is the measured veloity and up is the Poiseuille solution(2). In this way, we are �tting the physial parameters µ and GP so thatthe bakground model is mathing the foreground knowledge. One µand GP are omputed, the wall shear stress (both as an estimate or asa predition) is quanti�ed. Contextually, the noise a�eting the data is�ltered by our bakground knowledge of �uid mehanis in the physially-driven least squares proedure. Notie that when quantifying the visositywe are solving an identi�ation problem.In the more realisti ase that the Poiseuille solution annot be applied, wereplae up with the (numerial) solution of the Navier-Stokes equations.In this ase, the minimization proedure requiring to �nd the stationarypoints of J regarded as a funtion of µ and GP is learly non-trivial (aswe will see in the next Setions). 7



This simple example (that will be developed in Setion 4), shows the rele-vane of DA in biomedial appliations, espeially related to the linial pratie.As a matter of fat, patient-spei� knowledge of parameters that form a mathe-matial/numerial model is always inomplete. As for the boundary onditions,this has led to extensive investigation of the so-alled �defetive boundary dataproblems� (see for instane [25, 26℄). Conerning parameter identi�ation, wemention elastography as a method for deteting the rigidity of soft tissues bysolving inverse elastiity problems [5, 4℄. In this ase, parameter identi�ationis not only funtional to the omputation of a spei� variable of interest, but itis by itself an important proedure for diagnosti purposes (e.g. breast aner).In the previous example, the DA proedure is performed without any realassumptions on the quantity we want to estimate and on the noise a�eting themeasures. However, in many ases some a priori knowledge is available and maybe used to drive the assimilation proess and eventually redue the unertaintya�eting the �nal results. For instane, we speulate that �uid visosity is aGaussian variable whose average and variane are known. Similarly, we mayassume that the noise features a probabilisti density funtion whose momentsare available. Availability of trustworthy probabilisti information on quantitiesof interest and noise may be a disriminant for the hoie of the DA methods.In the next Setion 2 we address probabilisti approahes, while Setion 3 isdevoted to deterministi methods. It is important to stress that the two lassesof approahes are somehow ontiguous. As we will see in Setion 4, solutionobtained with one approah an be reinterpreted in the other framework, whenthe reliability of a priori knowledge tends to 0.2 Probabilisti ApproahIn this Setion, we onsider the estimation/predition/identi�ation of quanti-ties when we assume stohasti a priori information to be available. We maytake therefore advantage of this knowledge to integrate models and measures.The latter are in turn onsidered to be the realization of a stohasti proess,whose features are known.The ingredients of the problem (see Fig. 3) are: (i) a variable w - forgenerality we assume it is a n-dimensional random vetor, whose probabilitydensity funtion (see below) is known - and (ii) a set of observations z - weassume to have p observations organized in a n × p matrix Z, regarded as prealizations drawn from a known probability density funtion. Our goal is to �ndan estimate ŵ of w based on both the a priori and the a posteriori knowledgewe have. To introdue fundamental onepts, we start onsidering w as aninstantaneous (or time independent) variable. Assume for instane that thedistribution of the variable of interest is a Gaussian probability density funtion(p.d.f.) then the solution of the estimate problem is given by the average and thevariane (and generally the statistial moments) of this distribution2. We willsee several ways for obtaining these quantities, namely the minimum variane2Preise de�nitions of average and variane of a Gaussian variable will be given later on.8
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Figure 3: In/Out system: z is the quantity measured, w is the quantity to beestimated.(MV), the maximum a posteriori probability (MAP), the maximum likelihood(ML).Then, we onsider the ase when the variables of interest are part of a dy-namial system. As a matter of fat, in the appliations we are interested inthere is a dynamis and we have a mathematial model desribing how a vari-able of interest, that we all u (the state of the system), evolves aording toa sequential parameter that will be in general the time. This may be eitherthe �uid or the �uid oupled with the arterial wall, et. In general, this is theknowledge given by mathematial modeling. In most of the ases, this is a sys-tem of partial di�erential equations and a numerial disretization proedure isneessary for its quantitative solution. The numerial model (i.e. the disretizedmathematial model) reads
u(k+1) = u(k+1)(Past, Input,Noise).
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observabilityFigure 4: Possible approahes for the estimate with a system dynamis. Herewe rely upon the observability of the system and the knowledge of the statistialfeatures of the stohasti proess.Assume that we measure z(k) and we want to estimate u(k) (�ltering prob-lem) or u(k+p) (p−step predition problem). If the variable u that we want to9



estimate is a parameter of the original model (as it was the visosity on theprevious example), this is an identi�ation problem. In the simplest ase, as-sume that the system dynamis is linear and that noise a�ets both the inputof the system and the measures. The system dynamis is regarded as the meh-anism onverting the p.d.f. of the input to the p.d.f. of the output. From thelatter, we want to infer the state variable. If we apply the riterion of �ndingthe estimate by minimizing the variane of the estimate, we will get a sequen-tial estimate/predition proedure alled Kalman �lter. Although the methodstrongly relies on the linearity of the system, that is not hanging the nature ofthe p.d.f. , we will see that the method an be properly extended to non-linearases. The e�etiveness of the proedure relies upon the �observability� of thesystem, i.e. on how the output information is atually representative of thestate of the system.As pointed out, our goal here is to give a short introdution to probabilistiestimation theory. For a more omplete and extensive presentation we refer to[68℄, Chapters 4,5,6.2.1 Basi notation and oneptsWe summarize some fundamental onepts and notation that are useful in theremainder of this Setion. For a omplete and rigorous introdution and expla-nation of these onepts, we refer e.g. to [55℄.Random variables For a random variable w, i.e. a variable whose valuedepends on a random experiment ω, we introdue the distribution funtion
FW (w) ≡ P (ω : w(ω) ≤ w)where the notation on the right hand side represents the probability that therealization of w assoiated to ω is ≤ w. Elementary properties of probabilityimply that limw→−∞ FW = 0 and limw→+∞ FW = 1 and that the funtion isnon-dereasing. The orresponding p.d.f. is de�ned as

pW (w) ≡ dFW

dw
.For the properties of distribution, pW (w) ≥ 0 and ∫

R

pWdw = 1.The Gaussian p.d.f. for instane reads
gW (w) =

1√
2πλ

exp

(
− (w − µ)2

2λ2

)
. (3)A p.d.f. an be haraterized by its moments. In partiular, we de�ne theexpetation operator E (·) as

E (w) ≡
∫

R

w pW (w)dw,10



that assoiates the random variable to a number alled mean. Similarly, we mayonsider the moments and the entral moments of order m de�ned respetivelyas
E (wm) ≡

∫

R

wmpW (w)dw, E (wm) ≡
∫

R

(w − E (w))
m
pW (w)dw.The entral moment of order 2 is alled variane. For the Gaussian p.d.f. gW ,the mean is µ and variane is λ2.Jointly distributed random variables We may onsider the ase of mul-tiple random variables depending on ω aording to a joint distribution

FW1W2...Wn ≡ P (ω : w1 ≤ w1, . . . ,wn ≤ wn).In this ase, the joint p.d.f. reads
pW1W2...Wn ≡

∂n

∂x1∂x2 . . . ∂xn

FW1W2...Wn .First order moments read
E (wj) =

∫

Rn

wj pW1W2...Wndw1dw2 . . . dwn.Seond order entral moments form the symmetri ovariane matrix
λjk ≡ [E ((wj − E (wj))(wk − E (wk)))] =∫

Rn

(wj − E (wj))(wk − E (wk))pW1W2...Wndw1dw2 . . . dwnwhere learly λjj = λ2
j , the variane of wj . The orrelation oe�ient between

wj and wk is de�ned as
ρjk ≡

λjk

λjλk

. (4)For instane, two jointly distributed Gaussian variables have the distribution
pW1W2(w1, w2) =

1

2π
√
|Λ|

exp

(
−1

2
δT Λ−1δ

)
,where δ =

[
w1 − µ1

w2 − µ2

]
, Λ =

[
λ2

1 λ12

λ12 λ2
2

] is the ovariane matrix, |Λ| stands forits determinant and µ1 and µ2 are the means of the two variables.In the sequel, this distribution is denoted by G(µ,Λ). In partiular a dis-tribution with µ = 0 and Λ diagonal (that means that the omponents of the11



vetor are not orrelated) is onsidered as a model for random disturbanes orwhite noise3.The marginal density funtion of one of the random variables wj in the poolmay be obtained by the joint one after integration over the range of the othervariables,
pWj =

∫

Rn−1

pW1W2...Wndw1 . . . dwj−1dwj+1 . . . dwnConditional probability The onditional p.d.f. of random vetor w giventhe ourrene of the random vetor y is de�ned as
pW |Y (w|y) ≡ pW,Y (w,y)

pY (y)
.Similarly, we have the de�nition

pY |W (y|w) ≡ pW,Y (w,y)

pW (w)
,from whih we obtain the Bayes law

pW |Y (w|y) =
pY |W (y|w)pW (w)

pY (y)
. (5)The onditional expetation is de�ned onsequently as

E (w|y) =

∫

Rn

wpW |Y (w|y)dw.From the previous relations, it follows that
E (w) =

∫

Rn

wpW (w)dw =

∫

Rn

∫

Rn

wpW,Y (w,y)dydw

∫

Rn



∫

Rn

wpW |Y dw


 pY dy = E (E (w|y)) .2.2 Minimum Variane and other In-Out estimatorsLet us onsider a �rst example of estimator ŵ of the random vetor w upondata z in the �steady� ase - Fig. 3. Let e ≡ ŵ −w be the estimate error, andde�ne

J(e) = eT Ee, (6)3The hoie of Gaussian distribution for white noise is reasonable, but arbitrary. We ouldhave onsidered other distributions for zero-mean, unorrelated omponents.12



where E is a symmetri positive de�nite (s.p.d.) matrix. We assume J to be themeasure of the estimate error or �risk�. Here, ŵ depends on z and w, and it isregarded as a stohasti proess. With our de�nition of risk we may introduethe funtional J (ŵ)≡ E (J(e)) =

∫

Rn

J(e) pW dw and in order to minimize therisk we refer to the estimator
ŵ = arg minJ (ŵ) ≡

∫

Rn

∫

Rn

J(e) pW,Z(w, z)dzdw.By exploiting the properties of p.d.f. realled above, we rewrite the risk tominimize as
J (ŵ) =

∫

Rn



∫

Rn

eT Ee pW |Zdw


 pZdz =

∫

Rn

J (ŵ|z) pZdz,for
J (ŵ|z) ≡

∫

Rn

(w − ŵ)T E(w − ŵ)pW |Zdw.Sine the outer integral in the de�nition of the ost J (ŵ) does not involve ŵand pZ ≥ 0, we minimize the risk by minimizing J (ŵ|z).Reall that for a generi vetor x and a symmetri matrix A of proper size[60℄, we have ∂xT Ax

∂x
= 2Ax. Then the minimization of J (ŵ|z) leads to

0 =
∂J (ŵ|z)
∂ŵ

= −2E

∫

Rn

(w − ŵ)pW |Zdw.Independently of E, we have the equation
ŵ

∫

Rn

pW |Zdw =

∫

Rn

w pW |Zdw = E (w|z) .Sine ∫
Rn

pW |Z(w|z)dw = 1, we have
ŵ = E (w|z) . (7)This is alled minimum variane estimator, hereafter denoted by ŵMV . An im-portant property of this estimator is that it is unbiased, i.e. E (e) = E (ŵMV −w) =

0. In fat, we have
E (ŵMV ) =

∫

Rn

ŵMV pZdz =

∫

Rn

∫

Rn

wpW |Z dw pzdz =

∫

Rn

∫

Rn

w p(w, z) dwdz = E (w) .13



It is also possible to verify that ∂2J (ŵMV )

∂ŵ2
= 2E > 0, so ŵMV is indeed aminimum [68℄.2.2.1 Maximum a posteriori estimatorOther estimators may be omputed with a similar approah but referring to adi�erent risk J (ŵ),

J (ŵ) = E (J(e)) =

∫

Rn

J(e)pWdw =

∫

Rn

∫

Rn

J(e)pW,Zdwdzfor di�erent hoies for J(·). For instane, another possible hoie is the �uni-form� (thresholding) ost:
J(e) =

{
0 for ‖e‖∞ < ε
1

2ε
for ‖e‖∞ ≥ ε

. ,where ‖ · ‖∞ is the maximum norm. With this ost funtion, we obtain
J (ŵ) =

∫

Rn

∫

Rn

J(e) pW |Z dwpZdz =

∫

Rn

1

2ε




∫

Rn\{ŵ+[−ε,ε]n}

pW |Zdw


 pZdz.By de�nition

∫

Rn\{ŵ+[−ε,ε]n}

pW |Zdw = 1−
∫

ŵ+[−ε,ε]n

pW |Zdwso that
J (ŵ) =

1

2ε

∫

Rn

pZdz−
1

2ε

∫

Rn

∫

ŵ+[−ε,ε]n

pW |ZdwpZdz.The �rst term on the right hand side is onstant and does not a�et the min-imization proess. Let us fous on the seond term. The mean value theoremstates that there exists a ξ ∈ x+ [−ε, ε] suh that
1

2ε

x+ε∫

x−ε

f(χ)dχ =
1

2ε
2εf(ξ) = f(ξ).For ε→ 0 we have 1

2ε

x+ε∫

x−ε

f(χ)dχ = f(x). In partiular, in our ase, we obtain14



lim
ε→0


− 1

2ε

∫

ŵ+[−ε,ε]n

pW |Zdw


 = −pW |Z(ŵ|z).In other terms, the ost funtion to quantify the risk seleted here leads tothe maximization of the a posteriori p.d.f. pW |Z . This estimator, suh that

∂pW |Z

∂w
= 0, is denoted v̂MAP and it is not neessarily unbiased.ExampleIn this example, we assume that the salar variables w and z are statistiallyrelated by having a joint Gaussian distribution G([0, 0],Λ). The two variablesfeatures a Gaussian marginal p.d.f. with mean and variane 0, λ2

w and 0, λ2
zrespetively.As for the onditional p.d.f. we have

pW |Z =
pWZ(w, z)

pZ

=

√
λ2

z√
2π|Λ|

exp

(
−1

2
[w z]T Λ−1[w z] +

z2

2λ2
z

)
.De�ne λ2 ≡ λ2

w −
λ2

wz

λ2
z

. Then, by diret inspetion, one veri�es that (w|z) is arandom vetor with Gaussian distribution G(
λwz

λ2
z

z, λ2).Beause for Gaussian distributions, the value where the maximum is ahievedorresponds to the mean, we have that
ŵMV = ŵMAP =

λwz

λ2
z

z.Using the de�nition of orrelation oe�ient given in (4), we have
ŵMV = ŵMAP = λ2

wρwzz.From here, we an hek the onsisteny of our estimate with intuitive sit-uations: if w is not orrelated to z, the estimate is 0, whih is the mean valueof the marginal p.d.f. of w. In this ase, the knowledge of z does not bring anyadvantage and the best estimate remains the a priori expeted value of w.2.2.2 Maximum Likelihood estimateAnother reasonable approah is to ompute the estimator ŵ as the value thatmaximizes the probability of measuring z. In other terms, we get ŵML =
argmax pZ|W (z|w) or

ŵML :
∂pZ|W

∂w
|ŵML

= 0.The p.d.f. pZ|W is a measure of the likelihood that z is measured, so this esti-mate is alled maximum likelihood. 15



It is interesting to establish a relation between this estimator and the previ-ous ones. We do this for the ase of Gaussian variables, even though the sameonlusion holds in the general ase.We know that estimator ŵMAP is suh that ∂pW |Z

∂w
|ŵMAP

= 0.Then, thanks to the Bayes Theorem, we have
pW |Z =

pWZ

pZ

=
pZ|W pW

pZ

.Maximizing pW |Z is equivalent to the maximization of its logarithm, so we have
∂pW |Z

∂w
= 0 ⇒ ∂ ln pW |Z

∂w
=
∂ ln

pZ|W pW

pZ

∂w
= 0 ⇒

∂ ln pZ|W

∂w
+
∂ ln pW

∂w
− ∂ ln pZ

∂w
=
∂ ln pZ|W

∂w
+
∂ ln pW

∂w
= 0sine pZ is independent of w.Now, for a Gaussian variable, suh that

pW =
1√

(2π)n|Λ|
exp

(
−1

2
(w − E (w))T Λ−1(w − E (w))

)
,we have

∂ ln pW

∂w
= −1

2

∂(w − E (w))T Λ−1(w − E (w))

∂w
= −Λ−1(w − E (w)).When the variane of a random variable is large, this means that our a prioriknowledge is not trustworthy. The limit ase of Λ−1 → 0 orresponds to a totallak of a priori information on w. Notie that in this ondition

∂ ln pW |Z

∂w
=
∂ ln pZ|W

∂w
+
∂ ln pW

∂w

(Λ−1=0)
=

∂ ln pZ|W

∂wso that the maximization of likelihood leads to the MAP estimator. We onludetherefore that v̂ML an be onsidered the estimator in the �limit� ase, whenwe do not have an a priori distribution for w, i.e. when we assume that thevariane of w is approahing ∞.ExampleLet us onsider two salar variables w and z with
z = Hw + ν (8)where w ∼ G(0, λ2

w), and the noise ν ∼ G(0, r2) is assumed to be unorrelatedwith w. Then it is possible to verify that z ∼ G(0, H2λ2
w + r2) and that w and

z have a joint Gaussian distribution with λwz = Hλ2
w. In fat

E (z) = HE (w) + E (ν) = 0
λ2

z = E
(
z2
)

= E
(
H2w2 + 2Hwν + ν2

)
= H2λ2

w + 0 + r2

λwz = E (wz) = E
(
Hw2 + νw

)
= Hλ2

w.16



Using the results of the previous example, in this ase we an ompute
ŵMV = ŵMAP =

Hλ2
w

H2λ2
w + r2

z =
z

H

H2λ2
w

H2λ2
w + r2

=
z

H

(
1− r2

λ2
z

)
.Using again the result of the previous example, we �nd that pZ|W =
pWZ

pZ

isa Gaussian distribution with mean λwz

λ2
w

w. The maximum of pZ|W is obtain inorrespondene of its mean, i.e. for z =
λwz

λ2
w

w or, equivalently, for w =
λ2

w

λwz

z.Therefore the ML estimator reads
ŵML =

λ2
w

λwz

z =
z

H
.As expeted, lim

λw→∞
ŵMAP = ŵML. The estimators oinide also when

r2 = 0, and return z/H . In fat, in this ase the noise is 0, so the estimatorsgives the deterministi relation (obtained by (8) for ν = 0) w = z/H .ExampleAssume now that w and z are n-dimensional vetors, w ∼ G(µ,Λ) and
z = Hw + νwhere ν ∼ G(0,R) is the noise independent of w. H is alled observation matrix.It is possible to prove that z ∼ G(µz,Λz,) with

µz = E (Hw + ν) = Hµ

Λz = E
(
(z− µz)

T (z− µz)
)

= HΛHT + R.For the onditional probabilities, we �nd that
pw|z =

√
|Λz|√

(2π)n|Λ||R|
exp(−1

2
J)where J = (w − ŵ)T Λ−1

e (w − ŵ) and Λ−1
e = Λ−1 + HT R−1H and

ŵMV ≡ E
(
pw|z

)
= Λe

(
HT R−1z + Λ−1µ

)
= ŵMAP .Moreover, we �nd that pz|w has average Hw and Λz|w = R. If we maximizethe likelihood, we obtain

ŵML = H−1z.Again, it is possible to verify that the MV/MAP estimator is unbiased andthe ML estimator is obtained by the MAP, when Λ−1 → 0.Remark 2.1 Contrarily to what previous examples may suggest, the oini-dene of MV and MAP is not true in general.17



2.3 The Kalman Filter for Linear problemsKalman �lter [48℄ is one of the most important algorithms of the 20th entury,with an exeptional number of appliations, ranging from robotis to mathe-matial �nane. It is onerned with the ase of a dynamial system, whenthe variable to be estimated is supposed to be the solution of a time-dependentlinear system. Sine for the biomedial appliations of interest here, dynamisis in general given by the time disretization of a PDE (as we will see later on),here we onsider a time disrete ase, even though the time-ontinuous ase anbe investigated as well. The time index will be denoted by k, and we representthe dynamis of interest (indexed by k) of the system as
u(k) = Ak−1u

(k−1) + b(k−1) (9)where b(k−1) is a Gaussian white noise in time representing the model error,i.e. b(k) ∼ G(0,Qk), and the errors are not orrelated in time, i.e.
E
(
b(k)b(l),T

)
= Qkδkl.Here δkl is the Kroneker delta (= 1 if k = l, 0 elsewhere).The measurement proess is denoted by

z(k) = Hku
(k) + ν(k), (10)where ν(·) is a Gaussian white noise with variane matrix Rk and assumedunorrelated with b(·).In absene of observations of z(k), a natural predition is simply the oneobtained by dropping the noise in the system. In other terms a �rst reasonablepredition would be

u(k)
p = Ak−1u

(k−1)
∗ . (11)For the moment being, we assume that u(k−1)

∗ is the �true� state u(k−1).This is a deterministi foreast that we take as starting point of our proba-bilisti measure. The fundamental questions now are: how the measure z(k) animprove this estimate? How an we redue the error between the state and itspredition?As an arbitrary but reasonable hoie, we postulate a orretion step whihis a linear ombination between the predition u
(k)
p and the data at the sameinstant z(k),

u(k)
c = Lku

(k)
p + Kkz

(k).The �rst term on the right hand side measures how muh the deterministimodel is trustworthy, the latter de�nes the gain due to the observation. Theweighting matries Lk, Kk need to be determined. Let us introdue the estimateerrors
e(k)

p = u(k)
p − u(k), e(k)

c = u(k)
c − u(k).Notie that e(k)

p = −b(k−1) by onstrution (for u(k−1)
∗ = u(k−1)).18



We have then
e
(k)
c = Lku

(k)
p + Kkz

(k) − Lku
(k) + Lku

(k) − u(k) =

Lke
(k)
p + Kkν(k) + (Lk + KkHk − I)u(k).

(12)In order to have an unbiased orretion, i.e. E (e(k)
c

)
= 0, we write

E
(
e
(k)
c

)
= LkE

(
e
(k)
p

)
+ KkE

(
ν(k)

)
+ (Lk + KkHk − I) E

(
u(k)

)
=

−LkE
(
b(k−1)

)
+ KkE

(
ν(k)

)
+ (Lk + KkHk − I) E

(
u(k)

)
= 0.

(13)Beause we assume that the noise has null mean, the �rst two terms are zero.To have an unbiased estimate we need to fore
Lk + KkHk − I = 0 ⇒ Lk = I−KkHk.With this position, we have

u(k)
c = u(k)

p + Kk(z(k) −Hku
(k)
p ).This representation is extremely expressive:1. the �rst term on the right hand side u

(k)
p is the deterministi estimatepurely based on the model, with no observations;2. z(k) − Hku

(k)
p is the innovation, i.e. what is new in z(k) and that is notpreditable by u

(k)
p ;3. Kk, to be determined, is alled the gain matrix, sine it weighs the im-provement brought to the deterministi estimate by the measures.The two estimation errors are then related by the following equation

e
(k)
c = u

(k)
c − u(k) = u

(k)
p − u(k) + Kk(Hku

(k) + ν(k) −Hku
(k)
p ) =

(I−KkHk) e
(k)
p + Kkν(k).

(14)However, in the sequential proess we do not know the true state u(k−1) in(11). We replae u(k−1)
∗ with what we onsider sequentially our best estimationof the state, whih is u(k−1)

c . The reursive predition step reads therefore
u(k)

p = Ak−1u
(k−1)
c . (15)From this equation, we derive another relation for the errors

e
(k)
p = u

(k)
p − u(k) = Ak−1u

(k−1)
c − u(k) =

Ak−1

(
u

(k−1)
c − u(k−1)

)
− b(k−1) = Ak−1e

(k−1)
c − b(k−1) (16)giving an evolution equation for the deterministi foreast error.19



Remark 2.2 In this analysis, we are onsidering one-step predition estimates,where the deterministi estimate is obtained by the previous step (15). We mayonsider also q-step preditions, obtained by dropping the noise at eah step,
u(k)

p =

q∏

j=1

Ak−ju
(k−q)
c .For the sake of simpliity, here we develop the ase q = 1 and refer the interestedreader to [68℄.Let us ompute the variane matrix of e(k)

p and e
(k)
c , i.e.

Λ(k)
p ≡ E

(
e(k)

p e(k,T )
p

)
, Λ(k)

c ≡ E
(
e(k)

c e(k,T )
c

)
. (17)From (16), we have

e
(k)
p e

(k),T
p = Ak−1e

(k−1)
c e

(k−1),T
c AT

k−1 + b(k−1)b(k−1),T +

Ak−1e
(k−1)
c b(k−1),T + b(k−1)e

(k−1),T
c AT

k−1,leading to
Λ

(k)
p = Ak−1Λ

(k−1)
c AT

k−1 + Qk−1 (18)beause b(k−1) has no orrelation with e
(k−1)
c .Similarly, from (14) we obtain

Λ
(k)
c = (I−KkHk)Λ

(k)
p (I−KkHk)T + KkRkKT

k . (19)usually alled Joseph formula.2.3.1 The Kalman gain matrixFinally we determine the gain matrix. We will follow an optimality riterion.Aording to the (weighted) minimal variane approah, we ould minimize
E
(
e
(k,T )
c Eke

(k)
c

), where Ek is a s.p.d. weight matrix. Note that
e
(k),T
c Eke

(k)
c = Tr(Eke

(k)
c e

(k),T
c ) ⇒

E
(
e
(k),T
c Eke

(k)
c

)
= E

(
Tr(Eke

(k)
c e

(k),T
c )

)
= Tr(EkΛ

(k)
c ).Using the following properties of the trae:

Tr(A + B) = Tr(A) + Tr(B), Tr(AB) = Tr(AT BT ),we get that
Tr(EkΛ(k)

c ) = Tr(EkΛ(k)
p )−2Tr(EkΛ(k)

p HT
k KT

k )+Tr(EkKk(HkΛ(k)
p HT

k +Rk)KT
k ).20



Moreover, we reall that [60℄ for a generi matrix A and symmetri matries Band C we have
∂Tr(AXT )

∂X
= A,

∂Tr(BXCXT )

∂X
= 2BCX.From these relations we obtain that the gain matrix Kk that minimizes thevariane is suh that .

∂E
(
e
(k,T )
c Eke

(k)
c

)

∂Kk

= −2EkΛ
(k)
p HT

k + 2EkKk(HkΛ(k)
p HT

k + Rk) = 0

⇒ K∗
k = Λ

(k)
p HT

k

(
HkΛ

(k)
p HT

k + Rk

)−1

.From the Joseph formula we have
Λ(k)

c = (I−KkHk)Λ(k)
p − Λ(k)

p HT
k KT

k + Kk(HkΛ(k)
p HT

k + Rk)KT
k .By using K∗

k in this formula, the last two terms anel out and we are left with
Λ(k)

c = (I−KkHk) Λ(k)
p .The matrix K∗

k is the so-alled Kalman gain matrix.The entire estimate proess may be summarized as follows.1. Predition(a) u
(k)
p = Ak−1u

(k−1)
c(b) Λ

(k)
p = Ak−1Λ

(k−1)
c AT

k−1 + Qk−1.2. CorretionKalman gain: K∗
k = Λ

(k)
p HT

k

(
HkΛ

(k)
p HT

k + Rk

)−1

.(a) State estimate:
u(k)

c = u(k)
p + K∗

k(z(k) −Hku
(k)
p ). (20)(b) Covariane estimate:

Λ(k)
c = (I−K∗

kHk) Λ(k)
p . (21)This yields the MV Kalman �lter estimation for a time-disrete system.When we want to estimate the state of the system by merging the mathematialmodel and the available measure, we refer to u

(k)
c . When we want to predit theevolution of the state, using all the information we have at time tk, we refer tothe predition4 step u

(k+1)
p = Aku

(k)
c .4The third problem addressed in the Introdution, the identi�ation of the system will beaddressed later on. 21



Remark 2.3 In many ases, the dynamial system features a deterministi in-put f (k), so that (9) modi�es in
u(k) = Ak−1u

(k−1) + Ck−1f
(k−1) + b(k−1). (22)This re�ets in a hange of the predition step, that reads

u(k)
p = Ak−1u

(k−1)
c + Ck−1f

(k−1).All the other steps drawn above remain unhanged.2.3.2 Properties of the Kalman �lterOrthogonality of the estimate/predition and the estimate/preditionerror Following an indution argument, it is possible to prove that when weselet the Kalman gain matrix to ompute the estimate, then
E
(
u(k)

c e(k),T
c

)
= 0. (23)With this relation, it is possible to prove a similar relation between the preditionand the predition error

E
(
u(k+1)

p e(k+1),T
p

)
= E

(
Aku

(k)
c

(
Ake

(k)
c

)T
)

= 0. (24)These relations have an interesting geometrial interpretation that provide ajusti�ation to the �optimal� nature of Kalman estimate/predition. The orre-lation operator E ((·)(·)T
) is a salar produt. For this reason, the two equations(23) and (24) state that the estimate and the predition are orthogonal to theirrespetive errors. This is the feature of optimal approximations by projetion.As a matter of fat, we an onlude that among all the possible estimates gen-erated by any possible gain matries, Kalman provides the optimal one in themetri de�ned by the orrelation salar produt (see Fig. 2.3.2).Innovation As we pointed out, the innovation

z(k) −Hku
(k)
p = z(k) −HkAku

(k−1)
cplays an important role in understanding how the Kalman estimate works.When we do not have other a priori information, from Ak and u

(k−1)
c the bestwe an do is- to predit the state at k as u(k)

p = Aku
(k−1)
c ;- to guess aordingly an �expeted measure� HkAku

(k−1)
c .This is the part of knowledge in the measure we ould extrat from the state atthe previous time step, or from the past. We do expet that z(k) is adding new22



information. The novel part of the information added by the measure is exatlythe innovation z(k) −Hku
(k)
p .Notie that

z(k) −Hku
(k)
p = Hku

(k) + ν(k) −Hku
(k)
p = ν(k) −Hke

(k)
p ,onsequently

E
(
z(k) −Hku

(k)
p

)
= E

(
ν(k)

)
−HkE

(
e(k)

p

)
= 0.In addition, we ompute the variane of the innovation.

E
(
(z(k) −Hku

(k)
p )(z(k) −Hku

(k)
p )T

)
=

E
(
(ν(k) −Hke

(k)
p )(ν(k) −Hke

(k)
p )T

)
= Rk + HkΛ

(k)
p HT

kbeause the noise at k is not orrelated to e
(k)
p = Ak(u

(k)
c − u(k−1))−b(k−1).It is also possible to prove [68℄ that for j ≥ 1

E
(
(z(k) −Hku

(k)
p )(z(k−j) −Hku

(k−j)
p )T

)
= 0.This means that the innovation at time k has no orrelation with the innovationat the previous time steps, so that we an onlude that the innovation is a whiteproess.Also in this ase, we may give a geometrial interpretation to this equation,onluding that the splitting z(k) = Predicted measure + Innovation is atuallyan orthogonal deomposition. Sine the predited measure Hku

(k)
p dependsentirely on the past, we say that innovation is orthogonal to the past (see Fig.2.3.2).Variane redution Let us establish a relation between the variane of u(k)

pand of u(k)
c . We show that the Kalman orretion in fat redues the varianeof the estimate. Let us introdue an auxiliary variable that we all pseudo-observation, i.e. an observation based on the predition of the measure addedby noise,

z(k)
po = Hku

(k)
p + ν(k).It is possible to verify that

Λ
(k)
po = HkΛ

(k)
p HT

k + Rk, Λ
(k)
p,po := E

(
u

(k)
p z

(k),T
po

)
= Λ

(k)
p HT

k .With this notation, we may rewrite the orretion step of the Kalman �lter asfollows,
K∗

k = Λ(k)
p,po(Λ

(k)
po )−1, Λ(k)

c = Λ(k)
p − Λ(k)

p,po(Λ
(k)
po )−1Λ(k),T

p,po .Sine Λ
(k)
po is s.p.d., we have that Λ

(k)
p − Λ

(k)
c is positive. This relation outlinesthe redution of the variane indued by the orretion step with respet to thevariane of the predition. 23



Innovation
z(k)

Hku
(k)
p

u
(k)
c

u(k)

e
(k)
c

Figure 5: The innovation is orthogonal to the past (left) aording to the or-relation salar produt. The estimate error is orthogonal to the estimate itself(right) aording to the orrelation salar produt, that quali�es the Kalmanorretion as the orthogonal projetion of the state to be estimated on the sub-spae of possible estimations obtained for di�erent gain matries.Reursive formula for the variane equations, Riati equations Letus eliminate Λ
(k)
c from the equations of the Kalman �lter, in partiular weompute the variane Λ

(k+1)
p as funtion of Λ

(k)
c and Λ

(k)
p . We get

Λ
(k+1)
p = AkΛ

(k)
c AT

k + Qk =

Ak(Λ
(k)
p −KkHkΛ

(k)
p )AT

k + Qk =

AkΛ
(k)
p AT

k + Qk −AkΛ
(k)
p HT

k (HkΛ
(k)
p HT

k + Rk)−1HkΛ
(k)
p AT

k .(25)In addition, by using the well know Sherman-Morrison-Woodbury formula[35℄, we an write also the reursive variane matrix equation of the Kalmanestimate
Λ

(k)
c = (I−K∗

kHk) Λ
(k)
p =

(
(Λ

(k)
p )−1 + HT

k R−1
k Hk

)−1

=
((

Ak−1Λ
(k−1)
c AT

k−1 + Qk−1

)−1

+ HT
k R−1

k Hk

)−1

.
(26)Let us assume that the matries A,H,R,Q do not depend on k. The latterequation in (25) reads then

Λ(k+1)
p = AΛ(k)

p AT + Q−AΛ(k)
p HT (HΛ(k)

p HT + R)−1HΛ(k)
p AT .This is alled Di�erene Riati Equation (DRE). A reasonable question relatedto this equation for time-independent dynamis refers to the existene of astationary variane matrix. This is a variane matrix suh that

Λ(k+1)
p = Λ(k)

p = Λp.The latter an be learly obtained as a �xed point of the DRE. This leads tosolve the so alled Algebrai Riati Equation (ARE)
Λp = AΛpA

T + Q−AΛpH
T (HΛpH

T + R)−1HΛpA
T .24



This equation has been largely investigated by several authors [1, 46, 51℄,to determine under whih onditions the solution ΛARE exists and it an beomputed as the asymptoti limit of the orresponding DRE. In partiular, letus assume that the dynamial system is asymptotially stable and onverges toa steady solution. Clearly a good preditor is expeted to follow the systemdynamis, onverging to the asymptoti estimate. Correspondingly, in this asewe expet Λ
(k)
p to onverge to the asymptoti matrix ΛARE . Otherwise, ourpreditor would be unable to follow the system dynamis onverging to thestationary solution. As a matter of fat, it is possible to prove that if the systemis stable, then the preditor is stable and its variane gets loser to the solutionof the assoiated ARE (see e.g. [46℄ for a preise statement of the Theorem).In addition, we point out that this solution an be interpreted as an �approx-imate� Kalman �lter, where the matrix Λ

(k)
p is replaed by ΛARE to save theomputational osts of omputing Λ

(k)
p at eah step. This provides a stationary�lter whih is learly sub-optimal, sine the assoiated error is not orthogonalto the estimate. However, it may be omputationally onvenient.Another possible use of ΛARE is to provide a bound to the variane of the�optimal ase� when we apply the Kalman �lter with no approximations.ExampleLet us onsider the salar ase, with

u(k) = u(k−1) (A = 1, b = 0)
z(k) = u(k) + ν(k) (H = 1, ν ∼ G(0, 1)).Assume also that the initial data u(1) ∼ G(µ, 1). Set u(1)

p = µ. Then, theKalman �lter formulas read
u

(k)
p = u
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c , λ

(k),2
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c
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(k),2
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(k),2
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u
(k)
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(k)
p +

λ
(k),2
p

λ
(k),2
p + 1

(z(k) − u(k)
p ) =

1

λ
(k),2
p + 1

u(k)
p +

λ
(k),2
p

λ
(k),2
p + 1

z(k)

λ
(k),2
c =

λ
(k),2
p

λ
(k),2
p + 1

=
λ

(k−1),2
c

λ
(k−1),2
c + 1

.We have therefore
u(1)

p = µ, λ(1)
p = 1, K1 =

1

2
, u(1)

c =
µ+ z(1)

2
= u(2)

p .Notie that the predition at k = 2 is just the sample average of the �past� andthe new data. Similarly we obtain at a generi step k
uk+1

p = uk
c =

µ+
∑k

j=1 z
(j)

k + 1
.25



Atually, we have the arithmeti average of the available data at tk, that issomehow intuitively expeted. Moreover, we have the reursive formula
λ(k+1),2

p =
λ

(k),2
p

λ
(k),2
p + 1

, with λ(1)
p = 1.By indution one an hek that λ(k),2

p =
1

k
. Consequently we have that1. lim

k→∞
λ

(k)
p = 0, i.e. the predition is asymptotially exat; similarly, theestimate is asymptotially exat;2. the ARE λ2 = λ2/(1 + λ2) has only one solution, that is 0;3. the Kalman �lter is asymptotially stable, whereas the dynami system isnot asymptotially stable.This example provides the ase of an asymptotially stable estimator evenwhen the dynamial system is not stable. As we have pointed out, the �reverse�situation (system is stable, estimator is unstable) is not possible: when thesystem is stable, the preditor is automatially stable.An alternative look at the Kalman �lter The Kalman �lter an be ob-tained in di�erent ways. Among the others, in partiular here we mention areent approah presented in [42℄, where the algorithm is the result of an ap-pliation of the Newton root �nding method with an appropriate initial guess.Beyond its intrinsi interest, this approah is atually oriented to extension tononlinear systems in the form of an appliation the Gauss-Newton method.More preisely, assuming to have the exat initial state u(0), let us onsiderthe predition-mismath funtional
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1

2
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(j−1)‖2

Q−1
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+
1
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‖z(j) −Hju
(i)‖2

R−1
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.and the orresponding one for the estimate
Jk,c = Jk,p +

1

2
‖z(k) −Hku

(k)‖2
R−1

k

.The latter has the �natural� reursive formulation
Jk,c = Jk−1,c +

1

2
‖u(k) −Ak−1u

(k−1)‖2
Q−1

k

+
1

2
‖z(k) −Hku

(k)‖2
R−1

k

.We estimate u(k) as the arg min of Jk,c. When solving ∇Jk,c = 0, we apply theNewton method, that reads
H (unew − uold) = −∇Jk,c(uold) (27)26



where H is the Hessian matrix assoiated to Jk,c. By seleting uold = u
(k)
p =

Ak−1u
(k−1)
c , it is possible to prove [42℄ that the Kalman estimate u

(k)
c is thesolution unew of (27). In the ase of a linear system, unew = u

(k)
c minimizes

Jk,c. In fat, Newton method onverges in one iteration when applied to linearequations.2.3.3 Computational issues assoiated with the Kalman FilterThere are several issues assoiated with pratial omputation of the Kalman�lter. Here we mention just a few.From the numerial view point the implementation of the �lter followinglosely the formulas given above has a ost of O(n3) operations at eah timeiteration, where n is the dimension of the matrix A. This ost is basiallydriven by the omputation of the variane and gain matries. For systemsoming from the disretization of partial di�erential equations, n may be afairly large number. However, the matrix is usually sparse and - as it is wellknown - this may redue signi�antly the storage requirements and the numberof operations. In addition, omputational ost may still be an issue and spei�methods for reduing the osts are mandatory. Among the others, we mentionthe replaement of the estimate ovariane matrix with the asymptoti one(when the system dynamis is time independent) obtained by solving the ARE,as pointed out above.Another omputational issue is numerial stability. In partiular, when om-puting the estimate variane matrix, equation (21) depends linearly on the om-putation error assoiated with the Kalman gain matrix K. In this respet, usingJoseph formula is bene�ial, sine numerial errors are propagated quadratially.More in general, numerial errors may lead to omputing non-positive ovarianematries. This problem an be faed by resorting to appropriate Cholesky orLDLT fatorizations of the ovariane matries that guarantee their numerialpositiveness, leading to the so-alled square root form of the �lter.2.4 Extension of the Kalman Filter to nonlinear problemsThe most relevant limitation of the Kalman �lter theory presented is that itrelies upon linearity of the dynamial system, and that Gaussian densities re-main Gaussian after linear transformations. However, in most of pratial ap-pliations, the problem to solve is nonlinear. We show an important examplehereafter (and many others later on, for the appliations relevant to the ontentsof the present book).We need therefore to �nd a way for extending the method to nonlinearases, by properly approximating the proedures. We see methods based onboth linearization as well as sampling.
27



2.4.1 Parameter identi�ation via Kalman �lterConsider a problem represented by a dynamial system with some parametersthat we want to identify. We de�ned this as an identi�ation problem. Apossible approah to the problem is to add the parameter to the list of statevariables and then to perform an estimation proedure. In general, this leadsto a nonlinear dynamis. This approah is alled state augmentation tehnique.We illustrate this in a ase with a linear dynamis for the state variable u
u(k) = A(ϑ)u(k−1) + b(k)

z(k) = H(ϑ)u(k) + ν(k).
(28)We assume for simpliity that ϑ is a time independent stohasti variable, sowe have

ϑ(k) = ϑ(k−1) + ε(k)with ε(k) ∼ G(0, sk), unorrelated with other soures of noise. We augment thelist of state variables of the parameter, so we have
v(k) =

[
u(k)

ϑ(k)

]
⇒ v(k) =

[
A(ϑ(k−1))u(k−1)

ϑ(k−1)

]
+

[
b(k)

ε(k)

]
, (29)with

z(k) = H(ϑ(k))u(k) + ν(k).In general, this is now a nonlinear augmented system so that the Kalman �ltermethod presented above annot be applied.2.4.2 The Extended Kalman FilterThe Extended Kalman Filter (EKF) is the most immediate approah to extendthe �lter based on the linearization of both the system dynamis and of theobservation proess. Let us onsider the nonlinear dynami system
{

u(k) = A(u(k−1)) + b(k)

z(k) = H(u(k)) + ν(k).We still follow the minimal variane approah and introdue the tangent oper-ators, i.e. the Jaobian matries
A′(·) =

∂A(·)
∂u

, H′(·) =
∂H(·)
∂u

.After linearization, we get an extension of the Kalman �lter. This reads1. Predition(a) u
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c ),(b) Λ
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2. CorretionKalman gain:
Kk = Λ
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p )Λ

(k)
p .As to be expeted, most of the analysis holding for the linear ase annot betrivially extended to this ase, sine the ovariane matries assoiated with theerrors depend on the linearization proedure. In partiular, they depend on theset of observations so they are a random proess. In addition, they are only anapproximation of the error ovariane and this leads to biased state estimates(E (e(k)

c

)
6= 0). Another drawbak is the omputational ost assoiated with thetangent operators, that for problems oming from the disretization of partialdi�erential equations may be fairly expensive.Nevertheless, we address the ase of parameter estimation with the EKF.EKF and parameter estimation Let us apply EKF to (29), with
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.In many ases, H is independent of ϑ so that the last entry in H′(v) is zero. Weassume that this is the ase hereafter. In this form, the parameter estimation isperformed following the EKF steps. . The ovariane matrix of the augmentedstatus will be

Λaugm,· ≡
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2. CorretionKalman gain:
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 .It is worth noting that in this way we have a sort of adaptive �ltering, sinethe improvement of the knowledge of the parameter a�ets the quality of thestate estimate in a self-learning proess.As we have pointed out in the Introdution, there are several ways to performparameter estimation (see e.g. [2, 3℄), this one is just an example. In Setion4.2 we present an example relevant to �uid-struture interation. Sine EKFsu�ers from the omputation of the tangent operators, this an be avoided byresorting to a di�erent extension of the Kalman Filter, that we introdue in thenext Setion.Remark 2.4 EKF an be regarded as the result of the appliation of one iter-ation of the Gauss-Newton method for the minimization of a suitable mismathfuntional, as we have seen for the linear ase. For more details, see [42℄2.5 The Unsented Kalman Filter (UKF)As pointed out above, errors assoiated with the linearization of EKF lead ingeneral to sub-optimal performanes. In the UKF [45℄, the basi idea is to ap-proximate the evolution of the nonlinear dynami system not by linearizationbut by deterministi sampling, following the so-alled unsented transformation(UT). The basi idea of UT is that �it is easier to approximate a Gaussiandistribution than it is to approximate an arbitrary nonlinear funtion or trans-formation� [44℄. For this reason, the nonlinear dynamis in UKF is statistiallyapproximated by mean and ovariane of samples suitably seleted for the statevariable to be estimated.For instane, suppose to have a salar Gaussian random variable u(k) withmean µ and variane λ2. At the �rst step we determine two samples of u(k), as

s1,2 = µ± λ. If we need to approximate a nonlinear evolution u(k+1) = f(u(k)),we ompute the samples fi ≡ f(si) and take
E
(
u(k+1)

)
≈ w1f1 + w2f2 ≡ f,

E
((
f(u(k))− E

(
f(u(k))

))2) ≈ w1(f1 − f)2 + w2(f2 − f)2+,30



where wi are suitable weighting oe�ients.The seletion of the sampling points (alled σ-points) is learly of paramountimportane and an be done in di�erent ways. In general [73, 45, 44℄, a anonialhoie for a state variable u(k) of size n, with Gaussian distribution with mean
E
(
u(k)

) and ovariane matrix Λ reads
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2
,

i = 1, 2, . . . n,where κ is a real saling fator and (√(n+ κ)Λ
)

i
is the i-th row of the matrix

√
(n+ κ)Λ. This an be omputed by a Cholesky fatorization of the s.p.d.matrix. Other riteria for sampling an be however pursued [6℄.The UKF will eventually onsist of a sampling step, followed by the �Kalman-like� predition and orretion steps.1. Sampling � Let C(·) denote the Cholesky deomposition of a s.p.d. ma-trix. We take
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p,po .Examples of this method an be found in [73℄. UKF dual estimation is inpartiular the identi�ation of parameters of the model simultaneous to31



the state estimation, similarly to what we have illustrated for the EKF.In this respet, we will see an example in Setion 4.2. A smart imple-mentation of the methods may be neessary for problems oming fromthe disretization of partial di�erential equations, using for example theso-alled Fatorized UKF. In partiular, for parameter estimation, om-putational ost an be redued by assuming that unertainty a�ets onlythe parameter of interest and not the entire state. For more details, see[6, 54℄.3 Deterministi variational assimilation methodsIn this Setion, we onsider a di�erent approah for data assimilation, based ona deterministi approah. We do not neessarily rely upon a priori statistialknowledge of the proess and we formulate the problem as a minimization pro-edure, where the mathematial paradigm ats as a onstraint. For instane,referring to Fig. 3, with an eduated guess we an deide a funtional form for
w and then �t this form with the measures. In other words we �nd w belongingto some lass of funtions V suh that

dist(z,Observation(w)) ≤ dist(z,Observation(v))for all v ∈ V , where Observation(v) is the appliation of the mathematial repre-sentation of the measure proess to v, to be ompared with the �real� measure z.If the measures are trustworthy, we ould derive a model for apturing exatlythe data pursuing an interpolation approah. In general measures are noisy andwe resort to a Least Squares (LS) proedure, so that the model �ts the data in a�weaker� sense. Notie that the de�nition of the distane is somehow arbitrary.For instane it ould inlude an a priori knowledge of the loation of data moretrustworthy than others by means of proper oe�ients that give more relevaneto these data.In the general ase of interest for our appliations when we have a dynamialsystem evolving, we an reast the assimilation proedure as a ontrol problem.In a very abstrat setting, we may list the ingredients of this approah as follows(see Fig. 6).A mathematial model desribing the dynamis of interest for the variablesor physial quantities desribing the state of the system we are interestedin. In our problems, this model or paradigm is given by a system ofpartial di�erential equations and, more preisely, a model desribing �uid-struture interation. In this ase, the state variables are represented bythe veloity, the pressure of the �uid and the displaement of the struture.A set of observations or measurements of the state variables or, more ingeneral, of a funtion of the state.A funtional J to be minimized. In general, this is the disrepany betweenthe results obtained by the mathematial (numerial) model and the avail-able data. 32



k = k + 1

System Dynamics

Input u(k+1)

Output −

+

Control Controllability
z(k+1)

Noisem

Control VariableFigure 6: Possible approahes for the estimate with a system dynamis: herewe do not use stohasti knowledge and we refer to the onept of ontrolla-bility: the estimate is reformulated as a ontrol proess.A ontrol variable (CV), whih is the variable that we tune to get the min-imization done. Its hoie strongly depends on the purpose of the assim-ilation. For instane, in identi�ation (parameter estimation) problems,the parameter(s) to be identi�ed will be the ontrol variable(s) to drivethe minimization.Solution of onstrained minimization problems with distributed models (par-tial di�erential equations) ating as onstraint has been onsidered by severalauthors [34, 69, 66, 2℄. With no laim to be exhaustive, in the present Se-tion we provide some general solution methods with simple examples, that havebeen used in appliations of interest for biomedial �uid-struture interationproblems. Sine minimization proedures resort typially to iterative methods,the solution of the system of partial di�erential equation representing the modelneeds typially to be solved several times. This rapidly leads to high ompu-tational osts, in partiular when working on unsteady problems, as the oneswe are interested in. We need to address therefore the problem of reduing theomputational osts.The key onept in this ase is ontrollability - whih is the dual onept ofobservability advoated in the previous Setion - in other terms the e�etivenessof the ontrol strongly depends on the sensitivity of the funtional to be mini-mized to the ontrol variable. More the funtional is sensitive to the ontrol andmost likely the minimization will be suessful. This is somehow a hange in theusual perspetive of solving problems in engineering. As a matter of fat, highsensitivity omes from a lak of stability or robustness and the ontrol ationis intended to reover these properties. For instane, in the ase of �uids weshould expet a ontrol to be more e�etive when the Reynolds number is high,33



beause in this ase, in general, the variable of interests are more sensible toperturbations and for this reasons they may be ontrolled.The entire Setion is largely based on [37℄, Chapters 2 and 5.3.1 Least squares estimatorsAs we have done in the previous Setion, we start with some onsiderations onthe �steady� ase, when we perform an In-Out onstrained minimization (Fig.3). Suppose that we have a sequene of measures of the same variable w ∈ R
na�eted by noise,

zi = Hiw + noisei, i = 1, 2, . . .m.We do not postulate any a priori probabilisti knowledge of the noise. Theproblem of estimating w from these measures has a lassial deterministi for-mulation given by the Least-Squares (LS) approah. More preisely, the problemis formulated as: �nd the optimal w suh that
w = argminJ ,where

J =
1

2

m∑

i=1

(zi −Hiw)T Ω−1
m (zi −Hiw)and Ω−1

m is a n× n weight matrix, whih is assumed to be s.p.d. Let
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. . .
Hm


 ∈ R
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Ωm O. . .
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then,
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2
(ẑ− Ĥmw)T Ω̂−1

m (ẑ − Ĥmw)Solving
∂J
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= 0we �nd
ĤT

mΩ̂−1
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(
ẑ− ĤmwLS

)
= 0.Thus,

wLS =
(
ĤT
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m ẑ = ΛmĤT
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m ẑ.where Λm = (ĤT
mΩ−1

m Ĥm)−1.
34



Remark 3.1 Let us onsider a reursive formulation of this problem, obtainedadjusting an available estimate (based on previous observations) when a newobservation beomes available. Let us write reursively for k > 1

Ĥk =

[
Ĥk−1

Hk

]
, ẑk =

[
ẑk−1

zk

]
.We also write

Ω̂k

−1
=

[
Ω̂−1

k−1 0

0 Ω−1
k

]
,where Ω−1

k is a s.p.d. matrix. With this notation, we may write
ĤT

k Ω̂−1
k Ĥk = ĤT

k−1Ω̂
−1
k−1Ĥk−1 + HT

k Ω−1
k Hk.or, with the (suggestive) notation introdued above

Λ−1
k = Λ−1

k−1 + HT
k Ω−1

k Hk.By the Sherman-Morrison-Woodbury formula we obtain
Λk =

(
Λ−1

k−1 + HT
k Ω−1

k Hk

)−1
= Λk−1 − Λk−1H

T
k

(
Ωk + HkΛk−1H

T
k

)−1
HkΛk−1.Let us introdue the matrix

Gk = Λk−1Hk

(
Ωk + HkΛk−1H

T
k

)−1
,so we have

Λk = (I−GkHk) Λk−1.From here, we an obtain the reursive formula (see [68℄, Setion 4.3)
ŵLS

k = ŵLS
k−1 + Gk

(
zk −Hkŵ

LS
k−1

)
,that has a formal analogy with Kalman �lter formulas, even though in this asethe dynamis is not related to the state (no dynamis ours on w) but just tothe addition of new measures. In this respet, zk − Hkŵ
LS
k−1 represents the netontent of new information brought by the new measure.When we assume that the state evolves, the mathematial equation desrib-ing the dynamis may be used as a onstraint to the minimization proess.Algebrai aspets of onstrained LS problems, with both equality and inequal-ity onstraints, have been addressed in [35℄ Chapter 12. For instane, we mayonsider the problem: �nd x suh that

x = argmin ‖Ax− b‖2, Bx = dwhere A is a m × n matrix, B is p × n, b ∈ R
m, d ∈ R

b. We assume that thematries are both full-rank. The problem an be solved by an appliation of theGeneralized Singular Value Deomposition (GSVD),
UT AX = diag(α1, α2, . . . , αn) = DA, VT BX = diag(β1, β2, . . . , βp) = DB,35



with U and V orthogonal matries and xi are the olumns of X for i = 1, 2, . . . , n.The solution to this problem then reads [35℄
x =

p∑

i=1

vT
i d

βi

xi +
n∑

i=p+1

uT
i b

αi

xi.We an onsider the assoiated unonstrained LS problem
x = arg min ‖

[
A
λB

]
x−

[
b
λd

]
‖2This an be solved with an ordinary LS proedure. Using the GSVD deompo-sition, it is possible to �nd the solution

x(λ) =

p∑

i=1

αiu
T
i b + λ2β2

i v
T
i d

α2
i + λ2β2

i

xi +

n∑

i=p+1

uT
i b

αi

xi,from whih it is promptly realized that the solution to the onstrained minimiza-tion problem x = limλ→∞ x(λ). In the next Setion, we see a similar approahfor solving unonstrained minimization when the onstraint is represented by apartial di�erential equation.3.2 Constrained minimization problems with PDEs: a sim-ple working exampleTo be onrete, we illustrate tehniques of onstrained minimization with partialdi�erential equations on the following problem. Let Ω ⊂ R
n (n = 2, 3) and ∂Ωbe denoted by Γ. We assume that u(x) is the state variable that obeys thefollowing equation

−∆u+ b · ∇u+ γu+ u3 =

K∑

i=1

αifi, in Ω (30)
γ and αi (i = 1, . . .K) are real oe�ient. α ∈ R

K is the vetor with entries αi.
b is a divergene free vetor funtion. In our appliations, b may represent theblood �ow, and u the onentration of some solute in the blood. We assume tohave a referene or desired funtion d(x) we would like to be approximated by
u(x). We assume moreover

u = 0 on ∂Ω. (31)We assume that γ and αi are unknown parameters. They need to be omputedso to drive the state variable to the referene behavior. We formulate thereforethe problem5: �nd γ,α to minimize
J (u) =

1

2

∫

Ω

(u(x)− d(x))2dx,5A similar problem has been investigated as a simpli�ed model of superondutivity in [69℄36



where u(x) solves (30), (31).Quite often J is added with a term depending expliitly on the parametersto be estimated in the form
JR(u,α, γ) = J (u) +

σ1

2
‖α‖2 +

σ2

2
‖γ − γref‖2, (32)where σ1 and σ2 are onstants and ‖ · ‖ denotes a generi (onvenient) norm; inthe remainder of the Setion we assume ‖ · ‖ = ‖ · ‖2. This modi�ation mayhave both pratial and theoretial reasons.1. First pratial motivation: when the ontrol variable orresponds to a phys-ial ontrol, like the oe�ients α, it implies a pratial ost (intended in abroad sense as the energy required to apply it). For this reason, the �size�of the ontrol annot be too large. The orretion of J with σ1

2
‖α‖2 is a�penalization� that inludes the ost of the ontrol6.2. Seond pratial motivation: in some ases, in partiular when identifyinga parameter, a �nominal� referene guess is available, based for instaneon averaging available measures or samples. This is denoted here by γrefand the real value is supposed to be �not too far� from this value. Thisleads to the term σ2

2
‖γ − γref‖2 that penalizes the di�erene respet tothe nominal value.3. Mathematial motivation: If we hypothetially onsider only the terms

JR(u, d) =
σ1

2
‖α‖2 +

σ2

2
‖γ − γref‖2, the funtion to be minimized hasexellent mathematial properties. It is atually quadrati and the mini-mization leads learly to the solution (α, γ) = (0, γref ). We infer thereforethat the term JR has a regularizing e�et on the minimization properties,balaning the bad (or not so good) properties of the original onstrainedminimization. As a matter of fat, in general the original problem maybe ill-posed, featuring multiple loal minima or none. The term JR witha proper seletion of the weights σ1 and σ2 allows us in general to havea well-posed problem. For this reason, when solving this kind of inverseproblems, this term is often alled regularization (Tikhonov regularizationin the form in (32)). Other forms of regularization may be onsidered inpratie, but they will not be addressed here (see [23, 38℄).The appropriate seletion of wieghts σ1,2 is not trivial. It is atually a trade-o� between the minimization of the mismath (that requires these weights tobe small) and the regularization of the problem (that in general is improved forlarge positive values). Di�erent strategies are possible. A general approah is toidentify values suh that the impat of additional terms on the non-regularizedfuntional is bounded by the numerial errors, so to redue the e�ets on mis-math minimization within the range aeptable after approximations, whileimproving the onditioning properties of the problem. See e.g. [67, 72℄.6This ould be done also with unilateral onstraints ‖α‖ ≤ max-ost-allowed.37



3.2.1 Gâteaux and Fréhet derivativesFor the solution of a PDE onstrained optimization problem, we need to beable to di�erentiate operators ating between funtional spaes. In partiular,let F : X → Y , X and Y being appropriate funtional spaes and let u, v ∈ X .The derivative of F , in the diretion v an be omputed as
DF(u; v) := lim

ε→0

F(u + εv)−F(u)

ε
.Suh derivative is alled Gâteaux derivative. As an example, take G(u) = (u−

f)2, then
D G(u; v) = lim

ε→0

(u+ εv − f)2 − (u − f)2

ε
= lim

ε→0

2ε(u− f)v + ε2v2

ε
= 2 (u−f) v.It is often possible to write the Gâteaux derivative of F in any diretion v, asthe appliation of a bounded linear operator DF

Du

∣∣∣∣
u

to v. Suh operator is alledFréhet derivative. In the following we assume that the Fréhet derivative existsand we write
DF(u; v) =

DF
Du

∣∣∣∣
u

(v).In our example, DF
Du

∣∣∣∣
u

= 2(u − f). It is possible to show that the Gâteauxderivative of G(u) = uT Au, in the diretion v, where u and v are vetorfuntions and A is a onstant square matrix of ompatible dimensions, reads
D G(u, v) = uT Av + vT Au = uT (A+AT )v,while its Fréhet derivative reads

DG
Du

∣∣∣∣
u

= uT (A+AT ),with the understanding, in this ase, that the appliation of the operator DG
Du

∣∣∣∣
uto v is the usual matrix vetor produt of the one-row matrix DG

Du

∣∣∣∣
u

and thevetor v. As another example, onsider G(u) = −∆u, then DG(u, v) = −∆vand D G
Du

∣∣∣∣
u

= −∆. In general, the derivative of a linear operator (the Laplaianoperator in this ase) is the linear operator itself.The usual hain rule holds for the di�erentiation of omposite funtions
D (G ◦ F)(u, v) = D G (F(u), DF(u, v)) ,or
D (G ◦ F)

Du

∣∣∣∣
u

=
D (G ◦ F)

DF

∣∣∣∣
F(u)

(
DF
Du

∣∣∣∣
u

)
.38



3.2.2 Gradient-based optimization approahesA ommon and e�etive approah to deal with optimization onstrained bypartial di�erential equations, is to inlude diretly the onstraint in the fun-tional to be minimized. In this way, the minimization proedure is reast in anunonstrained ase and the solution is obtained with lassial arguments. Inpartiular, the �rst order neessary onditions are obtained by setting to 0 thegradient of the funtional.In our ase, this means that the solution u is omputed as a funtion of theontrol variables α and γ and the total derivative of JR, regarded as funtionof these variables, is set to 0. This proedure admits an iterative implemen-tation. Let us denote the state problem (30), (31) with the abstrat notation
F(u,α, γ) = 0.Assume that an initial guess α(0) and γ(0) is given. Typially, we take
γ(0) = γref . Then, we perform the following steps for j = 0, 1, 2, . . .:- �nd the state variable u(j) solution to F(u,α(j), γ(j)) = 0;- ompute DJR(u(j),α(j), γ(j))/Dα

∣∣
α

(j) and DJRu
(j),α(j), γ(j)/Dγ

∣∣
γ(j) ;- if ‖DJR(u(j),α(j), γ(j))/D[α, γ]‖ is su�iently small, solution is reahed;else ompute a new guess α(j+1), γ(j+1), for instane by setting

α
(j+1)
i = α

(j)
i − ω

(j)
i

DJR(u(j),α(j), γ(j))

Dαi

, i = 1, 2, . . .K

γ(j+1) = γ(j) − ω
(j)
K+1

DJR(u(j),α(j), γ(j))

Dγ
,

(33)where ω(j)
i , i = 1, 2, . . . ,K + 1 are numerial oe�ients that drive theonvergene of the proedure.This approah, based on (33), belongs to the family of steepest desent meth-ods and the parameters ωi de�ne the step performed in updating the solutionalong the line identi�ed by the gradient. These oe�ients, in general, may bedynamially determined at eah iteration. Other iterative methods may be on-sidered for the sake of e�etiveness. Among the others, a method that usuallyoutperforms the steepest desent approah is the Broyden-Flether-Goldfarb-Shanno (BFGS) method (see e. g. [58℄); another ommon hoie is the Gauss-Newton method. The latter �nds the roots of DJR/D[α, γ] = 0 using theNewton method, that means that, at eah iteration j, the minimization of theparaboloid tangent to JR in α(j), γ(j) is performed. The method is potentiallyseond order, but it has the drawbak that the Hessian of the funtional JR isneeded.The most troublesome step in the previous algorithm is the omputation ofthe gradients DJR(u(j),α(j), γ(j))/D[α, γ]. Let us address two possible meth-ods. 39



3.2.3 Gradient omputation through sensitivitiesA possible way for omputing the gradients relies upon the hain rule
DJR

Dαi

∣∣∣∣
α(j)

=
∂JR

∂u

∣∣∣∣
u(j)

(
∂u

∂αi

∣∣∣∣
α

(j)
i

)
+
∂JR

∂αi

∣∣∣∣
α

(j)
i

, i = 1, 2, . . . ,K + 1where for easiness of notation we set αK+1 = γ. We all sensitivities the deriva-tives
φi ≡

∂u

∂αi

, ∀i = 1, 2, . . .K + 1as they quantify the sensitivity of the solution to eah ontrol variable. From
F(u(j),α(j)) = 0 ⇒ DF

Dαi

∣∣∣∣
(j)

=
∂F
∂u

∣∣∣∣
u(j)

(
φ

(j)
i

)
+
∂F
∂αi

∣∣∣∣
(j)

= 0,we have
∂F
∂u

∣∣∣∣
u(j)

(
φ

(j)
i

)
= − ∂F

∂αi

∣∣∣∣
(j)

. (34)Sensitivities an be retrieved by solving this set of equations for i = 1, 2, . . . ,K+
1. In partiular, for our working example we have
DJR

Dαi

∣∣∣∣
α

(j)
i

=
∂JR

∂u

∣∣∣∣
u(j)

(
φ

(j)
i

)
+
∂JR

∂αi

(j)

=

∫

Ω

(u− d)φi + σ1αi, i = 1, 2, . . .K

DJR

Dγ

(j)

=
∂JR

∂u

∣∣∣∣
u(j)

(
φ

(j)
K+1

)
+
∂JR

∂αi

∣∣∣∣
α

(j)
K+1

=

∫

Ω

(u − d) (φK+1) + σ2(γ − γref ).Notie that from the state equations (30), (31), we have for i = 1, 2, . . .K + 1

∂F
∂u

∣∣∣∣
u(j)

(φi) = −∆φi + b · ∇φi + γφi + 3(u(j))2φi,and
∂F
∂αi

∣∣∣∣
(j)

= −fi, i = 1, 2, . . .K

∂F
∂γ

∣∣∣∣
(j)

= u(j).Then, the sensitivities equations read




−∆φi + b · ∇φi + γφi + 3(u(j))2φi = fi in Ω

−∆φK+1 + b · ∇φK+1 + γφK+1 + 3(u(j))2φK+1 = −u(j) in Ω

φi = 0, i = 1, 2, . . .K + 1 on ∂Ω.

(35)40



Notie that these equations are linear in the sensitivities. Finally, we have
DJR

Dαi

∣∣∣∣
(j)

=

∫

Ω

(u(j) − d)φi + σ1α
(j)
i ,

DJR

Dγ

∣∣∣∣
(j)

=

∫

Ω

(u(j) − d)φK+1 + σ2γ
(j).Gradients of the funtional with respet to the ontrol variables following thisapproah requires therefore the solution of the K + 1 sensitivity equations.3.2.4 Gradient omputation through adjoint equationsIn the following, we omit the iteration index j for simpliity. In the previousSetion we omputed the operator ∂F

∂u

∣∣∣∣
u

applied to the sensitivities φi. Let usonsider the adjoint of this operator, whih is the operator (∂F
∂u

)∗∣∣∣∣
u

suh that
<

(
∂F
∂u

)∗∣∣∣∣
u

(ρ) , v > = < ρ ,
∂F
∂u

∣∣∣∣
u

(v) >, (36)for any v belonging to an appropriate funtional spae. Here < ·, · > indiates aduality pairing. In partiular, in a �nite dimensional setting, < ·, · > typiallydenotes the usual Eulidean dot produt, while in the ontinuous setting, itdenotes one of the integrals




< u, v >≡
∫

Ω

u v, for salar funtions,
< u, v >≡

∫

Ω

u · v, for vetor funtions,
< U, V >≡

∫

Ω

U : V for tensor funtions, .

In our example, we have
< ρ,

∂F
∂u

∣∣∣∣
u

(v) >=

∫

Ω

ρ
(
−∆v + b · ∇v + γv + 3u2v

)
.Integrating by parts, and hoosing ρ to vanish on Γ, we get7

< ρ,
∂F
∂u

∣∣∣∣
u

(v) >=

∫

Ω

(
−∆ρ− b · ∇ρ+ γρ+ 3u2ρ

)
v.Therefore, the adjoint operator reads

(
∂F
∂u

)∗∣∣∣∣
u

= −∆ρ− b · ∇ρ+ γρ+ 3u2ρ.7We remind that we assumed b to be divergene free.41



We onsider the following adjoint problem, whose solution, as we will see later,is ruial to �nd the derivatives of J with respet to the parameters.
<

(
∂F
∂u

)∗∣∣∣∣
u

(ρ) , v >=
∂JR

∂u

∣∣∣∣
u

(v), (37)for any v belonging to appropriate funtional spaes. In our spei� example,this problem reads
∫

Ω

(
−∆ρ− b · ∇ρ+ γρ+ 3u2ρ

)
v =

∫

Ω

(u− d) v,for any v, with ρ vanishing on Γ. Sine suh equation must hold for any v, weget the strong form of the adjoint equation
{
−∆ρ− b · ∇ρ+ γρ+ 3u2ρ = u− d in Ω

ρ = 0 on Γ
.Notie that one ρ is omputed by solving this equation, we may write for

i = 1, 2, . . .K + 1

DJR

Dαi

=
∂JR

∂u

(
∂u

∂αi

)
+
∂JR

∂αi

=<

(
∂F
∂u

)∗∣∣∣∣
u

(ρ) ,
∂u

∂αi

> +
∂JR

∂αi

=

< ρ ,
∂F
∂u

∣∣∣∣
u

(
∂u

∂αi

)
> +

∂JR

∂αi

= − < ρ ,
∂F
∂αi

> +
∂JR

∂αi

,

(38)where we exploit (37) (36) and (34). In other words, all the gradients neededby the iterative proedure are promptly omputed after ρ is alulated. In theexample, this reads for i = 1, 2 . . .K

DJR

Dαi

= σ1αi +

∫

Ω

(u− d)
∂u

∂αi

= σ1αi +

∫

Ω

(u− d)φi

= σ1αi +

∫

Ω

(
−∆ρ− b · ∇ρ+ γρ+ 3u2ρ

)
φi

=(by parts) σ1αi +

∫

Ω

(
−∆φi + b · ∇φi + γφi + 3u2φi

)
ρ

= σ1αi +

∫

Ω

fiρ,and similarly we obtain DJR

Dγ
= σ1(γ − γref )−

∫

Ω

uρ.Aording to this proedure, it is enough to solve a di�erential problem in theadjoint operator to ompute all the gradients needed by the iterative proedure.This approah is therefore more e�ient, when it is possible (and doable) theomputation of the adjoint operator. 42



3.2.5 The Lagrange Multiplier approah and the KKT onditionsLet us onsider a di�erent approah for reformulating the onstrained mini-mization problem into an unonstrained one. It is a lassial argument in whiha ompanion funtional is introdued to inlude the onstraints. We stik toour simple working example to introdue the idea, referring to the mentionedreferenes for a more omplete presentation. Let us onsider the funtional
L(u,α, γ, χ) = JR(u,α, γ)− < χ, F(u,α, γ) >,where χ is the adjoint (or o-state) funtion , the so-alled Lagrange multiplier.The idea behind this approah is that solutions of the onstrained minimizationproblem are stationary points of L. As suh they solve the following system ofequations, representing the �rst order neessary onditions of optimality




∂L
∂χ

= 0 State equations

∂L
∂u

= 0 Adjoint/Co− state equations

∂L
∂α

= 0 Optimality conditions

∂L
∂γ

= 0 Optimality condition.

(39)
Here, eah variable is independent of the others sine no onstraint holds. Inour spei� example, we have8
L(u,α, γ, χ1, χ2) = JR(u,α, γ)−

∫

Ω

χ1

(
−∆u+ b · ∇u+ γu+ u3 −

K∑

i=1

αifi

)
−
∫

Γ

χ2u.Here, we onsidered the integral formulation of (30,31), where χ1 and χ2 arethe funtions enforing the onstraint given by the state equation. To obtainthe stationary points, we need to perform the Gateaux di�erentiation
∂L
∂χ1

∣∣∣∣
χ1

(δχ1) = lim
ε→0

1

ε
(L(u,α, γ, χ1 + εδχ1 , χ2)− L(u,α, γ, χ1, χ2)) (40)where δχ1 is an admissible variation. We �nd

∫

Ω

δχ1

(
−∆u+ b · ∇u+ γu+ u3 −

K∑

i=1

αifi

)
= 0.8Here we used the Lagrange multiplier χ2 to presribe the Dirihlet homogeneous bound-ary ondition. Often, suh ondition is presribed without using Lagrange multipliers butrequiring diretly that u and χ1 vanish on the boundary.43



Sine δχ1 is arbitrary, from this equation we promptly obtain the state problem(30). Similarly,
∂L
∂χ2

∣∣∣∣
χ2

(δχ2) = lim
ε→0

1

ε
(L(u,α, γ, χ1, χ2 + εδχ2)− L(u,α, γ, χ1, χ2)) =

∫

Γ

δχ2u = 0(41)leading to (31).Let us write expliitly now the adjoint equation
∂L
∂u

∣∣∣∣
u

(δu) = lim
ε→0

1

ε
(L(u+ εδu,α, γ, χ1, χ2)− L(u,α, γ, χ1, χ2)) =

∫

Ω

(u− d) δu −
∫

Ω

χ1

(
−∆δu + b · ∇δu + γδu + 3u2δu

)
−
∫

Γ

χ2δu = 0.

(42)Let us fator out the arbitrary variation δu. If we integrate by parts the seondand �rst order terms, we get
∫

Ω

δu
(
u− d+ ∆χ1 + b · ∇χ1 − γχ1 − 3u2χ1

)
+

∫

∂Ω

χ1∇δu · n−
∫

∂Ω

(∇χ1 · n + χ1b · n + χ2)δu = 0.Beause δu is arbitrary, this equation is equivalent to
−∆χ1 − b · ∇χ1 + γχ1 + 3u2χ1 = u− d in Ω

χ1 = 0 on ∂Ω

χ2 = −b · ∇χ1 · n− χ1n on ∂Ω.Notie that χ2 does not a�et the solution of the problem, therefore in the fol-lowing we drop the last equation beause we are not interested in the partiularvalue assumed by χ2. Finally, we ompute the derivative with respet to theontrol variables.
∂L
∂αi

=

∫

Ω

χ1fi + σ1αi,
∂L
∂γ

=

∫

Ω

uχ1 + σ2(γ − γref ). (43)
44



Summarizing, the optimality system to be solved reads



−∆u+ b · ∇u + γu+ u3 =

K∑

i=1

αifi in Ω

u = 0 on ∂Ω

State equations
{
−∆χ1 − b · ∇χ1 + γχ1 + 3u2χ1 = u− d in Ω

χ1 = 0 on ∂Ω
Adjoint equations





αi = − 1

σ1

∫

Ω

χ1fi i = 1, . . . ,K

γ = γref −
1

σ2

∫

Ω

χ1u

Optimality onditions(44)This set of equations represents the so-alled Karush-Khun-Tuker (KKT) on-ditions [69℄.In priniple, this system provides the solution to the optimization problemin a monolithi or �one-shot� fashion. In pratie, the ases of interest whenthe system an be solved diretly are rare - in partiular for nonlinear stateproblems, and we need again to resort to iterative proedures.Let a guess for α and γ be given at the iteration j. Again, typially, we take
γ(0) = γref . A reasonable iterative proedure reads as follows.1. Solve the state equations to ompute u(j+1);2. Solve the adjoint problem to ompute χ(j+1)

1 and χ(j+1)
2 .3. Update the ontrol variables using the optimality onditions. In this ex-ample it is natural to hoose

α
(j+1)
i = − 1

σ1

∫

Ω

χ
(j+1)
1 fi and γ(j+1) = γref −

1

σ2

∫

Ω

χ
(j+1)
1 u(j+1),until a onvergene riterion is satis�ed.This proedure orresponds in fat to a �xed-step steepest desent methodfor JR regarded as a funtion of the ontrol variables. In fat, notie thatthe Lagrange multiplier χ introdued here orresponds to ρ introdued in theprevious Setion. With this perspetive, equation (38) reads

DJR

Dα
= 0that is exatly what we want to obtain when we are looking for a minimumof JR. As a matter of fat, the iterative algorithm introdued in the previousSetion to minimize JR, is an iterative algorithm to solve the KKT onditions.45



Sequential Quadrati Programming Algorithm In ontrast with what isdone in the unonstrained approah onsidered so far, onstrained algorithms tryto ompute the solution to the minimization problem thorough the onvergeneof the state and parameters variables (u(j), α(j)) simultaneously. This approahan be very e�etive in presene of nonlinear onstraints, as the onstraints neednot to be solved at eah iteration. In this Setion we onsider one of these meth-ods, the sequential quadrati programming (SQP) method [12℄ whih onsistsof iteratively approximating the original problem with a quadrati problem sub-jet to linear onstraints. Suh quadrati problem is then solved using quadratiprogramming (QP) algorithms. Assume that the problem is already disretized,and let the vetor x(j) inlude both the state (u(j)) and the parameter (α(j))vetors
x(j) =

[
u(j)

α(j)

]
.The Lagrangian funtional of the problem L(x,χ) = JR(x)− < χ, F(x) > isapproximated at iteration j with the paraboloid tangent to the Lagrangian in

x(j), i.e.
L
(
x,χ(j)

)
≈ L(x(j),χ(j)) + L(j),T

x δ(j)
x +

1

2
δ(j),T

x H(j)δ(j)
x ,where L(j)

x =
∂L
∂x

∣∣∣∣
x(j)

, δ
(j)
x = x − x(j), and H(j) =

∂2L
∂x2

∣∣∣∣
x(j)

is the Hessianmatrix. Suh approximation of the Lagrangian is minimized w.r.t. δ
(j)
x , subjetto the linearization of the onstraint F(x) = 0

F
(
x(j)

)
+ F(j),T

x δ(j)
x = 0. (45)where the matrix F

(j)
x =

∂F
∂x

∣∣∣∣
x(j)

. Exploiting the fat that F
(j),T
x δ

(j)
x is onstantw.r.t. δ

(j)
x beause of (45), one an reformulate the quadrati programmingproblem as

δ
(j)
x = argmin J

(j),T
x δ

(j)
x +

1

2
δ

(j),T
x H(j)δ

(j)
xs. t. F

(j),T
x δ

(j)
x = −F

(
x(j)

)
,

(46)where the olumn vetor J (j)
x =

∂JR

∂x

∣∣∣∣
x(j)

. The value x(j+1) is obtained as
x(j+1) = x(j) + ζδ

(j)
x , where the step length ζ ∈ (0, 1] is hosen using a linesearh method.The Lagrangian multiplier χ(j+1) an be omputed as χ(j+1) = χ(j) + γ(χopt−

χ(j)), where χopt is the optimal Lagrangian multiplier assoiated to problem(46). In order to avoid the omputational osts assoiated with the evaluationof the Hessian, the matrix H an be replaed by a suitable approximation. Aommon approah is to use instead the matrix generated by the BFGS method.In general the e�etiveness of the SQP method relies on the method used to46



solve the QP problem. Inequality onstraints (e.g. the onstraint that someparameters must be non negative) an be easily handled using SQP approah.In addition, we point out that when the exat Hessian is used, γ = 1, and onlyequality onstraints are onsidered, the method is equivalent to solve the KKTonditions with the Newton method.Notie that from the formulation of the SQP problem that the solution atiteration j does not need to be feasible, i.e. to satisfy the onstraints. Thisapproah allows to save a lot of time beause we do not have to enfore thefeasibility of the solution at eah iteration. However, this lak of feasibilitymight a�et the robustness of the method.Unsteady problems The proedure illustrated above an be extended tounsteady problems, that are of major interest in �uid-struture interation ap-pliations. However, in this ase, it is important to notie that the adjointproblem (in any of the formulations we enountered) is a �nal-boundary valueproblem. This means that it is bakward in time. This feature introdues highomputational osts either when we solve the problem via the KKT system orwe follow a gradient-based proedure based on the adjoint problem. In fat, thestate problem (whih is forward in time) and the adjoint problem need to besolved all together in spae-time. The omputational osts for this approah aretherefore in many ases not a�ordable, not to mention the storage ost of thesolutions at eah time step. For this reason, di�erent workarounds have beenonsidered. For instane [37℄, the solution may be stored only on a prede�nedset of instants Tk (subset of the time disretization steps) alled hekpointsand the state required by the optimization for omputing the adjoint solutionis loally reomputed or approximated.Following a di�erent approah, time disretization may be performed beforethe optimization, leading to a sequene of pseudo-steady optimization problemsat eah time step. An example of this approah will be provided in the nextSetion for estimating the ompliane of an artery.Interplay between numerial disretization and solution of the on-trol problem In the numerial solution of ontrol problems there is an usualdilemma, onerning the order of the steps for the optimization and the numeri-al approximation. We may summarize this as �Disretize then Optimize� (DO)vs. �Optimize then Disretize� (OD). The two operations are in general non-ommutative and the solutions obtained with the two approahes are in generaldi�erent. It is di�ult to draw general indiations about the most appropriateapproah, whih is basially a trade-o� between auray and omputationalosts. The issue is extensively disussed in [37℄. There are learly pros and onsin both the sequenes. With DO we may say that- we avoid inonsistenies indued by the numerial di�erentiation of theKKT onditions; in other terms, the numerial approximation of the KKTonditions introdues a disrepany with the real optimization ondition;47



- we an even use automati di�erentiation software;- we an split an unsteady problem into a sequene of pseudo-steady opti-mization problems.On the other hand with OD:- we do not deal with the di�erentiation of numerial arti�ial terms (likestabilization of advetion terms for high Reynolds numbers);- managing moving boundary problems as in shape optimization is easier,sine we do not need the derivative of the grid with respet to the opti-mization parameters.In the examples that follow we stik to a DO approah. A parameter estima-tion proedure based on OD an be found in [74℄ for the estimate of ardiaondutivities.3.3 Reduing the osts via solution redutionAs we have pointed out several times, the optimization methods presented abovesu�er from high omputational osts for di�erent reasons. The state equationsand possibly the adjoint problem need to be solved at eah iteration, not tomention the additional osts in terms of omputations and storage for unsteadyproblems, that need to be truly takled in 4D (spae and time).In order to redue the omputing time we need to redue either the numberof iterations or the ost of eah iteration (or both). The number of iterationsmay be redued by using e�etive optimization algorithms as the BFGS methodfor updating the urrent solution. The ost of eah iteration an be redued bytreating the onstraints in a ��exible� way. This means that the ful�llment ofthe onstraints may be relaxed in partiular in the �rst iterations when thisdoes not prevent the onvergene to the admissible solution. This an be doneby aepting a solution to the state equations featuring relatively large residualsor by replaing the state equations themselves with a simpli�ed model. Theseapproahes are mostly problem-dependent, being based on the possible simpli-�ations o�ered by the problem at hand. For instane in eletroardiology, theBidomain equations that desribe the dynamis of the extra and intra-ellularpotentials may be replaed by the simpli�ed Monodomain system (see e.g. [16℄).When solving �uid-struture interation problems in hemodynamis a fully 3Doupling may be downsaled to a 3D Fluid/2D Struture problem [57℄, as wesee in the next Setion.Here we address another (somehow omplementary) way for reduing theomputational osts, whih is based on reduing more spei�ally the numberof degrees of freedom required to give an aurate representation of the solution.As a matter of fat, a funtion in a (separable) Hilbert spae (like for instane
L2 or H1) admits the representation

u =
∞∑

i=1

Uiψi,48



for a proper seletion of the basis funtions ψi. In the Galerkin approah forapproximating the solution, we generally �nd a basis funtion set to representthe approximate solution uN(x) as
uN =

N∑

i=1

UN,iϕi.The basis funtions may be pieewise polynomials as in the �nite elementmethod, or global polynomials as in spetral methods. In general, those ba-sis funtions an be de�ned to be general purpose, in the sense that they do notspei�ally rely on the feature of the problem to be solved and an be appliedto a vast lass of problems. This versatility has the drawbak that, in general,to ahieve aurate solutions the number N of degrees of freedom is high. Thislearly implies high omputational osts as the assoiated linear(ized) systemsare large.A somehow opposite approah would be to give up pursuing a general basis,using an �eduated� basis that inorporates spei� information of the problem.For instane, in modal analysis the solution is represented on the basis given bythe eigenfuntions of the problem. The basis is therefore problem-dependent,bringing intrinsially information on the problem to be solved. The gain is thatit is generally possible to ahieve a good auray when trunating to a lownumber of degrees of freedom. However, this is not for free, as the basis needsto be spei�ally omputed. In partiular, omputation of eigenfuntions is ingeneral not trivial and quite ostly [15℄.Following the same idea of onstruting an informed basis, we may onsidersnapshot-based approahes. In this ase, the basis is the result of the elabora-tion of the solutions of the problem for partiular on�gurations useful for thesolution of the state problem in the optimization proess. For instane, whenthe ontrol variable is a parameter to be identi�ed (as γ was in our workingexample), snapshots may be the solution of the state problem for a partiularset of values of the parameter. The proper identi�ation of this set is learlyruial for the e�etiveness of the entire proedure. This an be realized by on-sidering that if the optimal value of the ontrol variable falls within the rangeonsidered in the snapshots, the entire proedure on�gures as a sophistiated�interpolation�, for whih several onvergene results are available. On the on-trary, if the range of the snapshots omputation is not well de�ned, we areatually performing an �extrapolation� and the onvergene is not neessarilyguaranteed. Again, the �nal goal is to keep the size N of the �nite dimensionalapproximation of the solution as small as possible, thanks to the informationontained in the basis.From the omputational standpoint, this snapshot-based approah relies onthe o�-line/on-line paradigm, namely1. omputation of the basis is �o�-line�, and it is intended to be an au-rate (and therefore expensive) numerial approximation of the solutionfor di�erent on�gurations that are onsidered to be relevant to the basis;49



2. solution of the optimization problem, and in partiular the omputationof the oe�ients UN,i along the iterations of the minimization proedureis �on-line�, and ontributes to the atual ost of the ontrol proedure.In this way, the omputational osts are fatorized, the major ontribution beingarried out in a step preliminary to the optimization. This paradigm learlymakes sense whenever the �o�-line� part an be reyled for the solution ofseveral optimization problems9.Among the di�erent snapshot-based strategies, we mention the redued ba-sis method and the Proper Orthogonal Deomposition (POD). In the former,the snapshots are omputed for values of the parameters that are evaluated toperform the best ontrol of the error on the basis of rigorous error estimates(see [64, 70℄). In partiular, we mention [52℄ for an appliation of the reduedbasis method to �uid-struture interation problems. The latter is known alsoas Karhunen-Loève deomposition or prinipal omponent analysis and it is il-lustrated more in detail in the next paragraph.POD basis seletion We start assuming that a set of size M of solutionsis available for instane by omputing snapshots for M di�erent values of theparameter of interest after a uniform sampling of an appropriate range. Weassume thatM is still large for the purpose of reduing the omputational ostsand that a redution of the size of the basis is required, by properly �lteringredundany in the snapshots set. Denote by ρj ∈ R
N the M snapshots ofthe (approximate) solution, with j = 1, . . .M . Then, we perform the followingsteps.1. Sample average: ρ =

M∑

j=1

ρj .2. Sample Covariane: Compute C ∈ R
M×M , whose elements are de�nedas cij :=

1

M
(ρi − ρ)T (ρj − ρ). Matrix C is positive semide�nite andsymmetri so the eigenvalues are all real and the eigenvetors {xj} forman orthonormal basis in R

M . We order the eigenvalues as
λ1 ≥ λ2 ≥ . . . ≥ λM ≥ 0.3. Thresholding: Selet a tolerane τ ∈ [0, 1] and pik the minimum M̃ suhthat

M̃∑

i=1

λi

M∑

i=1

λi

≥ τ.9This an be problemati in a linial ontext, where patient-spei� geometries di�er onefrom the other and the snapshot omputation is not trivially reyled. Anatomial atlasmapping ideal to real geometries are required.50



Here γ is a threshold that identi�es the �essential� information. Hopefully,this happens for M̃ ≪M .4. New basis. Let us selet a new basis {yi} onsistent with the eigenvaluesthreshold. We take for i = 1, . . . M̃

yi =

M̃∑

j=1

(xi)j(ρj − ρ),where (xi)j is the j−th entry of the i−th eigenvetor. Then, we normalize
y∗i =

1

‖yi‖
yi.This is by onstrution an orthonormal basis . In addition and more impor-tantly, this basis ful�ls an optimal property. As a matter of fat [37, 15℄, thespae spanned by the POD basis is the best M̃ -dimensional subspae approxi-mation of the spae spanned by the snapshots (in the 2-norm sense). A vetor

x in R
M an then be approximated in terms of the POD basis as

x = ρ̄ +

M̃∑

i=1

ciy
∗
iFor partiular problems, suh as progressive waves, redution of the sizefor the solution and eventually of the omputational osts after this proeduremay be not enough. In this ase, other redued solution tehniques may beonsidered [30℄. Nevertheless, an example of POD for the solution of an inverse�uid-struture interation problem is illustrated in the next Setion.Remark 3.2 Here we have presented a partiular appliation of POD for re-duing the dimension of the solution forward problem. However, POD an beused for reduing the dimensionality in di�erent ontexts. For instane, in [7℄,Chapter 7, POD is advoated also for reduing the dimensionality of the size ofthe parameter spae, whih is ruial when the parameter is a funtion repre-sented by a large number of degrees of freedom.Remark 3.3 Here we introdued the POD using the eigenvalue deompositionof the sample ovariane matrix. Alternatively, one an perform the SingularValue Deomposition (SVD) of the snapshots matrix X = [ρ1, . . . ,ρM ]. Thisan be e�iently done by �rst performing a QR fatorization of X and thenby omputing the SVD of the triangular fator. In other words, X = QR =

QUΣV T = ŨΣV T . The POD basis is then made of the �rst M̃ left singularvetors (the olumns of Ũ), where M̃ is hosen with the same proedure as before,using the singular values of the snapshots matrix rather than the eigenvalues ofthe ovariane matrix.
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4 Some appliations of Data Assimilation in Hemo-dynamis problemsIn this Setion we onsider some appliations of DA and Parameter Estimationin omputational hemodynamis.First, we present the problem of reonstruting the blood �ow in a vesselassimilating sparse noisy measures of the veloity with the numerial resultsobtained by solving the inompressible Navier-Stokes equations. Suessively,we onsider the problem of estimating the ompliane of a vessel based on mea-sures of the displaement retrieved from medial images. The solution to thisproblem leads to an inverse �uid-struture interation (IFSI) problem. Theseare not the only examples of data assimilation in biomedial appliations. Wemention for instane the work in eletroardiology for the set up of patient-spei� models in [43℄, and for estimating ardia ondutivities [36, 74, 31℄.Other appliations an be found e.g. in [17, 28℄. In partiular, in [25, 26℄ DAmethods are advoated for �lling the gap between available boundary data andmathematial onditions required to solve the problem.We have seleted these examples beause they o�er the opportunity to see ination di�erent methodologies based on the tehniques illustrated in the previousSetions.4.1 Assimilation of veloity measures in blood �ow simu-lationsWe onsider the problem of merging veloity measures and the numerial sim-ulation of blood �ow. The DA problem an be addressed in several and diverseways, as desribed in the previous Setions. More preisely, we present twoapproahes introdued in two reent papers; in the �rst one [18℄ the problemis faed with a variational (ontrol) method, where the ontrol variable is thenormal omponent of the stress at the in�ow setion of the vessel. In the se-ond paper [39℄ the authors exploit a Least Squares Finite Element (LSFE) ap-proximation treating internal layers, where measures are available, as arti�ialboundaries. This approah an be reinterpreted as a MAP Bayesian estimate,as pointed out in [21℄.We introdue the formal statement of the problem. Let us denote by Ω adomain in R
d (d = 2, 3; in real appliations d = 3). We assume (see Figure7) that Ω features an in�ow boundary Γin, an out�ow boundary Γout and thephysial wall of the vessel Γwall. Γin and Γout an possibly onsist of severalsetions. The variables of interest are the veloity u(x) ∈ [H1(Ω)]d and thepressure p(x) ∈ L2

0(Ω). Also, we assume to have some veloity measures as in,e.g., Figure 7 or sparse in the domain.Veloity and pressure are assumed to obey the inompressible Navier-Stokes
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Figure 7: On the left, view of blood measured veloities in an MRI of the asend-ing aorta. On the right, examples of a three-dimensional and two-dimensionaldomain for whih data are olleted on internal layers transversal to the �ow.equations (NSE).
∂u

∂t
− µ ∇ · (∇u +∇uT) + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on Γwall,

−µ (∇u +∇uT) · n + p · n = h on Γin,

−µ (∇u +∇uT) · n + p · n = g on Γout.

(47)
A Newtonian rheology is supposed to hold, whih is a ommon assumption inlarge and medium vessels [24℄, and µ is the onstant kinemati visosity. Thehoie of homogeneous Dirihlet boundary onditions on Γwall re�ets the fatthat we onsider �xed geometries.In this Setion we onsider the steady ase ∂u

∂t
= 0.4.1.1 Variational approahIn [18℄ a variational DA proedure for the inlusion of veloity measures inthe simulation of the NSE in hemodynamis is proposed. Sparse noisy veloitymeasures d1, . . . dNs are assumed to be available in the domain and possibly onthe boundary at some sites10 xm

i ∈ Ω, i = 1, . . .Ns, that do not neessarilybelong to a plane or a layer inside of Ω.The assimilation tehnique in [18℄ is formulated as a ontrol problem wherethe mis�t between omputed data (the NSE solution) and observed data is min-imized. The equations of inompressible �uid dynamis are the onstraint to the10Notie that we use the word �sites� for the loation of measurements, as opposed to theword �nodes� for points where veloities are omputed. In general sites and nodes are di�erent,but we do not exlude that the intersetion of sites set and nodes set in non-empty.53



minimization proedure. The ontrol variable is seleted to be the in�ow normal(or natural) stress h; knowledge of this quantity is quite often not available inpratie. The variational problem is formulated as
min
h

J (u, h) = ‖f(u)− d‖l2 +R(h)s.t. Steady version of (47) (48)Here, f is a �ltering vetor funtion that returns the value of the veloity �eldevaluated on the measurement sites; R is a regularization term added to preventpotential ill-posedness and ill-onditioning of the problem due to the loationof data and the presene of noise.For the numerial solution of the problem (48) we �rst onsider the linearizedNSE; then, we disuss the nonlinear ase; in the linearized formulation the term
(u ·∇)u is substituted by β ·∇u, where β is a known advetion �eld. We followa DO approah (see Setion 3.2), thus, after the disretization (via e.g. the�nite element method) of the funtional and the linearized state equations weresort to the following algebrai optimization problem

min
H

J(V, H) =
1

2
‖DV − d‖22 +

α

2
‖LH‖22s.t. SV = RT

inMinH + F.

(49)Here, V = [U P] ∈ R
Nu+Np is the vetor of disretized veloity U ∈ R

Nu andpressureP ∈ R
Np ; H ∈ R

Nin is the disretization of the ontrol variable h; Nin isthe number of degrees of freedom of the veloity on Γin; d = [d1 . . . dNs ] ∈ R
Nsis the vetor of the available measures. For α > 0, α

2 ‖LH‖22 is a Tikhonovregularization term, see Set. 3.2. The matrix S is de�ned as follows
S =

[
C + A BT

B O

]
, (50)where, C, A ∈ R

Nu,Nu and B ∈ R
Np,Nu are the disretization of the di�usion,advetion and divergene operators. D is the seletion or observation matrixand it is de�ned as D = [Q O], where Q ∈ R

dNs,Nu is suh that [QU]i isthe numerial solution evaluated at the data sites. Rin ∈ R
Nin,Nu+Np is arestrition matrix whih selets the degrees of freedom of the veloity on Γin.

Min ∈ R
Nin,Nin is the disretization of the mass operator restrited to inletboundary nodes.For the solution of problem (49) we use the Lagrange multiplier approah,so we onsider the Lagrange funtional

L(V,H,X) =
1

2
‖DV − d‖22 +

α

2
‖LH‖22 + XT(SV − RT

inMinH− F), (51)where X ∈ R
Nu+Np is the disrete Lagrange multiplier. The set of neessary54



onditions for optimality is given by the KKT system




∂L

∂V
= DT(DV − d) + STX = 0

∂L

∂H
= αLTLH−MT

inRinX = 0

∂L

∂X
= SV − RT

inMinH− F = 0.

(52)By de�ning Z = DS−1RT
inMin and W = ZTZ + αLTL the redued system,obtained by blok elimination, reads WH = ZT(d − DS−1F), where W is theso-alled redued Hessian matrix.The following theorem states the neessary and su�ient onditions for thewell-posedness of problem (49).Theorem 4.1 For α = 0, W is non-singular, i.e. (49) is well-posed, ⇔

Null(D) ∩Range(S−1RT
inMin) = {0}. (53)For the proof see [18℄. Condition (53) is satis�ed when �enough� data are avail-able on the in�ow setion (number and loation of the measures that guaranteethe well-posedness depend on the disretization method used).In order to onsider the nonlinear advetion term (u · ∇)u and to solve thenonlinear PDE onstrained optimization problem (48), we ombine the DA pro-edure for the linearized ase and lassial �xed point shemes for the solutionof the NSE. In partiular, we refer to the Piard and Newton methods [63℄. Theassimilation problem is solved iteratively as follows.Given a guess for the veloity �eld at iteration k + 1, Uk,solve 




min
Hk

1

2
‖DVk+1 − d‖22 +

α

2
‖LHk+1‖22s.t. SkVk+1 = RT

inMinHk+1 + Fk

(54)until ‖Vk −Vk+1‖ ≤ δ, being δ a user de�ned tolerane. Here,
Sk =

[
C + Ak BT

B O

]
, and Fk = F + wYk. (55)Ak omes from the disretization of (uk · ∇)uk+1 + w(uk+1 · ∇)uk (w = 0 forPiard method, 1 for Newton); Yk is the disretization of (uk · ∇)uk. Here ukis de�ned as ϑuk−1 + (1 − ϑ)uk, being ϑ ∈ [0, 1], w is a relaxation parameter,hosen empirially.Numerial tests. In Figure 8 we report the numerial results obtained on twogeometries approximating blood vessels. In Figure 8 (left) the omputationalgrid is an approximation of a arotid artery; the olored vetor �eld onsists inthe atual data used in the assimilation, these are generated adding Gaussian55



noise to a referene solution; to appreiate the presene of the noise the noise-freedata are also reported in blak. In the enter, the magnitude of the assimilatedveloity is displayed; a omparison with a referene solution (onduted in [18℄)shows that the noise is �ltered and that the assimilated solution is lose to thereferene one.On the right, a three-dimensional ylindrial domain is reported, this aseis treated with an axisymmetri formulation. On seleted internal surfaes theassimilated �eld and its magnitude are reported; it is important to note that thenoise a�eting the omponents of the veloity parallel to the �ow is signi�antly�ltered.

Figure 8: On the left, the olored vetor �eld onsists in the available measureswhereas the blak one orresponds to the noise-free data. In the enter, themagnitude of the assimilated vetor �eld is reported. On the right, the oloredvetor �eld orresponds to the assimilated veloity, the blak one to the noisydata and the olored �eld in the bakground orresponds to the magnitude ofthe veloity.Next, we onsider the problem of estimating the wall shear stress (WSS)already desribed in the introdutory example of Setion 1. An aurate ap-proximation of the WSS is fundamental in the investigation of ardiovasularpathologies sine it is an index of the possibility of rupture of the vessel wall andformation of stenosis [24℄. Approximations of the WSS retrieved from indiretmeasurements are in general unreliable beause of the post-proessing numerialerrors and the noise a�eting the measures. Inluding measurements in simula-tions is a way for improving the reliability of the omputed solutions and, on theother hand, the introdution of the mathematial (numerial) model results innoise �ltering. For the geometry of Fig. 8 (left), we ompute the WSS omputedon a seleted internal wall. In order to quantify the auray of this solution weompare the assimilated WSS with the one assoiated with a referene solution,we introdue the index of auray EWSS = ‖WSS−WSSFE‖2/‖WSSFE‖2where WSSFE is the value retrieved from the referene solution. In orrespon-dene of dereasing values of signal to noise ratio11 (SNR), the WSS errors11We de�ne the signal to noise ratio as the ratio between the maximum of the absolute56



SNR EWSS,DA EWSS,FW100 0.2536 0.266720 0.2591 0.303010 0.2738 0.38615 0.3149 0.6114Table 1: Comparison of relative errors for the WSS omputed with DA andforward solution.obtained with the assimilated veloity �eld, EWSS,DA, ompared with those ob-tained from a forward simulation on the same grid with the same noisy measures(used for DA) as boundary data on the in�ow setion are reported in Tab. 1.With high SNR the gain obtained with DA is not signi�ant, however as wederease SNR we an obtain up to the 50% of gain with respet to the forwardsimulation.4.1.2 Bayesian approahA Variational Bayesian approah to the assimilation problem is possible. Thisformulation features an overlap between statistial and variational tehniques;both point estimators and on�dene regions for the veloity are onsidered.Here, we reall the method for the omputation of the MAP and ML estimators(see Setion 2.2) and present some numerial results that illustrate how theknowledge of the nature of the measurement noise an signi�antly improve thequality of the estimation with respet to the deterministi estimates.We assume to deal with disretized variables, all treated as random; in theremainder of this Setion the bold variables denote random vetors while theapital plain variables a spei� realization. With an abuse of notation weintrodue the random variable H whih desribes the normal stress of the �uidat the in�ow setion; M is the random variable that desribes the measures and
ν the noise perturbing the measurements. We let pH be the p.d.f. of H, or itsa priori distribution, and pν the one of ν; these distributions are assumed to beknown. As desribed in Setion 2.2 the purpose of the Bayesian proedure isto estimate the posterior distribution pH|M exploiting the Bayes formula (5) inthe form

pH|M =
pM|H pH

pM

; (56)where pM is the p.d.f. of the measures.First, we assume that the relation between the random vetors H and U,the random variable that desribes the veloity, is linear (i.e. we onsider thelinearized NSE), then we treat the nonlinear ase.In the linearized formulation H and M are related by the following additivenoise relation
U + ν = M ⇒ ZH + ν = M. (57)value of the signal and the standard deviation of the noise57



Here, the observation operator between H and M (see the example in Setion2.2 for Gaussian vetors), is atually the inverse of a (disrete) di�erential op-erator; Z = DS−1RinMin has been introdued after (52) and it desribes thedeterministi relation between the veloity and the normal stress. The randomvariable ν aounts for the measurement noise. We make the assumption of mu-tual independene of U and ν. Sine H and U are related by a linear relationthis implies the independene of H and ν. As a onsequene, the p.d.f. of ν isindependent of any realization of H and the likelihood funtion, pM|H , an beexpressed as
pM|H(M) = pM|H(ν + ZH) = pν(M − ZH). (58)Next, we onsider the realization M = d (the vetor of available veloity mea-sures introdued previously), we have

pH|M (H) ∝ pM|H(d) pH(H) = pν(d− ZH) pH(H). (59)Now we make the assumption that all variables are Gaussian and we de�ne thea priori distribution and the noise distribution as follows
pH = gH ∝ exp

{
−1

2
(H −H0)

TΛ−1
H (H −H0)

}
,

pν = gν ∝ exp

{
−1

2
(ν − ν0)

TΛ−1
ν (ν − ν0)

}
;

(60)where H0 and ν0 are the expetation values and ΛH and Λν are the orrelationmatries for H and ν respetively. The analysis of Setion 2.2 shows that theposterior distribution pH|M is a Gaussian distribution itself with ovariane andmean given by
ΛH|M = (Λ−1

H + ZTΛ−1
ν Z)−1,

E(H) = Λ−1
H|M (ZTΛ−1

ν (d− ν0) + Λ−1
H H0).

(61)We reall that the mean value of the posterior distribution is the value thatmaximizes pH|M , and then, by de�nition, it is the MAP estimator of H, say
ĤMAP . On the other hand, the value that maximizes the likelihood funtion,with respet to H , orresponds to the ML estimator for H and has the followingexpression

ĤML = (ZTΛ−1
ν Z)−1(ZTΛ−1

ν (d− ν0)). (62)In treating the nonlinearity we onsider an iterative approah similar to thedeterministi one desribed in the previous Setion; in fat, also in this ase, werely on the Newton method for the NSE. The distribution pH|M for the non-linear model is still Gaussian, the following algorithm is used to determine itsmean and ovariane. 58



Given a guess for the random vetor Uk = Zk ĤMAP,k at iteration k + 1,
(1) ompute ΛH|M,k+1 = Λ−1

H + ZT
k Λ−1

ν Zk

(2) solve ΛH|M,k+1(ĤMAP,k+1) = ZTΛ−1
ν (d− ε0) + Λ−1

H h0,

(63)until a onvergene riterion is satis�ed.Here, for Zk = DS−1
k RT

inMin we de�neSk =

[ C + Ak BTB O ]
. (64)

Ak is the disretization of the advetion operator with advetion �eld Uk, theveloity vetor assoiated with the normal stress E(H)k. Note that with thisformulation H and U, at eah iteration, are related by a linear model and, forthis reason, U an still be onsidered normally distributed.Numerial tests. We assume to have an exat, analyti, solution of theNSE and we ompare the auray of the MAP and ML estimators vs. the�deterministi estimator� introdued in the previous Setion, i.e. the solutionof the variational formulation. The index of auray is related to the veloity�elds, Û, retrieved from ĤMAP , ĤML and Ĥdet (the deterministi estimate); itis de�ned as E(Û) = ‖Û−Uanl‖2
‖Uanl‖2

, whereUanl is the disretized analyti solution.We also de�ne an average error over a set of noise realizations {ν}n
i=1, E(Û) =

1
n

∑n
i=1 E(Û, i) where E(Û, i) is assoiated with the i-th realization of noise νi.In addition, we onsider a measure of the gain, γ, in using statistial estimatorsas opposed to deterministi ones: γ = 1− E(Ûstat)

E(Ûdet
where stat stands for eitherMAP or ML.The details of the numerial tests are fully reported in [19℄.In a square domain we onsider data on Γin and internal data loated on 10internal slies. In Table 2 we report results obtained in orrespondene of SNRof 20 and 10. In the omputation of ĤMAP and Ĥdet the regularization param-eter α = 0.5 is hosen empirially (left table in Tab. 2). In the omputationof ĤML and Ĥdet on the right table the regularization parameter α is set to 0.From the results we infer the following fats. (1.) Compared to the determin-isti estimator, the statistial estimators are always more aurate sine theytake into aount additional information brought by statistial properties of thedata. (2.) The omputational time required in solving the statistial formula-tions is, in average, 1.3 times bigger than the one required by the deterministione. (3.) The poor gain in orrespondene of SNR = 20 means that statistialinformation assoiated with a low amount of noise is not signi�ant enough tomake a onsiderable di�erene with respet to deterministi estimates in termsof auray.As a seond example we onsider the same problem setting of the previousSetion for the �ow in a ylinder, see Figure 8 (right); we onsider measures59



SNR EU,det EU,MAP γ20 0.0822 0.07371 10%10 0.1394 0.1041 25% SNR EU,det EU,ML γ20 0.0855 0.0579 6%10 0.1675 0.1363 18%Table 2: Auray results for statistial and deterministi solutions for the NSE.SNR EU,det EU,MAP γ20 0.0396 0.0308 22%10 0.1423 0.0978 31%Table 3: Auray results for statistial and deterministi solutions for the ax-isymmetri ase.on the in�ow boundary and internal data loated on 5 internal slies. We onlyompute the MAP estimator (the problem for the omputation of ĤML is ill-posed). In this experiment α = 1e-7; results in Table 3 show that with the MAPestimator we have a signi�ant gain in auray. Moreover, the omputationaltime required by the statistial estimators is the same as for the deterministione.4.1.3 Weighted least squares �nite element methodAnother approah to the assimilation of measured veloities has been proposedin [39℄. This work is mainly inspired by the development of a new experimentaltehnique, the partile imaging veloimetry [40℄, that an be used to determinetwo omponents of the blood veloity along a single plane within the ventrileof the heart. The proposed method relies therefore on the hypothesis that themeasures are olleted inside a three-dimensional region on a two-dimensionalplane (as in Figure 7); the latter is basially treated as a (arti�ial) boundary.This variational tehnique exploits a weighted least squares �nite elementmethod (WLSFEM), based on the LSFEM [9, 10, 11℄; the latter has been uti-lized in general for the solution of PDEs. It features great �exibility in the en-forement of various types of boundary onditions. However, the LSFE methodhas been also applied to inverse problems sine the 90's for the numerial solu-tion of PDE onstrained ontrol problems; main ontributors are Bohev andGunzburger [9, 10, 11℄.If we onsider the problem of solving the following generi boundary valueproblem
Lu = f in Ω

u = g on ∂Ω,
(65)where L is a �rst order linear di�erential operator and J(u) is a ost funtionalde�ned as

J(u) = ‖Lu− f‖2L2(Ω) + ‖u− g‖2
H1/2(∂Ω). (66)60



Then, the LSFE solution u is obtained as the minimal of J(u).Assume we haveNs measures di(x) of the variable u on some layers, Γ1, . . . ,ΓNs ,internal to Ω. We want to perform DA for problem (65), i.e. we want to merge
{di} and the numerial solution of (65). The idea of the WLSFEM is to addpenalization terms to the funtional J . The internal layers are onsidered partof the boundary and the orresponding measures are treated as boundary data;these terms are then properly weighted aording to the level of on�dene ofthe measure. Thus, the ost funtional is de�ned as

Ĵ(u) = J(u) + w1‖u− d1‖2H1/2(Γ1)
+ . . . wNs‖u− dNs‖2H1/2(ΓNs ), (67)where w1, . . . , wNs are the weights. Note that (1.) with the introdution ofthese additional terms that penalize the di�erene between the observed dataand the solution, the assimilation is weakly enfored; (2.) DA introdues anadditional exra ost to LSFE alulation.When applying the WLSFE method to the NSE one has to keep in mind thatit is designed for �rst order linear di�erential operators; thus, we must reastthe �uid dynami equations into a linearized �rst order di�erential system. Tothis end, we onsider a non-primitive variable set: we introdue the variable

ω = −∇× u, the negative vortiity, and the variable
r = ∇p+

√
Re

2
∇|u|2,ommonly referred to as the �gradient of pressure�, where Re is the Reynoldsnumber. Then, we apply the WLSFE method to the equivalent problem in Ω(see [39℄ for details on how to derive the following system)

∇× u + ω = 0

∇ · u = 0

1√
Re
∇× ω − r−

√
Re(u× ω) = 0

∇ · ω = 0

∇× r = 0

∇ · r−
√
Re(ω · ω)−Re(u · r) = 0.

(68)
The optimization problem, formulated as in (66) with Lu = f given by equations(68), is then solved with standard tehniques from the alulus of variations.Again, we stress the fat that, being L a linear operator, the ost of the WLSFEformulation is of the same order of the solution of the NSE. However, thisapproah, as opposed to primitive variables formulations might be less onduivethan the straightforward inlusion of available measures.Numerial tests. Consider a ylindrial geometry and assume the measuresto be loated on internal layers parallel to the �ow; in Figure 9 (left) the noisydata on the layer rossing the axis of symmetry of the ylinder are reported.61



It is also assumed that the noise a�ets the boundary data (whereas in [18℄they are onsidered exat), whih is always the ase in real appliations. Forthe numerial solution with the WLSFE method the boundary and internaldata are properly weighted aording to the noise level (assumed known in thispartiular experiment); the assimilated solution, on an internal layer lose tothe measurement one, is reported in Figure 9 (right). The �ltering ation of theDA on the noise is evident. Quantitative analysis, not reported here, reveals agood level of auray [39℄.
Figure 9: On the left the syntheti measures generated adding Gaussian noiseto an analytial solution are reported on a layer rossing the axis of symmetry.On the right, on a layer lose to the one where the measures are olleted, theassimilated veloity is reported. Adapted from [39℄.4.1.4 WLSFEM as a Bayesian approah to DAIn [21℄ a reinterpretation of the WLSFEM in terms of Bayesian approah to DAis proposed; in fat, in [39℄ the method is not presented in an inverse problemframework. Here we show that the WLSFE solution an be interpreted as themaximum a posteriori (MAP) estimator in a variational Bayesian approah toDA, for a ertain hoie of a priori distribution and likelihood funtion. Astatistial interpretation of the weights is also provided.In desribing the method we refer to the general boundary value problem(65). We reall that in a Bayesian approah to DA all variables are treated asrandom, the goal is to determine the p.d.f. of u onditioned on realizations ofthe measures d1, . . . dNs available on the internal layers Γ1, . . .ΓNs . We assumethat the measures are a�eted by the measurement noise ν1, . . . νNs suh that
di(x) = u(x)|Γi + ν(x)i, for i = 1, . . .Ns. To apply the Bayes theorem we needto de�ne an a priori distribution for u, pu, based on our prior belief on u anda likelihood funtion for the measurement noise νi, pν,i. In order to show theequivalene between the WLSFE deterministi solution, or WLSFE estimator,and the MAP estimator in the Bayesian setting we make the following hoies.We de�ne a prior distribution whih is large when u satis�es the governingequations (65) �well� and small otherwise; in this way the prior desribes towhat extent the equations are a good model for the observations. Formally

pu(u) ∝ exp {−J(u)} ,where J is de�ned as in (66).Next, in de�ning the likelihood funtions for νi, we assume that the measure-ment errors νi are independent and normally distributed with null mean and62



variane 1
2wi

, being wi the weights introdued in the previous Setion. Applyingthe Bayes theorem we have
pu|d1...dNs

∝ exp
{
−J(u)− w1‖u− d1‖2H1/2(Γ1)

+ . . . wNs‖u− dNs‖2H1/2(ΓNs )

}
⇒

pu|d1...dNs
∝ exp

{
−Ĵ(u)

}
,for Ĵ as in (67). The MAP estimator is then the value of u that maximizes theposterior distribution pu|d1...dNs

, thus
ûMAP = arg max pu|d1...dNs

= arg min Ĵ(u) = uWLSFE,This leads to the onlusion that the WLSFE solution, uWLSFE, is atually aBayesian estimator for the variable u; thus, we have the following statistialinterpretations- the mathematial model enodes our prior belief on u;- the data is a orreting likelihood;- the weights re�et the variane of the measurement noise, i.e. are an indexof the reliability of the measures.This proedure, and the assoiated onsiderations, naturally apply to the�rst order form of the NSE so that the veloity estimated via WLSFEM is aBayesian estimator. The latter di�ers from the one introdued in [19℄ in thehoie of the prior distribution and likelihood funtion. The �rst approah isertainly more general as does not require the measures to be on a plane andmore straightforward beause formulated for the primitive variable, on the otherhand, the seond is omputationally heaper as it deals with the reast (linear)form of the NSE. As for the auray, an extensive omparison is still missing.4.2 Estimation of the arterial ompliane from measure-ments of displaement: an inverse �uid-struture in-teration problemAs a seond example, we onsider the estimation of the ompliane of an artery.The problem onsists of estimating the ompliane of an artery wall, based on(noisy) data of the displaement of the wall, obtained using medial deviessuh as Magneti Resonane Imaging (MRI) during an heart beat. We fouson two approahes that have been reently adopted in the literature. In [59℄a variational approah is pursued: the ompliane is used as ontrol variablefor minimizing the mis�ts between the results of a �uid-struture interationproblem and the displaement of the vessel (possibly retrieved from images). In[6℄ a Redued Order Unsented Kalman Filter is advoated to solve the sameproblem. In the following we summarize these two approahes and presentsome results of these works. For details we refer the reader to the orrespondingworks. 63
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sFigure 10: Representation of the domain of the FSI problem: �uid domain onthe left, struture domain on the right.4.2.1 Problem formulationWe onsider a domain of a vessel (struture domain) perfused by blood (�uiddomain) as depited in Figure 10. We make the simplisti assumption that thevessel is (linearly) elasti, with the stress tensor σs depending on the vesseldisplaement η as

σs(η) ≡ γ1(∇η + (∇η)T ) + γ2(∇ · η)I,where
γ1 :=

E

2(1 + ν)
, γ2 :=

Eν

(1 + ν)(1 − 2ν)
,are the Lamé onstants, I is the identity tensor, E is the Young's modulus and

ν is the Poisson's ratio. For the sake of notation, we fator the Young's modulus
E out of the stress tensor, and so that we an write

σs = E σ̃s, σ̃s :=
1

2(1 + ν)
(∇η + (∇η)T ) +

ν

(1 + ν)(1 − 2ν)
(∇ · η)I.The vessel deforms under the stress oming from the blood, and in turn, theelasti struture of the vessel a�ets the blood �ow. This problem has beenlargely investigated in other Chapters of this book (see also e.g [24℄). For thesake of numerial approximation of the problem, the problem is formulated on aframe of referene moving with the physial wall of the artery and �xed on thearti�ial boundaries (in�ow/out�ow). This approah is known as the ArbitraryLagrangian Eulerian (ALE) formulation, see, e.g [41, 20℄. We write the problemaording to the ALE frame of referene. At time t the blood veloity u andpressure p live in the �uid domain Ωt

f , whereas the vessel displaement η lives inthe struture vessel domain Ωt
s. We denote the interfae between the �uid andthe solid domains with Σt (see Figure 10). It is more onvenient to model thestruture displaement η in the referene on�guration Ω̂s; we denote a variablein the referene on�guration with a ,̂ e.g. η̂.
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1. Fluid-Struture problem. Find �uid veloity u, pressure p and struturedisplaement η suh that




ρf

DAu

Dt
+ ρf ((u−w) · ∇)u−∇ · σf = ff in Ωt

f × (0, T ),

∇ · u = 0 in Ωt
f × (0, T ),

ρs

∂2η̂

∂t2
−∇ · (E ̂̃σs) = f̂s in Ωs × (0, T ),

u =
∂η

∂t
on Σt × (0, T ),

σs n− σf n = 0 on Σt × (0, T ),(69)where σf (u, p) = −p I + µ(∇u + (∇u)T ), ρf and ρs are the �uid andstruture density, µ is the onstant blood visosity, ff and fs are the foringterms. Here, DA

Dt
is the so alled ALE derivative and w is a lifting of theveloity at Σt in Ωt
f . Typially (but not neessarily) this lifting is obtainedby solving a Poisson problem (harmoni lifting). At the inlet and outletsetions, proper boundary onditions have to be presribed. In partiular,it is important to use absorbing boundary onditions at the outlet toavoid unphysial solutions. The two mathing onditions enfored at theinterfae are (69)4 (ontinuity of �uid and struture veloities ) and (69)5(ontinuity of stresses).Before moving to the problem of the estimation of the parameters, to redueomputational osts a simpli�ed set of equations for the Fluid-Struture Inter-ation (FSI) problem an be used. In fat, for large arteries, the wall thiknessis in general signi�antly smaller than the dimension of the lumen, so that thearterial wall an be desribed as a 2D surfae rather than a 3D struture. If wealso assume that the displaement ours only in the normal diretion12 it anbe shown [57℄ that the struture equations redue to

ρshs

∂2η

∂t2
+ Eβη = fswhere η refers to the normal displaement on the boundary of the vessel, β isa parameter embedding both geometrial and physial properties of the mem-brane, whose expression is given by β = hs

1−ν2 (4k2
m − 2(1 − ν)kg). Here kmand kg are respetively the mean and gaussian urvature of the membrane and

hs is the wall thikness. Disretizing the problem in time (using for instanebakward Euler) and imposing the onservation of the normal stresses on the12This assumption may be questionable for arteries lose to the heart (like the aorti arh),however it is in general quite aeptable. 65



interfae, the Fluid-Membrane Interation (FMI) problem an be written as




ρf

∆t
(un − un−1) + ρf ((u∗ −w∗) · ∇)un +∇ · σf = ff in Ω∗

∇ · un = 0 in Ω∗

un · τ = 0 on Σ∗

n · σfn +

(
ρshs

∆t
+ Enβ∆t

)
un · n =

(
ρshs

∆t
un−1 · n− Enβηn−1

) on Σ∗

ηn = ηn−1 + ∆tun · n on Σ∗(70)where τ is any unit versor in the tangent spae to Σ∗. Notie how the e�et ofthe struture is now expressed as a Robin-type boundary ondition for the �uidequations. The supersript ∗ denotes a suitable extrapolation of the quantity atthe time tn. Notie that if we use a semi-impliit sheme to deal with onvetiveand geometri non-linearities, so that Ω∗ = Ωn−1 and the �uid and strutureequations are then deoupled (within the time step). In partiular, the equationfor ηn an be promptly solved one the �uid equations have been solved. Wewill make use of this model in the following Setions.4.2.2 Parameter estimation problemThe displaement of a vessel an be retrieved from images properly segmentedand registered in time. This means that at eah available snapshots, the ar-terial wall is reonstruted as a triangulated surfae; then, a map is properlyomputed to identify the image of eah point at the subsequent snapshots (seee.g. [53, 61℄). The map is obtained by minimizing the mismath between theimage of its appliation to a snapshot and the suessive one. In partiular wedenote by τk the instants when images are available and by ∆τ the length ofeah time interval. One the map is omputed, the displaement is promptlyavailable. In [61℄ for instane the Iterative Closest Point riterion is used toquantify the mismath and to ompute the map. Our goal now is to estimatethe ompliane of the vessel suh that the mismath between the retrieved andthe omputed displaement is minimized. To this end, we introdue the follow-ing ost funtional
J1 =

1

2

N∑

k=1

∫

Σ

(ηmeas(x, τk)− η(x, τk))
2
dσ. (71)where η(x, τk) solves equations (69) at instants τk and ηmeas is the (noisy) ob-served displaement. Here, we are assuming to have a ontinuous displaement�eld ηmeas de�ned on Ωs. In ase we only have sparse measurements of thedisplaement, it is reasonable to use the following ost funtional

J2 =
1

2

N∑

k=1

M∑

j=1

‖∆ηj, k‖2R−1
k

, (72)66



where ∆ηj, k = ηmeas(xj , τk)− η(xj , τk), R−1
k is a weight s.p.d. matrix. Shouldprobabilisti information on the displaement be available, R−1

k is the ovarianematrix of the noise of the displaement retrieval proess.As antiipated, we onsider two approahes to solve this problem: a deter-ministi variational approah and a Kalman-based approah.Remark 4.2 Typially, the time step ∆t of the numerial sheme is smallerthan the time sample ∆τ , requiring more observations than those available. Aommon pratie is to reover the observation at needed time steps by interpo-lation. In the following we will use this approah.Variational approah In order to minimize J1 we an use a gradient basedoptimization approah as disussed in Setion 3.2. However, as outlined there,the solution of an unsteady minimization problem, suh as the FSI problem,would be very expensive beause all the steps are oupled toghether, and itwould also require the evaluation of shape derivatives sine the geometry isevolving in time. To redue the omputational osts and the algorithm om-plexity, we exploit the fat that the parameter E does not hange in time andsolve the following suboptimal problem. First, we disretize the system in time.Then, at eah time instant tn we solve a steady suboptimal optimization prob-lem, �nding the value En whih minimizes the funtional
J n

3 =
1

2

∫

Σ

(ηmeas(x, τn)− η(x, τn))
2
dσ, (73)onstrained by the time-disrete �uid-struture interation problem at time tn.Finally, we ompute E as the average of En: E = 1

N

∑N
n=1E

n.Numerial solution For the sake of larity, we fous on the simpli�ed mem-brane model (70), already disretized in time. However, note that the optimiza-tion strategy desribed in the following, has been applied to the original FSIproblem (69) in [59℄. When onsidering the membrane approximation, the ostfuntional Jn
3 beomes

J n
m =

1

2

∫

Σ

(ηn
meas − ηn)2 dσ,and the adjoint of problem (70) reads 13





ρf

∆t
(χn − un−1)− ρf ((u∗ −w∗) · ∇)χn +∇ · σf (χn) = ∆t(ηn

meas − ηn)n in Ω∗

∇ · χn = 0 in Ω∗

χn · τ = 0 on Σ∗

n · σf (χ)n +

(
ρshs

∆t
+ Enβ∆t

)
χn · n = 0 on Σ∗

ηn = ηn−1 + ∆tχn · n on Σ∗.13see (37), and note that here the adjoint variable is denoted with χ as in this ontext ρ isused for the density. 67



The gradient of the ost funtional with respet to the parameter En is obtainedusing the adjoint variable χ and relation (38), whih, for the problem at handreads
DJ n

m

DE

∣∣∣∣
En

= −
∫

Σ∗

β
(
∆tun · n + ηn−1

)
(χn · n)dσ.The optimization is performed using the BFGS method. In partiular, at eahtime step, for a given initial guess of the parameter En,(0), the BFGS methoditeratively provides parameter guesses En,(j), based on the values of the ostfuntional J n

m

(
En,(j−1)

) and its derivative DJm

DE

∣∣∣∣
En,(j−1)

. The iterative proe-dure stops when the norm of DJm

DE

∣∣∣∣
En,(j−1)

is less than a given tolerane.Remark 4.3 BFGS is a method devised for unonstrained optimization, whilethe problem at hand features the onstraint E > 0. Unilateral onstraints anbe managed as indiated in [58℄. Here, we inlude this, with a simple hange ofvariable, by using as a ontrol variable ψ = log(E), so that E = exp(ψ) > 0 forevery ψ.Numerial results on a simpli�ed geometry representing an abdominalaneurysm In the numerial results presented in this Setion, we will use thesimpli�ed membrane model (70). The optimization strategy depited above,however, an be equally applied to this simpli�ed problem.We onsider a 2D axisymmetri geometry whih represents an abdominalaneurysm (see Figure 11, top-left). The radius of the vessel varies from 1 cmto 2.5 cm and the vessel length is 6 cm. We perform a syntheti simulation inwhih we presribe the pieewise linear Young's modulus shown in Figure 11(bottom-left). For the forward simulation, we take Ea = 4 · 106 dyne/cm2, Eb =
107 dyne/cm2, Ec = 5 · 106 dyne/cm2. We presribe at the inlet a parabolipro�le for the veloity, whose maximum umax lies on the axis of symmetry andit is given by

umax = u0
max +Amax

{
sin

(
2πt

T

)
; 0

}
,where u0

max = 5 cm/s, A = 55 cm/s and T = 0.6 s. At the outlet we presribethe absorbing boundary onditions proposed in [57℄. We run the simulationfor two heart beats, i. e. for 0 < t ≤ 2T . We add a uniform noise νP tothe forward displaement ηfwd and we use the result as data for the ontrolproblem. In Figure 11 (bottom-right) we report a omparison between thedisplaement obtained with the forward simulation, the noisy data and theomputed displaement at time t = 0.96 s. The agreement is very good.In Table 4, we report the average, over the 10 realizations, of the estimatedvalues of Ea, Eb and Ec and the number of times the state and the adjointproblem have needed to be solved. Di�erent noise perentage P are onsidered.The initial guess is Ea,0 = Eb,0 = Ec,0 = 2 · 107dyne/cm2. The estimated68
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Figure 11: Aneurysm simulation. Top-left: mesh used for the simulation.Bottom-left: pieewise linear approximation of the Young's modulus E in theforward simulation. Top-right: Veloity vetors and pressure at time t = 0.96 s.Bottom-right: Comparison between the displaement obtained with the forwardsimulation, the noisy data and the omputed displaement, at time t = 0.96 sand for P = 0.1.SNR Ea Eb Ec iter.(state|adjoint)
34 4.047± 0.118 10.19± 0.295 5.194± 0.240 12.9|3.5

(1.2%) (1.9%) (3.9%)
17 4.034± 0.281 10.40± 0.505 5.507± 0.584 14.8|3.8

(0.9%) (4%) (10%)
8 4.200± 0.550 10.89± 0.850 − 16.0|4.2

(5%) (8.9%)Table 4: Noisy ase. Mean and standard deviation (to be multiplied by 106)of the ten estimates for Ea, Eb, Ec and number of state and adjoint iterations(bottom) for di�erent values of the noise perentage P . The initial guess is
Ea,0 = Eb,0 = Ec,0 = 2 · 107dyne/cm2.values for P = 0.1 and P = 0.2 are quite aurate. For P = 0.3 we do not �nda onverged value for Ec. To overome this problem, we add a regularization69



term to the ost funtional J n
3 , penalizing values of E far from the initial guess.Table 5 shows that the regularization term is e�etive. The estimates for Ec arestill the more sensible to the noise, but now the estimated values are aeptable.In the �rst time steps of the simulation, the displaements omputed by the FSIsolver are very small for x > 3 cm, hene the data is dominated by the noise inthat region. This fat an be an explanation of the high sensibility to the noiseof the estimated value for Ec.SNR Ea Eb Ec iter.(state|adjoint)

34 4.032± 0.119 10.15± 0.320 5.123± 0.129 13.1|3.7
(0.8%) (1.5%) (2.5%)

17 4.222± 0.238 10.17± 0.510 5.349± 0.368 14.2|3.6
(5.5%) (1.7%) (7.0%)

11 4.446± 0.426 10.57± 0.780 7.036± 3.90 15.5|4.1
(11%) (5.7%) (41%)

8.3 4.386± 0.570 11.09± 1.519 7.802± 4.12 16.9|4.1
(9.6%) (11%) (56%)Table 5: Noisy ase with regularization term. Mean and standard deviation (tobe multiplied by 106) of the ten estimates for Ea, Eb, Ec and number of stateand adjoint iterations (bottom) for di�erent values of the noise perentage P .The initial guess is Ea,0 = Eb,0 = Ec,0 = 107dyne/cm2.Redution of the Computational Costs via POD In this Setion weshow an example of how the POD proedure explained in Setion 3.3 an beused for reduing the omputational osts of the problem of the estimation ofthe Young's modulus explained in the previous paragraph. We will assume thatthe struture is approximated as a 2D membrane, whih allows us to use thesimpli�ed model (70). Furthermore, we divide the struture in a predeterminednumber k of regions along the axial diretion of the vessel, and we onsider thease where the Young's modulus is globally pieewise onstant, with a onstantvalue in eah (predetermined) region. This hoie is driven by both pratialand theoretial reasons. On one hand, it an allow us to model the senariowhere, due for instane to the presene of some pathology, the loal propertiesof the tissue are altered. On the other hand, this hoie guarantees the existeneof a solution for the inverse problem, as shown in [59℄.To show why a POD approah is reasonable, let us onsider a �ow in aylinder, where the membrane has been divided in three regions in whih theYoung's modulus is onstant, and let us onsider for the in�ow a sinusoidalpressure wave of the type

p(t) = 500 sin(50πt).We solve the forward problem for di�erent values of eah of the Young'smoduli in the three regions and we ompute the orrelation matrix of the Finite70



Figure 12: Example of pieewise onstant (along the axial diretion) Young'smodulus.Element snapshots for �uid veloity, denoted uh, and membrane displaement,denoted by ηh. The number of degrees of freedom is 9186 for the �uid veloityand 3540 for the membrane displaement.
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Figure 13: Singular values of the veloity (left) and membrane displaement(right) snapshot matrix. Here we hose E = (E1, E2, E3), with Ei ∈ {1, 1.5, 2} ·
106 dyn/m2, and performed 60 time step.The �gures suggest that the unknowns an be well approximated by vetorsbelonging to spaes of dimensions muh lower than the orresponding FiniteElement ones. Therefore, it is natural to think to POD, as a possible strategyto redue the omputational osts.At time tn the fully disrete Inverse Fluid-Membrane Interation (IFMI)problem reads: �nd En

opt suh that
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(74)where P is a projetion matrix, that extrats the normal omponent of theomputed veloity on Σ. Here the dependene of the veloity matrix C and the71



veloity right hand side fh on Eh omes from the Robin boundary onditionsin (70). We also point out that here we swithed to an inremental formulationfor the pressure, and we inluded the term BT pn−1
h in fn

h (Eh) for the sake ofbrevity.To generate the POD basis, we solve the forward problem (70) for di�erentvalues of the Young's modulus and we store the snapshots at eah timestep.By this we mean that un
h and un+1

h are two di�erent snapshots, even if theyorresponds to the same Young's modulus. However, we expet the solutionto hange smoothly in time, and therefore the singular values of the snapshotsmatrix should deay fast. This is on�rmed by the numerial experiments, aswe showed in Figure 13.When building our redued order model for the FMI problem, we wantto exploit the divergene-free veloity snapshots. Assume we have stored theveloity vetors in the matrix Wu. When we projet the momentum equationonto the range of Wu we obtain
WT

u Cun + WT
u BT δpn

h = WT
u f

n
h (75)Should the geometry be onstant in time, then the produt WT

uBT = (BWu)Twould be identially zero, being the disrete spae divergene-free, and the pres-sure inrement term would disappear. When the geometry is moving, this is nottrue, sine eah snapshot is stritly speaking divergene free only in the geom-etry in whih it was omputed. However, for a small time step (and for smalldisplaements) we do expet the inrement δpn to be small. For the sake of theomputational osts, we drop the pressure orretion term in the redued prob-lem. This an be regarded as an expliit treatment of the pressure in the timeadvaning sheme. One the redued momentum equation has been solved, thepressure an be reovered by solving the least square problem in the full FiniteElement spae, that is,
pn

h = min
qh∈Qh

||fn
h − Cun

h − BT q||2 (76)The solution to this problem exists and is unique, provided that the veloityand pressure FE spaes satisfy the inf-sup ondition, whih guarantees that BThas full olumn rank. In order to have a representation of the pressure in theredued spae, one has to make sure that the redued saddle point problem isnon-singular. In literature this issue has been takled by enrihing the veloityredued spae [65℄.We therefore onstrut the redued basis only for the �uid veloity and mem-brane displaement �elds. To this end, we solve the forward problem for a givenset of Young moduli E1, . . . EM and store the orresponding solutions (snap-shots) uh,i, ηh,i. In order to deal with non-homogeneous boundary onditionsat the in�ow/out�ow setions, we modify the veloity snapshots in the followingway
ûh,i = uh,i − uℓ (77)where uℓ is the solution of a steady rigid-wall Stokes problem used as a liftingfuntion for the non-homogeneous boundary onditions. This hoie allows us72



to preserve the divergene-free nature of the snapshots whih are then olleted(amended by the lifting) in the snapshots matries Xu and Xη. We omputethe SVD of these matries and let Wα be the matries ontaining the �rst kαleft singular vetors of Xα (α = u, η), with kα suh that
kα∑

i=1

σi ≥ τ

Nα∑

i=1

σi (78)where σi are the singular values of Xα, τ is the fration of data variability thatwe want to apture (typially we take τ = 0.9, 0.95 or 0.99) and Nα is thedimension of the FE spae. The olumns of Wu and Wη form the redued basisfor the �uid veloity and membrane displaement spaes.If we projet the IFMI problem (74) onto the redued spae, we then obtain
En
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n
meas, and the dependene of C and fn

h on E is understood forbrevity.The minimization problem is then solved as in the previous Setion, usingthe BFGS method. In partiular, in order to evaluate the funtional and itsgradient, we solve the state and adjoint problems respetively, whih are givenby 
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(Adjoint)

(80)Numerial results on an idealized aorti arh In this Setion we studythe �ow in a urved pipe resembling the shape of an idealized aorti arh. Inpartiular, the geometry onsists of a half torus joint with a ylinder. We hosethe major and minor radii of the torus (i.e. the distane between the enter ofthe torus and the enterline of the pipe and the radius of the pipe respetively)to be R = 1.5cm and r = 0.5cm, while the length of the ylindrial part is
L = 5cm. At the in�ow/out�ow setions we presribe the Neumann onditions

pn− ν
(
∇u +∇uT

)
= gnwith g = 0 at the out�ow and g(t) = 500 sin(100πt) at the in�ow.As in the previous Setion, we solve the forward problem for a given Young'smodulus and we store the orresponding membrane displaement. This will73



τ 0.9 0.95 0.99
Nu 5 8 22
Nη 5 7 12Table 6: Dimension of the �uid veloity and membrane displaement POD basisfor di�erent values of the POD threshold for the idealized aorti arh test ase.provide the syntheti measures to be used in the DA proedure. In order to notommit an �inverse rime� we solve the forward problem on a �ner mesh, thenwe add some noise to the omputed membrane displaement and we projet iton the (oarser) mesh used for the solution of the inverse problem. In otherwords, we use the measures given by
ηm = Π ηf,h + ||ηf,h||∞ξewhere Π is a projetion from the �ne to the oarse mesh, ηf,h is the displaementomputed on the �ne mesh, e ∼ U(−1, 1) is a random vetor and ξ is the noiselevel, reiproal of the (SNR).The Young modulus used to generate the measures is E = [1.3, 1.8, 1.3]×106dyn/m2, assuming a pieewise onstant pro�le along the axial diretion. Inpartiular, E1 is the value of the Young modulus for the �rst quarter of the torus,

E2 is the value for the seond quarter, and E3 is the value in the ylindrialpart. For the generation of the POD basis, we use the sample S = {E ∈ R
3 :

Ei ∈ {1, 2} × 106 dyn/m2}. In Table 6 we report the dimension Nu, Nη of theveloity and displaement POD basis for di�erent hoies of the POD threshold
τ . In this test we ompared the redued spae approah with the full spaeapproah (i.e., the minimization in the full Finite Element spae). The historyof the estimates at eah time step for the ase SNR=10 and τ = 0.95 is shown inFigure 14, while in Table 7 we report their performane. The optimal estimatefor the Young's modulus is omputed by averaging all but the �rst 10 time stepsestimates, whih are learly signi�antly a�eted by the initial guess.We an see in addition that the redued spae approah estimates are as goodas the full spae approah. Moreover, the error on the estimates is remarkablysmaller than the intensity of the noise in the measures, for both the approahes,dropping from 10% to about 2%, that shows also how DA �lters the noise inthe measures. Regarding the behavior of the estimates with respet to the PODthreshold, in Table 8 we report the time averages (exluding the �rst 10 timesteps) and the orresponding relative error for three di�erent POD thresholds.Finally, in Figure 15 we show the history of the Young modulus estimates fordi�erent hoies of the POD threshold in the ase of SNR=5. It is interestingto notie that, despite the fat that the level of the noise is as large as 20% ofthe intensity of the signal, the average estimates are still lose to the orretvalues. In partiular, even when using a low dimensional size for the reduedmodel, the optimization proedure learly detets that the Young modulus inthe seond region is larger than in the other two regions.74
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τ = 0.9 τ = 0.95 τ = 0.99
E [1.37, 1.81, 1.32℄×106 [1.34, 1.80, 1.32℄×106 [1.30, 1.78, 1.29℄×106rel. error 2.83% 1.97% 0.87%Table 8: Time average of the estimates and relative error for di�erent values ofthe POD threshold for the idealized arh test ase.4.2.3 A Kalman-based Parameter Estimation ApproahLet us onsider the FSI system after time-spae disretization and linearizationthat we write as

Uk = Ak−1Uk−1 + F k−1,where Uk ∈ R
N is the vetor of veloity and pressure degrees of freedom. Inorder to estimate the parameter E ∈ R

p the augmented state approah is used.De�ne X(k) := [U (k),E(k)], then the system beomes
X(k) = A

(k−1)
X X(k−1)+F

(k−1)
X , A

(k)
X =

[
A(k) 0

0 I

]
, F
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X =
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F (k)
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η(k)
meas = HkX(k) + ν(k).Sine the problem is nonlinear, an unsented Kalman �lter approah (see Setion2.5) is used where (N + p+ 1) sample points (for details see [6℄) are needed toapproximate the average and the ovariane of the evolving state. As explainedin Setion 2.5, the preditor phase onsists in evaluating X

(k)
i for eah sample

X
(k−1)
i , whih requires the solution of the FSI problem (N+p+1) times at eahtime step. This is omputationally prohibitive, therefore a model redution isperformed. The idea is to exploit the fat that the initial ovariane is given by

Λ(0) =

[
0 0

0 Cov (θ(0)
)
]
,76



and to use a fatorized formulation of the unsented Kalman �lter. In this way[6℄ it is possible to use only p + 1 sample points, whih signi�antly reduethe omputational ost of the method when p ≪ N , i.e. when the number ofparameters is muh smaller then the dimension of the state.Consider the idealized 3D geometry of an abdominal aorti aneurysm showedin Figure 16, left. The struture is divided, a priori, in �ve regions featuringdi�erent values of the Young modulus E, orresponding to di�erent olors inFigure 16.The typial displaements and noise reorded in the �ve regions areshown in Figure 16, right.
Figure 16: Left: idealized abdominal aorti aneurysm geometry with subregionsand �uid veloity �eld; displaement and pressure �elds at the outlet as a fun-tion of time. Rigth: Noise ompared to the typial wall displaements in the�ve regions and signal to noise ratios. Adapted from [6℄.Numerial Results Consider the idealized 3D geometry of an abdominalaorti aneurysm showed in Figure 16, left. The length of the geometry, theminimum and maximum diameters are 23cm, 1.7cm and 5cm respetively. ThePoisson ratio, density and visosity of the struture are 0.46, 1.2 g/m3 and
10−3 s, respetively. The �uid density and visosity are 1 g/m3 and 0.035 Po,respetively. A Windkessel boundary ondition is used at the out�ow (see 16for details). We assume to have displaement measures at eah grid point ofthe mesh and that ν(k) ∼ N (0, σ2I). In analogy with the variational approah,omparing the FE disretization of the ost funtional (71) and the ost fun-tional (72), we assume the ovariane matrix Rk to be inversely proportional tothe MΣ

k , the mass matrix on Σ. In partiular we take
R−1

k = βσ−2 τm
Tref

MΣ
k

|Σ| ,where τm is the time sampling of the measurements, Tref is a referene time, and
β is a positive salar used to weigth the importane of the measurements. Alsowe assume that θ(0) ∼ N(0, αI). Figure 17, top, shows the reonstruted Youngmodulus in the di�erent regions, as a funtion of α and β. The oe�ient
β represent the level of on�dene attributed to the displaement measures,whereas α is the a priori ovariane. As expeted, the sensitivity with respet77



to β is higher when α is larger and the sensitivity with respet to α is higher inregions with smaller SNR. Together with the estimated parameters, the Kalman�lter provides also their ovarianes, whih is an important index to evaluatethe on�dene we should have in the results. The results are in fat more (less)reliable when the ovarianes are small (large). The estimated Young moduliand the orresponding standard deviations are showed in Figure 17, bottom.

Figure 17: Top: Estimated Young modulus in the �ve regions as a funtion of
β, for α = 4 (left) and α = 9 (right). The dashed lines represent the referenevalues. Bottom: mean values (thik solid lines) and plus/minus standard devia-tions (thin solid lines) of the logarithm of estimated Young modulus, for α = 4,
β = 100 (left) and α = 9, β = 20 (right). Adapted from [6℄.With respet to the variational method, the �ltering approah has the ad-vantages that only the solution of the forward problem is needed and that itprovides an estimate of the ovariane of the parameters. Also, it is omputa-tionally heaper when the parameter spae is muh smaller than the state spae.However, the nonlinearities are not solved aurately and this an lead to a sub-optimal estimate of the parameters. Also, when the spae of the parameters islarge (e.g. E is a �nite element �eld with as many DOFs as the number of gridpoints), the Kalman approah may beome expensive.
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5 ConlusionsCardiovasular Mathematis is nowadays a mature disipline not only for un-derstanding and improving basi knowledge of diseases, but also for supportingthe linial pratie, with an aurate quantitative estimate, predition, iden-ti�ation of optimal therapies. In partiular, the ommon denominator of thisexiting perspetive is the presene of inverse problems, where problems relatedto blood �ow and FSI, traditionally per se hallenging, need to be solved severaltimes, assimilated to available measures, analyzed with probabilisti tools. Thisis true not only for DA, but also for the identi�ation of the optimal realizationof a therapy or, more spei�ally, of a surgial intervention. For instane, in[56, 50, 49℄ the identi�ation of the optimal plaement of leads for optimizingpae making ation in the heart is addressed; the omputation of a personalizedpatient-spei� peritoneal dialysis is addressed in [62℄, Chapter 7. In Fig. 18 wereport the aorti blood �ow simulated with di�erent options of a Left VentriularAssisted Devie (LVAD) implant; in partiular, the emphasis is on the loationof the annula from the pump. The identi�ation of the optimal loation isstill an open problem whose solution ertainly depends on the patient-spei�morphology.

Figure 18: Simulation of di�erent loations of the annula of a LVAD in a realaorta. Leftmost: pre-op �uid dynamis (images provided by D. Gupta, EmoryUniversity Hospital, image proessing and simulations in ollaboration with M.Piinelli (Radiology, Emory University) and T. Passerini (Math & CS, EmoryUniversity).This proess bringing omplex quantitative analyses from the omputer tothe bedside requires a strong integration with available data, shifting the goal ofperforming a patient-spei� omputation to the patient-spei� �assimilation�[71℄. This is a ruial step for improving reliability of numerial elaborations,reduing unertainty and eventually the risks of failure.Several methods an be pursued to this goal and extensive investigation is79



required to establish the most appropriate approah for the di�erent problems.A genuinely numerial-statistial researh is neessary for understanding howto redue the omputational osts to be able to takle hallenges presentedby linial problems that typially feature short timelines and large number ofpatients.This Chapter intended to o�er a short introdution with a speial emphasison FSI problems to some possible methods and to their interplay. Far to be aonlusive and exhaustive presentation, we aimed at turning on interest for theemerging topi of Inverse CardiovasularMathematis, with the �nal - ambitiousbut possible - goal of introduing mathematially advaned methods in thelinial pratie to improve dotors ativity and - more importantly - patientshealthare.
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