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Outline 1

 Probabilistic estimation theory

 In-Out estimators (stationary)

 Linear Kalman Filter

 Extended Kalman Filter

 Unscented Kalman Filter



Probabilistic Estimation Theory

In-Out Estimation (stationary)

Possible approach: minimize a ”cost function” where E is a s.p.d matrix

After some algebra we get
Minimum Variance estimator

MV estimator is unbiased:



Other possible (reasonable) estimators

MAP: The estimator is the result of maximization of the a posteriori p.d.f.

This is the p.d.f. of w conditionally to a particular measure   

ML: The estimator is the result of maximization of likelihood

This is the w that maximizes the probability to get a particular measure

Remark: 
w

ML
can be regarded as the limit of w

MAP
when we do not have any statistical a priori

knowledge on w (marginal p.d.f. for w) 

Remark 2:

A fundamental tool in these considerations is the Bayes Theorem



Example 1



Example 2



Dynamical (sequential) estimation

OBSERVABILITY



 PREDICTION, deterministic and based on the past

 CORRECTION, i.e. improvement due to the current observation

our best knowledge

of state in (k-1)

THE KALMAN FILTER



If we force the correction to be unbiased, 

Set

Gain matrix
Innovation



Selection of the gain matrix: MV approach

Variance matrices: recursive formulas

If we minimize the variance of the estimate error

Kalman GM

Joseph formula



KALMAN FILTER: SUMMARY



PROPERTIES OF THE KF

Innovation

3. Innovation is orthogonal to the past (with respect to the covariance scalar product)

Moreover:



2.Variance reduction of the correction

Let us consider the ``pseudo-observation''

Then we can write:

Then the Kalman matrix and the correction variance read

s.p.d.



3.Asymptotic behavior (for time-independent dynamics)

Recursive formula for the predictor variance:

If the matrices A, Q and H,R are independent of time:

Difference Riccati Equation

The equilibrium solution of this matrix reads: 

Algebraic Riccati Equation



AN EXAMPLE (easy)



The interplay between stability of the system and of its Kalman estimator is crucial!

We can barely accept an unstable estimator of a stable system!

Theorem: If the system is stable, the estimator is stable and converges to the solution of 

the ARE

REMARKS:

Numerical issues for the KF: the cost is proportional to n3 where n is the size of the system.

Numerical stabiliy issues in the propagation of rounding errors



THE NON-LINEAR CASE: Extended KF (EKF)

Linearization:



Identification problem: the state augmentation approach

EKF with :



THE NON-LINEAR CASE II: Unscented KF (EKF)

Basic idea: we take some samples and then approximate the non-linear dynamics 

with the average/variance of the evolving samples.

Example: scalar variable

Samples:

Approximate 

dynamics

For vector state variables, a possible choice of the smaples (s-points):

Std deviation i-th unit vector







Outline 2

 Variational methods of DA

 (In-Out estimates: Least Squares) 

 Constrained minimization

 One-shot methods (the KKT system)

 Sensitivies

 Adjoint computation of the gradient

 Computational Costs: solution reduction



Constrained minimization problems & control

Ingredients



A reference example

in W

Functional to be minimized

Regularized version
Limitation of the control cost

Tychonov regularization



= 0          Optimality conditions     
Gateaux derivative

The Lagrange multiplier approach:

Unconstrained 

minimization

duality

In the example:

Stationary points

(KKT system)







Summary

(abstract framwork)



A DIFFERENT (non-Lagrange) APPROACH

Critical step



Gradient computation through sensitivities

SENSITIVITIES:

Notice that:

SENSITIVITIES Equations



=

In the Example:

Set 

Major drawback:

1 equation per CV



Gradient computation through adjoint problems

Let us consider the adjoint problem, where  now is the unknown

Then, we can write

In the case of our example, the adjoint problem reads:



Then, we can write the gradients as:

Sensitivities equation

Pro: by solving 1! differential equation we retrieve all the sensitivities

Con: unsteady adjoint problems are backward in time – at the continuous level we 

need to know the solution of the state problem over the entire time interval and then 

come back! High storage/computational costs



A (classical) dilemma



Model reduction in a nutshell

In order to reduce computational costs, we may replace the state model with a ``low-

dimensional'' or reduced order model.

We can represent the solution with a Galerkin expansion

We want to resort to a reduced model in the form

To do: (1) find an appropriate basis set

(2) find M so to include only the relevant information

A possible approach is to pick up off-line snapshots of the state solution (no 

reduction) for different values of the CV (or different values in time) 

A possible approach is the Proper Orthogonal Decomposition (POD)



A general statement on Solution Reduction methods

Number of degrees of freedom

Basis functions

Two ``extreme'' choices

1 JEEP (General purpose)

Basis functions do not include any info of the problem, they can be 

(virtually) used for any problem

→ we need a large number of DOF N "
EXAMPLES: Finite Elements, Spectral Method

2 SMART (Educated)

Basis functions knows something of the problem, they are problem 

specific, not general but

→ we may (significantly) reduce N #
EXAMPLES: Sturm-Liouville Eigenfunctions, Reduced Basis Method, Proper Orthogonal Decomposition





Two words on POD

Assume we have a basis that we want to reduce, from M
1

to M

i=1,2,...M

=

1) average and covariance of the snapshots basis

2) Thresholding: find M s.t. For a given threshold 𝛾:

3) New basis
Normalized



Blood Flow

Model

Control
Control Variables

Input

Velocity (Output)

-

Measurements

Variational assimilation of velocity 

measures in the domain of interest 



The deterministic mathematical problem

Data dConstraint: the NS equations

Control Variable (arbitrary choice): inlet flux h

Minimization problem: 

find   h*  s.t.   

dist (u(h*),d) ≤ dist (u(h),d)
under the constraint of (NS)            

(NS)

Approach: Discretize then Optimize



The discrete problem (Oseen)

Ingredients:

discretized u and p

selection matrix of the measurements sites

Oseen matrix

inflow restriction matrix

inflow mass matrix

Regularizing term

KKT:
Reduced Hessian

where

(sensitivity matrix)



Non-singularity of the discrete problem

Sufficient condition for the non-singularity is that 

the reduced Hessian 𝑍𝑇𝑍 + 𝑎𝐿𝑇𝐿 is p.d. 

1. This is always the case for a>0

2. For a=0, a sufficient condition is 

As expected, this is forcing a condition on the measurements sites
(represented by the matrix Q in D), forcing that a significant part of them is
on the inflow .

M. D’Elia, M. Perego, A. V.,  J Sci Comp



The Nonlinear Case



Axi-symmetric 3D (Poiseuille)          



Non-trivial 2D          



Axi-symmetric 3D (Womersley) – Unsteady!!!          

Challenges of the unsteady case:

1) The initial conditions are not known, they should be part of the identification 

problem. More precisely, periodicity should be enforced.

2) Computational costs ) Model Reduction Techniques

Here, we follow a DO approach, so we optimize at each time step.



Bayesian formulation

Main assumptions: 

 all discretized variables are treated as random

information resides in the probability distributions

 the entities involved are probability density functions (PDFs)

 the method delivers a distribution

(while deterministic methods produce a single estimate)

We predict stochastic features of the variables of interest

the prediction of the uncertainty is based on the knowledge of 

 the measurement process 

 deterministic models available

Goal:   estimate the reliability of results → quantification of the uncertainty 



Likelihood

A   posteriori     distribution

Notation



Here, Z is the deterministic model (sensitivity matrix = Neumann-to-Dirichlet map)

Thanks to the Bayes Theorem

Assume a Gaussian distribution for prior and noise

Posterior is 

We assume an additive noise model 

with and   mutually independent 



Two approaches

Maximum Likelihood

Maximum A Posteriori

The a priori information acts as a Tychonov regularizer in MAP vs det

ML vs MAP: ML represents the limit case when no a priori knowledge is 

available on h

As for h
det

with a   = 0, ML estimator requires conditions on Z





Statistical Spread Estimators

eigenpair of §

FACTS

has a       distribution

A point belongs to the ellipsoid with 

with probability 

Multivariate normal distribution



Goal: quantify how likely velocity and flow related variables are inside an interval of (critical, significant) 
values 

Spread estimators - velocity

We build credibility regions for the velocity



spread estimators – numerical results

test case: same analytic solution, square domain, SNR = 20

input noise: std = 0.1467 

output noise: max std = 0.098

Map of              



spread estimators – numerical results



spread estimators – numerical results

test case: same analytic solution, square domain, SNR = 20

input noise: std = 0.1467 

output noise: max std = 0.098



spread estimators – numerical results



spread estimators – numerical results

test case: same analytic solution, square domain, SNR = 20

input noise: std = 0.1467 

output noise: max std = 0.098



spread estimators – numerical results



spread estimators – numerical results

test case: axisymmetric case, cylindrical square domain, SNR = 20

input noise: std = 0.325, all over the domain 

output noise: max std = 0.376, in a restricted area



spread estimators – numerical results



spread estimators – numerical results

test case: axisymmetric case, cylindrical square domain, SNR = 20

input noise: std = 0.325, all over the domain 

output noise: max std = 0.376, in a restricted area



spread estimators – numerical results



towards real geometries - carotid

Gain ML vs Deterministic estimator: 31%

Map of              



spread estimators – the wall shear stress (WSS)



spread estimators – the wall shear stress (WSS)



Conclusions:

Progressive use of numerical simulations in clinical practice
requires certified reliability

Combination/Integration of Data and Numerical Methods can
be done much stronger

New measurements devices
New mathematical and numerical methods

Proper numerical methods for the integration process need
to be investigated.

Bayesian analysis is a viable approach for improving
reliability of (variational) Data Assimilation







System Dynamics: Bidomain system

Rogers-McCulloch

with

``Mondomain model'' is a significant

simplification under some

(not realistic) assumptions

The Bidomain solutions 

have been proved to be 

strongly sensitive to the 

values of conductivities



Statement of the Inverse Conductivity Problem (Variational approach)

Consider the mismatch functional 

with the admissible set 

Problem:

• Extension to 3D immediate

• Possible regularization (for an available and trustworthy  guess      ) 





Well-posedness analysis



Bueno-Orovio, Cherry, Fenton



Numerical Solution
Forward Problem

Bidomain equations with Rogers-McCulloch model

- Quadratic Finite Elements

- BDF2 Time discretization (FD)

→ In 2D : FreeFem++ (direct solver)

→ In 3D : LifeV (C++ Solver) using an extension of the Monodomain model 

as preconditioner (Gerardo-Giorda et al. JCP 2009)

Inverse Problem

- Optimize then Discretize approach

- Dual equations (backward in time) solved with FEM (space) and FD (time)

Steps:

→ solve the system dynamics (over the entire time interval)

→ solve the dual equations (backward in time)

→ compute the functional at the current guess

→ compute the integral of the functional DJ with the dual equations

→ line search (BFGS)

Stopping criterion





Consistency check in 3D: Truncated Ellipsoid
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An example with a scar ( region with a different conductivity)
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GOAL: to estimate the vessel compliance by 

means of

1.Image registration

2.Control theory

FSI
Model

Control

Measures

Input

Displacement

-

Time frames

E

Image Registration

Example 2 - An Elastography-like approach for Arterial Compliance Estimation

Solution of an INVERSE FSI Problem
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Inverse FSI Problem

Measured displacement

(from the registration step)

Incompressible Navier-Stokes

Linear elasticity

Standard

Two parameters: E and n

+ possible regularizing terms





Variational DA may reduce Uncertainty but with High Computational Costs



P

Surrogate solution based on POD analysis

Snapshots based (POD)
surrogate solution

Small size

For the Inverse FSI problems and the compliance estimation

L.Bertagna, A.V., Inverse Problems (2014)

Proper Orthogonal Decomposition (POD) in a nutshell
1) OFFLINE: compute the solution for different values of the Young modulus (chosen a priori)
2) Filter the Redundancy: compute the SVD of the snapshots and take the eigenfunctions

corresponding to the largest SV
3) ONLINE: Use the eigenfunctions to construct a solution 



A “toy” problem on a 3D cylindrical domain







MAJOR PROBLEM: How to use the offline part for several patients
→ ATLAS of Vascular Geometries

TO DO: In vitro/in vivo validation

POD has a(n expected) regularizing effect

ATLAS of vascular geometries to take advantage of the offline phase with many patients



TO DO - Validation

Cast obtained in Pavia (b-lab) 
with a 3D Printer 

Material with controlled compliance   



POD: Pain and Joy

1) Decay of Singular Values may be not fast – Cardiac conductivities!!!!

2) Nonlinear terms require special attention

Discrete Empirical Interpolation Method

Left: SV for 1 parameter set of Monodomain problem (Cardiac conductivities)
Right: SV for Fluid-Structure Interaction problem (Young Modulus)



Sampling of the parameter space is crucial for POD (Monodomain)

Reconstructing a model
from a parameter set 
(RED)
Errors:
GREEN: OK
CYAN: SO-AND-SO
BLUE: KO

CONCEPT: DOMAIN OF EFFECTIVENESS IN THE PARAMETER SPACE



With a judicious repartition of the 
parameter space by Domain of 
Effectiveness of the samples we can 
get good CPU reduction


