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Probabillistic Estimation Theory

In-Out Estimation (stationary)

Measure w = vector to be estimated

‘\ ™

: 7z — vector of observation
Noise W — estimator e=wW-—w

T
Possible approach: minimize a "cost function” J(e) —e Ee whereEisa s.p.d matrix

w =argmin [ (e) = // p(w, z)dzdw.

IELI:I'A _"‘"?'I:-

After some algebra we get w =& (w|z) . Minimum Variance estimator

MV estimator is unbiased: & (W) = € (Wp,dz) = ] WMV Pedz = / / WPy 2 dWP,dz =
Bn EnEn

— &£ () is the expected value operator:
. ) o wp(w,z)dwdz = & (w).

— Pw(-) is the marginal p.d.f. of w;

— p(w,z) is the joint p.d.f. of w and =.



MAP: The estimator is the result of maximization of the a posteriori p.d.f. Pw |z

This is the p.d.f. of w conditionally to a particular measure

ML: The estimator is the result of maximization of likelihood Pz|w

This is the w that maximizes the probability to get a particular measure

Remark:
w,, can be regarded as the limit of w,,,, when we do not have any statistical a priori

knowledge on w (marginal p.d.f. for w)

Remark 2: _ pwz(w,2)

A fundamental tool in these considerations is the Bayes Theorem Pwlz = P2(2)




Example 1

Assume that w and z are two scalar variables such that
z=Hw+ v

with w ~ G(0, \,) , and the noise v ~ G(0,r) is assumed to be uncorrelated with w.
Then it is possible to verify that z ~ G(0, H*\,, + r) and Ay. = H)\,. In fact

E(z)=HE(w)+E(v)=0
V(z) =& (") =€ (H*w* 4+ 2Hwv +v*) = H* Ay + 0+ 7
V(z,w) =& (zw) = & (Hw® + vw) = Hy.

In this case

~ ~ H Ay H
WMy = WMAP = H2)\, —|—7“Z ZE —|—’I“//\wz
. L Aw 2
5 W 2.

As expected, Aiiinoo WMAP — WML,

Recall: Gaussian distribution of a n-dimensional vector

1 1 A~ (w — € (w
v = e (30— £ ) A w £ ()




Example 2.3 Assume now that w and z are n-dimensional vectors, w ~ G(u, A) and

7z — Hw + v

where v ~ G(0, R) is noise independent of w. H is called observation matriz.
It is possible to prove that z ~ G(pz, Az,) with

p, =& (Hw+v) = Hp
Ar=E((z— pz)" (z— pz)) = (...) = HAH" +R.

For the conditional probabilities, we find that

V1A

Pwlz — ex
vV (2m)" AR

p(—%J)

where J = (w — w)'Ac'(w — W) and A;' = A" + H'RH and W = & (pw)s) =
Ae (HTR_lz + A_lu). This is both the MV and MAP estimator.
Moreover, we find that p,|,, has average Hw and A,,, = R. If we maximize the
likelihood, we obtain
—1
Wi = (H'R7'H) H'R™'z.

It is easy to verify that the MV /MAP estimator is unbiased and the ML estimator
is obtained by the MAP, when A™' — 0.



Dynamical (seqguential) estimation

1 Noise; I Noise,,

Measure 7 (k+1)

OBSERVABILITY

a® = Ay ut=D 4 pt-D) b®) ~ G(0,Qx_1)

2 = H,u® 1 p® v~ G0, Ry 1)

Estimate of the state: let us split the operation into steps.



THE KALMAN FILTER

« PREDICTION, deterministic and based on the past

(k—1) ul* " = our best knowledge

k) _
u; ) — Ak—lu* of state in (k-1)

« CORRECTION, i.e. improvement due to the current observation

0 = Lu® + Kyz®

How to select L, and K7



Set

e = ul) — u® o) — uk) _

If we force the correction to be unbiased,
£ (eé"“)) _ 0

!

Li€ (e ) + Ke (v®) + (L + KiHy = 1) € (u®) =0

!

Ly +KyHpy —1=0= L, =1— KiH;

ugkj — ug‘") — z(F) — Hkug‘f))\

Innovation

Gain matrix



Selection of the gain matrix: MV approach

Variance matrices: recursive formulas

Ap) = Ap g APTVAT |+ Qe

\

Joseph formula
If we minimize the variance of the estimate error

& (Ilef2)

|

. —1
A (1 - KiHe) T — ReKT = 0 = [Ky = APHT (mgﬂﬂg +R k)

S

Kalman GM



KALMAN FILTER: SUMMARY
1. PREDICTION

(a) uf(jk) = Ap_qulfY

b) AV = A, AFTVAT 4 Qi

2. CORRECTION
Kalman gain:

—1
Ky = AWH] (HkA]g“H{ + Rk) .

(a) State estimate
ulf) = ug‘“) + K (2 — Hkug‘:)).

(b) Estimator Covariance

AR = (I - KyHy) A



PROPERTIES OF THE KF

Innovation

2. € (z“f) _ Hkugf)) — H,E (eg”) +&w®) =0

3. Innovation is orthogonal to the past (with respect to the covariance scalar product)

Moreover: E (u&"f)eg"”*T) = 0.




2.\Variance reduction of the correction

Let us consider the "pseudo-observation™

209 = Hul® 4 o),
Then we can write:

Apo = HeARHT + Ry,  Appo = AYHT
Then the Kalman matrix and the correction variance read

A (k) /A (k) —1 NN A(E) (A (R)\—=1 4 (K
Kp = AP (A7 AR = AU — AR (AU =1L |




3.Asymptotic behavior (for time-independent dynamics)

Recursive formula for the predictor variance:

AT = A AMAT + Q=
Ak (I — K;gH;cA}(gk)AZ -+ Q;@ —
ARASIAT + Qp — A A HT (H AV HT + Ry )~ THR AL AT

If the matrices A, Q and H,R are independent of time:

k+1 k) AT E)yT k)yT’ —1 k) AT
AT = ANPAT + Q — AANPHT (HAHT + R)""HAMA

S

Difference Riccati Equation

The equilibrium solution of this matrix reads:
A, = AA AT +Q — AAHT (HA,HT + R)"'HA AT
\

Algebraic Riccati Equation



Let us consider the scalar case, with

AN EXAMPLE (easy)
u® = *E=D (4 =1,b=0)
2B =u® ) (H=1,v~G(0,1)).

Assume also that the initial data ") ~ G(pu, 1). Set u,g;. ) —
Then. the Kalman filter formulas read

(k) _ o (k=D) (B (k=)

-“p = Up
k k
o N AP
(k) (k)
k A _ 1 , A
ulk) = u;; ) 4 $(7“"} — -u.y“}) — T'{‘_Léh) — ﬁz(k}
Apt 41 Ap -+ 1 Ap +1
‘ /\(k}
A = —
Ap  +1
So now we have
1 4+ 2D
-u-g,l} = U, }\gjl) =1 K = 5 u.EI} = % = u."(f}.

Notice that the prediction at & = 2 is just the sample average of the “past” and
the new data. Similarly we obtain at a generic step £
k+1 k _

k
M+ Zz ()
=1
u = U

p c k41

Actually, we have the arithmetic average of the available data at t*: it makes a
lot of sense!



. 1
A = =

By induction one can check that . Consequences:

. k . .. . :
1. lim )\;E? ) — 0, i.e. the prediction is asymptotically exact.
k— o0

2. 0 is the only solution to the ARE A = \/(1 + \).

3. The Kalman filter is asymptotically stable. Notice that the dynamic sys-
tem is NOT asymptotically stable.

REMARKS:

The interplay between stability of the system and of its Kalman estimator is crucial!
We can barely accept an unstable estimator of a stable system!

Theorem: If the system is stable, the estimator is stable and Ap converges to the solution of
the ARE

Numerical issues for the KF: the cost is proportional to n® where n is the size of the system.

Numerical stabilly issues in the propagation of rounding errors



THE NON-LINEAR CASE: Extended KF (EKF)
uk) — A(u(k—l)) 4+ bR 5k — H(u(k)) 4+ (k)

Linearization: A() = ou | H() = ou

1. Prediction: ul®) = A(llé_“’:_l)))F with

AP = A (D) AR (A ()T + Qpr.
. . . , —1
2. Kalman gain: K = 1"‘1&“ (H"(ugm}))T (Hf(ugkn);"Xém']-["(ugk})) + R;c) :
3. Correction: ul™ = u§;‘“) — Ky (Z(k) — H(ug“'))).

4. AP — (1 _ m(ug%) AL

There are two main drawbacks in this approach.

L. Computational Costs. The computation of the tangent operators can be
fairly expensive.

2. DBias: The estimates are in general biased, £ (eg )) =+ (.




Identification problem: the state augmentation approach

u® = A(W)yulF—b L p*)

gk — gk=1) 1 (k)

(k) A(9k=1)) g (k1) b (k)
k) _ |u k) _ Al ju
W =[] = v = [+ |

2F) — H(® u®) 4y ®)

EKF with :
. JA .
O I oV




THE NON-LINEAR CASE Il: Unscented KF (EKF)

Basic idea: we take some samples and then approximate the non-linear dynamics
with the average/variance of the evolving samples.

Example: scalar variable

u®) with € (uﬁm) = pand V (u(m) = \°

Samples: °1.2 — H = A

(

£ (A(u“”)) 5 (A(‘q) A(sz)) = A.

Approximate
dynamics <

V (AW®)) % 5 (Als1) = A)? + (Als2) — B)?)

For vector state variables, a possible choice of the smaples (s-points):
(2)

S\ =a\ e,
/ - \

Std deviation I-th unit vector




1. Sampling Let C'hol() denote the Choleski decomposition of a s.p.d. matrix.
We take

1/2
Cr1 = Chol(AF~V) = (AS“‘”)
ugk_l) —ulF Y LT (e 1)8“), i=1,2....1.

2. Prediction. Let «; be the coefficients of the sample average.

u;z()kz) - A(u;ﬁ_l)) b'ample evolution

, T
) = S ol A =S (ul ) (uf — ui)

i i
3. Correction

2" = H(uy))

a a T
A}}? — Za—i (Z,ER) — H(ug‘:))) (Z,ER) — H(ug‘:))) + Qk

' T
k L 3 L
A%, = Zcu (z§ '~ i) (ulf) —ufd)
—1
ul®) = u;;*‘“) + Ki (z(k) H(uj )
) \ (K k k
AR = Ak — AW, (A( )) AW,
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Outline 2

= Variational methods of DA

= (In-Out estimates: Least Squares)

=« Constrained minimization

= One-shot methods (the KKT system)
= Sensitivies
= Adjoint computation of the gradient

= Computational Costs: solution reduction
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Ingredients <

A functional J to be minimized. In general, this will be discrepancy be-
tween the results obtained by the mathematical (numerical) model and
the available data.

A mathematical model, describing the dynamics of interest. In our prob-
lems, this will be given by an incompressible fluid, possibly coupled with
other problems, such the structure or models for the peripheral circula-
tion. The state variables will include the pressure and the velocity of the

Huid.
A set of measurements (output) referring to a function of the state variable.

A control variable (CV), a variable which needs to be tuned to get the min-
imization domne.



A reference example

Flu,a) =0

k
-V - (MVU,) +b-Vu+ u® = Zazfz in Q
1=1

u=0 on I. |
oa=CV
Functional to be minimized
1 2
T(u) = 5 [ (ulx) - d(x))*dx.
Q

- Limitation of the control cost
2
Taw) = 70) +{Zal* K

Tychonov regularization




The Lagrange multiplier approach:

L(u,a,x)=JTr— X Flu,a) Unconstrained
. minimization
C /
Y
duality

In the example:

2
L(u, o, x1,x2) = Tr(u, a)_/Xl (—V (pVu) +b - Vu+u’ — Z%‘fﬁ) —/qu-

Q =1 T

(0L

X

oL
Stationary points § —=— =0 Adjoint/Co — state equations

(KKT system) ou

oL o "
ex =0 Optimality conditions

0 State equations

Gateaux derivative




oL 1 d,, = admissible variation
= lim — (ﬁ(u, Q, X1 T 86)(1 ) XQ) - E(ua X1, XZ))

8X1 e—0 g

> /X1 (—V-(,{LVU)—J—b-VU—I—uB—iaiﬁ)0,

Q 1=1

1

T

:> u=0onl

oL 1

% B gl—l;r(l) g (f’(u + 55u; aaleXQ) o E(U,Q,X1,X2)) —

/(u —d) dy — /Xl (—V (uVéy) +b- Vi, + 3u25u) — /X25u = ().

Q Q2 r



r

—V - (uVx1) — V- (bx1)+3u?x;1 =u—d in Q)
: < x1 =20 on I
X2 = —uVyx1 -n—b-ny; on I
35—1' L L ) L —
a&.t_ —61_I>I(l)g( (’U/,Oél,afg,...,a,,;—l— a“---,@k,XhXQ)_ (U,(X,X1,X2))—
(/ lei—i_aai)(sai
Q
( k
_\. . 3 _ s
State ) V- (uVu)+b-Vu+u Z;oa%fz in -
L u=0 onl
( -V (uVx1) = V- (bx1)+3u?x1 =u—din Q -
Adjoint ¢ x1=0onl
| X2 =—uVx1-n—b-ny;onl.

Optimality Ogi:ai—B/ X1fi 1 =1,... k. -
9.J Q




Summ ary Problem Find the control variable « and the state v that minimizes
(abstract framwork) Tr(u, @) = T (o, u) + o2,

under the constraint F(u, a) = 0.

Lagrangian functional and its stationary points (One-shot) Set

E’(ua @, X) = jﬁ(u: O‘) - X*]'_(’U,, CM)
—_——
duality product

The stationary points of this (unconstrained) functional are s.t.

8_£ = (0 state

oy )

L

— =0 adjoint (3.9)
ou

oL

— =0 optimality.

Oo

More precisely, we have

oL
dx

= lim (L(u, 0, x +8y) = £(w, 0, x)) = 5;F(w,0) = 0 = [ Flu,a) = 0

— = lim (L(u + 0y, a, x) — L(u, 0, X)) = (8JR) |u aly — X* (8;7:) ‘u,a(su =0=

U,

ou e—0 15, ou
oF | 8jR |
6 U.'.Q{ U,
oL . Ir 9F _
% - ;% (ﬁ(uaa + 5(17)() ﬁ(u « X)) - (8—> ‘u o (%) |u,a6a =0=

oF
a(]{ U Oi

&73)




A DIFFERENT (non-Lagrange) APPROACH

. Given a guess for «a, called o'®), we compute the corresponding state
F(u®, ak)) = 0.

. With «®), a(®) we compute the gradient of J or more precisely DJ /Do
(total derivative). (Jr)

. With DJ/Da we find an increment da to update

aF ) — k) 4 5a.

. Test the convergence.

' Critical step




Gradient computation through sensitivities

DJR‘ ~_0Jr,  Ju N dIr
Da; ' ou " da, o o, o™
ou ,
SENSITIVITIES: Tlﬁgm’ Vi=1,2,...k
(4
Notice that:
DF OF ou OF
Fu® oy =0= - —— =0
(W™, o) Da; ‘agk) ou e oo, |Oé§k) + O, |Oé§k)
SENSITIVITIES Equat O—F\ ou | = _O_F‘
guations I w (k) Der. agk) — Der. agk)

1 1



In the Example:

0
T = [- ) g + 0% = [ =ty + o
Q Q2
OF £)\2
S luw (0) = =V - (1Ve) + b -V o +3(ulk)?, = fi
du Ny
Set 3&1 = @

We get the sensitivities equations

(V- (uVo;) +b Vo, +3(uf)e, = fi inQ

¢; =0 on .

DJ Major drawback:
= [ (u—d)p; +oq;. ) |
Do, @ | ;) /( Jbi + o 1 equation per CV

Q



Gradient computation through adjoint problems

Let us consider the adjoint problem, where p now is the unknown
oFy wap = (22 * |
au u,x au U,

DJr O0JrOu IOJr

Do ou O« oo

*%%4__8‘7]?‘ — *af H- ajR
P "ou da oa [ Ba Oa

Then, we can write

In the case of our example, the adjoint problem reads:

—V - (uVp) =V - (bp) +3u’p=u—din Q
p=0onT



Then, we can write the gradients as:

DJr du
— — d —_— =
Doy, cap+ [ (u )6ak
Q
5 \ Ou
cap + [ (=V - (uVp) — V- (bp) + 3u’p) =— = by parts

Oa,,

Sensitivities equation

Pro: by solving 1! differential equation we retrieve all the sensitivities

Q

o + / '(—V (Vo) +b-Vor + 3u2¢k) p =
Q
/

Con: unsteady adjoint problems are backward in time — at the continuous level we
need to know the solution of the state problem over the entire time interval and then

come back! High storage/computational costs



A (classical) dilemma

First Discretize then Optimize (DO) vs.
First Optimize then Discretize (OD).

Which is better? The answer is basically problem-dependent.

With DO:

- we avoid inconsistencies induced by the numerical differentiation of the KKT
system;

- we can even use automatic differentiation software;

- we can split an unsteady problem into a sequence of pseudo-steady optimization
problems.

With OD:

- we do not deal with the differentiation of numerical artificial terms (like advec-
tion stabilization);

- We can use different grids on the different problems (usually they do need dif-
ferent grids);

- It can be easier to manage moving boundary problems: we do not need the
derivative of the grid (which is part of the state of the system in DO with
moving boundary problems) with respect to the optimization parameters.



Model reduction in a nutshell

In order to reduce computational costs, we may replace the state model with a " low-
dimensional” or reduced order model.

We can represent the solution with a Galerkin expansion

J.?\‘I
Uup = E (J'T-j_i.r'.?-j_.

1=1

We want to resort to a reduced model in the form

M
Uy, = E R;pi.
=1

To do: (1) find an appropriate basis set Q;

A possible approach is to pick up off-line snapshots of the state solution (no
reduction) for different values of the CV (or different values in time)

(2) find M so to include only the relevant information

A possible approach is the Proper Orthogonal Decomposition (POD)



A general statement on Solution Reduction methods

N -
1=1

Two extreme" choices

Number of degrees of freedom

— we need a large number of DOF N "
EXAMPLES: Finite Elements, Spectral Method

2 SMART (Educated)

— we may (significantly) reduce N #
EXAMPLES: Sturm-Liouville Eigenfunctions, Reduced Basis Method, Proper Orthogonal Decomposition



YR,
4 V\Y«,l@m




Two words on POD
Assume we have a basis that we want to reduce, from M, to M

1) average and covariance of the snapshots basis

My My x M 1 — =T — -
_ R™*M 3 C=—1[p1 —p,... — — Dy —
5= E : pj M, lp1 — P pay — Pl [p1—p P, — P
J=1

A1 =A== Aoy

A

{x; } = eigenvectors of C

2) Thresholding: find M s.t. For a given threshold y: Z)‘i
>
=1
3) New basis
M) Normalized
yi =Y _(xi);(p; = 7) ' =y,
= i=1,2,..M ed



Variational assimilation of velocity
measures in the domain of interest

A 4

Input

Control Variables




The deterministic mathematical problem

Constraint: the NS equations Data d

(V- (Vu+VuD) 4 (u-VIut+Vp=s in Q

V-u=0 in €
(NS) < u=20 on Fwall;

—V(Vu—I—VuT)-n—I—p-nzh on L'in;

\ —V(Vu—I—VuT)~n—|—p~n:g on I'pue.

Control Variable (arbitrary choice): inlet flux h

Minimization problem:

find h* s.t.
dist (u(h*),d) = dist (u(h),d)
under the constraint of (NS)

Approach: Discretize then Optimize



The discrete problem (Oseen)

Ingredients:

] discretized W and D

R, = [Rz??u O}

KKT:

selection matrix of the measurements sites

inflow restriction matrix

M'in inflow mass matrix

/ Regularizing term

T
B Oseen matrix
0
min 7(V, H)
H
s.t. SV =R}

1
= SIDV - d|j

M, H+ F.

]

D'(DV -d)+S'A=0
oL.'LH — M R;, A = 0;

SV —R! M;,H—F = 0;

Reduced Hessian
—
(Z'Z+al'L)H=72"'(d —DS™'F)

where  Z=DS™ 'R} M,,

(sensitivity matrix)



Non-singularity of the discrete problem

Sufficient condition for the non-singularity is that
the reduced Hessian Z7Z + aL”L is p.d.

1. This 1s always the case for a>0
2. For a=0, a sufficient condition 1s

Null(D) N Range(S™* R M;,) = {0}

As expected, this is forcing a condition on the measurements sites
(represented by the matrix Q in D), forcing that a significant part of them is
on the inflow .

M. D’Elia, M. Perego, A. V., J Sci Comp



The Nonlinear Case
noise-free

consistency: finite element convergence rate

noisy

effective and robust noise filtering method:

e Fy decreases as more data are available: Ey(N,) = O(N; 95

e the sample mean of the velocity over IV, noise realizations
converges to the FE noise-free solution with rate O(N,7%-%)

E100
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10 Fo g e

___reference curve N';"5 |

—e—MmeanerrorE

g TUPTPRIRISRRMONS FOPPRIIN.
e :
L T S
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it : ]
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T
; i i i
1.1 1.3 1.5 1.7 19
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5
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Axi-symmetric 3D (Poiseuille)

domain: rectangular domain representing a slice of a cylinder
data generation: analytical solution with additional noise, data on the inflow boundary do

not satisfy sufficient conditions —» piece-wise linear interpolation
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External carotid artery
= Glossopharyngeal nerve (CN IX)

Non-trivial 2D

Internal carotid artery

Carotid sinus nerve

domain: 2D approximation of a carotid with a bulb

Carotid sinus

y — Carotid body

data generation: finite element approximation on a very fine grid
with additional noise, data on the inflow boundary do

not satisfy sufficient conditions — interpolation

Common carotid artery

Medial view of right carotid artery

wall shear stress (WSS) comparison

SNR wss.DA | Ewss Fw
100 0.2536 0.2667
20 0.2591 0.3030
10 0.2738 0.3861
5 0.3149 0.6114




Axi-symmetric 3D (Womersley) — Unsteady!!!

Challenges of the unsteady case.:

1) The initial conditions are not known, they should be part of the identification
problem. More precisely, periodicity should be enforced.

2) Computational costs ) Model Reduction Technigues

Here, we follow a DO approach, so we optimize at each time step.




Bayesian formulation

Goal: estimate the reliability of results — quantification of the uncertainty

We predict stochastic features of the variables of interest
the prediction of the uncertainty is based on the knowledge of
O the measurement process

m deterministic models available

Main assumptions:

O all discretized variables are treated as random

information resides in the probability distributions

O the entities involved are probability density functions (PDFS)

m the method delivers a distribution

(while deterministic methods produce a single estimate)



Notation e 7{ is the RV counterpart for h with pdf (prior) m,,.(H)
e D is the RV counterpart of the measurements d

e £ is the RV associated with the noise with pdf m,4is¢(€)

m(D|H) Likelihood
m(H|D) = mpost(H) A posteriori  distribution d

g = 9(507 Enaise)

‘-----

A

Output =

Control €




We assume an additive noise model ZH + 5 =D

with H and & mutually independent

Here, Z is the deterministic model (sensitivity matrix = Neumann-to-Dirichlet map)

= m(D|H) = Tpoise(D — ZH)

Thanks to the Bayes Theorem

) = TOH)m ()
(D)
Assume a Gaussian distribution for prior and noise
Tpr ~ G(ho, Xpr)  Tnoise ~ G(€0, Lnoise)

Posterior is  Tpost ™~ g(hposta Epost)
hpost = (S0 + 275,

noivse

Spost = (X, + 215, 000 Z) )

~ Tnoise (D — ZH)WP’F?:OT (H)

Z) NZT S, e (d —€0) + 2 )

notse

noise



Two approaches

Maximum A Posteriori h = arg MAX Mpost

Maximum Likelihood h =arg mgXﬂ(D\H)

haet = (aLTL + Z77)~1Z7(d — DS~LF)

harap = (S0 + 27y, ) 2)7 121y ) (d — DS™LF)

noise noise

hayr = (ZT271 7)) 172Tv -1 (d— DS~ 'F)

nNoLse noiLse

The a priori information acts as a Tychonov reqgularizer in MAP vs det

ML vs MAP: ML represents the limit case when no a priori knowledge is
available on h

As for h, witha =0, ML estimator requires conditions on Z



numerical results
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test case E

e axisymmetric formulation

SNR | Evaet | Eu,map | % gain
® Nger versus harap 20 | 0.0396 | 0.0308 297
. a— 10-7 10 | 0.1423 | 0.0978 31%

e interpolation active



Statistical Spread Estimators

Multivariate normalldistribution
X) = —(x — ~x —
f(x) Nk det(z)ewp( (x = )X (x = p))

Vr; € (—oo,0),i=1,...,n

(x = )27 (x —p)) = ¢
Nows

FACTS

(x — )X (x — ) has a X%pistribution

A point belongs to the ellipsoid with c* = X% ()

Ve with probability 1 — o

~

Ais €; eigenpair of § ’



Spread estimators - velocity

Goal: quantify how likely velocity and flow related variables are inside an interval of (critical, significant)
values

V =[U,P],U=EV
U =E(S 'R, M;,H+ S 'F)
T =ES™'R;] M;,

= U ~ g(Thpost + TFa szostTT)

We build credibility regions for the velocity



spread estimators — numerical results S
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spread estimators — numerical results S

test case: same analytic solution, square domain, SNR = 20
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estimators — numerical results
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spread estimators — numerical results S
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spread estimators — numerical results
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spread estimators — numerical results

test case: axisymmetric case, cylindrical square domain, SNR = 20

N

iInput noise: std = 0.325, all over the domain
output noise: max std = 0.376, in a restricted area




spread estimators — numerical results
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spread estimators — numerical results

test case: axisymmetric case, cylindrical square domain, SNR = 20

iInput noise: std = 0.325, all over the domain
output noise: max std = 0.376, in a restricted area



spread estimators — numerical results
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towards real geometries - carotid

Gain ML vs Deterministic estimator: 31%

Map of V Amaz



spread estimators — the wall shear stress (WSS)
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spread estimators — the wall shear stress (WSS)
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Conclusions:

» Progressive use of numerical simulations in clinical practice
requires certified reliability

sCombination/Integration of Data and Numerical Methods can
be done much stronger

New measurements devices
New mathematical and numerical methods

» Proper numerical methods for the integration process need
to be investigated.

» Bayesian analysis is a viable approach for improving
reliability of (variational) Data Assimilation
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Weighted least-squares finite elements based on particle imaging
velocimetry data

].J. Heys**, TA. Manteuffel *, S.F. McCormick®, M. Milano®, ]. Westerdale, M. Belohlavekd

* Chemical and Biological Engineering Montana State University, Bozeman, MT 59717-3020, United Stotes

E Department of Appliad Mathematics, University of Colorado o Boulder, Boulder, 00 80309, United States

“Mechanical and Asrospace Engineering, Arizona State University, Tempe, AZ 85287, United States

“ Translational Ulirasound Research Laboratory, Division of Cardiovascular Disegses, Mayo Clinic, Scotisdale, AZ 85259, United States

ARTICLE INFO ABSTRACT

Article history: The solution of the Navier-Stokes equations requires that data about the solution is avail-
Received 2 December 2008 able along the boundary. In some situations, such as particle imaging velocimetry, there is
Received in revised form 23 July 2009 additional data available along a single plane within the domain, and there is & desive to
ﬁlﬁﬁ;ﬁlﬁrz?;r;ﬁrmg also incorporate this data into the approximate solution of the Navier-Stokes equation.
The question that we seek w answer in this paper is whether two-dimensional velocity
data contzining noise can be incorporated into a full three-dimensional solution of the
least-squares Mavier-Stokes equations in an appropriate and meaningful way. For add ressing this prob-
Finite element lem, we examine the potential of least-squares finite element methods (LSFEM ) because of
Data assimilation their flexibility in the enforcement of various boundary conditions. Further, by weighting
Particle imaging velocimetry the boundary conditions in 2 manner that properly reflects the accuracy with which the
boundary values are known, we develop the weighted LSFEM. The potential of weighted
LSFEM is explored for three different test problems: the first uses randomly generated
Gaussian noise to create artificial ‘experimental’ data in a conirolled manner, and the sec-
ond and third use particle imaging velocimetry data. In all vest problems, weighted LSFEM
produces accurate results even for cases where there is significant noise in the experi men-
tal data

Keywords:

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The solution of the Navier-Stokes equations requires the specification of a domain and data along the boundaries of that
domain (i.e., boundary conditions). The development of new experimental technigues, including particle imaging velocime-
try (FIV), has created a situation in which additional data may be available along a lower-dimensional region of the domain.
For example, data may be available along a two-dimensional plane within a three-dimensional domain. Further, it may be
desirable to incorporate this experimental data into the solution of the Navier-Stokes equations. For example, echocardiol-
ogists can use FDA-approved microbubbles and PIV to determine two components of the blood velocity along a single plane
within the left ventricle of the heart [11,23,24]. Despite the abundance of data, ultrasound and PIV alone are insufficient for
calculating the flow properties of interest to clinicians, such as the pressure gradient and total energy loss, which require
knowledge of the full three-dimensional velocity field. This is an example of an application where it may be useful to assim-
ilate two-dimensional velocity data into a three-dimensional solution of the Mavier-Stokes equations, which is distinctly dif-
ferent from using experimental data (e.g., PIV) to validate a computational fluid dynamics result (eg., [10.25]).

* Comesponding author. Tel: +1 406 994 TO02
E-muil address: jeffheys@gmail.com (J). Heys)

00219991 4 - zee front matter @ 2009 Elevier Inc. All rights reserved.
doi: 10101 6] jop. 2009 09016
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Bayesian Inference for Data Assimilation using
Least-Squares Finite Element Methods

Richard P. Dwight

Assistant Professor, Aerodynamics Group, Faculty of Aerospace, TU Delft, P.O. Box 5058,
2600GE Delft, The Netherlands.

E-mail: r.p.dwight@tudelft.nl

Abstract. It has recently been observed that Least-Squares Finite Element methods (LS-
FEMs) can be used to assimilate experimental data into approximations of PDEs in a natural
way, as shown by Heyes ef al. in the case of incompressible Navier-Stokes flow [1]. The approach
was shown to be effective without regularization terms, and can handle substantial noise in the
experimental data without filtering. OFf great practical importance is that — unlike other data
assimilation techniques — it is not significantly more expensive than a single physical simulation.
However the method as presented so far in the literature is not set in the context of an inverse
problem framework, so that for example the meaning of the final result 1s unclear. In this
paper it is shown that the method can be interpreted az finding a marimum a posteriori (MAP)
estimator in a Bayesian approach to data assimilation, with normally distributed observational
noise, and a Bayesian prior based on an appropriate norm of the governing equations. In
this setting the method may be seen to have several desirable properties: most importantly
diseretzation and modelling error in the simulation code does not affect the solution in limit
of complete experimental information, so these errors do not have to be modelled statistically.
Also the Bayesian interpretation better justifies the choice of the method, and some useful
generalizations become apparent. The technique is applied to incompressible Navier-Stokes flow
in a pipe with added velocity data, where its effectiveness, robustness to noise, and application
to inverse problems is demonstrated.

1. Introduction

Data assimilation has long heen of importance in atmospheric sclence and geophysics,
where computational models are largely empirical, or model parameters are inaccessible to
measurement. In engineering on the other hand, we are motivated by the complementary
errors and limitations of simulations and experiments. The particular example considered in
this article 1s lllustrative: using the particle image velocimetry (PIV) measurement technique
the velocity of a fluid can be measured; pairs of photos are taken (with a small time increment ) of
particles transported by the flow, the particles having been illuminated with laser light sheets (2.
Compared to other measurement techniques an extremely large amount of data is returned, but
only in a limited 2d-planar “window” of a flow field. This window can not be too close to walls,
otherwise laser reflections pollute the images, it 1s further imited by optical access to the flow,
camera resolution, and many other practical considerations. Important quantities such as the
pressure are naccessible. Measurement errors are approximately Gaunssian in distribution. On
the other hand a Navier-Stokes numerical simulation can encompass the entire 3d flow field
m all state vaniables, giving a complete picture of the flow, but includes discretization error,

(€) 2010 Published under licence by 10P Publishing Lid 1



Example 1 - Estimation of Cardiac conductivities

Cardiac conductivities: numerical values in Bidomain simulations matter!!!

Experimental works (1976), Roberts et al. (1979), Roberts et al. (1982)

No common agreement

TABLE 1. The measured bidomain conductivities (mS cm™1). %3

Clerc Roberts E-r al. Roberts and
Symbol (1976)* (1979)* Scher (1982)*"

1.70 2.80 3.40
0.19 0.26 0.60
6.20 2.20 1.20
2.40 1.30 0.80
8.95 10.77 567
2.58 1.69 1.50
0.27 1.27 2.83
0.08 0.200 0.75




System Dynamics: Bidomain system

(0
E;: V.0Vu— VoV, + flu,w) = I
—V .o, Vu—-V - (0;,+0.)Vue =15 — I

ow
ot

+ g(u,w) =0 ' Rogers-McCulloch

(oiVu+o;Vu.) n=0, o.Vu. -n=>0

u(x,0) = ug, w(z,0)=wy

3 1
BC " T BC

i t i
o; = (cr?;;alal + oitagay + O;panan )7

uw = transmembrane potential
. = extracellular potentia

“"Mondomain model"" is a significant . 1 5 _ 1
simplification under some ° pBC,, ©  BC,,
(not realistic) assumptions

t t t
(Uelalal +Jetatat +O_enanan )




Statement of the Inverse Conductivity Problem (Variational approach)

Consider the mismatch functional

7= [ o) wp+ R

obs

with the admissible set

Cadm = {(Uilaaitaaelaaet) S (LOO(Q))490' S [O < maM]4}
R = Tikhonov-like regularization, €2,,s = Observation subregion

Problem:

Find admissible o that minmizes J
under the constraint of the Bidomain equations|

e Extension to 3D immediate

 Possible regularization (for an available and trustworthy guess o )

R:g/ o — 5%
2J q



Statement of the Inverse Conductivity Problem

VARIATIONAL APPROACH

Let us introduce the following functional

‘ (2.h: = observation subregion
5| [ 1) unl + (o)
0

rha

R = Tikhonov regularization

Admissible set (in 2D)
C20 = {o = (0i1,0i,001.0et) € (LX) 2 o(2) € [m, M]* Vz € 0}

PROBLEM

Find admissible ¢ that minimizes J under the constraint of the

Bidomain equations/conditions
Possible regularization: given a reasonable guessd and for | - || being the Frobenius norm

X .
R=[llo—dlx
-153

Other regularization terms (and 3D problem) may be considered as well.



Well-posedness analysis

Lemma(A priori estimates)(C. Nagaiah, K. Kunisch, and G. Plank)
If €2 has a Lipschitz boundary and the conductivities tensors are uniformly elliptic, there
exist positive constants C' and ¢, such that

‘H‘Q(H} + |H‘L2(U} + |H|L4(Qj + ‘uflL:LjHU;v} + ‘TJ‘LE{U} + |‘?_U C(H) T |TJ’.J£|LE{II)

E é(hﬁn‘ + “U{]l + E|Q| + "{Hf|L2[:U*:} + |I_.ﬂ' — IﬁelLE(Uv]).

where ¢ depends on the ionic model, C depends on m. M and the ionic model, but is
independent of (ug, wo), (Is, Ise) and ;.

Theorem(Existence of minimizer)(H. Yang and A. Veneziani)
Under the assumption condition as before, for o« > 0, there exists at least one minimizer
to the optimization problem.

OPEN ISSUE: Uniqueness (of course?)

More precisely:

is there a class of parameters (e.g. constant, piecewise constant) s.t.
the minimizing set is unique?




The Minimal ionic model

flu,v,w,8) = 85.78C(Jfi + Jso + Jsi)
Jri = —UH(u — Op) (0 — 0y) (U — ) /T
Jso = (0 —up)(1 — H(u —0y)) /7o + H(u — 0,)/Tso
Joi = —H (U — 0,)ws /T
dtfv =(1—H(u—80,))(vee —v)/7, — H(u—6,)v/7\
ow = (1 — H(t—0y))(Weo —w) /7, — H( — Oy)w/T,}
Ors = ((1 + tanh(kgs(u — us))) /2 — s)/7s
where & = (u+84)/85.7 and H(x) is the standard Heaviside function.
7o = (L HG 6+ HG )
7o =t (7o) (1 (ko =) 2
(s — 7o) (1t b (7 — 1. )))/2
TS — ( ( Qw))Tsl + H(Eﬂ - 8 )TSQ
( 90))7_01 + H(u - 90)7—02
( —0;)

i — 0,)(1 — it /Tos) + H(ii — 6,0,

Bueno-Orovio, Cherry, Fenton



Numerical Solution

Forward Problem

Bidomain equations with Rogers-McCulloch model

- Quadratic Finite Elements
- BDF2 Time discretization (FD)

— In 2D : FreeFem++ (direct solver)
— In 3D : LifeV (C++ Solver) using an extension of the Monodomain model
as preconditioner (Gerardo-Giorda et al. JCP 2009

Inverse Problem

- Optimize then Discretize approach
- Dual equations (backward in time) solved with FEM (space) and FD (time)

Steps:

— solve the system dynamics (over the entire time interval)

— solve the dual equations (backward in time)

— compute the functional at the current guess

— compute the integral of the functional DJ with the dual equations
— line search (BFGS)

|DJ|| < 107°




OD vs DO dilemma

Forward Problem

Discretize then Optimize:
Time sliced by the discretization
Optimization at each time step
(suboptimal)

Fast




Consistency check in 3D: Truncated Ellipsoid

_ U_meds u_meas

O cract 3.5,3,0.3,1.8] [3.5,3,0.3,1.8] [3.5,3,0.3,1.8] [3.5,3,0.3,1.8]
O initial 5, 5, 3, 3] 5,5, 3, 3 2,2, 1, 1] 2,2, 1, 1]
# sites 100 200 100 200
il 3.50637 3.48173 3.51006 3.48027
Tel 3.18176 3.0039 3.17776 3.00454
Tt 0.312358 0.2707 0.311667 0.270614
O et 1.55211 1.86707 1.55151 1.86914
# fwd|bwd 27|25 27|25 18|17 19(19

O cxact (2.8,2.2,0.26,1.3] [2.8,2.2,0.26,1.3] [3.5,3,0.3,1.8] [3.5,3,0.3,1.8]
O initial 15, 5, 3, 3] 2, 2, 1, 1] 5, 5, 3, 3] 2, 2, 1, 1]
Til 2.62885 2.74088 3.4704 3.47661
o, 2.37449 2.29435 3.12013 3.11378
Oit 0.27818 0.274675 0.306733 0.306189
., 1.33207 1.24734 1.6459 1.64325
# fwd|bwd 26|22 17|12 24(22 21|20
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An example with a scar ( region with a different conductivity)

Figure 4: Left: scar with radius 0.5cm, Right: scar with radius lem.

Table 8: Slab with Bidomain. a = 0,7 = 20ms, At = 0.1ms with Afg,., = 2ms, #

sites = 400, noise = 10%.

Fscar ol o' ol o ot ot ot o't 4 fwd|bwd
0.25 | 1577 1.219 0.2006 0.0547 3.288 1.213 0.6137 0.8341 284|144
0.5 | 1.871 0.8551 0.2257 0.09952 3.205 1.278 0.6337 0.8356 340|161
0.75 | 1.686 0.9116 0.2409 0.1216 3.332 1.201 0.6219 0.8094 137|76
1 1.991 0.9857 0.2061 0.1034 3.329 1.212 0.5881 0.8054 103[58
o | 2 I 0.2 01 34 12 06 08
O initial 1 1 1 1 1 1 1 1




Example 2 - An Elastography-like approach for Arterial Compliance Estimation

GOAL.: to estimate the vessel compliance by
means of

Time frames

1.Image registration

2.Control theory
Solution of an INVERSE FSI Problem
Measures Displacement

\ 4 \ A
i

y

9

EMORY

4 0
Tech ' Ernglnesrimng

81



Inverse FSI Problem

Let 1 be the computed displacement field and J(n) a functional

measuring the “distance” data-simulations:

5 ¥ — interface between fluid and solid
J(n)= / (1 — Mmeas) “do
>

A N + possible regularizing terms

Measured displacement

(from the registration step) 2, = domain of the structure problem

(Q — reference domain of the structure problem)

The displacement field 7 is the solution of a FSI problem, depending on some parameters 3

to be used as control variables (and related to the compliance).

Q¢ = domain of the fluid problem

The FSI problem is regarded as a constraint to the minimization process, so that n=mn(3).

Find the parameters 3* such that
J(n(B*)<J(n)  Vn

under the conditions Fluid (u, p) =0 Tncompressible Navier-Stokes
Structure( ?’]) =0 Linear elasticity
Matching conditions (u, p, n) =0 Standard
EMORY T =1 (Vn+ (Vn)!) +7(V-p)I

Two parameters: £and v

= .
Gaollegsof £ £
G‘%E}M = T Y2 = m + 71 82




Simulations details:

o 49,146 velocity DOFs
(P2), 2362 pressure DOFs
(P1), 12,972 displacement
DOFs (P2).

o inflow: sinusoidal pressure
wave p(t) =
1e3 + 5e2sin(1007t).

o outflow: 0D-Windkessel
(R, =400, Ry = 6.2€3,
C=272e —4)

Displacement
0.000829
0.0008
0.0006

0.0004

0.0002
5.226-07

Figure: Displacement field at t = 0.03s
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Time history of the Young's modulus estimate. SNR = 5. Tikhonov
regularization parameter o = 1072.

Variational DA may reduce Uncertainty but with High Computational Costs




Surrogate solution based on POD analysis

For the Inverse FSI problems and the compliance estimation

Proper Orthogonal Decomposition (POD) in a nutshell
1) OFFLINE: compute the solution for different values of the Young modulus (chosen a priori)

2) Filter the Redundancy: compute the SVD of the snapshots and take the eigenfunctions

corresponding to the largest SV

3) ONLINE: Use the eigenfunctions to construct a solution N

Snapshots based (POD)
surrogate solution

Small size
L.Bertagna, A.V., Inverse Problems (2014)




A “toy” problem on a 3D cylindrical domain

Singular Values of the observation matrix

0 o0 100 150 200 250 300

First 250 singular values of the correlation matrix C = XX, where the
columns of X are snapshots of 1(t) obtained with E=1e+06 and E=3e+06
and 0 < t < 0.2s.




Displacement
0.000829
0.0008

l0.000é

0.0004
0.0002

0.22e-07

@ 13,017 velocity DOFs (P2), 723
pressure DOFs (P1), 6,402
displacement DOFs (P2).

@ inflow: sinusoidal pressure wave
p(t) = 1e3sin(1007t).

e outflow: 0D-Windkessel
(R, =400, Ry = 6.2€3,
C=2.72e —4)



2e+06 T T T T T

1.8e+06

1.6e+06

1.4e+06

1.2e+06

Young’s modulus [dynfcmz]

1e+06

800000 ! ! ! ! !
0 0.01 0.02 0.03 0.04 0.05 0.06

Time [s]




FS RS

E* [1.33, 1.84, 1.31]*10° | [1.34, 1.80, 1.33]*10°
rel. error 1.91% 2.01%
exec. time 3176s 2177s
NS solves 492 480 (offline)

Table: Comparison between Full Space (FS) and Reduced Space (RS) performance for the
idealized aortic arch test case (for RS, 7 = 0.95).

7 =20.9 7 = 0.95 7 = 0.99

E*

rel. error 2.83% 1.97% 0.87%

Table: Time average of the estimates and relative error for different values of the POD threshold
for the idealized aortic arch test case.

POD has a(n expected) regularizing effect

ATLAS of vascular geometries to take advantage of the offline phase with many patientsSA/[O

TO DO: In vitro/in vivo validation




TO DO - Validation

Cast obtained in Pavia ([3-lab)
with a 3D Printer

Material with controlled compliance




POD: Pain and Joy

1) Decay of Singular Values may be not fast — Cardiac conductivities!!!!

0 100 200 300 400 500 0 500 . 1000 1500

Left: SV for 1 parameter set of Monodomain problem (Cardiac conductivities)
Right: SV for Fluid-Structure Interaction problem (Young Modulus)

2) Nonlinear terms require special attention

Discrete Empirical Interpolation Method



Sampling of the parameter space is crucial for POD (Monodomain)

Reconstructing a model
from a parameter set
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CONCEPT: DOMAIN OF EFFECTIVENESS IN THE PARAMETER SPACE



~| ¥ sample point

With a judicious repartition of the

® test point P )
i . o parameter space by Domain of
-~ ~
// RN Effectiveness of the samples we can
- ) AN get good CPU reduction
~
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o)
ml
O exact O estimated # fwd | bwd | Total exe. time | Exe. time/solve

Full Order [3.2, 0.5] | [3.237 0.625] 29 |17 6211 s 135.02 s
POD+DEIM [3.2,0.5] | [3.161 0.393] 89 | 41 439.6 s 3.38 s
Full Order [4.5, 1] [4.535 1.099] 46 | 35 11160 s 137.78 s
POD+DEIM [4.5, 1] [4.596 0.974] 73| 41 353.1s 3.10s
Full Order [5.5, 3] [5.528 3.064] 41 | 41 12780 s 155.85 s
POD+DEIM [5.5, 3] [5.384 3.053] 60 | 41 246.6 s 2.44 s
Full Order [4, 2] [4.045 2.076] 27 | 27 7525 s 144.71 s
POD+DEIM [4, 2] [3.764 1.968] 90 | 41 396.1s 3.02s
Full Order [3, 2] [3.054 2.077] 15|15 4199 s 139.97 s
POD+DEIM [3, 2] [2.490 2.434] 107 | 31 396.1 s 2.87s
Full Order [6, 5] [5.854 5.121] 41 | 41 12870 s 156.95 s
POD+DEIM [6, 5] [4.820 5.836] 41 | 41 131.6s 1.60 s




