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Outline

• A simple 1D/0D model 

• An academic 3D/0D case

• A real 3D/0D case

1 . A different approach for defective conditions 

(in the “data assimilation” direction)

2. The Geometrical Multiscale Framework

2.1 Basic principles

2.2 Examples
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A twist in the tale: the “control” approach

Basic ideas

In the augmented formulation:

 The Navier-Stokes equations play the role of state equations

 The flow rate conditions are constraints for the solution

Let us swap the roles:

1. We introduce an appropriate functional J related to the 

conditions to be minimized

2. The Navier-Stokes equations as constraints to the 

minimization process 

Minimization will be pursued by acting on (control) boundary values
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The flow rate problem

For the sake of simplicity, we refer to the steady Stokes problem.

Let us introduce the functional:

We look for the solution minimizing this functional with the constraint given by 

the Stokes equations:

We put in evidence the role of the “control” variables:
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The constrained functional reads:

Searching for stationary points of this functional, we have the KKT problem:

Stokes problem

Adjoint problem

Optimality conditions
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Observe that the adjoint problem is still a Stokes-like system:

Remarks
1. The formulation can be extended to the unsteady NS system:

a) Fixed point strategy for the non-linearity

b) Application to the time discretized problem (some concerns, see later)  

2. Well posedness analysis of the constrained minimization problem can be 

carried out by means of a fixed-point strategy
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Numerical solution of the control problem

At the numerical level, an iterative procedure is needed for solving the 

problem, with the successive solution of (P)-(A) and (Cj) acting as 

convergence conditions 

THEOREM: For a proper choice of t, this algorithm converges to the solution



9/53Data Driven Computations in the Life Sciences

A. Veneziani – Lecture 2: Multiscale Coupling 

Remarks (cont’d)
3. Numerical results are comparable with the ones of the LM approach.

4. This approach is however more versatile

Selection of the relaxation parameter

τ =-1 τ = τn
N τ = τn

N + 

AITKEN

τ = 2τn
N LM

Steady 87 22 4 2 2

Unsteady - 5.08 3.81 1.98 2

Steepest descent strategy:

It is possible to verify that this corresponds to apply the Newton 
method to the equation JQ(ul

h(k
l))=0.

Since JQ is a quadratic functional, we guess:  τ = 2τl
N
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Numerical Results

Control Algorithm Difference LM vs Control
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The mean pressure drop problem

Functional:

Constraints:

Constrained functional:
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REMARKS: 

1. Different formulations can be devised with different control variables sets (e.g. 

the normal stresses)

2. The functional can be devised in order to incorporate informations on the solution 

(versatility)
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Not necessarily we have data on the boundary in practice…

Yet with this approach we can “assimilate” these data

See M. D’Elia, Perego, Veneziani JSC and D’Elia, Veneziani M2AN
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Numerical results

1) Womersley test case

Comparison for formulations with different control variables
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What about the structure?

For the sake of brevity we do not address 

structure coupling in detail

Let us consider briefly “defective” conditions 

for the structure 

The problem is not largely considered – “practical” solutions 

Example: if we have the area, this can be regarded as an average of the

radial displacement 

As for the average velocity, we can assume a “profile” (e.g. circular) that 

fits this relation (Dirichlet conditions).

In principle, we can also use a Lagrange multiplier approach.

Conditions on the normal stresses are usually set to zero

(see A. Quarteroni, A.V., C. Vergara 2015 and references for details)  
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Some results on the compliant case

Situation is much more complicated by 

the presence of different iterative 

processes:

1. Time advancing

2. Fluid-Structure interaction 

algorithms

3. Solution of the (Partitioned) 

Augmented Defective Problem or 

the Control Problem 

High Computational Costs!!!
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An example based on the “control” approach

…and a possible simplification:
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Pressure in a simplified 2D carotid bifurcation
Pressure Pressure difference of the 2 algorithms
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The mean pressure drop problem

Functional:

Constraints:

Constrained functional:
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REMARKS: 

1. Different formulations can be devised with different control variables sets (e.g. 

the flow rates)

2. Well posedness analysis is missing (!)

3. The functional can be devised in order to incorporate informations on the solution 

(versatility)

4. A fixed point numerical algorithm can still be devised: however, theoretical 

convergence analysis is missing. It is possible to prove that the sequence of 

iterations does not diverge. In numerical tests, it converges.
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MULTISCALE FRAMEWORK

• Coupling schemes for 3D/1D/0D models

 Interface Conditions

 Coupling Algorithms

LPM: ODE model

NS: PDE model

Pup(t),Qup(t) Pdw(t),Qdw(t)
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Numerical Coupling of Different Models

Coupling 3D/0D models

A MONOLITHIC APPROACH (SIMPLE NETWORKS) 

Semi-analytic approach:

Use the method of integrating factor to

solve symbolically the 0D model

eventually reduced to a bc.  

IF Method: Robin condition (to be properly numerically implemented)

I. Vignon-Clementel, C. Taylor et al. (2006)
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Numerical Coupling of Different Models

Coupling 3D/0D models

A DOMAIN DECOMPOSITION APPROACH
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Bridging region compatibility
The 0D model 

incorporates the BC:

As for any 

nonoverlapping

Domain Decomposition 

approach, we are not 

free of selecting 

arbitrary interface 

conditions.

With model reduction 

this leads to some 

compatibility between 

the decoupling 

algorithm and the 

topology of the 0D 

model. 

If you don’t do this: see 

Marsden et al, JCP 

2013.
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Sketch of the proof:

fixed point reformulation

sub-problems well posedness

compactness of the fixed-point operator (via 

Ascoli-Arzelà Theorem)

Schauder Theorem

Remark: with a similar approach, a well posedness analysis has been 

carried out for 1D/0D models by Fernandez, Milisic (2004).

3D

0D

Q

p(k+1)

p(k)

p
(k+1)
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Coupling Algorithms
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Coupling Algorithms II: explicit schemes
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Coupling Algorithms III: 3D/1D

In the coupling between 3D and 1D models we have more possibilities at the  interface.

Possible Interface Conditions (not linearly independent):

[A] Area
[B] Averaged Normal Stresses

[D] Incoming Characteristic

[C] Flux

Actually, it is possible to see that [A], [B], [D] implies [C] 

Compliant Vessel
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A possible algorithm

1. From the velocity, pressure, area solution at the iteration k compute W1 at

the interface and solve the 1D model with condition [D]. 1D computation 

provides the new estimate for area (pressure). 

2. Compute the 3D model, imposing condition [A] and [B], yielding a new 

estimate for W1

Time step n+1: solution at tn is given. It provides an initial guess for the solution

at tn+1.

Loop on k: iterate up to the fulfillment of a convergence test:

Remark

•Due to the mismatch between the structure treatment of the two models, 

some numerical instabilities can occur. An explicit scheme is not suitable.

•One or more relaxation parameters can improve the convergence

•A complete analysis of the interface conditions and coupling algorithms is

still to be done 



38/53Data Driven Computations in the Life Sciences

A. Veneziani – Lecture 2: Multiscale Coupling 

This algorithm has been used in the results shown in the previous lesson
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First Example: 1D – LP Heart Model 

Network taken from Wang, Parker, 2004, Sherwin, Peirò, Franke 2003

Tasks:

1. to simulate pressure wave 

propagation in the 55 largest arteries 

(1D model);

2. to account for the presence of the 

heart and the peripheral circulation (0D 

model);

3. to simulate pathological occlusions 

(from 55 to 53 arteries).

Issues:

Heart Lumped Parameter model

Heart/Network Coupling

Peripheral Circulation

Ackn:L. Formaggia, D.Lamponi, M. Tuveri
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“The left ventricle and arterial circulation represent two mechanical units that are 

joined together to form a coupled biological system”. McDonald’s Blood Flow in 

Arteries, 1998.

Standard heart modeling:

The heart is described as a boundary inflow 
condition to the arterial network.

No feedback from the arterial system to the 
heart.

Multiscale modeling: lumped parameters description of the heart (McD’s Blood Flow)

Pressure and volume in the left ventricle are linked together through the time-

dependent elastance

Cardiac elastance is low during the diastolic phase and increases during the systolic one.
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Heart/Arterial System Coupling

Assumptions: aortic valve opens under the pressure difference action, and closes under 
the action of a flow reversal.
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Peripheral Circulation

Standard approach:

distal circulation lumped in a purely resistive load:

Present approach: three elements Windkessel downstream vessels:

Windkessel Impedance:

|Z|

w

phase(Z)

w
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Impact of the heart coupling: adult patient

Left: without coupling Right: with coupling

Ascending AortaThoracic Aorta

The traditional approach underestimates the wave reflections, since the heart working is actually 

independent of the arterial feedback. This is particularly evident in the pathological case 

(reflections induced by the occlusion).
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Impact of the heart coupling: elder patient

Ascending AortaThoracic Aorta

In an elder patient we assume a doubled arterial Young modulus (stiffening). The 

traditional approach underestimates the sensitivity to the arterial stiffness.

Left: without coupling Right: with coupling
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Pressure waves at different locations (from ascending aorta to iliac 

bifurcation) for a middle aged (left) and an elderly patient (right). On the 

bottom: the flow rate in the ascending aorta.

Multiscale simulation of aging effects
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Onset of backflow and pressure increment induced by the distal occlusion 
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Second Example: Multiscale Carotid
R. Balossino et al. 2009

Application of the geometrical multiscale methodology to the

investigation of the fluidynamic behaviour of a carotid artery

bifurcation

The choice of the carotid artery has been made because:

• it is an area particularly prone to plaque deposition with the danger of embolism

• it allows to highlight the importance of prescribing realistic boundary conditions

The final aim of the work is to investigate the impact of the

multiscale approach on numerical simulations
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Reconstruction of the 3D models

Diameter of the common carotid artery = 6.4 mm

5.9 mm2

30.6 mm2

Stenosis 

of 80%

Unstructured grid  100000 elements

Amira 3.1, ZIB, TGS



49/53Data Driven Computations in the Life Sciences

A. Veneziani – Lecture 2: Multiscale Coupling 

3D Model: Incompressible Navier-Stokes Equations for an Incompressible Fluid

0D Model: Compartment model. For each compartment a set of Ordinary Differential Equations

is obtained by a space average of momentum and mass conservations (+ constitutive laws)

The whole lumped parameter model is described by a system in the form:

Multiscale model: equations

The ODE system was solved with an explicit Euler method, through a user defined function (UDF) 

included in the Fluent code (Fluent Inc, Lebanon, NH, USA)

dy

dt
+ A(y)y=b

COMPARTMENT i COMPARTMENT i+1COMPARTMENT i-1
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Multiscale model: diagram

NS = Navier Stokes Model

Presence of 

stenosis 
Absence of  

stenosis

Right Atrium Left AtriumRight Ventricle Left Ventricle

Pulmonary

Circulation

Carotid 

arteries

NS

Lower Systemic 

Circulation

Innominate and 

Subclavian 

arteries
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Multiscale model: numerical coupling

3D Computation

Pressure boundary conditions 

on the artificial sections

given by the 0D

0D Computation

Flow rate conditions 

given by the 3D

TIME STEP t n+1

Semi-implicit approach

pi
n

Qi
n+1

Sub-iterations (implicit approach)

Possible but actually not needed
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0.82
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0.66
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0.41

0.33

0.25

0.16

0.08

0.00

Multiscale model: results

VELOCITY CONTOUR

m/s

VELOCITY PROFILE

At systole ( t = 0.2 s)
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PRESSURE

Pa

At systole 

( t = 0.2 s)

Results

Pa

At diastole 

( t = 0.6 s)

At systole 

( t = 0.2 s)

At diastole 

( t = 0.6 s)

TANGENTIAL WALL SHEAR STRESS

14750

14700

14650

14600

14550

14500

14450

14400

14350

14300

14250

11270

11250

11230

11200

11180

11160

11140

11120

11100

11080

11060

Pa
25.7

23.2

20.6

18.0

15.4

12.9

10.3

7.72

5.15

2.57

0.00



57/53Data Driven Computations in the Life Sciences

A. Veneziani – Lecture 2: Multiscale Coupling 

almost equi-distribution in the two branchesAbsence of stenosis:
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Multiscale model: results
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Flow rate [ml/s]

QRCA = 2.77 ml/s

QLCA = 2.80 ml/s

The results show that there are no significant differences between 

the flow distribution in the bifurcation with and without stenosis

Presence of stenosis:

QRCA = 2.65 ml/s

QLCA = 2.68 ml/s
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Boundary condition:

• Common carotid artery: pulsatile velocity profile 

(resulting from the previous 

multiscale simulation)

Cicle duration: 0.8 s

Heart-rate of 75 bpm

• Left and right carotid artery: fixed and equal pressure

• Wall: no slip condition
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QLCA =2.7 ml/s

QCA = 5.4 ml/s

QLCA =3.2 ml/s

DPRDPL
In the multiscale model (LPM + FVM), instead,

the resistances at the downstream of the two

carotid branches are greater than that generated

by the obstruction in the right branch. As a result,

according to the relationship: DP = R*Q, the flow

rate in the two branches is almost the same.

Stand-alone 3D model vs multiscale model

QRCA = 2.5 ml/s

In the stand-alone 3D FVM the resistance caused

by the stenosis is dominant, so for the same

imposed outlet pressures, the flow rate is greater

in the left branch respect to the right one.

QRCA = 2.2 ml/s
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A non-standard application*

Problem: Propagation of pressure waves in the arterial tree and viscous blood 

motion have different characteristic times (S. Cănic). 

1. In many bioengineering applications involving a 3D model over a few centimeters 

compliance can be neglected (for reducing CPU times)

2. In a multiscale network we are not allowed to neglect compliance for the effects 

over the tree and numerical instabilities (increment in CPU times)

A possible trade off (?):  rigid 3D with “compliant” boundary conditions

*
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A non standard application (II)

Sinusoidal flow rate
imposed on the inlet (left) 

section of 1D model

Step flow rate
imposed on the inlet  (left) 

section of 1D model

Plots show Q1D and Q3D on 

and comparison with a fully 

1D solution evaluated on the 

corresponding node
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A non standard application (III)
(preliminary results)

1st RCL (l)

2nd RCL

(r)

outlet section

(end)

C1, C2 estimated from 3D 

model parameters

L1, L2, R2, R3 tuned with 

numerical experiments

R1, R4 characteristic 

impedance of 1D model
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Conclusions

• The geometrical multiscale approach may provide a flexible 
paradigm for simulating the complex interactions of the 
cardiovascular system with a reasonable computational cost while 
being able to “refine” areas of interests;

• The velocity profiles are not prescribed a-priori and the clinical 
data comparison is good 

• The same approach has been sucessfully “exported” in different 
contexts, e.g. river simulations, industrial combustion engines, 
cooling systems… even in an adaptive fashion (complicated!!!)
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A comparison among Full/Geometrical Multiscale and HiMod

HiMod more suitable for adaptive strategies


