

CENTRAIS DE ESTERILIZAÇÃO Da dimensão ao funcionamento

OBJETIVO

ESTA APRESENTAÇÃO, TEM COMO OBJECTIVO:

- FUNCIONAMENTO E CIRCUITOS INTERNOS E PROCESSOS UTILIZADOS.

SELECÇÃO DOS EQUIPAMENTOS PARA UMA CENTRAL DE ESTERILIZAÇÃO

- 1. Para seleccionar os Equipamentos para uma Central de Esterilização de um Hospital, temos que considerar o seguinte:
- Material a esterilizar e o respectivo volume
- Duração dos processos (ciclos)
- 1.1 Material a esterilizar

Em 1º lugar temos que considerar o comportamento do material que se vai esterilizar, consoante a Temperatura, a Pressão, Humidade a até os Agentes Químicos., determinandose com esta análise, o material que vai a esterilizar a um processo ou a outro.

1.2 Duração dos processos

A duração depende do método de esterilização adoptado, do tamanho da carga, do tipo de material, etc., podendo estabelecer-se para os Esterilizadores em meio hospitalar:

- 30 a 60 minutos, para a esterilização utilizando o calor húmido (6 a 8 ciclos /dia) e 90 minutos a baixa temperatura (1 ciclo /dia).

Selecção dos Equipamentos para uma Central de Esterilização

1.3 Selecção da capacidade de cada Esterilizador

Para seleccionar a capacidade / tamanho de cada Esterilizador, temos que ter em linha de conta o:

- Material a processar, pelos diferentes métodos de esterilização.
 - 95% na Esterilização pelo Vapor de Água (coeficiente 0,95)
 - 5% na Baixa Temperatura (coeficiente 0,05)
- Volume do material a processar
 - 140 litros por intervenção cirúrgica, que e a uma média de 4 por dia, são 560 litros / dia
 - 80 litros por parto, que e a uma média de 8 por dia, são 640 litros / dia
 - 8 litros por cada cama / dia
- Aproveitamento da Câmara dos Equipamentos
 - 70% do volume total (coeficiente 0,70)
 - 86% relativo à segurança do operador (coeficiente 0,86)
- Média, dos processos que se realizam em cada equipamento
 - Esterilizador a Vapor 8
 - Baixa Temperatura 1

FÓRMULA DE CÁLCULO

Em que:

V – Volume a esterilizar por cada método de esterilização

V1 – Volume de material para cada Sala de OP

V2 – Volume para cada Sala de Partos

V3 – Volume para cada Cama de internamento

K1 – % para cada sistema de esterilização

K2 – Coeficiente de aproveitamento da Câmara

K3 – Coeficiente segurança no trabalho

Q - Nº de Salas de OP

P – Nº de Salas de Partos

C – Nº de Camas

N − Nº de processos / dia de cada Esterilizador

Fonte: Manual INSALUD

EXEMPLO DE CÁLCULO

Temos um Hospital, em que o que se pretende será então o valor de V – Volume a esterilizar por cada método de esterilização (no caso, pelo vapor de água), sendo que o mesmo tem as seguinte características:

- **Q** Nº de Salas de OP 8
- P Nº de Salas de Partos 2
- **C** Nº de Camas 300

Logo e aplicando a fórmula anterior,

O que aponta para a instalação de 3 Esterilizadores a Vapor, com a capacidade de 640 litros.

ESTERILIZADOR A VAPOR

Fig.1 – Esterilizador marca PROHS

ESTRUTURA DE UMA CENTRAL DE ESTERILIZAÇÃO

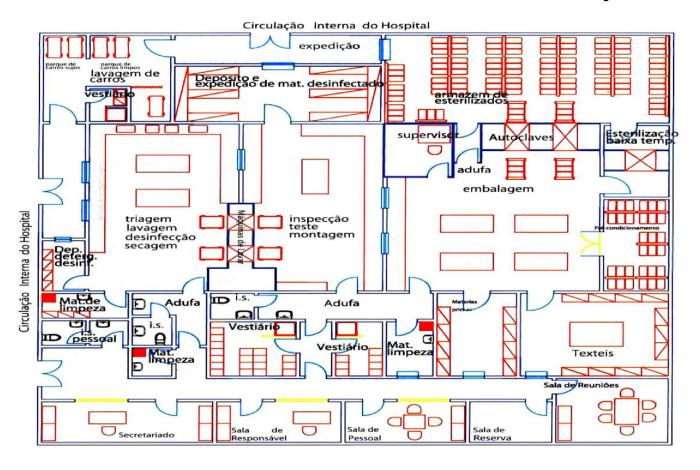


Fig.2 – Disposição de áreas de trabalho, dum SCE – Serviço Central de Esterilização

Fonte: Manual de Normas e Procedimentos para um Serviço Central de Esterilização (SCE) (publicação da DGS – 2001)

ESTERILIZAÇÃO A VAPOR — EVOLUÇÃO

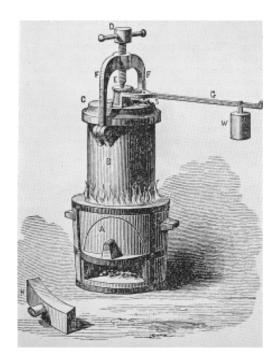


Fig. 3 - Papin,s Digester (1680)

Fonte: Principles and Methods of Sterilization in Health Sciences – John J. Perkins - 1980

ESTERILIZAÇÃO A VAPOR - EVOLUÇÃO

Fig. 4 Chamberland, s Autoclave

Fonte: Principles and Methods of Sterilization in Health Sciences – John J. Perkins - 1980

ESTERILIZAÇÃO A VAPOR - EVOLUÇÃO

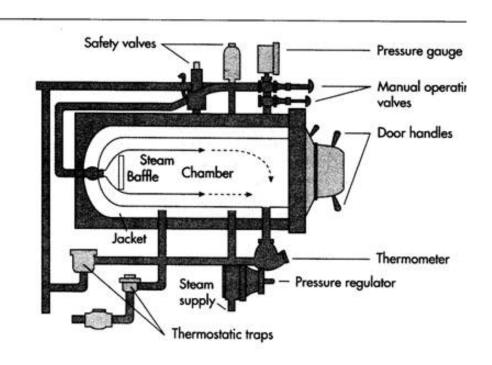


Fig. 5 - Conceito Horizontal

ESTERILIZAÇÃO A VAPOR - EVOLUÇÃO

Fig. 6 - Esterilizador Horizontal moderno

CICLOS DE ESTERILIZAÇÃO A VAPOR

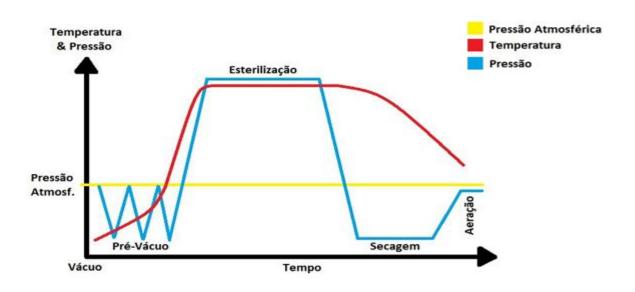


Fig. 7 - Ciclo típico de Esterilização a Vapor, em Esterilizador Horizontal

TIPOS DE CICLOS DE ESTERILIZAÇÃO A VAPOR

Fig. 8 – Tipos de Ciclos de Esterilização a Vapor

QUALIDADE DO VAPOR

EN 285:2006+A2:2009 (E)

Annex B (informative)

Steam supply; suggested maximum values of contaminants in feed water and condensate

Table B.1 — Contaminants in feed water supplied to a dedicated steam generator

Determinand	Feed water		
Residue on evaporation	≤ 10 mg/l		
Silicate (SiO ₂)	≤ 1 mg/l		
Iron	≤ 0,2 mg/l		
Cadmium	≤ 0,005 mg/l		
Lead	≤ 0,05 mg/l		
Rest of heavy metals except iron, cadmium, lead	≤ 0,1 mg/l		
Chloride (Cl')	≤ 2 mg/l		
Phosphate (P ₂ O ₅)	≤ 0,5 mg/l		
Conductivity (at 25 °C)	≤ 5 µS/cm		
pH value (degree of acidity)	5 to 7,5		
Appearance	Colourless clean without sediment		
Hardness (Σ lons of alkaline earth)	≤ 0,02 mmol/l		
NOTE Compliance should be tested in accordance	with acknowledged analytical methods.		

Contaminants in condensate from steam supply to the sterilizer measured at the sterilizer inlet

Determinand	Condensate	
Silicate (SiO ₂)	≤ 0.1 mg/ l	
Iron	≤ 0,1 mg/ l	
Cadmium	≤ 0,005 mg/l	
Lead	≤ 0.05 mg/l	
Rest of heavy metals except iron, cadmium, lead	≤ 0,1 mg/l	
Chloride (Cl')	≤ 0,1 mg/l	
Phosphate (P ₂ O ₅)	≤ 0.1 mg/l	
Conductivity (at 25 °C)	≤ 3 µS/cm	
pH value (degree of acidity)	5 to 7	
Appearance	Colourless clean without sediment	
Hardness (Σ lons of alkaline earth)	≤ 0,02 mmol/l	

72

Fig. 9 – Tabelas de constituintes químicos admissíveis na água...

Manutenção Técnica

Limpeza dos Painéis exteriores					
Limpeza do interior da câmara					
Purgar o copo de regulação ar comprimido					
Limpeza Filtro de entrada de água					
Limpeza Filtro de esgoto					
Lubrificação das juntas					
Substituição das juntas (ou cada 200 ciclos)					
Limpeza do filtro da purga da camisa					
Substituição do purgador da camisa					
Verificação do cilindro pneumático da porta					
Substituição dos vedantes do cilindro pneumático da porta					
Lubrificação das barras de deslocação da porta					
Verificação do sistema pneumático (tubo e acessórios)					
Verificação do sistema eléctrico (cabos)					
Verificação do quadro eléctrico (reaberto dos parafusos)					
Verificação das válvulas segurança					
Disparo manual das válvulas segurança					
Verificação e limpeza das válvulas de retenção					

Diária	Seman al	Mensal	Semestr al	Anual
Χ				
	Х			
	Х			
		X		
		X		
		X		
			Χ	
		X		
				X
		X		
				X
			Χ	
		Х		
			Χ	
			Χ	
		X		
		Х		
		Х		

Fig. 10 – Tarefas e periodicidade de intervenção, no caso do Esterilizador Horizontal a vapor

H. SENHOR DO BONFIM - CENTRAL DE ESTERILIZAÇÃO

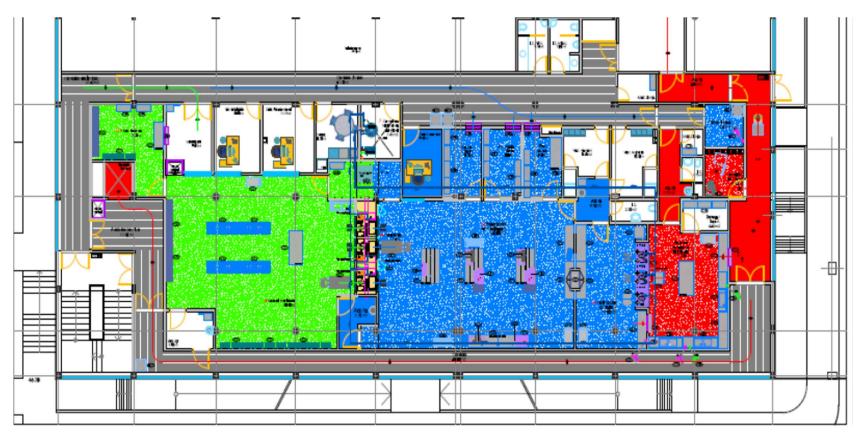


Fig. 11 – Layout do SCE do Hospital Senhor do Bonfim

ESTRUTURA DA CENTRAL DE ESTERILIZAÇÃO

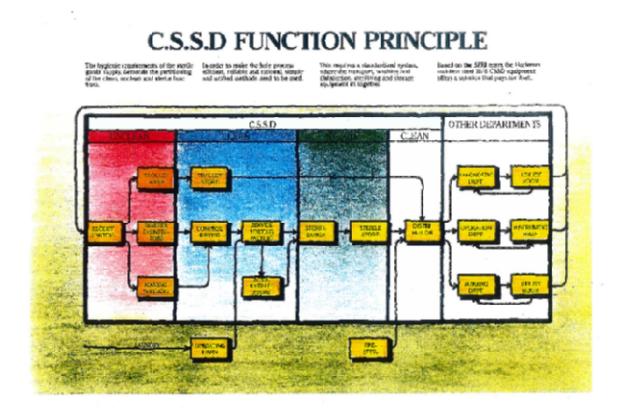


Fig. 12 – CSSD - Central Sterilization Service Departament

ESTRUTURA DA CENTRAL DE ESTERILIZAÇÃO

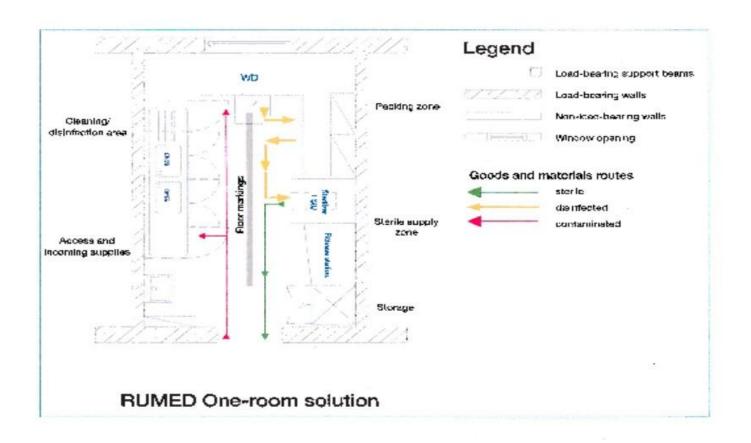


Fig. 13 – Layout RUMED 1

Fonte: Central Service 5/2015

Legend

ESTRUTURA DE UMA CENTRAL DE ESTERILIZAÇÃO

Goods and materials routes. Staff routes RUMED (reprocessing unit for medical devices)

Fig. 134– Layout RUMED 2

Fonte: Central Service 5/2015

Obrigado.