

V 1.0.0.9_EN

USER´S MANUAL

Dibalscop.dll

FOR INTEGRATIONS

V 1.0.0.9_EN 2

CONTENTS

1- LIBRARY DESCRIPTION...3

2- DATA IMPORT...3

2.1 SEND ITEMS THROUGH FILES ...3
2.1.1 DataSend Function ...3
2.1.2 DataSend2 Function ...6

2.2 SEND ITEMS THROUGH PARAMETERS..7
2.2.1 ItemsSend Function ..7
2.2.2 ItemsSend2 Function ..8

2.3 SEND REGISTERS..12
2.3.1 RegistersSend Function ..13

3- DATA EXPORT...16

3.1 SALES RECEPTION ...16
3.1.1 ReadRegister Function ...17
3.1.2 CancelReadRegister Function ..19

4- COMMUNICATION STATUS WINDOW ...20

5- EXAMPLE FOR USING THE DIBALSCOP.DLL, THROUGH PARAMETERS USING
ITEMSSEND FUNCTION, ITEGRATED BY C# ..21

V 1.0.0.9_EN 3

1- LIBRARY DESCRIPTION

This file is a library of communications developed in C++, which carries out basic
operations in order to integrate management software with Dibal scales.

This library uses the dll “commL.dll” and “iconv.dll” to establish communication with scales.

By means of this library it is possible to import data to the scale or receive data from it.
The library includes 5 accesible functions, 3 of them for Data Importation of data and 2 of
them for Data Exportation.

2- DATA IMPORT

The dll has three functions used to send data to the scales:

1.- Function “DataSend” . This function allows to send articles to the scale from a file
of articles and a file of scales.

2.- Function “ItemsSend” This function allows to send articles to the scales, but in
this case the data are entered in the the fucntion directly by code as parameters of it.

3.- The function “RegistersSend” allows to send any type of register accepted by
the DIBAL scales.

2.1 SEND ITEMS THROUGH FILES

The user must generate a file of articles named “ dibalscopItems.txt ” and a file of
scales named “ dibalscopScales.ini ” in the same path of the Dibalscop.dll
The function;

string WINAPI DataSend (void)

This function searches the file of articles “dibalscopItems.txt ” and the file of
scales “dibalscopScales.ini ” in order to send all the articles contained in this file
to all the scales.

When the function completes the process, it creates a file named
“dibalscopResults.txt” which shows the result of the communication process.

2.1.1 DataSend Function

Function to work with files.
This function search the item file called “dibalscopItems.txt” and the scale file
“dibalscopScales.ini” in the same path that is the dll. Import all the items of the
file and sent they to all the scales of the scale file.

string WINAPI DataSend (void);

Result 1: The function will return a string with the following values:

1) If the communication with all the Scales is correct:
Result = “OK”

V 1.0.0.9_EN 4

2) If the communication in any of the scales is not correct: It will return the

ipAddress of the scales with erroneous communication, separated with point &
comma (“;”)
Result = “192.168.1.43;192.168.1.44”

3) If the dll (commL.dll), which is necessary for the communication, has not been
added to the project, it will return a string “No commL.dll”.
Result = “No commL.dll”

Result 2: In addition, when the function have finished will created one file called

“dibalscopResults.txt” with the result of the comunication

1) If the communication with all the Scales is correct:
Result = “OK”

2) If the communication in any of the scales is not correct: It will return the
ipAddress of the scales with erroneous communication, separated with point &
comma (“;”)
Result = “192.168.1.43;192.168.1.44”

3) If the dll (commL.dll), which is necessary for the communication, has not been
added to the project, it will return a string “No commL.dll”.
Result = “No commL.dll”

Note: The register generated by DataSend function to send each Item is:

 China -> L2_C
Rest -> AG (102E scale version or later is required)

ITEMS FILE:

- File name: dibalscopItems.txt
- File type: .txt
- File format: ANSI
- Separator Character: ‘,’ (Character 44, 0x2C)
- Structure:

Field
number Description Length Type Values

1 Identification code 6 Numeric < 999999
2 Direct key 3 Numeric < 999
3 Article price 6 decimal < 9999,99
4 Name 36 Alphanumeric

5
Type

1 Numeric
0-> wheighty
1-> unitary

6 Section 4 Numeric <9999

7
Expiry date

10 Alphanumeric
dd/MM/yyyy -> Date
ddd -> Days

8
Alterate price

1 numeric
0-> Allow
1-> Does not allow

9 Number 9 Numeric < 999999999

10
Price factor

1 Numeric
0-> Yuan/kg
1-> Yuan/100g
2-> Yuan/500g

11 G text 1024 Alphanumeric (Is not used)

Note: The GText at the moment is not sended to the scales.

Example:

000001,001,1.11,Item1,1,1,11/5/2012,0,10001,0

V 1.0.0.9_EN 5

000002,002,2.22,Item2,0,2,123,0,10002,1

SCALES FILE:

 - File name: dibalscopScales.ini

- File type: .ini
- File format: ANSI

 - Structure:

 [config]
 scales -> Number of scales to communicate with.

showWindow -> Show Communications window
 Values: 0 -> Don’t show
 1 -> Show

closeTime -> Number of seconds that the window will be show alter
communication.
Values: -1 -> Close manually

 X -> Number of seconds to close automatically alter
that the communication has finalized.

 [scale01]
MasterAddress -> Scale master address.
IpAddress -> Scale Ip address.
TxPort -> Scale transmision port (Tx). (Is not in used)
RxPort -> Scale reception port (Rx).
Model -> Scale model. (Is not in used)

Values: 500RANGE -> scale of gamma 500
LSERIES -> scale of L series

Display -> Scale display type. (Is not in used)
Values: ALPHANUMERIC: Alphanumeric display

GRAPHIC: Graphic display
Sections -> Scale associated sections (separated by commas “,”). (Is not in

used)
Group -> Scale group.
LogsPath -> Logs file path. (Is not in used)

Example:

[config]
scales=2
showWindow = 1
closeTime = 2

[scale01]
MasterAddress=0
IpAddress=192.168.1.43
RxPort=3000
Model=500RANGE

[scale02]
MasterAddress=2
IpAddress=192.168.1.44
RxPort=3000
Model= 500RANGE

V 1.0.0.9_EN 6

2.1.2 DataSend2 Function

This function permits to send to the scale the information of all the fields contained in AG
register.
This function search the item file called “dibalscopItems2.txt” and the scale file
“dibalscopScales.ini” in the same path that is the dll. Import all the items of the
file and sent they to all the scales of the scale file.

string WINAPI DataSend2 (void);

Result 1: The function will return a string with the following values:

4) If the communication with all the Scales is correct:
Result = “OK”

5) If the communication in any of the scales is not correct: It will return the
ipAddress of the scales with erroneous communication, separated with point &
comma (“;”)
Result = “192.168.1.43;192.168.1.44”

6) If the dll (commL.dll), which is necessary for the communication, has not been
added to the project, it will return a string “No commL.dll”.
Result = “No commL.dll”

Result 2: In addition, when the function have finished will created one file called

“dibalscopResults.txt” with the result of the comunication

4) If the communication with all the Scales is correct:
Result = “OK”

5) If the communication in any of the scales is not correct: It will return the
ipAddress of the scales with erroneous communication, separated with point &
comma (“;”)
Result = “192.168.1.43;192.168.1.44”

6) If the dll (commL.dll), which is necessary for the communication, has not been
added to the project, it will return a string “No commL.dll”.
Result = “No commL.dll”

Note: The function generates the register AG in order to send the information to the scale.
The register AG is supported in Range 500 from version 102E. In L series is supported
37d version.

ITEMS FILE:

- File name: dibalscopItems.txt
- File type: .txt
- File format: ANSI
- Separator Character: ‘|’ (Character 124, 0x7C)
- Structure:

Field
number Description Length Type Values

1 Action 1 Character
A , B or M (Add , Remove

or Modify)
2 Identification code 6 Numeric <= 999999
3 Direct key 3 Numeric <= 999

V 1.0.0.9_EN 7

4 Article price 7 decimal <= 99999,99
5 Name 20 Alphanumeric
6 Name2 20 Alphanumeric

7
Type

1 Numeric
0-> wheighty
1-> unitary

8 Section 4 Numeric <= 9999
9 Label Format 2 Numeric <= 99
10 EAN Format 2 Numeric <= 99
11 VAT Type 2 Numeric 00 to 05
12 Offer price 7 Decimal <= 99999,99

13
Expiry date

10 Alphanumeric
dd/MM/yyyy -> Date
ddd -> Days

14
Extra date

10 Alphanumeric
dd/MM/yyyy -> Date
ddd -> Days

15 Tare 5 Decimal <= 99,999
16 EAN Scanner 12 Alphanumeric
17 Product class 2 Numeric <= 99

18
Product Direct
Number

2 Numeric <= 99

19
Alterate price

1 numeric
0-> Allow
1-> Does not allow

20 G text 1024 Alphanumeric

Example:

A|000001|001|1.11|Item1|Name2|0|1|21|2|1|0.8|12/8/2012|200|0.1|AACCCCCCEEEEE
E|2|45|1|Ingredient01,Ingredient02,Ingredient03

2.2 SEND ITEMS THROUGH PARAMETERS

It is not necessary to create a file, because all the articles and scales are inserted by code.
string WINAPI ItemsSend (Scale * myScales, int numScales,

Item * myItems, int numItems
int showWindow, int closeTime)

This function accepts as parameters all the articles to be sent and all data of the scales.
When the function is called, it sends all the articles to the scales. The function returns a
string which shows the result of the communication process when it completes the
process.

2.2.1 ItemsSend Function

This function allows sending a set of articles to the scales.

string WINAPI ItemsSend (Scale * myScales, int numScales,
Item * myItems, int numItems,
int showWindow, int closeTime)

Parameters:

1) myScales, Pointer to an array of “Scale” type structures with all the scales.

2) numScales, The total number of scales that the scales’ array has.

3) myItems, Pointer to an array of “Item” type structures with all the articles to be

sent to the scales.

V 1.0.0.9_EN 8

4) numItems, The total number of articles that the articles’ array has.

5) showWindow , Show communication window.
Values: 0 -> Don’t show

 1 -> Show

6) closeTime , Number of seconds that the window will be show alter
communication.

 Values: -1 -> Close manually
 X -> Number of seconds to close automatically

alter that the communication has finalized.

Result: The function will return a string with the following values:

1) If the communication with all the Scales is correct:
Result = “OK”

2) If the communication in any of the scales is not correct: It will return the
ipAddress of the scales with erroneous communication, separated with point &
comma (“;”)
Result = “192.168.1.2;192.168.1.3”

3) If the dll (commL.dll), which is necessary for the communication, has not been
added to the project, it will return a string “No commL.dll”.
Result = “No commL.dll”

Note: The register generated by ItemsSend function to send each Item is:

China -> L2_C
Rest -> AG (102E scale version or later is required)

2.2.2 ItemsSend2 Function

This function allows sending a set of articles to the scales.

string WINAPI ItemsSend2 (Scale * myScales, int numScales,
Item2 * myItems, int numItems,
int showWindow, int closeTime)

Parameters:

7) myScales, Pointer to an array of “Scale” type structures with all the scales.

8) numScales, The total number of scales that the scales’ array has.

9) myItems, Pointer to an array of “Item2” type structures with all the articles to

be sent to the scales.

10) numItems, The total number of articles that the articles’ array has.

11) showWindow , Show communication window.

Values: 0 -> Don’t show
 1 -> Show

12) closeTime , Number of seconds that the window will be show alter
communication.

 Values: -1 -> Close manually
 X -> Number of seconds to close automatically

alter that the communication has finalized.

V 1.0.0.9_EN 9

Result: The function will return a string with the following values:

4) If the communication with all the Scales is correct:
Result = “OK”

5) If the communication in any of the scales is not correct: It will return the
ipAddress of the scales with erroneous communication, separated with point &
comma (“;”)
Result = “192.168.1.2;192.168.1.3”

6) If the dll (commL.dll), which is necessary for the communication, has not been
added to the project, it will return a string “No commL.dll”.
Result = “No commL.dll”

Note: The function generates the register AG in order to send the information to the
scale. The register AG is supported in Range 500 from version 102E. In L series is
supported 37d version

SCALE STRUCTURE

This structure defines the scale with which the communication is established.

typedef struct _Scale
{

int masterAddress;
 LPSTR ipAddress;
 i nt txPort;
 int rxPort;
 LPSTR model;
 LPSTR display;
 LPSTR section;
 int group;

 LPSTR logsPath;
} Scale ;

Where:

- masterAddress: Logic address of the scale (Master Address). The registers will be

modified to assign this logic address.
Data type: int -> Integer without sign (4 bytes).

- ipAddress: IP address of the scale.

Data type: LPSTR -> 1 Byte Character String (Char)

- txPort: Port of the scale where we must connect for sending data to the scale.
Data type: int -> Integer without sign (4 bytes). (Is not in used)

- rxPort: Port of the scale where we must connect for receiving data to the scale.
Data type: int -> Integer without sign (4 bytes).

- model: Define the scale model.
Values:
500RANGE -> Is a Gamma 500 scale.
LSERIES -> Is a L series scale.
Data type: LPSTR -> 1 Byte Character String (Char)

- display : Type of scale display. (Is not in used)
Values:

V 1.0.0.9_EN 10

ALPHANUMERIC -> Scale with alphanumeric display
GRAPHIC -> Scale with graphic display

Data type: LPSTR -> 1 Byte Character String (Char)

- section: Sections associated to the scale. If there are multiple sections they must be
separated with commas (“,”).(Is not in used)
Data type: LPSTR -> 1 Byte Character String (Char)

- group: Group of the scale. The registers will be modified to assign this Group number.
Data type: int -> Integer without sign (4 bytes).

- logsPath: Path for the logs file, this file have all the registers of communication. If it is
empty the communication logs will not be recorded. (It is not used)

Data type: LPSTR -> 1 Byte Character String (Char)

ITEM STRUCTURE

This is the structure to define the article data to be sent to the scale. It is used by the
function ItemsSend.

typedef struct _Item
{

 int code;
 int directKey;
 double price;
 LPSTR name;
 int type;
 int section;
 LPSTR expiryDate;
 int alterPrice;
 int number;
 int priceFactor;

 LPSTR textG;
} Item ;

Where:
- code : Article Identification code (maxValue = 999999).

Data type: int -> Integer without sign (4 bytes).

- directKey: Direct key associated to the article (maxValue = 999).
Data type: int -> Integer without sign (4 bytes).

- price: Article price (maxValue= 9999,99). Data type: double(8 bytes)

- name: Article name (maxLength=36 bytes, for China).
Data type: LPWSTR -> Wide character string.

- type: Type of article. Data type: int -> Integer without sign (4 bytes).

0-> Weighed
1-> Non Weighed

- section: Article section. Data type: int -> Integer without sign (4 bytes).

- expiryDate: Best before date (format: dd/MM/yyyy).

Data type: LPSTR -> 1 Byte Character String (Char)

V 1.0.0.9_EN 11

- alterPrice: Allows to modify the item price. Data type: int ->Integer without sign (4
bytes). 0 -> Allows to modify the price.

1 -> Don’t allow to modify the price.

- number: PLUNumber, 9 digits number to be printed in the label

(maxValue=999999999)
Data type: int -> Integer without sign (4 bytes).

- priceFactor: Determines the weight base of the price.
Data type: int -> Integer without sign (4 bytes).
0 -> Yuan/kg
1 -> Yuan/100g
2 -> Yuan/500g

- textG: Item G text. (maxLegth = 1024 bytes). Data type: LPSTR -> 1 Byte Character
String (Char)
(It is not used)

ITEM2 STRUCTURE

This is the structure to define the article data to be sent to the scale. It is used by the
function ItemsSend2

typedef struct _Item2
{
 char action;
 int code;
 int directKey;
 double price;
 LPSTR name;
 LPSTR name2;
 int type;
 int section;
 int labelFormat;
 int EAN13Format;
 int VATType;
 double offerPrice;
 LPSTR expiryDate;
 LPSTR extraDate;
 double tare;
 LPSTR EANScanner;
 int productClass;
 int productDirectNumber;
 int alterPrice;
 LPSTR textG;
}Item2;

Where:
- action : A (Add) , B(Remove) or M(Modify). Char -> 1 byte

- code : Article Identification code (maxValue = 999999).

Data type: int -> Integer without sign (4 bytes).

- directKey: Direct key associated to the article (maxValue = 999).
Data type: int -> Integer without sign (4 bytes).

- price: Article price (maxValue= 99999,99). Data type: double(8 bytes)

- name: Article name (maxLength=20 bytes).

V 1.0.0.9_EN 12

Data type: LPSTR -> 1 Byte string.

- Name2: Article name2 (maxLength=20 bytes).
Data type: LPSTR -> 1 Byte string.

- type: Type of article. Data type: int -> Integer without sign (4 bytes).

0-> Weighed
1-> Non Weighed

- section: Article section. Data type: int -> Integer without sign (4 bytes).

 Max Value = 9999

- labelFomat: Label Format. Data type: int -> Integer without sign (4 bytes).

Max Value = 99.

- EANFomat: EAN Format. Data type: int -> Integer without sign (4 bytes).
Max Value = 99.

- VATType: VAT type. Data type: int -> Integer without sign (4 bytes).
Max Value = 99.(The scale has five types of VAT)

- offerPrice: Offer price (maxValue= 99999,99). Data type: double(8 bytes)

- expiryDate: Best before date (format: dd/MM/yyyy).
Data type: LPSTR -> 1 Byte Character String (Char)

- extraDate: Extra date (format: dd/MM/yyyy).
Data type: LPSTR -> 1 Byte Character String (Char)

- tare: Tara (maxValue= 99,999). Data type: double(8 bytes)

- EANScanner: EAN Scanner (maxLength=12bytes)

Data type: LPSTR -> 1 Byte Character String (Char)

- productClass: Product class. Data type: int -> Integer without sign (4 bytes).
Max Value = 99.

- productDirectNumber: Product Direct Number. Data type: int -> Integer without
sign (4 bytes). Max Value = 99.

- alterPrice: Allows to modify the item price. Data type: int ->Integer without sign (4

bytes). 0 -> Allows to modify the price.
1 -> Don’t allow to modify the price.

- textG: Item G text. (maxLegth = 1024 bytes). Data type: LPSTR -> 1 Byte Character

String (Char)
.

2.3 SEND REGISTERS
The library allows us to send the registers with Dibal protocol to the scale.
In this way, we can fully configure the scale sending the information we need for example:
articles, sales, advertising, configuration, ...

string WINAPI RegistersSend (Scale * myScales,

int numScales,
Register myRegisters[],

V 1.0.0.9_EN 13

int numRegisters,
int showWindow,
int closeTime)

2.3.1 RegistersSend Function

This function allows sending a set of registers with Dibal format to the scales.
See format of the registers in the file of communications registers corresponding to every
scale model.

string WINAPI RegistersSend (Scale * myScales, int numScales,

Register myRegisters[],
int numRegisters,
int showWindow, int closeTime)

Parameters:

1) myScales, Pointer to an array of “Scale” type structures with all the scales.

2) numScales, The total number of scales that the scale’s array has.

3) myRegisters, Pointer to an array of “Register” type structures with all the

registers to be sent to the scales.

4) numRegisters, The total number of registers that the register’s array has.

5) showWindow , Show communication window.

Values: 0 -> Don’t show
 1 -> Show

6) closeTime , Number of seconds that the window will be show alter

communication.
 Values: -1 -> Close manually

 X -> Number of seconds to close automatically
alter that the communication has finalized.

Result: The function will return a string with the following values:

1) If the communication with all the Scales is correct:
Result = “OK”

2) If the communication in any of the scales is not correct: It will return the
ipAddress of the scales with erroneous communication, separated with point &
comma (“;”)
Result = “192.168.1.2;192.168.1.3”

3) If the dll (commL.dll), which is necessary for the communication, has not been
added to the project, it will return a string “No commL.dll”.
Result = “No commL.dll”

SCALE STRUCTURE

This structure defines the scale with which the communication is established.

typedef struct _Scale
{

int masterAddress;
 LPSTR ipAddress;
 i nt txPort;

V 1.0.0.9_EN 14

 int rxPort;
 LPSTR model;
 LPSTR display;
 LPSTR section;
 int group;

 LPSTR logsPath;
} Scale ;

Where:

- masterAddress: Logic address of the scale (Master Address). The registers will be

modified to assign this logic address.
Data type: int -> Integer without sign (4 bytes).

- ipAddress: IP address of the scale.

Data type: LPSTR -> 1 Byte Character String (Char)

- txPort: Port of the scale where we must connect for sending data to the scale.
Data type: int -> Integer without sign (4 bytes). (Is not in used)

- rxPort: Port of the scale where we must connect for receiving data to the scale.
Data type: int -> Integer without sign (4 bytes).

- model: Define the scale model.
Values:
500RANGE -> Is a Gamma 500 scale.
LSERIES -> Is a L series scale.

Data type: LPSTR -> 1 Byte Character String (Char)

- display : Type of scale display. (Is not in used)
Values:
ALPHANUMERIC -> Scale with alphanumeric display
GRAPHIC -> Scale with graphic display

Data type: LPSTR -> 1 Byte Character String (Char)

- section: Sections associated to the scale. If there are multiple sections they must be
separated with commas (“,”).(Is not in used)
Data type: LPSTR -> 1 Byte Character String (Char)

- group: Group of the scale. The registers will be modified to assign this Group number.

Data type: int -> Integer without sign (4 bytes).

- logsPath: Path for the logs file, this file have all the registers of communication. If it is
empty the communication logs will not be recorded. (It is not used)
Data type: LPSTR -> 1 Byte Character String (Char)

REGISTER STRUCTURE

This structure defines the registers to send.

typedef struct _Register
{

 LPSTR characters;
 int sendCompleted;

} Register ;

V 1.0.0.9_EN 15

Where:

- characters : 128 characters string with the Dibal register format which is going to
be send to the scale.

Ej: “AGM0000010010000250ITEM 1 Name 1 Name 2
1000002000000000002412110000000000025NNNNEEEEE00000000000000000000
000”

- sendCompleted : (It’s not used)

V 1.0.0.9_EN 16

3- DATA EXPORT

The dll includes 2 functions to receive the sales from the scales.

1.- Function “ReadRegister” This function opens the connection with the scale and
reads the sales downloaded by the scale.

2.- Function “CancelReadRegister” This function allows to cancel the reception of
sales started by function “ReadRegister”.
The procedure for sales reception is shown below.

3.1 SALES RECEPTION

Sales reception Start continuous

1- Create a loop for continuous calling for function “ReadRegister ”

2- If the function returns a 0, it means that the scale has no sales to download. Continue

the loop until detect something to receive.

3- If the function returns a 1, it means that 1 register has bean read and it has been
copied in parameter 2 “registerBuffer ”, so this value must be received and
treated.

4- If the function CancelReadRegister is called, then it must entered as parameter the

Handle of the socket to be canceled.

5- After calling this function, continue reading registers with the function ReadRegister

until detecting no more information to read, that is until the reception of a 0 from the
function.

Sales Reception Start and Stop

1- Create a loop for continuous calling for function “ReadRegister ”

2- If the function returns a 0, it means that the scale has no sales to download. Continue

the loop until detect something to receive.

3- If the function returns a 1, it means that 1 register has bean read and it has been

copied in parameter 2 “registerBuffer ”, so this value must be received and
treated.

4- If the scales have configured as sales register the register HV (Menu 3.1.4), it is

possible to know when the scale has no more sales to send, so , every time the
register HV is received, it is necessary to check the field “Pending Messages” which is
in the position 13 of the register. When this field has the value N, it indicates that
there are no more sales to receive, so the sales reception can be stopped.

5- If the scales have configured as sales register the register LY (Menu 3.1.4).

Wait until the reception of 0 from function ReadRegister which means there are no more
sales to read. At this moments , the sales reception from the scale can be stopped.
.

V 1.0.0.9_EN 17

6- When the function CancelReadRegister is called, then it must be entered as
parameter the Handle of the socket which we want to cancel.

After calling this function the reading of registers with function ReadRegister must
continue until having no more data to read, that is until the reception of a 0 from the
funtion.

REMARK: For a better efficiency in the sales reception, it is recommended to use the

register of sales HV in the scale.

3.1.1 ReadRegister Function

This function allows to read a register from the scale, every time it is called.

To do it, first of all, enter as reference with the value 0 the parameter serverHandle ”,
so when the scale is coonected to the server socket of the PC, the function will return a
value >0. This value will be the handle of the server socket of the PC to which the scale is
connected.

When the function reads something from the socket, it returns to 1 and in the parameter 2
“register Buffer” it returns the register (sale) read coming from the scale.
Once the register has been received, repeat again the call to the function with the
updated value of the handle of the socket “serverHandle” and continue reading registers.

int ReadRegister (int * serverHandle,

char * registerBuffer,
char * scaleIpAddress,
int scalePortTx,
char * pcIpAddress,
int pcPortRx,
int timeOut,
char * pathLogs)

Parameters:

1) serverHandle, Pointer to an integer which determines the identificator
(handle) of mthe server socket of the PC to which the scale is connected.

Value=0 -> No connection. Nothiong to read.
Value>0 -> Handle of the PC server socket to which the scale is connected.

2) registerBuffer, 130 bytes array, where the register of the scale will be

received.
With every call to the function, Dibalscop.dll will return in
this array of bytes the register read.

3) scaleIpAddress, IP address of the scale

4) scalePortTx, Transmission port of the scale (TX)

Remark: The transmission port must different for every
scale.

5) pcIpAddress , IP address of the PC (or network card from which the coomunication

wioll be done).

V 1.0.0.9_EN 18

6) pcPortRx , Reception port of the PC. The incoming connections will only be
accepted at IP -> pcIpAddress and the port-> pcPortRx

 Remark : Program as pcPortRx the transmission port of the
scale-> scalePortTx

7) timeOut, Time out for the reception of connection request from the scale and

for the reception of a register once the connection is stablished.
 Remark: Better timeout10 s. Never less than 10 s.

8) pathLogs , path for recording the communications logs.
Empty, no logs.
For recording logs, enter the complete path and the name of the
logs file.

Answer: The function will return an integer with the following values:

0.Waiting...Nothing to read => The scale has no sales to download.
Timeout expired without nothing to read in the socket (without receiving registers) .
No more sales.

1.Reading register => Register received properly
2.Finished => The process of sales reception has finished properly.
-1.Inaccessible socket => Error in reception, it is not possible to access to

the socket status.
-2.Scale ends communication => Reception of request of communication

closing from the scale (END,ACK). The scale has no more sales.
-3.Socket is not connected =>Error in reception. Socket not connected.
-4.Net error => Error in reception, Failure in network.
-5.Connexion error => Error in reception. Connection failure.
-6.Length of register < 2 => The lenght of the received message is less

than 2.
-7.Logs file error => Logs file not open or not created or the legth of the

path for the logs file is too long.

-9.ReadRegister Error => Error in function ReadRegister.
-10.Timeout without connexion => Timeout expired without stablisment

of the connection.
-11.Connecting error => Error connection , error when the connection has

been stablished.
-12.Unexpected scale connection => Accepted the connection with a

non expected scale.
-13.Logs file error => Logs file not open or not created or the legth of the

path for the logs file is too long.
-14.Scale Ip format error => Wrong format of the IP address of the

scale.
-15.PC Ip format error => Wrong format of the IP address of the PC
-19.Open Server error => Error in the stablisment of the connection of

server socket.
-21.Closing socket error => Error closing socket.
-22.Closing socket error => Error closing socket.
-23.Releasing resources error => Error releasing resources.
-24.Pending registers error => Error in test of read pending messages

in the socket.
-25.Logs file error => Logs file not open or not created or the legth of the

path for the logs file is too long.
-29.Close Server error => Error closing server socket.

V 1.0.0.9_EN 19

30.Cancelled => Operation properly cancelled.
-31.FIN sending error => Error in sending of message END,ACK
-32.Logs file error => Logs file not open or not created or the legth of the

path for the logs file is too long.
-39.Canceling error => Error canceling operation

3.1.2 CancelReadRegister Function

This function allows to cancel the reception in a controlled way by sending END,ACK to the
scale.

int CancelReadRegister(int * serverHandle,
 char * pathLogs);

Parameters

1) serverHandle, Identifier (handle) dof the socker from which we
want to cancel the reception.

2) pathLogs , path for recording the communications logs.
Empty, no logs.
For recording logs, enter the complete path and the name of the
logs file.

.

Answer: The funtion will return an integer with the following values:

31.Cancelled ok => Properly cancelled.
-31.FIN sending error => Error in sending of message END,ACK
-32.Logs file error => Logs file not open or not created or the legth

of the path for the logs file is too long.
-39.Canceling error => Error canceling the operation

REMARK: After calling this funtion, the sales must continue being received until having no more

information to read in the socket.

V 1.0.0.9_EN 20

4- COMMUNICATION STATUS WINDOW

Dibalscop.dll shows a window containing data about the scales to comunicate, the number of
the registers sent, and the final state of the communication process.

“Status” column shows the final state of the communication and can contain the following
messages:

• NO CommL : Communication has not started, because “commL.dll” file, which is
necessary to comunicate with scales, is not found.

• OK: Communication successfully completed. All registers have been sent to the scale.
• CONN_ERROR: Communication has not started, because the scale is not found and

the connection can’t be established.
• SEND_ERROR: An error happened when sending registers. The connection with the

scale is successfully established, but all the items could not be sent. “Registers” column
shows the number of registers successfully sent.

V 1.0.0.9_EN 21

5- Example for using the Dibalscop.dll, through
parameters using ItemsSend function,
itegrated by c#

Example based in DibalscopDemo 1.00A in c# using the Dibalscop.dll.

1) Copy the dlls Dibalscop.dll, commL.dll and iconv.dll in the path of the application where it

wants to be integrated.
If you are programming, in debug or release path, and if you have finished your integration
in the same path of your executable program.

2) Once they have been referenced, the function to be used must be imported to our Project.
Inside the class of the main form:

[DllImport ("Dibalscop.dll")]
static extern string ItemsSend(DibalScale [] myScales,

int numberScales,
DibalItem [] myItems,
int numberItems
int showWindow, int closeTime);

3) We define and initialize one scales structure:

public struct DibalScale
{

 public int masterAddress;
public string ipAddress;
public int txPort;

 public int rxPort;
public string model;
public string display;
public string section;

 public int group;
public string logsPath;

public DibalScale(int _masterAddress, string

_ipAddress, int _txPort, int _rxPort,
string _model, string _display,
string _section, int _group, string
_logsPath)

 {
 this .masterAddress = _masterAddress;
 this .ipAddress = _ipAddress;
 this .txPort = _txPort;
 this .rxPort = _rxPort;
 this .model = _model;
 this .display = _display;
 this .section = _section;
 this .group = _group;
 this .logsPath = _logsPath;
 }

 }
}

V 1.0.0.9_EN 22

4) We define and initialize one articles structure:

public struct DibalItem
{

public int code;
public int directKey;
public double price;
public string itemName;
public int type;
public int section;
public string expiryDate;
public int alterPrice;
public int number;
public int priceFactor;
public string textG;

public DibalItem(int _code, int _directKey, double

_price, string _name, int _type,
int _section, string _expiryDate,
int _alterPrice, int _number, int
_priceFactor, string _textG)

{
this .code = _code;
this .directKey = _directKey;
this .price = _price;
this .itemName = _name;
this .type = _type;
this .section = _section;
this .expiryDate = _expiryDate;
this .alterPrice = _alterPrice;
this .number = _number;
this .priceFactor = _priceFactor;
this .textG = _textG;

}
}

V 1.0.0.9_EN 23

5) We create one ArrayList to save the scales:

ArrayList alScale = new ArrayList ();
//Default Scale variables
int scaleMasterAddressAux = 0;
string scaleIpAddressAux = string .Empty;
int scalePortTxAux = 3001;
int scalePortRxAux = 3000;
string scaleModelAux = "GAMMA500";
string scaleDisplayAux = "ALPHANUMERIC";
string scaleSectionsAux = string .Empty;
int scaleGroupAux = 0;
string scaleLogsPathAux = string .Empty;

//Create a scale
scale = new DibalScale (scaleMasterAddressAux, scaleIpAddressAux,

scalePortTxAux, scalePortRxAux,
scaleModelAux, scaleDisplayAux,
scaleSectionsAux, scaleGroupAux,
scaleLogsPathAux);

//Add a scale to ArrayList "arlScale"
arlScale.Add(scale);

//Copy the DibalScale objects of "arlScale" to an a rray "myScales"
myScales = (DibalScale [])arlScale.ToArray(typeof (DibalScale));

6) We create an ArrayList to save the articles:

ArrayList alItem = new ArrayList ();
//Default Item variables
int itemCodeAux = 0;
int itemDirectKeyAux = 0;
double itemPriceAux = 0;
string itemNameAux = string .Empty;
int itemTypeAux = 0;
int itemSectionAux = 0;
string itemExpiryDaysAux = new string ('0' , 10);
int itemAlterPrice = 0;
int itemNumberAux = 0;
int itemFactorPrice = 0;
string itemTextG = string .Empty;

//Create an Item
item = new DibalItem (itemCodeAux, itemDirectKeyAux, itemPriceAux,

itemNameAux, itemTypeAux, itemSectionAux,
itemExpiryDaysAux, itemAlterPrice,
itemNumberAux, itemFactorPrice, itemTextG);

//Add an item to ArrayList "arlItem"
arlItem.Add(item);

//Copy the DibalItem objects "arlItem" to a DibalIt em array.
myItems = (DibalItem [])arlItem.ToArray(typeof (DibalItem));

V 1.0.0.9_EN 24

7) We call the function that sends the articles to the scales.

string Result = string .Empty;

Result = ItemsSend(myScales, myScales.Length, myIte ms,

myItems.Length, showWindow, closeTime);

8) We analyze the result of the communication:

if (Result == "OK")
{

//Correct comunication with all the scales
}
else if (Result == "No commL.dll")
{

//we do not have the commL.dll
}
else
{

//Some scale have not comunicated
string [] ScalesError = Result.Split(';');

}

9) We the integration program will be finished, we have to add the libraries Dibalscop.dll,

commL.dll and iconv.dll in the same path of the integration executable

V 1.0.0.9_EN

