%&

COrTTN FADC
|] &) v
JAJ/C 10]‘j)/”ﬁ)/?

Car Pipeline 1.03 (work in progress)

Asset ORGANIZATION

When you create a new car for the editor, it is necessary to prepare a specific tree folder as follows:

w . CarName
animations
o P5SD
i texture

In the root of your CarName (where “car name” is the name of you car model, like Ferrari or bmw and so on...)
the following 3 subfolders must be present:

animations: This folder contains the FBX source files with animations and is also where the editor saves
the animations clips.

PSD: This folder contains the PSD source files of the car textures that can be eventually modified.

texture: This folder contains the DDS textures.

NOTE: If the texture folder is missing, the car won’t be exported from the editor to the game.

After the folder creation, place your FBX file inside and the editor will read the asset from this folder to create
the car package. Below is an example of all the FBX files of a car, placed inside the folder. Afterwards the
editor has created the material files (*.ini) in the same folder.

animations

PSD

o texture

ﬁ 500_Abarth_Racing_LOD_A.fbx

i | 500_Abarth_Racing_LOD_A.fbxini

ﬁ 500_Abarth_Racing_LOD_B.fbx

i | 500_Abarth_Racing_LOD_B.fbx.ini

ﬁ 500_Abarth_Racing_LOD_C.fbx

i | 500_Abarth_Racing_LOD_C.fhxini

ﬁ 500_Abarth_Racing_LOD_D.fbx

i | 500_Abarth_Racing_LOD_D.fbx.ini

& | 500_Fiat LOD_A.fbx.ini

M colliderfbx

i | collider.fbx.ini

=

The in game folder where you must place the car.kn5 file is different from the one where the EDITOR reads the
assets to create the proper package. This is the folder tree for in game cars:

4 . Car_name

animations
data
=fx

ckins

bt

ui

The ROOT of car_name (your car title) contains:

1) all the .kn5 files

2) the driver_base_pos.knh (a file that indicate the driver position in the car)

3) the textures called tyre_0_shadow.png, tyre_1_shadow.png, tyre_2_ shadow.png

tyre_4 shadow.png that are the wheel shadow textures, the body_shadow.png and the logo.png
4) The animations folder contains all the clip files *:ksanim of the driver and the car

5) The data folder contains all the configuration files, physics scripts and similar ini files

6) The sfx folder contains the sound samples and scripting files

7) The skins folder contains the car skins graphics and thumbnail previews for the interface

8) The ui folder contains thumbnails and scripts specific for the user interface

FILE FORMATS

TEXTURES

PNG (RGBA)
DDS (RGBA plus all the internal features of the common DDS plug-in for PHOTOSHOP. Indexed color DDS
are not supported yet.)

3D file formats supported: FBX (plugin 2012.1 FBXSDK 7.2) (future version and updates will be tested)
XS1 2012, 3DSmax 2012, Maya 2012 export in the above version.
For MODO, BLENDER, C4D and others, you must test their export and check if it works correctly in the editor.

DDS supported formats: to be defined. Coming soon.

3D MESHES

One set of UV coordinates is supported
In some shaders we add more layers but only increasing the tile of the existing UV set.

Mesh normals (normal can be tweaked as required, and it will be exported correctly)

Basic Shader: A texture must be assigned to the material.

NOTE: Every mesh MUST have TEXTURE UV coordinates.

The mesh must be (when possible) in quads. Do not triangulate the mesh if it is not necessary (look

the image of the cockpit VHR to understand.)

Skinned mesh you can have as many bones as needed, but every single vertex can be influenced from up to 4
bones and not more

Vertex color is NOT SUPPORTED.

MESH PARTS OF A GENERIC CAR MODEL

The components of a car must be divided in many parts in order to manage animated objects, meshes and
other features present in game. Here is a list of the optional and required meshes:

MAIN BODY required - must be present on LOD_A and LOD_B

DOORS optional - only on LOD A and if present on the model
on LOD_B the doors are not animated, and are welded on the chassis object.

MOTORHOOD depends on car type - if needed, must exist on LOD_A and LOD_B
FRONT BUMPER depends on car type - if needed, must exist on LOD_A and LOD_B

REAR BUMPER depends on car type - if needed, must exist on LOD_A and LOD_B

WHEEL HUB optional - contains the brake calipers
WHEEL RIM required - must exist on LOD_A and LOD_B. On LOD_C the wheels are simplified.

WHEEL RIM BLUR required - a version of the rim but with a texture blurred, must exist on LOD_A and
LOD B

WHEEL TYRE required - must exist on LOD_A and LOD_B. On LOD_C the wheels are simplified
BRAKE DISK depends on car type - if needed, must exist on LOD_A and LOD_B

FRONT LIGHT depends on car type - if needed, must exist on LOD_A and LOD_B and LOD_C

REAR LIGHT depends on car type - if needed, must exist on LOD_A and LOD_B and LOD_C
WIPERS depends on car type - if needed, must exist on LOD_A and LOD_B and LOD_C
FRONT WING depends on car type - if needed, must exist on LOD_A and LOD_B and LOD_C
REAR WING depends on car type - if needed, must exist on LOD_A and LOD_B and LOD_C

Cockpit mesh parts:

COCKPIT_HR required - high resolution cockpit, the one that you see when you drive
FBX Export (Version: 2012.0) P | S|
STEER required - steering wheel
STEER PADDLE depends on car type - those are
the steering wheel gearchange
paddles
SHIFT depends on car type - gear lever

for manual or sequential gearbox
SECURITY BELTS depends on car type - if needed,

must be present on LOD_A only.

Explained later in the document

All the “optional” components can be present or not,

depending of car.
An example scene is provided, and can be imported inside any application that supports FBX file format.
Programs that support FBX file format: MAYA 2012 3DS Max 2012 XSl 2012

NOTE:when exporting from 3ds max, always export with Y axis up.

SETUP THE CAR MODEL INSIDE 3D SPACE

The car must be oriented like in the image: The Z vector must be the front direction.
The model must be placed with the wheels on the Y 0 ground. (See image below)

The model bounding box must be centered in YXZ = 0.0.0. (See image below)

The car must have 4 different Levels Of Detail that have gradualy less polygon density.
(see DETAIL LEVELS Chapter)

The table below indicates the adviced vertex budget.
We encourage you to stay as close as possible to the proposed polygon numbers.

CAR BODY (wheels included) :

LOD A 100.000 Polygons
LOD B 20.000 Polygons
LODC 5.000 Polygons
LOD D 100 Polygons

NOTE: Keep in mind that the LOD B will start to be visible at a distance of 15 meters or closer. If you create a
very well made LOD B, you can reduce the distance of LOD A switch to LOD B.

The Cockpit has only 2 LODS, one very High Resolution (HR) for the cockpit camera and showroom view.
Another Low Resolution (LR) LOD for exterior cameras, replays, and distant views.

LOD A COCKPIT_HR 100.000 polygons LOD A COCKPIT_LR 5000 polygons
Cockpit HR LOD example Cockpit LR LOD example

NOTE: The cockpit HR and LR LODS must always fit the Body LOD_A because the EXTERIOR MESH, in
game while driving, is the LOD_A mesh. When the camera moves far away, the cockpit LR will switch and you
get a simplified version of the cockpit, with only one material and color very similar to the HR version.

“LODs” Level.of.details

LODs are a set of simplified models that change in relation of the camera distance.

This process is necessary in order to optimize the frame rate in game.

The LODs switch can be controlled from a script, named lods.ini placed in
AssettoCorsal/content/cars/CAR-NAME/data. The script contains the following values:

[COCKPIT HR]

DISTANCE SWITCH=6 ;Indicates the distance (in meters) when the cockpit HR change
to the cockpit LR (if present)

[LOD_0]

FILE=abarth500.knb5

IN=0

OUT=15 ;Indicates the distance (in meters) when lod A changes with lod B (if
present)

[LOD 1]

FILE=abarth500 B.knb

IN=15

OUT=30 ;Indicates the distance (in meters) when lod B changes with lod C (if
present)

[LOD_2]

FILE=abarth500 C.knb

IN=30

OUT=100 ;Indicates the distance (in meters) when lod C changes with lod D (if
present)

[LOD_3]

FILE=abarth500 D.kn5

IN=100

OUT=600 ;Indicates the distance (in meters) when lod D disappears from visual.

NOTE: Verify that the distance of LOD “out” match the “in” of the next lod, or your car will disappear while
switching

Additional info: The LOD_B must have the same null hierarchy as the LOD_A except for the null of the
COCKPIT_HR that should not be present. Furthermore null of animated doors are not needed in LOD_B.
Same as above for LOD_C. YOu can decide, if is no more visible, to remove also othe non ESSENTIAL nulls,
liek wipers, wing.. and so on.

HIERARCHY and CENTERS

A template file called “Template.fbx” is provided as an example, showcasing how to setup a correct hierarchy
for a car. The file contains a set of NULLS or DUMMY objects, that define the CENTER position of any piece of
the car. The names of these NULLS must follow specific rules showcased below.

The EDITOR will recognize these essential OBJECTS in order to define the rotation pivot of the wheels, the
suspensions and any animable object in the car.

NOTE: Any object that is not a child of a NULL/ DUMMY will be managed like part of the CAR
CHASSIS.

All the pieces of the geometry that belong to the car must be placed in a HIERARCHY to define the
specific properties of each mesh object in the game.

Example image below: The pieces of the wheels are placed like children of the NULL of the WHEEL
In the same way you must place all the others pieces like children of the correct NULL that is designed for the

RIM_RF

WHEEL_RF
RIM_BLUR_RF

part that you are creating. So for the rim there is a dedicated NULL and so on for all the other parts. Remember
that every NULL is also the CENTER of rotation. If your mesh is not properly placed under a CHILD with a
correct center of rotation, the mesh will rotate wrongly.

See the example below : The geometry of the WHEEL is centered exactly on the NULL. This will permit a
correct rotation.

In the car example file you'll be able to explore how we have placed all the NULL's and the relative geometry.

SUSPENSIONS Animation

The 3D suspensions of a car can be animated if needed.

In order to enable suspension animations, you have to edit the the script “car.ini” with the following values:
“USE_ANIMATED SUSPENSIONS=1” to enable use of the animations

“USE_ANIMATED_ SUSPENSIONS=0” to leave the animations as by default (disabled)

Usually this means the animations are disabled, but on some occasions they are always on like the steering
wheel which is automatically animated.

NOTE: Animating suspensions do have some disadvantages. Animating suspensions follow
predetermined arcs and movements, so the wheels do not rappresent visually the setup values
chosen by the player in game. i.e. Camber angles might differ visibly from the values selected in
setup screen.

We use a NULL hierarchy to animate the suspension geometry. Here’s an example below

1) Set your timeline frames to (for example) 20 frames.
2) The frame 0 will be lower position.

3) The frame 10 will be the neutral position.

4) The frame 20 the higher position.

The engine works as follows: It verifies the position in the y axis of the suspension and finds the right frame to
match the animation to the position of the physical suspension. It will interpolate the frames to generate a
smooth movement. Assetto Corsa will search for the following NULL/DUMMY objects, named as follows:

SUSP_LF
SUSP_LR
SUSP_RF
SUSP_RR

The NULL/DUMMY must be designed to move the suspension on the Y axis.

Below an example of how to animate a suspension correctly:

NOTE: Before exporting the FBX, timeline needs to be set with the same number of total frames as the number
of animated frames created.

Example: If you animate 20 frames, do not export with a timeline of 30. This will cause a crash. Remember to
set the timeline to 20 if you have animated 20 frames. Empty frames will cause a crash and are not supported.

Suspension Hierarchy

The suspension must have the hierarchy identical to one of the two FBX examples provided:
TEMPLATE_Suspension_EASY.fbx and TEMPLATE_Suspension_COMPLEX.fbx

The first scene contains a simple suspension hierarchy, made for a car with simple suspension system.
The second is prepared for complex suspension hierarchy, like 60's Formula 1 cars, with more complex arms
and particular suspensions. Those examples contains more DUMMY/NULLs

Some names can be customized and we have named the customizable DUMMY/NULL in an appropriate way,
inside the template.fbx

"Custom_name##’. (where # is a number)

All the DUMMY/NULL are used for animated parts. Their use is optional. You can create the necessary
number of DUMMY/NULL as you desire.

The following DUMMY/NULLs are mandatory:

Suspension Null's:

SUSP_LF Left Front
SUSP_LR Left Rear
SUSP_RF Right Front
SUSP_RR Right Rear
Hub Null's:

HUB_LF Left Front
HUB_LR Left Rear
HUB_RF Right Front
HUB_RR Right Rear
Wheels Null's:

WHEEL_LF with linked the TYRE_LF for the tyre mesh, RIM_LF for the Rim mesh,

and RIM_BLUR_LF for the Rim Blurred mesh

WHEEL_LR with linked the TYRE_LR for the tyre mesh, RIM_LR for the Rim mesh,
and RIM_BLUR_LR for the Rim Blurred mesh

WHEEL_LR with linked the TYRE_LR for the tyre mesh, RIM_LR for the Rim mesh,
and RIM_BLUR_LR for the Rim Blurred mesh

WHEEL_RR with linked the TYRE_RR for the tyre mesh, RIM_RR for the Rim mesh,
and RIM_BLUR_RR for the Rim Blurred mesh

In some cars, the transmission shafts might be visible. There is a convention name to animate automatically
these parts.
Trasmission DUMMY/NULL names:

TRANSMISSION_L_1 for the Left shaft
TRANSMISSION_R_1 for the Right shaft

If you have more transmission pieces to animate, you can use sequential of numbering. For example:
TRANSMISSION_L_ 2, TRANSMISSION_L_ 3 and so on. Same thing for TRANSMISSION_R_2 and so on.

The engine recognizes the prefix “TRANSMISSION_L " and searches for a sequential number after. There is no
hardcoded limit on the pieces of trasmission that can be animated.

The tramission nulls rotate on the X axis and needs to be oriented like the image above:

This node is useful for animating the gimbal on Y axis according to the suspension animation, and the engine
automatically rotates the transmission according to the wheel on X axis. Avoid to animate on
Z axis this Null, as it is not used.

NOTE: In order to have a correct direction of rotation, the Z axis of the transmission nulls always
needs to head forward.

The engine recognizes other 4 nodes for the the hubs of every wheel. These nodes are made to allow a
rotation of the hub, related to the camber of the wheel.

HUB_LF
HUB_LR
HUB_RF
HUB_RR

HUB ROTATION POINT HUBE ROTATION POINT

HUE ROTATION POINT

In the above image example , the hub is father of the steer arms.

So you can animate up and down movements of the hub or the suspension and during the animation you can
change the camber of the hub as requested by the physical suspension scheme.

Inside the TEMPLATE_Suspension_COMPLEX.fbx you can find an example of the correct hierarchy.

Note: The SUSP_ node must always match the position of the Wheel_ node. The AC engine, verifies the
position of the suspension in 3D space by checking the SUSP_ node. The wheel bounding box is recognized
between the SUSP_ node and Wheel_ node. Those 2 positions must be the same.

Again the FBX file TEMPLATE_Suspension_COMPLEX.fbx is a perfect example .

STEER ARMS and DIRECTION COSTRAINT

We can animate many different parts and just import the animation to the editor and from that export to the
game, but the STEER arm cannot be animated. Its position changes in the 3D space according to the HUB
rotation.

In order to constrain the movement of the steer arm to the HUB’s position and rotation, the convention name
with a prefix “DIR_customName” must be used. This indicates the direction of the X negative axis of this
mesh, and the mesh called “customName” will head always the X axis on the exact direction.

Example: A null called “SteerArm_L” will point the negative X axis in direction of a null named
“DIR_SteerArm_L"~

Pay attention to the rotation of the null that has attached the animated mesh. In the image below the right Null
point has Z axis positive. The left Null point has Z axis negative. This allows the -X axis to point to the center of
the car or any other direction needed by the mesh.

CORRECT ORIENTATION OF THE X AXE

-

Inside the TEMPLATE_Suspension_COMPLEX.fbx file, you can find a proper hierarchy example.

Note: You can create more costraints, if you have more objects to costraint to the HUB by simply giving
different names. Nevertheless, it is always good in terms of optimization to use the smallest possible of
constraints.

You can animate your custom null’s in the following vectors: Rotation - Translation - Scale.

Inside the TEMPLATE_Suspension_COMPLEX.fbx example file, you can see the animation of the
suspension spring, on SCALE Y .

Note: Never animate the mesh. Always animate the NULL's only. With this approach you can change and
update your mesh everytime you want without re-exporting the animations.

Use the same technique to create animations for any NULL/DUMMY that must be animated. For example,
doors, gearbox levers, or any other part.

ANIMATION EXPORT

Once you have animated your NULL/DUMMY inside the editor car scene, you need to export the animation
from the editor to AC specific clip (file format), called name.ksanim.

A couple of rules must be followed:

1) To generate a clip, from the editor, you need only the animated nulls. The mesh is not needed. You can also
export a mesh, but the editor exports only the objects that have animation keyframes. As we said above, it is a
good technique to animate only the NULL/DUMMY so that you can change the animation independently from
the actual 3D mesh.

2) When you export an animated null, you must also export the the hierarchy tree above it, because the name
of an object inside the editor, is determined from its position in the hierarchy tree.

3) Always export using the FBX format, as is the only one that supports animation. Do not use any other
formats.

In the example shown in the image at the left, we have 2 hierarchies AR 7
of nulls, that contain meshes as children. We animated the shift and Ranul
steer paddle and we need to export the animation.

Anim
Shift paddie L

We can't export SHIFT PADDLE_L only. We must take the
hierarchy from COCKPIT_HR, including STEER_HR and SHIFT
paddle_L . cone o STEER_HR

This way the editor will define a node related to the position of SHIFT SAI:liif'tnpaddle R
PADDLE_L in the hierarchy. —_—

0 wesn

)30 Mesh

Animation optimizations.

1) The frames are interpolated in the game. You don't need to export an animation with all the keyframes.
For simple animations, like doors, gear levers and so on, you can export just the important frames only.

For a simple door animation, the “close” and “open” frames are enough, the game will interpolate the rest.
When you have more complex doors, with pistons, vertical openings, like those in a Mclaren P1, you can add
more frames to animate the door in a more precise way. But always keep in mind that the less frame you use,
the more optimized the result will be, because the engine interpolates smoothly between keyframes.

2) Identical frames are optimized. If you create multiple identical frames, and the variation between them is
0, then the frames will be optimized.

Example: A gear lever starts animation at frame 15 of the complete animation, because during previous frames
it stays fixed to its position, waiting for the reach of the hand of the driver. A keyframe must be placed to frame
0 and another one at frame 14 both in static position. On frame 15 starts the animation of the gear lever.There
is no need to place more keyframes from 0 to 14.

CLIP NAMES AND CONVENTIONS

Two types of pre-programmed playback:

1) PingPong The animation played reaches the end is then played in reverse to the start.
2) Loop when the first frame match the last frame and the animation restarts the loop.

Specific convention names have pre-programmed playback in game, We manage the playback automatically
using LOOP or PINGPONG, so you can prepare your clips with this logic.

DRIVER ANIMATIONS CLIP NAMES

steer.ksanim Loop for the rotation of the driver’'s arms on the steering wheel

shift.ksanim PingPong for the animation of the driver’s arm to the gearshift lever (we
usually do a simple animation, check the fox example)

shift_dw.ksanim PingPong for the animation of the fingers that operate the paddle shifts down
(usually left)

shift_up.ksanim PingPong for the animation of the fingers that operate the paddle shifts up
(usually right)

claim.ksanim PingPong to claim other drivers (moving fists in the air etc.)

celebrate.ksanim PingPong Victory gesture

CAR ANIMATION CLIP NAMES

car_shift.ksanim PingPong to animate the car gear lever
Important: this clip must have the same number of frames of shift.ksanim from the driver to match
perfectly the arm movement with the shift animation

car_susp_LF.ksanim Controlled by engine for the animation of the Left Front suspension

car_susp_LR.ksanim Controlled by engine for the animation of the Left Rear suspension

car_susp_RF.ksanim Controlled by engine for the animation of the Right Front suspension

car_susp_RR.ksanim Controlled by engine for the animation of the Right Rear suspension

car_door_R.ksanim PingPong for the animation of the right door opening (the close animation
should be the open animation in reverse. Do not animate the closure too.)

car_door_L.ksanim PingPong for the animation of the left door opening (the close animation
should be the open animation in reverse. Do not animate the closure too.)

car_wiper.ksanim Loop for the animation of the wiper (here you must animate the full animation
back and forth)

lights.ksanim PingPong for the animation of the car lights that are mobile (i.e. Ferrari F40.
Animate only aperture, then play reverse for closure.)

car_shift_up.ksanim PingPong for the animation paddle shift up

car_shift_dw.ksanim PingPong for the animation paddle shift down

Note: You can create all the animations needed. You can also use new names and then call them from an .ini
script. But the names listed are recognized automatically from the game and managed properly.

For example: the animation car_wing.ksnim is a custom name. On certain cars we created animations called
Wing_Rear.ksanim or Wing_side.ksanim. All of them are managed from .ini scripts.

car_wing.ksanim PingPong for the animation of movable wings (animate only one part of the
movement then play in reverse)

EXPORT ANIMATIONS FROM THE EDITOR

o= ksEditor
File | YWiew Track Cameras
| Open FBX
Open FEX Animation

Once the car and its animations are created in the editor, it needs to be saved as a .kn5 file, that can be
readed from the game.
The rules to export a car in the game are the following:

1) All the meshes must have one only UV coordinates set;

2) The Null/Dummy essentials must be present in the scene;

3) All the materials must have a texture assigned to their texture slot. (and we suggest to use always DDS and
not png as they are not compressed).

In order to EXPORT a car, the following nodes (at least) are required:

SUSP_LF
SUSP_LR
SUSP_RF
SUSP_RR
WHEEL_LF
WHEEL_LR
WHEEL_RF
WHEEL_RR
RIM_LF
RIM_LR
RIM_RF
RIM_RR
RIM_BLUR_LF
RIM_BLUR_LR
RIM_BLUR_RF
RIM_BLUR_RR

without one of these nodes, AC will crash (check the template example).
There are many other nodes used from the engine, but marked as optional since, even if not present, the game
will work anyway. The above mentioned required nodes needs to be present on LOD_B and LOD_C too.

To export animations, follow these steps :
- Open the FBX car in the editor.

o= ksEditor
File | YWiew Track Cameras
Open FBX
| Open FEX Animation

- Load the FBX animation previously exported in the “animations” folder.
When an animation is loaded it automatically saves a nameclip.ksanim file in the same folder of your fbx.

- At the bottom part of the editor Ul select the Animation tab. Drag the animation slider , and you can see the
animation playback.

Object | Materials | Cameras | llumination | track | Track CEII'I'IB!'F{[Animations ch | Al | Car Animations | Camera Spline | CubeMapRenderer_

@/

You can load another animation and so on. Every time you load an animation, a .ksanim file is saved with the
same name of your source FBX and the .ksanim extension.

So you have to rename your clips to match our name conventions like for example steer.ksanim for the arms
of the driver, and so on.

CHECKING CAR ANIMATIONS

When you have exported all your suspensions clips in the proper animation folder (see “Asset Organization”
section) You can load your car.fbx in the editor and check if the animations work properly.
You can do this only after you have create the animated clips.

NOTE: LOD_B must contain the same null hierarchy and names of the animated nulls from LOD_A.
To check do this: Open you car.fbx
After the car is loaded, you can load the clip of the suspension that you want to test.

In the tab called “Car Animations” you'll find some sliders. These are made to test the spring animation, the
costraint of the arms and the wheel rotation center.

Object | Materials | Cameras | llumination | track | Track Cameras | Animations | Batch | Al | Car Animations |Camem Spline | CubeMapRenderer-

Suspensions
lozd from folder steer

U U U

rotation axe check
speed

U U U

Suspension
check

The sliders allow you to check the
suspension work in the editor and
detect any issues, frame by frame.
Here you can see an example:
Moving the slider you can check the
hub behaviour.

7 —=SLIDER

GENERIC ANIMATION EXPORTING TRICKS

There are some important things to keep in mind regarding animation exporting, especially about door
animation clips. When exporting a door clip, the following hierarchy should be present:

Note that the meshes of

the cockpit doors are under
the null, COCKPIT_HR.
This is needed because the

SUSZWTE (< Janmesn | cockpit switches from high E

to low resolution. The LR S—
P door will be hidden. So we =
Deabett Qfa:"““ have duplicated the door Dubi o m

animation nulls with

BRI (| Jsomesn | animation included, and DOOR R 1 m

placed them outside of

COCKPIT_HR. When you DOOR L m

export, remember to

include all the cockpit door
nulls. DOOR R m

COCKPIT_HR

DASHBOARD NEEDLE

To animate a needle on the dashboard, an ARROW_ mesh needs to be placed under a proper null. Like other
objects, ARROW_ meshes follow specific conventions.

Name conventions :

ARROW_SPEED for the speed indicator
ARROW_RPM for the rpm indicator
ARROW_TURBO for the turbo pressure
ARROW_FUEL for the fuel quantity

Each indicator created, must be managed by specific values in the analog_instruments.ini script, inside
“content/cars/car_name/data” folder.

The ARROW_ mesh must be created in neutral position and linked as child of a specific null.

The arrow must be oriented like in the left image:

The Y axis determinates where the arrow position is on the counter, and must be placed on the ZERO or the
start of any indicator.

Note: Z axis must always heads forward.

SEAT BELTS

The cockpit contains two different meshes of the belts: One for the belt on and another for the belt off. These
two meshes must be linked as a child of the null COCKPIT_HR and must be named as follows:
CINTURE_ON for the belt on the driver when is driving

CINTURE_OFF for the belt on the seat, without driver

These two meshes are the only in the pipeline that need specific name on the mesh.
NOTE: We apologize for the two names in “ITALIAN” language (CINTURE = BELTS), but it's too late to change

it. So... the names for belts are in italian.... I I

To create the proper mesh of the belt on a driver, place the driver first, then animate him and verify how the
arms move in order to avoid compenetration with the belt mesh.

CINTURE_OFF CINTURE_ON

CAR LIGHT MESHES and SCRIPTS

Each car must have individual meshes for light ON and OFF conditions. The light meshes must be separated
and detached from the
chassis of the car. The
mesh name must be
pointed by the lights.ini
script. The same scripts
includes the instructions for
the ON/OFF conditions, as MESHES of the LIGHT
well as the light emission
colour.

Example image on the
right: The mesh of the light
is made from different
pieces, named at your
discretion. They are divided RearLight1
according to their function.
Some examples: RearLight0

Position lights, brake, rear, RearLight2
standard front lights, high
beams, and so on.

You can split your mesh as
you prefer.

Note: There is no need to split the lights in “right” and “left”. They can be one mesh because they turn on
together.

Open the lights.ini script located in the “data” folder

Inside, the script contains the following values:

[BRAKE 0]
NAME=RearLight2
COLOR=25,0, 0

[LIGHT 0]
NAME=LightFrontl
COLOR=84,100, 300

[LIGHT 1]
NAME=LightFront2
COLOR=2,2.3,3.5

[LIGHT 2]
NAME=LightFront3
COLOR=3,0,0

[LIGHT ANIMAT ION_O]
FILE=lights.ksanim
TIME=0.3

In the above example: The NAME= value assigns a mesh called RearLight2 (as seen on the image above)
The COLOR= value assigns a colour when the car brakes.

Different functions and colours can be assigned to different meshes. As an example, the value COLOR=3,0,0
assigns a specific colour to the light. Meshes are lighted with HDR and do not have a max limit of intensity.
The values for the COLOR= parameter are in RGB 0 to 1 range, so a value of 1 means the maximum value of
the RGB scale (256). Values can go over 1 if more intensity is needed. As an example, a value of 300 is given
to the [LIGHT_0] section, in order to produce a strong HDR intensity glow.

CAR EXHAUSTS

In order to define the backfire flame position, place a null named EXHAUST# where # is a number from 0 until
the necessary frames of the flame animation.

For example: EXHAUST1, EXHAUSTZ2, and so on.

The flames spawn from the rear of the exhausts, and follow the Z negative axis.

FLAMES CAME OUT ON -Z axe

SKINNED MESH

FBX skinned mesh is
supported. Skinned mesh
can have as many bones
as necessary, but no more
than 4 bones influencing a
single vertex. A good
example of skinned mesh
is the driver (explained
later) or the gearshift lever

.li s’

with a fabric coat at the [

base of the lever.

The example image at the
right, showcases the use of
bones.

Rules for skinned mesh:

1) All vertexes must be influenced by at least one bone. If a vertex is not influenced by a bone, its world
coordinates will be 0,0,0 resulting in a long polygon that spawns from the center of the 3D world.

A non skinned object can be linked with a skinned mesh. Connect the non skinned object as a child to the
skinned mesh. In the above image, the skin has 2 bones but the handle is a parent of the yellow null without
any skinning.

2) Every material with a skin rig must be unique.A material cannot be used on a standard mesh and at the
same time on a skinned mesh. Two different materials must be created, one for the standard mesh and another
one for the skinned mesh.

3) The skinned dedicated material, must be named as KsSkinnedMesh
The animation works only when the KsSkinnedMesh material is assigned properly to the skinned mesh.

NOTE: Do not use this material on a standard mesh.

DRIVER POSITION AND OBJECTS

A copy of AC driver with the bones skinned, basic animation of the steer rotation, helmet and some textures, is
provided as an example template.lt can be placed inside any custom car.

For a proper placement follow these steps: DRIVER BASE

1) If you want to use a custom driver mesh go to
the point CUSTOM DRIVER, else go to the next
step.

1) Import the template file DRIVER_BASE.fbx in
your 3D application. You should see the driver as
in picture.

Inside the template, a basic steering wheel
rotation animation is provided as an example.
The animation is made of 200 frames.

The neutral position is on frame 100. From neutral
(100) to 0, the steering wheel turns left. From
neutral (100) to 200, it turns right.

2) place your driver on the seat, with his hands on
the steering wheel. Probably some modifications
of our animation template will be necessary.

The image below shows an example placement:

Driver mesh and position can
now be exported and it will
contain the exact hierarchy
provided, and the correct
names of the bones and
various objects.

How to export the driver base position from the editor:

1) Open in the editor the FBX file with the driver placed in the correct base position.
oZ ksEditor
File | View Track Cameras
| OpenFBX
Open FBX Animation

2) Save Driver Base Pos
a5 ksEditor

File | View Track Cameras
Open FBX
Open FBX Animation
Save KM5 3

Save Persistence

Save Driver Base Pos

Load Driver Base Pos
Load Persistence
Exit

A file named driver_base_pos.knh is created and stored in the same folder where the FBX was loaded.

This file must be placed in the following path: AssettoCorsa/content/cars/CAR-NAME/ where car-name is
the car folder.

The game engine will load the driver and place it the correct position, stored in the driver_base_pos.knh file

DRIVER ANIMATIONS

The provided template file DRIVER_BASE.fbx contains a basic example of 360° steer rotation loop animation.
This animation will probably not match the steering wheel of your design. The animation must be modified to
match your custom steering wheel dimensions and placement.

Note: The animation must be 200 frames, and frame 0, frame 100 and frame 200 must match, to allow the
animation LOOP.

After editing the animation, save the keyframes of only the arms NULLs and export the FBX just the animated
parts. Animation of the pedals is not supported yet. The image below shows the hierarchy:

AG_Head [l HELWET e =3 ELMET plastic
HELMEI MESH pen e G 1_Tort R0 T

HAND_Index2 Ha
HAND_Middle1 HAND_hiddie2 HAND hddle3
HAND_Ring1 HAND_Ring2 HAND_Ring3

HAND_Pirkie| HAND_Pinkie2 HAND_Pinkie3

RIG_Center AND_R_Thum: [AND_R_Thum: AHD_R_Thumb:
DRIVER
HAND_Indexs HAND_Indexs HA
HAND_biddied HAND_Widdies HAAND_hiddlen

HAND_Ringd HAND_Rings HAND_Ringt

HAND_Pirkied HAND_Pinkies [

RIG_Hill_L _Foot_L

RIG Leg R RIG_Shin_R RIG_Hill R RIG_Foot_R

DRIVER'BEODY MESH

The bones of the arms are highlighted in the blue and red area in the image, and every bone is parent of the
RIG_Clave_L and RIG_Clave_R bones.

To animate gear change hand, animate the arm bones from RIG_Clave_L/R to the fingers.

To animate paddle gear change, animate the fingers only.

For every animation you must export a copy of the driver.fbx with only animated the part needed for the
desired cllip. Example: Export driver.fbx with the steering wheel animation only, then another one with gear
animation only, and so on.

Store the driver animations with the names indicated below in the related animation folder of the car fbx datas.
Steer.fbx for the 360° steer rotation

Shift.fbx for the gershift animation

Shift_up.fbx for the paddle shift up

Shift_dw.fbx for the paddle shift down

claim.fbx for the claim gesture

celebrate.fbx for the victory gesture

Check chapter EXPORT ANIMATIONS FROM THE EDITOR for instructions on how to create a clip.
Note: Always verify that the car shift animation and the driver shift animation have the same number of frames
so that they will animate synchronized, while in game.

Warning: There is typo in the name of the “neck” bone, which is typed “nek” by error. Although
wrong, the game still works with this wrong name, so please do NOT correct the typo and keep it
“nek”.

Example: When the driver changes gear, his arm starts the animation with the hand slightly distant from the
steering wheel. (see image below)

ERA EL O PRERAN ERI ORI ERANM ER20
AN

. 4
\ | 1.)”/"

c::::::{::>

On frame 0 the hand is slightly away from the steering wheel. On frame 10 the hand is on the gear lever. On
frame 20 the hand moves the gear lever. Be sure that the gear lever animation is synchronized with the hand.
For example, if the hand needs 10 frames to reach the gear level, the gear lever must have 10 frames stopped
before it starts its movement.

DRIVER SCRIPTS

The driver is managed by driver3d.ini script in “AssettoCorsa/content/cars/CAR-NAME/data”.
The file structure is the following:

[MODEL]

NAME=driver

POSITION=0,0,0

- This section determines the model of the driver to use (there are different models available)

[STEER ANIMATION]

NAME=steer.ksanim

LOCK=360

- This section determines the clip to use for the steering wheel animation and its rotation limit (in this
case 360 degrees)

[SHIFT ANIMATION]

BLEND TIME=200 ; (MS) Time used to move the driver’s hand
from the steer position to the first frame of the
animation.

POSITIVE TIME=400 ; (MS) Time needed to move the driver’s hand from the
first frame of the animation to the gear lever (forward
animation) .

STATIC TIME=10 ; (MS) Interval of time were the driver hand is still on
the gear lever (Wait Time between forward and reverse
animation)

NEGATIVE TIME=400 ; (MS) Time needed to move the driver’s hand from the

gear lever back to the first frame of the animation
(reverse animation) .
PRELOAD RPM=6000 ; (MS) when the engine reaches this RPM value the
forward
animation is automatically played

INVERT SHIFTING HANDS=0 ; Set to 1 if the driver upshifts with the
left hand.

[HIDE OBJECT 0]
NAME=DRIVER:HELMET ; Hide the specific mesh (copy the correct name
from the
editor) when in cockpit camera. In this case, the helmet
is hidden...

[HIDE OBJECT 1]
NAME=DRIVER:Driver Body SUB1 ; .. and here the driver’s head mesh is hidden.

Note: The driver face mesh can have different name if you use a custom driver mesh.

CAR SHADOWS

The car ground shadows are not generated in real time, like the sun shadows, but they are very important in
order to improve the visual effect of the ground position of the car and emulate an ambient occlusion on the
ground.

There are five shadow textures for each car. Four dedicated textures for each wheel and another one for the car
body.

If not present, the car body texture is automatically generated once in game, otherwise an existing one is used.
A pre-made texture is used for the wheels shadows. All shadows must be placed in the root custom car folder
(see “Asset Organization”)

Examples:

This is the BODY
shadow of the FIAT
500 car. In game it
looks as in the right
image example: The
shadow is blended
with the sun one.

Remember to place in the folder also the 4 wheel textures (see example on the right image).
Those work in the same way as the body shadow, but they are attached to the wheels. You
can take the automatically generated car body shadow and further refine it in photoshop or
your favourite application.

CAR MIRRORS

In order to make car mirrors work, a material must be created (the name is not important), and assigned to the
polygons of the mirrors. The mesh must be mapped with the provided texture called
MIRROR_PLACEMENT.PNG

This texture is mirrored and must be mapped on the mirror
mesh in order to visualize it correctly. The texture is divided
various areas. The green area is what is visible from the
internal central mirror, the red from left hand mirror and blue
from right hand.

Note: always remember to keep correct aspect ratio of your
UV on the mirrors polygons, or the image of the reflection will
be streched.

Examples of the
MIRROR_PLACEMENT.PNG file,
applied to the various mirror
meshes

CAR SIMPLE COLLIDER

Collisions between vehicles are one
of the most resource demanding
activities of the game, especially if
20 cars collide in a corner all at the
same. To optimize such situations,
a simple collider shape is used to
calculate collisions between car
bodies and tracks objects.

The collider shape must be a
simple solid with as low polygon
count as possible, roughly 40 or 60
triangles, without UV and without
material.

Rules for collider objects:

1) The collider should have no more than 40/60 triangles.

2) A material called “GL” must be assigned to the collider inside the editor. This is a special material
specifically made for meshes that are not rendered. Meshes with this material are used only for collisions.
3) The collider must not extend with any vertex, under the floor of the car.

See example:

collider

No vertex under the car bottom

4) The collider must have no holes. The mesh must be closed.

Once the collision mesh is done, simply save the fbx from the editor like a kn5 file, using name “collider.kn5”.
The file must be placed in the same folder of the car LODs.

INSIDE WINDSCREEN AND DOORS GLASS

A different shader is used for the internal of the cars, made specifically to

e emulate the sun reflection effect when the surface is not totally clear. This
INT_GLASS __effect can be increased or reduced by editing some glass texture
liatinieceen “/[€ parameters.
DepthMode eDepthNomal
Shader ksWindscreen . . .
AlphaBlended True The shader to apply at the internal glass is KsWindscreen
Mame INT_Vetro

NOTE: Glass meshes must be parent of the COCKPIT_HR null and doors
internal glass must be parent of the doors nulls under the COCKPIT_HR,
ksDiffuse \ This is needed because internal glass switches together with the
cockpit_HR and cockpit_ LR LODs)

ksAmbient

ksSpecular

Shader parameters are shown in the left image.
ksSpecularEXP An example of the shader effect is shown below.

ksEmissive

ksAlphaRef
bDiffuse

INTERNAL_Glass.dds

The texture for the INTERNAL GLASS must be DDS and the parameters as in the following image:

MNVIDIA dds Format (v8.55.0109.1800) Bl

a8 L & bpp | luminance - I Save I [Cancel]

MIP b ap Generation

-

() Generate MIP maps

[MIP Map Filtering...] [Sharpening...] (O Use Existing MIP maps 2 -
@ Mo MIF maps

[Image Optians...] [Normal tap Settings...]
[Fading MIP maps...] [“white Config...] [2D Previen] [D Proviem]
[m] [Refresh Preview] [Preview Options...]
[Save Flipped Yertically Effis
[Set Profile Directarny] [Save Profile]

@ NVIDIA.

Comments ta SDEFeedback@nvidia.com <ho profile loaded>

hd Load Profile

The texture must have an alpha channel and the following configuration

On the left image is
the diffuse of the
glass texture.

On the right image
the alpha channel.
A soft shadow of the
cockpit dashboard is
painted on top of the
texture. This trick
allows an emulation
of the internal
reflection of the
dashboard on the
glass when the sun
is forward.

Note: The internal glass mesh is just a copy ot the external polygons of the glass, but the internal glass should
all the normals pointing internally. Do likewise for al the windows internal glasses.

EDITOR “CAR SPECIFIC SHORTCUT KEYS”

Specific shortcut keys have been added to the editor that allow faster work and quick feature testing.

Shortcut keys
F1 Switches from RIM to RIM Blurred. The effect becomes visible and can be tuned faster.

F3 Switches from COCKPIT_HR to COCKPIT_LR (if exist) and vicecersa. Usefull to see if the switch of the
cockpit models is too abrupt.

F4 Shows the GLASS damage mesh on and off.
Note:This command works only if the glass damage mesh NULL exists.

MATERIAL EDITOR SHADERS AND PERSISTENCE FILES

Warning: This section is still work in progress, features missing or do not work perfectly.

It is important to follow certain rules during car exporting, to avoid errors and extra work, especially regarding

material setup.

1) Meshes must have only one UV coordinates set.
2) Do not change the material names when you export the car again. The editor always checks for the

material name assigned to a shader. In case a car is imported with a name different than before, the shader will
not find the reference material and assign wrongly, an empty material.

Once an FBX file is loaded in the editor the materials can be configured.

Default_material

[ksPerPoel
DepthMode eDepthNormal
Shader ksPerPixel
AphaBlended False
MName Boeing_747

ksAmbient
ksDiffuse
ksSpecular
ksSpecularEXP

ksEmissive

ksAlphaRef
tDiffuse

In the tab MATERIAL you can
assign a materials to any mesh.
Specific material exist, for specific
tasks. To assign a material, first
select a mesh by right clicking on it
The mesh will be highlighted pink.
Change the material on the proper
slot. By default any mesh is
assigned a PerPixel simple shader
with default parameters. When a
texture is not found or not assigned
to a material, a text in the bottom
pink tab will show a NULL texture.

Once the car materials are
configured and edited, it is time to

save a PERSISTENCE file. This file

contains all the shader

modifications made for the FBX file.

o ksEditar
File View Track Cameras Al Spline

| 1S
d

GL
ksBrokenGlass ‘—‘

ksCarPairt Simple
ksClouds
ksColourShader
k=Flags

ksGrass

ksMegaShader

ks Muttilzyer

ksMultilayer_fresnel_nm

ksMutilayer_objsp
sVR2

The PERSISTENCE file is named like the FBX file reference. It is
important to not rename the “car_name”.fbx file after the PERSISTENCE is saved.
Example: The FBX file FerrariF40.fbx , will create a persistence file named, FerrariF40.fbx.ini

This workflow allows successive modifications of the car materials even if the FBX meshes and animations have
been modified and re-exported many times. Editing will remain possible for every single aspect, as long as the
same file names and materials names are kept identical.

The following subjects are under construction.

MATERIALS and DRAW CALLS (wip)

The enhance optimization and achieve better framerate performance,the number of draw calls to the graphics
engine must be very low. Keeping the number of materials as low as possible is a great optimization technique.
A car exterior usually has no more than 10 / 15 materials. The interior is also limited to around 15/20 materials.

For every material you can have different shaders. The shaders are explained in detailed mode in the
SHADER SECTION.

The following texture feature layers are supported in game:

DIFFUSE LAYER

NORMAL MAPS (Tangent space and Object space)

SPECULAR MAP

REFLECTION MAP

Exponent Multiplier MAP

MASK MAP (rgb map to define masks for multilayer shader)

ALPHA MAP

DETAIL MAP (a secondary texture layered in various way with a multiplicator of tile)

