Teste N.º 1 de Matemática A • 10.º Ano Proposta de resolução

1.

1.1 Opção (D)

• Votos validamente expressos: 36 054 394

Votos brancos ou nulos: 949 334

Abstenção: 10 578 455

Total de eleitores inscritos: 36 054 394 + 949 334 + 10 578 455 = 47 582 183

1.2 Candidato com mais votos: Emmanuel Macron (8 656 346)

Candidato com menos votos: Benoît Hamon (2 291 288)

Votos validamente expressos: 36 054 394

Diferença, com aproximação às décimas, entre a percentagem de votos obtida pelos candidatos, de entre os apresentados na tabela, com o maior e o menor número de votos, em relação ao total de votos validamente expressos: $\frac{8\ 656\ 346-2\ 291\ 288}{36\ 054\ 394} \times 100 \approx 17,7\%$

1.3 Uma vez que, em França, é usado o sistema de Maioria Absoluta nas eleições presidenciais, para um candidato vencer as eleições na primeira volta é necessário obter mais de 50% dos votos válidos validamente expressos. Ora, $\frac{36\,054\,394}{2} = 18\,027\,197$, e o candidato mais votado, Emmanuel Macron, obteve apenas $8\,656\,346$ votos.

Assim, os dois candidatos com mais votos, Emmanuel Macron (8 656 346 votos) e Marine Le Pen (7 678 491 votos) foram os candidatos que participaram na segunda volta.

2.

2.1 Opção (C)

Cálculo da taxa de abstenção: $\frac{625-400}{625} \times 100 = 36\%$

Cálculo da percentagem de votos inválidos: $\frac{400 - (140 + 92 + 68 + 52)}{400} \times 100 = \frac{48}{400} \times 100 = 12\%$

O número de votos na primeira prioridade para "Habitação" é 140, e o número de votos para a quarta prioridade na mesma opção é 92 + 52 = 144.

Como 140 ≠ 144, apenas as afirmações I e II são verdadeiras.

2.2 Habitação: $140 \times 4 + 92 \times 1 + 68 \times 2 + 52 \times 1 = 840$

Mobilidade: $140 \times 2 + 92 \times 3 + 68 \times 4 + 52 \times 3 = 984$

Ambiente: $140 \times 3 + 92 \times 2 + 68 \times 1 + 52 \times 4 = 880$

Cultura: $140 \times 1 + 92 \times 4 + 68 \times 3 + 52 \times 2 = 816$

Vencedor pelo método de Borda: Mobilidade (M), com 984 pontos.

3. Dividindo o número de votos obtidos em cada uma das listas por 1, 2, 3 e 4, obtemos os seguintes quocientes.

Divisores	Lista					
Divisores	E	Т	R			
1	27	45	28			
2	13,5	22,5	14			
3	9	15	9,33			
4	6,75	11,25	7			
5	5,4	9	5,6			

Escrevendo os quocientes obtidos por ordem decrescente:

Quociente	45	28	27	22,5	15	14	13,5	11,25	9,33	9
LISTA	Т	R	Е	Т	Т	R	Е	Т	R	E/T

Na escolha do 10.º quociente, deparamo-nos com dois valores iguais (9), na Lista E e na Lista T. Uma vez que a Lista E tem um menor número de votos relativamente à Lista T, o décimo elemento a constituir a equipa será da Lista E.

Número de elementos de cada lista na equipa constituída:

Lista T: 4

Lista E: 3

Lista R: 3

Conclui-se que o morador que afirmou que, usando o método de Hondt, as listas E e R teriam o mesmo número de elementos (3 cada) tinha razão.

4.

4.1 Opção (B)

O valor da retribuição horária é calculado através da fórmula $(Rm \times 12) \div (52 \times n)$, em que Rm é a retribuição mensal e n corresponde ao número de horas semanal.

$$Rm = 11 648 \div 14 = 832$$

 $(832 \times 12) \div (52 \times n) = 9,6 \iff 9984 \div (52 \times n) = 9,6$
 $\iff 9984 = 9,6 \times 52 \times n$
 $\iff 9984 = 499,2 \times n$
 $\iff n = \frac{9984}{499,2}$

$$\Leftrightarrow n = 20$$

Nestas condições, a Marta teria de trabalhar 20 horas semanais.

4.2 $2400 \div 20 = 120$

$$120 \times 0.06 = 7.2$$

Segundo as condições inicialmente definidas, a Marta deveria pagar mensalmente uma prestação de $120 \, €$, acrescida de 6% desse montante. Assim, o valor de cada prestação seria $120 + 7,2 = 127,2 \, €$. Após efetuar o pagamento das 12 primeiras prestações, ficariam em falta 8 prestações, correspondentes a $8 \times 120 = 960 \, €$.

Seja *x* o valor dos juros pagos nos últimos 4 meses. Assim:

$$2572,80 = 12 \times 127,2 + 960 + x \Leftrightarrow 2572,80 = 2486,4 + x \Leftrightarrow x = 86,4$$

Seja r a nova taxa aplicada nos 17.º a 20.º meses:

$$86.4 = 960 \times r \Leftrightarrow r = \frac{86.4}{960} = 0.09$$

Assim, a nova taxa aplicada, em percentagem, foi 9%.

5.

5.1 Opção (B)

$$1199 - 6 \times 20 = 1079 \in$$

Seja *x* o vencimento ilíquido do Francisco no mês de fevereiro.

$$x - 0.11 \times x - 256 = 1079 \Leftrightarrow 0.89x = 1335 \Leftrightarrow x = \frac{1335}{0.89} \Leftrightarrow x = 1500 \in$$

5.2 Para apurar o rendimento coletável, subtrai-se ao rendimento global bruto o valor das deduções específicas:

Rendimento coletável: $35\,000 \in -4\,350,24 \in = 30\,649,76 \in$

De acordo com a tabela de IRS apresentada, o rendimento coletável do Francisco enquadra-se no escalão correspondente a rendimentos superiores a 27 146 € até 39 791 €, com uma taxa de 35.5%.

Valor da coleta líquida: 30.649,76 € × 0,355 - 3845,5 = 7.035,16 €

Uma vez que a retenção na fonte é inferior ao valor da coleta líquida, o Francisco teve de pagar ao Estado, de IRS, o valor $7035,16 - 7028 = 7,16 \in$.

5.3 Seja C o capital inicial que o Francisco quer aplicar e r a taxa de juro composto a aplicar, para que o capital inicial aumente 50% nesse período.

Assim

$$C + 0.5C = C(1+r)^{10} \Leftrightarrow 1.5C = C(1+r)^{10}$$

$$\Leftrightarrow 1.5 = (1+r)^{10}$$

$$\Leftrightarrow 1 + r = \sqrt[10]{1.5}$$

$$\Leftrightarrow r = \sqrt[10]{1.5} - 1$$

$$\Leftrightarrow r \approx 0.0414$$

A taxa anual de juro composto que o Francisco deve procurar, em percentagem e com arredondamento às centésimas, é 4,14%.

6. Opção (A)

Cálculo da diferença entre o montante final e o depósito inicial: $2\,584-850=1734$ €

Assim:

$$850 \times \frac{p}{100} \times 17 = 1734 \Leftrightarrow 144,5p = 1734$$

$$\Leftrightarrow p = \frac{1734}{144,5}$$

$$\Leftrightarrow p = 12\%$$